6 research outputs found

    Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    Get PDF
    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications

    Caractérisation 3d d'images IRM pour l'analyse de l'ostéochondrite primitive de la hanche

    Get PDF
    - L'interface utilisateur dĂ©veloppĂ©e fournit des indices coxomĂ©triques pour caractĂ©riser l'Ă©tat global de l'articulation de la hanche. Le logiciel 3D Slicer sert d'interface pour la visualisation 3D. La technique des ensembles de niveaux est utilisĂ©e pour segmenter chaque type de structure. Elle s'adapte Ă  la topologie de la maladie Ă  caractĂ©riser (fragmentation) et au type d'examen IRM (T1 ou T2). Un modĂšle gĂ©omĂ©trique est ensuite construit. Des indices gĂ©omĂ©triques tridimensionnels sont calculĂ©s automatiquement : excentration de la tĂȘte, volume de la tĂȘte, volume des cartilages cĂ©phalique et acĂ©tabulaire, distance tĂȘte-cotyle. Ces mesures exploitent l'ensemble des images planes IRM et quantifient les dĂ©formations liĂ©es Ă  la maladie. Elles peuvent servir Ă  prĂ©parer une intervention chirurgicale ou Ă  surveiller l'Ă©volution de la maladie

    Das exokrine Pankreas: Non-invasive Evaluation der Funktion mittels MRT zur FrĂŒhdiagnose der Abstossung nach Transplantation

    Get PDF
    In dieser Arbeit wurde die Quantifizierung von FlĂŒssigkeiten in einem klinischen 1,0 Tesla Ganzkörper-MR-Tomographen sowohl im Phantomexperiment als auch in vivo in Probanden und Patienten implementiert. Quantifizierung von FlĂŒssigkeiten ist ein in der NMR bekanntes Verfahren [RENOU JP et al 87; Schmidt, S. J. et al 96]. Diese Untersuchungen beschrĂ€nkten sich allerdings auf in vitro Untersuchungen. Spektroskopische Techniken in der MRT erlauben zwar theoretisch eine vergleichbare Quantifizierung, sind aber aufgrund der langen Untersuchungszeiten und beschrĂ€nkten rĂ€umlichen Auflösung fĂŒr den klinischen Einsatz nutzlos. Die vorliegende Arbeit wurde in Zusammenarbeit mit der Klinik fĂŒr Strahlendiagnostik und der Klinik fĂŒr Innere Medizin, Schwerpunkt Gastroenterologie/Endokrinologie und Stoffwechsel des Klinikums der Philipps UniversitĂ€t Marburg durchgefĂŒhrt. In den Phantomuntersuchungen wurde gezeigt, dass ein linearer Zusammenhang zwischen der SignalintensitĂ€t schneller (single-shot) stark T2-gewichteter MR-Sequenzen und der im Untersuchungsvolumen vorhandenen FlĂŒssigkeitsmenge besteht. Damit ist es möglich, FlĂŒssigkeiten nicht nur abzubilden, sondern auch an Hand der gemessenen SignalintensitĂ€t zu quantifizieren. Des Weiteren wurde in den Phantomuntersuchungen gezeigt, dass diese Messungen reproduzierbar und unabhĂ€ngig von der gewĂ€hlten Schichtdicke bzw. Pixelgrösse sind. Der Einfluss der VorsĂ€ttigung durch vorausgegangene Messungen kann eliminiert werden, wenn der Abstand zwischen den beiden Messungen mindestens 11 Sekunden betrĂ€gt. Sowohl die tierexperimentellen als auch die Probandenuntersuchungen bestĂ€tigten den linearen Zusammenhang zwischen SignalintensitĂ€t und FlĂŒssigkeitsmenge im Untersuchungsvolumen. An Hand der Probandenuntersuchungen wurden die Messungen geeicht, so dass eine SignalintensitĂ€tsĂ€nderung in ein FlĂŒssigkeitsvolumen umgerechnet werden konnte. Die Patientenuntersuchungen gliederten sich in drei Teile: 1. Diagnose der chronischen Pankreatitis mit Hilfe der MRH im Vergleich zur endoskopischen retrograden Cholangiopankreatikographie. 2. Vergleich der MRH Ergebnisse mit den Ergebnissen des Secretin-Caerulein-Sondentests. 3. Diagnose von Funktionsstörungen von Pankreastransplantaten. Die Ergebnisse der Patientenuntersuchungen zeigten, dass die MRH-Ergebnisse signifikant mit den Ergebnissen des Sekretin-Caerulein-Sondentests korrelieren. Trotzdem gab es einige Unterschiede, welche sich aber auf die unterschiedlichen Testbedingungen zurĂŒckfĂŒhren liessen. So war das gemessene Volumen im Sondentest immer höher als in der MRH. Dies lag vor allem daran, dass die MRH nur ĂŒber einen Zeitraum von 10 Minuten mass, wĂ€hrend der Sondentest 60 Minuten dauerte. Des Weiteren war das Duodenum wĂ€hrend der MRH nicht durch Ballons blockiert, so dass FlĂŒssigkeit aus dem Untersuchungsvolumen heraus transportiert werden konnte. Insgesamt konnten die Patienten-Untersuchungen allerdings zeigen, dass die MRH in der Lage ist, fortgeschrittene chronische Pankreatitis zu diagnostizieren, wĂ€hrend in frĂŒhen Stadien immer noch Probleme bestehen. Insbesondere die EinfĂŒhrung eines MRH Scores, bestehend aus dem sezernierten Volumen und der Dauer der Sekretion, verbesserte die Diagnosestellung. In Zukunft sollte eine weitere Verbesserung der SpezifitĂ€t des Verfahrens mit Hilfe von MR-Spektroskopie möglich sein. Die Untersuchungen der Patienten nach Pankreastransplantation zeigten, dass die MRH durchaus in der Lage ist, Patienten mit einer Funktionsstörung des Pankreastransplantats von solchen mit normaler Funktion zu unterscheiden. Die MRH zeigte ebenfalls Unterschiede zwischen verschiedenen Funktionsstörungen. So sezernierte ein Patient mit einer chronischen Abstossungsreaktion noch eine geringe Menge an Pankreassekret, wĂ€hrend beide Patienten mit nekrotisierender Pankreastitis so gut wie keine Sekretion mehr aufwiesen

