
An Empirical Analysis of Security and Privacy in Health and

Medical Systems

by

Michael A. Rushanan

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

May, 2016

c© Michael A. Rushanan 2016

All rights reserved

Abstract

Healthcare reform, regulation, and adoption of technology such as wearables are

substantially changing both the quality of care and how we receive it. For example,

health and fitness devices contain sensors that collect data, wireless interfaces to

transmit data, and cloud infrastructures to aggregate, analyze, and share data. FDA-

defined class III devices such as pacemakers will soon share these capabilities. While

technological growth in health care is clearly beneficial, it also brings new security

and privacy challenges for systems, users, and regulators.

We group these concepts under health and medical systems to connect and em-

phasize their importance to healthcare. Challenges include how to keep user health

data private, how to limit and protect access to data, and how to securely store and

transmit data while maintaining interoperability with other systems. The most criti-

cal challenge unique to healthcare is how to balance security and privacy with safety

and utility concerns. Specifically, a life-critical medical device must fail-open (i.e.,

work regardless) in the event of an active threat or attack.

This dissertation examines some of these challenges and introduces new systems

ii

ABSTRACT

that not only improve security and privacy but also enhance workflow and usability.

Usability is important in this context because a secure system that inhibits workflow

is often improperly used or circumvented. We present this concern and our solution in

its respective chapter. Each chapter of this dissertation presents a unique challenge,

or unanswered question, and solution based on empirical analysis.

We present a survey of related work in embedded health and medical systems.

The academic and regulatory communities greatly scrutinize the security and privacy

of these devices because of their primary function of providing critical care. What

we find is that securing embedded health and medical systems is hard, done incor-

rectly, and is analogous to non-embedded health and medical systems such as hospital

servers, terminals, and personally owned mobile devices. A policy called bring your

own device (BYOD) allows the use and integration of mobile devices in the work-

place. We perform an analysis of Apple iMessage which both implicates BYOD in

healthcare and secure messaging protocols used by health and medical systems.

We analyze direct memory access engines, a special-purpose piece of hardware to

transfer data into and out of main memory, and show that we can chain together

memory transfers to perform arbitrary computation. This result potentially affects

all computing systems used for healthcare. We also examine HTML5 web workers as

they provide stealthy computation and covert communication. This finding is relevant

to web applications such as personal and electronic health record portals.

We design and implement two novel and secure health and medical systems. One is

iii

ABSTRACT

a wearable device that addresses the problem of authenticating a user (e.g., physician)

to a terminal in a usable way. The other is a light-weight and low-cost wireless device

we call Beacon+. This device extends the design of Apple’s iBeacon specification with

unspoofable, temporal, and authenticated advertisements; of which, enables secure

location sensing applications that could improve numerous healthcare processes.

Primary Reader: Dr. Aviel D. Rubin

Secondary Readers: Dr. Anton Dahbura and Dr. Christoph U. Lehmann

iv

Acknowledgments

I would like to thank foremost Professor Avi Rubin, my advisor, for his mentorship

and patience. He inspired my persistence to push forward when I encountered chal-

lenges in graduate school. I have grown both personally and professionally because

of his guidance and attitude toward computer science.

I am thankful for the guidance and support of many others at Johns Hopkins

University. In particular, the computer science office, faculty, and the Distributed

Systems, Crypto, and Health Medical Security labs. I enjoyed late night musings,

debates, paper writing, and coding with Ayo Akinyele, Christina Garman, Gabriel

Kaptchuk, Paul Martin, Ian Miers, Matthew Pagano, David Russell, and Tom Tan-

tillo, who are all top-notch researchers that are positioned to change our field.

Each of these labs has its set of research scientists and professors. I am thankful

for the advisement provided by Stephen Checkoway and Matthew Green. I learned

more than reverse engineering and cryptography because of them. I learned how to

give an academic talk, write a technically sound paper, and deal with pitfalls and

troubles of research.

v

ACKNOWLEDGMENTS

I am also thankful for the opportunity to visit and gain new insight from Kevin

Fu’s SPQR lab at the University of Michigan. It is here I learned about academic

genealogy thanks to Peter Honeyman, pulled apart a pacemaker or two, and explored

embedded system design. The time away from Baltimore was enlightening.

Some chapters of this dissertation have appeared in publications or submissions

to academic conferences and workshops. I would like to thank my co-authors on

each publication. They include Joseph Carrigan,1 Stephen Checkoway,2 Denis Foo

Kune,3 Christina Garman,4 Gabriel Kaptchuk,4 Matthew D. Green,4 Paul Martin,1,5

Ian Miers,4 Avi Rubin,3,5, 6 David Russel,6 Colleen Swanson,3 and Thomas Tantillo.5

I may have reproduced some or part of these works in my dissertation. These works

may also appear in the later works of my co-authors.

The Health and Human Services-funded, ”Strategic Health IT Advanced Research

Projects on Security” (SHARPS), and the NSF-funded, ”Trustworthy Health and

Wellness” (THaW), grants both supported my research. I am thankful to these orga-

nizations for their financial support and open access to inter-university collaboration.

I would like to thank my brother, Brandon Hill, parents, Michael and Kimberly

Hill, my paternal grandparents, Jackie Wilson and Myrtle Hill, and maternal grand-

parents, Michael and Helen Rushanan. My brother gave up a lot of hangout time for

me to finish this. My grandfather Michael Rushanan provided an infinite source of

inspiration through his various stories. Jen Menzer, thanks for keeping me sane.

vi

Dedication

This thesis is dedicated to my loving family and friends. To those of you who stuck

around, thanks for putting up with me. You are the reason I finished this journey.

vii

Contents

Abstract ii

Acknowledgments v

List of Tables xvi

List of Figures xvii

1 Introduction 1

1.1 Our Approach . 5

1.1.1 SoK: Security and Privacy in Implantable Medical Devices and

Body Area Networks . 6

1.1.2 Dancing on the Lip of the Volcano:

Chosen Ciphertext Attacks on Apple iMessage 7

1.1.3 Run-DMA . 8

1.1.4 MalloryWorker: Stealthy Computation and Covert Channels

using Web Workers . 8

viii

CONTENTS

1.1.5 KBID: Kerberos Bracelet Identification 9

1.1.6 Applications of Secure Location Sensing in Healthcare 10

1.2 Outline of This Work . 10

2 SoK: Security and Privacy in Implantable Medical Devices and Body

Area Networks 13

2.1 Introduction . 13

2.2 Background and Definitions . 18

2.2.1 Implantable Medical Devices and Body Area Networks 18

2.2.1.1 Implantable medical devices 20

2.2.1.2 Body area networks 21

2.3 Security and Privacy in IMDs and

BANs . 23

2.3.1 Security and Privacy Goals . 23

2.3.2 Adversarial Model . 25

2.3.3 Threats . 27

2.4 Medical Device Security and Privacy Trends 28

2.4.1 Securing the Wireless Telemetry Interface 30

2.4.1.1 Biometrics . 31

2.4.1.2 Distance-Bounding Protocols 32

2.4.1.3 Out-of-Band (OOB) Authentication 34

2.4.1.4 External Wearable Devices 36

ix

CONTENTS

2.4.1.5 Anomaly Detection 38

2.4.2 Software Threats . 40

2.5 Research Challenges and Emerging

Threats . 42

2.5.1 Reproducibility challenges . 43

2.5.2 Physiological values as an entropy source 44

2.5.3 Emerging threats: sensors, remote attacks, and privacy 47

2.6 Concluding Remarks . 50

3 Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on

Apple iMessage 51

3.1 Introduction . 51

3.1.1 Responsible disclosure . 55

3.1.2 Attack Model . 56

3.2 The iMessage Protocol . 57

3.2.1 System overview . 58

3.3 Security goals & Threat model . 61

3.4 High-level Protocol Analysis . 63

3.5 Attacks on the Encryption Mechanism 66

3.5.1 Attack setting . 66

3.5.2 Attack overview . 68

3.5.3 A format oracle attack for gzip compression 69

x

CONTENTS

3.5.4 An Attack on Attachment Messages 76

3.6 Implementation and Evaluation . 83

3.6.1 Estimating attack duration . 83

3.6.2 Simulation results . 89

3.7 Mitigations . 91

3.7.1 Immediate mitigations . 92

3.7.2 Long term recommendations 94

3.8 Related Work . 95

3.9 Conclusion . 96

3.10 Attacks on Key Registration . 96

3.10.1 Key Substitution Attack . 98

3.10.2 Credential theft . 101

3.10.3 Updates in OS X 10.11 . 102

3.11 Bypassing TLS . 103

4 Run-DMA 106

4.1 Introduction . 106

4.2 Background . 110

4.3 Constructing DMA gadgets . 111

4.4 A Turing-complete gadget set . 113

4.4.1 BF details . 114

4.4.2 Basic building blocks . 115

xi

CONTENTS

4.4.3 BF interpreter gadgets . 119

4.4.4 Other gadgets . 122

4.5 A DMA rootkit . 124

4.6 Implementation . 125

4.7 Related work . 126

4.8 Conclusions . 129

5 MalloryWorker: Stealthy Computation and Covert Channels

using Web Workers 130

5.1 Introduction . 130

5.2 Background . 133

5.3 Threat Model . 135

5.4 Web Worker Primitives . 136

5.5 Stealthy Computation . 140

5.5.1 Denial-of-Service . 141

5.5.2 Resource Depletion . 142

5.6 Covert Channel . 143

5.7 Potential Mitigations . 146

5.8 Related work . 147

5.9 Conclusions . 150

5.10 Health and Medical Systems . 150

5.10.1 Experimental Setup . 151

xii

CONTENTS

5.10.2 Results . 152

5.11 Linux Stealthy Computation . 153

6 KBID: Kerberos Bracelet Identification 156

6.1 Introduction . 156

6.2 Background . 157

6.3 Related Work . 159

6.3.0.1 Limitations of Existing Work 160

6.4 Threat Model . 160

6.5 Design . 162

6.5.1 High Level Design . 162

6.5.2 Interfaces and Communication 163

6.5.2.1 Bracelet to Authentication Module 164

6.5.2.2 Authentication Module to Authentication Client . . 165

6.5.3 System Workflow . 166

6.6 Experiments and Results . 168

6.6.1 Prototype . 168

6.6.2 Results . 169

6.7 Future Work . 169

6.8 Conclusion . 170

7 Applications of Secure Location Sensing in Healthcare 171

xiii

CONTENTS

7.1 Background . 174

7.1.1 Radio Frequency Identification 174

7.1.2 Global Positioning System . 175

7.1.3 Wi-Fi . 175

7.1.4 Near Field Communication . 176

7.1.5 Bluetooth . 176

7.2 Threat Model . 178

7.3 Beacon+ . 180

7.3.1 Implementation . 182

7.4 Applications . 184

7.4.1 Secure Real-Time Asset Tracking System 184

7.4.2 Location–Based Restrictions 190

7.5 Experiments . 193

7.5.1 Tracking System Accuracy . 194

7.5.2 Power Consumption . 196

7.5.3 Location-Based Restrictions 196

7.6 No Central Trusted Authority . 197

7.7 Conclusion . 202

8 Summary 204

Bibliography 206

xiv

CONTENTS

Vita 249

xv

List of Tables

2.1 IMD and BAN security and privacy threats and defenses 30

xvi

List of Figures

2.1 Example IMD and Programmer communication 19
2.2 Body area network architecture . 22
2.3 Trends in Security and Privacy on IMDs/BANs 29

3.1 iMessage encryption mechanism . 58
3.2 Example ciphertext replay . 64
3.3 Sending an iMessage through the APNS network 67
3.4 Modifying the partial AES ciphertext 79
3.5 Huffman tree fragment . 81
3.6 Simulation results for the attachment recovery attack. 89
3.7 Profile conversation . 97
3.8 Identity conversation . 98
3.9 ESS/IDS directory loop request and response 99
3.10 Format of public key payload . 100
3.11 Certificate verification and root CA dialog 105

4.1 Square gadget . 111
4.2 BF example . 115
4.3 Increment gadget . 116
4.4 Conditional goto gadget . 118
4.5 Dispatch gadget . 120

5.1 Web worker javascript runtime . 134
5.2 OS X Firefox DoS attack . 142
5.3 Android Chrome resource depletion attack 143
5.4 CPU noise during regular use . 144
5.5 Memory covert channel sending hello world 145
5.6 Stealthy computation on Baxa ExactaMix 152
5.7 Stealthy computation on Ubuntu 15.10 using Chrome 154
5.8 Stealthy computation on Ubuntu 15.10 using Firefox 155

xvii

LIST OF FIGURES

6.1 KBID prototype bracelet . 163
6.2 KBID prototype authentication module 164
6.3 Un-authenticated message exchange 167
6.4 Authenticated message exchange . 168

7.1 iBeacon and Beacon+ advertisement formats 181
7.2 Beacon+ hardware . 183
7.3 Secure real-time asset tracking system 186
7.4 Trilateration example . 188
7.5 Example web application . 189
7.6 Translated midpoint method . 196
7.7 Location-based restrictions on access control 198
7.8 Beacon+ protocol without central trusted authority 201
7.9 Secure real-time asset tracking system with no trusted server 202

xviii

Chapter 1

Introduction

The recent Apple Watch is a health and fitness device that contains a heart rate

sensor and a pedometer to collect, disseminate, and display health data to its user.

HealthKit is the application that operates on this data and provides extensions to

third-parties to access and aggregate data over a large number of users and tertiary

sensor plugins (e.g., a digital sphygmomanometer). Cloud platforms are used to per-

form data aggregation, and thus, private health data is distributed and fragmented

across geographical regions. Further, regulatory bodies must decide how to classify

health and fitness devices as they integrate into health information exchanges and

become comparable to FDA-defined class I, II, and III medical devices (e.g., pace-

makers).

While technological growth in health care is beneficial, it also brings new security

and privacy challenges for systems, users, and regulators. The Apple Watch, for

1

CHAPTER 1. INTRODUCTION

example, collects private health information from its wearer, performs some local

computation on it, and then transmits it to the cloud or a third-party. This health

information is confidential and private. Thus, it needs to be encrypted at rest and

transmitted over a secure channel such as SSL/TLS. Moreover, cloud providers must

enforce access control on all collected health information, and third-parties (e.g.,

a physician at a local clinic) must authenticate before accessing and manipulating

aggregate health information.

There exist many security and privacy challenges to the Apple Watch as a health

and fitness device. These challenges extend to all healthcare-related devices. As such,

we group these concepts under the term of health and medical systems to connect

and emphasize their importance to healthcare. This grouping also includes the most

critical challenge unique to healthcare, balancing security and privacy with safety and

utility.

This dissertation examines some of these challenges in health and medical systems

and introduces new systems that improve security, privacy, and usability. We present

a survey of related work in implantable medical devices (IMDs) and body area net-

works (BANs), otherwise referred to as embedded health and medical systems. The

publications reviewed in this survey aim at improving security and privacy, but as

we find in our analysis of common themes and trends, systems are hard to design.

Numerous vulnerabilities in deployed systems and proposed protocols support this

assertion.

2

CHAPTER 1. INTRODUCTION

This finding is analogous to non-embedded health and medical systems such as

hospital servers, terminals, and BYOD. For example, Apple iMessage is one of the

most widely deployed end-to-end encryption messaging protocols. It is used by BYOD

devices to send confidential messages between nurses, and other practitioners.7 We

perform an analysis of Apple iMessage and find that it has significant vulnerabili-

ties that can be exploited by a sophisticated attacker. This finding exemplifies the

challenges of BYOD and protocol development in health and medical systems.

Modern computer systems contain a variety of special purpose processors designed

to offload specific tasks from the CPU such as graphics rendering for oncology imag-

ing.8 Direct memory access engines perform the copying of data from main memory

to the other processor. We show that the ability to chain together memory copying

is sufficient to perform arbitrary computation. This means, in the context of health-

care, that an attacker can perform any function on a health and medical system (e.g.,

ultrasound equipment) with the capabilities we describe in Chapter 4.

Epic, a healthcare software company, and other related businesses implement a

suite of software for patient engagement, clinicals, portals, and third-party extensions

such as billing. This software is useful as it provides access to electronic health

records (EHR) and health information exchanges (HIE). Typically, these softwares

interact with users via an HTML-driven user interface (UI). There exists an entire

community dedicated to expanding the knowledge of web application vulnerabilities,

which would affect these UIs, with a particular focus on the new HTML5 APIs. We

3

CHAPTER 1. INTRODUCTION

examine the Web Workers API and find that it provides stealthy computation and

covert communication.

Stealthy computation can affect the computer systems of patients and physicians

visiting a compromised web application. In particular, we can use their computational

resources to perform a distributed operation such as password cracking. We can

mount a denial-of-service (DoS) attack that causes OS X systems to halt, and we can

perform a resource depletion on mobile devices, again affecting BYOD. Also, health

and medical systems that expose a full operating system, such as the Baxa ExactaMix

2400 pharmaceutical compounder,9 are susceptible to these stealthy computations.

The most common method for a user to gain access to a system is to authenticate

(i.e., verify her identity), with a password. It’s important that systems in a healthcare

environment, for example, a workstation-on-wheels (WOW), require authentication.

However, complex password requirements and policies can be perceived as inhibiting

care and thus users may try to circumvent them. Examples include never logging

out of systems and sharing user credentials with others. Moreover, the invention of

systems to improve security while not hindering usability is often circumvented if not

properly implemented. Sinclair and Smith10 describe a proximity-based deauthenti-

cation system that uses cameras to determine when if a system is in use. In a hospital

setting, users were frustrated with bugs where the system misinterpreted movements

and logged off users, so the users simply covered the cameras with cups.

We introduce an authentication system that addresses the problem of complex

4

CHAPTER 1. INTRODUCTION

passwords and poor usability by prompting the user to enter a password as infre-

quently as once a day. We design a wearable bracelet that stores authentication

information for the user upon logging in and then transmitting that information to

each system upon use. The bracelet is not a component in multi-factor authenti-

cation, rather a mechanism for enhancing usability and workflow while maintaining

stringent access control policies.

Tracking and managing assets in real-time are critical for hospitals as they impact

patient care. In particular, tracking needs to be secure against both active and passive

attacks that misappropriate assets. We implement a real-time tracking system using a

Bluetooth low-energy (BLE) device we call Beacon+. This device enables other secure

location sensing applications such as location-based access restrictions, whereby a

physician or nurse can only access the medical records of nearby patients. Location

in this application is one factor in a multi-factor access control scheme. For example,

physicians who step away from their personal computer system (assuming she can

access all records here) take a hospital-issued tablet with them, log in to the tablet,

and be within close physical proximity of a patient to access her records.

1.1 Our Approach

This dissertation examines the aforementioned security and privacy challenges in

health and medical systems and presents new systems that are usable and secure.

5

CHAPTER 1. INTRODUCTION

These systems also enable new applications that could improve numerous healthcare

processes. For brevity, we describe each challenge and system independently and

summarize our approach in the below.

1.1.1 SoK: Security and Privacy in Implantable

Medical Devices and Body Area Networks

Balancing security, privacy, safety, and utility is a necessity in the health care do-

main, in which implantable medical devices (IMDs) and body area networks (BANs)

have made it possible to continuously and automatically manage and treat a num-

ber of health conditions. In this work, we survey publications aimed at improving

security and privacy in IMDs and health-related BANs, providing clear definitions

and a comprehensive overview of the problem space. We analyze common themes,

categorize relevant results, and identify trends and directions for future research. We

present a visual illustration of this analysis that shows the progression of IMD/BAN

research and highlights emerging threats. We identify three broad research categories

aimed at ensuring the security and privacy of the telemetry interface, software, and

sensor interface layers and discuss challenges researchers face with respect to ensuring

reproducibility of results. We find that while the security of the telemetry interface

has received much attention in academia, the threat of software exploitation and the

sensor interface layer deserve further attention. In addition, we observe that while

6

CHAPTER 1. INTRODUCTION

the use of physiological values as a source of entropy for cryptographic keys holds

some promise, a more rigorous assessment of the security and practicality of these

schemes is required.

1.1.2 Dancing on the Lip of the Volcano:

Chosen Ciphertext Attacks on Apple iMes-

sage

Apple’s iMessage is one of the most widely-deployed end-to-end encrypted mes-

saging protocols. Despite its broad deployment, the encryption protocols used by

iMessage have never been subjected to rigorous cryptanalysis. In this paper, we con-

duct a thorough analysis of iMessage to determine the security of the protocol against

a variety of attacks. Our analysis shows that iMessage has significant vulnerabilities

that can be exploited by a sophisticated attacker. In particular, we outline a novel

chosen ciphertext attack on Huffman compressed data, which allows retrospective

decryption of some iMessage payloads in less than 218 queries. The practical impli-

cation of these attacks is that any party who gains access to iMessage ciphertexts

may potentially decrypt them remotely and after the fact. We additionally describe

mitigations that will prevent these attacks on the protocol, without breaking back-

wards compatibility. Apple has deployed our mitigations in the latest iOS and OS X

releases.

7

CHAPTER 1. INTRODUCTION

1.1.3 Run-DMA

Copying data from devices into main memory is a computationally-trivial, yet

time-intensive, task. In order to free the CPU to perform more interesting work,

computers use direct memory access (DMA) engines — a special-purpose piece of

hardware — to transfer data into and out of main memory. We show that the ability

to chain together such memory transfers, as provided by commodity hardware, is

sufficient to perform arbitrary computation. Further, when hardware peripherals

can be accessed via memory-mapped I/O, they are accessible to “DMA programs.”

To demonstrate malicious behavior, we build a proof-of-concept DMA rootkit that

modifies kernel objects in memory to perform privilege escalation for target processes.

1.1.4 MalloryWorker: Stealthy Computation and

Covert Channels using Web Workers

JavaScript execution and UI rendering are typically single-threaded. Consequently,

the execution of some scripts can block the display of requested content to the browser

screen. Web Workers is an API that enables web applications to spawn background

workers in parallel to the main page. Workers support long-lived and computation-

ally expensive operations that might otherwise block the UI. Despite the usefulness

of concurrency, users are unaware of worker execution, intent, and impact on system

resources. We show that workers can be used to abuse system resources by imple-

8

CHAPTER 1. INTRODUCTION

menting a unique denial-of-service attack on OS X and resource depletion attack on

Android. Further, we show that workers can be used to perform stealthy computation

by developing a distributed password cracker, and covert channels exist by exploit-

ing controllable CPU and memory fluctuations. We discuss potential mitigations

(i.e., fine-grained control) and implement a lightweight browser extension to increase

awareness of worker execution.

1.1.5 KBID: Kerberos Bracelet Identification

The most common method for a user to gain access to a system, service, or re-

source is to provide a secret, often a password, that verifies her identity and thus

authenticates her. Password-based authentication is considered strong only when the

password meets certain length and complexity requirements, or when it is combined

with other methods in multi-factor authentication. Unfortunately, many authenti-

cation systems do not enforce strong passwords due to a number of limitations; for

example, the time taken to enter complex passwords. We present an authentica-

tion system that addresses these limitations by prompting a user for credentials once

and then storing an authentication ticket in a wearable device that we call Kerberos

Bracelet Identification (KBID).

9

CHAPTER 1. INTRODUCTION

1.1.6 Applications of Secure Location Sensing in

Healthcare

Secure location sensing has the potential to improve healthcare processes regard-

ing security, efficiency, and safety. For example, enforcing close physical proximity to

a patient when using a barcode medication administration system (BCMA) can miti-

gate the consequences of unsafe barcode scanning workarounds. We present Beacon+,

a Bluetooth Low Energy (BLE) device that extends the design of Apple’s popular

iBeacon specification with unspoofable, temporal, and authenticated advertisements.

Our prototype Beacon+ design enables secure location sensing applications such as

real-time tracking of hospital assets (e.g., infusion pumps). We implement this ex-

act real-time tracking system and use it as a foundation for a novel application that

applies location-based restrictions on access control.

1.2 Outline of This Work

We group the concepts of security and privacy challenges for systems, users, and

regulators spurred by technological growth in health care under the term health and

medical systems. Each chapter of this dissertation presents a unique challenge, or

unanswered question, related to health and medical systems. Challenges presented in

Chapters 3 through 7 are motivated by concepts and challenges in embedded health

and medical systems described in Chapter 2.

10

CHAPTER 1. INTRODUCTION

Chapter 2 surveys research publications aimed at improving security and pri-

vacy in implantable medical devices and health-related body area networks. It

also categorizes themes, results, and trends that motivate challenges in subsequent

chapters.

Chapter 3 conducts a thorough analysis of iMessage to determine the security of

the protocol against a variety of attacks. The result of which implies the difficulty

of implementing protocols securely, and exposing security and privacy implications

for BYOD and messaging protocols in health and medical systems.

Chapter 4 shows the ability to chain together direct memory transfers, as provided

by commodity hardware, is sufficient to perform arbitrary computation. All health

and medical systems could be potentially vulnerable to this class of attack.

