125 research outputs found

    Wireless sensor network for smart home and ambient assisted living

    Get PDF
    A smart home is a residential setting equipped with a set of advanced electronics, sensors and automated devices specifically designed for care delivery, remote monitoring, early detection of problems or emergency cases and promotion of residential safety and quality of life. Smart home has been developed using different technology using wired and wireless network. In this project, Smart Home and Ambient Assisted Living (SHAAL) system has been developed and tested in real experimental home environment. SHAAL system is designed on wireless sensor network (WSN) linked to the cloud network on the Internet. The development of SHAAL is divided into two phases: the design of SHAAL network and the development of SHAAL applications. SHAAL network is made up of the home network which is the WSN and the cloud network. The WSN has been designed using TelG mote as the sensor mote and various sensor modules which include door module, lighting module, appliance module, alarm module, camera module and the Ambient Assisted Living (AAL) module. TelG mote operates on Zigbee based network. The cloud network is made up of the gateway, the server and user devices running on third generation (3G) network. The development of SHAAL applications focuses on the smart door, smart lighting, smart appliances, smart surveillance and AAL applications. The various SHAAL applications run on different platforms which areWindows,Webbased and Android based smartphone. Since many applications may run on SHAAL network, a simple data scheduling scheme has been programmed to schedule data packets based on their application types and priorities. Results show packet reception rate is improved up to 22% using priority scheduling algorithm than the conventional First-In-First-Out method. Additionally, the performance delay of priority scheduling in the experimental test-bed is 34.2% less compared to the theoretical study. It is also shown that the proposed scheme can ensure higher throughput to the high priority data while gives sufficient access to low priority data. The implementation of the experimental testbed has proven that SHAAL has been successfully designed and deployed in the real world. SHAAL provides smart home automation and allows individuals to live independently in their preferred environment

    Introduction to the special issue: Applications of internet of things

    Full text link
    © 2018 by the authors. This editorial introduces the special issue, entitled "Applications of Internet of Things", of Symmetry. The topics covered in this issue fall under four main parts: (I) communication techniques and applications, (II) data science techniques and applications, (III) smart transportation, and (IV) smart homes. Four papers on sensing techniques and applications are included as follows: (1) "Reliability of improved cooperative communication over wireless sensor networks", by Chen et al.; (2) "User classification in crowdsourcing-based cooperative spectrum sensing", by Zhai andWang; (3) "IoT's tiny steps towards 5G: Telco's perspective", by Cero et al.; and (4) "An Internet of things area coverage analyzer (ITHACA) for complex topographical scenarios", by Parada et al. One paper on data science techniques and applications is as follows: "Internet of things: a scientometric review", by Ruiz-Rosero et al. Two papers on smart transportation are as follows: (1) "An Internet of things approach for extracting featured data using an AIS database: an application based on the viewpoint of connected ships", by He et al.; and (2) "The development of key technologies in applications of vessels connected to the Internet", by Tian et al. Two papers on smart home are as follows: (1) "A novel approach based on time cluster for activity recognition of daily living in smart homes", by Liu et al.; and (2) "IoT-based image recognition system for smart home-delivered meal services", by Tseng et al

    Fog computing security: a review of current applications and security solutions

    Get PDF
    Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems

    Autonomous Wristband Placement in a Moving Hand for Victims in Search and Rescue Scenarios With a Mobile Manipulator.

    Get PDF
    In this letter, we present an autonomous method for the placement of a sensorized wristband to victims in a Search-And-Rescue (SAR) scenario. For this purpose, an all-terrain mobile robot includes a mobile manipulator, which End-Effector (EE) is equipped with a detachable sensorized wristband. The wristband consists of two links with a shared shaft and a spring. This configuration allows the wristband to maintain fixed to the EE while moving and get placed around the victim’s forearm once the contact is produced. The method has two differentiated phases: i) The visual moving hand tracking phase, where a 3D vision system detects the victim’s hand pose. At the same time, the robotic manipulator tracks it with a Model Predictive Controller (MPC). ii) The haptic force-controlled phase, where the wristband gets placed around the victim’s forearm controlling the forces exerted. The wristband design is also discussed, considering the magnitude of the force needed for the attachment and the torque the wristband exerts to the forearm. Two experiments are carried out, one in the laboratory to evaluate the performance of the method and the second one in a SAR scenario, with the robotic manipulator integrated with the all-terrain mobile robot. Results show a 97.4% success in the wristband placement procedure and a good performance of the whole system in a large scale disaster exercisePlan Propio de la Universidad de Málaga, y Ministerio de Ciencia, Innovaci ón y Universidades, Gobierno de España, RTI2018-093421-B-I00. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Design a framework for IoT- Identification, Authentication and Anomaly detection using Deep Learning: A Review

    Get PDF
    The Internet of Things (IoT) connects billions of smart gadgets so that they may communicate with one another without the need for human intervention. With an expected 50 billion devices by the end of 2020, it is one of the fastest-growing industries in computer history. On the one hand, IoT technologies are critical in increasing a variety of real-world smart applications that can help people live better lives. The cross-cutting nature of IoT systems, on the other hand, has presented new security concerns due to the diverse components involved in their deployment. For IoT devices and their inherent weaknesses, security techniques such as encryption, authentication, permissions, network monitoring, \& application security are ineffective. To properly protect the IoT ecosystem, existing security solutions need to be strengthened. Machine learning and deep learning (ML/DL) have come a long way in recent years, and machine intelligence has gone from being a laboratory curiosity to being used in a variety of significant applications. The ability to intelligently monitor IoT devices is an important defense against new or negligible assaults. ML/DL are effective data exploration techniques for learning about 'normal' and 'bad' behavior in IoT devices and systems. Following a comprehensive literature analysis on Machine Learning methods as well as the importance of IoT security within the framework of different sorts of potential attacks, multiple DL algorithms have been evaluated in terms of detecting attacks as well as anomaly detection in this work. We propose a taxonomy of authorization and authentication systems in the Internet of Things based on the review, with a focus on DL-based schemes. The authentication security threats and problems for IoT are thoroughly examined using the taxonomy supplied. This article provides an overview of projects that involve the use of deep learning to efficiently and automatically provide IoT applications

