25 research outputs found

    Cyber risks prediction and analysis in medical emergency equipment for situational awareness

    Get PDF
    In light of the COVID-19 pandemic, the Medicines and Healthcare products Regulatory Agency administered the standards for producing a Rapidly Manufactured Ventilator System (RMVS) free of charge due to the United Kingdom’s shortfall of ventilator systems throughout health centers. The standards delineate the minimum requirements in which a Rapidly Manufactured Ventilator System must encompass to be admissible for usage within hospitals. This work commences by evaluating the standards provided by the government to identify any potential security vulnerabilities that may arise due to the succinct development standards provided by the MHRA. This research investigates what cyber considerations are taken to safeguard a patient’s health and medical data to improve situational awareness. A tool for a remotely accessible, low-cost ventilator system is developed to reveal what a malicious actor may be able to inflict on a modern ventilator and its adverse impact

    An Empirical Analysis of Security and Privacy in Health and Medical Systems

    Get PDF
    Healthcare reform, regulation, and adoption of technology such as wearables are substantially changing both the quality of care and how we receive it. For example, health and fitness devices contain sensors that collect data, wireless interfaces to transmit data, and cloud infrastructures to aggregate, analyze, and share data. FDA-defined class III devices such as pacemakers will soon share these capabilities. While technological growth in health care is clearly beneficial, it also brings new security and privacy challenges for systems, users, and regulators. We group these concepts under health and medical systems to connect and emphasize their importance to healthcare. Challenges include how to keep user health data private, how to limit and protect access to data, and how to securely store and transmit data while maintaining interoperability with other systems. The most critical challenge unique to healthcare is how to balance security and privacy with safety and utility concerns. Specifically, a life-critical medical device must fail-open (i.e., work regardless) in the event of an active threat or attack. This dissertation examines some of these challenges and introduces new systems that not only improve security and privacy but also enhance workflow and usability. Usability is important in this context because a secure system that inhibits workflow is often improperly used or circumvented. We present this concern and our solution in its respective chapter. Each chapter of this dissertation presents a unique challenge, or unanswered question, and solution based on empirical analysis. We present a survey of related work in embedded health and medical systems. The academic and regulatory communities greatly scrutinize the security and privacy of these devices because of their primary function of providing critical care. What we find is that securing embedded health and medical systems is hard, done incorrectly, and is analogous to non-embedded health and medical systems such as hospital servers, terminals, and personally owned mobile devices. A policy called bring your own device (BYOD) allows the use and integration of mobile devices in the workplace. We perform an analysis of Apple iMessage which both implicates BYOD in healthcare and secure messaging protocols used by health and medical systems. We analyze direct memory access engines, a special-purpose piece of hardware to transfer data into and out of main memory, and show that we can chain together memory transfers to perform arbitrary computation. This result potentially affects all computing systems used for healthcare. We also examine HTML5 web workers as they provide stealthy computation and covert communication. This finding is relevant to web applications such as personal and electronic health record portals. We design and implement two novel and secure health and medical systems. One is a wearable device that addresses the problem of authenticating a user (e.g., physician) to a terminal in a usable way. The other is a light-weight and low-cost wireless device we call Beacon+. This device extends the design of Apple's iBeacon specification with unspoofable, temporal, and authenticated advertisements; of which, enables secure location sensing applications that could improve numerous healthcare processes

    Integrated Circuit Design for Radiation Sensing and Hardening.

