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Abstract

Statistical shape models have become an indispensable tool
for image analysis. The use of shape models is especially popular
in computer vision and medical image analysis, where they were
incorporated as a prior into a wide range of different algorithms.
In spite of their big success, the study of statistical shape models
has not received much attention in recent years. Shape models
are often seen as an isolated technique, which merely consists of
applying Principal Component Analysis to a set of example data
sets.

In this thesis we revisit statistical shape models and discuss
their construction and applications from the perspective of ma-
chine learning and kernel methods. The shapes that belong to
an object class are modeled as a Gaussian Process whose param-
eters are estimated from example data. This formulation puts
statistical shape models in a much wider context and makes the
powerful inference tools from learning theory applicable to shape
modeling. Furthermore, the formulation is continuous and thus
helps to avoid discretization issues, which often arise with discrete
models.

An important step in building statistical shape models is to es-
tablish surface correspondence. We discuss an approach which is
based on kernel methods. This formulation allows us to integrate
the statistical shape model as an additional prior. It thus unifies
the methods of registration and shape model fitting. Using Gaus-
sian Process regression we can integrate shape constraints in our
model. These constraints can be used to enforce landmark match-
ing in the fitting or correspondence problem. The same technique
also leads directly to a new solution for shape reconstruction from
partial data.

In addition to experiments on synthetic 2D data sets, we show
the applicability of our methods on real 3D medical data of the
human head. In particular, we build a 3D model of the human
skull, and present its applications for the planning of cranio-facial
surgeries.





Acknowledgements

Many people have contributed to this work through interesting
scientific discussions, advice and collaborations, but also through
their encouragement, friendship and love. This thesis would not
have been possible without them, and I would like to thank ev-
erybody who supported me on the way.

My first thank goes to my supervisor, Prof. Thomas Vetter,
for his guidance and insightful remarks, but especially for his con-
fidence and trust. A special thank goes to my colleague, Thomas
Albrecht, for the great collaboration and the countless hours of
fruitful and enlightening discussions. Furthermore, I would like
to thank my former Master students Anita Lerch, Matthias Am-
berg and Christoph Jud for their great work, which helped me
to explore and advance the ideas developed in this thesis. I am
grateful to the following people for proof-reading and helpful com-
ments: Thomas Albrecht, Matthias Amberg, Nadine Fröhlich,
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2 Chapter 1. Introduction

The central question of research in the field of computer vision
and medical image analysis is

Given an image, what can be “seen” in this image?

When presented with a photograph, humans are usually able to
immediately answer this question in great detail, without having
to give it much thought. The situation is different when we look
at more special images such as medical images. Consider for in-
stance the image depicted in Figure 1.1. While the layman may
be able to recognize that the image depicts a (slice of the) human
head, acquired using Computed Tomography, only experts see the
fracture in the orbita (marked in blue), and the acquisition arti-
facts around the teeth (marked in red). These experts acquired
their skills through a training, in which they have seen many im-
ages of the same structure. From these images, they learned the
typical shapes, relative position and appearance of the individ-
ual structures. Thus the expert is able to distinguish different
anatomical structures from one another, or to decide that certain
parts, albeit shown in the image, are acquisition artifacts and do
not actually belong to the structure. What distinguishes the ex-
pert from the layman is his experience - or put more technically,
the expert has much more prior knowledge about this medical
structure, which allows him to spot such irregularities.

With the amount of imaging data increasing every day, pro-
cessing and analysis of all the data can no longer be performed
solely by human experts. Unfortunately, most image processing
and analysis systems currently in use still behave more like the
layman than the expert. For instance, most segmentation al-
gorithms would still classify the metal artifact in Figure 1.1 as
bone, since it has the same image intensity as the bony tissue in
the image. Detecting the fracture in the orbita seems virtually
impossible to be performed automatically, without very detailed
prior knowledge about the shape.

The topic of this work is how to build and represent such prior
shape knowledge and its application for the analysis of medical
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images, with a particular focus on model based segmentation and
shape reconstruction from partial shapes. As the basic model we
use statistical shape models, which have been well established and
shown impressive results. The basic idea behind these models is,
that, in a similar fashion as for the medical expert, the shape
model learns the typical shape of an object and its normal vari-
ability from example data. That the problem in medical image
analysis is usually very specific is for designing automated algo-
rithms a blessing. It allows us to build a generative model of one
specific structure, which we then seek to explain in the image.
Statistical shape models can be regarded as probabilistic models,
which define a probability distribution over a class of surfaces.
This distribution represents our prior knowledge about the shape
that we wish to analyze. Exploring variations of this prior and its
formulation as a standard learning problem constitutes our main
contribution. In the learning context, shape models are not spe-
cial methods, but fall into the class of Gaussian Process models.
The principles from machine learning, and in particular of kernel
methods, become applicable to shape models. This leads to new
interpretations and allows for the application of learning meth-
ods for shape analysis. The application of these methods for the
analysis of medical images of the human head is our second main
contribution.

1.1 The learning approach

Statistical shape models have been used in computer vision and
medical image analysis for almost two decades, and have become
extremely popular in the last years for performing many kinds
of image analysis tasks [46]. In spite of their success, the study
of statistical shape models itself and its relation to other models
and methods has not received much attention. Indeed, since the
introduction of the Morphable Model in 1999 [14], the basic view
of statistical shape models seems not to have changed much.

Our treatment of shape models will be from the perspective
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of learning, in particular kernel methods. We will show that what
is termed statistical shape models in computer vision and med-
ical image analysis, are just special cases of a general Gaussian
Process formulation, where the input domain is a surface. In this
interpretation, statistical shape models do not stand by them-
selves anymore, but become a part of a larger class of methods.
In fact, this definition smears the border between classical sta-
tistical shape models, which provide a shape prior solely learned
from example data, and more generic prior distribution, specified
in terms of arbitrary positive definite kernels.

The basic idea behind statistical shape models is simple. Let
O be a surface in R

d which represents a population mean of a
class of objects. Any surface O that belong to the same object
class can be represented via a (smooth) deformation u : O → R

d

from this mean:

O := {x+ u(x)|x ∈ O}.

By introducing a prior over possible deformations u, the shapes
that are likely to belong to the class are specified. The defining
term of statistical shape models is, that the prior on the defor-
mation u is assumed to be zero-mean Gaussian Process, with its
covariance structure learned from a set of examples from this ob-
ject class. Thus, the prior becomes specific to this object class.

We see three main advantages in formulating our problems in
the learning framework:

(i) The learning framework provides a small set of basic prin-
ciples and concepts that need to hold for any application.

(ii) There is a rich and elegant theory of Gaussian Process
and kernel methods, which we can use to formulate the
problems and explain the algorithms.

(iii) The inference methods defined in this area are directly
applicable.

The first point provides a new viewpoint on the problems we are
investigating. It allows us to relate the occuring phenomena in
terms of the fundamental concepts in learning. Having a few fun-
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damental concepts to relate to is of invaluable help when we are
trying to solve complex real world problems. The second point
gives directly rise to a formulation of different methods in a uni-
fied framework, in which we can explain existing methods and
derive new ones. The deformations are part of a (vector valued)
Reproducing Kernel Hilbert space. This space has convenient
properties both algorithmically and theoretically. The most im-
portant property for us is that it can be defined over an arbitrary
set, such as the set of points describing the mean object O. This
makes the theory independent of the representation of the ob-
jects. Of most direct interest is the third point, which allows us
to apply standard algorithms from machine learning directly to
shape modeling.

1.2 A practical motivation

This work has been mainly motivated by a project from medical
image analysis. The goal of this project is to provide the physi-
cian with a system that assists him in the planning of complex
reconstructive surgeries. The system should be able to automat-
ically segment the skull structure from Computed Tomography
(CT) and Magnet Resonance (MR) images. Based on this seg-
mentation, a 3D Model of the skull (and eventually the full head)
is constructed on which the planning can be performed. Fur-
thermore, the software should automatically be able to propose
reconstructions of traumatized structures. The main challenge in
this project is the bad data quality. Computed Tomography (CT)
images often exhibit large metal artifacts and their resolution is
often low, such that thin bones are not completely captured. The
segmentation of the skull from MR images is even more chal-
lenging, as with current MR technology, the skull yields in many
region a similar signal as its surrounding tissue, and is therefore
difficult to identify.

To address these problems, we built a statistical shape model
of the skulls from high quality CT data-sets, which is used for the
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processing of data-sets of lesser quality.
While the methods we are going to present are formulated

independently of this application, the problem clearly influenced
their focus. We have emphasized the aspect of making them ro-
bust towards artifacts and noise by using a strong shape prior,
which we integrated whenever possible in our methods. Another
aspect of our work that is directly motivated by this application,
is that we investigated methods of how the prior can be learned
when only a few high-quality scans are available. The same prob-
lem also motivated our research how to make statistical shape
models more flexible, when the training data is not sufficient to
learn the full space of shape variations.

1.3 Contributions and related work

We see our work as building up on the state-of-the-art of statisti-
cal shape models in the area of computer vision and medical image
analysis. As our main contribution, we see the formulation of the
Statistical Shape model in the learning framework, which provides
a continuous formulation of shape models and comprises the well
known Morphable Models and Active Shape models as special
cases. Exploiting the connections to (Bayesian) kernel methods
and machine learning appears to be a new direction in this com-
munity. From the machine learner’s perspective, our work should
mainly be seen as a new application of well established techniques
and principles. While this application has been hinted, it was, to
the best of our knowledge, never carried out in such detail.

Besides the machine learning interpretation, this work makes
the following contribution to the field of medical image analysis
and computer vision:

• the integration of partially given shapes and manually de-
fined landmarks into the prior for the problem,

• the integration of the shape model into surface and image
registration [1], which unifies the problems of registration
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and shape model fitting,

• the use of local linear regression for shape model fitting,
in order to enlarge the shape space without sacrificing the
learned shape properties.

For our particular application, the planning of cranio-facial surg-
eries, we developed the following methods, which are, however, of
independent interest:

• a method for building shape models from partial data and
data which exhibits large artifacts [68],

• the use of Gaussian Process regression for obtaining a prob-
abilistic solution to the reconstruction of partially given sur-
faces [67].

Finally, we propose a novel approach to facial reconstruction from
a given skull surface [76], which nicely combines different methods
discussed in this work.

Related work

Statistical shape models are now a well established method in
computer vision and medical image analysis. Consequently, there
exists already a large body of work on the aspects of shape model
building, as well as their applications. We will provide a summary
of the literature in the corresponding chapters.

While digressing from our main field of research into related
areas, it became clear that statistical shape models are not only
of importance in computer vision and medical image analysis,
but similar techniques have been studied in various other fields.
The area of shape statistics [32] almost exclusively deals with the
problem of statistical inference on shape. This is closely related to
our goal and its results are of direct applicability. Also research
in the field of computational anatomy [44] has similar goals to
ours and uses closely related methods. Computational anatomy
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is concerned with the mathematical study of anatomical variabil-
ity. Its particular focus has been on the study of brain struc-
tures, with the goal of relating structural changes to diseases. Its
mathematical foundations lie in geometry and statistics, whereas
the deformation over patterns are usually studied using methods
from continuum mechanics. Having strong foundation in statis-
tics, the deformation model using Gaussian Processes that we are
discussing here has already been firmly established in this area.
Whereas the model is the same, its use is, however, rather differ-
ent. We are mainly interested in building up a good prior model,
that allows us to address image processing and analysis tasks.
This means, that our inference methods do not necessarily have
to lead to statistically rigorous statements. This gives us much
more flexibility in the choice of methods, compared to the field of
computational anatomy and shape statistics, whose main goal is
the statistical inference. Another branch of statistics where sim-
ilar models are used, is the area of Geostatistics [23]. A popular
method in this field is kriging, which is used for predicting un-
known values at a site, from values that have been measures at
a number of sites in the neighborhood. The method for the re-
construction of shapes from partial data turns out to be a special
case of such a kriging estimate. Even though the mathematical
model is the same, the practical setting and focus of our method
is very different. Our primary interest is not in the predictions at
a given point, but rather in its uncertainty, which we use as prior
information for subsequent image analysis tasks. Furthermore, we
can easily obtain as many samples from a shape as we need for
the inference, whereas in kriging this is a much more complicated
issue.

1.4 Overview

This work is organized as follows: We start with an overview of
some basic concepts of machine learning in Chapter 2, and intro-
duce the fundamental principles used throughout the document.
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Chapters 3 to 5 form the core of this work, in which we present
the model and its application to medical imaging. We show re-
sults and applications for two-dimensional, synthetic data. In this
controlled and simplified environment, the concepts and proper-
ties can be illustrated more easily than this is possible with real
medical images. Furthermore, visualization of the results is easier
in a two-dimensional setting. In Chapter 3 we discuss statistical
shape models and how Gaussian Process regression can be used
for modeling the shape space. The most difficult problem in shape
model building is to establish correspondence among the different
training shapes. Chapter 4 is entirely devoted to this problem. In
this chapter we also discuss how shape models can be integrated
to make the registration problem more robust to noise and missing
data. The resulting formulation unifies model fitting and regis-
tration. A detailed discussion of model fitting and its application
to image segmentation is given in Chapter 5.

In Chapter 6 we show a number of different applications for
the analysis of 3D medical images of the human head. We discuss
in detail how a statistical skull model can be built from noisy and
incomplete data, and show how the resulting model can be used
for the segmentation of MR images and different reconstruction
tasks. We conclude the chapter by presenting an model based
approach to the problem of facial reconstruction from a given
skull surface.



Chapter 2

Basic Concepts of

Machine Learning

11
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In this chapter we give an overview of the basic concepts of
machine learning. These concept will be used throughout the
document and serve as the guiding principle in the discussion of
our methods.

There exists several mathematical frameworks, in which the
learning problem can be formalized. Each framework puts its
focus on a different aspect of the learning problem. The funda-
mental principles, trade-offs and limitations, however, show up in
slightly different form in all the different frameworks. In the fol-
lowing we will introduce a framework rooted in statistical learning
theory [101] and regularization networks [77, 34]. This framework
is especially suitable for our purpose, as it is strongly connected
to kernel methods, to which we count statistical shape models.
Moreover, it emphasizes regularization, which is an important as-
pect in image analysis, where problems are often ill-posed.

The concepts we discuss here are well established in the ma-
chine learning community. We tried to put together the material
that is most useful to explain the concepts related to shape mod-
els, and which sheds light on the methods most commonly found
in their application to image analysis. Of particular interest to
us is the regression problem, since the application of shape mod-
els often reduces to a regression or curve fitting problem. We
will present three approaches to this problem. We briefly sketch
the regularization approach and then discuss kernel methods and
Gaussian process in more detail. While all these methods are
based on the same fundamental concepts, each of them highlights
a different aspect of the problem and makes the application of
certain methods more obvious than others.

For a more detailed introduction to regularization networks
and kernel methods we refer to the paper of Evgeniou [34] or
the monographs of Schölkopf and Smola [88], and Rasmussen and
Williamson [80], on which our exposition is based. We also rec-
ommend the recent overview paper by Steinke and Schölkopf [94],
in which the theory is outlined using finite domains. This simpli-
fies the mathematics considerably and makes the connection be-
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tween regularization, Gaussian processes and Reproducing Kernel
Hilbert Spaces very clear.

2.1 The learning problem

We start by formally introducing the learning problem. Let X
and Y be arbitrary sets. We refer to X as the input set and
Y as the output set. We assume that a probability distribution
p(x, y) is defined over X ×Y. Under very general conditions, this
probability distribution can be written as

p(x, y) = p(x)p(y|x). (2.1)

This decomposition gives rise to a helpful model for the learning
setting, due to Vapnik [101]. The model consists of the three
components Generator, Supervisor and Learning machine:

Generator Generates input data x ∈ X according to the marginal
distribution p(x).

Supervisor Assigns the given data x ∈ X a label y ∈ Y accord-
ing to the distribution p(y|x).

Learning Machine Observes pairs (x, y) ∈ X × Y distributed
according to p(x, y).

Figure 2.1 illustrates this setting. For learning to be possible, we
assume that there is an underlying function fρ : X → Y, called
the target function, which governs the relation between x and y:

y = fρ(x) + ǫ(x). (2.2)

Here, ǫ(x) is the non-deterministic part of the relation with E[ǫ(x)] =
0. This randomness may be due to noise in the data, or because
the underlying relation is truly non-deterministic. The learning
machine observes a set of examples

S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n (2.3)



14 Chapter 2. Basic Concepts of Machine Learning

Figure 2.1: A model for learning. The generator generates samples
x according to an unknown distribution p(x). The supervisor provides
for each sample x a label y according to a distribution p(y|x). The goal
of the learning machine is, after a training phase, to output the same
label y as the true label y from the supervisor.

called the training data. The goal of learning is to be able to make
predictions for points that do not appear in the training set. A
common approach is to estimate a function fS : X → Y, from
the sample S, which, ideally, outputs for any test point x∗ ∈ X a
value y∗ that is close to the value fρ(x∗). In this work we are only
interested in the case where Y = R

d. The learning problem is in
this case referred to as the regression problem and the function
fρ : X → R

d as the regression function. We start the discussion
with the simplest case, where Y = R. Figure 2.2 shows a typical
example of a one-dimensional regression problem.

We would like to find the function which minimizes the error
on the data that we are most likely to observe. Let L : Y×Y → R

be a Loss function, which specifies the consequences (the loss)
of predicting a value f(x) when the “true” value would be y.
Assume for the moment that the probability distribution p(x, y)
is completely known. The loss that we suffer by using f as a
model for p(y|x) can be computed as

R[f ] := E[L(f(x), y)] =
∫

X×Y
L(f(x), y)p(x, y) dxdy, (2.4)

where p(x, y) denotes the density function over X ×Y. The quan-
tity E[L(f(x), y)] is known as the expected loss, and the func-
tional R[f ] is referred to as the risk functional. It measures the
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The function

fS := argmin
f∈H

Remp[f ] = argmin
f∈H

1

n

n∑

i=1

L(f(xi), yi), (2.8)

which minimizes the empirical risk is used as practical estimator
of the ideal function f∗ on H. Note that the following inequality
holds among the different functions:

R[fρ] ≤ R[f∗] ≤ R[fS ]. (2.9)

The goal of learning can be restated as finding the function fS

from the training data S, which minimizes the so called excess
risk

R[fS ]−R[fρ]. (2.10)

The most important quantity to control this excess risk is the
hypothesis space. Indeed, choosing the right hypothesis space
is the key to successful learning and most of this work will be
concerned with this question.

2.1.1 Hypothesis spaces

Note that the excess risk (2.10) can be decomposed into two parts:

R[fρ]−R[fS ] = (R[fρ]−R[f∗])
︸ ︷︷ ︸

EA

+(R[f∗]−R[fS ])
︸ ︷︷ ︸

ES

. (2.11)

The first term EA is called the approximation error and measures
the error that is made since the hypothesis space H may not con-
tain the true function. The second term ES is called the sample
error and quantifies the extra loss that is induced by estimating
from a finite sample only. The situation is illustrated in Fig-
ure 2.3. We see from the Equation (2.11) that there is a trade-off
between the approximation error and the sample error. The sure
strategy for making the approximation error small, is for the hy-
pothesis space to encompass such a large set of functions, that any
function can be well approximated. This, however, will usually
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Figure 2.4: The figure shows the connection between the regular-
ization view, reproducing kernel Hilbert spaces (RKHS) and Gaussian
processes. To each of these views, we have an associated function that
encapsulates the prior knowledge. The arrow indicate the relationship
among the different functions, as we will discuss it here.

a hypothesis space according to our prior assumptions, namely 1)
Tikhonov regularization, 2) Reproducing Kernel Hilbert Spaces
(RKHS), and 3) Gaussian processes. While it turns out that all
these methods are essentially the same, each method emphasizes
a different aspect of the problem, and the choice will depend on
the properties of the problem and the type of prior knowledge
we have about it. Figure 2.4 gives a schematic overview of the
connection among the different methods, which will be detailed
in in the following sections.

2.1.2 Regularization

We will start with the regularization approach, as it is the most
straight-forward way to formulate the problem. We can think of
regularization as a non-committing approach, where we start with
a huge hypothesis space, which does not exclude any function a-
priori. However, as such a hypothesis space cannot be used for
learning directly, we penalize functions that disagree with our
prior assumptions. This is done by means of a Regularization
Operator.
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Definition 2.1 (Regularization Operator). A regularization op-
erator R is a linear operator from a space of functions F :=
{f | f : X → R} into a inner product space G.