    Das exokrine Pankreas: Non-invasive Evaluation der Funktion mittels MRT zur FrĂŒhdiagnose der Abstossung nach Transplantation

    Get PDF
    In dieser Arbeit wurde die Quantifizierung von FlĂŒssigkeiten in einem klinischen 1,0 Tesla Ganzkörper-MR-Tomographen sowohl im Phantomexperiment als auch in vivo in Probanden und Patienten implementiert. Quantifizierung von FlĂŒssigkeiten ist ein in der NMR bekanntes Verfahren [RENOU JP et al 87; Schmidt, S. J. et al 96]. Diese Untersuchungen beschrĂ€nkten sich allerdings auf in vitro Untersuchungen. Spektroskopische Techniken in der MRT erlauben zwar theoretisch eine vergleichbare Quantifizierung, sind aber aufgrund der langen Untersuchungszeiten und beschrĂ€nkten rĂ€umlichen Auflösung fĂŒr den klinischen Einsatz nutzlos. Die vorliegende Arbeit wurde in Zusammenarbeit mit der Klinik fĂŒr Strahlendiagnostik und der Klinik fĂŒr Innere Medizin, Schwerpunkt Gastroenterologie/Endokrinologie und Stoffwechsel des Klinikums der Philipps UniversitĂ€t Marburg durchgefĂŒhrt. In den Phantomuntersuchungen wurde gezeigt, dass ein linearer Zusammenhang zwischen der SignalintensitĂ€t schneller (single-shot) stark T2-gewichteter MR-Sequenzen und der im Untersuchungsvolumen vorhandenen FlĂŒssigkeitsmenge besteht. Damit ist es möglich, FlĂŒssigkeiten nicht nur abzubilden, sondern auch an Hand der gemessenen SignalintensitĂ€t zu quantifizieren. Des Weiteren wurde in den Phantomuntersuchungen gezeigt, dass diese Messungen reproduzierbar und unabhĂ€ngig von der gewĂ€hlten Schichtdicke bzw. Pixelgrösse sind. Der Einfluss der VorsĂ€ttigung durch vorausgegangene Messungen kann eliminiert werden, wenn der Abstand zwischen den beiden Messungen mindestens 11 Sekunden betrĂ€gt. Sowohl die tierexperimentellen als auch die Probandenuntersuchungen bestĂ€tigten den linearen Zusammenhang zwischen SignalintensitĂ€t und FlĂŒssigkeitsmenge im Untersuchungsvolumen. An Hand der Probandenuntersuchungen wurden die Messungen geeicht, so dass eine SignalintensitĂ€tsĂ€nderung in ein FlĂŒssigkeitsvolumen umgerechnet werden konnte. Die Patientenuntersuchungen gliederten sich in drei Teile: 1. Diagnose der chronischen Pankreatitis mit Hilfe der MRH im Vergleich zur endoskopischen retrograden Cholangiopankreatikographie. 2. Vergleich der MRH Ergebnisse mit den Ergebnissen des Secretin-Caerulein-Sondentests. 3. Diagnose von Funktionsstörungen von Pankreastransplantaten. Die Ergebnisse der Patientenuntersuchungen zeigten, dass die MRH-Ergebnisse signifikant mit den Ergebnissen des Sekretin-Caerulein-Sondentests korrelieren. Trotzdem gab es einige Unterschiede, welche sich aber auf die unterschiedlichen Testbedingungen zurĂŒckfĂŒhren liessen. So war das gemessene Volumen im Sondentest immer höher als in der MRH. Dies lag vor allem daran, dass die MRH nur ĂŒber einen Zeitraum von 10 Minuten mass, wĂ€hrend der Sondentest 60 Minuten dauerte. Des Weiteren war das Duodenum wĂ€hrend der MRH nicht durch Ballons blockiert, so dass FlĂŒssigkeit aus dem Untersuchungsvolumen heraus transportiert werden konnte. Insgesamt konnten die Patienten-Untersuchungen allerdings zeigen, dass die MRH in