142 research outputs found

    Depth map compression via 3D region-based representation

    Get PDF
    In 3D video, view synthesis is used to create new virtual views between encoded camera views. Errors in the coding of the depth maps introduce geometry inconsistencies in synthesized views. In this paper, a new 3D plane representation of the scene is presented which improves the performance of current standard video codecs in the view synthesis domain. Two image segmentation algorithms are proposed for generating a color and depth segmentation. Using both partitions, depth maps are segmented into regions without sharp discontinuities without having to explicitly signal all depth edges. The resulting regions are represented using a planar model in the 3D world scene. This 3D representation allows an efficient encoding while preserving the 3D characteristics of the scene. The 3D planes open up the possibility to code multiview images with a unique representation.Postprint (author's final draft

    Optimized Data Representation for Interactive Multiview Navigation

    Get PDF
    In contrary to traditional media streaming services where a unique media content is delivered to different users, interactive multiview navigation applications enable users to choose their own viewpoints and freely navigate in a 3-D scene. The interactivity brings new challenges in addition to the classical rate-distortion trade-off, which considers only the compression performance and viewing quality. On the one hand, interactivity necessitates sufficient viewpoints for richer navigation; on the other hand, it requires to provide low bandwidth and delay costs for smooth navigation during view transitions. In this paper, we formally describe the novel trade-offs posed by the navigation interactivity and classical rate-distortion criterion. Based on an original formulation, we look for the optimal design of the data representation by introducing novel rate and distortion models and practical solving algorithms. Experiments show that the proposed data representation method outperforms the baseline solution by providing lower resource consumptions and higher visual quality in all navigation configurations, which certainly confirms the potential of the proposed data representation in practical interactive navigation systems

    Transformées basées graphes pour la compression de nouvelles modalités d’image

    Get PDF
    Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes

    Disparity compensation using geometric transforms

    Get PDF
    This dissertation describes the research and development of some techniques to enhance the disparity compensation in 3D video compression algorithms. Disparity compensation is usually performed using a block matching technique between views, disregarding the various levels of disparity present for objects at different depths in the scene. An alternative coding scheme is proposed, taking advantage of the cameras setup information and the object’s depth in the scene, to compensate more complex spatial distortions, being able to improve disparity compensation even with convergent cameras. In order to perform a more accurate disparity compensation, the reference picture list is enriched with additional geometrically transformed images, for the most relevant object’s levels of depth in the scene, resulting from projections of one view to another. This scheme can be implemented in any state-of-the-art video codec, as H.264/AVC or HEVC, in order to improve the disparity matching accuracy between views. Experimental results, using MV-HEVC extension, show the efficiency of the proposed method for coding stereo video, presenting bitrate savings up to 2.87%, for convergent camera sequences, and 1.52% for parallel camera sequences. Also a method to choose the geometrically transformed inter view reference pictures was developed, in order to reduce unnecessary overhead for unused reference pictures. By selecting and adding to the reference picture list, only the most useful pictures, all results improved, presenting bitrate savings up to 3.06% for convergent camera sequences, and 2% for parallel camera sequences

    Adaptive delivery of immersive 3D multi-view video over the Internet

    Get PDF
    The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions

    Depth-based Multi-View 3D Video Coding

    Get PDF
    • …
    corecore