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ABSTRACT  

MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR 
images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may 
allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In 
this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a 
group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we 
compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in 
a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values 
of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast 
and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific 
CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC 
values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a 
substantial decrease in computational time making the approach suitable for real applications. 
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1. INTRODUCTION  
Skull segmentation from Magnetic Resonance Imaging (MRI) data is receiving a lot of attention, as there are many 
applications in which a precise delineation of the skull is needed. Accurate construction of patient-specific tissue models 
for dosimetry applications in electromagnetics[1] (EM), medical radiation physics[2], or the use of tissue information for 
attenuation correction in PET-MR[3],[4] are three of the most important examples. 

Nevertheless, MRI-based bone segmentation, specifically automatic segmentation of the skull, is a challenging task. On 
one hand, bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit 
the bone boundaries. On the other hand, the high complexity of the skull anatomy, its fuzzy boundaries and missing edge 
features hinders the application of general-purpose segmentation methods. 

The development and implementation of the Ultra-short TE (UTE) sequences allowed detecting signal from previously 
unobservable tissues such as cortical bone, tendons, ligaments and menisci[5]. Keereman et al. proposed the use of the 
transverse relaxation rate derived from UTE images to classify the voxels into skull, soft tissue, and air[6]. 
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Rifai et al. proposed a 3D method for segmenting bone regions in MRI volumes using deformable models and taking the 
partial volume effect into account[7]. Wang et al. proposed the use of a CT database to create a reliable shape model used 
to locate the skull shape in MRI[8]. 

We previously proposed a method for complete skull segmentation based only on T1-weigthed images of the human 
head[9]. The skull was estimated using a multi-atlas segmentation and label-fusion approach. CTs from a whole head CT-
scan database were registered to the patient MRI image using affine a non-rigid registration; then, the final patient-
specific skull is estimated using label fusion techniques. 

However, these methods present several limitations: methods based on UTE sequences have safety issues of high radio-
frequency power being delivered into the patient’s body; methods based on deformable models or label-fusion loose 
detail presenting smoothed contours of the skull as a result of the label-fusion volume averaging. 

Recently, patch-based methods have showed to be a versatile segmentation technique[10], relaxing the one-to-one 
constraint existing in non-rigid registration. Several approaches have been introduced depending on the patch fusion 
methods or rules[11],[12]. Ye et al. proposed a patch-based method for generating a T2 volume from a T1-weighted 
volume[13]. 

In this work, we propose a method for fast pseudo-CT generation from a patient-specific MRI T1-weighted image using 
a group-wise patch-based approach on a MRI and CT atlas dictionary. 

 

2. PATCH-BASED LABEL PROPAGATION 
Patch-based segmentation was introduced as an alternate approach for label propagation, which eliminates the 
requirement of non-rigid registration[10]. This technique was developed as an adaptation of the non-local frameworks 
developments in non-local denoising[14],[15]. 

 

Let I be an input image to be processed, and A an anatomy atlas containing a set of MRI T1-weighted volumes IMR and 
the corresponding CT volumes ICT, so that A={(Ii

MR,Ii
CT), i=1,...,n}. 

 

Weigths Estimation 

Let us consider ωi as a weight reflecting non-local similarities between voxels a=(ax,ay,az) in the input image I and 
voxels b=(bx,by,bz) in the image Ii

MR of the atlas A over the image domain Ω, and computed using the following equation: 
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where PI(a) is a 3D patch of the image I centered at voxel a, S is the number of voxels in the 3D patch; β is a smoothing 
parameter, and σ is the standard deviation of the noise. The original denoising approach assumes that similarities of a 
patch can be found over the entire image domain Ω. However, in the context of modality propagation, the variations of 
the anatomical structures in a population are bounded, so we can find good matches in a specific neighborhood N(a) of a 
specific voxel a. The weights are then estimated in this local area as ω={ω(a,b), ∀ a∈Ω, b∈N(a)}, reflecting the local 
similarities between I and Ii

MR. The size of the considered neighborhood N has been set to 11 in this paper, which is 
directly related to the head anatomical variability. 

 

Group-Wise Label Propagation 

Using equation 1 to calculate the weights, the image IpseudoCT can be estimated as follows: 
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Which takes all the images Ii
MR in the atlas A to produce a group-wise combination of Ii

CT, thus, obtaining an estimation 
of IpseudoCT. 

 

Regularization 

Contrary to registration-based approaches, if there is no correspondence between the patch of the input image I and the 
patches of the images Ii

MR in the atlas A, no value (NaN) is asigned to the voxel a of IpseudoCT. 

This situation makes it necessary to include a regularization step dealing with non-labeled voxels. Usually these cases 
are isolated, so in this work we have assigned to this voxel the value of the median in its neighborhood. The size of the 
neighborhood N2(a) has been set to 3 in this paper. 
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3. MATERIALS AND METHODS 
MRI-CT data set 

We have used a data set containing 19 healthy volunteers MRI-CT pairs to evaluate the patch-based pipeline. MRI 
images of the head were acquired on a General Electric Signa HDxt 3.0T MR scanner using the body coil for excitation 
and an 8-channel quadrature brain coil for reception. Subjects were positioned supine. Imaging was performed using an 
isotropic 3DT1w SPGR sequence with a TR=10.024ms, TE=4.56ms, TI=600ms, NEX=1, acquisition matrix=288x288, 
resolution=1x1x1mm, flip angle=12. CT images were acquired on a Siemens Somatom Sensation 16 CT scanner with 
matrix=512x512, resolution=0.48x0.48mm, slice thickness=0.75mm, PITCH=0.7mm, acquisition angle=0º, 
voltage=120kV, radiation intensity=200mA. 