The regularization operator is designed in such a way that
the norm ‖Rf‖G is a measure of how well the function f satisfies
the prior assumptions. Most commonly a regularization operators
is given as a differential operator. This has the effect that large
derivatives are penalized, and hence smooth solutions are favored.

Applying the regularization approach to risk minimization is
straight-forward. We simply include the regularization term as
an additional penalty in Problem (2.8). The new problem reads

argmin
f∈F

1

n

n∑

i=1

L(f(xi), yi) + λ‖Rf‖2G. (2.12)

where λ > 0 weights the influence of the regularization term. The
solution will be a function that best fulfills the trade-off between
fitting the data (i.e. minimizing the loss L(f(xi), yi)) and meeting
the prior assumption specified byR. The following theorem states
the surprising fact, that the minimizer of (2.12) can always be
written as a linear combination of n basis functions, independently
of the dimensionality or capacity of the hypothesis space.

Theorem 2.2. Let

H[f ] :=
1

n

n∑

i=1

L(f(xi), yi) + λ‖Rf‖2. (2.13)

Assume that the operator R∗R is one-to-one, where R∗ denotes
the adjoint of R. Then a minimizer of H[f ]

fS := argmin
f∈F

H[f ]

always admits a solution of the form

fS(x) :=
n∑

i=1

cig(x, xi) (2.14)
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where ci ∈ R are coefficients and g(x, xi) is the function that
satisfies

R∗Rg(x, xi) = δ(x− xi). (2.15)

Here δ(x) denotes the Dirac delta function.

We refer to Poggio and Girosi [41] for a proof of this theorem.
The function g(x, x′) in (2.15) is known as the Green’s function

of the operator R∗R. Given the Green’s function g it is easy to
obtain a solution to the risk minimization problem (2.12). If the
loss function L is the squared loss function

L(x, x′) := (x− x′)2,

we can simply solve a linear system to obtain the optimal solution
[41]. Otherwise, we can use an optimization scheme to solve for
the optimal coefficients in the expansion (2.14).

Figure 2.5 shows solutions to our standard regression problem,
for Greens function belonging to several different physical models.
For the first three examples we used the regularization operator

R[f ](x) =

n∑

i=0

αi
di

dx
f(x).

When choosing α0 = α1 = 1 and αi = 0, i = 1, . . . ,∞ the result
is not very smooth (Figure 2.5a). By penalizing all the derivative

using αi =
σ2i

i!2i
we obtain a much smoother result (Figure 2.5b).

Figure 2.5c shows the result for the well known thin plate spline
model, given by α2 = 1 and αi = 0, i 6= 2.2 The last example cor-
responds to an actual physical models, namely that of a vibrating
string [62]. Its regularization operator is given as

R[f ] =
d2

dx
f(x) + µ2f(x).

Note, that in this examples, we fixed the end-points to 0 while
they are free in the other examples.

2The Greens function corresponding to this operator is actually only con-
ditionally positive definite, since the null-space of R∗R is non-empty. This
can be dealt with by adding a first degree polynomial p(x) = cn+1x+ cn+2 to
(2.14), and solve simultaneously for these coefficients.
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will still be a linear combination of n Greens functions as in (2.14).
We thus keep the nice intuition of the regularization approach,

but have a space which is easier to work with. The so constructed
space is known as a Reproducing Kernel Hilbert Space.

2.2 Reproducing Kernel Hilbert Spaces

Kernel methods have become extremely popular in machine learn-
ing. Closely associated with kernel methods are a family of func-
tion spaces, called the Reproducing Kernel Hilbert Spaces (RKHS).
These function spaces have a number of properties that make
them ideally suited for learning. Probably the most important
property is that they can be defined over arbitrary input sets X ,
and the resulting function space is always a Hilbert Space. An-
other crucial property for us is that point evaluation is always well
defined, and the function in the space are regular enough, such
that fixing the function value at one point is meaningful. This is
important in a learning context, as the data that we have is only
specified at a discrete number of points.

As already mentioned, we can construct a RKHS from a given
Green’s function g of the operator R∗R. In the RKHS context,
this Green’s function is referred to as a positive definite kernel.
The prior assumptions about the problem, which we previously
specified byR, is represented directly by this kernel. Reproducing
Kernel Hilbert Spaces will be of great importance for our treat-
ment of shape models. We will therefore discuss in the following
their properties in more detail.

2.2.1 Construction and properties

We start our discussion of Reproducing Kernel Hilbert Spaces by
formally defining the notion of a kernel function.

Definition 2.3 (Positive definite Kernel function). A positive
definite kernel is a symmetric function k : X × X → R with the
property that for all finite sets {x1, . . . , xn} ⊆ X it holds that the
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n × n matrix K whose (i, j) entry is Kij = k(xi, xj) is positive
semi-definite, i.e. cTKc ≥ 0, for all 0 6= c ∈ R

n.3

Any Green’s function of a positive, self-adjoint operator sat-
isfies this definition. Other examples of positive definite kernels
are the Gaussian kernel defined by

k(x, x′) = exp(−‖x− x′‖2/σ) (2.16)

or the polynomial kernel of degree d

k(x, x′) = (〈x, x′〉+ 1)d. (2.17)

In the following we will often use the kernel function with one
argument fixed. We introduce the notation

kx(·) := k(x, ·) (2.18)

to indicate that x acts merely as a parameter here. We define the
space of functions F of arbitrary linear combinations of kernels:

F := {f |f =
N∑

i=1

cikxi
, ci ∈ R, xi ∈ X , N ∈ N}. (2.19)

Independent of the structure of the set X , this space can be turned
into a Hilbert space. This is one of the most powerful aspects of
RKHS, as it allows us to obtain a space with a rich structure from
an arbitrary set.

We start by defining the inner product by means of the kernel
function k

〈kx, kx′〉k := k(x, x′). (2.20)

Given that f(·) =∑n
i=1 cikxi

(·) and g(·) =∑n′

i=1 dikx′

i
(·) then

〈f, g〉k :=
n∑

i=1

n′

∑

j=1

cidjk(xi, x
′
j). (2.21)

3Note the mismatch in terminology between matrices and kernel functions:
Positive definiteness for kernels is what is usually referred to as positive semi-
definiteness for matrices.
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It is easy to check that 〈·, ·〉k defines a valid inner product. Pos-
itive definiteness and symmetry follows directly from the corre-
sponding property of the kernel. Since we can write

〈f, g〉k =

n∑

i=1

cig(xi) =

n′

∑

j=1

djf(x
′
j), (2.22)

it follows that the dot product is bilinear. Further, even though
the expansions of f and g do not need to be unique, Equa-
tion (2.22) implies that the inner product is nevertheless well
defined, as it does not depend on the particular kernel expan-
sion. It remains to check that the inner product is strict. This
will directly follow from Lemma 2.7 below.

With this inner product, the space (F , 〈·, ·〉k) becomes a Re-
producing Kernel Hilbert Space (RKHS).

Definition 2.4 (Reproducing Kernel Hilbert Space). Let X be a
nonempty set and F a space of functions f : X → R. The space
F is called a Reproducing Kernel Hilbert Space endowed with the
inner product 〈·, ·〉k and the norm ‖·‖k =

√

〈·, ·〉k if there exists a
function k : X × X → R with the following properties:

(i) k has the reproducing property

〈f, kx〉k = f(x), ∀f ∈ F (2.23)

(ii) k spans F i.e. F = span{k(x, ·)|x ∈ X}. Here A denotes
the completion of the set A.

Theorem 2.5. Let k : X × X → R be a positive definite kernel.
The space defined by

F := {f |f =

N∑

i=1

cikxi
, ci ∈ R, xi ∈ X , N ∈ N} (2.24)

with inner product defined by

〈kx, ky〉k := k(x, y) (2.25)

defines a valid RKHS with reproducing kernel k.
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Proof. Let k be a positive definite kernel function. As F was
defined to be the span of k, the second property is trivial. We
only need to show that k has the reproducing property. Fix any
arbitrary function f =

∑n
i=1 cikxi

. For every x it holds that

〈f, kx〉k = 〈
n∑

i=1

cikxi
, kx〉k =

n∑

i=1

ci〈kxi
, kx〉k =

n∑

i=1

cik(xi, x)

=

n∑

i=1

cikxi
(x) = f(x).

(2.26)

As f and kx were arbitrary, the property follows.

That the space constructed in this way is unique, is subject
of the following theorem.

Theorem 2.6 (Moore-Aronszain [5]). Given a positive definite
Kernel, we can construct a unique RKHS H with k as the repro-
ducing kernel.

Reproducing Kernel Hilbert Spaces have a number of intrigu-
ing properties, which make them particularly well suited for learn-
ing, but also interpolation and approximation theory. The follow-
ing result states that point evaluation is well defined. This fact
is of great importance for above mentioned applications, as they
have in common that a set of point is given and fixed, and the
functions have to be evaluated at these points to find the best
fitting one.

Lemma 2.7. The evaluation functionals

Fx :F → R

f 7→ f(x)

are bounded.
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Proof. By virtue of the reproducing property, and using the Cauchy-
Schwarz inequality we have that

|Fx[f ]| = |f(x)| = |〈kx, f〉k|
≤ ‖kx‖k‖f‖k =

√

k(x, x) ·
√

〈f, f〉k < M‖f‖k
(2.27)

for some constant M ∈ R.

An immediate consequence of Equation (2.27) is, that the in-
ner product defined in (2.20) is strict (i.e. 〈f, f〉 = 0 ⇔ f = 0).

Exploiting the same property again, we can show that the
functions satisfy a Lipschitz-like smoothness condition:

|f(x)− f(x′)| = |〈f, kx − kx′〉k| ≤ ‖f‖k‖kx − kx′‖k = ‖f‖k d(x, x′)

where d2(x, x′) = k(x, x)− 2k(x, x′) + k(x′, x′). This implies that
the smaller the norm, the less are nearby function values allowed
to change. In particular prescribing the function value at one
point x will determine the range a function value can attain at a
nearby point x′. In this sense, the norm corresponds to a measure
of smoothness or regularity of a function. The exact notion of
smoothness depends on the kernel.4 For kernels that arise from
the Greens function of a regularization operator R, it can be
shown that the RKHS has a simple correspondence in term of the
norm of the regularized function [88]. That is

‖f‖2k = ‖Rf‖2G. (2.28)

For analyzing the regularization property of the kernel norm, it is
useful to expand the kernel in terms of its eigenfunctions. That
a positive definite kernel has a (orthonormal) expansion in terms
of its eigenfunction, is the subject of Mercer’s theorem:5

4Note that since the distance d is defined in terms of the kernels, it is
not necessarily true that a small value of d(x, x′) implies that x and x′ are
spatially close.

5The assumptions in Mercer’s theorem are always fulfilled in our applica-
tions. However, a expansion in terms of basis functions is also possible under
less restrictive conditions. See [47] for further details.
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Theorem 2.8 (Mercer). Let X be a compact subset of Rn. Sup-
pose k is a continuous symmetric function such that the integral
operator Tk : L2(X ) → L2(X )

(Tkf)(·) =
∫

X
k(·, x)f(x) dx (2.29)

is positive, that is
∫

X×X
k(x, z)f(x)f(z) dxdz ≥ 0, (2.30)

for all f ∈ L2(X ). Then we can expand k(x,z) in a uniformly
convergent series consisting of eigenfunctions φj and non-negative
eigenvalues λj of Tk, satisfying 〈

√
λiφi,

√
λjφj〉 = δij,

k(x, z) =
∞∑

j=1

λjφj(x)φj(z). (2.31)

Furthermore, the series
∑∞

i=1‖
√
λiφi‖2L2(X ) is convergent.

See e.g. [91] for a proof. For Mercer kernels, the RKHS inner
product can also be defined in terms of the eigenfunctions expan-
sion. Let f =

∑

i=1 αiφi and g =
∑

j=1 βjφj . Then the RKHS
inner product is given by [34]

〈f, g〉k =
∞∑

i=1

αiβi
λi

(2.32)

Similarly, the norm becomes

‖f‖2k = 〈f, f〉k =

∞∑

i=1

α2
i

λi
(2.33)

This admits the interpretation, that the RKHS norm penalizes
the eigenfunction components corresponding to small eigenvalues
particularly strongly. We can therefore gain more insight into the
regularization properties of a kernel by looking at its eigenvalue
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Figure 2.6: Eigenfunctions (a) and eigenvalues (b) of the Gaussian
Kernel k(x, x′) = exp(−‖x− x′‖2) on the interval [−10, 10]. The eigen-
functions are approximated using 200 equidistant points.

spectrum. Figure 2.6 shows the eigenfunctions corresponding to
8 largest eigenvalues for the case of the Gaussian kernel. It can be
seen that the smaller the eigenvalue the more wiggly the functions
become. Furthermore, the eigenvalues quickly decay, so that the
more wiggly eigenfunctions will lead to a large penalty. This
properties will be discussed in more depth in Chapter 3.

These properties makes RKHS ideally suited as a hypothe-
sis spaces for empirical risk minimization. Let F be an RKHS
spanned by a kernel k. The risk minimization problem (2.12) has
the simple form:

argmin
f∈F

1

n

n∑

i=1

L(f(xi), yi) + λ‖f‖2k (2.34)

For RKHS arising from Green’s function, we already now from
Theorem 2.2 how to compute a minimizer. The same results
holds in any RKHS and is known as the Representer Theorem.
We state this theorem here in a rather general form:

Theorem 2.9 (Representer Theorem). Let X be a non-empty
set, k : X × X → R a positive definite real-valued kernel,
(x1, y1), . . . , (xn, yn) ∈ (X × R)n be a training set, and C : (X ×
R
2)n → R an arbitrary cost function. Assume that the hypothesis
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space F forms an RKHS with reproducing kernel k. Then the
regularized problem

min
f∈F

C((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + λ‖f‖2k (2.35)

admits always a solution of the form

f(x) =
n∑

i=1

cik(xi, x). (2.36)

We refer to [87] for a proof. Note that this theorem holds
in particular for the risk minimization problem (2.34). It can be
shown that if the loss function L is convex, the solution is unique.
The coefficients c = (c1, . . . , cn)

T are given by the solution to the
equation

(nλIn×n +K)c = y. (2.37)

Here In×n is the identity matrix, K is the square positive definite
matrix with elements Kij = k(xi, xj) and y = (y1, . . . , yn)

T is the
vector of labels.

Figure 2.7 shows a number of interpolation results using dif-
ferent kernels. We see that the by using sufficiently flexible kernel
functions, it is possible to perfectly interpolate the training points.
However, none of the solutions accurately explains the test point.
For a better approximation of this point, we either would have to
increase the number of training examples, or, alternatively use a
kernel which provides a better model for the target function.

2.2.2 Algebra of Kernels

We have already seen that by specifying the kernel, we fix the
hypothesis space and hence the prior assumption on our problem.
Different kernel represent different assumptions. The mathemat-
ics of this spaces is the same, independent of the kernel. We can
say that the prior is hidden in the kernel function k. How useful
this theory is, depends therefore strongly on the choice of differ-
ent kernel functions that are available for modeling our problems.
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• k(x, x′) = f(x)f(x′)

• k(x, x′) = xTBx′.

2.3 Bayesian interpretation and Gaussian

Processes

The concepts introduced so far form the theoretical basis on which
we will build our methods. Each method we will present can be
reduced to the steps of finding the right kernel and loss function
for the data at hand. In this section we will try to shed more light
on these two components, by giving a Bayesian interpretation.
This interpretation makes the underlying assumptions on the data
and the prior more explicit. More importantly we do not only
obtain simple point estimates, but can, in some cases, compute
the full posterior distribution.

2.3.1 Gaussian priors

As already mentioned, the choice of the hypothesis space is a cru-
cial decision in any learning task. It should be motivated by prior
knowledge about the problem. The Gaussian Process viewpoint
makes this more explicit. The main idea is to define a prior distri-
bution p(f) over all the functions in the hypothesis space. Given
samples S = {(x1, y1), . . . , (xn, yn)} the posterior distribution

p(f |S) = p(f)p(S|f)
p(S)

(2.38)

can be used to infer the most likely function (f∗ = argmaxf p(f |S))
or we can even obtain confidence intervals for the prediction f∗(x)
at a point x.

Probability distributions over functions can be defined using
stochastic processes. Informally, a stochastic process can be seen
as a generalization of a multivariate random variable, where the
index set is allowed to be arbitrary (most commonly, the index set
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is a subset of Rd). In this document we consider only the special
case of Gaussian Processes :

Definition 2.11 (Gaussian Process [9]). A stochastic process
{t(x)}x∈X is said to be Gaussian if any finite linear combination
of the real variables t(x) is a real Gaussian random variable.

Note that this definition includes the multivariate normal dis-
tribution as the special case, where X is finite. A Gaussian Pro-
cess is completely specified by its mean function µ(x) and covari-
ance function k(x, x′), and we use the notation GP(µ, k) to specify
a given Gaussian Process. By Definition 2.3, symmetric positive
definite kernels evaluated at a finite number points yields a sym-
metric positive semi-definite matrix, and hence a valid covariance
matrix. It is therefore not surprising, that any positive definite
kernel defines a valid covariance function and vice versa [49, 47].
An important construction is to define a Gaussian Process as

t(·) =
∞∑

i=1

αiφi(·) (2.39)

where (φi, λi) is the eigenfunction/eigenvalue pair of the kernel
k (cf. Theorem 2.8) and αi ∼ N (0, λi). We note that for any
realization of finitely many α̂i, i = 1, . . . , n, the function t(x) =
∑n

i=1 α̂iφi will be in the RKHS spanned by k.6 This duality
allows us to switch between the Gaussian Process and the RKHS
viewpoint, depending on which aspects of a formulation we would
like to highlight. Figure 2.8 shows some examples of functions
sampled from different Gaussian processes.

2.3.2 The posterior distribution

The Gaussian process view leads to a probabilistic interpretation
of the learning problem. Consider the Bayesian formulation

p(f |S) ∝ p(f)p(S|f), (2.40)

6Curiously, this does not hold anymore, when n goes to infinity. See e.g.
Rasmussen [80] for details.
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Hence

p(f |S) = p(f)p(S|f) ∝ exp(−‖f‖2k)
n∏

i=1

exp(−L(f(xi), yi).

(2.44)
The maximum a-posterior probability becomes

argmax
f

p(f |S) = argmin
f

[− ln p(f |S)]

= argmin
f

[‖f‖2k +
n∑

i=1

L(f(xi), yi)].
(2.45)

Note the similarity to the empirical risk minimization problem
given in Equation 2.8. Indeed, the problems coincide if the likeli-
hood function L is chosen as the corresponding loss functions.8

2.3.3 Inference in Gaussian Processes

Above interpretation suggests not only to consider the point esti-
mate, which maximizes the a-posteriori probability, but to com-
pute the full distribution p(f |S). There is an important special
case, which arises when we assume uncorrelated Gaussian noise
on the training data. In this case the posterior distribution is
again a Gaussian Process, and its mean and covariance function
are known in closed form. We will only discuss this case here,
as we will always make this assumption. Given the training data
S = {(x1, y1), . . . , (xn, yn)} we are interested in predicting likely
values for a a set of new test points T = {x∗1, . . . , x∗m}. Let the
training data be subject to uncorrelated Gaussian noise:

p(yi|f, xi) = N (f(xi), σ
2) (2.46)

8Strictly speaking, in a Bayesian setting the likelihood term represents
a property inherent in the data, and is not chosen such that the resulting
optimization problems leads to minimal risk. In a fully Bayesian treatment,
the strategy would be to compute the posterior, and then in a separate step
to specify a loss function whose minimum will be the function with the best
properties for the given application [80].
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By elementary properties of the normal distribution, we know
that

cov(yi, yj) = k(xi, xj) + σ2δij . (2.47)

For notational simplicity, we discuss here the case for only two
test points x∗1, x∗2. It is easy to see that it holds for arbitrarily
many points. Let K denote the kernel matrix with entries Kij =

k(xi, xj) Further we define the vectors ~k(x∗) = (k(x1, x∗), . . . , k(xn, x∗)
T ,

~x = (x1, . . . , xn)
T and ~y = (y1, . . . , yn)

T . The joint distribution
of the training set and the test point becomes the multivariate
normal

p





~y
t1
t2

∣
∣
∣
∣
∣
∣

~x
x∗1
x∗2



 = N










0
0
0



 ,






K + σ2I ~k(x∗1) ~k(x∗2)
~k(x∗1)

T k(x∗1, x∗1) k(x∗1, x∗2)
~k(x∗2)

T k(x∗2, x∗1) k(x∗2, x∗2)









 .

