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Abstract In 3D video, view synthesis is used to create new virtual views be-
tween encoded camera views. Errors in the coding of the depth maps introduce
geometry inconsistencies in synthesized views. In this paper, a new 3D plane
representation of the scene is presented which improves the performance of
current standard video codecs in the view synthesis domain. Two image seg-
mentation algorithms are proposed for generating a color and depth segmen-
tation. Using both partitions, depth maps are segmented into regions without
sharp discontinuities without having to explicitly signal all depth edges. The
resulting regions are represented using a planar model in the 3D world scene.
This 3D representation allows an efficient encoding while preserving the 3D
characteristics of the scene. The 3D planes open up the possibility to code
multiview images with a unique representation.
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1 Introduction

The extension of current visual displays and systems to the third dimension
(3D) aims to convey depth perception to the viewer. Many applications ex-
ploiting 3D video have arisen over the last years, such as 3D video games, 3D
films (IMAX cinemas) or medical imaging (SPECT). With the increasing de-
velopment of 3D display devices and interactive multimedia systems, 3D video
has gained interest in the last decades for acquisition, display and compression
purposes.

There are two different methodologies for bringing 3D video to television
devices: 3D Television (3DTV) [6] and Free Viewpoint Video (FVV) [38].
3DTV produces depth perception creating 3D scenes in movement. The viewer
perceives the 3D video from a single static position in the space. On the other
hand, FVV allows the user to interactively control the viewpoint by generat-
ing different views of a dynamic scene from any position in the 3D space. By
selecting at any moment the position from which the scene is displayed, the
viewer participates of the creative process by focusing more in one subset of
the available content or another.

The information required for 3D video applications results in a massive
amount of data that has to be stored and transmitted. Therefore, an efficient
compression method is needed to design feasible systems. Different 3D scene
representation formats have been proposed for compression purposes [38] such
as multiview video [41], depth information related to each view [22] and 3D
meshes [30].

a) b)

Fig. 1 a) The point cloud associated with the depth map can be recovered using the camera
parameters. In the figure, each point is represented with the corresponding color of the color
image. b) An image partition is used to build a 3D model for all the points in the region.

Different 3D video systems can be classified depending on the number
of cameras used. The most widespread technique is the stereographic camera
configuration. Classical stereo video is built from two viewpoints located at the
distance of human eyes creating the perception of depth. New configurations
can include up to 15 cameras.

The 3D geometry of the scene jointly with the camera parameters allow
to relate the different viewpoints through inter-view prediction, similarly as
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the forecast of two consecutive images in a video. As images obtained with
multiview sets are very similar to one another, one can easily predict one of
the views from another. A coding gain can be achieved in comparison to the
coding of a single view depending on the degree of common content shared
by a subset of the cameras. Approaches exploiting temporal and inter-view
resemblances resulted in the standardization of the Multiview Video Coding
(MVC) Extension of H.264 [41]. MVC provides up to 40% bit rate reduction for
multiview data in comparison to single-view H.264 coding [21] while providing
the user good subjective 3D perception. However, the bit rate resulting from
MVC is linearly proportional to the number of coded views [26].

In order to reduce the number of transmitted views, the format Multiview
Plus Depth (MVD) has become popular in the last few years [21]. MVD coding
format is created by sending a per-pixel depth map associated to each view-
point as can be seen in figure 1. The depth map consists of a grayscale image
where the depth can take values between the maximum and the minimum
distance to the camera position. The value of the depth is quantized with 8
bits with the points closer to the camera having values near 255 and the fur-
thest near 0. Depth map information can be back-projected to the 3D world
enabling encoders to establish relations between views. Using color images
and depth maps, the decoder is capable to synthesize virtual views through
Depth-Image-Based Rendering (DIBR) techniques (see for e.g. [8]).

The main contribution of this work is the formulation of a new depth map
coding technique for compression purposes. The goal is to prevent coding arti-
facts along sharp depth discontinuities while efficiently encoding homogeneous
areas. The considered compression scheme relies on the choice of an adequate
image segmentation method. This work proposes two algorithms to indepen-
dently segment the color image and the depth data. The color data is available
in the decoder and can be used to obtain a partition without any extra cost.
This color partition contains the depth edges when color and depth edges are
located in the same position. The color and depth partitions are then com-
bined to obtain a final partition that properly segments the depth map. From
this partition, a new 3D plane-based representation is introduced to store the
scene structure. Figure 1 illustrates the generation of the 3D representation
using the camera parameters of the viewpoint and an image partition.

This paper is organized as follows. Section 2 gives an overview of the ex-
isting depth map coding techniques. The proposed depth coding algorithm is
described in Section 3. Section 4 is devoted to experimental results. Conclu-
sions and perspectives are drawn in Section 5.