Chapter 5 uses HTML5 web workers to abuse system resources, perform stealthy

computation, and create a covert channel for unauthorized communication. Health

and medical systems that allow web browsing and EHR portals could be potentially

vulnerable to this type of attack.

Chapter 6 presents an authentication system that addresses the limitation of

complex passwords by using a wearable bracelet and authentication module. This

system’s intent is to be usable and easily integrated into healthcare workflow as to

avoid poor security workarounds.

Chapter 7 presents a device called Beacon+ that extends the design of Apple’s

11

CHAPTER 1. INTRODUCTION

popular iBeacon specification with unspoofable, temporal, and authenticated ad-

vertisements. Beacon+ enables secure location sensing applications that could

improve numerous healthcare processes.

12

Chapter 2

SoK: Security and Privacy in

Implantable Medical Devices and

Body Area Networks

The integration of computing devices and health care has changed the landscape

of modern medicine. Implantable medical devices (IMDs), or medical devices embed-

ded inside the human body, have made it possible to continuously and automatically

manage a number of health conditions, ranging from cardiac arrhythmia to Parkin-

son’s disease. Body area networks (BANs), wireless networks of wearable computing

devices, enable remote monitoring of a patient’s health status.

In 2001, the estimated number of patients in the United States with an IMD

exceeded 25 million;11 reports from 2005 estimate the number of patients with in-

13

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

sulin pumps at 245000.12,13 IMDs have become pervasive, spurred by the increased

energy efficiency and low cost of embedded systems, making it possible to provide

real-time monitoring and treatment of patients.14 Low power system optimizations,15

ultra-low-power wireless connectivity,16 and the development of numerous lightweight

communication protocols (e.g., on-demand MAC)17–19 have helped make small-scale

sense-actuate systems like IMDs and BANs a reality. Through sensors, these systems

can collect a range of physiological values (e.g., heart rate, blood pressure, oxygen

saturation, temperature, or neural activity) and can provide appropriate actuation or

treatment (e.g., regulate heart rate or halt tremors). On-board radios enable wireless

data transfer (or wireless medical telemetry20) for monitoring and configuration with-

out sacrificing patient mobility or requiring surgical procedures to physically access

the devices.

The need for security and privacy of medical devices has received increasing at-

tention in both the media and the academic community over the last few years—a

perhaps telling example is the recent revelation that Vice President Dick Cheney

had the wireless telemetry interface on his implanted pacemaker disabled.21 In the

academic community, the seminal work by Halperin et al.,22 which introduces a class

of wireless threats against a commercial implantable cardiac defibrillator (ICD), has

been followed by numerous papers researching techniques to improve the security and

privacy of medical devices.

Even though the likelihood of targeted adversarial attacks on IMDs and BANs

14

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

may be debatable, the consequences of an insecure system can be severe. Indeed,

Fu and Blum23 observe that while the hacking of medical devices is a “red herring”,

poor security design can result in real vulnerabilities. For example, the existence

of malware on networked medical devices can result in unreliable data or actuation,

impacting both the integrity and availability of the systems in question. Any private

data on the system may be exposed, leading to a breach of confidentiality.

Although traditionally there has been little incentive for medical device manufac-

turers to incorporate security and privacy mechanisms for fear of inhibiting regulatory

approval,24 the FDA has recently called for manufacturers to address cybersecurity

issues relevant to medical devices for the entire life cycle of the device, from the ini-

tial design phase through deployment and end-of-life.25 Although these calls are in

the form of draft guidelines for ensuring appropriate medical device security, there

is evidence that the FDA means to use these guidelines as grounds for rejection of

premarket medical device submissions.26

Ensuring security and privacy in the context of safety-critical systems like IMDs,

however, is more nuanced than in the traditional computer science setting. As

Halperin et al.27 observe, the security and privacy goals of IMDs may at times

conflict with the safety and utility of these devices. For example, eavesdropping on

communications between an IMD and its programmer may reveal a sensitive medi-

cal condition, or querying an IMD with an unauthenticated programmer may allow

clandestine tracking, both of which compromise the privacy of the affected patient.

15

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Unauthenticated communication can lead to denial of service attacks, in which legit-

imate communication is prevented from reaching the device or the device’s battery

is needlessly depleted,22 as well as replay and injection attacks, in which potentially

dangerous commands sent to the device can alter the patient’s therapy.22,28,29 On

the other hand, using traditional cryptographic mechanisms to ensure secure commu-

nication and storage of data can compromise the safety of the patient. If the patient

needs treatment outside of his normal health care context (e.g., at the emergency

room), it is necessary for health care professionals to have the ability to identify and

access the IMD in order to diagnose and treat the patient.

Balancing security, privacy, safety, and utility is a necessity in the health care

domain.24 Multiple academic disciplines (e.g., embedded systems, computer security,

and medicine) have independently explored the IMD/BAN problem space. We go

beyond related work27,29,30 by providing a comprehensive overview of security and

privacy trends and emerging threats, in order to facilitate uptake by research groups

and industry.

Moreover, we provide a more formal adversarial model and classification of threats

than the work of Halperin et al.27 and Zhang et al.30 By identifying and analyzing

popular research trends in this space, we observe that current work may be roughly

subdivided into three classes: the security of the wireless telemetry, detection and

prevention of software vulnerabilities, and the security of the hardware architecture

and sensor interface. Our categorization allows us to easily trace the evolution of

16

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

IMD/BAN research, connect current work to related notions from the field of RFID

security and privacy, and identify emerging threats in this space.

We identify challenges computer science researchers face in examining the security

and privacy of medical devices, including the lack of reproducibility of research re-

sults. Access to medical devices is a common problem that limits researchers’ ability

to validate prior results; food-grade meat as a phantom also complicates reproducibil-

ity due to its inaccurate approximation of a human body.18,31 In addition, we provide

clear definitions of IMDs and BANs and describe the relevant communications stan-

dards, including clarifying the term medical device, which is strictly defined by the

FDA. The distinction between a medical device and a device used in the context of

health (e.g., FitBit, a popular tool to track physical activity) is a common source of

confusion.

In the IMD/BAN space, we need to achieve trustworthy communication, trust-

worthy software, and trustworthy hardware and sensor interfaces. While the security

of the wireless telemetry interface has received much attention in academia, both

the threat of software exploits in medical devices and the security and privacy of the

sensor interface are areas of research that deserve further attention. Subtle eavesdrop-

ping and injection attacks on sensor inputs, such as the work by Foo Kune et al.32

on cardiac implantable electrical devices (CIEDs), which include pacemakers and de-

fibrillators, and Bagade et al.33 on compromising the privacy of physiological inputs

to key generation mechanisms, are a promising avenue of future work.

17

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

2.2 Background and Definitions

Advances in embedded systems34 and wireless sensor networks (WSNs)35 have

made modern IMDs and BANs possible. Current embedded systems trade computing

performance and memory resources for energy efficiency and lower costs. Wireless sen-

sor networks link both homogeneous and heterogeneous autonomous devices. WSNs

have been used for health care monitoring via the introduction of both wearable and

implanted sensor networks,15,36 giving rise to modern healthcare-related BANs.

2.2.1 Implantable Medical Devices and Body Area

Networks

The U.S. FDA has a broad, albeit relatively strict, definition of medical devices,

which range from tongue depressors to MRI machines. The U.S. Federal Food Drug

& Cosmetic Act [37, Section 201(h)] defines a medical device as an instrument, ap-

paratus, machine, or other similar article which is a) officially recognized by national

registries; b) intended for use in the diagnosis, cure, or prevention of a disease; and

c) intended to affect the structure or function of the body. We emphasize that in

order for a device to qualify as a medical device, it must undergo substantial review

by the FDA before being released on the commercial market; we use this definition of

medical device in this chapter. The FDA also has significant global influence through

arrangements with numerous foreign government organizations;38 therefore devices,

18

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Neuro-
stimulator Cochlear

implant

Cardiac
Defibrillator

Insulin
Pump

Gastric
Simulator

Various IMDs Trigger Magnetic Switch

Programmer

Program

Send telemetry

Send commands

M
ag

ne
tic

 F
ie

ld

Figure 2.1: Example IMDs and ICD/Programmer communication.

standards, and protocols used in the U.S. are likely to be of interest to other countries

as well.

The U.S. Federal Communications Commission (FCC) defines wireless medical

telemetry in FCC 00-211 [39, Section 3B] and FCC 47 CFR 95.40120 as the measure-

ment and recording of physiological values via wireless signals. The wireless medical

telemetry system is comprised of sensors, radio-based communication, and recording

devices. In this chapter, we use the phrase wireless telemetry, or simply telemetry,

to mean radio-based communication, as in the FCC definition; this is distinct from

the traditional RFID definition of telemetry, which comprises data collection and

transmission.

19

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

2.2.1.1 Implantable medical devices

We define an implantable medical device (IMD) as one which is surgically placed

inside of a patient’s body. Figure 2.1 provides examples of IMDs and an IMD pro-

grammer (or simply, programmer), and shows the high-level communication protocol

of an ICD. The programmer in this context is an external device with an interface

(usually a radio frequency (RF) transceiver) for communicating wirelessly with an

IMD and relaying data to a device used by clinicians or other health care providers.

An IMD system supports:

• Analog front end, the signal conditioning circuitry for application-specific sens-

ing and actuation;

• Memory and storage, for storing personal health information and sensed data;

• Microprocessor, for executing device-specific software;

• Telemetry interface, often radio-based, for transmitting data between the device

and a programmer or other sensor/actuator on the patient; and

• Power management, for monitoring and managing battery use for increased

longevity.

IMDs are resource-constrained, requiring reduced size, weight, low peak power

and low duty cycle. Past research uses resource-constrained hardware platforms such

as an 8-bit Atmel-AVR and a 16-bit TI MSP43040 to model IMD configurations. The

20

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

TI MSP430F1611 consumes energy at approximately 0.72nJ per clock cycle. Typical

IMDs are designed to last 90 months on a single battery with 0.5Ah to 2Ah of bat-

tery life.41 These requirements minimize the impact of invasive surgeries to replace

depleted implants. Furthermore, modern IMDs rely on low-power radio communica-

tion and network connectivity to provide a remote-monitoring system.24 The FCC

has allocated the 401MHz to 406MHz band for Medical Devices (MedRadio),42 some-

times called the Medical Implant Communication Service (MICS) band. This band

is currently used for IMD wireless telemetry.

The MICS band allows for reasonable signal propagation through the human body

without interfering with other devices. Additionally, it allows for a greater distance

between the patient and external transceiver, unlike previous IMDs (e.g., a pacemaker

transmitting at 175kHz, which required a proximity within 5cm19).

2.2.1.2 Body area networks

We define a body area network (BAN) as a wireless network of heterogeneous com-

puting devices that are wearable. This network enables continuous remote monitoring

of patient physiological values in the medical setting. In this work, we are mainly

concerned with BANs as they relate to IMDs.

BANs typically include three types of devices: sensors, actuators, and a sink. In

Figure 2.2, sensors are placed at various locations on the body, support multiple net-

work topologies, and forward sensed data to a more computationally powerful device

21

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Multi-hop Single-hop Cooperative

Sink

Sensors

Body
Area
Network

Internet

Sensing and Transmitting Forwarding Data Remote Care

Figure 2.2: Body area network architecture.

(e.g., a smartphone). Although related to wireless sensor networks, BANs exhibit

some notable differences43 with respect to wearability (e.g., size and power), battery

availability, and transmission (i.e., the human body is a lossy medium). Moreover,

reliability requirements may be stricter than in a typical wireless sensor network,

depending on how safety-critical the application.

As we are most interested in BANs as they relate to IMDs, we only give a brief

overview of the communication standards for clinical environments.44 The ISO/IEEE

1107345 standard spans the entire BAN communication stack, while Health Level 7

(HL7),46 Integrating the Health Enterprise (IHE)47 and the recent ASTM F2761 (MDPnP)48

standard only describe the application layer. While at least some security mechanisms

22

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

are mentioned in these standards, most are optional, presumably to ensure interop-

erability. Foo Kune et al.44 find that by enabling these security mechanisms in

combination with known security protocols, a vast majority of security requirements

could be satisfied. The Association for the Advancement of Medical Instrumentation

(AAMI) is working on TIR-57, a draft guidance document to start standardizing se-

cure Information Technology (IT) practices for clinical environments; at the time of

this writing, a draft was not yet available.

2.3 Security and Privacy in IMDs and

BANs

In this section, we first review security and privacy goals for IMDs and BANs. We

then present our adversarial model and discuss security threats.

2.3.1 Security and Privacy Goals

We recognize the following security goals for IMDs and BANs, building on the

models provided by Halperin et al.,27 Burleson et al.,24 and Zhang et al.30 These

properties should hold throughout the entire life cycle of the IMD/BAN devices,

including appropriate disposal of explanted devices.

• Confidentiality : Data, device information, and device systems should be acces-

23

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

sible only to authorized entities (i.e., appropriate entities) and these entities

should be authenticated (i.e., the identity of entities communicating with de-

vices should be verifiable). In particular, data should be kept confidential both

in storage and while in transmission.

• Integrity : Data, device information, and device systems should not be mod-

ifiable by unauthorized entities. The system should also satisfy data origin

authentication; the source of any received data should be verifiable.

• Availability : Data, device information, and device systems should be accessible

when requested by authorized entities.

IMDs and BANs should also satisfy the following privacy goals; we include cri-

teria from Halperin et al.,27 Denning et al.,49 and Kumar et al.50 for completeness.

Although these goals bear some overlap with confidentiality, we include the full list

in order to allow for a more comprehensive treatment of privacy (apart from security)

in the context of IMDs and BANs. We refer the reader to the work of Avancha et al51

for a policy-oriented treatment of privacy issues in health-related mobile technology.

• Device-existence privacy : Unauthorized entities should not be able to determine

that a patient has an IMD/BAN.

• Device-type privacy : If device-existence privacy is not possible, unauthorized

entities should not be able to determine what type of IMD/BAN is in use.

24

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

• Specific-device ID privacy : Unauthorized entities should not be able to deter-

mine the unique ID of an IMD/BAN sensor.

• Measurement and log privacy : Unauthorized entities should not be able to de-

termine private telemetry or access stored data about the patient. The system

design phase should include a privacy assessment to determine appropriate poli-

cies with respect to data access.

• Bearer privacy : Unauthorized entities should not be able to exploit IMD/BAN

properties to identify the patient.

• Tracking : Unauthorized entities should not be able to leverage the physical

layer (e.g., by monitoring analog sensors or matching a radio fingerprint52–54)

to track or locate a patient.

2.3.2 Adversarial Model

Following the standard approach in computer security literature, adversaries may

be distinguished based on their goals, capabilities, and relationship to the system in

question. We have the following classification criteria.

1. An adversary is either active or passive:

• Passive adversaries are able to eavesdrop on all communication channels

in the network, including side channels, or unintentional communication

25

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

channels.

• Active adversaries are able to read, modify, and inject data over the com-

munication channel.

2. An adversary is either an external or internal entity with respect to the system.

That is, an adversary may either be an outsider or an insider with a legitimate

system role (e.g., manufacturer employees, patient, physician, or hospital ad-

ministrator).

3. An adversary may be either a single entity or a member of a coordinated group

of entities.

4. An adversary may be sophisticated, relying on specialized, custom equipment,

or unsophisticated, relying only on readily available commercial equipment.

All system components of IMDs and BANs may be used as attack surfaces, or

points of potential weakness, by an adversary (e.g., any existing sensors, actuators,

communication networks, or external programming devices). In addition, the adver-

sary may have the following targets and goals with respect to the specified target.

1. The patient : The adversary may wish to obtain private information concern-

ing the patient (e.g., whereabouts, diagnosis, or blackmail-worthy material), or

cause physical or psychological harm to the patient.

26

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

2. The device or system manufacturer : The adversary may wish to engage in

corporate espionage or fraud.

3. System resources : The adversary may wish to utilize system resources and

may be unaware of the type of device or network compromised. That is, the

adversary does not knowingly target an IMD/BAN.

2.3.3 Threats

We classify IMD and BAN security and privacy threats found in the literature

into the following categories:

• The telemetry interface, which is typically wireless. Threats include a passive

adversary who eavesdrops on wireless communications and an active adversary

who attempts to jam, replay, modify, forge, or drop wireless communications.

• Software threats, which consider an adversary that can alter the logic of the

system (e.g., through software vulnerabilities) to affect expected operation.

• Hardware and sensor interface threats. An adversary may have knowledge of

the internal hardware architecture or analog sensors and may use that knowl-

edge to attack the system. Specifically, sensor threats stem from the implicit

trust that the system places on those sensor inputs, under the assumption that

physical contact with the sensor is necessary to alter the signal. An active at-

27

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

tacker, however, may introduce remote interference to sensing in order to affect

actuation.

These categories inform our analysis of security and privacy research trends in

Section 2.4.

2.4 Medical Device Security and Privacy

Trends

We follow the broad categorization of IMD and BAN security and privacy threats

given in Section 2.3.3 in order to analyze research trends in the literature. That is,

we group research according to the relevant attack surface: the telemetry interface,

software, and hardware/sensor inputs. We give an explicit categorization of relevant

research with respect to security threats and goals in Table 2.1. Due to the large

amount of work on the wireless telemetry threats, we separate the wireless threats into

subclasses. An overview of current research, grouped thematically and by publication

year, is given in Figure 2.3.

As Figure 2.3 indicates, the vast majority of results in the literature focus on

threats to the telemetry interface, while a limited number of papers consider software

threats. Since very few papers deal with threats to the sensor interface, we defer

discussion of this emerging threat to Section 2.5.3.

28

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

H2H:

authent-
ication us-

ing IPI

Rostami et al.,55

CCS ’13

Attacks on
OPFKA and
IMDGuard

Rostami et al.,29

DAC ’13

Using bowel
sounds

for audit

Henry et al.,56

HealthTech ’13

OPFKA:
key agree-
ment based
on overlap-
ping PVs

Hu et al.,57

INFOCOM ’13

Namaste:
proximity-

based attack
against ECG

Bagade et al.,33

BSN ’13

ASK-BAN:
key gen and

auth us-
ing wire-
less chars

Shi et al.,58

WiSec ’13

FDA
MAUDE

and Recall
database
analysis

Alemzadeh et al.,59

SP ’13

Attacks on
friendly
jamming

techniques

Tippenhauer et
al.,60 SP ’13

MedMon:
physi-

cal layer
anomaly
detection

Zhang et al.,61

T-BCAS ’13

Ghost Talk:
EMI signal
injection
on ICDs

Foo Kune et al.32

SP ’13

Key shar-
ing via hu-
man body

transmission

Chang et al.,62

HealthSec ’12

Security
and privacy
analysis of
MAUDE
Database

Kramer et al.,63

PLoS ONE ’12

BANA: au-
thentication
using RSS
variation

Shi et al.,64

WiSec ’12

Side-channel
attacks
on BCI

Martinovic et al.,65

USENIX ’12

PSKA: PPG
and ECG-
based key
agreement

Venkatasubrama-
nian et al.,66

T-ITB ’10

Wristband
and pass-

word tattoos

Denning et al.,49

CHI ’10

ECG used to
determine
proximity

Jurik et al.,67

ICCCN ’11

ICD vali-
dation and
verification

Jiang et al.,68

ECRTS ’10

Shield: ex-
ternal proxy

and jam-
ming device

Gollakota et al.69

SIGCOMM ’11

BioSec ex-
tension

for BANs
(journal ver-

sion)

Venkatasubrama-
nian et al.,70

TOSN ’10

Eavesdroppi-
ng on acous-
tic authen-

tication

Halevi et al.,71

CCS ’10

Wireless
attacks

against in-
sulin pumps

Li et al.,28

HealthCom ’11

Authentication
using body

coupled com-
munication

Li et al.,28

HealthCom ’11

Software
security

analysis of
external

defibrillator

Hanna et al.,11

HealthSec ’10

IMDGuard:
ECG-based
key man-
agement

Xu et al.,72

INFOCOM ’11

Defending
against
resource
depletion

Hei et al.,73

GLOBECOM ’10

PPG-
based key
agreement

Venkatasubrama-
nian et al.,74

MILCOM ’08

Audible,
tactile, and
zero power

key exchange

Halperin et al.,22

SP ’08

Wireless
attacks

against ICDs

Halperin et al.,22

SP ’08

Proximity-
based access
control using

ultrasonic
frequency

Rasmussen et al.,75

CCS ’09

Security
and privacy

of neural
devices

Denning et al.,76

Neurosurg
Focus ’09

Biometric
require-

ments for key
generation

Ballard et al.,77

USENIX ’08

ECG-
based key
agreement

Venkatasubrama-
nian et al.,78

INFOCOM ’08

Cloaker:
external

proxy device

Denning et al.,79

HotSec ’08

BioSec ex-
tension

for BANs

Venkatasubrama-
nian

and Gupta.,80

ICISIP ’06

BioSec: ex-
tracting keys

from PVs

Cherukuri et al.81

ICPPW ’03

Authenticat-
ion and se-
cure key
exchange
using IPI

Poon et al.,82

Commun.
Mag ’06

Biometric and Physiological Values Distance Bounding Wireless Attacks Software/Malware Anomaly DetectionOut-of-Band External Devices Emerging Threats

Food-grade meat phantom used Defense contribution Dependency RelationshipAttack contribution

Figure 2.3: Trends in Security and Privacy Research on IMDs/BANs.

29

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Goal Compromised by Indicated Threat

Threat Attacks Confident. Integrity Avail. Privacy Safety Defenses
Wireless eavesdropping 22,28,60 X X 22,28,55,64,79–81

58,66,69,70,72,75,83

61,74,78,82,84

57,62,85,86

Wireless modification 22,28,29 X X X 22,28,55,64,80,81

58,69,70,72,75,79

57,61,66,74,78,82–85

62,86

Wireless replay 22,28 X X X 22,28,55,64,80,81

58,69,70,72,75,79

61,66,78,82–84

57,62,74,85,86

Wireless jamming X X 72,79

Analog sensor injection 32 X X 32

Battery depletion 22 X X 22,69,73,79

Protocol Design Flaws 22,28,29,33

60,71

X X X X X Not Applicable

Software Flaws 87 X X X X X 68,87

Side channels 33,65,71 X X X X X 65

Table 2.1: IMD and BAN security and privacy threats and defenses

2.4.1 Securing the Wireless Telemetry Interface

Halperin et al.22 introduce a class of wireless threats against a commercial ICD;

since then, attacks on the telemetry interface of IMDs have received a large amount

of attention.28,88,89 At the physical layer, Halperin et al.,22 targeting an ICD, and

Li et al.,28 targeting an insulin pump system, develop passive and active attacks

against their respective device using an off-the-shelf software defined radio (SDR)

platform. In the devices and programmers analyzed, the communication links do

not use an authenticated channel and transmit unencrypted data without freshness

checks, thereby allowing eavesdropping, replay,22 and injection attacks.28

30

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Unsurprisingly, many authentication techniques have been proposed to secure the

wireless telemetry of IMDs and BANS, including the use of biometrics, distance-

bounding authentication, out-of-band authentication, external devices, and anomaly

detection. We explore each of these areas individually below.

2.4.1.1 Biometrics

Popular techniques for key generation and key agreement in IMDs/BANs include

the use of biometrics, or physiological values (PVs).55,57,66,67,70,74,78,80–82,84 Electro-

cardiograms (ECGs) are a common choice as a source of key material in these pro-

tocols, although other PVs such as heart rate, blood glucose, blood pressure, and

temperature have been proposed.81

The choice to use ECGs is motivated by a well-cited paper by Poon et al.,82 which

asserts that the time between heartbeats, or interpulse interval (IPI), has a high level

of randomness. IPI has the additional benefit that it can be measured anywhere on

the body and many IMDs in use today can measure IPI without modification.

A typical approach to PV-based key agreement between an IMD and program-

mer, for example, involves both devices taking a measurement of the chosen PV.

This measured PV is used to generate a cryptographic key that is agreed upon by

both devices, which is then used to establish an authenticated channel. The basic

assumption is that physical contact (or at least physical proximity) with the patient

is required in order to precisely measure the chosen PV.

31

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Security analyses of these protocols have been mostly ad hoc in nature, how-

ever, and in general more comprehensive assessments are required. For example,

Rostami et al.29 demonstrate simple, but damaging attacks against OPFKA57 and

IMDGuard,72 which we discuss in Section 2.4.1.4.

Chang et al.62 also explore the use of IPI, drawing attention to the issue of noise in

real-world measurements. Later work by Rostami et al.55 presents a more robust IPI-

based authentication protocol, which unlike previous work, takes into account both

the impact of measurement noise and provide a more rigorous security analysis. We

discuss the subtleties and potential difficulties of using IPI as part of a key agreement

protocol in more detail in Section 2.5.2 and Section 2.5.3.