Image preprocessing was carried out using 3D Slicer built-in modules. This preprocessing included MRI bias correction 
(N4 ITK MRI bias correction), rigid registration (general registration BRAINS) to align all the images, and 
normalization of the grayscale values (ITK-based histogram matching). 

This data set has been separated into an atlas A containing 10 MRI-CT pairs A={(Ii
MR,Ii

CT), i=1,...,10}, and a test set T 
containing the 9 remaining MRI-CT pairs T={(Ii

MR,Ii
CT), i=1,...,9}. 

 

GPU Implementation 

GPU Computing has gained importance to speed up algorithms in all scientific fields as well as in industry. The Patch-
Based algorithm is highly parallelizable; our routine is comprised of ten loops: Three loops iterate through the 3D input 
image selecting a patch to be compared, the fourth loop it is used for selecting the atlas, the next three loops iterate 
through the neighborhood N selecting the atlas patch, the last three loops are in charge of the minimum square error 
calculation between both patches (input image and atlas). 

The calculation of each point in the 3D image is completely independent from the others. Configuring a 3D grid in 
CUDA model allows eliminating the three external loops. Our CUDA kernel contains the rest of the loops and this way 
each label calculation is performed in a separate thread. 
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4. EXPERIMENTAL RESULTS 
Qualitative results 

Figure 1 shows the estimation result in the three planes (sagittal, coronal and axial) of a complete head MRI volume, the 
CT ground truth, and the estimated pseudo-CT for two healthy subjects. The proposed method approaches the shape of 
the skull generally well despite the patient-specific anatomical variations. 

 
Figure 1. Three planes (sagittal, coronal and axial) of the MRI (first column), CT (second column), and pseudo-CT (third 
column) of a first subject, and MRI (fourth column), CT (fifth column), and pseudo-CT (sixth column) of a second subject. 
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The comparison between the patient-specific CT and the pseudo-CT shows how our method is able to approximate to the 
ground truth, delimiting the skull contours and differentiating air from bone. Visual inspection of the segmentation 
results shows the high quality of the pseudo-CT estimation and the robustness of the method, which is able to capture the 
details of the bone spikes in non-smooth areas such as the sinuses or the cervical vertebrae. 

 

Quantitative results 

We also tested the effect of changing the size of the atlas on the quality of the synthesized images in subjects without 
skull deformations, using atlas of 5, 7, and 10 datasets (Figure 2). 

 
Figure 2. Axial plane of the patient specific (ground truth) CT and pseudo-CTs synthesized using atlases of different sizes. 

 

We used the normalized cross correlation (NCC) to quantitatively measure the quality of the synthesized pseudo-CTs 
(I2) compared to the ground truth CT (I1) following equation 2. 

 

 NCC = 1
N

I1 x, y( ) −μ1( ) I2 x, y( ) −μ2( )
σ1σ 2x,y

∑  (2) 

 

The experimental NCC was 0.9281±0.0066 for the atlas with 5 datasets, 0.9294±0.0051 for the atlas with 7 datasets, and 
0.9324±0.0048 for the atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate 
the patient-specific CT. 

 

Computational time 

Table 1 shows the average computational time of the same algorithm implemented in different programming languages 
and using different configurations. The matrix size of the atlases, labels and the input volumes were 55x55x45 voxels. 
All matrices are represented in single precision. The time for GPU configuration includes the memory transfers (host to 
graphics card memory and viceversa). 

In the worst-case scenario (10 atlases), computation of the pseudo-CT volume with the GPU implementation takes 4374 
times less time than with the Matlab implementation, 27 times less than using the C implementation and 11 times less 
than with the C OpenMP version. 
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Table 1. Comparison of the average ± standard deviation of the computational time spent in processing 10 input volumes for 
each configuration. Matlab code was tested only once due to the computational cost. The C OpenMP implementation was 
configured to use 32 threads. 

 Computational Time (seconds) 

# Atlases Matlab C C OpenMP GPU 

5 8289.80 60.34 ± 0.02 31.08 ± 0.09 2.23 ± 0.00 

7 11726.60 84.58 ± 0.04 37.41 ± 0.29 3.12 ± 0.00 

10 19488.00 120.83 ± 0.14 50.24 ± 0.13 4.46 ± 0.00 

 
 

All the experiments have been tested over Windows Server 2008 R2, on a Dual Intel Xeon-E5 2687W CPU processor 
@3.1GHz, using Matlab 2014a with MATLAB Parallel Toolbox. In addition to that, there is a NVIDIA Tesla K20X 
GPU card with 6GB dedicated memory. 

 

5. CONCLUSIONS 
In this paper we have presented a fast approach for the estimation of a pseudo-CT by using a multi-atlas and a patch-
based approach based on a single T1-weighted MRI image of a subject as input. Constructing a pseudo-CT from an only 
MRI T1-weigthed acquisition is interesting to decrease patient ionization by removing the need of patient-specific CT 
acquisition while obtaining a good estimation of the actual CT. Additionally, the use of only MRI instead of MRI+CT 
has the advantage of decreasing costs and acquisition time, while allowing detailed information of soft tissues. 

The approach performs successfully and could be very useful for tasks where the skull estimation is needed such as 
attenuation correction in hybrid PET/MR systems, and Specific Absorption Rate (SAR) calculations in high-field MRI. 

Although the results of the computational times are very promising, this is a naive implementation. Most of accesses are 
from global memory; global memory accesses are 10x slower than shared memory. Future implementations will head 
this direction to speed up our proposal. 
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