2 Related work

Depth data present a set of characteristics that diverge from color images.
Typically, they are composed of large smooth regions separated by sharp depth
transitions. Classical video compression techniques for color images have been
designed to achieve high visual quality. For this purpose, the image is divided in
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blocks and each block is coded using a transform and a quantization step [28].
However, the direct application of these techniques on depth maps leads to
coding artifacts in the edges due to quantization. An accurate representation of
the sharp edges is capital for the DIBR process. Since it generates virtual views,
the depth transitions allow to separate regions of the image with different inter-
view motion vectors. Quantization-based artifacts near the edges introduce
severe rendering artifacts in synthesized virtual views [23].

Many techniques aimed at preserving the depth map edges while reducing
the cost of coding the smooth regions have been presented in the depth map
coding literature. Some approaches explicitly encode the position of the most
significant depth edges (see for e.g. [15]). The main depth contours are sig-
naled and the in-between texture is encoded with piecewise-linear functions.
In [5], two different modes are proposed to signal the depth edges depending
of their complexity over one unified framework. Then, the simplest transform
is chosen for each block. Instead of explicitly representing the depth maps
boundaries, [35] proposes encoding the residual prediction errors with quan-
tization at pixel domain rather than in the transform domain. The coding of
prediction errors in the spatial domain is also used in [24]. In addition, new
intra-picture prediction modes based on geometric primitives are described.
They allow the prediction of depth lying in the same plane than the previous
blocks.

Since depth maps are not directly displayed but used to render new images,
the usual rate-distortion criteria over the depth map may not give a proper
measure of the quality of the representation. To this end, it is preferable to
optimize the rate-distortion criteria over the synthesized views rather than over
the depth map directly [16]. The main advantage of modeling the coding error
on the synthesized view instead of calculating it on the depth map is that the
impact of the coding errors can be determined in the generated virtual view.
Moreover, in [40], a new distortion metric is proposed to measure the influence
of depth errors in the synthesized virtual view.

The fact that color images and depth maps capture the scene from the same
viewpoint leads to a high structural similarity between both images. The edges
in depth are often located in the same location of color discontinuities. In order
to avoid signaling the explicit location of depth edges, this similarity between
depth maps and the corresponding texture image can be used. This strategy is
used in [18], where skip-coding mode and motion vectors in the coded texture
are used in the depth map.

A color image segmentation is proposed in [25] to predict the shape of the
different surfaces in the depth map. Then, each region is approximated either
by a parameterized plane or by the standard H.264/AVC Intra coder. The
color segmentation in [25] is used to extract the flat areas of the image, while
inaccuracies between color and depth, and the problems in the segmentation
are encoded with the H.264 coder. Our paper deals also with the segmentation
of the color images to create an approximation of the depth map segmentation.
However, instead of using a different coder in the problematic areas, we propose
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to improve the obtained color partition with a partition obtained from the
depth image.

Moreover, in [36], the inter-view redundancy is removed by an analysis
performed over the occluded areas. In the second view, only new areas which
were occluded in the first view are coded. This inter-view redundancy can be
removed by extracting the geometrical structure of the scene. 3D representa-
tions have been widely used in multiple applications, from object segmentation
to scene recognition [3, 11, 12]. In [17], a multiview object co-segmentation
method is proposed that estimates a depth map with a set of 3D planar sur-
faces.

In depth map coding, new proposals have explored the reduction of the
redundancy in the multiview image sets. In [20], a geometrical representation
is introduced to describe the multiview information with a graph. Starting
from an initial view, inter-view redundancy is avoided by adding new graph
nodes only if new information appears in the subsequent views. Similarly, a
novel 3D video coding technique based on the creation of a panorama view is
detailed in [7]. This view represents most of the visual information acquired
from multiple views using a single virtual view characterized by a larger field
of view.

Interestingly, some approaches take advantage of the correlation between
color view and depth, to jointly encode both signals. The High Efficiency
Video Coding (HEVC ) standard [39] has an extension (3D-HEVC ) to encode
multiple views and associated depth map [27]. In this extension, in addition
to the inter-view motion and residual predictions, new intra coding modes are
included to handle the depth edges. HEVC systems increase the computational
complexity of previous standards. To mitigate that, recent implementations of
HEVC are able to reduce the encoding time while maintaining the coding
efficiency, parallelizing among multiple processors [43, 44] or skipping some
modes [37].

A 3D planar representation of stereo MVD was proposed in [29]. Using a
rate-distortion like procedure, a co-segmentation between the two views and
a 3D planar approximation for each region of the image is found. Two dif-
ferent compression techniques are explored, the first one follows the two-view
structure while the second fuses the data in a single-reference MVD format.
Following a similar strategy, our work deals with a 3D representation of the
scene, which presents a much larger number of segments than the one pro-
posed in [29]. Results in the same dataset are presented and discussed in the
experimental section.