2.4.1.2 Distance-Bounding Protocols

Distance bounding90 is a technique that establishes physical distance between two

entities by timing the delay of sent and received transmissions. This distance bound

can be computed over various signals such as RF or ultrasonic sound (which is an

acoustic signal above 20kHz). A number of IMD/BAN access control and authenti-

cation protocols use distance bounding.28,58,62,64,75 However, distance bounding by

itself provides for only weak authentication, in which physical proximity between de-

vices is established but identity and authorization are not, thereby requiring the use

of additional authentication techniques.

A typical distance-bounding protocol between a programmer and IMD, for ex-

32

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

ample, involves the programmer proving to the IMD that it is physically close (e.g.,

within 3cm). Rasmussen et al.75 use ultrasonic sound signals to compute the distance

bound of a programmer and IMD, since it is impossible for an attacker to send audio

data that propagates faster than the speed of sound. Shi et al.58,64 use received signal

strength (RSS) variation to differentiate BAN devices on the same body from external

signals (i.e., attacker transmissions). This technique relies on the observation that the

RSS variation between two BAN devices on the same body is more stable than the

RSS between an on-body device and an external device. Jurik et al.67 make use of

ECG signals to establish the continued proximity of an authenticated mobile device

to a user.

Distance bounds are also computed over body-coupled communication (BCC). BCC

uses the human body as a transmission medium, requiring physical proximity to the

patient in order to communicate. Li et al.28 introduce wireless attacks against BCC

and find that both passive and active attacks are mitigated for distances greater

than 0.5m. Chang et al.62 inject artificial signals through the patient’s body to

authenticate BAN devices on the same body. These signals, however, only achieve

an estimated 0.469 to 5.429 bits per hour, making this technique impractical.

In the related field of RFID, system implementations have inaccurately assumed

distance-bounding guarantees as a result of short read ranges (e.g., 10cm). Kfir et al.91

introduce a relay attack in which two coordinated adversaries fool an RFID reader into

believing that the RFID tag is nearby. Relay attacks can be mitigated with context-

33

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

aware communication,92 a method which requires the user to perform an uncommon,

but easily repeatable movement in order to be authenticated. The applicability of

this defense to IMDs is debatable, however, because a patient may not be able to

authenticate in the event of a medical emergency.

Cremers et al.93 provide a classification of distance-bounding attacks that assumes

weak authentication, suggesting additional evaluation is required before such proto-

cols are used in the medical setting; the adversarial capabilities necessary to launch

these attacks are included in our model. Cremers et al. use the terminology verifier

and prover to describe the participants in distance-bounding protocols; the verifier

establishes physical proximity to the prover. The attacks consider various adversarial

capabilities for falsifying physical proximity to the prover. Specifically, the adversary

may modify transmissions between a verifier and prover. He may introduce his own

dishonest prover, or he may collude with other dishonest entities. Lastly, he may

also exploit honest provers (e.g., by first allowing the prover to establish physical

proximity, then jamming subsequent prover transmissions and authenticating in the

prover’s stead).

2.4.1.3 Out-of-Band (OOB) Authentication

OOB techniques make use of auxiliary channels, such as audio, visual, and tactile,

that are outside the established data communication channel.22,49,83,94 Using auxil-

iary channels for authentication obviates the need for trusted third parties and key

34

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

pre-distribution schemes. A common assumption in these schemes is that the chosen

out-of-band channel is resistant to eavesdropping attacks.

Halperin et al.22 propose an OOB authentication scheme that uses a low-frequency

audio channel. The basic idea is that the IMD uses a zero-power RFID device to gen-

erate a random key and transmit it over the audio channel. The patient is alerted

when a key exchange occurs through vibrations produced by a piezo element con-

nected to the RFID device. The programmer, at a distance of no more than 0.6m to

0.9m,71 listens for the key and then establishes a secure authenticated channel with

the IMD.

Halevi et al.71 examine a passive adversary with the ability to deploy (or other-

wise make use of) a general-purpose microphone (e.g., PC microphone) in the vicinity

of the IMD/programmer communication. Halevi et al. show that although the mea-

sured piezo sound accuracy varies with distance, the average key retrieval correctness

at 0.9m, computed for multiple supervised methods, is as high as 99.88%. This

contradicts Halperin et al.’s22 earlier experimental result, which indicates the audio

channel is resistant to eavesdropping.

Alternatively, Denning et al.49 and Li et al.83 opt for visual OOB authentication.

Denning et al. propose the use of ultra-violet or visible tattoos to record permanent

IMD keys. This mechanism allows emergency authentication, but does not allow

for key revocation and may suffer from usability concerns.49 Li et al.83 require the

users to visually inspect simultaneous LED blinking patterns in order to achieve

35

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

authentication in BANs. The usability of this scheme is unclear and it is unlikely to

be appropriate for emergency scenarios, so its applicability to IMDs is limited.

2.4.1.4 External Wearable Devices

A unique approach to securing IMD/BAN telemetry makes use of external devices

worn by the patient. The basic idea is that this external device mediates commu-

nication with the IMD, thereby providing both confidentiality for transmitted data

and protection against unauthenticated communication. One concern with the use

of such devices is their acceptability to the patient, however. Denning et al.49 treat

this issue in some detail and study the usability of several possible authentication

methods, including external devices and password tattoos.

Denning et al.79 propose an external device, called the cloaker, that proxies au-

thorized communication to the IMD. If the cloaker is absent, the IMD communicates

openly (e.g., in case of a medical emergency, the cloaker fails open). A malicious

programmer can exploit this fail-open behavior by selectively jamming the cloaker or

otherwise convincing the IMD of the cloaker’s absence, so Denning et al. suggest ad-

ditional mitigation techniques to prevent such an attacker from communicating with

the IMD.

Gollakota et al.69 and Xu et al.72 use friendly jamming to protect IMD communi-

cation, which uses jamming constructively to prevent unauthorized communication.

IMDGuard72 employs an external wearable device, called the Guardian, to enable

36

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

access control and confidential data transmissions. The Guardian first authenticates

the programmer and then uses an ECG-based key agreement mechanism to authen-

ticate itself to the IMD. Temporary keys can then be issued to allow a secure channel

between the programmer and the IMD. In the event that an attacker jams the mes-

sages from the Guardian device to the IMD, the Guardian initiates an active defense

by jamming all IMD transmissions. However, IMDGuard has the disadvantage of

requiring modifications to the IMD itself (which is difficult in practice with respect

to already-deployed devices) and the suggested ECG-based key agreement scheme

suffers from security flaws. Rostami et al.29 show a simple man-in-the-middle attack

that reduces the effective key length from 129 bits to 86 bits. This attack takes ad-

vantage of a protocol flaw in the second round of reconciliation (in which the two

parties verify they know the same key), which can be spoofed to reveal one bit per

block.

The shield69 works by listening for and jamming all IMD transmissions and unau-

thorized commands. Given the shield’s proximity and jamming power, the assump-

tion is that only the shield can cancel out its own jamming signal and decode IMD

transmissions. This design mitigates both passive and active wireless attacks, but the

security of the system relies on the assumption that an attacker whose distance from

the IMD is greater than the distance between the IMD and the shield will be unable

to recover IMD transmissions, even if the attacker is equipped with multiple input

and multiple output (MIMO)-systems and directional antennas. Tippenhauer et al.60

37

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

challenge this assumption, however, and show that MIMO-based attacks are possible

in the presence of an adversary with two receiving antennas from distances of up to

3m.

2.4.1.5 Anomaly Detection

Anomaly detection attempts to automatically identify resource depletion and mali-

cious communication, as well as distinguish between safety and security events.56,61,73

This is generally achieved by observing patterns over time, such as physiological

changes or IMD access patterns (e.g., programmer commands, date, or location).

Hei et al.73 obtain and use normal IMD access patterns as training data for their

supervised learning-based scheme. The resultant classification is used to identify

anomalous IMD access in real time. That is, Hei et al.’s method tries to detect

abnormal access attempts and block such authentication from proceeding, before any

expensive computations take place. In this way, the IMD is protected against denial

of service attacks that deplete the system’s resources. This scheme is designed for

non-emergency settings, however, and Hei et al. recommend that either the IMD

automatically detect emergency conditions and fail open, or that hospitals have access

to a master device key. The feasibility and security provided by these two approaches

is not considered.

Another anomaly detection approach makes use of audits; Henry et al.’s scheme56

observes correlated physiological changes when an insulin bolus is administered by

38

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

tracking acoustic bowel sounds. These observations are recorded as an audit log

for retroactive verifiability of intended system execution. While useful, a limitation

of passive anomaly detection is that such schemes do not provide medical device

integrity, and so need to be used in conjunction with another mechanism that protects

communications.

At the physical layer, wireless transmissions from an attacker are likely to deviate

in physical characteristics from legitimate programmer transmissions. Zhang et al.61

propose a medical security monitor, MedMon, which is an external device that detects

anomalous transmissions by examining physical characteristics of the transmitted

signal; such characteristics include received signal strength, time of arrival, differential

time of arrival, and angle of arrival. When an anomalous transmission is detected,

MedMon can initiate either a passive defense (e.g., by alerting the patient) or an

active defense (e.g., by blocking the transmissions from reaching the medical device).

The characteristics of the device used for anomaly detection (and any associ-

ated audit logs) have important implications for the overall security of the system.

Suggested anomaly detection implementations make use of dedicated devices, such

as analog sensor systems,56 or extend the functionality of personal devices, such as

smartphones.61,73 Offloading heavy computation to another device like a smartphone

might improve the IMD’s battery life, but significantly increases the attack surface,

as malware on mobile devices is common.95 Moreover, regulatory barriers for medical

devices may make this approach difficult. Additional challenges related to the use of

39

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

mobile devices and health-related BANs are surveyed by Avancha et al.51

2.4.2 Software Threats

Software running on medical devices spans a wide range of complexity. An increas-

ing number of medical devices are reliant on digital circuits controlled by software,

rather than analog circuits. Faris96 notes that in 2006, a major milestone was crossed

when over half of deployed medical devices contained software. So far there has been

a lack of detailed analysis of IMD software. However, there have been efforts to verify

proper functionality by simulating an artificial heart to interface with cardiac pace-

makers.68,97 Although these testing methods are not directly tailored to security, the

tests reduce software bugs and may therefore reduce possible software vulnerabilities.

Devices communicating over a BAN, in addition to their application code, have to

include a telemetry interface that increases both the amount of code and the number

of possible bugs. It is not surprising, then, that software is one of the main reasons

for FDA recalls of computer-related issues.59 Sandler et al.98 report that in 2010, the

FDA issued 23 recalls of defective devices, six of which were likely caused by software

defects. Alemzadeh et al.59 report that the percentage of computer-related recalls

between 2006 and 2011 was between 30% to 40%. In this study, software defects are

found to be the cause of 33% of computer-related class I recalls (reasonable chance of

patient harm), 66% of class II recalls (temporary or reversible adverse effects), and

75% of class III recalls (non-compliant, but unlikely to cause harm).

40

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Bugs in medical devices have been a cause of over 500 recalls recorded between

2009 and 2011 by the FDA.63 While there exists no method to extrapolate from the

reported bugs to those existing in deployed devices, the number reported is most

likely only a lower bound. Fu reports that failures in medical device software often

result from a failure to apply known system engineering techniques,99 indicating that

the problem is partially solvable today.

Moreover, the presence of a telemetry interface on the device may expose software

bugs to a remote attacker. Evidence of the brittleness of software implementations

is apparent when investigating security vulnerabilities, including those in proprietary

firmware. Hanna et al.87 perform the first public software security analysis of an

automatic external defibrillator (AED). By reverse engineering the device, the au-

thors successfully target three software packages responsible for programming device

parameters, collecting post-cardiac device data, and updating the AED. The authors

locate four vulnerabilities, one of which enables arbitrary code execution on the de-

vice.

The need for secure coding practices for safety-critical devices is clear. However,

closed source for medical devices make it challenging to run a static analyzer on the

source code, let alone obtain the firmware. With proprietary protocols and the special

MICS band used on the wireless telemetry interface, traditional fuzzing tools such as

Peach Fuzzer100 have not developed modules appropriate for testing medical devices.

A related security vulnerability is the existence of malware on medical devices.

41

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

Regardless of whether the intent of the attacker is to compromise a medical device,

malware can significantly impact the performance and reliability of safety-critical

devices such as IMDs.23

2.5 Research Challenges and Emerging

Threats

In this section, we identify and address challenges computer science researchers

face in examining the security and privacy of medical devices and discuss promising

areas for future work. In particular, we discuss common problems, identifying partial

solutions and highlighting areas where further work is needed. A particularly difficult

issue is the lack of reproducibility of research results in this field; given the safety-

critical nature of IMDs and some BANs, it is critical that proposed attacks and

defenses be thoroughly and independently evaluated in order to accurately assess risk

of the attack and efficacy of the defense. A second area of concern, which we discussed

briefly in Section 2.4.1, is the use of physiological values to secure IMDs/BANs. The

evaluations in the literature are limited in scope, partially because of the lack of

availability of appropriate data sets for use by researchers and partially because the

focus has been on protocol design rather than on a rigorous assessment of the use of

biometrics for cryptographic key establishment.

We first address issues related to reproducibility in Section 2.5.1, before moving

42

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

to a discussion of the use of physiological values in Section 2.5.2.

2.5.1 Reproducibility challenges

Lack of access to devices is a common problem; access to medical devices is ei-

ther non-existent or limited to older, end-of-life models that have been received from

patients, relatives, or physicians. The ICD that Halperin et al.22 study, for example,

is a model introduced to the market five years earlier. Without access to the devices

themselves, researchers are necessarily limited in their ability to analyze potential

attacks and defenses; often device hardware configurations are not public knowledge.

Research results from groups that have managed to acquire and study particular

IMDs are not likely to be validated by others, if only because of lack of equipment.

While there have been some efforts to provide access to medical devices,101 direct

access to devices from manufacturers by the security research community appears to

be limited at present.

A second issue in computer security and privacy experiments on medical devices is

the use of food-grade meat as a phantom, or human tissue simulator.22,60,69 As Clark

and Fu31 observe, this method does not lead to reproducible experiments, possibly

due to the introduction of uncontrolled variables that can affect the impedance of

the tissue or propagation of signals in the phantom. Instead, researchers should use

a calibrated saline solution at 1.8g/L at 21◦C [102, Table 10, p. 30] with electrodes

to inject the appropriate simulated physiological signals. The complete design is de-

43

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

scribed in the ANSI/AAMI PC69:2007 standard [102, Annex G]; this is the accepted

standard for electromagnetic compatibility of medical devices by researchers, device

manufacturers, and regulators.

2.5.2 Physiological values as an entropy source

As mentioned in Section 2.4.1.1, the use of physiological values as a building

block for security and privacy mechanisms is widespread in the literature. In partic-

ular, much research relies on the use of ECGs for security and privacy mechanisms.

ECG measurements have been suggested for use in authentication,55 key establish-

ment,66,72,82 and proximity detection67 protocols (i.e., determining if one or more

devices are in physical contact with the same body). Several systems have devices

generate a shared secret key by reading the ECG signal through physical contact with

the same person.33,57,66,70,72,78,85

Most of these ECG-based mechanisms rely on the reported randomness of the

IPI, or the amount of time between individual heartbeats;55,72 Rostami et al.29,55

suggest that sufficient entropy may be extracted from the least significant bits of

properly quantized IPIs. There are some inconsistencies in the literature with respect

to the quality of randomness it is possible to extract,75,77,81 however, and in studying

this issue, researchers have been limited by a lack of sufficient real-world data. In

particular, it is important to understand the impact of confounding factors such as

health and age on the amount of entropy in IPI, in order to ensure that appropriate

44

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

protocol parameters are chosen for entropy extraction.

In addition, Chang et al.62 draw attention to the fact that the feasibility of these

schemes relies on the ability of two devices to measure (and agree on) IPI in the

presence of noise. Therefore, realizing such schemes may be more difficult using real-

world data, rather than data collected in controlled environments (as measured by

physicians with advanced medical equipment). Chang et al.’s results are indicative

that measurement noise must be taken into account; later work by Rostami et al.55

address this concern by taking into account and optimizing for these error rates.

Most evaluations have relied on an aggregation of heart rate databases from the

MIT PhysioNet portal,103 which provides access to a large number of waveforms

(collected by clinicians) ranging from healthy sinus rhythms to irregular heartbeat

rhythms, or arrhythmias. Many suggested protocols are evaluated using either un-

specified databases33,57,66,72,78,85 or arrhythmia databases.55,70,86,104 To extract ran-

dom bits for a given record, the mean and standard deviation of the record are used

to first quantize the bits, with a subset of the least significant bits treated as random.

For example, Rostami et al.55 quantize the IPI data into 8-bit representations and

take the four least significant bits as random; the amount of entropy is estimated em-

pirically using the classical definition of Shannon entropy (i.e., average entropy). A

statistical battery of tests is then applied to the extracted bits—typically the (basic)

subset of the NIST test suite105 appropriate for the amount of data available.

Following the state of the art,106,107 the assessment of a true random number

45

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

generator (TRNG) for cryptographic purposes requires

a) an assessment of the quality of the entropy source itself (and a justification that

the physical process being measured is random); b) an analysis of the efficiency and

robustness of the extraction method (and the impact of the extraction method on the

statistical properties of the TRNG); and c) cryptanalysis in the suggested use case

(e.g., if an adversary can observe the entropy source or has an advantage in guessing

future bits, this is not good for cryptographic use).

In particular, statistical analysis of the output of a TRNG, such as testing the

output using the NIST test suites, is not sufficient to determine suitability for use

in key agreement. The statistical properties of the physical phenomena need to be

well-understood; properly quantizing the data and extracting bits that are close to

uniform requires an accurate characterization of the distribution. For example, in

the case of IPI, if the suggested methods for bit extraction do not ensure that the

distribution characteristics used at time of authentication are accurate, the resulting

bits may exhibit bias. We discuss the issue of observability of the IPI entropy source

in more detail in the next section.

46

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

2.5.3 Emerging threats: sensors, remote attacks,

and privacy

The traditional assumption with respect to IMDs and BANs is that many physi-

ological signals stay within a patient’s body, limiting the exfiltration of data and the

possibility for signal injection attacks. Recent studies, however, show that both are

possible.

To date, the design constraints of IMDs have carefully dealt with the possibility

of accidental electromagnetic interference, but do not consider the possibility of an

active attacker. Recent work by Foo Kune et al.32 shows that intentional interference

at a CIED sensor interface is possible. By injecting a signal that mimics a cardiac

waveform, Foo Kune et al. show that it is theoretically possible to alter the therapy

delivered by the CIED, although the current range of this attack is very limited

(on the order of a few centimeters). Reliance on sensor readings to achieve accurate

and timely actuation, combined with increasingly sophisticated attacks, highlights the

need to carefully consider adversarial capabilities and how best to achieve trustworthy

systems.

Similarly, if the assumption that certain physiological signals stay within the hu-

man body is incorrect, both the security and privacy of schemes may be affected.

For example, the use of physiological values as a source of entropy in key agreement

schemes relies heavily on the assumption that it is not feasible for an adversary to

47

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

observe the given biometric. A standard assumption in current literature is that the

adversary cannot make physical contact with the target patient. In this sense, pro-

tocols that make use of physiological values to generate a shared key can be viewed

as body-coupled communication protocols, whereby the key is transmitted via the

human body. Although the assumption that an adversary does not have physical

contact has merit in practice, we remark that this adversarial model neglects subtle

classes of attacks by people known to the victim; ideally, new technologies should

not enable “perfect crime” scenarios, even for the most sophisticated of attackers.

As more and more people become active participants in (potentially insecure) BANs,

moreover, it may be possible for a person close to the victim (i.e., with physical con-

tact) to inadvertently aid a remote attacker (e.g., by leaking patient biometrics or

performing signal injection attacks on sensors/wireless telemetry).

Remote attackers are also a concern today, especially with respect to observing

physiological values assumed to be secret. Rostami et al.55 and Chang et al.62 both

recognize the need to consider remote sensing of IPI. Rostami et al. attempt to extract

IPI from video footage of the target, following work by Poh et al.108 on the correlation

between color fluctuations and IPI. Although Rostami et al. fail to replicate these

results, other recent work in this area109,110 indicates that such attacks deserve further

attention.

As a final remark, recent results in Bagade et al.33 show that the ECG data of

one person may be observable from another person’s physiological signals, if the two

48

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

are in physical contact. That is, if two individuals touch, the ECG of one person is

coupled to the EEG of the other person. We conclude that while the use of ECG (and

other physiological values) as a security mechanism appears to hold some promise,

cryptanalysis and entropy assessments need to be undertaken more rigorously.

A related area of research is the study of neurostimulators, which are IMDs de-

signed to send electrical pulses to the nervous system, including the brain. These

devices are used to treat conditions such as epilepsy, Parkinson’s, and obsessive com-

pulsive disorder, with ongoing human trials exploring their efficacy in treating severe

depression. Very little computer security and privacy research has been completed

on these devices, and as the technology progresses, the need for further work in this

area becomes more pressing. Denning et al.76 give a brief overview of potential

security and privacy implications with respect to neurostimulators, but concrete re-

sults in this area are lacking. A related question is explored by Martinovic et al.:65

the authors’ side channel attacks in the context of brain-computer interfaces (BCIs),

which measure and respond dynamically to a user’s brain activities, thereby allow-

ing communication without words or gestures. Although the study is preliminary in

nature, Martinovic et al.’s results support the hypothesis that personal information,

such as passwords and whether or not a particular person is known to the target, may

unintentionally leak through BCI use.

49

CHAPTER 2. SYSTEMIZATION OF KNOWLEDGE

2.6 Concluding Remarks

In this chapter, we have given a cohesive narrative of security and privacy research

in IMDs and BANs, analyzing current and emerging research trends: namely the

security of the IMD/BAN telemetry and sensor interfaces and the need for trustworthy

software. Our analysis in Section 2.4.1 shows that much attention has been paid to

securing the telemetry interface and many useful approaches have been developed.

We have identified several areas for future work, such as the need for a more

rigorous assessment of the use of physiological values as a source of entropy for cryp-

tographic keys. As mentioned in Section 2.4.2, the increasing complexity of software

in IMDs and the history of FDA software-related recalls highlights the need for future

work ensuring the trustworthiness of IMD and BAN software.

Finally, as discussed in Section 2.5.3, the possibility of EMI attacks on the sensor

interface and eavesdropping on physiological signals formerly thought to be private is

indicative of the need for a more nuanced approach to security and privacy research for

medical devices. Computing devices that interface with the brain are becoming more

advanced and more popular, both in the entertainment (in the form of BCI-integrated

gaming) and health care industries (in the form of neurostimulators). The ability to

record and analyze brainwaves in real time using implanted computing devices that

alter the brain’s functionality has far-reaching implications for security and privacy,

moving well beyond the traditional treatment of these topics in computer security.

50

Chapter 3

Dancing on the Lip of the Volcano:

Chosen Ciphertext Attacks on

Apple iMessage

The past several years have seen widespread adoption of end-to-end encrypted text

messaging protocols. In this work we focus on one of the most popular such protocols:

Apple’s iMessage. Introduced in 2011, iMessage is an end-to-end encrypted text

messaging system that supports both iOS and OS X devices. While Apple does not

provide up-to-date statistics on iMessage usage, in February 2016 an Apple executive

noted that the system had a peak transmission rate of more then 200,000 messages

per second, across 1 billion deployed devices.111

The broad adoption of iMessage has been controversial, particularly within the law

51

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

enforcement and national security communities. In 2013, the U.S. Drug Enforcement

Agency deemed iMessage “a challenge for DEA intercept”,112 while in 2015 the U.S.

Department of Justice accused Apple of thwarting an investigation by refusing to turn

over iMessage plaintext.113 iMessage has been at the center of a months-long debate

initiated by U.S. and overseas officials over the implementation of “exceptional ac-

cess” mechanisms in end-to-end encrypted communication systems,114–116 and some

national ISPs have temporarily blocked the protocol.117 Throughout this contro-

versy, Apple has consistently maintained that iMessage encryption is end-to-end and

that even Apple cannot recover the plaintext for messages transmitted through its

servers.118

Given iMessage’s large installed base and the high stakes riding on its confidential-

ity, one might expect iMessage to have received critical attention from the research

community. Surprisingly, there has been very little analysis of the system, in large

part due to the fact that Apple has declined to publish the details of iMessage’s en-

cryption protocol. In this chapter we aim to remedy this situation. Specifically, we

attempt to answer the following question: how secure is Apple iMessage?

Our contributions. In this work we analyze the iMessage protocol and identify several

weaknesses that an attacker may use to decrypt iMessages and attachments. While

these flaws do not render iMessage completely insecure, some flaws reduce the level

of security to that of the TLS encryption used to secure communications between

end-user devices and Apple’s servers. This finding is surprising given the protection

52

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

claims advertised by Apple.118 Moreover, we determine that the flaws we detect in

iMessage may have implications for other aspects of Apple’s ecosystem, as we discuss

below.

