9,364 research outputs found

    Sources of contamination to weak lensing tomography: redshift-dependent shear measurement bias

    Full text link
    The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics. We use a set of realistic image simulations produced by the STEP collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity. We find the biased aperture mass dispersion is reduced by ~20% at redshift ~1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases sigma_8 and w_0 estimates by a few percent. The power of tomography is significantly reduced when marginalising over a range of realistic shape measurement biases. For a CFHTLS-Wide-like survey, [Omega_m, sigma_8] confidence regions are degraded by a factor of 2, whereas for a KIDS-like survey the factor is 3.5. Our results are strictly valid only for KSB methods but they demonstrate the need to marginalise over a redshift-dependent shape measurement bias in all future cosmological analyses.Comment: 13 pages, 8 figures. Submitted MNRA

    Cosmological constraints from Subaru weak lensing cluster counts

    Full text link
    We present results of weak lensing cluster counts obtained from 11 sq.deg SuprimeCam data. Although the area is much smaller than previous work dealing with weak lensing peak statistics, the number density of galaxies usable for weak lensing analysis is about twice as large as those. The higher galaxy number density reduces the noise in the weak lensing mass maps, and thus increases the signal-to-noise ratio of peaks of the lensing signal due to massive clusters. This enables us to construct a weak lensing selected cluster sample by adopting a high threshold S/N, such that the contamination rate due to false signals is small. We find 6 peaks with S/N>5. For all the peaks, previously identified clusters of galaxies are matched within a separation of 1 arcmin, demonstrating good correspondence between the peaks and clusters of galaxies. We evaluate the statistical error using mock weak lensing data, and find Npeak=6+/-3.1 in an effective area of 9.0 sq.deg. We compare the measured weak lensing cluster counts with the theoretical model prediction based on halo models and place the constraint on Omega_m-sigma_8 plane which is found to be consistent with currently standard LCDM models. It is demonstrated that the weak lensing cluster counts can place a unique constraint on sigma_8-c_0 plane, where c_0 is the normalization of the dark matter halo mass-concentration relationship. Finally we discuss prospects for ongoing/future wide field optical galaxy surveys.Comment: 15 pages, 11 figures, submitted to PASJ, comments welcom

    Stability of Satellite Planes in M31 II: Effects of the Dark Subhalo Population

    Full text link
    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhalos results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark halos. The role of total dark matter mass fraction held in subhalos in dispersing a plane of galaxies present non trivial effects on plane longevity as well. But any misalignments of plane inclines to major axes of flattened dark matter halos lead to their lifetimes being reduced to < 3 Gyrs. Distributing > 40% of total dark mass in subhalos in the overall dark matter distribution results in a plane of satellite galaxies that is prone to change through the 5 Gyr integration time period.Comment: 11 pages, 9 figures, accepted to MNRAS September 22 201

    Constraining Omega using weak gravitational lensing by clusters

    Full text link
    The morphology of galaxy clusters reflects the epoch at which they formed and hence depends on the value of the mean cosmological density, Omega. Recent studies have shown that the distribution of dark matter in clusters can be mapped from analysis of the small distortions in the shapes of background galaxies induced by weak gravitational lensing in the cluster potential. We construct new statistics to quantify the morphology of clusters which are insensitive to limitations in the mass reconstruction procedure. By simulating weak gravitational lensing in artificial clusters grown in numerical simulations of the formation of clusters in three different cosmologies, we obtain distributions of a quadrupole statistic which measures global deviations from spherical symmetry in a cluster. These distributions are very sensitive to the value of Omega_0 and, as a result, lensing observations of a small number of clusters should be sufficient to place broad constraints on Omega_{0} and certainly to distinguish between the extreme values of 0.2 and 1.Comment: Submitted to MNRAS. Compressed postscript also available at ftp://star-ftp.dur.ac.uk/pub/preprints/wcf2.ps.g

    A bias in cosmic shear from galaxy selection: results from ray-tracing simulations

    Full text link
    We identify and study a previously unknown systematic effect on cosmic shear measurements, caused by the selection of galaxies used for shape measurement, in particular the rejection of close (blended) galaxy pairs. We use ray-tracing simulations based on the Millennium Simulation and a semi-analytical model of galaxy formation to create realistic galaxy catalogues. From these, we quantify the bias in the shear correlation functions by comparing measurements made from galaxy catalogues with and without removal of close pairs. A likelihood analysis is used to quantify the resulting shift in estimates of cosmological parameters. The filtering of objects with close neighbours (a) changes the redshift distribution of the galaxies used for correlation function measurements, and (b) correlates the number density of sources in the background with the density field in the foreground. This leads to a scale-dependent bias of the correlation function of several percent, translating into biases of cosmological parameters of similar amplitude. This makes this new systematic effect potentially harmful for upcoming and planned cosmic shear surveys. As a remedy, we propose and test a weighting scheme that can significantly reduce the bias.Comment: 9 pages, 9 figures, version accepted for publication in Astronomy & Astrophysic

    The Dark Energy Survey

    Get PDF
    We describe the Dark Energy Survey (DES), a proposed optical-near infrared survey of 5000 sq. deg of the South Galactic Cap to ~24th magnitude in SDSS griz, that would use a new 3 sq. deg CCD camera to be mounted on the Blanco 4-m telescope at Cerro Telolo Inter-American Observatory (CTIO). The survey data will allow us to measure the dark energy and dark matter densities and the dark energy equation of state through four independent methods: galaxy clusters, weak gravitational lensing tomography, galaxy angular clustering, and supernova distances. These methods are doubly complementary: they constrain different combinations of cosmological model parameters and are subject to different systematic errors. By deriving the four sets of measurements from the same data set with a common analysis framework, we will obtain important cross checks of the systematic errors and thereby make a substantial and robust advance in the precision of dark energy measurements.Comment: White Paper submitted to the Dark Energy Task Force, 42 page

    Real-time Analysis and Selection Biases in the Supernova Legacy Survey

    Full text link
    The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z=1. In its first four years of full operation (to June 2007), the SNLS discovered more than 3000 transient candidates, 373 of which have been confirmed spectroscopically as SNe Ia. Use of these SNe Ia in precision cosmology critically depends on an analysis of the observational biases incurred in the SNLS survey due to the incomplete sampling of the underlying SN Ia population. This paper describes our real-time supernova detection and analysis procedures, and uses detailed Monte Carlo simulations to examine the effects of Malmquist bias and spectroscopic sampling. Such sampling effects are found to become apparent at z~0.6, with a significant shift in the average magnitude of the spectroscopically confirmed SN Ia sample towards brighter values for z>0.75. We describe our approach to correct for these selection biases in our three-year SNLS cosmological analysis (SNLS3), and present a breakdown of the systematic uncertainties involved.Comment: Accepted for publication in A
    • …
    corecore