3 Depth map coding proposed technique

The proposed depth map coding technique uses an image partition to fit a
3D plane for each region. Starting from a depth map segmentation, the pixels
belonging to each region are projected into the 3D space and then, encoded
using a 3D plane. These 3D planes are able to represent the smooth texture
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of depth maps with few coefficients. Furthermore, encoding the region in the
3D domain opens the possibility to use this representation for multiple views
in a future work. Given the 3D plane coefficients for each region and the
final coding partition, the decoder can project the 3D planes back to the 2D
depth map, recovering the original signal. Besides the color image, the camera
model of the viewpoint is required to recover the 3D points of the scene. Both
color images and camera model are used in the DIBR process. Thus, no extra
information needs to be sent to the decoder.

Depth 
Segmentation

Color 
Segmentation

Depth map

Decoded 
color image

3D planes

Depth
boundaries

Encoder

Pdepth

Pcolor

Pfinal

3D Scene 
Representation

Partition 
Decision

PmergedPartition 
Merging

3D Scene 
Representation

Fig. 2 Encoder scheme. Color image and depth map are used to build two independent par-
titions. 3D planes are fitted using the color partition and the intersection of both partitions.
The depth boundaries that solve the inconsistencies between color and depth segmentations
are found in a rate-distortion fashion and sent to the decoder.

Assuming that most depth edges in the depth maps are located in the same
position as color discontinuities, a segmentation technique using the decoded
color image allows to recover most of these depth edges. While this assumption
is generally valid, differences between color and depth structure may result in
regions that contain depth discontinuities (under-segmentation). These regions
can not be properly represented using a 3D plane and will lead to coding
errors. In order to prevent these errors, a method that progressively adds
depth discontinuities is proposed. The location of depth edges, which have
to be encoded and sent to the decoder, are included when color and depth
discontinuities are inconsistent. Combining the color partition and the depth
edges, the decoder can obtain a new partition reproducing the structure of the
depth map without explicitly encoding the position of all the depth edges.

The encoding process is depicted in figure 2. The encoder uses both the
decoded color image and the original unencoded depth map to build two par-
titions with the methods explained in sections 3.1 and 3.2. The color partition
provides most of the depth boundaries and can be built also at the decoder
without any extra coding cost. The depth partition contains all the main depth
boundaries (including the ones not present at the color partition). As this par-
tition is not available at the decoder, the information of their boundaries has
to be sent explicitly. The combined use of color and depth partitions helps
recovering all the depth boundaries while reducing the cost of sending the
complete depth partition.
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3.1 Color image segmentation

The objective of the color segmentation is to obtain a Pcolor partition similar
to superpixel partitions in the literature [1, 4]. Superpixels provide a useful
representation of the image with a reduced number of entities with respect
to the pixel representation. The Pcolor segmentation will be used as a base
partition for obtaining the 3D planes representation. Thus, it will determine
the minimum rate needed to encode the set of planes. To be competitive with
HEVC encoders, experimental results have shown that Pcolor has to contain
a few hundred regions. At that number of regions, superpixels techniques fail
at retrieving accurately the discontinuities in the image. To overcome that,
a superpixel inspired technique is proposed, which obtains higher boundary
retrieval.

Superpixels techniques do a clustering process using the color similarities
and spatial proximity. We propose here to use these two characteristics in a
region merging algorithm. The color segmentation technique proposed in this
work is based on the Binary Partition Tree (BPT) described in [32]: Starting
from an initial partition with an arbitrary number of regions, the algorithm
proceeds iteratively by merging two neighboring regions according to a simi-
larity measure (merging criterion) as depicted in figure 3. The steps in each
merging step are the following:

– computing a similarity measure for each pair of neighbor regions
– selecting the most similar pair of regions and merging them into a new

region
– updating the neighborhood and the similarity measures. The algorithm

iterates until the desired number of regions is obtained.

R1 R3

R2 R4

R5

R3

R4

R5 R6 R7

R1 R2 R3 R4

R5

R1 R2 R3 R4

R5

R1 R2

R6

R3 R4

R7

R5

R1 R2

R6

R3 R4

Fig. 3 From left to right, the two most-similar neighboring regions are merged at each step.
The hierarchical representation is depicted as a tree, where the region formed by merging
two segments is represented as the parent of the respective nodes

The similarity measure proposed is derived from the bpt nwmc in [42].
In bpt nwmc, the region model defined is constant for all the pixels of the
region and the model MR is obtained by averaging the values of the pixels
p ∈ R, in the YCbCr color space:

MR =
1

NR

∑
p∈R

I(p) (1)
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where NR is the number of pixels of region R.
The bpt nwmc criterion consists of two terms: The first one, based on color

similarity, is the Weighted Euclidean Distance between Models (wedm) which
compares the models of the original regions, R1 and R2, with the model of the
region obtained after the merging R1 ∪R2:

Owedm(R1, R2) = NR1
||MR1

−MR1∪R2
||2 + NR2

||MR2
−MR1∪R2

||2 (2)

The second term is related to the contour complexity of the merged regions.
The measure computes the increase in perimeter ∆P (R1, R2) of the new region
with respect to the largest of the two merged regions: ∆P (R1, R2). The term
that measures contour complexity is:

OCont(R1, R2) = max(0, ∆P (R1, R2)) (3)

The contour term promotes the creation of smooth contours between regions.
Since most objects are regular and compact (that is, tend to have simple
contours), the analysis of shape complexity can provide additional information
for the mergings.