To perform our analysis, we derived a specification for iMessage by conducting

a partial black-box reverse engineering of the protocol as implemented on multiple

iOS and OS X devices. Our efforts extend a high-level protocol overview published

by Apple119 and two existing partial reverse-engineering efforts.120,121 Armed with a

protocol specification, we conducted manual cryptanalysis of the system. Specifically,

we tried to determine the system’s resilience to both back-end infrastructure attacks

and more restricted attacks that subvert only client-local networks.

Our analysis uncovered several previously unreported vulnerabilities in the iMes-

sage protocol. Most significantly, we identified a practical adaptive chosen-ciphertext

attack on the iMessage encryption mechanism that allows us to retrospectively de-

crypt certain iMessage payloads and attachments, provided that a single Sender or

Recipient device is online. To validate this finding, we implemented a proof of con-

cept exploit against our own test devices and show that the attack can be conducted

remotely (and silently) against any party with an online device. This exploit is non-

trivial, and required us to develop novel exploit techniques, including a new chosen

ciphertext attack that operates against ciphertexts containing gzip compressed data.

We refer to this technique as a gzip format oracle attack, and we believe it may have

applications to other encryption protocols. We discuss the details of this attack in

53

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

§3.5.

We also demonstrate weaknesses in the device registration and key distribution

mechanisms of iMessage. One weakness we exploit has been identified by the reverse

engineering efforts in ,120 while another is novel. As they are not the main result of

this work, we include them in Appendix 3.10 for completeness.

Overall, our determination is that while iMessage’s end-to-end encryption pro-

tocol is an improvement over systems that use encryption on network traffic only

(e.g., Google Hangouts), messages sent through iMessage may not be secure against

sophisticated adversaries. Our results show that an attacker who obtains iMessage

ciphertexts can, at least for some types of messages, retrospectively decrypt traffic.

Because Apple stores encrypted, undelivered messages on its servers and retains them

for up to 30 days, such messages are vulnerable to any party who can obtain access

to this infrastructure, e.g., via court order,113 or by compromising Apple’s globally-

distributed server infrastructure.122 Similarly, an attacker who can intercept TLS

using a stolen certificate may be able to intercept iMessages on certain versions of

iOS and Mac OS X that do not employ certificate pinning on Apple Push Network

Services (APNs) connections.

Given the wide deployment of iMessage, and the attention paid to iMessage by

national governments, these threats do not seem unrealistic. Fortunately, the vul-

nerabilities we discovered in iMessage are relatively straightforward to repair. In the

final section of this chapter, we offer a set of mitigations that will restore strong cryp-

54

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

tographic security to the iMessage protocol. Some of these are included in iOS 9.3

and Mac OS X 10.11.4, which shipped in March 2016.

Other uses of the iMessage encryption protocol. While our work primarily consid-

ers the iMessage instant messaging system, we note that the vulnerabilities identified

here go beyond iMessage. Apple documentation notes that Apple’s “Handoff” service,

which transmits personal data between Apple devices over Bluetooth Low Energy, en-

crypts messages “in a similar fashion to iMessage”.119 This raises the possibility that

our attacks on iMessage encryption may also affect intra-device communication chan-

nels used between Apple devices. Attacks on this channel are particularly concerning

because these functions are turned on by default in many new Apple devices. We

did not investigate these attack vectors in this work but subsequent discussions with

Apple have confirmed that Apple uses the same encryption implementation to secure

both iMessage and intra-device communications. Thus, securing these channels is one

side effect of the mitigations we propose in §3.7.

3.1.1 Responsible disclosure

In November 2015 we delivered to Apple a summary of the results in this chapter.

Apple acknowledged the vulnerability in §3.5 and has initiated substantial repairs to

the iMessage system. These repairs include: enforcing certificate pinning across all

channels used by iMessage,1 removing compression from the iMessage composition

1This feature was added to OS X 10.11 in December, as a result of our notification.

55

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

(for attachment messages), and developing a fix based on our proposed “duplicate

ciphertext detection” mitigation (see §3.7). Apple has also made changes to the use

of iMessage in inter-device communications such as Handoff, although the company

has declined to share the details with us. The repairs are included in iOS 9.3 and OS

X 10.11.4, which shipped in March 2016.

3.1.2 Attack Model

Our attacks in §3.5 require the ability to obtain iMessage ciphertexts sent to

or received by a client. Because Apple Push Network Services (APNs) uses TLS to

transmit encrypted messages to Apple’s back-end servers, exploiting iMessage requires

either access to data from Apple’s servers or a forged TLS certificate. We stress that

while this is a strong assumption, it is the appropriate threat model for considering

end-to-end encrypted protocols.

A more interesting objection to this threat model is the perception that iMess-

sage might be too weak to satisfy it. For example, in 2013 Raynal et al. pointed

out a simple attack on Apple’s key distribution that enables a TLS MITM attacker

to replace the public key of a recipient with an attacker-chosen key.120 One finding

of this work is that as of December 2015 such attacks have been entirely mitigated

by Apple through the addition of certificate pinning on key server connections (see

Appendix 3.10). More fundamentally, however, such attacks are prospective – in the

sense that they require the attacker to target a particular individual before the indi-

56

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

vidual begins communicating. By contrast, the attacks we describe in this chapter

are retrospective. They can be run against any stored message content, at any point

subsequent to communication, provided that one target device remains online. More-

over, unlike previous attacks which require access to the target’s local network, our

attacks may be run remotely through Apple’s infrastructure.

3.2 The iMessage Protocol

To obtain the full iMessage specification, we began with the security overview

provided by Apple, as well as a detailed previous software reverse-engineering efforts

conducted by Raynal120 and others.121 While these previous results provide some

details of the protocol, they omit key details of the encryption mechanism, as well

as the complete key registration and notification mechanisms. We conducted addi-

tional black-box reverse engineering efforts to recover these elements. Specifically,

we analyzed and modified protocol exchanges to and from several jailbroken and

non-jailbroken Apple devices.2 In conformity to Apple’s terms of service, we did not

perform any software decompilation.

57

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

 AES encrypted payload

AES key

RSA ciphertext

 compressed payload

iMessage binary plist

huffman table

partial AES ciphertext signature

gzip compress

AES-CTR encrypt (IV=1)

extract bytes 101:nextract bytes 0:100

concatenation
RSA-OAEP encryption

CRC

Recipient PK Sender SK

ECDSA-SHA1 sign

sender ID

Figure 3.1: The iMessage encryption mechanism. From the top, each iMessage is
encoded in a binary plist key/value structure. The structure encodes a list of Sender
and Recipient account identifiers, as well as the message contents. This payload
is subsequently gzip compressed, and encrypted under a freshly-generated 128-bit
message key using AES in CTR-mode. The AES key and the first 101 bytes of the
AES ciphertext are concatenated and are encrypted to each Recipient’s public key
using RSA-OAEP. The remaining bytes of the AES ciphertext are concatenated to the
RSA ciphertext and the result is signed using ECDSA under the Sender’s registered
signing key.

3.2.1 System overview

iMessage clients. iMessage clients comprise several pieces of software running on end-

user devices. On iOS and OS X devices, the primary user-facing component is the

Messages application. On OS X computers, this application interacts with at least

three daemons: apsd, the daemon responsible for pushing and pulling application

traffic over the Apple Push Notification Service (APNs) channel; imagent, a daemon

that pulls notifications even if Messages is closed; and identityservicesd, a daemon

which maintains a cache of other users’ keys. iOS devices also contain an apsd

daemon, while other daemons handle the task of managing identities.

2In this analysis we considered iOS 6, 8, and 9 devices, as well as Mac clients running OS X
10.10.3, 10.10.5, and 10.11.1.

58

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Apple services. iMessage clients interact with multiple back-end services operated

by Apple and its partners. We focus on the two most relevant to our attack. The

Apple directory service (IDS, also known as ESS) maintains a mapping between

user identities and public keys and is responsible for distributing user public keys

on request. iMessage content is transmitted via the Apple Push Notification Service

(APNs). Long iMessages and attachments are transmitted by uploading them to the

iCloud service, which is operated by Apple using both their own servers and virtual

servers provisioned on Amazon AWS, Microsoft Azure, and Google’s Cloud Platform.

3.2.1.0.1 Identity and registration

The basic unit of identity in iMessage is the iCloud account name, which typically

consists of an email address or phone number controlled by the user. End-user de-

vices are registered to the iCloud service by associating them with an account. The

mapping between client devices and accounts is not one-to-one: a single account may

be used across multiple devices, and similarly, multiple accounts can be associated

with a single device. We give further information about the registration process in

Appendix 3.10.

3.2.1.0.2 Message encryption and decryption

To transmit a message to some list of Recipient IDs, the Sender’s iMessage client

first contacts the IDS to obtain the public key(s) PK1, . . . , PKD and a list of APNs

59

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

push tokens associated with the Sender and Recipient identities.3 It then encodes the

Sender and Recipient addresses and plaintext message into a binary plist key-value

data structure and compresses this structure using the gzip compression format. The

client next generates a 128-bit AES session key K and encrypts the resulting com-

pressed message using AES-CTR with IV = 1. This produces a ciphertext c, which

is next partitioned as c = (c1‖c2) where c1 represents the first 101 bytes of c. The

Sender parses each PKi to obtain the public encryption key pkE,i and for i = 1 to D,

calculates Ci = RSA-OAEP(pkE,i, K‖c1) and a signature σi = ECDSASign(skS, Ci‖c2).

For each distinct push token received from IDS, the Sender transmits (Ci, c2, σi) to

the APNs server. This process is illustrated in Figure 3.1.

For each ciphertext, the APNs service delivers the tuple (IDsender, IDrecipient, Ci, c2, σi)

to the intended destination. The receiving device contacts IDS to obtain the Sender’s

public key PK, parses for the signature verification key vkS, then verifies the signa-

ture σ. If verification succeeds, it decrypts Ci to obtain K‖c1, reconstructs c = (c1‖c2)

and decrypts the resulting AES-CTR ciphertext using K. It decompresses the result-

ing gzip ciphertext, parses the resulting plist to obtain the list of Recipient IDs,

and verifies that each of IDsender and IDrecipient are present in this list. If any of

the preceding checks fail, or if the Recipient is unable to parse or decompress the

resulting message, the receiving device silently aborts processing.

3This list includes one entry for each device registered to each Sender and Recipient ID. The
Messages client encrypts the message with each Sender public key to ensure that message transcripts
can be read across all of the Sender’s devices.

60

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.2.1.0.3 Attachments and long messages

For long messages and messages containing file attachments (e.g., images or video),

iMessage delivers the encrypted data using a separate mechanism. First, the client

generates a 256-bit AES key K ′ and encrypts the attached data using AES in CTR

mode. It next uploads the resulting encrypted document to Apple’s iCloud service

and obtains a unique icloud.com URL and an access token for the attachment. In

the course of this process, the iCloud service may redirect the client to upload the

encrypted file to a third-party storage server operated by an outside provider such

as Amazon, Microsoft or Google. Having uploaded the attachment, the client now

constructs a standard iMessage plist containing the URL and access token, the

key K ′ and a SHA1 hash of the encrypted document. This plist, which may also

include normal message text, is encrypted and transmitted to the Recipient using

the standard message encryption mechanism. Upon receiving and decrypting the

message, the Recipient downloads the attachment using the provided URL and access

token, verifies that the provided hash matches the received attachment, and decrypts

the attachment using K ′.

3.3 Security goals & Threat model

Apple has stated that iMessage is an end-to-end encryption protocol that should

be secure against all attackers that do not have control of Apple’s network. We base

61

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

our threat model on a recent survey on secure messaging by Unger et al.123 This

threat model includes the following attackers:

Local Adversary. This includes an attacker with control over local networks, either

on the Sender or Recipient side of the connection.

Global Adversary. An attacker controlling large segments of the Internet, such as

powerful nation states or large Internet service providers.

Network operator. Apple operates centralized infrastructure for both public key

distribution and message transmission/storage. Potential adversaries include

Apple, a government, or a malicious party with access to Apple’s servers.

Each of these attackers may be active or passive. A passive attacker simply

observes traffic and does not seek to alter or inject its own messages. An active

attacker may issue arbitrary messages to any party. In many cases, these adversary

classes may interact. As in123 we assume that adversaries also have access to the

messaging system, and can use the system to register accounts and transmit messages

as normal participants. We also assume that the endpoints in the conversation are

secure, although in some cases we allow for the possibility that an attacker might

briefly take physical control of a device and/or convince a user to modify device

configurations.

62

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.4 High-level Protocol Analysis

An initial analysis of the iMessage specification shows that the protocol suffers

from a number of defects. In this section we briefly detail several of these limitations.

In the following sections we focus on specific, exploitable flaws in the encryption

mechanism.

3.4.0.0.1 Key server and registration

iMessage key management uses a centralized directory server (IDS) which is oper-

ated by Apple. This server represents a single point of compromise for the iMessage

system. Apple, and any attacker capable of compromising the server, can use this

server to perform a man-in-the-middle attack and obtain complete decryption of iMes-

sages. The current generation of iMessage clients do not provide any means for users

to compare or verify the authenticity of keys received from the server.

Of more concern, Apple’s “new device registration” mechanism does not include

a robust mechanism for notifying users when new devices are registered on their ac-

count. This mechanism is triggered by an Apple push message, which in turn triggers

a query to an Apple-operated server. Our analysis shows that these protections are

fragile; in Appendix 3.10 we implement attacks against both the key server and the

new device registration process.

63

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Original message from Bob

Attacker replays Bob’s message

Figure 3.2: Example of a simple ciphertext replay.

3.4.0.0.2 Lack of forward secrecy

iMessage does not provide any forward secrecy mechanism for transmitted mes-

sages. This is due to the fact that iMessage encryption keys are long-lived, and are

not replaced automatically through any form of automated process. This exposes

users to the risk that a stolen device may be used to decrypt captured past traffic.

Moreover, the use of long term keys for encryption can increase the impact of

other vulnerabilities in the system. For example, in §3.5, we demonstrate an active

attack on iMessage encryption that exposes current iMessage users to decryption of

past traffic. The risk of such attacks would be greatly mitigated if iMessage clients

periodically generated fresh encryption keys. See §3.7 for proposed mitigations.

64

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.4.0.0.3 Replay and reflection attacks

The iMessage encryption protocol does not incorporate any mechanism to prevent

replay or reflection of captured ciphertexts, leading to the possibility that an attacker

can falsify conversation transcripts as illustrated in Figure 3.2. A more serious concern

is the possibility that an attacker, upon physically capturing a device, may replay

previously captured traffic to the device and thus obtain the plaintext.

3.4.0.0.4 Lack of certificate pinning on older iOS versions

iMessage clients interact with many Apple servers. As of December 2015, Apple

has activated certificate pinning on both APNs and ESS/IDS connections in iOS 9

and OS X 10.11. This eliminates a serious attack noted by Raynal et al.120 in which

an MITM attacker who controls the Sender’s local network connection and possesses

an Apple certificate can intercept calls to the ESS/IDS key server and substitute

chosen encryption keys for any Recipient (see Appendix 3.10 for further details). We

note that devices running iOS 8 (and earlier) or versions of OS X released prior to

December 2015 may still be vulnerable to such attacks. For example, at the time of

our initial disclosure in November 2015 to Apple, pinning was not present in OS X

10.11.

65

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.4.0.0.5 Non-standard encryption

iMessage encryption does not conform to best cryptographic practices and gener-

ally seems ad hoc. The protocol (see Figure 3.1) insecurely composes a collection of

secure primitives, including RSA, AES and ECDSA. Most critically, iMessage does

not use a proper authenticated symmetric encryption algorithm and instead relies on

a digital signature to prevent tampering. Unfortunately it is well known that in the

multi-user setting this approach may not be sound.124 In the following sections, we

show that an on-path attacker can replace the signature on a given message with that

of another party. This vulnerability gives rise to a practical chosen ciphertext attack

that recovers the full contents of some messages.

3.5 Attacks on the Encryption Mechanism

In this section we describe a practical attack on the iMessage encryption mecha-

nism (Figure 3.1) that allows an attacker to completely decrypt certain messages.

3.5.1 Attack setting

Our attack assumes that an adversary can recover encrypted iMessage payloads,

and subsequently access the iMessage infrastructure in the manner of a normal user.

The first requirement implies one of two conditions: in condition (1) the attacker is

on-path and capable of intercepting encrypted iMessage payloads sent from a client to

66

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Apple’s Push Notification Service (APNs) servers. Since the APNs protocol employs

TLS to secure connections between the client and APNs server, this attacker must

possess some means to bypass the TLS encryption layer; we discuss TLS interception

in more detail in Appendix 3.11. In condition (2) the attacker can recover iMessage

ciphertexts from within Apple’s network. This requires either a compromise of Ap-

ple’s infrastructure, a rogue employee, or legal compulsion. Figure 3.3 describes the

network flow of a single iMessage, along with potential attacker locations.

apsd

Messages
app

ESS/IDS

APN server(s)

Apple networkSender machine

apsd

Messages
app

Recipient machine

iCloud.com

Amazon
S3

iCloud
Content

1 6

(3)

(2)

4 5

(7)

B

A

C

(8)

Google
Storage

Figure 3.3: The process of sending an iMessage through the APNS network. The
steps are as follows: (1) The Sender contacts ESS/IDS to obtain the public keys for
each Recipient; (2) (optional) the Sender contacts iCloud to upload an attachment;
(3) (optional) the Sender uploads the encrypted attachment to an outside storage
provider as directed by iCloud; (4) the Sender’s apsd instance transmits the en-
crypted iMessage payload to Apple’s APNs server; (5) Apple delivers the payload to
a Recipient; (6) the Recipient contacts ESS/IDS to obtain the Sender’s public key;
(7) (optional) the Recipient contacts iCloud if an attachment is present; (8) (optional)
the Recipient downloads the encrypted attachment from an outside storage provider.
Potential attacker locations are labeled A, B and C.

67

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.5.2 Attack overview

There are two stages of the attack. The first exploits a weakness in the design of

the iMessage encryption composition: namely, that iMessage does not properly au-

thenticate the symmetrically encrypted portion of the message payload. In a properly-

designed composition, this section of the ciphertext would be authenticated using a

MAC in generic composition125 or via an AEAD mode of operation. Apple, instead,

relies on an ECDSA signature to guarantee the authenticity of this ciphertext. In

practice, a signature is insufficient to prevent an attacker from mauling the ciphertext

since an on-path attacker can simply replace the existing signature with an new signa-

ture using a signing key from an account controlled by the attacker. In practice, the

actual attack is slightly more complex; the first phase includes additional operations

to defeat a countermeasure in the decryption mechanism, which we discuss below.

The second stage of the attack leverages the ability to modify the AES ciphertext

(specifically, the section not contained within the RSA ciphertext). This phase con-

sists of an adaptive chosen ciphertext attack exploiting the structure of the underlying

plaintexts. The attack repeatedly modifies the ciphertext and sends it to either the

Sender or a Recipient for decryption. If the attacker can determine if decryption and

parsing were successful on the target device, she can gradually recover the underlying

iMessage payload.

The attack specifics are reminiscent of Vaudenay’s padding oracle attack,126 but

relies on the usage of compression within the iMessage protocol. Specifically, our at-

68

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

tack takes advantage of the 32-bit CRC checksum, computed over the pre-compressed

message, incorporated into gzip compressed ciphertexts. Since CRCs are linear un-

der XOR we can verify guesses about message content by editing the compressed,

encrypted message and testing if the corresponding correction to the CRC results in

a valid message.

3.5.3 A format oracle attack for gzip compression

The gzip format127 is a variant of DEFLATE compression that combines LZ77128

and Huffman coding to efficiently compress common data types. The format sup-

ports both static and dynamically-generated Huffman tables, though most encoders

use dynamic tables for all but the shortest messages. To compress a message, a

CRC32 C is calculated over the uncompressed input. Next, the encoder identi-

fies repeated strings and replaces each repeated instance with a tuple of the form

〈length, backwards distance〉, where distance indicates the relative position of the pre-

vious instance of the string. The input is encoded using an alphabet of 286 symbols,

comprising the 256 byte literals, an end-of-block (EOB) symbol, and 29 string re-

placement length values.4 If dynamic generation is selected, a Huffman table T is

calculated using the resulting text as a basis (for static tables, T = ε), and the text is

Huffman coded into a string of variable-length symbols S = (s1, . . . , sN) where string

replacement symbols are internally partitioned into a pair 〈length, distance〉. The re-

4A separate Huffman table is used to encode backwards distances.

69

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

sulting compressed message consists of (T, S, C). On decompression the process is

reversed and the CRC of the resulting string is compared to C. If any step fails, the

decompressor outputs ⊥.

Attack intuition. Our attack assumes that the attacker has intercepted a gzip com-

pressed message encrypted using an unauthenticated stream cipher and that we have

access to a decryption oracle that returns 1 if and only if the message decrypts and

successfully decompresses. Our goal is to recover a substantial fraction of the plaintext

message.

For clarity, we assume the attacker knows the Huffman table T and the length in

bits L of the uncompressed input. We further assume the attacker knows the exact

location in the ciphertext corresponding to some (unknown) `-bit Huffman symbol s

that she wishes to recover, as well as the position of the corresponding decoded literal

in the uncompressed text. These are simplifying assumptions and we will remove

them as we proceed.

Given a ciphertext c, our attack works by first selecting a mask M ∈ {0, 1}`,M 6=

0` and perturbing the ciphertext such that the underlying symbol s will decrypt

to s′ = s ⊕ M . This is done by xoring M into the ciphertext at the appropriate

location. Let decode(T, s) and decode(T, s′) represent the Huffman decoding of s

and s′ respectively, and let repeats be a boolean variable that is true if and only if

s (resp. s′) is repeated subsequently via a DEFLATE string replacement reference.

The potential values of these three variables can be categorized into the following

70

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

seven cases:

Case decode(T, s) decode(T, s⊕M) repeats

1 [0, 255] [0, 255] False

2 [0, 255] [0, 255] True

3 [0, 255] [256, 285] (either)

4 [0, 255] ⊥ (either)

5 [256, 285] [0, 255] (either)

6 [256, 285] [256, 285] (either)

7 [256, 285] ⊥ (either)

In the following paragraphs, we consider the outcome of our experiment for each of

the cases above.

Case 1: In this case, when the attacker submits the mauled ciphertext to the de-

cryption oracle, the oracle will internally decode a result that differs from the original

input string in exactly one byte position: the position corresponding to symbol s′.

However, with overwhelming probability, the CRC C ′ of the decompressed string will

not match C and cause the oracle to output 0.

Because CRC is linear under XOR, the attacker may correct the encrypted value

C by further mauling the ciphertext. Let d indicate the bit position of the symbol

associated with s (resp. s′) in the decoded message. For each i ∈ {0, 1}8 the attacker

xors the string C̄ = CRC(0d||i||0L−d) ⊕ CRC(0L) with the ciphertext at the known

location of C and submits each of the resulting ciphertexts for decryption. Since we

have that decode(T, s′) ∈ [0, 255], one of these tests will always result in a successful

CRC comparison.

71

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Upon receiving a successful result from the decryption oracle, the attacker now

examines the Huffman table T to identify candidate symbols s for which relation

decode(T, s ⊕M) = decode(T, s) ⊕ i holds. If the attacker cannot identify a unique

solution for s, she may select a new M ′ 6= M 6= 0` and repeat the procedure described

above until she has uniquely identified s. The attacker can now increment her position

in the ciphertext by ` bits and repeat this process to obtain the next plaintext symbol.

If this experiment is unsuccessful, it indicates that the ciphertext is not in Case 1

afrom the above table. To determine which case applies, the attacker must conduct

additional experiments as described below. Sometimes recovery of the symbol s will

not be feasible at all; when this occurs, the attacker must simply continue to the

next symbol in S. Occasionally, the adversary may still be able to recover s at some

additional cost.

Cases 3-4: In these cases, the original decoding of s was a byte literal, but the

decoding of s′ is either an invalid symbol or a special symbol (EOB or string re-

placement symbol). The former case always results in decompressor failure, while

the latter will typically cause the decoded string to differ from the original input at

multiple locations, resulting (with high probability) in a CRC comparison failure that

will not be corrected by the procedure described above.

To address these cases, the attacker may select a new mask M ′ 6= M 6= 0` and

repeat the complete experiment described above. Depending on the structure of the

Huffman table T , and provided that s ∈ [0, 255], the new result s⊕M ′ may produce

72

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

an outcome that satisfies the conditions of cases (1) or (2).5

Case 2: In this case, the symbol represented by s (resp s′) is referenced by one or

more subsequent instances of DEFLATE string repetition. The practical impact is

that modifying s will produce an identical alteration at two or more positions in the

decoded string, and with high probability none of the experiments indicated for Case

1 will succeed.