(2.48)
We are interested in the distribution p(t1, t2|x∗1, x∗2, ~x, ~y). For
multivariate normal distribution, the conditional distribution is
known in close form (see e.g.[80], Appendix A):

p(t1, t2|x∗1, x∗2, ~x, ~y) = N (~m,Σ) (2.49)

where

~m =

[
~k(x∗1)

T

~k(x∗2)
T

]

(K + σ2I)−1~y (2.50)

and

Σ =

[
k(x∗1, x∗1) k(x∗1, x∗2)
k(x∗2, x∗1) k(x∗2, x∗2)

]

)

−
[
~k(x∗1)

T

~k(x∗2)
T

]

(K + σ2I)−1
[

~k(x∗1) ~k(x∗2)
]

.

(2.51)

This posterior distribution is again a normal distribution. It can
be seen that this is true for any number of test points. Recalling
the definition of a Gaussian process, we see that (2.49) defines
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again a Gaussian process. This process is referred to as the poste-
rior process. Generalizing (2.50) and (2.51) we see that its mean
and covariance function are given

m(x) = ~k(x)T (K + σ2I)−1~y (2.52)

cov(x, x′) = k(x, x′)− ~k(x)T (K + σ2I)−1~k(x′). (2.53)

For a normal distribution, the mean and mode coincide. Hence
the maximum a-posteriori distribution t|x, y, x∗ is given as

p(t(x∗) = ~k(x∗)
T (K + σ2I)−1~y =

n∑

i=1

cik(xi, x∗) (2.54)

where the vector ~c = (c1, . . . , cn)
T is

~c = (K + σ2I)−1~y. (2.55)

This is exactly the result of the representer theorem for the case
when the loss function is convex (Theorem 2.2). This result is,
however, more powerful as we have the complete posterior dis-
tribution, and are therefore able to quantify the uncertainty of
a prediction. In fact even more is true: All the properties and
results discussed so far can equally well be applied to the pos-
terior process. Indeed, the posterior process can be used again
as a prior, which penalizes functions that do not agree with the
given training samples. This observation is a key ingredient of
the algorithms discussed in the following chapters.

Figure 2.9 show samples from a posterior process. The same
Gaussian Process model as for Figure 2.8b was used. We can
observe that this time the posterior process rules out all the func-
tions that do not agree with the given training samples.

2.4 Vector valued regression

The setting we discussed so far is formulated for the case where
Y = R. Our main interest is to model deformations of three
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Conversely, given the matrix valued kernel k, the corresponding
real valued kernel is defined by

l((x, s), (y, t)) := 〈~es,k(x, y)~et〉 (2.58)

where es is the s-th unit vector. See Hein and Bousquet [47] for a
proof that this expression defines a valid positive definite kernel.

A vector valued function can be written as

~f(x) = (f1(x), . . . , fd(x))
T

=

(
n∑

i=1

d∑

s=1

csi l((xi, s), (x, t))

)

t=1,...,d

=

n∑

i=1

k(xi, x)~ci

The inner product between ~f(·) =
∑n

i=1 k(xi, ·)~ci and ~g(·) =
∑n′

j=1 k(x
′
j , ·)~dj is defined as

〈~f,~g〉k =

n∑

i=1

n′

∑

j=1

d∑

s,t=1

csi l((xi, s), (x
′
j , t))d

t
j =

n∑

i=1

n′

∑

j=1

~cTi k(xi, x
′
j)
~dj

(2.59)

and consequently the associated norm of f is

‖~f‖2k =

n∑

i=1

n∑

j=1

~cTi k(xi, xj)~cj . (2.60)

The decomposition of the kernel given by Mercer’s theorem can
also be applied to the matrix valued case. Using Equation (2.57)
we can write the entry s, t of the matrix valued kernel as:

kst(x, y) = l((x, s), (y, t)) =

∞∑

i=1

λiφi(x, s)φi(y, t).

In more compact notation, this can be written directly in terms
of the vector valued functions ~φi(x) = (φi(x, t))t=1,...,d:

k(x, y) =
∞∑

i=1

λi
~φi(x)⊗ ~φi(y)
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where ~v1 ⊗ ~v2 = ~v1~v
T
2 is the outer product of two vectors.

A useful class of kernels for the case where Y = R
d can be

defined by

kst(x, y) = l((x, s), (y, t)) = Astk(x, y), (2.61)

where A is a symmetric, positive semi-definite matrix and k a pos-
itive definite real valued kernel function. The entry Ast defines the
correlation between the s-th and t-th output component. When
we do not have any a-priori knowledge about the correlation of
the outputs, we can choose A = Id×d as the identity. In this case
each dimension is considered independent. We refer to [70] for
further details.

For our applications in shape modeling, we will mainly be
working with matrix valued kernels. An important task is to
perform vector valued regression for inferring a full vector field
u : Rd → R

d representing a deformation, from a number of points
where the deformation is known. Figure 2.10 shows a typical
scenario.

Discussion

We have outlined the basic principles from learning theory that we
are going to use in our development and application of statistical
shape models. Of fundamental importance is the notion of the
hypothesis space. The recurring concept in this work is that we
try to restrict the hypothesis space, such that it contains only
functions that are useful for the given image analysis task.

We have seen that Reproducing Kernel Hilbert Spaces are
a flexible class of function spaces, in which the solution to the
regression problem can easily be computed. By choosing differ-
ent kernel functions, we get different regularity properties of the
solution. We thus can incorporate our prior assumption by choos-
ing different kernels. Part of the beauty of Reproducing Kernel
Hilbert Spaces is that they can be constructed over arbitrary,
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Figure 2.10: Vector valued regression for inference of a vector field
using the Gaussian kernel k(x, x′) = I2×2 exp(−‖x − x′‖2). (a) shows
the training data and (b) shows the inferred deformation field.

finite or infinite input sets. The resulting function space will al-
ways be a Hilbert space. This allows us to formulate our problems
independently of the representation of the input set. Another as-
pect that we find important is that Gaussian Processes provide
us with probabilistic interpretation of the methods. This helps
to gain a deeper understanding of the principles and makes the
assumptions and limitation of a method more clear. Furthermore,
Gaussian Process regression allows us to compute as a solution
the full posterior distribution rather than only a point estimate.
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priori which organ or structure is shown in an image, and hence
the use of shape priors is a natural choice. Shape priors have
been used for (medical) image analysis for over two decades. The
first approaches were based on the simple observation that a two
dimensional anatomical shape has usually a boundary that can
be well represented by a smooth curve. Kass et al. [58] intro-
duced Active Contours or “snakes”, which are based on this sim-
ple shape prior. The curves describing the shape are assumed to
satisfy additional criteria, such as minimizing a bending energy.
The idea to learn the properties of a shape from examples was
initially introduced in the field of shape statistic (see e.g. Dry-
den and Mardia [32]), and later applied for image analysis by
Cootes et al. [20, 19, 22]. In these models, known as the Ac-
tive Shape models, the shape is relatively crudely represented as
a number of manually selected landmark points in two dimen-
sions. Blanz and Vetter extended Active Shape Models to three
dimensions and used a dense set of points to represent the shapes
[103, 104, 14, 75]. These models are known as 3D Morphable Mod-
els.1 Active shape models and Morphable Models have since been
used successfully for many tasks in computer vision [52, 2] com-
puter graphics [13, 3] and medical imaging [46]. In current image
analysis literature, Active shape model and Morphable Models
are often not distinguished anymore and all these models are just
summarized by the term statistical shape models. The recent sur-
vey paper by Heimann et al. counts over 50 projects which use
some sort of statistical shape models for medical image analysis
[46].

In this chapter we present shape models from a Gaussian Pro-
cess perspective. Our formulation includes the 3D Morphable
Model and the Active Shape model as a special case. Model-
ing the deformation as a Gaussian Process yields a continuous

1 In recent years the distinction between Active Shape Models and Mor-
phable Models have become blurry. In current literature, any model based on
the idea of using an example based prior is simply referred to as a Statistical

Shape Models.
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formulation, which makes the model independent of the chosen
discretization. It pushes the interpretation of a statistical shape
model as a prior over a function space. This interpretation puts
statistical shape models in a larger context and, as we will see,
helps to unify the different types of shape models. Furthermore, it
allows us to apply the inference methods discussed in the previous
chapter to shape models. Using Gaussian Processes for modeling
deformations of anatomical shapes has previously been proposed
by Joshi et al. [54, 55] in the framework of computational anatomy
[44]. Yet, their work focus on statistical inference to be able to
relate diseases with observed shape variations. They do not ex-
plore the aspect of using the model as a prior for further analysis
tasks, or relate them to other models used in computer vision and
image analysis.

3.1 The representation of shapes

3.1.1 Objects and object classes

An important concept for shape models is the concept of an object
class. Giving a concise definition of this notion is difficult, as it is
so fundamental that it can hardly be reduced to simpler concepts.
We will therefore not attempt to give a definition, but just state
some examples, which should make the concept clear. An example
of an object class could be the class of all the triangles, the class of
all human faces, but also the class of all coffee cups or tea-spoons.

In the area of image analysis, the object classes usually rep-
resent anatomical structures. The prototypical examples that we
will consider in this work are the class of human hands and the
class of human skull. These objects are solid, three dimensional
objects. They are usually represented as two or three dimensional
images, acquired, for example, using Computed Tomography (3D)
or X-ray (2D) (see Figure 3.2). These images do not only pro-
vide us with information about the shape of an object (i.e. its
boundary) but also about the internal structure. For building
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a fixed position in space and specifies the size of an object. To
build a model of the shape of some object, we need to be able to
find a way to “standardize” the surfaces such that pose and size
do not influence the model.

A rigorous theory of shapes was developed over the past few
decades in the area of statistics known as shape analysis (see e.g.
Dryden and Mardia [32] or Goodal [42] for an introduction to this
field). The standard method in shape theory for aligning surfaces,
such that pose and size are removed, is Generalized Procrustes
analysis, which we will now outline.

We begin by defining the concept of a similarity transform:

Definition 3.1 (Similarity transform). A similarity transform is
the transformation Ts,R,t : R

d → R
d defined by

Ts,R,t(x) := sRx+ t (3.1)

where s ∈ R is a scaling factor, R ∈ SO(d) a rotation matrix
and t ∈ R

d a translation. We define the similarity transform of a
surface Γ̂ as

Ts,R,t(Γ̂) := {sRx+ t|x ∈ Γ̂} = {Ts,R,t(x)|x ∈ Γ̂} (3.2)

The following definition states that two surfaces have the same
shape if they only differ by a similarity transform.

Definition 3.2. [93]. Two subsets A and B of Rd are said to
be similar or to have the same shape if there exists a similarity
transform Ts,R,t which maps the set A into the set B:

B = {sRa+ t|a ∈ A} = Ts,R,t(A). (3.3)

We often want to label a few landmark points on a surface,
which mark salient features or have a special anatomical meaning.
Figure 3.3 shows a typical scenario where a number of landmark
points are labeled. The definition of shape transfers to labeled
sets as follows:
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(a) (b)

Figure 3.3: Two surfaces with corresponding landmarks points.

Definition 3.3. [93]. We say that two correspondingly labeled
sets have the same shape if one set can be transformed by a sim-
ilarity transformation to the other set in such a way that labeled
points are mapped to the corresponding points of the other set.

Note that this definition is more restrictive. The mapping is
not only required to lead to the same set, but additionally maps
each labeled point in set A to the corresponding point in set B.
The notion of correspondence among the points is central to the
method we will present here. Indeed, our main assumption is
that we have correspondence among all the points of the surfaces.
It is through this assumptions that comparing surfaces becomes
possible.

Assumption 3.4. Let Γ̂R be a fixed, but arbitrary surface from
the object class. Any surface Γ̂ϕ of the same object class can be
written as

Γ̂ϕ = {x+ uϕ(x)|x ∈ Γ̂R}, (3.4)

where uϕ(x) : Γ̂R → R
d is a vector field of deformations, which

relate the surfaces. Further, the mapping x 7→ x + uϕ(x) is one-
to-one.
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This allows us to think of a surface Γ̂ϕ as a warp of the refer-
ence surface:

Γϕ : Γ̂R → Γ̂ϕ

x 7→ x+ uϕ(x),

The set of points that describes the surface Γ̂ϕ is the image of the
mapping Γϕ:

Γ̂ϕ := {x+ uϕ(x) |x ∈ Γ̂R} = {Γϕ(x) |x ∈ Γ̂R}

and the surface Γ̂R acts as the domain over which the deformation
is defined. As a convention, we write Γ̂ to denote the surface and
Γ to denote the corresponding mapping. In this way, we have
a simple means to refer to corresponding points of the surfaces:
(Γϕ(x),Γφ(x)) are corresponding points of the surfaces Γ̂ϕ, Γ̂φ.
Finding the vector field u that establishes the correspondence
between two surfaces is one of the central problems in computer
vision and image analysis. Chapter 4 will be devoted entirely to
this question. In this chapter, we just assume that such a mapping
is given.

Having correspondence among the points of the surface, allows
us to define the Procrustes distance.

Definition 3.5 (Procrustes Distance). The Procrustes distance
dp between Γ1 and Γ2 is defined as

dP (Γ̂1, Γ̂2) := min
s,R,t

‖Ts,R,t(Γ1)− Γ2‖L2(Γ̂R) (3.5)

where s ∈ R, R ∈ SO(d) and t ∈ R
d.

Note that the Procrustes distance is defined between two sur-
faces, but only the difference in shape is measured. By minimiz-
ing (3.5) we can compute a similarity transform, which optimally
aligns two surfaces, and such that the Procrustes distance coin-
cides with the usual L2 distance. We would like to align not only
two, but any number of surfaces Γ̂1, . . . , Γ̂n of the object class by
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aligning them to a common reference Γ̂R. Theoretically any sur-
face could be chosen as a reference. However, the surfaces that
“best” represents the object class is the mean shape. A straight-
forward idea is to align each surface with the mean shape µ̂, by
minimizing dP (Γ̂, µ̂) for every surface Γ̂. This cannot be done in
practice, since the shape mean is unknown. We therefore replace
the unknown shape mean with the empirical mean

Γ(x) :=
1

n

n∑

i=1

Γi(x).

Note, however, that for this empirical mean to be meaningful,
the shapes all need to be aligned to a common reference. This
dilemma can be solved by an iterative approach, known as Gen-
eralized Procrustes Analysis (GPA) [43]. GPA is an iterative pro-
cedure, that in each iteration i yields the set of n similarity trans-
forms {T

s
(i)
1 ,R

(i)
1 ,t

(i)
1

, . . . , T
s
(i)
n ,R

(i)
n ,t

(i)
n
} that optimally align each of

the n surfaces to the current mean Γ
(i−1)

. The new empirical
mean is then re-estimated by

Γ
(i)
(x) :=

1

n

n∑

j=1

T
s
(i)
j ,R

(i)
j ,t

(i)
j

(Γj(x)). (3.6)

There are many variants of GPA that differ in small details. We
refer the interested reader to the book of Mardia and Dryden [32]
for a detailed exposition on GPA.2 In practice, we apply GPA to
a (densely) sampled version of the surfaces, to obtain the optimal
transformations, but define the shape mean using Equation (3.6)
on the full surfaces Γ̂1, . . . , Γ̂n.

Figure 3.4 shows a number of hands surfaces and their mean,
which have been aligned using GPA. A shape model built from
these hands will be used as an example throughout this work.

2A freely available implementation by Ian L. Dryden is provided in the R
package shapes [78, 31]
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Figure 3.4: Different hand shapes which were aligned to their common
mean using GPA. The framed shape shows the population mean.

3.2 Shape models

3.2.1 Modeling the shape variation

Shape models are used to describe the shapes and their variation
within an object class. In Assumption 3.4 we required that any
shape Γ̂ that belongs to the same object class can be obtained by
deforming an arbitrarily chosen reference shape Γ̂R, with a vector
field u i.e.

Γ̂ = {x+ u(x)|x ∈ Γ̂R}. (3.7)

These deformations are specific to the object class. The defor-
mations that relate the shapes of human hands are very different
from those that relate human skulls. There are, however, a set
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of characteristics that are common to all models. First, we as-
sume that the shape of a class is well represented by its mean.
With this we mean that only simple deformations are required
to transform the mean into any other element of the class.3 Fur-
thermore, there is no “hard” boundary delimiting the object class.
A displacement u(x) could in principle be arbitrary large. Yet,
large displacements should become increasingly unlikely. These
considerations motivate the following model:

Assumption 3.6 (Gaussian Model). A surface Γ̂ is modeled as a
similarity transform Ts,R,t of a zero mean Gaussian displacement
u ∼ GP(0, k) of the unknown population mean shape µ̂

Γ(x) ∼ Ts,R,t(µ(x) + u(x)) , x ∈ Γ̂R. (3.8)

The deformations are thus modeled as a (vector valued) Gaus-
sian process. Accordingly, the covariance function k is matrix
valued (cf. Section 2.4):

k : Γ̂R × Γ̂R → R
d×d. (3.9)

This model allows for great flexibility. In principle, we could
use any positive definite kernel to describe the class of possible
deformations. However, it is not clear which kernel function de-
scribes the deformations of the specific object class. We there-
fore estimate (i.e. learn) the kernel function from given example
shapes. Let Γ̂1, . . . , Γ̂n be training surfaces, aligned to their com-
mon mean Γ using Generalized Procrustes Analysis. Note that
for the aligned surfaces it holds that

ui(x) = Γi(x)− µ(x) ≈ Γi(x)− Γ(x). (3.10)

We can use these deformation fields to estimate the covariance
function. Recall from Chapter 2 (Equation (2.57)) that a matrix

3 If this is not the case, the object class can often be specified more nar-
rowly, such that this assumption is again fulfilled. For example, rather than
modeling the class of human teeth, we might have to consider the class of
human wisdom teeth instead.



52 Chapter 3. Statistical Shape Models

valued kernel k : X × X → R
d×d can be defined from a scalar

valued kernel c : (X × {1 . . . d}) × (X × {1 . . . d}) → R. We use
this trick and consider each component [u(x)]s of the vector val-
ued deformation field u as a separate input point. We then use
the standard formula for the sample covariance to define the real
valued kernel c:

l((x, s), (x′, t)) :=
1

n

n∑

i=1

[ui(x)]s[ui(x
′)]t.

From this we define matrix valued kernel

kemp(x, x
′) := l((x, s), (x′, t))s,t=1,...,d

which we will refer to as the empirical kernel. Note that for any
two points x, x′, the d× d matrix kemp(x, x

′) gives the covariance
between all the components of u(x) and u(x′) and all these cor-
relations are estimated from the examples. The kernel kemp can
also be defined in a more direct way, using vector notation

kemp(x, x
′) : =

1

n

n∑

i=1

ui(x)⊗ ui(x
′)

=
1

n

n∑

i=1

(Γi(x)− Γ(x))⊗ (Γi(x
′)− Γ(x′)).