Color and contour similarity measures are linearly combined to form the
bpt nwmc criterion:

Obpt nwmc(R1, R2) = αOwedm(R1, R2) + (1− α)OCont(R1, R2) (4)

The bpt nwmc criterion creates color homogeneous regions with smooth
contours, but tends to create elongated regions. As the regions will be used
for fitting a 3D plane, more compact regions are desirable. To this end, a new
term which measures the spatial proximity is added based on the distance
between region centroids. The centroid of a region is defined as:

Cent(R1) =
1

NR1

∑
p∈R1

Coord(p) (5)

where Coord are the coordinates of the pixels p in the region R1. The OCent
is defined as the euclidean distance d between centroids:

OCent(R1, R2) = d (Cent(R1), Cent(R2)) (6)

The proposed OCent criterion is combined with the Obpt nwmc to form the
Obpt spx superpixel criterion:

Obpt spx(R1, R2) = β OCent(R1, R2) + (1 − β)Obpt nwmc(R1, R2) (7)

After testing different weights for α and β, we found that the weight fac-
tors in equations (4) and (7) do not affect severely the coding performance.
For simplicity, the three terms are combined with an addition, creating the
superpixels criterion (8):

Obpt spx(R1, R2) = OCent(R1, R2) +Owedm(R1, R2) +OCont(R1, R2) (8)
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bpt spx bpt nwmc seeds slics ucm

Fig. 4 Visual comparison between color segmentation techniques.

As stated before, the number of regions in the color partition Nregs
color fixes

the minimum rate for the depth coding method as is the minimum number of
planes encoded. Thus, Nregs

color is set as a fraction of the maximum rate, reserving
the remainder for the creation of new regions with the contours from the depth
segmentation. The Obpt spx criterion builds the hierarchy until Nregs

color regions
are obtained. This number is sent to the decoder which is able to replicate the
same hierarchy as done in the encoder. Visual results for the different methods
are shown in figure 4.

3.2 Depth map segmentation

As a complement to the color segmentation, a depth map segmentation Pdepth
is needed to provide the main depth edges that are missing in the color seg-
mentation. The objective here is to find a depth partition able to represent
the depth map image with the lower number of regions while extracting the
maximum number of depth edges.

The depth map partition is created in two steps. The first is done using
the region growing algorithm in [31]. Depth values are projected to the 3D
space to form a point cloud and then, an automatic segmentation [31] obtains
smoothly connected areas. It computes the local surface normals and uses the
point connectivity to join 3D points that have the same orientation.

Depth maps used in multiview scenarios are often noisy and quantized
into 8 bits. To avoid discontinuities in the surface normals which stops the [31]
algorithm, an initial superpixel over-segmentation of the depth map is per-
formed as an input for the region growing. This severely over-segmented par-
tition (∼10000 regions) allows removing the noisy and quantization errors
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while capturing the scene with a sufficient density to apply the region growing
algorithm. Using that initial over-segmentation, the 3D point cloud is gener-
ated by computing the centroid of all the points in the region and projecting
them to the 3D world using the mean value of all the pixels in the region.

The partition obtained after the region growing step is able to recover
the structure of the scene but still has some small-sized regions which have
not been merged as shown in figure 6.a). To find the final partition, the bpt
algorithm [42] is used creating a new region model and merging criterion.

A 3D planar region model alike to the 3D representation desired for the
encoding of the regions is chosen as a model for the merging process. In this
model, each region is characterized by the centroid of the 3D points of the
region ci and the normal orientation ni of the plane, as shown in figure 5.a).

n1 
n2 

c1 

c2 

a)

n1 

n2 

c1 

c2 

d(c1, P2) 

d(c2, P1) 

d(c1, c2) 

b)

Fig. 5 a) Region model: plane with normal ni and centered in ci. b) Distances in the
merging criterion

The merging criterion combines two different dissimilarity measures be-
tween regions R1 and R2: op(R1, R2) and oc(R1, R2). The measure op(R1, R2)
indicates whether the centroid of one plane is well approximated with the
neighboring plane equation.

op(R1, R2) = a1 ∗ d(c1, P2) + a2 ∗ d(c2, P1) (9)

where ai is the area of the region in number of pixels, d(c, P ) is the euclidean
distance between a point c and a plane P .