In some circumstances, it may be cost effective for the attacker to skip s and simply

move on to the next symbol in S. Alternatively, the attacker can experimentally

modify the CRC to indicate the same alteration at all positions that could be affected

by modifying s. Since the attacker does not know the locations at which s is repeated

or the number of such locations, this requires the attacker to submit many candidate

ciphertexts to the oracle, one for each possible set of locations where s may repeat.

In the event that s (resp s′) is repeated only once, this requires the attacker to issue

28 · (L−d)/8 queries to the oracle (one for each value of i and for each possible location

for the repeated value of s′). This may be feasible for reasonably short strings.

Cases 5-7: These cases occur when the original symbol represented by decode(T, s)

is a string replacement or EOB symbol. In most instances, replacing s with (s⊕M)

produces a decoded string that differs from the original in many positions, making it

challenging for the attacker to repair the CRC. If s decodes to a string replacement

5In principle, this approach might require as many as 28 · 2|M | = 28+` decryption queries to
obtain a successful result, or rule out these cases. In practice, however, the number of candidate
mask values M ′ is likely to be much more limited.

73

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

token, and the replacement reference points to a location that the attacker has al-

ready recovered, it may be possible for the attacker to detect the alteration using the

technique described under Case 2. Otherwise the attacker must skip s and move on

to the next symbol in S.

Recovering the unknowns. The procedure described so far requires the attacker to

know the Huffman table T , the length of the uncompressed message L, the location

and length of the symbol s, and the byte index of the corresponding decompressed

literal. In practice many of these quantities may be determined experimentally by

iterating through candidate values for L, `, k and the symbol position. This requires

the attacker to issue many candidate decryption requests until one succeeds. In the

case of iMessage attachment messages, the length L is fixed and an attacker can

generate a representative corpus of messages offline and easily estimate the other

parameters without oracle queries.

Recovering the Huffman table is more challenging. If the message is encoded using

a static table, then the table is known to the attacker. However, if T is dynamically

generated, then the attacker learns only the relation decode(T, s⊕M) = decode(T, s)⊕

i, but has no clear way of learning s or decode(T, s). Nonetheless, it might still be

possible to recover enough information from these relations to recover the value of

the underlying literals.

However, in iMessage this proves unnecessary as we take advantage of iMessage’s

structure to recover a large fraction of the dynamic table T . iMessage payloads con-

74

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

taining attachments embed a URL within the encrypted message. Requests to which

can be monitored (described below). In this way, we learn the file path and/or host-

name indicated by the plaintext URL within each ciphertext. Given this information,

and by mauling individual symbols s contained within the URL string, the attacker

can recover the value decode(T, s ⊕M) for many different values of M . This allows

the attacker to identify a relative-distance map of a portion of the Huffman tree. This

proves sufficient to recover much of the Huffman table T .

Detecting successful decryption. Our attack assumes that the attacker can detect suc-

cessful decryption of a modified ciphertext. To simplify this assumption, we focused

on messages containing attachments, such as images and videos. These messages in-

clude a URL for downloading the attachment payload, as well as a 256-bit AES key

to be used in decrypting the attachment. When an iMessage client correctly decrypts

such a message, it automatically initiates an HTTPS POST request to the provided

URL. A local network attacker can view (and intercept) this request to determine

whether decryption has occurred. Moreover, if the attacker blocks the connection,

the device will retry several times and then silently abort. Since the client provides no

indication to the user that a message has been received, this admits silent decryption

of ciphertexts.

This technique can be also extended to situations where the attacker is not on

the target device’s local network. By mauling the URL field to change the requested

hostname (e.g., from icloud.com to a domain that the attacker controls), the at-

75

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

tacker can simply direct the target device to issues HTTPS to a machine that the

attacker controls. This allows the attacker to conduct the attack remotely by trans-

mitting ciphertexts through Apple’s APNs network, at which point she obtains the

full HTTPS POST request from the target device. Since the attacker controls the

request domain, there is no need to MITM the TLS connection.6

3.5.4 An Attack on Attachment Messages

Having provided an overview of the attack components, we will describe each indi-

vidual step of the complete attack. This attack scenario assumes that a target Sender

has transmitted an attachment-bearing message to one or more online receivers, and

the attacker has the ability to monitor the local network connection (and intercept

TLS connections) on one of the Sender or Recipient devices.

Step 1. Removing and replacing the iMessage signature.

Each iMessage is authenticated using an ECDSA signature, formulated using the

private key of the iMessage Sender. This signature prevents the attacker from di-

rectly tampering with the message. However, a limitation of using signatures for

authenticity is that they do not prevent ciphertext mauling when an attacker con-

trols another account in the system. An attacker who intercepts a signed iMessage

may simply remove the existing signature from the message and re-sign the message

6The current versions of Apple’s Messages client do not enforce that this URL contains
icloud.com, and will connect to any hostname provided in the URL. Similarly, the Messages client
does not pin certificates for the HTTPS connection.

76

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

using a different key, corresponding to a separate account that the attacker controls.7

The attacker now transmits the resulting encrypted payload, signed and delivered

as though from a different Sender address. The signature replacement process is

illustrated in Figure 3.4.

In practice, simply replacing the signature on a message proves insufficient. In

iMessage, a full list of Sender and Recipient addresses is specified both in the un-

encrypted metadata for the message, and in the encrypted message payload. Upon

decrypting each message, iMessage clients verify that the message was received from

one of the accounts listed in the Sender/Recipient list, and silently abort processing

if this condition does not hold.8. While it is trivial to replace the unencrypted Sender

field, replacing encrypted envelope information is more challenging. Fortunately, in

most cases this field of the iMessage plist is contained within the malleable AES-

CTR ciphertext, and we are able to alter the contents of the Sender/Recipient list so

that it contains the identity of the replacement Sender account.

Step 2. Altering the Sender identity.

To alter the Sender identity, the attacker must selectively maul the AES-CTR

ciphertext to change specific bytes of the Sender/Recipient plist field to incorporate

the new Sender identity she is using to transmit the mauled ciphertext. This is

challenging for several reasons.

7On Mac OS X, iMessage signing keys are readily accessible from the Apple Keychain.
8Based on our experiments, the participant list does not appear to be ordered, or to distinguish

between Sender and Recipients. It is sufficient that the Sender identity appears somewhere in this
list.

77

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

First, the initial 101 bytes of the AES ciphertext are stored within the RSA-OAEP

ciphertext, which is strongly non-malleable. Thus we are restricted to altering the

subsequent bytes of the ciphertext. Fortunately, the binary plist key-value data

structure is top heavy, in that it stores a list of all key values in the data structure

prior to listing the values associated with each key. In practice, this ensures that the

relevant Sender identity appears some distance into the data structure. Moreover, the

application of gzip compression produces additional header information, including

(in many cases) a dynamic Huffman table. In all of the cases we observed, the symbols

encoding the Sender identity are located subsequent to the first 101 bytes, and are

therefore not included within the OAEP ciphertext.

The use of gzip compression somewhat complicates the attack. Rather than

mauling uncompressed ASCII bytes, the attacker must alter a set of compressed

Huffman symbols which have been encoded using a (dynamically-generated) table

T that the attacker does not know. Fortunately, the attacker knows the original

identity of the Sender, as this value is transmitted in the unencrypted apsd metadata.

Moreover, in all iMessage clients that we examined, the Sender identity is transmitted

as the first string in the Sender/Recipient list, which – due to iMessage’s predictable

format – appears in a relatively restricted range of positions within the ciphertext.

Even with this knowledge, altering the Sender ID involves a large component of

guessing. The attacker first estimates the location of the start of the Sender/Recipient

list, then selectively mauls the appropriate portions of the AES ciphertext, while

78

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

RSA ciphertext partial AES ciphertext sig A

RSA ciphertext modified partial AES ciphertext sig B

Change sender ID (A->B) Modify payload, adjust CRC Sign with skB

Figure 3.4: Modifying the partial AES ciphertext, including the Sender ID and
CRC, and replacing the signature with a new signature corresponding to an account
(and signing key) we control.

simultaneously updating the CRC to contain a guess for the modified (decoded)

symbol. This is a time consuming process, since the attacker must simultaneously

identify (1) the appropriate location in the ciphertext for the symbol she wishes to

modify, (2) a modification that causes the symbol to change to the required symbol.

The target device will silently ignores any incorrect guesses, and will proceed with

attachment download only when the mauled Sender ID in the plist is equal to the

Sender ID from which the the attacker is transmitting.

To simplify the attack, the attacker may restrict her attention to addresses that

differ from the original Sender ID in at most one symbol position. This is accomplished

by registering new iCloud addresses that are “one off” from the target Sender identity.

To increase the likelihood that we will succeed in altering the Sender account to match

one that we have selected, we register multiple new Sender identities that are near

matches to the original identity. For each attempt at mauling the ciphertext, we must

also “repair” the CRC by guessing the effect of our changes on the decompressed

message.

In our experiments, we found that an email address of the form abcdef@icloud.com

could be efficiently modified to a new account of the form abcdef@i8loud.com in ap-

79

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

proximately 217 decryption queries to a target device.9 Since Huffman tables vary

between messages, we cannot mutate every message to the same domain, and thus

we need to control several variants of icloud.com for this strategy to be successful

in all cases. Fortunately, the edits are predictable and our simulations indicate that

we require only one domain to recover most messages.

A side effect of this modification is that, due to string replacement in gzip, the

attachment URL is simultaneously altered to point to i8loud.com, which means that

attachment HTTPS POST requests are sent to a computer under our control. This

makes it possible to conduct the attack remotely.

Step 3. Recovering the Huffman table. Given the ability to intercept the attachment

request POST URL to icloud.com, we now recover information about the dynamic

Huffman tree T used in the message. The attachment path consists of a string of

alphanumeric digits, which in most instances are encoded as Huffman symbols of

length ` ∈ [4, 8].

By intercepting the HTTPS connection to icloud.com, the attacker can view the

decoded the URL path and systematically maul each Huffman symbol in turn, repair-

ing the CRC using the technique described in the previous subsection. This allows the

attacker to gradually recover a portion of the Huffman tree (Figure 3.5). In practice,

the attacker is able to recover only a subset of the tree, however, because the iMessage

client will silently fail on any URL that contains characters outside the allowed URL

9These email addresses are examples, and not the real email addresses we used in our experiments.

80

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Figure 3.5: Fragment of a Huffman tree from an attachment iMessage.

character set.10 Fortunately this set includes most printable alphanumeric characters.

Our implementation recovers a portion of the Huffman tree that is sufficient to

identify the characters in the set 0 − 9, A − F . Our experiments indicate that this

phase of the process requires an average 217 decryption requests and a maximum of

219

Step 4. Recovering the attachment encryption key. When an iMessage contains an

attachment, the message embeds a 256-bit AES key that can be used to decrypt the

attachment contents. This key is encoded as 64 ASCII hexadecimal characters and

is contained within a field named decryption-key. An attacker with oracle access

to a target device, and information on the Huffman table T , can now systematically

recover bytes from this key. Upon recovering the key, they can use the intercepted

HTTPS request information to download the encrypted attachment and decrypt it

using the recovered key.

10iMessage does not perform URL coding on disallowed characters.

81

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

The approach used in recovering the attachment key is an extension of the general

format oracle attack described above. The attacker first searches the ciphertext to

identify the first position of the decryption key field. The attacker identifies a mask

M (typically a single or double-bit change to the ciphertext) that produces a change

in the decoded message at the first position of the encryption key, which is known

due to the predictable structure of attachment messages. To identify this change,

the attacker “fixes” the CRC to test for each possible result from the decryption key,

then learns whether the decryption/decompression process succeeds. To obtain the

full key, the attacker repeats this process for each of the 64 hexadecimal symbols of

the encryption key.

This process does not reliably produce every bit of the key, due to some complica-

tions described in the general attack description above. Principal among these is the

fact that some Huffman symbols represent string replacement tokens rather than byte

literals. While it seems counterintuitive to expect repeated strings within a random

key, this occurrence is surprisingly common due to the fact gzip will substitute even

short (3 digit) strings. Indeed, on average we encounter 1.9 three-digit repetitions

within each key. In this case, we attempt to identify subsequent appearances of the

symbol by guessing later replacement locations. If this approach fails, our approach

is to simply ignore the symbol and experimentally move forward until we reach the

next symbol.

While it is possible to recover a larger fraction of the symbols in the message

82

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

by issuing more decryption queries (see §3.6 for a discussion of the tradeoffs), in

many cases it is sufficient to simply to guess the missing bits of the key offline after

recovering an encrypted attachment. In practice, the entropy of the missing sections

is usually much lower than would be indicated by the number of missing bits, since

in most cases the replacement string is drawn from either the URL field or earlier

sections of the key, both of which are known to the attacker.

Step 5. Recovering the message contents. Each attachment message may also contain

message text. This text can be read in a manner similar to the way the key is recovered

in the previous step, by mauling the message portion of the text and editing the CRC

appropriately. This approach takes slightly more effort than the hexadecimal key

recovery step, due to the higher number of potential values for each Huffman symbol

in the message text.

3.6 Implementation and Evaluation

3.6.1 Estimating attack duration

To validate the feasibility of the attack described in §3.5.4, we implemented a

prototype of the gzip format oracle attack in Python and executed it against the

Messages client on OS X 10.10.3. Our attack successfully recovered 232 out of 256

key bits after 218 decryption queries to the target device. The main challenge in

running the attack was to determine the correct timeout period after which we can

83

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

be confident that a message has not been successfully decrypted. This timeout period

has a substantial impact on the duration of the attack, as we describe below.

3.6.1.0.1 Experimental Setup

To deliver iMessage payloads to the device, we customized an open-source Python

project called pushproxy (hereinafter called the proxy) and used it to intercept con-

nections from the device to Apple’s APNs server.129 This approach models an attacker

who can either impersonate or control Apple’s APNs servers. While our attack as-

sumed local network interception and did not send messages through Apple’s servers,

we note that if an attacker is able to capture messages in transit (by bypassing TLS)

or by compromising Apple’s servers, the remainder of the attack can in principle be

conducted remotely (see the end of §3.5.3 for details). For ethical and legal reasons,

we explicitly chose not to test attacks that relayed messages via Apple’s production

servers. Thus all of our attacks were conducted via a local network.

To address the use of TLS on apsd connections, we configured our modified proxy

with a forged Apple certificate based on a CA root certificate we created, and change

/etc/hosts to redirect APNs connections intended for Apple towards our local proxy.

We generate the forged certificate by installing our root CA on the target system.11

To monitor and intercept attachment download requests, we configured an in-

stance of a TLS MITM proxy (mitmproxy) using our self-signed root certificate to

11Since OS X 10.10.3 does not include certificate pinning for APNs connections, this allowed us
to intercept and inject iMessage ciphertexts.

84

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

intercept all outbound requests from the device made via HTTP/HTTPS. When the

target device receives an attachment message, it makes two HTTPS POST requests

to {0, . . . , 255}-content.icloud.com. Based on the result of these requests, the de-

vice issues a second HTTP GET request to download the actual attachment. In our

experiments we block both of the POST requests, ensuring that no indication of the

message processing is displayed by the Messages client. For each oracle query, the

attack code waits for mitmproxy to report an attachment POST request as defined

above or, after a set time out, assumes the oracle query resulted in a failed message.

Finally, we created an iMessage account for the attacker that is a single-character

edit of the sender’s address (e.g. if the sender is alice@example.com, the attacker

might be clice@example.com). We only generate one such account for the edit we

expect to be successful, although a real attacker might register a large corpus of

iMessage accounts and thus increase the success probability of this phase of the attack.

3.6.1.0.2 Verifying the existence of the oracle

To ensure that iMessage behavior is as expected, we conducted a series of tests us-

ing hand-generated messages to determine if we were able to detect decryption success

or failure on these messages. Our results were sufficient to confirm the vulnerability

of §3.5, and verify iMessage’s behavior sufficiently well that we could construct a

simulated oracle for our experiments of §3.6.2.

85

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.6.1.0.3 Estimating the timeout for failed queries

The main goal of our experiment was to determine the maximum timeout period

after which we can determine that the device has been unable to successfully decrypt

and process a message. To determine this, our attack queries the gzip format oracle

by sending a candidate message and waiting until it either sees a resulting attachment

download (in which case the message decrypted) or some timeout passes. Too long of

a timeout results in unreasonable runtimes and too short of a timeout produces false

negatives, which lead to incorrect key recovery.

Small scale experiments proved unable to reliably estimate the maximum timeout:

the observed wait time distribution seemingly has a long tail and may be dependent

on load not encountered in small experiments (e.g. due to failed decryptions). Using

the full attack code to find the max timeout, on the other hand, is impractical, since

we must run 218 queries, each lasting as long as the timeout. This would take between

18 hours and 3 days depending on the timeout duration we wish to test.

In order to estimate the correct timeout, we ran our attack on the device in tandem

with a local instance of the format oracle which, using the recipient’s private key, also

decrypts the message and emulates iMessage’s behavior. If the candidate message

fails to decrypt against the local oracle, we use a short (400ms) timeout period. If

the candidate message decrypts successfully on this local oracle, then we wait an

unbounded amount of time for the oracle query, and record the necessary delay. We

stress that this local-oracle approach was used only to speed up the process of finding

86

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

the maximum delay; the full attack can be conducted without knowledge of the private

key.

3.6.1.0.4 Results

We ran our main experiment on a real message intercepted using the proxy. It

recovers 232 out of 256 key bits in 218 queries and took 35 hours to run. The maximum

observed delay between a query and the resulting download request was 903ms, while

the average was 390ms with a standard deviation of 100ms. Based on this data, and

without considering further optimizations, we estimate that the full attack would

require approximately 73 hours to run if we naively used 1 second as the timeout.

3.6.1.0.5 Optimizing runtime

The obvious approach to optimizing our attack is to reduce the timeout period

to the minimum period that iMessage requires to successfully process and queue

a message. Through experiment, we determined this to be approximately 400ms.

Thus one avenue to optimizing the experiment is to reduce the timeout period for

all messages to 400ms, using the assumption that a successful experiment may result

in a “late” download. Since we would not be able to neatly determine the specific

message query that occasioned the download, we would need to temporarily increase

the delay period and “backtrack” by repeating the most recent e.g., 10 queries to

determine which one caused the download. We are in the process of implementing

87

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

this optimization and will present the results in the full version of this work. Because

successful queries are quite sparse,12 this does not meaningfully affect the number of

queries needed for the attack. In our estimation, these techniques will reduce the cost

of the full attack down to 35 hours and requires only straightforward modifications

to our proof of concept code.

A second optimization is to run the attack against multiple devices with attack

queries split and conducted in parallel against them. For n devices, the attack time

is reduced by approximately a factor of n. As many users may have 2 or 3 devices,

this can offer substantial reductions.

Finally, we can reduce the raw number of queries needed to mount the attack by

refining the gzip-oracle attack techniques. In particular, we can reduce the number

of queries needed to recover the Huffman table by inferring the structure of the tree

from the partial information we have, and from the observation that the Huffman

trees fall within a fairly limited range of distributions. In particular we note that

for the Huffman trees used in gzip, recovering the symbol lengths alone is sufficient

to recover the tree. An approach drawing from techniques in machine learning to

recover the Huffman table given only a few queries, the distribution of such tables,

and known partial information could offer substantial improvements. We leave a full

exploration of these optimizations to future work.

12Out of the 218, only 418 were successful.

88

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

0 100000 200000 300000 400000 500000 600000
Total Queries

0

50

100

150

200

250

300

R
ec

ov
er

ed
 K

ey
 B

its

216 bits recovered

224 bits recovered

Queries vs Key Bits

(a) Number of queries vs number of re-
covered key bits. The orange dashed line
represents 216 bits recovered, the solid
green line 224.

0 100000 200000 300000 400000 500000 600000
Oracle Queries

20

21

22

23

24

25

26

27

P
er

ce
nt

 o
f A

tta
ck

s

Query Distribution

k 224
216 k < 224
k < 216

(b) Distribution of attack length, mea-
sured in queries. The high concentration
of attacks near zero is due to a rapid fail-
ure when it fails to edit the sender email.

Figure 3.6: Simulation results for the attachment recovery attack.

3.6.2 Simulation results

Although we have conducted our attack on iMessage, we have not explored its

effectiveness with a large range of messages. Given the time it takes to run an

experiment, doing so is prohibitive. We opt instead to simulate our results.

3.6.2.0.1 Simulation

To evaluate the overall effectiveness of our format oracle attack, we constructed a

simulated message generator and decryption oracle. Messages produced by our gen-

erator are distributed identically to real attachment-bearing messages, but contain

randomly-generated strings in place of the filename, URL path, Sender and Recipi-

ent addresses, decryption key, and “signature” (hash) fields. The decryption oracle

emulates the iMessage client’s parsing of the inner binary plist. For performance,

89

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

it skips encryption and decryption.13 Decompression is done using Python’s gzip

module, which is a wrapper around on zlib. We experimentally validate the oracle’s

correctness against the transcript of a real attack and against separate messages.

3.6.2.0.2 Results

We ran our simulated attack on a corpus of 10,000 generated messages and show

the results in Figure 3.6. In all cases, our experiments completed in at most 219

queries, with an average of approximately 217 queries. For 34% of the experiments we

ran, our attack was able to recover ≥ 216 bits of the attachment AES key. For 23%

of the messages we experimented with, we recovered ≥ 224 bits of the key, enabling

rapid brute-force of the remaining bits on commodity hardware.14

3.6.2.0.3 Optimizing success rate

Many of the failures we experience in key recovery are caused by issues with string

repetition. Recall that repeated substrings in a message are compressed in gzip

by replacing all subsequent repetitions of the substrings with a backwards-pointing

reference. As a result, editing the canonical location of a substring in the compressed

message may cause similar changes to future instances of the same substring in the

decompressed message. Our CRC correction for a given location fails to compensate

13Our implementation prevents the attacker from modifying the first 101 bytes of the message, as
those are normally contained within the RSA ciphertext. Additionally, the oracle enforces that the
alleged Sender identity is included within the plist, which is a condition enforced by iMessage.

14Experiments on an inexpensive Intel Core i7 show that we can recover 32 missing key bits in
approximately 7 minutes using an AES-NI implementation. Therefore recovering 40 missing key
bits should take approximately 28 hours on a single commodity desktop.

90

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

for these later changes because we simply do not know where in the uncompressed

message the second instance of the substring appears. As a result, our current attack

simply skips these bits.

However, we can address this weakness with only a modest increase in the number

of oracle queries. By scanning through the remaining bytes and applying the same

CRC correction at each subsequent location in the uncompressed message, we can

identify the location of the subsequent instances of the substring. This is efficient

mainly for strings that are repeated twice, but our experiments indicate this is the

most common case. Note that we do not need to scan through the entire message. As

a result of the particular format of the messages, there are only a few points where

we can get duplicates: most of the message is in lowercase letters or non-printable

characters, whereas the decryption-key and mmcs-url field (i.e. the locations where

repeats cause the most serious issues) are upper case alpha-numeric and hence will not

contain repeats from the majority of the other fields. For the experiments described

above, this would result in a 14% increase in the number of messages for which we

can recover 224 bits.

3.7 Mitigations

Our main recommendation is that Apple should replace the entirety of iMes-

sage with a messaging system that has been properly designed and formally verified.

91

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

However, we recognize this may not be immediately feasible given the large number

of deployed iMessage clients. Thus we divide our recommendations into short-term

“patches” that preserve compatibility with existing iMessage clients and long-term

recommendations that require breaking changes to the iMessage protocol.

3.7.1 Immediate mitigations

Duplicate RSA ciphertext detection. The attacks we described in §3.5 are pos-

sible because the unauthenticated AES encryption used by iMessage is malleable and

does not provide security under adaptive chosen ciphertext attack, unlike RSA-OAEP

encryption.130 Maintaining a list of all previously-received RSA ciphertexts should

prevent these replay and CCA attacks without the need for breaking changes in the

protocol. Upon receiving a stale RSA ciphertext, the Recipient would immediately

abort decryption. This fix does not prevent all possible replays, given that iMes-

sage accounts may be shared across multiple distinct devices. However, it would

substantially reduce the impact of our attacks until a more permanent fix can be

implemented. Note: This modification has been incorporated into iOS 9.3 and Mac

OS X 10.11.4.

Force re-generation of all iMessage keys and destroy message logs. iMessage

uses long-term decryption keys, and offers no mechanism to provide forward secrecy.

If possible, Apple should force all devices to re-generate their iMessage key pairs and

92

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

destroy previously-held secret keys. In addition, Apple should destroy any archives

of encrypted iMessage traffic currently held by the company.

Pin APSD/ESS certificates or sign ESS responses. The current iMessage

protocol relies heavily on the security of TLS, both for communications with the

key server and as an additional layer of protection for iMessage push traffic. Apple

should enhance this security by employing certificate (or public key) pinning within

the Messages application and apsd to prevent compromise of these connections. Al-

ternatively, Apple could extend their proprietary signing mechanisms to authenticate

key server responses as well as requests.