(3.11)

In the area of medical imaging and computer vision, the term
statistical shape model usually refers to this model, in which all
the parameters are estimated from example shapes. We refer to
a statistical shape model as the triple

(Γ̂R,Γ,GP(0, kemp)) (3.12)

with reference shape Γ̂R, mean shape Γ and deformation model
GP(0, kemp). Note that the same model can also be specified more
concisely, by allowing for a non-zero mean deformation:

(Γ̂R,GP(u, kemp)) (3.13)
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with mean deformation

u(x) := Γ(x)− x, x ∈ Γ̂R. (3.14)

The object class given by this model is the class that Vetter and
Poggio called a linear object class [103]. It gets its name from the
fact that every element of the object class is a linear combination
of the examples. To see this, recall that to every Gaussian Process
there is an associated RKHS (cf. Section 2.3.1). Its elements can
be written as linear combinations of the kernel functions

f(x) =
∑

i

k(xi, x)ci. (3.15)

For the kernel function defined in (3.11) we have

f(x) =
∑

i

kemp(xi, x)ci =
∑

i

kemp(x, xi)ci

=
∑

i

∑

j

[(Γj(x)− Γ(x))]⊗ [(Γj(xi)− Γ(xi))]ci

=
∑

i

∑

j

[(Γj(x)− Γ(x))][(Γj(xi)− Γ(xi))]
T ci

=
∑

i

∑

j

(Γj(x)− Γ(x))βij ,

(3.16)

with βij = [(Γj(xi) − Γ(xi))]ci. Hence the RKHS is spanned by
linear combinations of the deformations uj = Γj −Γ, j = 1, . . . , n,
observed in the training data Γ̂1, . . . , Γ̂n. Note that we are esti-
mating the covariance function from a small number of examples.
In order for this estimate to be meaningful, the inherent dimen-
sionality of the shape space has to be low. Indeed, a central
assumption for this approach is the following:

Assumption 3.7 (Low dimensionality of the shape space). All
shapes that belong to a given object class lie on a low dimensional
linear manifold, which is spanned by the example shapes.
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The exact dimensionality of this shape space is usually not
known. If we have too few training shapes, the shape space is
not completely spanned. Thus, the hypothesis space cannot ac-
curately represent new shapes, and we have an approximation
error. A practical method to get a feeling for the approximation
properties of the hypothesis space is to perform a leave one out
test on the training examples. As we will discuss in Section 3.3,
the eigenvalues of the integral operator Tkemp associated to the
kernel kemp can also give important hints about the dimensional-
ity of the shape space.

3.2.2 Morphable Models and Active Shape Models.

In image analysis, the most widely used shape priors are based
on the Active Shape Model (ASM) [20] and the Morphable Model
[14]. Originally, these models had been introduced for quite dif-
ferent purposes. The ASM was developed as a shape prior for
image analysis, whereas the Morphable Model has been used in
the context of computer graphic, as a 3D model of the physical
shape of an object, from which natural images can be synthe-
sized. Their different origin motivated a different shape repre-
sentation. In Active Shape Models, the shape is represented by
a sparse set of manually selected landmark points. For visual-
izing the shapes, such a sparse representation is not suitable, as
it is not clear how to interpolate between the landmark points.
In the Morphable Model the points are much more densely sam-
pled and no sophisticated algorithm is needed for interpolation.
Actually the points usually correspond directly to the vertices of
a (three-dimensional) triangle mesh, which is used for rendering
the surface. In this representation it is not feasible to manually
determine the corresponding points and an automatic algorithm
is used.

From a conceptual point of view, both models are just a special
case of the general setting that we discussed above, where the
kernel k is the empirical kernel of Equation (3.11). Both models
are based on a discrete representation of the shape, in which the



3.2. Shape models 55

surfaces Γ̂1, . . . , Γ̂n are given as the discretely defined geometric
figures

Γ̂j = {xi |xi ∈ R
d, i = 1, . . . , N}, j = 1, . . . , n. (3.17)

In this setting each Γ̂j is conveniently represented as vector of
length N · d, where the individual components the points xi =
(x1i , . . . , x

d
i )

T are stacked onto each other:

~Γj = (x11, x
2
1, . . . , x

d
1, . . . , x

1
N , x2N , . . . , xdN )T , j = 1, . . . n.

The Gaussian process which defines the deformation from the
shape mean Γ with

Γ :=
1

n

n∑

i=1

~Γi

reduces to the ordinary multivariate normal distribution

~u ∼ N (0,Σ) (3.18)

with Σ ∈ R
Nd×Nd defined as the sample covariance matrix

Σ =
1

n

n∑

j=1

(~Γj − Γ)(~Γj − Γ)T . (3.19)

3.2.3 Statistical Deformation Models

Closely related to statistical shape models is the notion of statis-
tical deformation models [84, 44]. Statistical deformation models
have been introduced in the area of image registration [84, 109],
to model deformations that relate images of the same anatomi-
cal structure. These models can be seen as a generalization of
statistical shape models to images.

We introduced the statistical shape model as a probabilis-
tic model over the deformations u(x) = Γ(x) − Γ(x), which ex-
plain the shape variations of the shape Γ from the mean. The
idea of statistical deformation models is essentially the same. Let
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v1, . . . , vn be deformation fields, defined over some arbitrary do-
main Ω. The domain Ω is usually chosen to be an image domain
in R

d. The examples are used to estimate the mean

v(x) :=
1

n

n∑

i=1

vi(x)

and covariance

kemp(x, x
′) :=

n∑

i=1

(v(x)− v(x))⊗ (v(x′)− v(x′)).

The deformation field is then modeled as a Gaussian Process

v ∼ GP(v, kemp).

In this sense, statistical deformation models are a generalization
of statistical shape models, where the domain over which the de-
formations are defined is not restricted to be a surface, but is
chosen to be an image domain. We specify a deformation model
by the tuple

(Ω,GP(v, kemp)).

3.3 Exploring the shape space

An important technique, which is often discussed together with
statistical shape models is Principal Component Analysis (PCA).
In the context of statistical shape models, the main purpose of
applying PCA is not for dimensionality reduction but to obtain
a set of orthonormal basis vectors. These are ordered according
to the variance they explain in the data. Exploring the shape
variations associated to each basis vector gives important insight
into the properties of the shape space.

The ideas used in PCA can be applied to the Gaussian Process
model. Recall that by Mercer’s theorem (cf. Theorem 2.8), a
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kernel k has an expansion in terms of a orthonormal set of basis
functions:

k(x, y) =

∞∑

i=1

λiφi(x)⊗ φi(y), (3.20)

where (λi, φi) are the eigenvalue/eigenfunctions pairs of the inte-
gral operator

Tkf(·) :=
∫

X
k(x, ·)f(x) dx. (3.21)

In Section 2.3 we showed that a Gaussian process can be seen as
defining a prior over the eigenfunctions φ. Coming back to this
interpretation, we introduce the random variables αi ∈ N (0, λi)
and expand the Gaussian Process u as

u(x) =

n∑

i

αiφi(x). (3.22)

This implies that the basis functions corresponding to small eigen-
values λi are less likely to make a significant contribution to u(x).
Indeed, it is well known that for Mercer kernels the subspace
Vd spanned by the eigenfunctions corresponding to the d largest
eigenvalues, has the property that it minimizes the expected re-
construction error. That is

Vd = argmin
V

Eu[‖PV [u]− u‖2], (3.23)

where PV denotes the orthogonal projection on V and Eu is the
expectation over all deformations u in the RKHS given by the
kernel k. For a rigorous statement of this result, we refer to
Blanchard et al. [12]. An interesting aside is, that by changing the
eigenvalues in (3.22), one can change the regularization properties
of the kernel. The most simple strategy would for example be, to
set all the eigenvalues that lie below a certain threshold to zero,
and thus to keep only the most dominant eigenfunctions. More
sophisticated strategies are discussed by Gerfo et al in [40].

For the case when the covariance function is the empirical ker-
nel 3.11, this eigenanalysis is referred to as (functional) Principal
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Component Analysis [79]4. The eigenvalue λi of the sample co-
variance function represent the variance that is captured by the
projection of the data onto the corresponding eigenfunction φi.
The eigenfunction φi is in this context often referred to as the
i−th principal axis.

The eigenspectrum gives indications how many examples are
needed to span a shape space. Often, one can observe that the
first few eigenvalues cover a large fraction of the variance in the
data and the remaining eigenfunctions capture mostly noise in
the data. These small eigenvalues can then be set to 0, as the
corresponding direction does not belong to the shape space. Fig-
ure 3.5a shows the eigenvalue spectrum for the a shape model
estimated from the hands in Figure 3.4. In this case, the small-
est eigenvalue is still rather large, which is an indication that the
shape space is not properly spanned (this is, of course, what we
expected since we used only 17 examples). In contrast, we show
the spectrum of the Basel face model, a shape model built of 200
faces [52]. It can be seen that the eigenvalues quickly decay and
the last eigenfunctions do not explain much variance of the data
anymore.

The expansion of a shape in terms of its eigenvalues is also
interesting for visualization. Note that Equation (3.22) is a gen-
erative model for the shape deformations. In order to generate
a shape, we only need to sample the coefficient vector α. The
corresponding shape is then given as

Γ(x) = Γ(x) + u(x) = Γ(x) +

n∑

i=1

αiφi(x). (3.24)

A simple but powerful strategy to explore the most dominant
sources of variation is by visualizing the change associated to
each eigenfunction. More precisely, for the i-th eigenfunction φi,

4 For discrete inputs sets X it becomes the ordinary Principal Component
Analysis. The probabilistic interpretation outline above (cf. Equation (3.22))
corresponds to a probabilistic interpretation of PCA, introduced by Tipping
and Bishop [96] and Roweis [82]
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(a) Γ + 2
√
λ1φ1 (b) Γ− 2

√
λ1φ1 (c) Γ + 2

√
λ2φ2 (d) Γ + 2

√
λ2φ2

Figure 3.6: The first two modes of variations for a model built from
the hands shown in Figure 3.4.
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√
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λ2φ2 (d) Γ− 2

√
λ2φ2

Figure 3.7: The first two modes of variations for a deformation model
defined by a Gaussian kernel. Since only smoothness constraints are
taken into account, the anatomical shape is not preserved under this
deformations, and the hand become unnaturally curved.

we plot the shapes Γ +
√
λiφi and Γ −

√
λiφi. The factor

√
λi is

introduced to normalize the deformation in each direction to one
standard deviation. The change in the direction of the i-th eigen-
function is usually referred to as the i-th mode of variation. One
reason why this illustration is so useful is, that the eigenfunctions
are orthogonal. Hence each eigenfunction represent an indepen-
dent shape variation and thus allows us to explore the shape space
systematically. Figure 3.6 shows the first few variations for the
empirical kernel. We can also apply this procedure for generic
kernels. The first two modes of variation for a standard Gaussian
kernel are shown in Figure 3.7. Although the deformations re-
main smooth, the anatomical shape of the hand is not preserved,
and the fingers become unnaturally curved.
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3.4 Gaussian process regression on shapes

The discussion of shape models has so far concentrated on the
concept of a shape prior. Recently, the question has been raised,
how this prior can be constrained when additional information
about the shape is given. Blanc et al. [11], investigated how the
shape variability in a model can be reduced given the knowledge
of surrogate variables. Similar in spirit Albrecht et al. [1] investi-
gated how much variance remains in the model when some part
of it is known. Gaussian Process regression can be used to answer
this latter question. Furthermore, it will immediately lead to a
procedure for the reconstruction of partially observed shapes. We
start, however, with a discussion of how we can strengthen the
prior, given that we know the true deformations at some points.

3.4.1 Fixing known deformations

In many applications the true shape is not completely unknown,
but its deformation is given at a number of points. This is for
example the case when a user manually defines corresponding
landmarks points {(xm1 , xT1 ), . . . , (x

m
n , xTn )} on the mean shape Γ

and a target shape Γ̂T . The deformations at a point xmi is given
as ûi := xTi − xmi . Thus, we have the training sample

S = {(x1, û1), . . . , (xn, ûn)}. (3.25)

Given a statistical shape model GP(0, k) which defines our prior,
we can apply Gaussian process regression on the training set S.
Recall from Section 2.3.3 that under the assumption that the ûi
are subject to uncorrelated Gaussian noise with variance σ2, the
resulting posterior process is again a Gaussian process GP(up, kp)
with (posterior) mean up and covariance function kp given by

up(x) = ~k(x)T (K + σ2I)−1~u (3.26)

kp(x, x
′) = k(x, x′)− ~k(x)T (K + σ2I)−1~k(x′). (3.27)
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Figure 3.8: A shape model where the deformation on the thumb and
little finger was fixed (red points). The black shape is the posterior
mean, and the blue and green shape represent the first mode of variation,
(i.e. Γp ±

√
λp1

φp1
, with (λp, φp) the eigenvalue/eigenfunction pairs of

the posterior process). The shapes all pass through the points that were
fixed.

Here, K is the kernel matrix obtained from the training set,
~k(x) := (k(x1, x), . . . , k(xn, x))

T and ~u = (û1, . . . , ûn)
T are the

known deformations. Using the shape defined by

Γp(x) := Γ(x) + up(x),

as the mean shape, we obtain a new shape model (Γ̂R,Γp,GP(0, kp)).
Under this prior, the functions which agree with the true shape
at the points S are more likely than others. Indeed, by letting the
noise σ approach 0, functions which do not interpolate the train-
ing samples S are completely ruled out. Thus, the hypothesis
space provided by this Gaussian process reflects our prior knowl-
edge much better. Figure 3.8 shows an example of the first model
of variation of such a “posterior” model. The deformation on the
thumb and on the little finger were given. We notice that the
shapes all pass through the given landmark points. Looking at
the eigenvalue spectrum (Figure 3.9), we notice that the variance
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indicate the variability ν(x) of a point x, which we define as the
sum of the variances in each direction:

ν(x) =

d∑

i=1

(kemp(x, x)ii).

Suppose that we fix the part of the shape indicated in Figure 3.10b.
Denote this part by Γa. Clearly, including this information into
the model reduces its variance. To obtain the posterior model,
we sample N points {x1, . . . , xN} from Γa and apply Gaussian
process regression on the training set S := {(x1, 0), . . . , (xN , 0)}.
Figure 3.10c shows the new remaining variability. We see that the
variance is still large at the chin and on the cheeks, and hence con-
clude that these areas are not well determined by the given part.
For the other parts, the shape is rather well determined, and the
posterior mean represents the shape well. We can therefore use
the mean as the best reconstruction of the shape from the given
contour. In addition, the variability tells us that we should not
rely on this reconstruction at the chin. Such reconstruction re-
sults have important application in reconstructive medicine. We
will discuss this application in more details in Chapter 6.5

3.5 Computational aspects and approxima-

tions

We have not yet specified how the surfaces are represented. One
of the main advantages of this formulation is precisely that it is
independent of the representation. Yet, we usually think of the
surfaces as being continuously given. This is the most realistic
model for real surfaces and has the advantage that the issue of

5 A similar reconstruction procedure has already been proposed for the
reconstruction of faces using a Morphable Model by Blanz et al. [15] and
Basso et al. [8]. However, both papers discuss only the best reconstruction,
while ignoring the variance of the prediction.
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therefore use for all our experiments, a simple numerical approx-
imation. We uniformly sample points x1, . . . , xn from the surface
Γ̂R. A simple approximation of the eigenproblem is obtained by
using Monte Carlo integration:

∫

Γ̂R

k(x, x′)φi(x
′) dx′ = λiφi(x) ≈

1

n

n∑

j=1

k(x, xj)φi(xj). (3.29)

Plugging in x = xl for l = 1, . . . , n, the right hand side defines
an ordinary matrix eigenvalue problem. It is known that the ap-
proximation eigenvalue in (3.29) converges to the true eigenvalue
when n goes to infinity (see [92] and references therein).

Note that exactly the same result would have been obtained
by starting with a discrete surface representation Γ̂ = {xi|i =
1, . . . , n} in the first place. Indeed, in the case that k is the
empirical kernel defined in (3.11), the matrix defined by Kij =
k(xi, xj) is simply the sample covariance matrix and the model is
equivalent to the 3D Morphable Model.

For the case of the empirical kernel, there is another alterna-
tive, which can be used to efficiently compute the eigenfunctions.
Recall that in this case, the shape space is spanned by the example
deformations (cf. Equation (3.16)). This implies that for n exam-
ples, the corresponding shape space is at most n-dimensional, and
the eigenvalue problem (3.28) has at most n non-zero eigenvalues.
In this case, the problem can be reduced to a matrix eigenvalue
problem of an n×n matrix as follows. Let ui(x) := Γi(x)−Γ(x).
Equation (3.28) becomes

∫

Γ̂R

k(x, x′)φi(x
′) dx′ =

∫

Γ̂R

1

n

n∑

j=1

uj(x)⊗uj(x
′)φi(x

′) dx′ = λiφi(x
′).

(3.30)
Define the matrix valued function U(x) ∈ R

n×d with entries
Ui·(x) = ui(x)

T . Then

1

n

n∑

j=1

uj(x)⊗ uj(x
′) =

1

n
U(x)TU(x′). (3.31)
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Now assume that the i−th eigenfunction has an expansion

φi(x) =
n∑

k=1

bkuk(x) = U(x)T~b. (3.32)

Then the eigenvalue problem can be written as
∫

Γ̂R

1

n
U(x)TU(x′)φ(x′) dx′ =

∫

Γ̂R

1

n
U(x)TU(x′)U(x′)T~b dx′

=
1

n
U(x)T

∫

Γ̂R

U(x′)U(x′)T dx′~b.

(3.33)

Define the matrix nd× nd matrix V with entries

Vij =

∫

Γ̂R

ui(x)⊗ uj(x) dx (∈ R
d×d) =

∫

Γ̂R

U(x)U(x)T dx.

(3.34)
The eigenvalue problem can then be written as
∫

Γ̂R

k(x, x′)φi(x
′) dx =

1

n
U(x)T

∫

Γ̂R

U(x′)U(x′)T dx′~b

=
1

n
U(x)TV~b = λiU(x)T~b.

(3.35)

This must hold for all x, which implies an ordinary matrix eigen-
value problem of a n× n matrix

1

n
V~b = λi

~b.

Hence, if the number of examples is small, the problem can be
solved efficiently. For computing the matrix V in (3.34), we have
again to resort to a numerical integration method.

3.5.2 Fast computation of the regression problem

In the context of shape models, a practical problems in comput-
ing the posterior process can arise. Recall that the mean and
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covariance of the posterior process are given as

m(x) = ~k(x)T (K + σ2I)−1~y (3.36)

cov(x, x′) = k(x, x′)− ~k(x)T (K + σ2I)−1~k(x′). (3.37)

Given a large set of training samples, which we usually have in
the reconstruction of partial surfaces, inverting the matrix K +
σ2I becomes infeasible. This problem has been addressed in the
machine learning literature (see e.g. Rasmussen [80], Chapter 8).
We therefore discuss here only the case, which is for us most
important, namely when we use the empirical kernel. In this case
the number of example shapes n is usually small compared to
the number of samples. This implies that K is actually of low
rank and special solutions can be applied to make the problem
tractable.

Let {(x1, y1), . . . , (xN , yN )} be a number of training samples
and n be the number of example shapes and assume N ≫ n. The
matrix K is in this case defined as

Kij = k(xi, xj) =
1

n

n∑

i=1

u(xi)⊗ u(xj) (3.38)

Thus, defining the matrix U ∈ R
Nd×n with entries Uij = ui(xj) (∈

R
d), K can be decomposed as

K = UUT . (3.39)

Let

U = SDRT (3.40)

be a singular value decomposition (SVD) of U (see e.g. Demmel
[29], Chapter 3). Then, using the properties of the SVD, we have
that

UUT = SDRTRDTST = SD2ST (3.41)

UTU = RDTSTSDRT = RD2RT (3.42)
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and

S = URD−1. (3.43)

Hence

(K + σ2I)−1 = (UUT + σ2I)−1 = (SD2ST + σ2I)−1

= (S(D2 + σ2I)ST )−1 = S(D2 + σ2I)−1ST .

(3.44)

The last term only requires the inversion of the diagonal matrix
D + σ2I and the computation of S, which are both efficiently
computed using the relations (3.42) and (3.43).

Discussion

We have presented statistical shape models from a Gaussian Pro-
cess perspective. Any shape Γ̂ in an object class can be written
in the form

Γ(x) = Γ(x) + u(x), x ∈ Γ̂R

where the deformations u : Γ̂R → R
d are modeled by a zero-mean

Gaussian Process GP(0, kemp). This mean shape is estimated from
a set of example shapes. While the class of deformations could be
described by any positive definite kernel, it is usually not possible
to find a generic kernel that describes these class specific defor-
mations well. We therefore estimate a kernel function from the
given examples shape, using simple covariance estimation. The
resulting model forms a linear object class. This means that any
shape deformation that can be explained by the model, is a linear
combination of the deformations given by the example shapes.

The Gaussian Process viewpoint highlights the probabilistic
aspect of the model as a prior distribution over shapes. It makes
it natural to ask how the distribution would change given that we
know the deformation at some points. By using Gaussian Process
regression we can answer this question. As the resulting posterior
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distribution is known in closed form, it can be seen itself as a
shape model, but this time with the likely shapes restricted to
those that agree with the given observations.