The measure oc(R1, R2) is based on the euclidean distance between cen-
troids and promotes the creation of regions that are closer in the 3D space.

oc(R1, R2) =
a1 + a2

2
∗ d(c1, c2) (10)

The final merging criterion is defined as:

o3d−bpt(R1, R2) = op(R1, R2) + oc(R1, R2) (11)

Figure 5.b) shows a graphical example of the proposed merging criterion.
At each iteration of the merging process, the algorithm selects the pair of

regions with the lowest o3d−bpt, which correspond to the most similar pair of re-
gions, and merges them into a new region. The BPT algorithm stops when the
model representing the new region does not fit properly (the back-projection of
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the 3D plane into the 2D depth map differs by more than a predefined thresh-
old). An example of final partition obtained with the algorithm is depicted in
figure 6.b).

a) b)

Fig. 6 Depth Map Partition process. a) Result of applying the region growing algorithm
to the superpixels partition. b) Final coding partition after the 3d bpt algorithm.

3.3 Partition merging

Both partitions Pcolor and Pdepth are combined to form a new partition Pmerged.
The Pmerged partition is built by taking all the Pcolor and Pdepth boundaries.
To ensure the creation of meaningful regions, only new regions that are larger
than a certain size are created. Figure 7.b) shows the resulting Pmerged, dis-
tinguishing the boundaries from Pcolor and Pdepth. With the addition of the
edges from Pdepth, the inconsistencies between color and depth map that lead
to under-segmentation errors are solved. Notice that some non-meaningful
boundaries are added in this step which will be removed in the partition deci-
sion step.

3.4 3D scene representation

In order to obtain the 3D plane coefficients in the bitstream, each region in
Pcolor and Pmerged is represented by fitting a 3D plane using RANSAC [9].
Each 3D plane is represented using the distance from the plane to the camera
and the plane orientation. The distance from the plane to the camera is con-
verted to an alternative quantized representation using the distance to depth
map conversion:

Cdist =
1.0

d(pl,c)

(2Ndist−1) ∗ ( 1.0
MinZ −

1.0
MaxZ ) + 1.0

MaxZ

(12)

where d(pl, c) is the euclidean distance between the region plane and the
camera, Ndist is the number of bits to be used in the quantization and MaxZ
and MinZ are the maximum and minimum depth values of the image.
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The plane orientation is stored in spherical coordinates with their 3D an-
gles θ and φ:

θ = arccos

 nz√
n2x + n2y + n2z

 (13)

φ = arctan

(
ny
nx

)
(14)

The nz component is pointed towards z > 0. The resulting angles have the
following dynamic range: 0 ≤ θ ≤ π

2 and 0 ≤ φ ≤ 2π. Each angle is encoded
with equal precision with a uniform quantizer.

3.5 Partition decision

While adding edges from Pdepth removes under-segmentation and thus, reduces
the coding distortion, the opposite problem may arise: the number of regions
of Pmerged may be too large, which will increase coding cost. New contours
added in the Pcolor have to be sent to the decoder, which rapidly surpasses the
cost of coding the texture. To achieve the budget rate, the method controls
how the new boundaries are added, prioritizing the boundaries that have a
larger impact to the coding of the depth map. New regions in Pmerged are
classified according to the distortion reduction that results when adding the
corresponding region boundary to Pcolor. In this case, distortion is measured
in the 3D space as the mean square distance between the plane and the region
points.

a) Pcolor b) Pmerged

Fig. 7 Partition merging. Contours from the color partition depicted in white; depth par-
tition contours depicted in green.

Figure 8 shows the resulting reconstructed planes projected onto the de-
coded depth map image. In figure 8.a) only the Pcolor partition is used while
at 8.b) the Pfinal is used. Using directly Pcolor results in depth discontinuities
inside the regions that lead to poorly fitted 3D planes and in high errors in the
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decoded depth map. However, the Pfinal partition corrects under-segmentation
errors that correspond to a more efficient representation in the decoded depth
map (see for instance the detail in the hand).

a) Pcolor b) Pfinal

Fig. 8 Partition decisision coding example. 3D planes coding example using Pcolor and
Pfinal

Different rate-distortion points are obtained by progressively adding region
boundaries to Pcolor until the budget rate for this image is reached, resulting
in the final partition Pfinal. These added region boundaries should be also
encoded (a lossless Freeman Chain-Code technique [10] is used) and sent to
the decoder. The bitstream sent to the decoder is depicted in figure 9.