Reorganize message layout. The current layout of encrypted messages includes

approximately 101 bytes of the CTR message within the RSA-OAEP ciphertext,

which is resilient to ciphertext malleability attacks. Modifying sender-side code to

re-organize the layout of the underlying plist data structure to incorporate the

sender and receiver fields within this section of the message would immediately block

our attack. Implementing this change requires two significant modifications: (1)

Apple would need to disable dynamic construction of Huffman tables within the

gzip compression, and (2) restructure the binary plist serialization code to place the

sender address first. We stress that this is a fragile patch: if any portion of the sender

ID is left outside of the RSA ciphertext, the ciphertext again becomes vulnerable

to mauling. Moreover, this fix will not protect group messages where the list of

Recipients is longer than 100 bytes.

93

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.7.2 Long term recommendations

Replace the iMessage encryption mechanism. Apple should deprecate the ex-

isting iMessage protocol and replace it with a well-studied construction incorporating

modern cryptographic primitives, forward secrecy and message authentication (e.g.,

OTR131 or the TextSecure/Axolotl protocol132). At minimum, Apple should use a

modern authenticated cipher mode such as AES-GCM for symmetric encryption.

This change alone would eliminate our active attack on iMessage encryption, though

it would still not address any weaknesses in the key distribution mechanism. In addi-

tion, iMessage should place the protocol versioning information within the public key

block and the authenticated portions of the ciphertext, in order to prevent downgrade

attacks.

Implement key transparency. While many of the protocol-level attacks described

in this chapter can be mitigated with protocol changes, iMessage’s dependence on a

centralized key server represents an architectural weakness. Apple should take steps

to harden iMessage against compromise of the ESS/IDS service, either through the

use of key transparency,133 or by exposing key fingerprints to the user for manual

verification.

94

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.8 Related Work

There are a three lines of research related to our work: secure message protocols,

attacks on symmetric encryption, and decryptions attacks using compression schemes.

Instant messaging has received a great deal of attention from the research commu-

nity. Borisov et al. introduced OTR,131 and proposed strong properties for messaging,

such as per-message forward secrecy and deniability. Frosh et al. analyze a descen-

dant protocols such as TextSecure.134 More recent work has focused on multi-party

messaging135 and improved key exchange deniability.136 In a related area, Chen et

al. analyzed push messaging integrations, including Apple push networking.137 For a

survey of secure messaging technologies, see.123

A number of works have developed attacks on unauthenticated, or poorly authen-

ticated encryption protocols. In addition to the padding oracle of Vaudenay126 and

later applications,138 padding oracle attacks have been extended to use alternative

side channels such as timing.139,140 Some more recent works have proposed attacks

on more complex data formats such as XML.141,142

Some work has addressed the combination of compression and encryption. Some

attacks use knowledge of a relatively small number of bytes in the plaintext to learn

information about the compression algorithm and eventually recover an encryption

key.143,144 Kelsey145 and others146,147 used compression in the (partially) chosen plain-

text setting to recover information about plaintexts.

95

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

3.9 Conclusion

In this work we analyzed the security of a popular end-to-end encrypted messaging

protocol. Our results help to shed light on the security of deployed messaging systems,

and more generally, provide insight into the state of the art in security mechanisms

currently deployed by industry. This insight raises questions about the way research

results are disseminated an applied in industry and how our community should ensure

that widely-used protocols employ best cryptographic practices.

This work leaves several open questions. First, the gzip format oracle attack

we describe against iMessage may apply to other protocols as well. For example,

OpenPGP encryption (as implemented by GnuPG)148 also employs gzip and may be

vulnerable to similar attacks when it is used for online applications such as instant

messaging.149 Moreover, our attack requires that the adversary have some access to

a portion of the decrypted information. We leave to future work the development of

a pure “blind” attack on gzip encryption, one that does not require this additional

information.

3.10 Attacks on Key Registration

While this work focuses on the retrospective decryption of iMessage payloads, in

the course of our reverse engineering we were able to implement attacks on Apple’s key

registration infrastructure. The first attack is an implementation of attacks previously

96

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Client profile.ess.apple.com

AuthenticateUser(usr, pass)
ServerResponse(at, status=0, id)
AuthenticateDS(at, csrid, id)

ServerResponse(certid, id, status=0)
IDGetHandles(AH)

ServerResponse({urii, statusi}i∈N , id, status=0)

Figure 3.7: Profile conversation. usr = username, pass = password, at = authen-
tication token pt = push token, pkclient = client’s public key, st = session token.
AH is an authentication header with the following fields: certdevice = signed by the
Apple Fairplay Certificate, certid = a certificate associated with the client id, id, pt,
noncedevice, nonceid, σdevice, and σid.

noted by Raynal et al.120 In these attacks, which work only against versions of iOS

prior to iOS 9 and Mac devices prior to OS X 10.11.4 (i.e., devices without key

pinning), an attacker with a forged Apple TLS certificate can intercept the connection

to the Apple key server in order to substitute chosen public keys. Additionally, we

find a novel attack against the device registration process that allows an attack with

stolen credentials to circumvent existing protection mechanisms.

The protocol for registering a device is shown in Figure 3.8. The user first estab-

lishes a TLS connection to Apple’s IDS server and authenticates using their iCloud

credentials. The client generates two separate key pairs: a 1280-bit RSA public key

pair (pkE, skE) for use in encrypting and decrypting messages, and an ECDSA key-

pair (vkS, skS) for authenticating messages. The client transmits the public portion

of these keys PK = (pkE, vkE) to the IDS, which registers it to the user’s iCloud

account name. We diagram the full login and registration protocols in Figures 3.7

97

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Client identity.ess.apple.com

InitializeValidation(pt, session info request)
ServerResponse(ttl, session info, status=0)

Register(AH, device data, PKclient, misc pref, uri, id, σ)
ServerResponse(id, uri, certreg, status=0)

GetDependantRegistrations(AH)
ServerResponse({PKi, sti, pti, device datai, misc prei }i∈D)

Figure 3.8: Identity conversation. pt = push token, pkclient = client’s public key, st
= session token. AH is an authentication header with the following fields: certdevice
= signed by the Apple Fairplay Certificate, certid = a certificate associated with the
client id, id, pt, noncedevice, nonceid, σdevice, and σid.

and 3.8. To support multiple devices on a single account, the IDS will store and

return all public keys associated with a given account.

3.10.1 Key Substitution Attack

The Apple key distribution systems are accessed each time a legitimate user

wants to send an iMessage to a new Recipient. The Messages client first contacts

query.ess.apple.com to look up the keys for a given username. In response, the

server returns the user’s public key(s), status, and push tokens for addressing APNs

communications to the user. A fragment of the request and response is shown in

Figure 3.9.

The query.ess.apple.com response message contains public keys, along with

push tokens, for each of the devices registered to an account. Each of the key entries

is a 332 character long base64 encoded binary payload. When decoded, they takes

the form shown in Figure 3.10.

98

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>identities</key>
 <array>
 <dict>
 <key>client-data</key>
 <dict>
 <key>public-message-identity-key</
key><data>MIH2gUMAQQQzklEBPP0Nu0FHBovCJe+Prn8Rd97qf/j/ER3p2fRSe/
2BaYJnbIfEfQcpooKa3fWayu4+J1DJsIMaIwl52T7agoGuAKwwgakCgaEAoScfeVODb
EMjRrCNMWDQ2E2hWOXn46Mdqx7mLxJMS3LpGQjBoc3PeN1k3yMUqhi0YUYJJIq7dvac
1IJEiQilQDrc18eZ754BBknNmq7wXuDs8rQ2qmiE8/vOnCP4pOwwDQBy/
bdX2J3u2365R2VK6GDuk0zIjCeeAavAXr8kt9SzcvrO9KkYH1JKyKqn6FIYmR8cfeHt
ctJ0Tax8tnlZGQIDAQAB</data>
 <key>public-message-identity-version</key><real>2</real>
 </dict>
 <key>push-token</key><data>CI/
 =</data>
 </dict>
 </array>
 <key>status</key><integer>0</integer>
</dict>
</plist>

GET /WebObjects/QueryService.woa/wa/query?uri=mailto
%3AXXXXXX2027%40icloud.com&weight=light HTTP/1.1
Host: query.ess.apple.com

Figure 3.9: Excerpts from an ESS/IDS directory lookup request (top) and response
(bottom). The request address and a portion of the response Push token have been
redacted.

Upon receiving the RSA public key in the above diagram, the Messages client uses

this key to encrypt the outgoing iMessage payload. The ECDSA key is not used when

sending a message, but is used to verify the integrity of a message when it is received

from that user. iMessage clients appear to accept the most recent key delivered by

ESS/IDS even if it disagrees with previous entries cached by the device.

Notably, the only security measures embedded in this conversation are authen-

tication fields in the header of the request; the server does not sign the response.

99

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

0x30 0x81 0xF6 0x81 0x43 0x00 0x41 0x04 488 Bits (ECDSA Key Material) 0x82 0x81 0xAE 0x00 0xAC

Public Exponent 1280 Bit RSA Key 0x30 0x81 0xA9 0x02 0x81 0xA1 0x00 0x02 0x03 0x01 0x00 0x01

Figure 3.10: Format of public key payload in ESS server response.

Thus the authenticity of the response depends entirely on the security of the TLS

connection. This seems like an oversight, given that many other fields in the Apple

protocols are explicitly authenticated. Worse, in iOS 8 and versions of OS X 10.11

released prior to December 2015, the Messages client does not use certificate pinning

to ensure that the connection terminated by an Apple server. Thus an attacker with

a stolen TLS root certificate can intercept key requests and substitute their own key

as a response. This degrades the security of iMessage to that of TLS.

We implemented this attack by installing a self-signed X.509 root certificate into

the local root certificate store of a Mac device. This allowed us to verify that there

were no warning mechanisms that might alert a user to the key substitution. By

further intercepting messages transmitted via the APNs network, we were able to

respond to all key lookup requests with our own attacker key, and subsequently

decrypt any iMessages transmitted via the device.

Our experiments demonstrate that iOS 9 is no longer subject to simple key sub-

stitution attacks, due to the addition of certificate pinning on TLS connections. This

increases the relative impact of our novel decryption attacks. Surprisingly, our exper-

iments demonstrated that OS X 10.11.1 remained vulnerable as of November 2015.

We notified Apple of this oversight, and they have added key pinning as of OS X

100

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

10.11.13.

3.10.2 Credential theft

The first message in the registration process, shown in Figure 3.7, passes the user’s

credentials to the profile.ess.apple.com server to be verified. As noted in previous

sections, OS X 10.10.5 and iOS 8 devices do not employ certificate pinning on this

server, and the credentials are sent in plaintext within the TLS connection.15 By

conducting a TLS MITM attack on this connection, we are able to intercept iCloud

login credentials. Using this information we can register new iMessage devices to an

account, ensuring that we will be able to receive future messages.

Apple’s primary defense against registration of new devices is a notification mes-

sage that is sent to all previously-registered devices. In order to register a new device

to a target account without alerting the victim, we also developed a method to over-

come these notification mechanisms. We observed two such mechanisms:

1. Upon registration of a new device, all devices logged into the account receive a

push notification over the APNs network. In response, each device initiates the

GetDependantRegistrations call shown in Figure 3.8.

2. When an iMessage account is registered to a device that has not previously

been registered to that account, a notification email is generated and sent to

15OS X 10.11 devices do not employ certificate pinning on this connection either, but they do not
appear to send the credentials in plaintext.

101

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

the account’s registered email.

In the first instance, once the APNs push notification signaling that a

GetDependantRegistrations call should be executed has arrived at a client, the

client will continuously send the request until it receives a response. An active at-

tacker on the victim’s network can simply block all these requests, but this is not

sustainable over long periods of time. We discovered that the client is satisfied when

it receives any response — even a poorly formatted unreadable one. Thus, an at-

tacker can edit the server response causing it to decode incorrectly. The client will

accept this response and terminate the repeated GetDependantRegistrations calls.

This blocks notifications that would alert the victim to the fact that a new device

has been registered to their account. All subsequent iMessage traffic, both incoming

and outgoing, will be forwarded to the attack device. Until a user logs out of their

iMessage client, logs into a new iMessage client, or manually checks the list of de-

vices associated with their account, they will never notice that their traffic is being

forwarded to the attack device.

3.10.3 Updates in OS X 10.11

The ESS messaging protocol changed in a number of ways with the 10.11 update

to OS X. The exchange of credentials for an authorization token has moved to point to

gsa.apple.com and that connection has certificate pinning implemented. Due to this

fact, we are unable to MITM this connection, but attempting to login to an account

102

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

with bad credentials will result only in a message to that server and an error message

displayed on the client. Additionally, there is a message sent to setup.icloud.com

with a username and password pair in which the password is no longer transmitted

in plaintext.

The key substitution attack still worked against OS X 10.11 versions as of Novem-

ber 2015, but the additional certificate pinning of apsd made it more difficult to in-

tercept the message. In order to make sure the attack still functioned properly, we

recovered the encrypted payload of the message from the apsd logs and were able

to successfully decrypt the message using our own keys. Although we are not able

to easily intercept the messages as we could with 10.10.5, this attack still effectively

reduces the security of iMessage to that of TLS.

3.11 Bypassing TLS

To execute the attacks described in this chapter, the attacker must obtain en-

crypted iMessages from the APNs link. Since iMessage secures the APNs connection

using TLS, this requires the attacker to penetrate to the TLS encryption on the link

between Apple and the end-device.

We identified three approaches to bypassing the TLS on the APNs connections:

(1) Apple, or an attacker with access to Apple’s infrastructure, can intercept the

contents of push messages as they transit the APNs servers; (2) on certain iOS and

103

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

OS X versions that do not include certificate pinning for APNs, an attacker with

access to a stolen CA root certificate may be able to conduct an MITM attack on

the TLS connection; or (3) on the same versions, an attacker can “sideload” a root

certificate on the target device, by briefly taking physical control of it, or convincing

a victim to install a root certificate via a malicious email or web page. The latter

technique is particularly concerning due to the similarity between Apple’s interface for

installing root CAs, and other non-critical certificate installation requests that may

be presented to the user (see Figure 3.11). Since some Apple operating systems do not

use certificate pinning, installation of a root certificate allows arbitrary interception

of both APNs and HTTPS connections.

We identified attacks (2) and (3) as infeasible on all iOS 9 versions due to the

inclusion of certificate pinning on APNs connections in that operating system. As

of November 2015 when we first notified Apple of the results in this chapter, we

discovered that the then-current version of OS X 10.11 did not include certificate

pinning. In response to our disclosure, Apple added certificate pinning to OS X as of

December 2015.

We stress that given the interest in iMessage expressed by nation-states,115 a

compromise of CA infrastructure cannot be ruled out. Even without such attacks,

there have been several recent examples of CA-signed root or intermediate certificates

being issued for use within corporate middle-boxes, primarily for the purposes of

enterprise TLS interception.150 TLS interception may occur even within Apple OS

104

CHAPTER 3. CHOSEN CIPHERTEXT ATTACKS ON APPLE IMESSAGE

Figure 3.11: On the left is a certificate verification dialog presented on encountering
an unknown wireless access point. On the right is a root CA installation dialog.

distributions: a recent incident involving iOS 9 allowed ad-blocking software to install

a TLS root certificate.151

105

Chapter 4

Run-DMA

Modern computers contain a variety of special purpose, “auxiliary” processors de-

signed to offload specific tasks from the CPU, freeing the CPU to perform other work.

Conceptually, the CPU copies data from main memory to the auxiliary processor and

requests that it perform its function. When the auxiliary processor has completed its

task, it signals the CPU that it is finished. In reality, if the CPU were responsible

for copying the data, it would spend most of its time performing data transfers, for

example, copying memory to the GPU or network controller. Instead, computers

have specialized hardware called direct memory access (DMA) engines that perform

the copying to and from the auxiliary processors. The DMA engines perform the

data transfers in parallel with the computation performed by the various processors

by utilizing otherwise-free memory-bus cycles. In this chapter, we show that DMA

engines, despite their limited functionality, are nevertheless capable of performing

106

CHAPTER 4. RUN-DMA

Turing-complete computation.

At the same time that computer systems have been gaining additional proces-

sors, computer security researchers and practitioners have begun to recognize that

the once bright-line separation of code and data is perhaps not so bright. For ex-

ample, the threat of software exploitation has undergone a paradigm shift from a

malicious code model (i.e., attacker-delivered payloads), to a malicious computation

model where the attacker crafts data inputs to induce arbitrary computation on a

target system.152 This style of data-only attack goes by various names including

return-oriented programming (ROP)153–162 and weird machines.152,163–165

The ability to induce arbitrary computation from nothing more than copying

bytes from one address to another may be surprising to those who are not steeped

in the arcana of weird machines.1 And indeed, it is a surprisingly strong statement:

Any function that can be computed by a Turing machine can be computed using

DMA.2 The induced computation of ROP or weird machines generally takes the form

of a sequence of “gadgets” which the attacker strings together to perform the desired

computation. Each gadget typically performs some discrete action such as “add two

numbers together” or “store a value to memory.” Once a Turing-complete set of

gadgets has been constructed, any desired behavior can be “programmed” in terms

of the gadgets.

Turing-complete behavior in unexpected places is not sufficient to write programs

1For example, the x86 mov instruction is Turing-complete.166
2As we show in Section 4.5, DMA transfers can perform sequential interactive computation à la

Persistent Turing Machines.167

107

CHAPTER 4. RUN-DMA

that are interesting from a security (as opposed to a computability) perspective.

To be useful, a programming language needs to be what Atkinson et al.168 call

“resource complete.” That is, the language needs to “be[] able to access all resources

of the system [. . .] from within the language”.168 By design, DMA has direct access

to (some) hardware peripherals and RAM, including kernel memory and memory-

mapped I/O registers.3 Thus, a Turing-complete set of DMA gadgets should also be

resource-complete.

In order to build DMA gadgets, we require several capabilities of the DMA engine.

In particular, the DMA engine (1) must be capable of performing memory-to-memory

copies; (2) can be programmed by loading the address of DMA control blocks or

descriptors into memory-mapped registers; and (3) supports a scatter/gather mode

where DMA transfers can be chained together, typically by providing the address of

the next control block or descriptor.

Some DMA engines lack capability 1; for example, the Intel Platform Controller

Hub EG20T DMA controller only supports transferring data between main memory

and PCI memory [169, Chapter 12]. For DMA engines with similar restrictions,

capability 1 can be relaxed as long as the restricted source/target memory contains

a byte that could be used as a staging area enabling memory-to-memory copies by

transferring data first to the restricted space and then back to memory.

For ease of implementation and testing, our work targets the Raspberry Pi 2’s

3In some systems an IOMMU unit may restrict DMA access to certain regions of memory.

108

CHAPTER 4. RUN-DMA

DMA engine (see Section 4.2) and thus we make no claim that our results hold for

other systems. That said, we believe that the three required capabilities listed above

are satisfied by modern DMA engines. For example, the following appear to meet

our requirements: Intel 8237 (e.g., legacy IBM PC/ATs), CoreLink 330170 (i.e., ARM

Advanced Bus Architecture compliant SoCs), Cell multi-core microprocessor171 (e.g.,

Sony Playstation 3), and Intel’s I/O Acceleration Technology172 (e.g., Intel Xeon

Server).

Our work differs from traditional DMA malware — that is, malware that runs on

an auxiliary processor such as a GPU and leverages that processor’s DMA access —

in that it runs entirely in the DMA engine. An attacker need only access hardware

registers to exhibit control. This can be achieved in user space with administrator

permissions on the Raspberry Pi 2 by mapping the appropriate region of physical

memory [173, Chapter 4].

In this chapter, we are concerned with the art of crafting Turing- and resource-

complete gadget sets using a DMA engine. In particular, we do not discuss how an

attacker would gain permission to reprogram a DMA engine, which typically requires

administrator access, nor do we discuss the full power of so-called DMA malware as

both topics are well described in prior work (see Section 4.7). Concretely, we

• describe the theory behind the construction of DMA gadgets (Section 4.3);

• build an interpreter for a known Turing-complete language and demonstrate

resource-completeness (Section 4.4); and

109

CHAPTER 4. RUN-DMA

• build a proof-of-concept DMA rootkit (Section 4.5).

4.2 Background

Direct memory access (DMA), is a memory bus architectural feature that enables

peripheral devices, such as GPUs, drive controller or network controllers, to access

physical memory independently of the CPU. In particular, DMA frees the CPU from

I/O data transfer by offloading memory operations (i.e., memory-to-memory copying

or moving) to the DMA engine.

In general, each DMA engine has several control registers that specify the opera-

tion of DMA transfer, including the direction of data transfer, unit size in which to

transfer (e.g., a word or a byte), and the total number of bytes to transfer. DMA

transfers are typically configured by the operating system but may be initiated by

hardware signals.

Our work targets the Raspberry Pi 2 for implementation and testing. Specifically,

the Pi is equipped with the BCM2836 ARM processor which contains a 16-channel

Broadcom DMA controller [173, Chapter 4]. DMA transfers are initiated by loading

the address of a control block data structure into one of the channel’s memory-mapped

control registers. This causes the DMA engine to load the rest of its control registers

from the control block.

The control block is composed of eight 32-bit words that specify not only which

110

CHAPTER 4. RUN-DMA

src

01 00 00 00

cb0

dest

01 00 00 00

next_cb

cb1

00

01

...

04

01

square_tbl

Figure 1: Square gadget. This simple gadget loads a byte
x from address src, computes x2 mod 256 by using x as an
index into the square_tbl, and stores the result at address
dest. The next control block to be loaded into the DMA
engine is at address next_cb.

In the next section, we describe how to build a Turing-
complete set of DMA gadgets which we use to build an
interpreter for a simple programming language.

4 A Turing-complete gadget set
In 1964, Böhm described the simple programming lan-
guageP 00 and showed that it is Turing-complete. That is,
it can compute every Turing-computable function [5, 6].
It holds that a program written in the language can simu-
late any other computational device or language. In fact,
such a program can be written using only six distinct
expressions inP 00.
The toy programming language Brainfuck (hereafter

referred to as BF) consists of six instructions semantically
equivalent to the sixP 00 expressions and two additional
instructions used for input and output. To show that we
can compute any arbitrary, Turing-computable function,
we build an interpreter for BF out of DMA gadgets. In
order to implement the I/O instructions, we use DMA
gadgets which interact directly with memory-mapped reg-
isters for a UART, thus demonstrating that DMA gadgets
are resource-complete as well.

4.1 BF details
In this section, we give a brief overview of the BF pro-
gramming language. Readers familiar with BF are en-
couraged to skip to the following section.

BF is a minimalistic programming language consisting
of eight one-character instructions +-><[],.. All other
characters act as a no-op. BF instructions operate on a
tape divided into cells, much like the tape of a Turing ma-
chine. Each cell holds one of 256 values 00,01, . . . ,ff
and is initially empty. There is an implicit tape head,
head, which points to the current cell on the tape. The
eight instructions have the follow semantics.
+ increment the cell pointed to by head
- decrement the cell pointed to by head
> increment head to point to the next cell
< decrement head to point to the previous cell

+ + +
Program

+ + + + + + + [> + + + + + + + < -] > - - .

pc

01

Tape

46 . . .

head

Figure 2: BF example. The program is in mid-execution
with head currently pointing to cell 0 on the tape. The cur-
rent instruction is a -, which decrements the byte pointed
to by head, setting it to zero. Next, the right condition
checks if the byte pointed to by head is zero; it is, so the
program executes the next instruction which moves head
one cell to the right. Cell 1 is then decremented twice,
setting its value to 0x44. Finally, the program outputs the
ASCII character ‘D’ and halts.

[if the cell pointed to by head is nonzero, execute the
next instruction; otherwise, jump to the instruction
following the matching]

] if the cell pointed to by head is zero, execute the
next instruction; otherwise, jump to the instruction
following the matching [

, store input to the cell pointed to by head
. output the cell pointed to by head
The increment and decrement instructions +/- operate
modulo 256 and the loop instructions [] nest as expected.
Except for the loop instructions which behave as de-

scribed above, BF instructions are executed sequentially.
A program counter, pc, keeps track of the currently ex-
ecuting instruction. The program terminates when the
pc moves past the last instruction. Figure 2 illustrates an
example program that outputs the ASCII character D.

4.2 Basic building blocks
We construct our BF interpreter (Section 4.3) using the
basic building blocks described in this section. These
building blocks can be used to implement a wide variety
of gadgets beyond those needed for the BF interpreter.
Some of these are described in Section 4.4.