The model is based on strong assumptions. The most obvious
one is that we have a Gaussian prior over the shapes. Further,
the method relies crucially on the assumption that the shapes
lie on a low dimensional linear manifold. These assumptions can
both not be justified for complicated object classes. Consider
the problem of modeling the entire human skeleton. Clearly, we
would expect the distribution to be at least bi-modal, having a
mode for female and one for the male anatomy. Also, estimation
from a few examples is bound to fail. However, both assumption
may be easier to justify if we consider only small parts of the
anatomy individually, such as for example when we build a model
for each tooth, or each finger separately. In fact, such models
have proven to be extremely powerful in practice. An interesting
question to explore is how such models can be combined, such
that more complicated objects can be modeled.
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In our approach to build statistical shape models, we made the
assumption that we have correspondence among all the points of
the surfaces in an object class. This allowed us to express any
shape Γ̂ ⊂ R

d of an object class as a warp of a reference shape
Γ̂R ⊂ R

d with a deformation field u : Γ̂R → R
d:

Γ̂ = {x+ u(x)|x ∈ Γ̂R}. (4.1)

Thus, we could perform the computations of shape differences, ge-
ometric transformations and statistical estimators using the stan-
dard operations in the Euclidean space. This chapter is concerned
with the question how the deformation field u, which defines this
correspondence, can be found. More precisely: Given a reference
surface Γ̂R and a target surface Γ̂T , which is the “best” deforma-
tion u that fulfills Equation 4.1? This problem is known as the
correspondence problem or registration problem, and is a funda-
mental problem in shape and image analysis.

The deformation field u relates Γ̂R and Γ̂T in two different
ways, as illustrated in Figure 4.1. In the first interpretation, u
can be thought of as acting on the surface Γ̂R, and inducing a
warp such that ΓT (x) = ΓR(x) + u(x). In the second interpre-
tation, the shapes Γ̂R and Γ̂T are the same, but represented in
different coordinate systems (Figure 4.1). The two coordinate
system are related by the deformation field u. The grid shown
in Figure 4.1c is referred to as the Cartesian transformation grid
[32]. It nicely illustrates the effect of u, and we will frequently use
it to visualize the deformation. In this latter interpretation, the
deformation u does not act on the surface only, but it is defined
on a larger domain. This is more natural for our application, as
the surfaces represent only a part of the anatomical structure we
want to model. In addition to the surface, we often have an X-ray
or CT image available, which gives correspondence information in
the surrounding of the surface. These images can thus be incor-
porated in the registration process. The problem becomes in this
case similar to image registration. In fact, the formulation of the
registration problem in terms of a coordinate warp is the same as
for standard image registration.
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(a) (b)

(c) (d)

Figure 4.1: The registration problem can either be seen as defining
a warp of a surface ((a) and (b)), or the underlying coordinate system
((c) and (d)). In this latter interpretation, the surfaces are the same,
but are represented in a different coordinate system.



74 Chapter 4. Surface registration

Since the registration problem is of such fundamental impor-
tance, there has been a huge body of work, scattered over such
diverse communities as computer graphics and vision, medical
imaging, but also information retrieval and statistics. We will
therefore only refer to recent surveys and work that is closely re-
lated to our approach. For an overview of surface registration
techniques, we refer to the survey of Audette et al. [7]. In com-
puter vision, the image registration problem is often referred to
as the problem of optical flow determination (introduced by Horn
and Schnuck [50], Lucas and Kanade [66]) and we refer to the sur-
vey by Weickert [108] for a modern treatment in the variational
framework. Essentially the same framework is used for medical
image registration, which is discussed in great depth in the mono-
graph by Modersitzki [71]. For a more general treatment of image
registration methods, we refer to the survey by Zitova and Flusser
[111]. The registration problem, and in particular the problem of
diffeomorphic registration, also received much attention in the
area of computational anatomy. We refer to Grenander et al. for
a comprehensive overview [44].

The predominant framework for registration is the variational
framework. Here, smoothness and regularity of the deformation
is enforced by Tikhonov regularization. Recently, Schölkopf et al.
proposed a formulation of the registration problem using a Repro-
ducing Kernel Hilbert Space (RKHS) to specify the admissible de-
formations [89]. In this setting the space of possible deformations
is explicitly given as the span of positive definite kernels. We will
adopt this setting, as it allows us to easily specify different priors
on the space of deformations by means of different kernels.

While registration is a prerequisite for building shape models,
it can itself benefit from a shape prior, as already noted by var-
ious researchers [37, 107, 109]. In Chapter 3 we introduced the
statistical shape model as a Gaussian Process prior over shape
deformations. As these deformations form an RKHS, the inte-
gration into the RKHS formulation of the registration problem
is very natural. The combination of the empirical kernel, with
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generic smooth kernels, allows to vary flexibly how much shape
information should be used to explain the deformation. In previ-
ous attempts, the regularization with the shape prior was either
restricted to the shape space [37], or performed as a separate step
[109, 107]. Also the integration of landmarks is simple in this for-
mulation. In contrast to commonly used regularization operators
in the variational setting, the RKHS setting enforces sufficient
regularity of the deformations, such that specifying point values
is meaningful. Landmark matching has been integrated as a soft
constraint in the original formulation by Schölkopf [89]. We use
instead Gaussian process regression to directly restrict the space
of deformations to the functions that agree with the given land-
marks. We find this approach conceptually more appealing, as it
preserves the probabilistic interpretation of the Gaussian process
as a prior over the space of deformations.

We will not discuss the variational framework in this chapter.
As it is the predominant method for registration, we give a short
overview of this method in Appendix A. We will also discuss in
Appendix A how the statistical shape model can be integrated as
a regularization term in the standard variational formulation.

4.1 The correspondence problem

The meaning of point-to-point correspondence among two sur-
faces is intuitively easy to grasp. Consider for instance two shapes
of human hands. It is clear that the tip of the fingers mark cor-
responding points of the shapes. However, making this notion
precise is a difficult matter. Even specifying exactly which point
marks the tip of the finger is not trivial. For points which are not
salient features of the shape, correspondence is even more difficult
to define. For such points, correspondence is usually determined
by smoothness constraints.

In this section we discuss the properties that characterize cor-
respondence, and we derive a mathematical formulation of the
correspondence problem. Our requirements for correspondence
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are not universal, but strongly influenced by our goal of building
models of anatomical shapes.

We recall from Chapter 3 that our main assumption for build-
ing shape models is that there exist a deformation, which relates
any two surface Γ̂1 and Γ̂2 such that

Γ̂2 = {x+ u(x)|x ∈ Γ̂1}, (4.2)

and the corresponding deformation is one-to-one. This assump-
tion has two different aspects: Equation 4.2 defines an interpo-
lation condition that the mapping has to fulfill. The one-to-one
assumption is a requirement on the space of deformations we con-
sider. This is similar to the standard learning setting, where we
have a loss function, which characterizes how well a function ex-
plains the data, and a hypothesis space H, which defines the ad-
missible functions. Clearly, the two requirements of the above as-
sumption leave the problem ill-posed. We will therefore introduce
further criteria that a deformation field has to fulfill. Of particu-
lar importance is, that deformations u satisfy certain smoothness
constraints.

To be able to define smoothness of the deformation, we need
to define the space over which the deformations are defined (i.e.
the hypothesis space). There are two different choices. The de-
formations could be defined on Γ̂R only. In this case our goal is
mainly to find a warp u, which maps the surface Γ̂R with Γ̂T . Or
we define a warp of the coordinate grid on some domain Ω, which
includes the surface Γ̂R and Γ̂T . While having the same effect on
the surface, the settings are rather different. In the first intepreta-
tion, we wish to enforce smoothness over the surface only. In the
second interpretation smoothness is a criterion which is defined
on the coordinate grid. This is illustrated in Figure 4.2.

We consider the point of view of coordinate warps. This makes
the formulation independent of the topology of the surface. Fur-
thermore, this allows us to include information given in the sur-
rounding of the surface. In a medical context, the surfaces are
often extracted from CT or x-ray images. Including these images
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where L : R×R → R is a loss function. This criterion is extended
to the whole domain Ω. We assume that a point x which is a
distance d away from the reference should be mapped to a point
which is the same distance away from the target. The correspond-
ing minimization problem becomes:

min
u∈H

∫

Γ̂R

L(IΓT
(x+ u(x))), IΓR

(x)). (4.4)

When IΓT
and IΓR

are interpreted as images, this formulation
coincides with the one of Paragios et al. [74], who proposed to
represent surfaces by level-sets of their signed distance function.
We like to stress, however, that the importance of this formulation
is not that it provides a level-set representation of the surfaces,
but that the resulting deformation is optimal if it preserves the
shape information on the whole domain Ω. This is a reasonable
model for many medical applications, since we assume that the
surrounding tissue deforms smoothly with the structure that we
model.

Texture features and mean curvature

The solution to Problem (4.4) satisfies the criterion that the sur-
faces have similar shape under the coordinate warp defined by u.
This is an important criterion, but is by itself is not sufficient to
guarantee good correspondence.

For many medical structures, we observe that corresponding
areas are often similarly curved, and have therefore similar mean
curvature at corresponding points (Figure 4.4). We will exploit
this information and require that the deformation matches points
with similar mean curvature. The mean curvature of a surface
Γ̂ can be easily computed. It is well known that if the surface is
represented as a level-set of a signed distance function IΓ : Ω → R,
then the mean curvature of the level-surface at a point x is given
as

HΓ(x) = div
( ∇IΓ(x)
|∇IΓ(x)|

)
= div

(∇IΓ(x)
1

)
= ∆IΓ(x). (4.5)
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(a) (b)

Figure 4.4: Two hand shapes colored by their mean curvature. The
corresponding points of the two shapes have very similar curvature.

By this formula, the curvature is automatically defined on the
whole domain Ω.1 Figure 4.5 shows an example of the mean
curvature computed from a distance function. We can directly

(a) (b)

Figure 4.5: A distance function (a) and its corresponding curvature
function (b).

include this criterion by requiring that for the sought after de-

1The curvature is not defined at the ridges of the distance function, since
it is not differentiable. In practice, this is not a problem, as we can simply
use a smoothed version of the distance function to compute the curvature.
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formation u∗, the curvature HΓT
(x + u∗(x)) should match the

corresponding value HΓR
(x) given in the reference. The new cor-

respondence problem becomes

min
u∈H

∫

Ω
L(IΓT

(x+u(x)), IΓR
(x)) dx+

∫

Ω
L(HΓT

(x+u(x)), HΓR
(x)) dx.

Including the curvature term as an additional criterion clearly
improves the correspondence, as shown in Figure 4.6.

In a medical context the surfaces are often extracted from
images. If in addition to the surface we also have these images
available, we can use them as an additional criterion for charac-
terizing the correspondence. Assuming that corresponding points
are characterized by corresponding intensity values in the images,
which is for example the case for x-ray or Computed Tomography
images, we can also include this information. Let XΓR

: Ω → R

and XΓT
: Ω → R be two such images for the reference and target

surface respectively. Including these images leads to the problem:

min
u∈H

∫

Ω
L(IΓT

(x+ u(x)), IΓR
(x)) dx

+

∫

Ω
L(HΓT

(x+ u(x)), HΓR
(x)) dx

+

∫

Ω
L(XΓT

(x+ u(x)), XΓR
(x)) dx.

Depending on the application, many other criteria can be de-
fined to further specify the correspondence. As the mathematical
setting is, however, completely independent of how many features
we consider, we will discuss only the basic problem

min
u∈H

∫

Ω
L(IΓT

(x+ u(x)), IΓR
(x)) dx. (4.6)

from now on.

Choosing the loss functions

The loss function is another choice which influences the final reg-
istration result. A simple and popular choice is the squared loss
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function

LS(x, x
′) = (x− x′)2. (4.7)

Unfortunately, the surfaces we observe in practice are often noisy
or exhibit artifacts. Since the squared loss function strongly pe-
nalizes large deviations, these artifacts often have a too strong
influence on the result. This problem is well known in computer
vision and many robust loss functions have been proposed to al-
leviate it [10]. In the presence of outliers, the Geman McClure
function is a good choice [38]. It is defined as

LGM (x, x′) =
(x− x′)2

1 + (x− x′)2
, (4.8)

and has already been successfully applied for image registration
[38] and other related problems in computer vision [27]. We will
use this function for all our experiments with real medical data.

4.1.2 The space of deformations

We introduced criteria for evaluating point-to-point correspon-
dence in terms of shape specific information. It remains to spec-
ify the properties the deformation itself should fulfill. We need to
define the hypothesis space H over which we optimize the corre-
spondence criteria (4.6).

Dryden and Mardia [32] formulated the following properties
that good shape deformations need to fulfill. The deformations
should be

(i) continuous and smooth,
(ii) one-to-one,
(iii) not introduce gross distortions (such as e.g. folding of the

coordinate system),
(iv) should be equivariant under relative location, scale and

rotation of the objects.

The last point is easily fulfilled by an initial alignment of the
surfaces. We will handle item (i) by defining the deformations
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to correspond to an RKHS which enforces the required smooth-
ness. The items (ii) and (iii) are more difficult to enforce ex-
plicitly. These properties are automatically fulfilled if the de-
formation is a diffeomorphism. Diffeomorphic registration has
been studied in computational anatomy for over a decade [44]
and has recently gained new attention in the registration commu-
nity [102, 83, 6]. Enforcing diffeomorphic mappings is however
mathematically much more involved and often computationally
demanding. While it would be conceptually nice, our methods
do not critically depend on this property, and we will therefore
only enforce smoothness and continuity of the deformation fields.
It turns out that approximate inversion of the deformation fields
already yields good results (Cf. Section 4.3.3).

4.2 Registration using Reproducing Kernel

Hilbert Spaces

Looking for a coordinate warp rather than the surface warp makes
the problem independent of the surface’s topology. As long as the
domain Ω is sufficiently large that it includes both the reference
and the target surface, and that boundary effects have no influ-
ence on the surface correspondence, we can freely choose its shape.
One particularly easy and popular choice is to use a rectangular
domain. The problem formulation is in this case identical to the
one of image registration, and any of the numerous methods de-
veloped for the latter can be applied.

Here we consider instead an approach proposed by Schölkopf
et al. [89], which is particularly suitable for our application. It
is formulated directly in the RKHS setting. By using different
kernels to specify the RKHS of deformation fields, we can specify
different properties the solutions should fulfill. In particular, we
can very easily integrate the statistical shape model in this way.

The defining property of this method is that the deforma-
tion field u is an element of a vector valued Reproducing Kernel
Hilbert Space, induced by a kernel k : Ω×Ω → R

d×d. This RKHS
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incorporates our prior assumptions on the deformation, and the
corresponding RKHS norm ‖u‖k measures how well these assump-
tions are satisfied by a deformation u. A good solution to the
problem should both explain the data well and satisfy the prior
assumption:

min
u∈H

∫

Ω
L(IΓT

(x+ u(x)), IΓR
(x)) dx+ µ‖u‖2k (4.9)

We can uniformly sample N points from Ω to approximate the
integral, and obtain the discrete problem

min
u∈H

1

N

N∑

i=1

L(IΓT
(xi + u(xi)), IΓR

(xi)) + µ‖u‖2k,

for which we know from the representer theorem (Theorem 2.9)
that the minimizer has the form

u(x) =
N∑

j=1

k(xj , x)cj . (4.10)

As the problem is non-convex, there is no closed form solution
available. However, by expressing the norm in terms of the coef-
ficients

‖u‖2k =
N∑

i,j=1

cTi k(xi, xj)cj ,

we arrive at a problem formulation whose value is solely deter-
mined by the coefficients {ci}Ni=1:

min
c1,...,cN

1

N

N∑

i=1

L(IΓT
(xi +

N∑

j=1

k(xj , xi)cj), IΓR
(x))

+µ
N∑

i,j

cTi k(xi, xj)cj .

(4.11)

This problem can directly be solved using any optimization scheme.
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We slightly extend this model and allow the deformation to
be modeled by an arbitrary Gaussian process GP(m, k). This
only adds a fixed function to the deformation and we can write
a deformation as u(x) := m(x) +

∑N
i=1 k(xi, x)ci. The model is

then written as

min
c1,...,cN

1

N

N∑

i=1

L(IΓT
(xi +m(xi) +

N∑

j=1

k(xj , xi)cj), IΓR
(x))

+ µ

N∑

i,j

cTi k(xi, xj)cj .

(4.12)

Note that this model does not exploit the probabilistic interpreta-
tion of the Gaussian Process formulation, but only the maximum
a-posteriori solution is sought. Obtaining the full posterior is dif-
ficult, since the functions IΓR

and IΓT
are non-linear. Information

on the posterior can only be obtained using approximation tech-
niques (see Gee and Bajscy [37] for an attempt in this direction).

4.2.1 Choices of kernel functions

The choice of kernel function is a crucial one, as a kernel in-
tegrates all the prior information about the deformations. We
initially have little prior information about the relation between
the reference and target shape, apart from the general smoothness
assumption, which we require for any deformation. We therefore
use generic, smooth kernels, such as the Gaussian Kernel

kg(x, x
′) := Id×d exp(−

‖x− x′‖2
σ2

)

to span the space. Another popular choice in medical image reg-
istration is to use tensor product B-splines to describe the defor-
mation [61, 85]. The corresponding kernel for a cubic B-spline
[72] is defined as

kb(x, x
′) := Id×d

∑

k∈Zd

β⊗(x− k)β⊗(x
′ − k) (4.13)
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where β⊗ are tensor product B-splines defined for x ∈ R
d as

β⊗(x) = β3(x1)β3(x2) · · ·β3(xd)

and β3 in turn is the cubic B-spline basis function (see Unser
[99] for a definition). B-Splines are extremely well studied and
have appealing numerical properties. Their compact support is a
big advantage for efficient implementations. For the same reason
Schölkopf et al. used the Wu kernel [86] in their original paper
[89]. The Wu kernel is defined by

kw(x, x
′) := kw(r) = max(0, (1− r))4(4 + 16r + 12r2 + 3r3),

where r = ‖(x − x′)‖2/σ and σ determines the support of the
kernel.

The choice of the kernel dramatically influences the result.
Even in cases where the warped surfaces look exactly the same,
the deformation can still be very different. This effect is often
illustrated in the literature using a synthetic example, where a
circle is to be deformed into the letter c (see Figure 4.7). The cir-
cle is slightly smaller than the letter c. We expect for a good reg-
istration result that the circle grows and a dent starts to appear.
Since no smooth deformation can actually map these two shapes
completely, the regularization term prevents the dent from be-
coming to large. Figure 4.8 shows the resulting deformation grid
for the different kernels.2 We observe that the shape of the reg-
istration result looks almost the same for all the kernels. Hence,
the warped surfaces are almost indistinguishable. However, the
coordinate warps are extremely different. The Gaussian and Wu
kernel seem to have a more global effect, while the deformation
induced by the B-spline kernel is more local. Which of the re-
sults is best depends strongly on the application and cannot be
answered in general.

2 The results we show here are obtained from experiments carried out in
the context of a current Master’s thesis by Jud [56].



88 Chapter 4. Surface registration

(a) (b)

Figure 4.7: A toy example: The goal of the registration is to deform
the shaded circle (a) such that it matches the shape of the c (b).

Multiscale Kernel A very interesting class of kernels for reg-
istration are the so called multiscale kernels, introduced by Opfer
[72]. The idea is to construct a kernel Φj at different scale levels,
j = 1, . . . , l, from a compactly supported function φ : Ω → R:

Φj(x, x
′) :=

∑

k∈Zd

φ(2jx− k)φ(2jx′ − k).

A superposition of the kernels Φj with weights λj ∈ R is used to
define the multi-scale kernel :

k(x, x′) =
l∑

j=1

λjΦj(x, x
′) (4.14)

This kernel has two interesting properties. We can explain large
deformation with kernels on a larger scale, and small details us-
ing smaller kernels. Furthermore, if the function φ is refinable (a
property, which for example the B-splines fulfill), this construc-
tion leads to a wavelet like multi-resolution structure. Thus, we
automatically obtain a decomposition of the deformation field into
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(a) Gauss kernel

(b) B-spline kernel

(c) Wu kernel

Figure 4.8: Registration result for different kernels. While the result-
ing shape (left) looks almost the same for all kernels, the deformations
(right) are very different.
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nested subspaces · · · Vj−1 ⊂ Vj ⊂ Vj+1 · · · , which represent differ-
ent levels of detail. We refer to Opfer [72] for further details. This
decomposition into different subspaces is illustrated in Figure 4.9,
where we used a multi-scale kernel, built from B-Spline kernels on
three different scale levels. In the first scale level (Figure 4.9b)
mainly the size of the circle is changed. In subsequent levels the
details are added and the deformation becomes more local.