Nregs Color Depth boundaries 3D plane coefficients

Fig. 9 Bitstream containing the number of regions for the color image, the depth boundaries
coded with chain-code and the 3D plane coefficients

3.6 Decoder scheme

The bitstream in figure 9 is decoded with the scheme shown in figure 10. Using
the number of regions for the color partition, the decoder is able to build Pcolor
as done in the encoder without any added cost. Then, Pfinal can be recovered
by decoding the additional boundaries and adding them to the Pcolor partition.
The decoded depth map image is obtained by projecting the 3D planes to each
corresponding region.
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Color 
Segmentation

Add Boundaries

Plane Projection Depth map

3D planes

Depth
boundaries

Decoded 
color image

Decoder

Pcolor 

Pfinal

Fig. 10 Decoder scheme. By adding the transmitted depth boundaries to the color partition
the decoder obtains the final coding partition.

4 Experimental results

The different stages of the depth coding scheme proposed are evaluated in this
section. Firstly, the segmentation methods proposed for the color and depth
partitions are evaluated separately in sections 4.1.1 and 4.1.2. Secondly, the
different design parameters are discussed in section 4.2. Finally, the complete
coding scheme is compared against H.264, HEVC, 3D-HEVC and MV-HEVC
and the similar state of the art method in [29].

4.1 Segmentation evaluation

4.1.1 Color Image Segmentation results

The color image segmentation evaluation is performed against other superpix-
els segmentations to validate the use of the new centroid distance. The bench-
mark for this work consist of the BSDS500 dataset [19] which contains 500 im-
ages with human-marked-boundaries as ground-truth. The proposed bpt spx
method is compared with the bpt merging criterion bpt nwmc [42], with two
state of the art super-pixel methods seeds [4] and slics [1] and with the ultra-
metric contour map (ucm) [2] that gives a hierarchical structure similar as the
one derived with the BPT are provided.

Figure 4 shows visual results of the methods compared in this work. The
regions generated with the proposed method present smoother contours than
the bpt nwmc method due to the centroid term. This term promotes com-
pactness in the first stages of the hierarchical segmentation which leads to
smoother contours. Slics segmentation recovers even simpler contours achiev-
ing segmentations with less false boundaries at the cost of losing also some
meaningful contours. The objective of the proposed method differs from the
one of ucm since, on the one hand, the ucm partition aims to obtain a par-
tition that represent the objects of the scene with minimal regions while, on
the other hand, our intention is to achieve a superpixel representation of the
scene suitable for coding proposes.

Figure 11 shows numerical results in terms of precision, recall and F-
measure for boundaries between segmentation and ground-truth. In the pro-
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Fig. 11 Evaluation of different methods for the color segmentation. Precision, recall and
F-measure depending on the number of regions

posed bpt spx method, the use of the centroid slightly decreases the recall with
respect to the bpt nwmc criteria but the precision is improved, obtaining a re-
sult similar to the segmentation obtained with slics. Globally the usage of the
centroid criteria achieves a better trade-off between superpixel compactness
and boundary adherence than bpt nwmc. The loss of precision in the bound-
aries is compensated in the depth coding technique proposed in this work by
the depth map segmentation.

The F-measure of the proposed bpt spx results are comparable to slics, but
as the main objective of the color segmentation is to procure the maximum
number of contours, a higher recall is desired. Since the ucm representation
promotes a representation where each region is meaningful, the number of
boundaries that are not from the object is lower, obtaining a much higher
precision figure. On the other hand, the ucm obtains smooth contours which
occasionally are slightly displaced from the ground-truth, leading to lower
recall measure. Moreover, the high computational requirements of the ucm
make their use costly for a video coding scheme.
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4.1.2 Depth Map Segmentation results

The depth map segmentation proposed is evaluated with 25 depth maps from
the MVD sequences dancer, balloons, kendo, breakdancers and ballet. Results
generated with the proposed scheme are compared against the segmentation
produced with rgbd-ucm [12] and with ucm using only the depth image. For
rgbd-ucm, a hierarchical segmentation is generated using color and depth clues.
Also, the proposed 3D merging process is computed with (3d-bpt-rgrow) and
without (3d-bpt), the region growing stage presented in 3.2.

Figure 12 shows the partitions obtained with the different methods. By
using the color image in addition of the depth image, the rgbd-ucm generally
is able to represent the foreground objects with more regions. Despite that,
when the depth map is noisy the rgbd-ucm fails at obtaining the main depth
edges as can be seen in the balloons image in figure 12. Using the standard
ucm on the depth image this over-segmentation is reduced.

Depth map

rgbd-ucm

ucm

3d-bpt

Region
growing

3d-bpt-rgrow

undo dancer balloons kendo breakdancers ballet

Fig. 12 Visual comparison between the depth segmentation techniques. In row ascendent
order: Depth map to segment, rgbd-ucm, ucm, 3d-bpt, Output of Region growing segmenta-
tion stage and 3d-bpt-rgrow
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Fig. 13 Gradient measure in function of the number of contour points in the segmentation

The 3d-bpt obtains a representation of the scene where objects in the same
depth are correctly separated but has problems at recovering the overall struc-
ture of the scene as can be seen in the undo dancer image in figure 12 where
regions are created at increasing depths values, joining the walls and the floor.
The region growing stage creates an initial segmentation where the flat areas
of the scene are joined in a unique region. From the region growing segmen-
tation, the o3d−bpt criterion merges the regions in non-smooth areas with the
best 3D plane model.