    Full text link
    Beyond the 1950s, integrated circuits have been widely used in a number of electronic devices surrounding people’s lives. In addition to computing electronics, scientific and medical equipment have also been undergone a metamorphosis, especially in radiation related fields where compact and precision radiation detection systems for nuclear power plants, positron emission tomography (PET), and radiation hardened by design (RHBD) circuits for space applications fabricated in advanced manufacturing technologies are exposed to the non-negligible probability of soft errors by radiation impact events. The integrated circuit design for radiation measurement equipment not only leads to numerous advantages on size and power consumption, but also raises many challenges regarding the speed and noise to replace conventional design modalities. This thesis presents solutions to front-end receiver designs for radiation sensors as well as an error detection and correction method to microprocessor designs under the condition of soft error occurrence. For the first preamplifier design, a novel technique that enhances the bandwidth and suppresses the input current noise by using two inductors is discussed. With the dual-inductor TIA signal processing configuration, one can reduce the fabrication cost, the area overhead, and the power consumption in a fast readout package. The second front-end receiver is a novel detector capacitance compensation technique by using the Miller effect. The fabricated CSA exhibits minimal variation in the pulse shape as the detector capacitance is increased. Lastly, a modified D flip-flop is discussed that is called Razor-Lite using charge-sharing at internal nodes to provide a compact EDAC design for modern well-balanced processors and RHBD against soft errors by SEE.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111548/1/iykwon_1.pd

    Validation of the PSIR sequence for the determination of arrhythmogenic channels in ventricular ischemia

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2021-2022. Tutora/Directora: Paz Garré Anguera de Sojo and Sara VázquezIn patients with ventricular tachycardia of ischemic origin, arrhythmogenic channels are the pathway of abnormal tissue activation and their determination in the substrate is a essential factor when treating these cases by radiofrequency ablation. Extracting this information from images obtained by magnetic resonance imaging has great advantages over other more invasive imaging techniques. The most commonly used reconstruction technique in MRI-2D is the Magnitude sequence. Recently, another sequence called Phase Sensitive Inversion Recovery (PSIR) is beginning to be established, which takes into account the polarity of the protons, apart from their magnitude, when generating the image. In this project the level of validity of the PSIR reconstruction sequence to determine the arrhythmogenic channels has been demonstrated, comparing data obtained using this sequence with data obtained using the strongly validated and referenced Magnitude sequence. Data from 21 patients with specific conditions have been used for this study. The images have been segmented and processed in order to extract the parameters that have allowed to solve the question raised by means of a statistical analysis of the information obtained. We have worked with ADAS-3D rendering software to study the cases and have determined the configuration that allows the highest quality in the visualization of PSIR images, specifically the setting of contrast thresholds. From the information provided by the ADAS-3D we selected the information considered relevant for the statistical analysis, descriptive information about the channels and characteristics of the tissue. These data, together with the contrast thresholds set in the study, have been statistically analysed with the RStudio programme. Valuable information has been obtained from the results. The ideal thresholds for studying PSIR images have been found and it has been concluded that there is a considerable similarity between both sequences when interpreting MRI images clinically, although not enough to validate it completely. Regarding the characterisation of channels, a high accuracy in the calculation of their mass has been determined, but a great inaccuracy in their counting. In terms of quantification, identification and classification of ventricular tissue, considerable correlation and acceptable measurement accuracy have been demonstrated