4.2.2 Incorporating landmarks

Landmarks are an important ingredient of a good registration
procedure. For many applications it is not possible to specify
the problem accurately enough such that the generic formulation
exactly matches all the points that an expert would consider as
corresponding. By including landmark points into the problem
formulation, such expert knowledge can be used to better con-
strain the problem.

In the variational formulation of image registration, including
landmarks has proven to be difficult. The reason is that land-
marks usually define the function value at one point only. For
this to be well defined, sufficient regularity of the deformation
needs to be guaranteed. In an RKHS, point evaluation is always
well defined and adding a landmark term does not complicate the
problem much. Schölkopf et al. [89] added the landmark term

l∑

i=1

‖xRi + u(xRi )− xTi ‖2 (4.15)

to the cost function (4.11), to penalize the distance among the
corresponding landmarks pairs (xRi , x

T
i )

l
i=1. We propose instead

to incorporate the landmark constraints not as a soft constraint
but directly into the hypothesis space. We model the landmark
problem as one of Gaussian process regression. We consider the
training set

L := {(xR1 , û1), . . . , (xRl , ûl)}
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(a) (b)

(c) (d)

Figure 4.9: The result of the synthetic example for the multi-scale
kernel. The deformation of the circle in (a) is decomposed in several
levels. On the first scale level (b) only the gross deformation (e.g. scal-
ing) is adjusted. In subsequent scale levels more local deformations are
included.
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where ûi := (xTi −xRi ) is the deformation that relates a landmark
pair (xRi , x

T
i ). Let GP(0, k) be a zero-mean Gaussian process with

covariance function k. We can perform Gaussian Process regres-
sion on the training data L, to obtain a distribution over deforma-
tion fields, which pass through these landmark points. We know
that the corresponding posterior process is again a Gaussian pro-
cess GP(up, kp) with mean and covariance given by

up(x) = ~k(x)T (K + σ2I)−1~u (4.16)

kp(x, x
′) = k(x, x′)− ~k(x)T (K + σ2I)−1~k(x′). (4.17)

with K the kernel matrix, ~k(x) := (k(x1, x), . . . , k(xl, x))
T and

~u = (û1, . . . , ûl)
T the deformations specified by the landmarks

(Cf. Chapter 2, Section 2.3.3). The parameter σ2 determines
the accuracy for the landmark match. The posterior process
GP(up, kp) can be used directly for specifying the RKHS of pos-
sible deformations in (4.9). The mean deformation up already
matches the landmarks (Figure 4.10a). The subsequent opti-
mization of the problem (4.12) establishes correspondence for the
whole shape, but keeps the landmarks fixed (Figure 4.10b).

While similar results could be achieved with the landmark as
a soft constraint, we see the big advantage on a conceptual level.
The posterior process defines a distribution that is conditioned
on the landmark points. It thus keeps its probabilistic meaning,
while the incorporation as a soft constraint simply penalizes devi-
ations from the landmarks, for which it is difficult to give a precise
interpretation.

4.2.3 Statistical shape prior

The kernels we discussed so far are generic in the sense that the
deformations were selected based on general smoothness assump-
tion. Suppose that we need to establish correspondence between
two surfaces that belong to an object class for which we have pre-
vious registration results u1, . . . , un available. We would expect
that new deformations are not too different from previous results,
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(a) Landmark only (b) Landmarks and optimization

Figure 4.10: Registration example using landmarks. The red and
black shape in (a) are a reference and target shape, with a number of
landmarks defined. The blue shape shows the initial solution when only
the landmarks are used (i.e. the mean deformation up of the Gaussian
posterior process). It matches the landmarks points, but not the whole
target shape. (b) shows the result after registration has been performed,
using kp as the kernel. The shape is accurately matched.

when the registration is performed from the same reference Γ̂R.
Indeed, as described in Section 3.2.3 we can construct a statisti-
cal deformation model from these previous results. The resulting
model GP(u, kemp) with mean

u(x) :=
1

n

n∑

i=1

ui(x)

and kernel

kemp(x, x
′) :=

1

n

n∑

i=1

(ui(x)− u(x))⊗ (ui(x
′)− u(x′))

represents the mean and variability of the examples u1, . . . , un.
Since this is a Gaussian Process Model, we can directly use it for
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the registration. The resulting registration method is very specifi-
cally tailored for the given object class. This allows us to establish
correspondence for data-sets with large artifacts or missing parts.
Figure 4.11a shows a registration result obtained by using such
a deformation model. The missing finger in the target is not
matched and the deformation looks natural. The problem with
this approach is, however, that the deformation is restricted to
the span of the examples u1, . . . , un and is therefore also not ac-
curate for small n. We can reach a compromise between shape
knowledge and a flexible remainder term. A useful model is, for
instance, to combine the empirical kernel with the Gaussian ker-
nel, i.e. to use the model GP(u, λkemp+(1−λ)kg), with λ ∈ [0, 1].
Figure 4.11b shows that the resulting match is improved. How-
ever, we also observe that it starts introducing a distortion of the
finger, as the Gaussian kernel allows for a smooth deformation in
this direction. Finding the right trade-off for such large artifacts
is a delicate matter. We will present a different solution to this
problem, which relies solely on the data, in Chapter 5.

4.2.4 Image registration

The important problem of image registration arises from our for-
mulation as a special case. Let XR, XT : Ω → R be two given
images. The minimization problem

min
c1,...,cN

1

N

N∑

i=1

L(XT (xi +m(xi) +

N∑

j=1

k(xj , xi)cj), XR(x))

+ µ
N∑

i,j

cTi k(xi, xj)cj .

(4.18)

gives a solution to the image registration problem. We can use any
of the kernels discussed above. In particular, we can incorporate
the shape prior into image registration, or use landmarks to guide
the segmentation. Figure 4.12 shows an example where two x-ray
images are registered.
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(a) (b)

Figure 4.11: A registration result for a hand with a missing finger (red
line). (a) Using only the empirical kernel, the registration result (black
line) is restricted to the shapes in the model, and thus the match is not
very accurate when only a small number of example shapes are used.
(b) By using a combination with a Gaussian kernel, we can obtain a
more accurate match, but at the price that the missing finger can lead
to distortions.

4.3 Computational considerations

Registration is not only conceptually, but also computationally
a demanding problem. A number of standard techniques have
been developed for image registration to reduce the computational
burden and escape local minima. These techniques are directly
applicable to our problem formulation.

4.3.1 Initial alignment

The registration problem (4.12) is highly non-linear with many
local optima. To be able to find a good solution, we should
start with the shapes represented by Γ̂R and Γ̂T already roughly
aligned.

A simple and effective procedure to obtain such an initial
alignment is to manually select a small number of correspond-
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(a) Reference (b) Target (c) Result

Figure 4.12: Registration two x-ray images of the hand, using a num-
ber of landmarks to guide the registration result. The registration result
and corresponding coordinate warp are shown in (c).

ing landmark-points LR := (x1R, . . . , x
l
R) and LT := (x1T , . . . , x

l
T )

on the reference and target surfaces. The transformation Ts,R,t :
R
d → R

d, which minimizes the Euclidean distance between the
landmarks:

arg min
Ts,R,t

l∑

i=1

‖Ts,R,t(x
i
R)− xiT ‖2 (4.19)

is known in closed form an can be easily computed using, for
example, the procedure described by Umeyama [98]. The target
shapes and possibly the corresponding images can then be aligned
using the resulting transformation Ts,R,t.

4.3.2 Multi-resolution scheme

A common strategy to avoid getting stuck in local optima is to
use a multi-resolution scheme. The idea is simple: The problem
is made difficult by the non-linearity of the distance functions
IΓR

and IΓT
(and similarly the other texture functions), which

appear inside the loss function. By replacing these functions
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with smoothed versions, we also make the cost function (4.12)
smoother. The strategy is to solve problem (4.12) first with a
smoothed function, and then successively with more detailed func-
tions thereof. In each step, the solution of the last problem is used
as an initial solution. For smoothing the functions, we use a con-
volution with a Gaussian kernel.

This procedure has the additional important property, that
by the sampling theorem [100], the smooth functions can be rep-
resented using a coarse discretization. We start with a coarse
sampling and subsequently refine the sampling in higher levels,
to be able to represent more details. The coefficient for the new
points in each level are initially set to zero. We currently use
uniformly spaced sampling points on the domain Ω.

4.3.3 Approximate inversion of deformation fields

Our formulation of the registration problem does not explicitly
guarantee that the resulting mapping is a diffeomorphism, or that
it is even one-to-one. It is therefore in general not possible to
invert the deformations. Fortunately, for the task of shape model
building, explicit inversion of the deformation field can usually
be avoided, by choosing a representative reference surface from
which correspondence to all the example shapes is established.

For some applications, such as the annotation of images from
a given reference, the inversion has to be performed. When the
deformations are sufficiently smooth and not too large, we can effi-
ciently compute good approximations of the inverse field. We use
a simple fixed point iteration scheme proposed by Chen et al. [18],
to effectively compute this inverse deformation field. Figure 4.13
shows an example of a typical deformation and its inverse. Ideally,
applying a deformation and its inverse to a shape should restore
the original shape. Figure 4.13d shows the effect of using the ap-
proximate inverse instead. The resulting shape still closely match
the original one. The slight approximation error is negligible for
most practical applications.
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(a) The two surfaces (b) The deformation field

(c) Inverse deformation field (d) Approximation error

Figure 4.13: Approximation of the inverse deformation field u+ from
a computed deformation field u, using the algorithm of Chen et al. [18].
The approximation error is shown in 4.13d. The red contour shows
the result that is obtain when the black contour is displaced with the
residual u+ u+.
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Discussion

Establishing correspondence among two shapes is a difficult, and
yet unsolved problem. It is already difficult to define exactly what
characterizes good correspondence. As there is usually no physical
process behind the deformation, we have not even a ground-truth
to which we could compare our results. It is the application which
ultimately judges the quality of the correspondence.

Our definition of correspondence is motivated by the goal of
building statistical shape models of medical structures. Our re-
quirement is not only that the shape is accurately matched, but
also that corresponding points have similar curvature. In our ap-
proach we aim to find a deformation that explains a coordinate
warp, rather than a surface warp. Thus, we assume that the sur-
rounding of the surface deforms with the surface. The resulting
formulation of the problem can be seen as one of image registra-
tion.

Instead of using the standard variational framework, we chose
to model the deformations as elements of an RKHS and use the
results from learning theory to solve the optimization problem.
This makes it easy to incorporate our prior assumptions, in par-
ticular also landmarks terms and the statistical shape prior. Fur-
thermore, as the problem becomes a simple parametric optimiza-
tion problem, it can be solved using any standard optimization
scheme. This flexibility comes, however, at the price that the for-
mulation becomes computationally expensive when many points
are sampled to describe the deformation. While this can be partly
alleviated using compact kernels, we think that the standard vari-
ational framework (Appendix A) is currently the better choice for
problems that require dense sampling. However, when we have a
strong prior, such as for example from a statistical shape model or
landmarks, then we can obtain good solutions from only a mod-
erate number of points. In such cases, this framework has great
potential.
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Outlook There is one important property that is currently not
taken into account in this framework. It is that the coordinate
warp are diffeomorphic. This is a desirable property, especially if
a real statistical analysis of the deformations is attempted. For
our application of building shape priors, it is however not strictly
necessary and enforcing smoothness has turned out to be suffi-
cient. We see the possibility to enforce this property, by using an
approach outlined by Dupuis et al. [33]. The idea is to model in
addition to a deformation also the trajectory of each point. By
controlling the smoothness of this trajectory, diffeomorphic map-
pings can be obtained. This idea was recently applied already in a
RKHS setting in the context of Gaussian Process Latent Variable
Models [105].

We see, however, the greatest limitation in most current ap-
proaches to correspondence not in the fact that they do not en-
force a diffeomorphic mapping, but that a single, deterministic
solution is sought. Since the correspondence problem is so diffi-
cult to define, the solution should not be fixed to one particular
deformation. Rather, it would be interesting to obtain a proba-
bilistic solution, which would allow us to quantify the uncertainty
of the result. The problem is, that unlike for the problem of
landmark registration, no analytic solution is available for the
posterior, due to the non-linearity of the functions that describe
the surfaces. There have, however, been attempts to use poste-
rior information to quantify the uncertainty of given registration
results [37].



Chapter 5

Shape Model Fitting

101





103

can also be identified in the target shape. Indeed, any annotation
given for the model can directly be transferred.

Transferring such annotations from the model is possible, as
shape model fitting establishes correspondence between the model
and the target shape. In fact, shape model fitting and registration
can be seen as two instances of the same technique. The mathe-
matical formulation of the problem is the same. The difference is
a conceptual one: We refer to a method as a fitting method, if we
restrict the hypothesis space to the shape space, whereas for a reg-
istration method we allow generic deformations. In model fitting,
we do not attempt to explain the shape in the image perfectly,
but only to the extend that the shape prior allows.

Since introduced in 1993 by Cootes et al. for the segmentation
of 2D images [19], shape model fitting has been applied for the
segmentation of various structures from 3D CT and MR images.
The recent survey by Heimann et al. [46] lists over 50 tasks in med-
ical imaging that have already been approached using statistical
shape models. Our method is in line with previous optimization
based fitting methods. We see the main advantage in our method
that it highlights the connections between registration and shape
model fitting. Further, it provides a unified formulation for both
fitting surface models [22, 14] and deformation models [84].

A nagging issue with shape models is that the example data
for building the model is often scarce. Building shape models
from only few example shapes results in inflexible models, which
cannot accurately represent novel shapes. Several attempts have
been made to increase the model’s flexibility. One approach is to
change the covariance structure, by either adding synthetic varia-
tions to the existing example data [21, 65] or by directly altering
the covariance matrix [106]. This corresponds to the approach
we discussed in Section 4.2.3, where we used a combination of
the empirical kernel of the shape model with a generic kernel.
Another class of methods rely on a decomposition of the shape
space into simpler parts, which are modeled separately. The de-
composition can either be spatial [59, 110, 69] or in the frequency
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domain [109] or combinations of both [60, 25]. The problem with
this latter class of methods is that it is not clear how to decom-
pose the shape space. Natural shapes are usually smooth, which
implies that any neighboring points correlate. Hence, any spatial
partitioning must be arbitrary. Also for frequency decomposition
it is not clear how to partition the signal into different frequency
bands.

Recently, Amberg [4] proposed to increase the flexibility of
statistical shape models by considering a number of independent
fittings, which only take the part of the shape around a given
fitting point into account. This method has shown great poten-
tial, yet still requires to specify a number of fitting points, which
is usually arbitrary. We take this idea one step further and fit
the full shape model to every point of the surface. This avoids
the issue of having to divide the model into several partitions.
While this idea is, to the best of our knowledge, new for shape
models, it has a long tradition in statistics and machine learning
and is known as local linear regression (See e.g. Hastie et al. [45]
Chapter 6).

5.1 Statistical Model fitting

From a mathematical point of view shape model fitting is identi-
cal to registration. The goal is to find a deformation field u, which
explains the relation between two surfaces or images. The differ-
ence to registration is that the hypothesis space is given solely
by the statistical shape model. We are not primarily interested
in obtaining a perfect explanation of the target surface or image,
but rather require that the explanation represents a valid shape.
Thus, shape model fitting can be used to explain structures, which
are noisy or exhibit artifacts.

We distinguish between surface fitting and deformation model
fitting. This corresponds to the distinction between a surface
warp, or a warp of the underlying coordinate system (Cf. Chap-
ter 4, Figure 4.1). We argued previously that considering defor-
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mations which explain a coordinate warp is more natural. For
model fitting this is not the case anymore. The deformation we
seek in model fitting is a linear combination of given deformation
fields u1, . . . , un, which already imply this choice. The difference
is mainly a practical one. Surface fitting is employed when the
target shape can easily be represented as a surface. In contrast,
fitting deformation models is used when we need to explain the
content of an image directly, such as for example in image seg-
mentation.

As the formulation for the fitting problem is identical to the
registration problem, we will only give a brief derivation here and
refer to Chapter 4 for details.

5.1.1 Surface fitting

We start with a discussion of surface fitting. Let (Γ̂R,Γ,GP(0, kemp))
be a statistical shape model. Any shape Γ̂ of the object class is
given as

Γ(x) = Γ(x) + u(x), x ∈ Γ̂R

with u ∼ GP(0, kemp). Further, let Γ̂T be the target surface. We
assume that the surface Γ̂T is rigidly aligned to the mean Γ, using
for example the procedure discussed in Section 4.3.1.

As in the case of surface registration, we introduce the signed
distance function.

IΓT
(x) =







dist(x,ΓT ) x ∈ outside(ΓT )

0 x ∈ ΓT

−dist(x,ΓT ) x ∈ inside(ΓT ).

(5.1)

This signed distance function provides us with a convenient way
to define the distance of a point x to the closest surface point.
We have a perfect matching of the shape if

IΓT
(Γ(x) + u(x)) = 0,

holds for all x ∈ Γ̂R. Let H be the RKHS associated with the
kernel kemp. The fitting problem can be written as the standard
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correspondence problem (Cf. Chapter 4, Equation (4.9))

min
u∈H

∫

Γ̂R

L(IΓT
(Γ(x) + u(x)), 0) dx+ µ‖u‖2kemp

, (5.2)

with the difference that we only optimize the space of deforma-
tions given by the shape model. Following the same solution strat-
egy as for the registration problem, we uniformly sample points
from Γ̂R to approximate the integral in (5.2). We arrive at the
problem

min
u∈H

1

N

N∑

i=1

L(IΓT
(Γ(xi) + u(xi)), 0) + µ‖u‖2kemp

, (5.3)

whose minimizer u∗ can be written in the form

u∗(x) =
N∑

i=1

kemp(xi, x)ci, (5.4)

by virtue of the representer theorem (Theorem 2.9). We could
solve the problem by minimizing (5.3) over the coefficients ci.
However, in model fitting we follow a computationally more ef-
ficient approach. If the space is spanned by linear combinations
of n examples, it has at most dimensionality n. A deformation is
therefore completely defined by n coefficients. To take advantage
of this low dimensionality, we perform the eigenfunction decom-
position of the kernel:

kemp(x, x
′) =

n∑

i=1

λiφi(x)⊗ φi(x
′). (5.5)

The fitting problem can be written in terms of the orthogonal
eigenfunctions φi:

min
α∈Rn

1

N

N∑

i=1

L(IΓT
(Γ(xi) +

n∑

j=1

αjφj(xi)), 0) + µ

n∑

i=1

α2
i

λi
(5.6)
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(a) (b)

Figure 5.2: A hand with a missing finger (red line) is fitted (black
line). The fit obtained using squared loss function (a) is much more
influenced by the artifact than when the robust Geman McClure loss
function (b) is used.

where we used that ‖u‖2kemp
=
∑n

i=1
α2
i

λi
(Cf. Equation 2.33). This

problem can be efficiently solved, using any standard optimization
scheme on the parameters α1, . . . , αn.

1 Besides the computational
efficiency, the representation in terms of the basis functions has
a different advantage. The coefficients α∗ which minimize (5.6)
completely describe the shape in the image, and can thus serve
as a compact representation of the shape.

Model fitting is often used for fitting data which is very noisy
and exhibits large artifacts. Therefore, it is important to use a
robust loss function. The example shown in Figure 5.2 illustrates
this point. The goal is to fit the hand shape, in which one finger
is missing. For the squared loss function L(x, x′) = (x− x′)2, the
fitting result is influenced by the missing finger. In contrast, us-

ing the robust Geman McClure function LGM (x, x′) = (x−x′)2

1+(x−x′)2
,

leads to a much better fit.