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Drones and Blockchain Integration to Manage Forest Fires in Remote Regions

    Get PDF
    Central management of fire stations and traditional optimization strategies are vulnerable to response time, a single point of failure, workload balancing, and cost problems. This is further intensified by the absence of modern communication systems and a comprehensive management framework for firefighting operations. These problems motivate the use of new technologies such as unmanned aerial vehicles (UAVs) with the capability to transport extinguishing materials and reach remote zones. Forest fire management in remote regions can also benefit from blockchain technology (BC) due to the facilitation of decentralization, tamper-proofing, immutability, and mission recording in distributed ledgers. This study proposed an integrated drone-based blockchain framework in which the network users or nodes include drones, drone controllers, firefighters, and managers. In this distributed network, all nodes can have access to data; therefore, the flow of data exchange is smooth and challenges on spatial distance are minimized. The research concluded with a discussion on constraints and opportunities in integrating blockchain with other new technologies to manage forest fires in remote regions

    Secure Collaborative Augmented Reality Framework for Biomedical Informatics

    Get PDF
    Augmented reality is currently a great interest in biomedical health informatics. At the same time, several challenges have been appeared, in particular with the rapid progress of smart sensors technologies, and medical artificial intelligence. This yields the necessity of new needs in biomedical health informatics. Collaborative learning and privacy are some of the challenges of augmented reality technology in biomedical health informatics. This paper introduces a novel secure collaborative augmented reality framework for biomedical health informatics-based applications. Distributed deep learning is first performed across a multi-agent system platform. The privacy strategy is developed for ensuring better communications of the different intelligent agents in the system. In this research work, a system of multiple agents is created for the simulation of the collective behaviours of the smart components of biomedical health informatics. Augmented reality is also incorporated for better visualization of the resulted medical patterns. A novel privacy strategy based on blockchain is investigated for ensuring the confidentiality of the learning process. Experiments are conducted on the real use case of the biomedical segmentation process. Our strong experimental analysis reveals the strength of the proposed framework when directly compared to state-of-the-art biomedical health informatics solutions.acceptedVersio

    Versatility Of Low-Power Wide-Area Network Applications

    Get PDF
    Low-Power Wide-Area Network (LPWAN) is regarded as the leading communication technology for wide-area Internet-of-Things (IoT) applications. It offers low-power, long-range, and low-cost communication. With different communication requirements for varying IoT applications, many competing LPWAN technologies operating in both licensed (e.g., NB-IoT, LTE-M, and 5G) and unlicensed (e.g., LoRa and SigFox) bands have emerged. LPWANs are designed to support applications with low-power and low data rate operations. They are not well-designed to host applications that involve high mobility, high traffic, or real-time communication (e.g., volcano monitoring and control applications).With the increasing number of mobile devices in many IoT domains (e.g., agricultural IoT and smart city), mobility support is not well-addressed in LPWAN. Cellular-based/licensed LPWAN relies on the wired infrastructure to enable mobility. On the other hand, most unlicensed LPWANs operate on the crowded ISM band or are required to duty cycle, making handling mobility a challenge. In this dissertation, we first identify the key opportunities of LPWAN, highlight the challenges, and show potential directions for future research. We then enable the versatility of LPWAN applications first by enabling applications involving mobility over LPWAN. Specifically, we propose to handle mobility in LPWAN over white space considering Sensor Network Over White Space (SNOW). SNOW is a highly scalable and energy-efficient LPWAN operating over the TV white spaces. TV white spaces are the allocated but locally unused available TV channels (54 - 698 MHz in the US). We proposed a dynamic Carrier Frequency Offset (CFO) estimation and compensation technique that considers the impact of the Doppler shift due to mobility. Also, we design energy-efficient and fast BS discovery and association approaches. Finally, we demonstrate the feasibility of our approach through experiments in different deployments. Finally, we present a collision detection and recovery technique called RnR (Reverse & Replace Decoding) that applies to LPWANs. Additionally, we discuss future work to enable handling burst transmission over LPWAN and localization in mobile LPWAN

    Mulsemedia Communication Research Challenges for Metaverse in 6G Wireless Systems

    Full text link
    Although humans have five basic senses, sight, hearing, touch, smell, and taste, most multimedia systems in current systems only capture two of them, namely, sight and hearing. With the development of the metaverse and related technologies, there is a growing need for a more immersive media format that leverages all human senses. Multisensory media(Mulsemedia) that can stimulate multiple senses will play a critical role in the near future. This paper provides an overview of the history, background, use cases, existing research, devices, and standards of mulsemedia. Emerging mulsemedia technologies such as Extended Reality (XR) and Holographic-Type Communication (HTC) are introduced. Additionally, the challenges in mulsemedia research from the perspective of wireless communication and networking are discussed. The potential of 6G wireless systems to address these challenges is highlighted, and several research directions that can advance mulsemedia communications are identified
    corecore