8 research outputs found

    Rouleaux red blood cells splitting in microscopic thin blood smear images via local maxima, circles drawing, and mapping with original RBCs.

    Get PDF
    Splitting the rouleaux RBCs from single RBCs and its further subdivision is a challenging area in computer-assisted diagnosis of blood. This phenomenon is applied in complete blood count, anemia, leukemia, and malaria tests. Several automated techniques are reported in the state of art for this task but face either under or over splitting problems. The current research presents a novel approach to split Rouleaux red blood cells (chains of RBCs) precisely, which are frequently observed in the thin blood smear images. Accordingly, this research address the rouleaux splitting problem in a realistic, efficient and automated way by considering the distance transform and local maxima of the rouleaux RBCs. Rouleaux RBCs are splitted by taking their local maxima as the centres to draw circles by mid-point circle algorithm. The resulting circles are further mapped with single RBC in Rouleaux to preserve its original shape. The results of the proposed approach on standard data set are presented and analyzed statistically by achieving an average recall of 0.059, an average precision of 0.067 and F-measure 0.063 are achieved through ground truth with visual inspection

    3D segmentations of neuronal nuclei from confocal microscope image stacks

    Get PDF
    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario?the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei

    A quantitative image analysis for the cellular cytoskeleton during in vitro tumor growth

    Get PDF
    The cellular cytoskeleton is a dynamic subcellular structure that can be a marker of key biological phenomena including cell division, organelle movement, shape changes and locomotion during the avascular tumor phase. Little attention is paid to quantify changes in the cytoskeleton while nuclei and cytoplasmic both are present in subcellular microscopic images. In this paper, we proposed a quantitative image analysis method to analyze subcellular cytoskeletal changes using a texture analysis method preceded by segmentation of nuclei, cytoplasm and ruffling regions (area except nuclei and cytoplasm). To test and validate this model we hypothesized that Mammary Serine Protease Inhibitor (maspin) acts as cytoskeleton regulator that mediates cell-extracellular matrix (ECM) adhesion in tumor. Maspin-a tumor suppressor gene shows multiple tumor suppressive properties such as increasing tumor cell apoptosis and reducing migration, proliferation, invasion, and overall tumor metastasis. The proposed method obtained separated ruffling regions from segmentation steps and then adopted gray–level histograms (GLH) and grey-level co-occurrence matrix (GLCM) texture analysis techniques. In order to verify the reliability, the proposed texture analysis method was used to compare the control and maspin expressing cells grown on different ECM components: plastic, collagen I, fibronectin and laminin. The results show that the texture parameters extracted reflect the different cytoskeletal changes. These changes indicate that maspin acts as a regulator of the cell-ECM enhancement process, while it reduces the cell migration. Overall, this paper not only presents a quantitative image analysis approach to analyze subcellular cytoskeletal architectures but also provides a comprehensive tool for the biologist, pathologist, cancer specialist, and computer scientist to understand cellular and subcellular organization of cells. In long term, this method can be extended to be used in live cell tracking in vivo, image informatics based point-of-care expert system and quantification of various complex architectures in organisms

    Segmentation of neuronal nuclei based on clump splitting and a two-step binarization of images

    No full text
    In this paper we present an algorithm to segment the nuclei of neuronal cells in confocal microscopy images, a key technical problem in many experimental studies in the field of neuroscience. We describe the whole procedure, from the original images to the segmented individual nuclei, paying particular attention to the binarization of the images, which is not straightforward due to the technical difficulties related to the visualization of nuclei as individual objects and incomplete and irregular staining. We have focused on the division of clusters of nuclei that appear frequently in these images. Thus we have developed a clump-splitting algorithm to separate touching or overlapping nuclei allowing us to accurate account for both the number and size of the nuclei. The results presented in the paper show that the proposed algorithm performs well on different sets of images from different layers of the cerebral cortex. © 2013 Elsevier Ltd. All rights reserved.Peer Reviewe
    corecore