1 A straight-forward extension is to optimize also the parameters of a
similarity transform of the model, such that the shapes don’t have to be
accurately pre-aligned.
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5.1.2 Fitting deformation models

Exactly the same approach as used for surface fitting can also
used for fitting statistical deformation models. In deformation
model fitting, we consider not only information on the surface,
but on a larger domain Ω, on which the model is defined. This
approach has been proposed by Rückert et al.[84] for finding cor-
respondence in brain images. A typical scenario is the follow-
ing: Let XR : Ω → R be a reference image and assume that
we have already established correspondence for a set of images
X1, . . . , Xn depicting the same shape. Let (Ω,GP(u, kemp)) be a
statistical deformation model built from the resulting deforma-
tion fields u1, . . . , un. Given a new image XT , we can search for
correspondence directly in the span of the deformation model.
The fitting of the deformation model is performed by solving the
problem:

min
α∈Rn

∫

Ω
L(XT (x+ u(x) +

n∑

j=1

αjφj(x)), XR(x)) dx+ µ
n∑

i=1

α2
i

λi
,

(5.7)
Note that this corresponds to the image registration problem
(4.18), with the difference that the deformation is sought as an ex-
pansion of the eigenfunctions φj , j = 1, . . . , n of the deformation
model.

Let α∗ be the solution to (5.7). We can use the resulting
deformation field u(x) = u(x)+

∑

j α
∗
jφj(x) to transfer annotation

from a given template onto the target image XT . For this we need
to compute its inverse mapping

ϕ(x)−1 := [x+ u(x) +
∑

j

α∗
jφj(x)]

−1.

In the simplest case, the template image is a binary mask BR,
representing a segmentation of the reference. The segmentation
of the target image is then given by

BT (x) = BR(ϕ
−1(x)), x ∈ Ω. (5.8)
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shapes are fitted. We illustrate this using the hand shape exam-
ple. The shape model for the hands is built using 15 hand shapes.
We expect the approximation error to be rather large, since 15
hands are clearly not enough to span the space of all the possible
hand shapes. Figure 5.4 shows an example of a fitting result for
a hand that is not part of the model. The fitting result, shown
in 5.4a captures the shape well, but at the thumb and the lit-
tle finger, an approximation error is clearly visible. By including
landmarks these fingers are better matched (Figure 5.4b)), but
the result is even worse far away from the landmarks. This was
expected, since the hypothesis space gets more restricted by in-
cluding the landmarks. The fits shown in Figure 5.4a and 5.4b
have been obtained by minimizing (5.6) with a regularization pa-
rameter µ > 0. By setting µ = 0, we obtain a fitting result, which
closely matches the shape, as shown in 5.4c. However, the fitted
surface is extremely wiggly. This is because unlikely deformations
are not penalized anymore. Components which only explain the
noise in the training examples are used to explain the shape. In
fact, using this simple shape model, the only way to decrease the
approximation error and at the same time enforce the solution
to correspond to valid objects from the class, is to increase the
number of examples.

5.2.1 Local model fitting

The problem of having a simplistic model, which has the right
properties but is too rigid, is well known in the area of regression.
The simplest model is linear, but linear models are often too re-
stricted to obtain a useful interpretation of the data. A successful
approach to keep the simplicity of linear models, while increasing
their flexibility, is to fit a linear model locally, and then combining
the individual predictions. A whole family of such local methods
are used in statistics [64]. The fitting problem

min
α∈Rn

1

N

N∑

i=1

L(IΓT
(Γ(xi) +

n∑

j=1

αjφj(xi)), 0) + µ

n∑

i=1

α2
i

λi
(5.9)
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(a) (b) (c)

Figure 5.4: Fitting the shape model to a surface, which cannot be
represented by the model. (a) Using the standard fitting, an approxi-
mation error remains. (b) Using landmarks, the fit can be improved at
the landmark points, while it gets worse far away from the landmarks.
(c) Not using any regularization seems to improve the fit. However, the
shape is wiggly, since components are used to explained the shape which
represent mostly noise of the training examples.

is essentially a regression or curve-fitting problem. As the model is
inside the function IΓT

, the problem is non-linear, and no analytic
solution can be obtained. However, the local linear regression idea
can still be applied.

Let x0 ∈ Γ̂R be an arbitrary point on the reference shape. We
fit the entire shape model, with a distance dependent penalty:
Points far away from x0 have less influence on the result. The
result for the fit at x0 is used only to compute the deformation
u(x0). By sliding the point x0 over the whole surface, we eventu-
ally get the whole deformation field u. Since every fit strives to
minimize the error around x0, the resulting deformation u(x0) ex-
plains the data better at x0 than a global fit would. Yet, since we
fit not only the point x0, but a whole neighborhood, the deforma-
tion field obtained by sliding x0 over Γ̂R is nevertheless smooth.
Formally, the fitting problem at the point x0 is

min
α∈Rn

N∑

i=1

wx0(xi)L(IΓT
(Γ(xi) +

n∑

j=1

αjφj(xi)), 0) + µ
n∑

i=1

α2
i

λi
.

(5.10)
where wx0 is a weight that governs the influence of each point
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(a) Global (b) Local fit

Figure 5.5: A comparison between the global fitting result (a) and
the local fitting result (b). Using the same model the local fit greatly
reduces the approximation error.

x ∈ Γ̂R on the fitting result. A typical choice for wx0 is the so
called Epanechnikov kernel defined by:

wx0(x) := κσ(x0, x) = D(
dist(x, x0)

σ
) (5.11)

with

D(t) =

{
3
4(1− t2) if |t| ≤ 1
0 otherwise.

(5.12)

The weight function κσ is compact and its support determined by
σ. For surface fitting, the distance dist(x, x0) is taken to be the
geodesic distance on Γ, as we wish to match neighboring points on
the surface. For the fitting of deformation models the Euclidean
distance would be the right choice. The parameter σ acts as a
regularization parameter. If σ is small, the fitting is local, in
the extreme case considering only the point x0. On the other
hand, if σ is large, all points of the shape have nearly the same
influence, and we arrive at the global fitting. Hence, similar to a
regularization parameter, σ determines the size of the hypothesis
space.

Figure 5.5 shows the result obtained by applying this fitting
procedure to the same example that was already shown in Fig-
ure 5.4. The shape is matched exactly while the surface remains
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(a) (b) (c)

Figure 5.6: An example of a local fitting on noisy data. (a) shows
the hand with manually introduced artifacts (red line). Fitting only
a small neighborhood leads to overfitting (black line). Increasing the
size of the neighborhood eliminates the influence of the artifacts almost
completely.

smooth. Of course, this method is only useful, if the model does
not explain the noise and artifacts in the data. This is indeed the
case as shown in Figure 5.6, where we fitted a hand shape with
a number of manually introduced artifacts. We observe the usual
trade-off: If σ is small, the shape, including all the artifacts, are
fitted accurately. Choosing σ larger decreases the influence of the
artifact and leads to a proper fit of the hand shape.

Discussion

Shape model fitting is an important application of statistical shape
models. It can be used for explaining a given target shape in terms
of the model parameters. It thus yields a compact description of
the shape. In medical image analysis, the most important ap-
plication of shape models is image segmentation. As statistical
shape models can only explain shapes of the modeled object class,
the solution is automatically restricted to valid shapes, and does
not include noise or artifacts.

We have formulated the fitting problem as a special case of
registration. Having established the correspondence, we can easily
transfer any annotations that is defined on a reference data set
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onto the targets. Thus, we can in particular obtain a solution to
the segmentation problem. The important difference is that in
model fitting, we are relying completely on the example data that
were used to build the model and do not use a generic model of the
deformation. By virtue of the RKHS setting, the same methods
can be used for surface fitting and for fitting deformation models
directly. The latter has the advantage that no prior segmentation
of the structure is needed. Furthermore, the fitting can include
information from the whole image domain, rather than only from
the surface.

A well known problem of the fitting approach is that the model
is too restrictive to explain the target shape. To alleviate this
problem, we proposed a solution based on local model fitting.
This approach has the advantage that it leaves the model space,
but since it relies solely on the shape model, artifacts in the data
can still not be explained by the model.

An interesting aspect of local model fitting is that the fits are
restricted to a local area. This allows for the use of a specialized
model in each area. This is interesting, as in practice it is often
possible to find sufficient data for local parts but not of the full
structure. How to include these models in a way that guarantees
continuity and smoothness will be subject to future research. A
further open point is how this procedure can be made computa-
tionally more efficient, such that it can work even for large 3D
images. We will have to find a compromise between purely local
fitting and global interpolation, similar to the strategies known in
statistics [64].
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In this chapter we show how the methods presented so far
can be applied to real medical image data. The applications we
show are motivated by a project, which aims at simplifying the
planning of cranio-facial surgeries. The goal is that the physi-
cian can load a set of Computed Tomography (CT) and Magnet
Resonance (MR) images, from which the skull-structure is auto-
matically segmented. Furthermore, the software should compute
possible reconstructions of the traumatized structures.

We have already shown on simple 2D examples, that our
methods can provide this functionality. Indeed, our research was
strongly motivated by this application. There is, however, a big
difference between academic examples and real world data. Es-
pecially in the medical domain, data quality becomes a serious
issue. The image acquisition process is tailored to the physician’s
needs and to minimize harm for the patient. The available im-
ages are therefore often noisy, incomplete, and contain artifacts.
An additional complication is that volumetric data-sets are often
large. A typical CT image of the head has not seldom 100 million
voxels, which puts constraints on the numerical method used.

For real medical head data, the use of a strong prior is crucial.
We therefore start with a discussion of how to build a statistical
skull model from CT data of the head. We present a technique
that allows us to include partial and extremely noisy data into
the model. In addition to the skull model, we will also use a face
model to illustrate our methods. As a face model we use the freely
available Basel Face Model [52]1.

In Section 6.2 we will show a detailed, practical example for
the reconstruction of partially given surfaces. How the skull model
can be used to automatically segment the skull from MR images is
discussed in Section 6.3. To conclude, we describe an application
of our method to the problem of facial reconstruction, given only a
skull surface. This application nicely combines model based image
analysis and inference on shapes. Furthermore, it illustrates how
different independent shape models can be coupled to obtain a

1Basel Face Model: http://faces.cs.unibas.ch
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prior on a combined shape space.

A note on the implementation

The implementation of our methods is done using the Python
programming language, together with the open source scientific
library scipy [53]. All image processing, including the registration
and fitting algorithms, have been integrated as C++ filters into
the Insight Registration and Segmentation toolkit (ITK) [51]. For
visualization we use the Visualization Toolkit (VTK) [90].

For the applications using 3D medical images, computational
efficiency is a real issue. As a registration algorithm we therefore
use the Demons algorithm (Cf. A.2) which is known for its good
performance. We extended the standard ITK implementation
of the Demons algorithm to include curvature information. The
fitting is performed using a fast multi-resolution approach which
we also implemented as an ITK filter [69].

6.1 Statistical skull model

The most important component in all our applications is a statis-
tical shape model of the human skull. From the basic principles,
building a shape model of the human skull is not more difficult
than building the model of the hand shapes, which we discussed
in Chapter 3. The difference is a practical one. Currently, Com-
puted Tomography is the only imaging method which can capture
the skull structure in sufficient quality for shape model building.
Yet, even most CT images do not show all the fine anatomical
details, which constitute the skull. Our approach to bypass this
problem is to use a carefully chosen reference, which is anatomi-
cally complete. If the registration algorithm enforces sufficiently
smooth deformation fields, these fine details are carried over from
the reference. A different, more severe problem is that CT im-
ages of the whole head are scarce, whereas the skull structure
is extremely complex and therefore requires a large number of
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data sets to obtain an accurate model. We address this problem
by presenting a method, which allows us to include partial and
incomplete data sets into the model.

6.1.1 Data sets

We have acquired around 40 CT images of the human head from
various sources. These include real medical data as well as dry
skulls from the Bosma collection [16]. The individual images differ
highly in quality. The real medical data includes cases ranging
from young adults, with no visible bone defects, to elderly people
with severe pathologies in the skull structure.

We do not work directly with the CT images, but are only
interested in the shape of the skull. We segment the skull using
simple threshold segmentation. For CT images this simple thresh-
old segmentation works quite well, since the intensities relate to
the attenuation properties of the different tissues. In most cases,
the resulting image still contains structures that do not belong
to the skull, such as parts of the spine or the cushions of the
CT scanner. These large objects can easily be removed manually.
However, the procedure leaves many small artifacts, which would
be too time-consuming to remove by hand. A common problem
is that the images show metal artifacts around the teeth, due
to dental fillings. Other problems include smaller pathologies or
holes in the structure, due to insufficient resolution. Figure 6.1
shows a few, representative examples of our data-sets.

The reference skull There is one image that is of particular
good quality. It is a CT image of a skull that is on exposition
in an anatomical museum. This skull is anatomically complete
and shows no special or uncommon features. We acquired a high
resolution CT scan, which resulted in an image of size 512 ×
512 × 1992. This resolution is high enough such that even the
fine structures in the orbita are accurately represented. It was
manually segmented by a medical expert and different anatomical
regions were labeled. Figure 6.2 shows this skull, which we use
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(a) (b)

Figure 6.2: A manually segmented and labeled skull, which we use
as the reference. The colors in (a) designate different anatomical re-
gions. High attention has been paid to have an anatomically correct
segmentation, including the small structures, as shown in (b).

can be used to warp the reference, as shown in Figure 6.3c. The
missing parts lead to unnatural deformations in the warp. The
same would happen for large artifacts on the surface. By using
outlier detection on the corresponding parts of all n warps, we
can detect the parts that lead to such unnatural deformation,
and mark them as corrupted.

Only deviations in shape, and not in the spatial position of
a structure should be considered for detecting outliers. Before
applying the outlier detection, we therefore align the individual
parts of each shape to the corresponding part of the reference,
using Procrustes alignment (Cf. Section 4.3.1). The outlier de-
tection is then performed using the algorithm PCOut, proposed
by Filzmoser et al. [35], which is especially designed for detecting
outliers in high-dimensional spaces.2

Once the corrupted parts are identified, we can perform the

2A freely available implementation is given as a R package [78, 35].
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reconstruction. We build an initial shape model from all the com-
plete data-sets, and reconstruct the missing parts with the help
of this model (The reconstruction is discussed in detail in Sec-
tion 6.2 below). The completed surface can then be included into
the model.

Even when there are no intact shapes apart of the reference, it
is still possible to compute a full shape model once the outliers are
known. This can be achieved, by applying one of the well known
methods from statistics for estimating a mean and covariance ma-
trix from partial data [63]. In this way we obtain a preliminary
shape model which can be used for the reconstruction of partial
shapes. For details on this procedure, we refer to our recent pa-
per [68] where we used the EM algorithm for Probabilistic PCA
[96, 82] to obtain such a reconstruction.

6.1.3 Registration and model building

After these preparations, building the models is straight-forward.
Let S1, . . . , Sn be the skull surfaces and Γ̂0 be the reference. We
perform the surface registration as described in Chapter 4, to
obtain n deformation fields v1, . . . , vn from the common reference
Γ̂0 to each of the surfaces S1, . . . , Sn. Rather than working with
the surfaces S1, . . . , Sn directly, we use their approximation

Γ̂i := {x+ v(x) |x ∈ Γ̂0} (6.1)

obtained by warping the reference with the deformation fields.
This has the advantage that the topology of the reference surface
is preserved, even in cases where small holes or missing parts
appear in the data (Cf. Figure 6.4).

To obtain a discrete representation, on which we can perform
generalize Procrustes analysis, we uniformly sample points from
the reference surface Γ0 (see Figure 6.5). Denote this discrete
representation by Γ̃0. By virtue of Equation (6.1), the same dis-
cretization is induced by the deformation field v(x) on the other n
surfaces. Denote the resulting point sets by {Γ̃0, . . . , Γ̃n}. To align
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(a) (b)

Figure 6.4: The surfaces extracted from the CT images may still show
some holes, due to acquisition and segmentation artifacts. ((a)). By
warping the reference, we obtain a surface that matches the shape, but
preserves the topology of the reference ((b)).

the surfaces, we compute the similarity transforms T0, . . . , Tn us-
ing generalize Procrustes Analysis on these discretized surfaces.
The mean shape Γ and empirical kernel kemp which define the
shape model, are computed in the usual way.

For the application of the skull model for fitting and visual-
ization, the eigen-decomposition needs to be computed. We use
the numerical approximation procedure discussed in Section 3.5.1,
using the same uniform sampling as shown in Figure 6.5. The full
eigenfunctions are obtained by linear interpolation of the result-
ing vectors. Figure 6.6 shows the first modes of variations of the
model.

6.1.4 Approximation power of the skull model

We experimentally determined how the number of data-sets in
the model influences its approximation properties. We randomly
chose a fixed number of data-sets to build a model. A new surface,
which was not in this data-set, was approximated by the model,
such that the L2 error between the surfaces was minimized. We
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(a) (b)

Figure 6.5: We uniformly sample points from the reference surface
(a), to obtain a discrete representation as a point cloud (b).

repeated the experiments 15 times for randomly chosen surfaces.
The results are shown in Figure 6.7.

We observe that the approximation error quickly decreases
with increasing number of data sets (Figure 6.7a). Yet even with
35 data sets the overall approximation error is still rather large,
with an average error of around 2 mm. The plots indicate that
the error can still be decreased by including further examples. We
therefore conclude that 35 skulls are not sufficient to accurately
span the space of human skull shapes. We also repeated the
same experiment for the upper skull and the lower jaw separately
(Figure 6.7b). As expected, the error decreases more quickly, as
the parts are simpler. We also see that the variance in the data for
the lower jaw is much larger, and the approximations greatly vary.
Looking at the example data confirms this variability. The shape
of the lower jaw varies quite strongly, and the data often exhibits
artifacts in this area. For the upper skull, the approximation
error decreases rather slowly after around 20 data sets. We think
that this is because the skull base shows extremely complicated,
random structures, which cannot be perfectly explained. Thus no
perfect approximation can be achieved for this part and a certain
error will always be observed.
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(a) µ+ 2
√
λ1φ1 (b) µ− 2

√
λ1φ1

(c) µ+ 2
√
λ2φ2 (d) µ− 2

√
λ2φ2

Figure 6.6: The first two principal modes of variation of the skull
model. The notation µ +

√
λiφi stands for a deformation of one stan-

dard deviation from the mean µ in the direction of the i-th principal
component φi.
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6.2 Reconstruction of partial shapes

The reconstruction of a full shape from only a given part is an
important application of shape models. A common scenario in the
area of reconstructive medicine is that after an accident or medical
intervention a part of an anatomical structure is traumatized.
To be able to recover the normal function of this structure, the
anatomically normal completion of this part has to be inferred
from the remaining, intact part of the structure. Based on this
reconstruction a prosthesis or implant is manufactured. A less
serious application of such a reconstruction has already been given
in the previous section. We often have an image of the head that
is only partially acquired or shows a pathology. Yet we do not
want to discard the whole data set only due to this defect.

We have already shown in Chapter 3 (Section 3.4) how the re-
construction can be computed using Gaussian Process regression.
The idea is to sample points from the given parts, to obtain a
training set which describes the deformation well. On this train-
ing set, we can then perform Gaussian Process regression. The
best reconstruction of the shape under the given model is simple
the posterior mean.

We will now show how this procedure is applied in practice.
Let Γ̂ = Γ̂a ∪ Γ̂b be a surface, of which only a part, say Γ̂b is ob-
served. Before we can apply Gaussian Process regression, we need
to establish correspondence. We establish correspondence only for
a part of the mean surface Γã ⊂ Γ, such that correspondence field
u maps only to the observed part Γ̂a of the surface:

{x+ u(x)|x ∈ Γã} ⊂ Γ̂a

The part Γã of the mean is either selected manually, or by the
outlier detection method discussed in Section 6.1.2. Once corre-
spondence is established, the reconstruction is performed using
Gaussian Process regression on the training set

S = {(x1, u(x1), . . . , (xN , u(xN ))}, x1, . . . , xN ∈ Γã.
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In our first example, we illustrate how the partial skull surface
(Figure 6.8a) can be reconstructed. We sample 10000 points on
the mean surface, on which we perform regression. (Figure 6.8b).
The reconstruction is shown in Figure 6.8c. We observe that the
shape is generally well matched and the reconstruction of the jaw
is anatomically correct. There remains, however, a small approxi-
mation error, especially at the cheekbone. We therefore combined
the reconstruction and the original data, using the original data
points on the intact part (i.e. {x+ u(x) |x ∈ Γã}) and the recon-
struction for the remaining part (Figure 6.8d).