The evaluation of the different depth segmentation techniques is computed
using a gradient measure in the contour points. The purpose of the depth
segmentation is to provide the main depth edges of the depth map with the
minimum contour points. The maximum directional gradient (horizontal or
vertical) is computed for each contour point and then averaged. This measure is
computed at different cuts of the hierarchy. Notice that this metric is helpful to
determine if areas at different depth distances are in different regions. However
it cannot measure the areas where there is not a depth edge but a change of
the orientation, as the joints between floor and walls.

In figure 13, the average results for the different sequences are shown. The
3d-bpt and the 3d-bpt-rgrow obtain better results than the rgbd-ucm and ucm.
In the two ucm options the contours obtained are smooth, losing some mean-
ingful depth boundaries. The rgbd-ucm obtains even lower gradient measure
since it uses also the color image to generate the hierarchical partition.

While the results are similar for the two bpt options, the 3d-bpt-rgrow is
selected by its better 3D scene reconstruction. The separation of walls and
floor is desirable from a conceptual point of view more than the edges that are
in the middle of them.
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From the previous results, we conclude that the proposed segmentation
techniques bpt spx for color and 3d-bpt-rgrow for depth are good choices for
a coding framework.

In the following sections the full depth coding technique is compared with
state of the art methods using the segmentation methods proposed.

4.2 Configuration

The proposed method uses the color partition to avoid sending all the depth
contours. Figure 14 shows the averaged cost of sending the texture and the
contour information for the sequences dancer, balloons, kendo, breakdancers
and ballet. The starting point corresponds to use only the Pcolor, thus the rate
for the partition is 0. The number of regions in Pcolor is determined according
to the budget rate. Adding an increasing number of contours increments the
rate for both the contour and the texture, since new regions are created which
result into new 3D planes. The contour cost grows at a higher pace. Notice that,
in the last rate-distortion point, the rate employed for texture has increased by
a half of the starting rate while the contour cost is more than 5 times larger.

Since the cost of adding new boundaries rapidly surpasses the initial texture
cost, it is compulsory to add only the boundaries that improve greatly the
distortion figure. This behavior has motivated the proposed method, which
only adds new boundaries in regions where the distortion is reduced heavily.
With this methodology, the increased rate is employed solely in regions where
the Pcolor has problems representing the depth map.

Fig. 14 Comparative between the rate employed for coding the texture and the contour
for different rate distortion points obtained with the proposed method
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4.3 Coding performance

4.3.1 Multiview sequences

The proposed coding method is evaluated using 10 frames of the 3D multiview
sequence sets undo dancer, ballet, kendo, breakdancers and balloons. For each
sequence, three views are used, the left and right views are encoded and the
middle one is employed as the location for the virtual view. The color image
at the position of the virtual view is available, thus the performance of the
depth map coding technique can be compared with the original color image in
the virtual view. As the proposed method does not have temporal prediction,
only intra modes for the different methods are taken.

To objectively evaluate the proposed method, error measures are taken
both in the depth map and in the synthesized virtual view. The valuable
measure is in the virtual view but measuring directly on the depth map gives
an overview of how good can the original depth map be represented with
planes. The PSNR measure is taken to evaluate the error in the depth map
directly and the results for the different sequences are shown in the top row
of figures 15 16 17 18 19. In that comparison, the 3D-HEVC performs worse
than the other methods of the literature. Since color and depth map for two
views are encoded altogether in 3D-HEVC, the view synthesis optimization
maximize the quality in the virtual view and not directly in the depth map.
Our method also is in that category and the results in depth map are below
the other methods.

To compare the results in the virtual view, for each frame of the sequence,
the virtual view is synthesized using the original depth maps and the decoded
depth maps (using the proposed method and the intra mode of H.264, HEVC,
3D-HEVC and MV-HEVC ). The color images for the synthesized process are
encoded using the same quality for all the experiments. Notice that 3D-HEVC
encodes color and depth altogether but, since we are comparing solely the
depth coding part, only the coded depth are used in the comparison.

The average structural similarity (SSIM) index is the measure used in the
virtual view domain since it correlates better with subjective tests [13]. The
comparison is performed using the encoded depth maps against the synthe-
sized color image obtained using the original depth maps (Rendered view) and
against the original color image of the sequence (Original view). The compar-
ison with the virtual image generated using the original depth maps allows to
establish the rate distortion performance of the method when using different
methods to compress the depth map.