der Lage ist, fortgeschrittene chronische Pankreatitis zu diagnostizieren, wĂ€hrend in frĂŒhen Stadien immer noch Probleme bestehen. Insbesondere die EinfĂŒhrung eines MRH Scores, bestehend aus dem sezernierten Volumen und der Dauer der Sekretion, verbesserte die Diagnosestellung. In Zukunft sollte eine weitere Verbesserung der SpezifitĂ€t des Verfahrens mit Hilfe von MR-Spektroskopie möglich sein. Die Untersuchungen der Patienten nach Pankreastransplantation zeigten, dass die MRH durchaus in der Lage ist, Patienten mit einer Funktionsstörung des Pankreastransplantats von solchen mit normaler Funktion zu unterscheiden. Die MRH zeigte ebenfalls Unterschiede zwischen verschiedenen Funktionsstörungen. So sezernierte ein Patient mit einer chronischen Abstossungsreaktion noch eine geringe Menge an Pankreassekret, wĂ€hrend beide Patienten mit nekrotisierender Pankreastitis so gut wie keine Sekretion mehr aufwiesen

    A machine learning approach to statistical shape models with applications to medical image analysis

    Get PDF
    Statistical shape models have become an indispensable tool for image analysis. The use of shape models is especially popular in computer vision and medical image analysis, where they were incorporated as a prior into a wide range of different algorithms. In spite of their big success, the study of statistical shape models has not received much attention in recent years. Shape models are often seen as an isolated technique, which merely consists of applying Principal Component Analysis to a set of example data sets. In this thesis we revisit statistical shape models and discuss their construction and applications from the perspective of machine learning and kernel methods. The shapes that belong to an object class are modeled as a Gaussian Process whose parameters are estimated from example data. This formulation puts statistical shape models in a much wider context and makes the powerful inference tools from learning theory applicable to shape modeling. Furthermore, the formulation is continuous and thus helps to avoid discretization issues, which often arise with discrete models. An important step in building statistical shape models is to establish surface correspondence. We discuss an approach which is based on kernel methods. This formulation allows us to integrate the statistical shape model as an additional prior. It thus unifies the methods of registration and shape model fitting. Using Gaussian Process regression we can integrate shape constraints in our model. These constraints can be used to enforce landmark matching in the fitting or correspondence problem. The same technique also leads directly to a new solution for shape reconstruction from partial data. In addition to experiments on synthetic 2D data sets, we show the applicability of our methods on real 3D medical data of the human head. In particular, we build a 3D model of the human skull, and present its applications for the planning of cranio-facial surgeries

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24∘^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung
    corecore