Unary functions. The basic operation of most gad-
gets involves mapping some input to output. Section 3
and Figure 1 illustrate the construction of 8-bit, unary
functions. It is frequently useful to compute a function
g : {0,1}8 ! {0,1}32. We can do this by constructing
a table of the 32-bit output values and using a function
f : {0,1}8 ! {0,4, . . . ,252} as an offset into the table.
I.e., g(n) = table[f (n)].

Variable dereferencing. In order to operate on data
stored at a location pointed to by a pointer, we can use a
control block to copy the value pointed to by the pointer

3

Figure 4.1: Square gadget. This simple gadget loads a byte x from address src,
computes x2 mod 256 by using x as an index into the square tbl , and stores the result
at address dest . The next control block to be loaded into the DMA engine is at
address next cb.

operation to perform, but also the address of the control block to be loaded next.

The control block forms the basis of our DMA gadget construction.

4.3 Constructing DMA gadgets

A single DMA transfer is little more than a glorified, hardware-assisted memcpy(dest,

src, size). As described in Section 4.2, on the Raspberry Pi 2, DMA transfers are

initiated by loading the address of a control block into a memory-mapped register.

Each control block contains a source address, a target address, a transfer length, and

the address of the next control block to load into the engine. In addition, there are

fields that control aspects of DMA transfers that are relevant to reading from/writing

to DMA-supported peripherals as well as a variety of options such as 2D transfers.

However, to make our results more general, we do not make use of any of these

features.

Unlike traditional computer programming, constructing a DMA “program” funda-

111

CHAPTER 4. RUN-DMA

mentally requires using self-modifying constructs. Each of our DMA gadgets consists

of a collection of control blocks, chained together using the next control block fields,

and zero or more tables of constant data. Most of the control blocks in each gadget

modify one of the source, destination, or next control block fields in a subsequently-

executed control block. For gadgets that perform basic operations such as increment

values in memory, the final control block will copy the result to memory and then

transition to the next gadget. For gadgets that perform control flow, the initial con-

trol blocks compute the address of the next control block to “execute” and store it in

the next control block field of the final control block — a trampoline — which performs

no memory transfer.

In order to compute simple functions f : {0, 1}8 → {0, 1}8, we use 256-byte tables

where the nth entry in the table corresponds to f(n). These tables are stored 256-

byte aligned in memory. By putting the address of the table in the source field of

a control block with a transfer length of 1, a preceding control block can select the

index n by copying a byte to the least significant byte of the source address pointing

to the table. Figure 4.1 demonstrates this by giving the control blocks and table for

computing the function n 7→ n2 mod 256.

In Figure 4.1 and subsequent figures, the source, destination, transfer length, and

next control block fields of the control blocks are drawn as follows. Arrows represent

pointers and shaded fields or partial fields are modified by previous DMA transfers.

In the next section, we describe how to build a Turing-complete set of DMA

112

CHAPTER 4. RUN-DMA

pabilities listed above satisfied by modern DMA engines.
In this paper, we are concerned with the art of crafting

Turing- and resource-complete gadget sets using a DMA
engine. In particular, we do not discuss how an attacker
would gain permission to reprogram a DMA engine which
typically requires administrator access nor do we discuss
the full power of so-called DMA malware2 as both topics
are well described in prior work (see Section 7). Con-
cretely, we

• describe the theory behind the construction of DMA
gadgets (Section 3);

• build an interpreter for a known Turing-complete
language and demonstrate resource-completeness
(Section 4); and

• build a proof-of-concept DMA rootkit (Section 5).

2 Background
Direct memory access, or DMA, is a computer bus ar-
chitecture feature that enables peripheral devices, such
as a disk drive controller, to access physical memory in-
dependently of the CPU. In particular, DMA frees the
CPU from I/O data transfer and can offload memory op-
erations (i.e., memory-to-memory copying or moving) to
it’s registers or dedicated engine; a process called DMA
transfer.
The DMA controller is the hardware component that

interfaces with the peripheral device to generate physical
memory addresses and initiate DMA transfer. Peripherals
typically program the DMA using third-party DMA, or
more specifically, a DMA engine resident on the system
board. Peripherals can also program the DMA using
Bus-Master DMA in which the peripheral programs the
DMA registers directly, and First-Party DMA in which
the peripheral takes control of the system bus.

In general, the DMA controller has a memory address
register and several control registers. Control registers
specify the operation of DMA transfer, including the di-
rection of data transfer, unit size in which to transfer (e.g.,
a byte), and number of bytes to transfer in a burst. DMA
transfer is initiated by software via a request for data
whereas hardware will push data directly to the system.

Our work targets the Raspberry Pi 2 for implementa-
tion and testing. Specifically, the Pi is equipped with
the BCM2836 ARM processor which contains a third-
party DMA controller [9]. We initiate DMA transfer in
software by loading a control block data structure from
memory into DMA registers. Specifically, a control block
is composed of 8 32-bit members that correspond to their
respective register, thus specifying operation on load.

2Traditional DMA malware is malware that runs on an auxiliary
processor such as a GPU and leverages that processor’s DMA access.
In contrast, our work runs entirely in the DMA engine.

3 Constructing DMA gadgets
A single DMA transfer is little more than a
glorified, hardware-assisted memcpy(dest, src,
size). As described in Section 2, on the Raspberry
Pi 2, DMA transfers are initiated by loading the address
of a control block into a memory-mapped register. Each
control block contains a source address, a target address,
a transfer length, and the address of the next control block
to load into the engine. In addition, there are fields that
control aspects of DMA transfers that are relevant to read-
ing from/writing to DMA-supported peripherals as well
as a variety of options such as 2D transfers. However, to
make our results more general, we do not make use of
any of these features.
Unlike traditional computer programming, construct-

ing a DMA “program” fundamentally requires using self-
modifying constructs. Each of our DMA gadgets consists
of a collection of control blocks, chained together using
the next control block fields, and zero or more tables of
constant data. Most of the control blocks in each gadget
modify one of the source, destination, or next control
block fields in a subsequently-executed control block. For
gadgets that perform basic operations such as increment
values in memory, the final control block will copy the
result to memory and then transition to the next gadget.
For gadgets that perform control flow, the initial control
blocks compute the address of the next control block to
“execute” and store it in the next control block field of the
final control block—a trampoline—which performs no
memory transfer.
In order to compute simple functions f : {0,1}8 !

{0,1}8, we use 256-byte tables where the nth entry in
the table corresponds to f (n). These tables are stored
256-byte aligned in memory. By putting the address of
the table in the source field of a control block with a
transfer length of 1, a preceding control block can select
the index n by copying a byte to the least significant
byte of the source address pointing to the table. Figure 1
demonstrates this by giving the control blocks and table
for computing the function n 7! n2 mod 256.

In Figure 1 and subsequent figures, the source, destina-
tion, transfer length, and next control block fields of the
control blocks are drawn as follows.

src

dest

length

next_cb

Arrows represent pointers and shaded fields or partial
fields are modified by previous DMA transfers.

2

gadgets which we use to build an interpreter for a simple programming language.

4.4 A Turing-complete gadget set

In 1964, Böhm described the simple programming language P ′′ and showed that it

is Turing-complete. That is, it can compute every Turing-computable function.174,175

It holds that a program written in the language can simulate any other computational

device or language. In fact, such a program can be written using only six distinct

expressions in P ′′.

The toy programming language Brainfuck (hereafter referred to as BF) consists of

six instructions semantically equivalent to the six P ′′ expressions and two additional

instructions used for input and output. To show that we can compute any arbitrary,

Turing-computable function, we build an interpreter for BF out of DMA gadgets. In

order to implement the I/O instructions, we use DMA gadgets which interact directly

with memory-mapped registers for a UART, thus demonstrating that DMA gadgets

are resource-complete as well.

113

CHAPTER 4. RUN-DMA

4.4.1 BF details

In this section, we give a brief overview of the BF programming language. Readers

familiar with BF are encouraged to skip to the following section.

BF is a minimalistic programming language consisting of eight one-character in-

structions +-><[],.. All other characters act as a no-op. BF instructions operate

on a tape divided into cells, much like the tape of a Turing machine. Each cell holds

one of 256 values 00, 01, . . . , ff and is initially empty. There is an implicit tape head,

head , which points to the current cell on the tape. The eight instructions have the

follow semantics.

+ increment the cell pointed to by head

- decrement the cell pointed to by head

> increment head to point to the next cell

< decrement head to point to the previous cell

[if the cell pointed to by head is nonzero, execute the next instruction; otherwise,

jump to the instruction following the matching]

] if the cell pointed to by head is zero, execute the next instruction; otherwise, jump

to the instruction following the matching [

, store input to the cell pointed to by head

. output the cell pointed to by head

The increment and decrement instructions +/- operate modulo 256 and the loop

instructions [] nest as expected.

114

CHAPTER 4. RUN-DMA

+++
Program

+++++++[>+++++++<-]>--.

pc

01

Tape

46 . . .

head

Figure 4.2: BF example. The program is in mid-execution with head currently
pointing to cell 0 on the tape. The current instruction is a -, which decrements the
byte pointed to by head , setting it to zero. Next, the right condition checks if the
byte pointed to by head is zero; it is, so the program executes the next instruction
which moves head one cell to the right. Cell 1 is then decremented twice, setting its
value to 0x44. Finally, the program outputs the ASCII character ‘D’ and halts.

Except for the loop instructions which behave as described above, BF instructions

are executed sequentially. A program counter, pc, keeps track of the currently execut-

ing instruction. The program terminates when the pc moves past the last instruction.

Figure 4.2 illustrates an example program that outputs the ASCII character D.

4.4.2 Basic building blocks

We construct our BF interpreter (Section 4.4.3) using the basic building blocks

described in this section. These building blocks can be used to implement a wide

variety of gadgets beyond those needed for the BF interpreter. Some of these are

described in Section 4.4.4.

115

CHAPTER 4. RUN-DMA

head_addr

04 00 00 00

cb0

head_addr

04 00 00 00

cb1

01 00 00 00

cb2

01 00 00 00

next_insn

cb3

01

02

...

ff

00

inc_tbl

Figure 3: Increment gadget. The tape head is stored in a fixed location, head_addr. The first two control blocks copy head to
cb2’s source and cb3’s destination, respectively. Then, cb2 copies the cell pointed to by head into the least significant byte of
cb3’s source which acts as an offset into the increment table. Finally, cb3 stores the selected value back into the tape.

into the source or destination fields of a subsequent con-
trol block. Figure 3 performs the operation

⇤head ⇤head+1

by first copying the 32-bit address pointed to by head into
the source field of cb2 and the destination field of cb3.

Conditional goto. Conditional computation is achieved
by writing the address of a control block to the next con-
trol block field of a trampoline control block. Which
address is written is data-dependent. These conditional
gotos can be used to implement if-then-else statements as
well as while and do-while loops.

As a minor space-optimization, we implement condi-
tionals using a 512-byte aligned, 512-byte address table
consisting of 128 addresses paired with a 256-byte con-
dition table. The mth conditional goto in the program
is associated with a pair of addresses: the addresses of
the control blocks corresponding to the false condition,
cbm,F , and the true condition, cbm,T . The two addresses
are stored 256-bytes apart in the address table. For exam-
ple, if the address table is stored in memory at address
0x2000, then cbm,F is stored at address 0x2000+4m
and cbm,T is stored at address 0x2100+ 4m. Each en-
try in the condition table stores either the second least
significant byte of the address of the table or that value
plus 256. In the previous example, for each n for which
the condition is false, the nth entry in the condition table
would be 0x20 and for each n for which the condition is
true, the nth entry would be 0x21.

By overwriting the second least significant byte of the
source field of a control block—whose source is the
address table—with the value from the conditional table,
that control block can copy the address of either cbF or
cbT into the next control block field of the trampoline.
This is illustrated in Figure 4.

Switch. The switch building block branches to different
control blocks depending on a data value. The value is
used as an index into a 256-byte offset table. The entries
in the offset table are the offsets into an address table

which holds the addresses of the various control blocks
associated with the switch cases.

Control blocks cb1 through cb3 in Figure 5 along with
the dispatch and instruction tables are an example of a
simple switch statement. ASCII values are mapped to
their corresponding BF gadgets by using the dispatch
table as the lookup table and the instruction table as the
address table.

Memory-mapped I/O registers. Memory-mapped I/O
registers are used to control hardware peripherals such
as general purpose I/O (GPIO) pins, UARTs, I2C or SPI
buses, and yes, DMA engines. Interacting with such pe-
ripherals typically consists of looping, where we read a
memory-mapped flag or status register over and over until
a particular status is indicated (e.g., transmit buffer not
full or receive buffer not empty), and then read or write
a value to a memory-mapped data register. This building
block is straight-forward to construct using condition-
als for the loop and unary functions for the condition
test.

4.3 BF interpreter gadgets
In this section, we use the basic building blocks defined
in Section 4.2 to construct BF instruction and interpreter-
specific gadgets. In addition to the gadgets described
below, the BF interpreter requires a BF program to inter-
pret, a region of memory to act as a tape, and three words
at known addresses: a program counter, pc, a tape head
head, and a loop counter, lc. The program counter and
tape head behave as described in Section 4.1. The loop
counter is used to find matching brackets in the imple-
mentation of the loop instructions.

Dispatch gadget. This specific gadget dispatches a BF
instruction. We use the switch building block with the
dispatch table as the offset table and the instruction table
as the address table. The dispatch gadget is shown in
Figure 5.

Increment word and decrement word gadgets. We
implement generic 4-byte increment and decrement gad-
gets which take as input the address of the value to incre-

4

Figure 4.3: Increment gadget. The tape head is stored in a fixed location, head addr .
The first two control blocks copy head to cb2’s source and cb3’s destination, respec-
tively. Then, cb2 copies the cell pointed to by head into the least significant byte of
cb3’s source which acts as an offset into the increment table. Finally, cb3 stores the
selected value back into the tape.

4.4.2.0.1 Unary functions.

The basic operation of most gadgets involves mapping some input to output.

Section 4.3 and Figure 4.1 illustrate the construction of 8-bit, unary functions. It is

frequently useful to compute a function g : {0, 1}8 → {0, 1}32. We can do this by

constructing a table of the 32-bit output values and using a function f : {0, 1}8 →

{0, 4, . . . , 252} as an offset into the table. I.e., g(n) = table[f(n)].

4.4.2.0.2 Variable dereferencing.

In order to operate on data stored at a location pointed to by a pointer, we can

use a control block to copy the value pointed to by the pointer into the source or

destination fields of a subsequent control block. Figure 4.3 performs the operation

∗head ← ∗head + 1

116

CHAPTER 4. RUN-DMA

by first copying the 32-bit address pointed to by head into the source field of cb2 and

the destination field of cb3.

4.4.2.0.3 Conditional goto.

Conditional computation is achieved by writing the address of a control block to

the next control block field of a trampoline control block. Which address is written

is data-dependent. These conditional gotos can be used to implement if-then-else

statements as well as while and do-while loops.

As a minor space-optimization, we implement conditionals using a 512-byte aligned,

512-byte address table consisting of 128 addresses paired with a 256-byte condition

table. The mth conditional goto in the program is associated with a pair of addresses:

the addresses of the control blocks corresponding to the false condition, cbm,F , and

the true condition, cbm,T . The two addresses are stored 256-bytes apart in the address

table. For example, if the address table is stored in memory at address 0x2000, then

cbm,F is stored at address 0x2000 + 4m and cbm,T is stored at address 0x2100 + 4m.

Each entry in the condition table stores either the second least significant byte of the

address of the table or that value plus 256. Continuing the example, for each value n

for which the condition is false, the nth entry in the condition table would be 0x20

and for each n for which the condition is true, the nth entry would be 0x21.

By overwriting the second least significant byte of the source field of a control

block — whose source is the address table — with the value from the conditional table,

117

CHAPTER 4. RUN-DMA

cond_ptr

01 00 00 00

cb0

01 00 00 00

cb1

04 00 00 00

cb2

00 00 00 00

tramp

21 20 21 20 21 20 21 · · · 21 20

conditional_tbl

cb0,F

cb1,F
...

cb0,T

cb1,T
...

address_tbl

Figure 4: Conditional goto gadget. First, cb0 copies the byte pointed to by cond_ptr into the least significant byte of cb1’s
source to use as an index into the conditional table. Then, cb1 copies the selected byte into the second least significant byte of
cb2’s source. This byte selects which of cbT or cbF are copied into tramp’s next control block field. If the address table is at
address 0x2000, then if the byte pointed to by cond_ptr is even, then cb1,T will be the next control block executed. Otherwise,
cb1,F will be.

pc

04 00 00 00

cb0

01 00 00 00

cb1

01 00 00 00

cb2

04 00 00 00

cb3

00 00 00 00

tramp

00 04 · · · 08 · · · 0c · · · 10 · · · 04

dispatch_tbl

quit

nop

increment

decrement

right
...

insn_tbl

Figure 5: Dispatch gadget. The byte pointed to by the program counter is used as an offset into the dispatch table. The dispatch
table contains the offset into the instruction table for the corresponding instruction. For example, the byte ‘+’ has ASCII
value 43; the 43rd entry of the dispatch table is 8; and the address of the increment gadget (see Figure 3) is stored at offset 8 in
the instruction table. The control block cb3 copies the corresponding entry from the instruction table into the next control block
field of a trampoline control block.

ment (resp. decrement) and the address of the next control
block to execute when the operation is complete. These
work by operating on a byte at a time. First, we increment
(resp. decrement) the least significant byte of the 4-byte
word. If the result is 00 (resp. ff), then we repeat with
the second least significant byte, and so on. This is a
straight-forward application of unary functions, variable
dereferencing, and conditionals.

Next instruction gadget. The next instruction gadget
increments the pc by one using the increment word gadget
and then jumps to the dispatch gadget.

Increment and decrement instruction gadgets.
These gadgets increment or decrement the cell pointed to
by pc using the generic increment and decrement word
gadgets and then jump to the next instruction gadget.

Move right and left instruction gadgets. These gad-
gets move the head right or left by incrementing or decre-

menting head using the generic increment and decrement
word gadgets and then jump to the next instruction gad-
get.

Loop instruction gadgets. The left and right loop in-
struction gadgets use the increment/decrement byte and
word, conditional, and switch gadgets in its implemen-
tation. We use the switch gadget and define our lookup
table, or bracket table, to contain an offset into two dis-
tinct address tables, or scan right table and scan left table,
at the nth index, where n equals 0 or the ASCII byte rep-
resentation of ‘[’, or ‘]’. The scan right table assigns
its indexes with the following control block addresses in
order: scan right, increment loop counter, decrement loop
counter, and quit. The scan left table simply inverts all
operations.

We implement the left condition to first check whether
the cell pointed to by head is zero. If it is, the gadget

5

Figure 4.4: Conditional goto gadget. First, cb0 copies the byte pointed to by
cond ptr into the least significant byte of cb1’s source to use as an index into the
conditional table. Then, cb1 copies the selected byte into the second least significant
byte of cb2’s source. This byte selects which of cbT or cbF are copied into tramp’s
next control block field. If the address table is at address 0x2000, then if the byte
pointed to by cond ptr is even, then cb1,T will be the next control block executed.
Otherwise, cb1,F will be.

that control block can copy the address of either cbF or cbT into the next control block

field of the trampoline. This is illustrated in Figure 4.4.

4.4.2.0.4 Switch.

The switch building block branches to different control blocks depending on a

data value. The value is used as an index into a 256-byte offset table. The entries in

the offset table are the offsets into an address table which holds the addresses of the

various control blocks associated with the switch cases.

Control blocks cb1 through cb3 in Figure 4.5 along with the dispatch and instruc-

tion tables are an example of a simple switch statement. ASCII values are mapped to

their corresponding BF gadgets by using the dispatch table as the lookup table and

118

CHAPTER 4. RUN-DMA

the instruction table as the address table.

4.4.2.0.5 Memory-mapped I/O registers.

Memory-mapped I/O registers are used to control hardware peripherals such as

general purpose I/O (GPIO) pins, UARTs, I2C or SPI buses, and yes, DMA en-

gines. Interacting with such peripherals typically consists of looping, where we read a

memory-mapped flag or status register over and over until a particular status is indi-

cated (e.g., transmit buffer not full or receive buffer not empty), and then read or write

a value to a memory-mapped data register. This building block is straight-forward

to construct using conditionals for the loop and unary functions for the condition

test.

4.4.3 BF interpreter gadgets

In this section, we use the basic building blocks defined in Section 4.4.2 to con-

struct BF instruction and interpreter-specific gadgets. In addition to the gadgets

described below, the BF interpreter requires a BF program to interpret, a region of

memory to act as a tape, and three words at known addresses: a program counter, pc,

a tape head head , and a loop counter, lc. The program counter and tape head behave

as described in Section 4.4.1. The loop counter is used to find matching brackets in

the implementation of the loop instructions.

119

CHAPTER 4. RUN-DMA

cond_ptr

01 00 00 00

cb0

01 00 00 00

cb1

04 00 00 00

cb2

00 00 00 00

tramp

21 20 21 20 21 20 21 · · · 21 20

conditional_tbl

cb0,F

cb1,F
...

cb0,T

cb1,T
...

address_tbl

Figure 4: Conditional goto gadget. First, cb0 copies the byte pointed to by cond_ptr into the least significant byte of cb1’s
source to use as an index into the conditional table. Then, cb1 copies the selected byte into the second least significant byte of
cb2’s source. This byte selects which of cbT or cbF are copied into tramp’s next control block field. If the address table is at
address 0x2000, then if the byte pointed to by cond_ptr is even, then cb1,T will be the next control block executed. Otherwise,
cb1,F will be.

pc

04 00 00 00

cb0

01 00 00 00

cb1

01 00 00 00

cb2

04 00 00 00

cb3

00 00 00 00

tramp

00 04 · · · 08 · · · 0c · · · 10 · · · 04

dispatch_tbl

quit

nop

increment

decrement

right
...

insn_tbl

Figure 5: Dispatch gadget. The byte pointed to by the program counter is used as an offset into the dispatch table. The dispatch
table contains the offset into the instruction table for the corresponding instruction. For example, the byte ‘+’ has ASCII
value 43; the 43rd entry of the dispatch table is 8; and the address of the increment gadget (see Figure 3) is stored at offset 8 in
the instruction table. The control block cb3 copies the corresponding entry from the instruction table into the next control block
field of a trampoline control block.

ment (resp. decrement) and the address of the next control
block to execute when the operation is complete. These
work by operating on a byte at a time. First, we increment
(resp. decrement) the least significant byte of the 4-byte
word. If the result is 00 (resp. ff), then we repeat with
the second least significant byte, and so on. This is a
straight-forward application of unary functions, variable
dereferencing, and conditionals.

Next instruction gadget. The next instruction gadget
increments the pc by one using the increment word gadget
and then jumps to the dispatch gadget.

Increment and decrement instruction gadgets.
These gadgets increment or decrement the cell pointed to
by pc using the generic increment and decrement word
gadgets and then jump to the next instruction gadget.

Move right and left instruction gadgets. These gad-
gets move the head right or left by incrementing or decre-

menting head using the generic increment and decrement
word gadgets and then jump to the next instruction gad-
get.

Loop instruction gadgets. The left and right loop in-
struction gadgets use the increment/decrement byte and
word, conditional, and switch gadgets in its implemen-
tation. We use the switch gadget and define our lookup
table, or bracket table, to contain an offset into two dis-
tinct address tables, or scan right table and scan left table,
at the nth index, where n equals 0 or the ASCII byte rep-
resentation of ‘[’, or ‘]’. The scan right table assigns
its indexes with the following control block addresses in
order: scan right, increment loop counter, decrement loop
counter, and quit. The scan left table simply inverts all
operations.

We implement the left condition to first check whether
the cell pointed to by head is zero. If it is, the gadget

5

Figure 4.5: Dispatch gadget. The byte pointed to by the program counter is used
as an offset into the dispatch table. The dispatch table contains the offset into the
instruction table for the corresponding instruction. For example, the byte ‘+’ has
ASCII value 43; the 43rd entry of the dispatch table is 8; and the address of the
increment gadget (see Figure 4.3) is stored at offset 8 in the instruction table. The
control block cb3 copies the corresponding entry from the instruction table into the
next control block field of a trampoline control block.

4.4.3.0.1 Dispatch gadget.

This specific gadget dispatches a BF instruction. We use the switch building

block with the dispatch table as the offset table and the instruction table as the

address table. The dispatch gadget is shown in Figure 4.5.

4.4.3.0.2 Increment/decrement word gadgets.

We implement generic 4-byte increment and decrement gadgets which take as in-

put the address of the value to increment (resp. decrement) and the address of the

next control block to execute when the operation is complete. These work by oper-

ating on a byte at a time. First, we increment (resp. decrement) the least significant

byte of the 4-byte word. If the result is 00 (resp. ff), then we repeat with the sec-

ond least significant byte, and so on. This is a straight-forward application of unary

120

CHAPTER 4. RUN-DMA

functions, variable dereferencing, and conditionals.