Figures 15 16 17 18 19 show the rate distortion results for the sequences
evaluated. The vertical axis shows the average SSIM of the synthesized virtual
view, while the horizontal axis corresponds to the bitrate needed to encode
the depth maps. The proposed method is able to obtain better rate distortion
efficiency than the HEVC for low bitrates in the sequences undo dancer, ballet,
breakdancers. For kendo, and balloons the result obtained is not as good as
their depth maps are noisy and the planarity assumption does not hold. In
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a) Depth map

b) Original view c) Rendered view

Fig. 15 Rate distortion results for undo dancer.

a) Depth map

b) Original view c) Rendered view

Fig. 16 Rate distortion results for ballet.
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a) Depth map

b) Original view c) Rendered view

Fig. 17 Rate distortion results for kendo.

a) Depth map

b) Original view c) Rendered view

Fig. 18 Rate distortion results for breakdancers.
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a) Depth map

b) Original view c) Rendered view

Fig. 19 Rate distortion results for balloons.

those sequences, the depth boundaries are not well defined and often are not
in correspondence with color edges. Fitting planes in those areas results in a
poorly 3D estimated representations.

Furthermore, it can be seen that the proposed method achieves better
performance when measuring SSIM in the original view rather than in the
virtual view. This means that, by using the color segmentation as a base
partition for the 3D representation, the estimated planes are able to solve
original inconsistencies in the depth map, obtaining a better performance than
HEVC which is unaware of color transitions.

4.3.2 Results in Middlebury dataset

In order to compare against a state of the art method [29], results on the Mid-
dlebury Dataset were generated. The Middlebury Stereo Dataset [34] consists
of many stereo images with ground-truth disparities between several view-
points. It is widely used as a database to evaluate different methods of com-
puting disparities. The datasets chosen from the website are the 2003 [34],
2005 [33] and 2006 [14] which were the ones used in [29]. Each sequence con-
tains color information from several viewpoints and disparity for two of them.
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These ground-truth disparities have some unknown values which have been
filled using the same in-painting method than [29] to have a fair comparison
between the methods. The images are cropped to a multiple of 8 in order to
be able to be encoded with the H.264 and HEVC encoders.

a) Rendered view

b) Original view

Fig. 20 Results obtained for the middlebury dataset

The results obtained in the full dataset at maximum resolution are shown
in figure 20. In the first row, the rendered image obtained with the depth
maps coding using different methods is compared with the rendered image
using the original depth map. The proposed method obtains PSNR and SSIM
values comparable to HEVC for low bitrates. In the original view comparison,
the values for the different methods saturate at 30 dB which is the maximum
quality achievable with the given in-painted depth maps. Is worth noting that
for the two comparisons the proposed method achieves better results evaluated
with SSIM rather than PSNR. Also, the 3D-HEVC method is clearly the
best in PSNR over rendered views, since it uses the encoder to find the best
rate-distortion points for each block in terms of PSNR. Despite that, when
comparing with SSIM, the proposed method obtains similar results than other
HEVC configurations.

Similar to [29], the performance of the proposed method varies a lot de-
pending on the characteristics of the depth map. In [29] the optimization pro-
cess is done using the two depth images and their performance depends on the
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sharpness of the depth contours. Here we rely also in the color segmentation
to perform the depth coding. For the most heavily textured color images, the
color segmentation process has problems of under-segmentation. Adding depth
boundaries progressively, the main under-segmentation problems in the color
image are solved but increasing the coding cost. On the other hand, for eas-
ier to segment color sequences, the performance of our method overcomes the
HEVC standards. A direct comparison with [29] is difficult because they pro-
vide results just on 6 single selected images. We do prefer to provide averaged
results over the full dataset. While not shown in figure 20, our results obtained
in single views are comparable to their proposed MVD method. In [29], they
also propose a unique representation combining both views, which results in
increased performance, this encourages us to work towards obtaining a mul-
tiview representation for our method, able to increase the coding efficiency
when coding multiple views altogether.

5 Conclusion

In this work we have presented a new depth map coding technique based on
segmentation techniques. The two main contributions are two new segmenta-
tions algorithms and a planar 3D scene representation. Two image segmenta-
tion algorithms have been proposed for generating the color and depth par-
titions independently. Comparing with different state of the art segmentation
methods, we show the benefits of using the proposed methods for depth map
compression. The proposed depth map coding technique combines the color
partition and the depth map partition to obtain the final coding partition that
properly segments the depth map without having to encode all depth edges. A
new 3D planar representation that models the scene structure is introduced.
The proposed coding method shows competitive results against current stan-
dards and state of the art encoders. By representing the views in the 3D space,
we open the possibility to use a common, single 3D representation for all the
views, which may result in further coding gains. This will be explored in future
work.
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