In the skull example, the given data could not be perfectly
approximated, due to the limited flexibility of the model. Conse-
quently, not much variance remained in the reconstruction. We
therefore also present an example using the face model [52], where
the advantage of having the full posterior can more clearly be seen.
For our experiment we manually removed the nose from a 3D sur-
face scan of a face (Figure 6.9a). Figure 6.9 shows reconstruction
results as well as the variability represented by the first mode of
variation. It can be seen that the reconstruction closely resembles
the original nose (Figure 6.9b). We further observe that the vari-
ations shown in the Figures 6.9d and 6.9e also fit the face. Even
the extremely unlikely reconstruction shown in Figure 6.9f (which
has a probability of 10−13 in our model) does not look unnatural.
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(a) (b)

(c) (d)

Figure 6.8: (a) shows a data set that is only partially given. (b)
We sample a number of points for the reconstruction. (c) shows the
reconstruction from the model together with the original shape (in grey).
It is observed that it is not everywhere accurate, as it is biased by the
model. (d) shows the surface that combines the reconstruction with the
original data.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Reconstruction of a nose: (a) shows the surface with the
nose removed. (b) shows the real face while (c) shows the reconstructed
nose. In (d) and (e) the deformations for the main mode of variation
are shown (± 3 standard deviations). (f) shows an extremely unlikely
reconstruction.



6.3. Skull segmentation from MR images 131

6.3 Skull segmentation from MR images

Planning complex cranio-facial interventions often requires the
fusion of information from images of different modalities. The
bony structure can relatively easily be segmented from CT im-
ages, while for the soft-tissue and vessels MR images are the bet-
ter choice. In current clinical practice, both CT and MR images
are therefore acquired to obtain the complete information. This
is not only time-consuming, but the CT scan also exposes a pa-
tient to harmful radiation. Our goal is therefore to perform the
segmentation of the skull directly from MR images.

The segmentation of bones in MR images is a difficult problem,
as bony structure is hard to distinguish from the surrounding tis-
sue and virtually impossible to distinguish from air in the images.
A further issue that complicates the problem is the low resolution
of MR images. Using relatively simple methods, we can, however,
obtain a rough approximation of the skull structure. By fitting
the statistical skull model to this initial segmentation, we obtain
a segmentation that uses the model information in places where
the image does not give any information.

Previous work on automatic skull segmentation is very sparse.
Results for the segmentation of the skull from CT images are
shown by Kang et al. [57], where, in a multi-step approach, a
sequence of standard segmentation techniques is applied to ex-
tract the bony structure. Dogdas et al. [30] use techniques from
mathematical morphology to segment the skull from MR images.
Rifai et al. [81] use a level-set segmentation technique to deform
the contour of the scalp to fit the skull structure.

Initial segmentation To obtain the initial segmentation we
use the following strategy. While the segmentation of bone is dif-
ficult, the brain and scalp can rather easily be segmented fromMR
images.3 These regions already constrain the position of the skull

3In contrast to CT images, the intensities of MR images have no physical
meaning. Depending on the acquisition protocol, the resulting image intensi-
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relatively well. We mask them in the image and perform a thresh-
old segmentation on the remaining region. Selecting the largest
connected component yields the initial segmentation result. Fig-
ure 6.10 illustrates the different steps. For scalp segmentation we
use a method proposed by Dogdas et al. [30] and brain segmen-
tation we follow the method proposed by Géraud et al. [39, 81].
Both methods consist of a combination of different thresholding
operations to segment the soft-tissue from the bone, and math-
ematical morphology operation to obtain a better separation of
the structures from the surrounding tissue.

Model fitting This initial segmentation result is extremely noisy
(Figure 6.10d), but it is sufficiently accurate to allow fitting the
skull model to it, and hence to get an anatomically valid skull
shape that explains the image data. Figure 6.11 shows a result
for a fitting of the model to the pre-segmented surface. It can be
seen that the skull shape is generally well approximated and also
gives meaningful results at places where the intensity information
does not allow to distinguish the bone from the surrounding tissue.
However for the lower jaw the fitting error is quite large. This can
be explained by the limited approximation power of the model,
which does not allow for a perfect fit of the complete structure.
To alleviate this problem, we fit shape models of the lower jaw
and the upper skull separately, by using the global fitting result
as an initialization. Figure 6.11c shows that this strategy greatly
improves the fit. A more detailed discussion of this hierarchical
approach and a detailed evaluation is given in [69].

ties can be rather different. In the following we always refer to T1 weighted
MR images.
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(a) (b)

(c) (d)

Figure 6.11: Skull model fitting: The places where the pre-
segmentation (a) fails, are segmented correctly by the model (Figures
(b) and (c)). Fitting the upper skull and mandible separately (Figure
(c)) can clearly be seen to improve the accuracy of the fit. Figure (d)
shows the initial segmentation mask and the fitting result in 3D.



6.4. Face prediction 135

6.4 Face prediction

In our last application, we show how the relationship between two
shapes can be learned by using two independent shape models.
The question we wish to answer is the following: Given a set of
training images depicting both the face and skull, can we learn
a mapping from these data sets which predicts the correct face
surface for a given skull?

As a training set we are given n MR images of the head.
Using the procedure outlined in Section 6.3 we extract the scalp
and skull surfaces from these images. We fit both the face and
the skull model to the respective surfaces and obtain two sets
of shape parameters {~s1, . . . , ~sn} and {~f1, . . . , ~fn}. The vector ~si
represents the shape parameters that describe the i-th skull shape
and ~fi the corresponding face shape. We have thus a training set

Z := {(~s1, ~f1), . . . , (~sn, ~fn)}
from which we can learn the correspondence between the two
shape models. Learning the relation between these parameters
could be achieved with any standard learning algorithm. We use
here linear ridge regression to establish this correspondence. The
reason is that the limited number of training examples allows only
for relatively simple models. Furthermore, learning a linear map-
ping has a intuitively appealing interpretation. Assuming that an
observed skull surface can be well represented as a linear com-
bination of the skull shapes in the training examples, we would
expect the face to be well approximated by the same combination
of the corresponding face examples [76].

We evaluated the ability of the linear face predictor to re-
construct a face from given skull shapes, with a leave-one-out
experiment on 23 example images. Figure 6.12 shows two typical
predictions. We compare the prediction on all but one training
example to the ground truth given by this left out example. The
best and the worst results (determine by the mean reconstruction
error) is shown in Figure 6.13. We observe that the largest recon-
struction errors occur in places where the soft tissue thickness can
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Original Face Prediction Original Face Prediction

Figure 6.12: Two typical reconstruction result. The cuts through the
face show the ground-truth together with their prediction.

vary, whereas the eye and mouth area are well reconstructed even
in the bad examples. Errors in the forehead and neck are mostly
due to the model’s boundary conditions. While it is easy to rec-
ognize the best predicted face, the worst reconstruction is not
close enough to the ground truth to be able to recognize the per-
son’s face anymore. Even though the perceived deviation from
the ground-truth is large, the mean error computed is only 2.8
mm, with a standard deviation of 2.4 mm. In comparison, for the
best prediction we get a mean error of 1.2 mm with a standard
deviation of 1.2 mm.

It is clear that the facial surface is not solely determined by the
skull shape. Rather, there are additional factors like weight, age
and even facial expression that determines its surface. Amberg et
al. [3] showed how such attributes can be learned and expressed
using the face model. Building upon this work, we showed in [76]
how more accurate predictions can be obtained by considering
these attribute values as known.

Discussion

We showed in this chapter applications of our methods to the
analysis of medical images of the head. We have seen that for
such images, the use of a strong shape prior is crucial, as they
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this direction by presenting a method which allows us to detect
and reconstruct missing parts. Thus we can even make use of
corrupted data sets in model building.

An issue that we have not addressed in this chapter is the use
of the model for pathological data. The model is built to represent
the normal anatomy. In clinical practice, however, we have often
cases which show severe pathologies. These are not modeled, and
can therefore also not been explained by the model. Extending
the ideas to such cases will be a challenge to be addressed in
the future. Already the automatic detection of anomalies is an
open problem. The outlier detection that we presented is a first
step in this direction. However, it can currently only detect large
artifacts, and is not feasible for detecting smaller fractures, or
subtle deviation from the normal anatomy. For this to become
possible, more sophisticated statistical methods would have to be
employed. This also remains a topic for future work.
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In this work we discussed statistical shape models and their
application in medical image analysis. We looked at shape models
from a machine learning perspective and put them into the larger
context of Gaussian Process models. The new interpretation gives
an understanding of shape models in terms of basic concepts from
machine learning. This led directly to extensions of currently used
methods, and new combinations with well established methods
from this field.

The most fundamental concept in our work is the concept of
the hypothesis space. The hypothesis space defines our prior as-
sumptions on the model. We followed the principle: If we know
that all the data we will have to explain, are always instances
of the same anatomical shape, then we should not look for gen-
eral explanation. Rather, we can restrict the hypothesis space
to functions, which describe this shape. In this way we can per-
form accurate inference on shapes using only a modest number of
training samples. Furthermore, if all functions in the hypothesis
space correspond to anatomically valid shapes, then there is no
danger of fitting noise or artifacts in the data.

Statistical shape models

We showed that statistical shape models can be seen as a Gaussian
process model GP(0, kemp) defined over a mean shape Γ. Both
the mean shape Γ and the covariance function kemp are estimated
from example data. The associated hypothesis space is the Re-
producing Kernel Hilbert Space associated to the kernel kemp. It
turns out that this hypothesis space consists of linear combina-
tion of the deformations, which relate the example data to the
population mean Γ. Thus, the functions in the hypothesis space
can only explain shape deformations that have been observed in
the example data. If the shape model is built from anatomi-
cally normal examples of the shape, the statistical shape model
will therefore represent a prior over shapes that correspond to
the normal anatomy. As the shape model is a Gaussian process
model, we could directly apply Gaussian process regression to in-
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fer the full shape of an anatomical structure, when only a part of
it was observed. Furthermore, GP regression allowed us to obtain
the posterior distribution in closed from. This distribution could
be used as a new shape model, which explains only shapes that
agree with the observations.

An important application of the statistical shape model is
model fitting. Model fitting implicitly establishes point-to-point
correspondence between the model and the image or surface. It
thus allows to transfer any knowledge that is given on a reference
directly to a new image. We presented an approach for surface
and deformation model fitting, and showed how this could be used
for image segmentation. The segmentation result we obtained is
restricted to anatomically valid shapes, and is therefore robust
towards artifacts.

One problem that often arises in the context of shape models
is that there are not sufficiently many example shapes available.
This leads to a large approximation error for new shapes. We
presented two ways to make shape models more flexible. One
method is based on the idea of local linear regression. Rather
than to explain the full structure with the model, we use many
localized fits of the model, and thus explain only the data in
this local area. With this method, we rely solely on the data,
but can still fit shapes that cannot be spanned by the training
examples. The other possibility is to combine the shape model
kernel kemp with a kernel that describes generic deformations.
Using such generic kernels includes deformations that do not lead
to valid anatomical shapes. Depending on the choice of the kernel,
this procedure leads to extremely flexible models. It removes the
borders between shape model fitting and registration algorithms.
Indeed, our formulation of registration and fitting differ only in
the kernel function that is used to define the hypothesis space.

Medical applications

The results we presented in the first chapters had a rather con-
ceptual touch. We illustrated the principles on 2D examples of
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the human hand and simple synthetic examples. Our main moti-
vation for this work was, however, a practical one. We developed
the methods with an application of cranio-facial surgery planning
in mind. In the last chapter we showed therefore how these ideas
can be applied to real medical data of the human head. Using
a statistical skull model we could obtain a segmentation of the
skull structure from MR images. This is a problem which is vir-
tually impossible to solve without a strong shape prior, as the
skull structure is often barely visible. We also showed how the
shape model can be used for the reconstruction of traumatized
structures. We finally considered the problem of face prediction
from a given skull. Via a parametrization of the training images
in terms of a shape models of the skull and the face respectively,
we could reduce the complicated problem of learning the relation
between shapes to a standard learning problem.

The biggest challenge we faced in practice was to build a sta-
tistical shape model of the skull. The images that are available in
practice are often of extremely low quality. Furthermore, Com-
puted Tomography images showing the full head are scarce. We
therefore also presented a method which allowed us to include
incomplete data sets and shapes that exhibit artifacts into the
model.

In conclusion, using a statistical skull model for the planning
of cranio-facial surgeries makes it possible to include information
in the planning process, that would otherwise not be available.
While detailed clinical studies needs to be performed, our results
clearly show the potential of this approach.

We started this work with the central question of computer
vision:

Given an image, what can be “seen” in this image?

For specialized images, such as images of the human head, we
have shown that by using a strong shape prior, an automated
analysis, annotation, and to some extent even interpretation can
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be performed. Thus, if our problem domain is sufficiently spe-
cific, then we can devise methods, which can learn to see what is
depicted in an image.

Outlook

Most of our work has been motivated from a conceptual point of
view. While we showed that it can be applied to real medical
images, we need a thorough study of the accuracy of our method.
Attempts have been made to evaluate registration and segmenta-
tion in a standardized way [24, 48, 97]. However, the evaluation
of the individual components remains a difficult problem. This is
especially the case since our method is strongly influenced by the
availability and quality of the example images. The evaluation of
our method should ultimately be performed for the final appli-
cation, where we have a ground truth available and can compare
the results to that of a medical expert. The biggest challenge
in performing such an evaluation is to acquire a sufficiently large
database of images to build an accurate model.

Also conceptually there are many challenges to be addressed.
We made a number of strong assumptions, which are clearly not
satisfied for complicated shapes. A possibility would be to make
these assumptions more realistic. We believe, however, that an-
other path is more fruitful. The assumption might hold locally,
when we consider only simple shapes. They are, for example, more
likely to hold if we consider an individual tooth rather than the
whole skull. Devising a strategy for coupling such local models in
a meaningful way is an interesting and important open problem.

From all the assumptions that we made, there is one which we
think is extremely restricting and should be reconsidered. This is
the assumption of fixed point-to-point correspondence. Current
registration algorithms yield a fixed correspondence, which is then
used for future analysis of the data. However, it is extremely dif-
ficult to define correspondence formally, and we believe that no
method can yield a definite answer. An interesting approach to
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avoid having to define general correspondence criteria was pro-
posed by Davies et al. [26]. They combined the registration and
model building steps and defined the optimal correspondence as
the one that results in the most compact model. However, this
approach is tailored to shape model building only. We envision
an approach where the correspondences are given as a probability
distribution, which can be exploited by subsequent applications.
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The formulation of the registration problem using Reproduc-
ing Kernel Hilbert Spaces that we discussed in Chapter 4 is ex-
tremely flexible and makes the solution of the problem easy and
independent of the kernel that was used. However, from a com-
putational point of view this setting is demanding, as the defor-
mation field is explicitly given as a large linear combination of
basis functions. In the more popular variational formulation of
the registration problem, a regularization approach is followed in-
stead. The solution is computed by solving a partial differential
equation (PDE). Partial differential equations are extremely well
studied and very efficient numerical methods are known, which
can directly be applied.

We will briefly discuss the variational formulation and show
how the shape prior can be incorporated into this framework.

A.1 The variational formulation

The arguments that led to the formulation of our registration
problem in Chapter 4 (Equation (4.9)) hold unchanged for the
variational formulation. The only difference is, that the space
we seek for deformations is here not explicitly constructed from
kernels, but specified using a regularization operator R. In its
basic form (i.e. neglecting curvature and other texture terms) the
registration problem can be stated as

min
u:L2(Ω,Rd)

∫

Ω
L(IT (x+ u(x)), IR(x))dx+ µ‖Ru‖2. (A.1)

The most common choices for the regularization operator are:

Diffusion Regularizer:

‖RD
i u‖2 =

d∑

i=1

∫

Ω
|∇ui|2, (A.2)
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Curvature Regularizer:

‖RC
i u‖2 =

d∑

i=1

∫

Ω
|∆ui|2 (A.3)

Elastic Regularizer:

‖REu‖2 =
d∑

i=1

µ

4
|∇ui|2 +

λ

2
(div u), (A.4)

where λ and µ in (A.4) are parameters, which govern the “elastic-
ity” of the solution. For a detailed discussion of these operators,
we refer to the monograph of Modersitzki [71].

The standard approach for solving the minimization prob-
lem (A.1) is by formulating the Euler-Lagrange Equations, which
give a necessary criterion for the minimizer. The Euler-Lagrange
Equation are obtained by functional differentiation of (A.1). We
skip the details and state here only the result (see [71] for a de-
tailed derivation). A necessary criterion is:

∫

Ω
L1(IT (x+ u(x)), IR(x))∇IT (x+ u(x)) (A.5)

+ µR∗Ru = 0, ∀x ∈ Ω. (A.6)

where R∗ denotes the adjoint operator and L1 the derivative with
respect to the first argument of L. This is a partial differential
equation, which, equipped with the right boundary conditions on
the differential operator R, can be solved by standard numerical
methods. In image registration, the standard choice is a finite
difference method, since the data is given on a regularly spaced
grid and the domain is simple. In [28] we proposed the use of
the finite element method for solving this differential equation,
which allows for a more memory efficient solution, by choosing
a more dense grid in the area around the surface and a coarser
resolution far away from the surface. Furthermore it allows for
an easy parallelization of the problem.
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A.2 Thirion’s Demons

Among the numerous image registration algorithms, there is one
algorithm that has received particularly much attention. It is
the Demon’s algorithm, proposed by Thirion [95]. The reason
for its success is its simplicity, computational efficiency and good
performance.

Initially, Thirion introduced the Demons algorithm as a heuris-
tic method based on optical flow. Later, it was shown that it can
be seen as an approximation of the standard variational problem
(Equation (A.1)) with the robust loss function

Ld(x, x
′, z) =

(x− x′)2

‖z‖2 + (x− x′)2
(A.7)

and the diffusion regularizer (A.2) [71]. Here, the loss function
Ld depends on an additional parameter z, which determines its
robustness.

The efficiency of the method is due to the fact that the differ-
ential equation is not solved directly, but its solution is approxi-
mated by the following strategy: Define

f(u) :=

∫

Ω
Ld(IT (x+ u(x)), IR(x),∇IR(x)) dx.

Start with the deformation field u(0) = 0. At step i, compute the
update

u(i+1) = Gσ ⋆ (u(i) +
d

du
f(u(i))). (A.8)

where the convolution with the Gaussian kernel Gσ approximates
the effect of the regularization operator.

A different interpretation is, that f(u) is minimized using a
gradient descent scheme and in each iteration, the current solution
is replaced by a smooth solution from the RKHS associated to the
Gaussian kernel Gσ.
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A.3 Regularization using statistical models

We briefly describe in this section how the statistical shape model
can be incorporated into the standard variational formulation

min
u∈L2(Ω,Rd)

∫

Ω
L(IT (x+ u(x)), IR(x)) + µ‖Ru‖2.

The difference to the RKHS framework discussed in Chapter 4
is that here we allow all deformations in L2(Ω,R

d) and penal-
ize those which are unlikely under this prior. For the statistical
regularization, we are given the covariance function

kemp(x, x
′) =

1

n

n∑

i=1

(ui(x)− u(x))⊗ (ui(x
′)− u(x′))

We write kemp as the eigenfunction decomposition,

kemp(x, x
′) =

n∑

i=1

λiφi(x)φi(x
′). (A.9)

which provides us with a orthogonal basis for space spanned by
the deformation fields u1, . . . , un. Any deformation u can be de-
composed in two components

u = uk + u⊥k (A.10)

where uk =
∑n

i=1〈u, φi〉φi are the components in the span of
the examples, and u⊥k is its orthogonal complement. For u to
correspond to our prior information, it should satisfy the following
criteria: 1) uk should penalize unlikely deformations under the
model GP(u, kemp) and 2) u⊥k should be small, since we assume
that any deformation that maps the reference to a shape from
the object class, is well represented in the span of the examples
u1, . . . , un. Figure A.1 illustrates this setting. With this in mind,
we define the following two regularization operators

Rk[u] =
n∑

i=1

〈u, φi〉√
λi

φi − u. (A.11)
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(a) (b)

(c) (d)

Figure A.2: (a) The reference hand is registered to a hand with a finger
missing. (b) Using only derivative based regularization, the deformation
field maps the shapes exactly, by squashing the missing index finger
onto the middle finger. (c) Penalizing the residual with the term Rk⊥

prevents the exact matching of the finger, since it cannot be explained
in the subspace spanned by the examples. (c) By further penalizing
the deviation from the mean, using the regularization operator Rk the
deformation are drawn towards the mean shape (marked by the blue
line).
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