    Elektromagnetische velden in arbeidssituaties

    Get PDF
    NB Nederlandstalige versie verschenen onder nummer 610015001N De EU heeft richtlijn 2004/40/EG uitgevaardigd om de werknemer te beschermen tegen gezondheidsrisico's door blootstelling aan elektromagnetische velden op het werk. Deze richtlijn moet uiterlijk 30 april 2008 zijn omgezet in nationale wetgeving. Ter voorbereiding hiervan heeft het RIVM in opdracht van het Ministerie van SZW de blootstelling in Nederlandse arbeidssituaties geinventariseerd en geanalyseerd. Het doel van dit rapport is de werkgevers een handreiking te geven om vast te stellen of aan de eisen uit de richtlijn wordt voldaan en om de risico-inventarisatie en -evaluatie (RI&E) voor elektromagnetische velden op te stellen. Totdat er geharmoniseerde Europese normen van het Europees Comiti voor elektrotechnische normalisatie (CENELEC) beschikbaar zijn voor alle situaties die moeten worden beoordeeld, gemeten en berekend, mag dit rapport als richtsnoer gebruikt worden. Gebruik van dit rapport is dus geen verplichting. Voor de meeste werkgevers is het voldoende om de eerste twee hoofdstukken door te nemen. De volgende drie hoofdstukken bevatten voor een aantal arbeidssituaties informatie over de blootstelling, de rekenregels waarmee de situatie kan worden ingeschat en de mogelijke beheersmaatregelen. Het laatste hoofdstuk geeft een overzicht van de kosten die met invoering van de richtlijn samenhangen. Om te kunnen toetsen of de blootstelling onder de limieten van de richtlijn blijft, moeten CENELEC-normen worden gebruikt, voor zover ze bestaan. Deze normen zijn zonder specialistische kennis niet eenvoudig toe te passen. Ook hoeft niet alle apparatuur even uitgebreid beoordeeld te worden of zijn even zware maatregelen nodig. Om de beoordeling te vergemakkelijken geeft dit rapport een beoordelingsschema en tabellen met een indeling van alle relevante werkomgevingen in drie categorieen. Voor iedere categorie geldt een ander beoordelingstraject.The EU has issued Directive 2004/40/EC on the protection of workers from health and safety risks arising from exposure to electromagnetic fields in the workplace. This directive must be implemented in national legislation no later than 30 April 2008. To prepare for implementation, RIVM has, on commission of the Ministry of Social Affairs and Employment, investigated and analysed the exposure in Dutch working environments. The purpose of this report is to provide assistance to employers to assess whether compliance is met and to carry out the inventory and evaluation of risks (RI&E) due to electromagnetic fields. Until harmonised European standards from CENELEC cover all relevant assessment, measurement and calculation situations, this report may serve as a guide. It is not mandatory to use this report. It will be sufficient for most of the employers to confine themselves to the first two chapters. Subsequent chapters deal with the exposure found in several working environments and provide guidelines for assessing risks and possible measures in these working environments. Costs for implementing the directive are discussed in the last chapter. CENELEC standards, if available, are mandatory for assessing whether exposure occurs below the limits in the directive. However, these standards are not easy to use without specialist knowledge. Furthermore, not all equipment needs to be assessed to the same extent nor are the same measures needed. A flow chart and tables of relevant working environments, classified into three categories, are provided to facilitate the assessment. Each category has its own assessment path.SZ

    Strategic Intelligence Monitor on Personal Health Systems (SIMPHS): Market Structure and Innovation Dynamics

    Get PDF
    Personal Health Systems (PHS) and Remote Patient Monitoring and Treatment (RMT) have the potential to alter the way healthcare is provided by increasing the quantity and quality of care. This report explores the current status of PHS and, more specifically of the RMT market in Europe. It addresses the question of how these technologies can contribute facing some of the challenges standing in front of the European healthcare delivery systems causes by higher demand pressures through chronic diseases and demographic change combined with diminishing resources for health care. An uptake and diffusion of these services would potentially lead to benefits through a reduction in death rates, and avoid recurring hospitalisation in a cost-effective manner. Yet the report identifies different categories of barriers hampering a full deployment of RMT in Europe. In the concluding part the reports provides a number of tentative policy options specifically aimed at fostering EU-wide deployment of RMT/PHS.JRC.DDG.J.4-Information Societ

    Factors influencing return to work after a cardiac incident and the development of a return to work intervention programme for individuals with cardiac diagnoses in the Western Cape, South Africa

    Get PDF
    Philosophiae Doctor - PhDCardiovascular disease is amongst the top three leading causes of mortality in South Africa and the world. The effects of cardiovascular disease can be seen in limitations of function within all spheres of life, including work function. Cardiac rehabilitation programmes have been documented to improve functional abilities, but little is known about the return to work rate after cardiac rehabilitation. Access to cardiac rehabilitation programmes in the Western Cape is limited. This study aimed to determine the return to work rates and influencing factors after cardiac rehabilitation as well as to design an intervention programme that is accessible and could facilitate return to work for individuals with cardiovascular disease

    Abstract book : poster week 9/18

    Get PDF
    Poster Week 09/18. ESTeSC – Coimbra Health School. May 14th – 18th, 2018.info:eu-repo/semantics/draf
    corecore