4.4.3.0.3 Next instruction gadget.

The next instruction gadget increments the pc by one using the increment word

gadget and then jumps to the dispatch gadget.

4.4.3.0.4 Increment/decrement instruction gadgets.

These gadgets increment or decrement the cell pointed to by pc using the generic

increment and decrement word gadgets and then jump to the next instruction gadget.

4.4.3.0.5 Move right/left instruction gadgets.

These gadgets move the head right or left by incrementing or decrementing head

using the generic increment and decrement word gadgets and then jump to the next

instruction gadget.

4.4.3.0.6 Loop instruction gadgets.

The left and right loop instruction gadgets use the increment/decrement byte

and word, conditional, and switch gadgets in its implementation. We use the switch

gadget and define our lookup table, or bracket table, to contain an offset into two

distinct address tables, or scan right table and scan left table, at the nth index, where n

equals 0 or the ASCII byte representation of ‘[’, or ‘]’. The scan right table assigns its

121

CHAPTER 4. RUN-DMA

indexes with the following control block addresses in order: scan right, increment loop

counter, decrement loop counter, and quit. The scan left table inverts all operations.

We implement the left condition to first check whether the cell pointed to by

head is zero. If it is, the gadget jumps to the next instruction gadget. Otherwise,

it increments lc using the increment word gadget and scans right, incrementing and

decrementing lc as brackets are encountered until lc = 0 at which point it jumps to

the next instruction gadget.

The right condition is similar with a few exceptions. First, we jump to the next

instruction if the cell pointed to by head is zero. At the start of scan left we decrement

the pc using the decrement word gadget. The scan left table, as stated above, simply

inverts all operations of the scan right table. This has the effect of scanning left until

the matching bracket is found at which point it jumps to the next instruction gadget.

4.4.3.0.7 Input/output instruction gadgets.

Using the memory-mapped I/O building block, the input and output instruction

gadgets use the Pi’s UART to receive a byte and store it in the cell pointed to by

head or to transmit the byte in the cell.

4.4.4 Other gadgets

In previous sections, we demonstrated that DMA transfers are Turing- and resource-

complete by building gadgets to interpret the BF programming language and interact

122

CHAPTER 4. RUN-DMA

with memory-mapped I/O registers. In this section we sketch the construction of a

handful of building blocks that could be used to implement more efficient programs

than those built using BF.

Similar to the unary function building block, we can construct arbitrary binary

functions f : {0, 1}8 × {0, 1}8 → {0, 1}8 by using a 64-kilobyte table, appropriately

aligned such that concatenation of the left and right operands forms an offset into

the table. Larger binary operations can be constructed by operating 8-bits at a time.

For arithmetic operations such as addition, an additional table containing a carryout

bit could be used to implement carries.

Relational operators can be implemented in much the same way or they can lever-

age a subtraction.

Finally, DMA-specific features can be used to easily implement functionality which

would otherwise be more difficult to implement or be less performant. For one exam-

ple, the DMA engine on the Raspberry Pi 2 is capable of zeroing regions of memory.

Another example is the Pi is capable of performing moderately complex copying

modes including nonconsecutive 2D copies. Lastly, as mentioned above, the DMA is

usually responsible for communicating directly with hardware peripherals and DMA

engines typically support gating the transfers between devices and memory using a

variety of hardware signals. This would significantly simplify access to supported

peripherals.

123

CHAPTER 4. RUN-DMA

4.5 A DMA rootkit

The most common operating system used on the Raspberry Pi is a Debian-derived

distribution called Raspbian which has a Linux kernel. Linux maintains a circular

linked list of task structs each of which holds information about a process. The

head of the list, init task, is an exported kernel symbol which is exposed using the

ksymtab mechanism. Each task struct contains a pointer to cred structure which

contains various credentials, including the user ID (UID) of the process.

We implemented a DMA rootkit that first finds the address of init task and

then continually walks the linked list. For each process, the rootkit examines the

process’s UID. If the UID matches the target UID, then the UID is changed to 0,

effectively giving the process super user privileges. Any processes with the target

UID that are running are modified shortly after the rootkit is started. Similarly, any

processes with the target UID that are started after the rootkit are quickly modified.

Unlike the DMA gadgets described in Section 4.4, for the rootkit we utilize the

DMA engine’s ability to perform a 2D transfer. This enables the rootkit to copy

the task struct’s next struct pointer and its cred pointer to a known location in

memory given only the address of the next task struct pointer.4

In more detail, starting with a four-byte kernel virtual address, va for a task struct’s

next struct pointer which is stored in a fixed location p, the rootkit first converts va

4Lists in the Linux kernel contain pointers to the next element’s next element pointer rather
than to the beginning of the structure. In normal kernel code, this leads to an additional arithmetic
instruction to recover a pointer to the structure.

124

CHAPTER 4. RUN-DMA

to a bus address ba. Next, it loads the two words at ba and ba + ∆ — where ba + ∆

is the bus address of the cred pointer — to p and p + 4 using a 2D transfer with an

appropriate stride constant ∆. After this transfer, location p contains a kernel virtual

address for a task struct’s next struct pointer and p + 4 contains a kernel virtual

address for the current task struct’s cred struct. The latter address is converted

to a bus address, the UID is loaded, compared to the target UID, and on a match, 0

is written. In either case, the loop repeats.

Since the list is circular, the rootkit’s logic is particularly simple. It consists of

two DMA control blocks to get the address of init task and an additional 18 to

implement the loop, UID test, and UID setting.

4.6 Implementation

We implemented the BF interpreter described in Section 4.4.3 and the rootkit

described in Section 4.5 on a Raspberry Pi 2. We were running the common Debian-

based operating system, Raspbian. By default, Raspbian exposes the physical address

space — including both the SDRAM main memory and the memory-mapped I/O

registers — through the psuedo device file /dev/mem.

Our code is setuid root. It opens /dev/mem, maps pages of physical memory and

I/O memory into the process’s virtual address space, then closes the file and drops

privileges. Next, it crafts DMA control blocks and tables as described above in an

125

CHAPTER 4. RUN-DMA

unused region of physical memory. Finally, a run dma() function loads the address

of the first control block in the DMA engine’s memory-mapped I/O control block

register which begins execution of the DMA program. All of our code is available at

https://github.com/stevecheckoway/rundma.

For input and output, we connected an FTDI UART to USB cable to the UART

pins on the Pi.

4.7 Related work

There are two, mostly disjoint, lines of research related to our work: the security of

auxiliary processors inside computers, and unintended, Turing-complete computation.

4.7.0.0.1 Auxiliary processors.

Security researchers have only recently begun examining the security of auxiliary

processors and the firmware that runs on them. The most obvious example of an

auxiliary processor is the GPU which uses DMA to transfer graphics data between

the graphics card and main memory. Vasiliadis et al.176 use the GPU to implement

malware unpacking and runtime polymorphism in order to harden malware against

detection. Ladakis et al.177 use the GPU to build akey logger that monitors the

system’s keyboard buffer.

Duflot and Perez178 examine the processor that runs on network interface cards (NICs).

They exploit a vulnerability in the NIC’s firmware to achieve arbitrary code execution

126

https://github.com/stevecheckoway/rundma

CHAPTER 4. RUN-DMA

and mount a DMA attack to add a backdoor in the kernel. Triulzi179,180 uses both

the NIC and video card in concert to recover sensitive data in memory such as cryp-

tographic keys. In follow-up work, Duflot et al.181 construct an anomaly detection

system that uses an IOMMU mechanism to limit access to main memory.

The IEEE 1394 FireWire specification allows the FireWire bus to communicate

via DMA to minimize interrupts and buffer copies. Numerous researchers exploit this

feature to access main memory directly.182–185 Kalenderidis and Collinson186 exploit

Intel Thunderbolt in a similar fashion.

The Intel Management Engine (ME) is a microcontroller embedded in the Intel

chip set with a separate NIC, DMA access to main memory, and remote out-of-

band management technology called Intel Active Management Technology (AMT).

Stewin and Bystrov187 use the ME to build a DMA key logger, and Tereshkin and

Wojtczuk188 use AMT to construct a “Ring −3” rootkit. Similarly, Farmer189 and

Moore190 examine vulnerabilities in the Intelligent Platform Management Interface

(IPMI).

Other exploitable auxiliary processors include laptop batteries191 and webcams.192

4.7.0.0.2 Unintended computation.

The ability to craft input data to drive programs in the target system has been dis-

cussed by the hacker community as far back as Aleph One’s seminal article on buffer

overflows.193 Return-to-libc,194 Krahmers borrowed code chunks technique,195 and

127

CHAPTER 4. RUN-DMA

return-oriented programming (ROP)153 represent an evolution of exploitation tech-

niques leading to Turing-complete computation built by borrowing existing program

code.

ROP was first introduced by Shacham153 as a technique to perform arbitrary,

Turing-complete computation by executing a string of gadgets: short sequences of

instructions, linked together by an “update-load-branch” mechanism,158 that exist

within the program or linked library. ROP has since been extended to various archi-

tectures.154–157,159 More recent work has focused on the automation of each step in

the technique.160–162,196 For example, Bittau et al.162 explores the limits of ROP by

crafting an exploit without possessing the target’s binary.

Turing-complete gadget sets need not be comprised of misappropriated CPU in-

structions. Indeed, parsers for complex file and record formats can be abused to

provide Turing-complete computation. Oakley and Bratus197 uses the Debugging

With Attribute Records Format (DWARF) to perform arbitrary computation with

the DWARF bytecode. Shapiro et al.152 use the ELF loader mechanism to effect

computation.

The prior work most similar to ours combines specialized hardware and unintended

computation. Bangert et al.163 demonstrate a Turing-complete execution environ-

ment using the IA32 arcitecture’s page fault handling mechanism. Neither the page

fault handling hardware nor the DMA hardware was designed with computation in

mind; however, computation emerges from the hardware’s complexity.

128

CHAPTER 4. RUN-DMA

4.8 Conclusions

In this work, we have shown that DMA engines can be used to perform Turing-

complete computation even though it is not their intended function. In particular, we

have crafted DMA Turing- and resource-complete gadget sets that we used to build

an interpreter for BF. In addition, we built a DMA rootkit to performs privilege

escalation for targeted programs.

Although we are the first to build malware entirely out of DMA transfers, we are

not the first to consider the capabilities DMA provides to auxiliary processors running

in the system (see Section 4.2). Indeed, researchers have considered various counter-

measures to such DMA malware. These countermeasures are applicable to our work

as well. Example countermeasures include using the input/out memory management

unit (IOMMU),198 peripheral firmware load-time integrity,187,199 anomaly detection

systems,181 and bus agent runtime monitors (BARMs).198

Several of these defenses have been found lacking. Researchers have noted that

peripheral firmware load-time integrity is inadequate because it does not provide run-

time integrity.181,187 Stewin and Bystrov187 further describes the IOMMU as lacking

because it can be configured improperly, and it cannot be applied if there are memory

access policy conflicts.

Given the current lack of strong defenses against DMA abuse and the ability of

DMA to do both Turing-complete and resource-complete computation, it is clear that

more work on secure defenses is needed.

129

Chapter 5

MalloryWorker: Stealthy

Computation and Covert Channels

using Web Workers

Adobe Flash is an example third-party plugin that was necessary to extend func-

tionality like video streaming to web applications. HTML5 eliminates this neces-

sity by providing new APIs that improve core functionality of the web browser

(herein browser). Web Workers is one such API specified by the World Wide Web

Consortium (W3C)200 and Web Hypertext Application Technology Working Group

(WHATWG).201 Web Workers enable web applications to spawn background workers

(i.e., threads) in parallel to the main page. Workers are intended for long-lived and

computationally intensive operations that would otherwise block the UI.

130

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Encryption, motion detection, and simulated annealing are some use cases for

workers. In general, any application that has to have its execution broken up to

avoid being prematurely terminated by the browser is a candidate for workers.

Despite the usefulness of concurrency in JavaScript, permissive execution of work-

ers enables stealthy computation. Specifically, workers are instantiated unbeknownst

to the user of a web application and can perform any number of computations. An

attacker can cause a user to perform work for her by exploiting a cross-site scripting

(XSS) vulnerability on a legitimate website or by placing an advertisement that hides

the work in a worker.

We demonstrate the feasibility of stealthy computation using workers by imple-

menting a distributed password cracker that uses the Web Workers API. We can

compute 500,000 MD5 hashes per second using the Chrome browser on a 2012 Mac-

Book Air. We also implement a denial-of-service (DoS) attack that is unique to OS X.

We define wasteful stealthy computations that exploit garbage collection mechanisms

in Chrome, Firefox, and Safari. The result is high CPU and memory utilization that

eventually fills the swap partition and causes a deadlock.

We again use wasteful stealthy computations against the Android Chrome browser.

This time, we find exploiting garbage collection results in a resource depletion attack.

We did not attempt this on the mobile Safari browser for iOS but believe that it is

also susceptible because it is built on WebKit much like its browser counterpart.

A natural criticism to both the DoS and resource depletion attack is that a worker

131

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

is unnecessary to perform either attack. However, we attempted all stealthy com-

putation attacks in the single JavaScript and UI thread. The result was the page

becoming unresponsive, followed by the Browser terminating the process. Neither of

which happen in our worker implementations.

We describe and implement a covert channel that is not unique to workers but

is easily implemented using them. Our covert channel uses CPU and memory throt-

tling to transmit bits to an unauthorized application. We find that CPU throttling

is noisier than memory throttling because other processes can obscure our covertly

transmitted bits (i.e., a random peak can corrupt bits or semantic structures such as

a preamble). We throttle memory by exploiting garbage collection to create a peak

and then terminating the web worker to force garbage collection anyway.

We scanned 7000 websites from Alexa’s top sites to determine the prevalence of

worker use. We found that 1.2% of them use workers to perform some computation.

Websites such as yahoo.com, usbank.com, and mediafire.com use workers for vari-

ous reasons. For example, usbank.com uses a worker defined in foresee-worker.js to

compress session event logs.

In this paper, we are concerned with using the Web Workers API to create workers

that enable stealthy computation and covert channels. We demonstrate the feasibility

of these by implementing our own distributed password cracker using workers, a DoS

attack against OS X, a resource depletion attack against Android, and a covert chan-

nel using memory throttling. We provide the necessary background for JavaScript

132

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

code execution and Web Workers, discuss related work focused on HTML5 vulnera-

bilities, and we give the first mitigation strategy for the misuse of workers.

5.2 Background

Web browsers typically have one thread that JavaScript and the UI share. There-

fore, UI updates are blocked while the JavaScript interpreter executes code and vice

versa. A shared task queue enables asynchronous execution of JavaScript and UI

updates, allowing either to execute when the thread is available. Asynchronous exe-

cution does not solve the problem of an arbitrary script taking unusually long. The

browser attempts to terminate any script that takes longer than some threshold re-

gardless of its purpose or importance. The user is aware of this when the UI freezes.

Not much later, the browser presents a status (i.e., terminate or continue) or crash

message.

The browser’s approach to ending long-running scripts is undesirable because it

provides no context per the scripts execution. The user is unaware of what the

script is meant to do and how long it has been running. Web application developers

approach this issue by leveraging asynchronous execution and dividing their scripts

into logical chunks that execute on some period. This method does not benefit from

parallel execution where a computation is uninterrupted until it finishes.

HTML5 addresses these limitations with the Web Workers API. This API enables

133

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Worker Global Scope/Object

XHR Location Navigator

Document

Objects Functions Collections Structured Data

JavaScript Runtime

Figure 5.1: Web Worker JavaScript Runtime.

web applications to spawn background workers in parallel to the main page. We show

in Figure 5.1 that workers are unable to access the Dynamic Object Model (DOM)

or the callers (i.e., parent object) variables and functions. Workers are instantiated

as one of two types: shared or dedicated.

Shared workers can be accessed by multiple web applications but dedicated work-

ers cannot. Web applications instantiate both shared and dedicated workers by pro-

viding a script object to the Worker constructor. The script object is either an

externally loaded file or defined inline as a string description of the web worker.

The string description is provided as input to the blob constructor, a file-like

object, and is referenced by an output URL handle. This URL handle is provided to

the Worker constructor. See Listing 5.1 an example inline instantiation.

<script id="mw" type="javascript/worker">

self.onmessage = function(event) {

self.postMessage ({’msg’: ’hello.’ ,});

}

134

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

</script >

<script language="javascript">

var blob = new Blob([document.querySelector(’#mw’).textContext]);

var m_worker = new Worker(window.URL.createObjectURL(blob));

</script >

Listing 5.1: Instantiate worker using blob.

Workers support communication with each other and its parent object via message

passing. The onMessage method listens for messages and upon receiving one it will

call the postMessage method to send a message. Workers continue to listen for

messages until the user navigates away from the web application, or the parent object

calls the terminate method on the worker. Terminating a web worker causes garbage

collection on all allocated memory.

5.3 Threat Model

We use the definition of a web attacker and gadget attacker by Akhawe et al.202

to define an attacker that maliciously misuses workers. A web attacker operates a

malicious web application but has no visibility into the network beyond the requests

directed to her application. A gadget attacker can inject content into otherwise

legitimate web applications.

A web attacker that misuses workers hosts a web application with a mechanism for

135

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

generating traffic (e.g., misleading domain name or social engineering). Every time

a user visits the web application, stealthy computation is performed via a worker or

workers. A gadget attacker that misuses workers exploits web vulnerabilities such as

cross-site scripting to inject her workers. She may also purchase a web advertisement

and bundle her workers in the ad. A user that visits a legitimate site will now perform

some stealthy computation.

A web attacker is considered an insider threat; for example, a web application

administrator. A gadget attacker is an outside threat. She is simply a web application

user. We consider both attackers to be unsophisticated as neither has visibility or

control of the network. Also, both attackers rely on generally accessible tools such as

a laptop, internet access, and at most a web server.

The goals of both a web attacker and gadget attacker that misuse workers include:

performing stealthy computation, mounting a DoS or resource depletion attack, and

establishing a covert channel with an unauthorized application.

5.4 Web Worker Primitives

While creating stealthy computation is as simple as writing function x, a wasteful

computation needs to exploit garbage collection mechanisms for multiple browsers.

Covert channels also require a mechanism for throttling a system’s CPU and Mem-

ory. We introduce three primitives to achieve wasteful stealthy computation, CPU

136

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

throttling, and memory throttling.

5.4.0.0.1 Infinite Loop Sequences.

An infinite loop is a sequence of instructions which loops endlessly because the

boolean condition never changes (e.g., it always evaluates true). If an infinite loop

is executed by the JavaScript interpreter, the browser UI will freeze due to blocking

on the shared thread. However, blocking does not occur if this loop is executed in a

worker.

We use an infinite loop such as while(true){} to perform a wasteful stealthy

computation. This type of computation enables CPU and memory throttling. Again,

the execution of this loop is unknown to the user because it does not block the UI

thread.

5.4.0.0.2 CPU Throttling.

Executing an empty infinite loop alone will not throttle a modern CPU. Instead,

we achieve throttling by looping on intensive operations such as recursive function

calls and large data manipulation. Listing 5.2 implements a data manipulation loop

that randomly fills two 1024-byte arrays and then concatenates them.

var cpu_work = function () {

var scratch = [];

// Fill the ArrayBuffer with random values.

137

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

for(var j = 0; j < 1024; j++) {

scratch.push(Math.random ());

}

var firstArr = new Uint8Array(scratch);

var secondArr = new Uint8Array(scratch);

// ArrayBuffer concatenation.

var concatBuf = new Uint8Array(firstArr.byteLength + secondArr.

byteLength);

concatBuf.set(new Uint8Array(firstArr), 0);

concatBuf.set(new Uint8Array(secondArr), firstArr.length);

}

Listing 5.2: Browser CPU throttling.

5.4.0.0.3 Memory Throttling.

Throttling memory is browser specific as it exploits corner-cases not yet handled

by the browser’s garbage collection. We note that the browser does, in fact, do

garbage collection correctly; however, the process is approximate as deciding whether

memory can be freed is undecidable. We use this knowledge to our advantage to

discover browser-specific memory leaks and use them to throttle system memory.

In Listing 5.3 we use a technique outlined by Glasser203 to demonstrate a memory

leak in Firefox. This technique relies on JavaScript closures. Specifically, both unused

138

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

and bucket are both defined inside of RD ATTACK FIREFOX SAFARI scope, and if both

functions access the variable leak it’s imperative that both get the same object. So

leak is never garbage collected.

In our experimentation with these primitives, we crashed Firefox and Chrome

when throttling CPU and memory. We mitigate this by using the worker method

terminate(). This method helps us avoid crashing the browser and completes our

throttling primitives by exposing a mechanism for quickly freeing system resources.

var bucket = null;

var RD_ATTACK_FIREFOX_SAFARI = function () {

var leak = bucket;

var unused = function () {

if (leak) {

var hole_in_bucket = 1;

}

};

bucket = {

longStr: new Array (10000000).join(Math.random ()),

someMethod: function () {

var hole_in_bucket = 2;

}

};

// Placeholder for doing some repetitive operation.

cpu_work ();

};

139

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Listing 5.3: Firefox memory throttling.

5.5 Stealthy Computation

We demonstrate the feasibility of stealthy computation using workers by imple-

menting a distributed password cracker that uses the Web Workers API. We imple-

ment the main HTML page to define a target MD5 password hash, a worker instan-

tiation, and an event listener to receive the result of password cracking (i.e., an MD5

collision was found).

The worker instantiation is on input md5cracker.js. This worker script defines

the MD5 hashing algorithm, a dictionary download method, and the event listeners

start and stop.

The start listener waits to receive the string start. When it receives the string, it

downloads an array of passwords using the method importScripts(). This method

synchronously imports a script into the worker’s scope. We use it to import an array

of passwords because we want the worker to be self-contained. Specifically, if an

attacker should inject a worker or upload an advertisement with a worker, she can

not rely on the calling parent object to pass in any data such as an array of passwords.

After downloading the array, the worker selects a random index into the array

and begins to hash each password and compare it to the target hash. If it finds a

140

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

collision, it returns the result to the parent object, or it could use a web socket to

send it elsewhere (e.g., the attacker’s server).

The stop listener simply kills the worker once it is no longer useful.

We send 1 million passwords to the worker using importScripts() which is ap-

proximately 13MB. This step adds approximately 50% latency on the dataset and

takes 3 seconds to download. We can minimize this time by compressing the pass-

word array and partitioning the array into multiple arrays. The password cracker

performs 500K hashes per second on a 2012 MacBook Air.

The average user visits a website for no longer than 15 seconds. Thus, one criti-

cism we receive is that stealthy computation doesn’t have the much time to do any

worthwhile computation. We argue that stealthy computation on video streaming

sites such as Youtube is plausible. In addition, there exist other projects on the

internet that do stealthy computation using workers such as bitcoin mining.204

5.5.1 Denial-of-Service

We use our loop and memory throttle primitives to mount a DoS attack against

all OS X devices. This DoS is unique to OS X because of the way virtual memory is

handled. Specifically, OS X can grow its swap file to the maximum available size of

the hard disk. If we exploit garbage collection for a very long period, OS X will grow

the size of its swap to the point that it deadlocks.

The steadily growing swap in Figure 5.2 depicts our exploitation of garbage col-

141

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.2: OS X Firefox DoS attack.

lection on Firefox. OS X needs to be hard rebooted when it deadlocks. Fortunately,

disk space is recovered and the swap returns to its original size.

5.5.2 Resource Depletion

The mobile Chrome browser also supports the Web Workers API. Figure 5.3

depicts user memory usage as it steadily increases from the stealthy computation.

142

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.3: Android Chrome resource depletion attack.

The over usage of memory results in I/O waiting toward the end of our experiment.

Stealthy computation can excacerbate resource depletion as it uses system resources

to perform wasteful work.

5.6 Covert Channel

A covert channel is a communication mechanism for two processes that are not

supposed to be able or allowed to communicate. We use our CPU throttling and mem-

ory throttling primitives to create a covert channel between a visited web application

and some unauthorized application on the user’s system using workers.

We first try CPU throttling to observe messages with a simple structure. Specif-

ically, we do not define a pre or postamble; rather, we define a period in which to

observe a bit based upon a CPU usage spike. We find that the CPU channel is

noisy, as seen in Figure 5.4, and we can only achieve good accuracy by employing a

143

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.4: CPU noise during regular use.

high sampling rate. Unfortunately, we use PSUTIL to get current CPU usage and

it imposes a sampling rate with a minimum bound of 100 milliseconds. Also due to

JavaScript runtime limitations, anything less than one millisecond isn’t feasible.

We attempt to minimize CPU noise by increasing the length between CPU spikes

to 500 milliseconds and 1 second. We can obtain bits in the covert channel but under

ideal conditions. For example, if any other work is done in the browser it significantly

impacts our ability to discern relevant CPU spikes.

Next, we try our memory throttling primitive. Memory usage is a more deter-

ministic channel and thus less noisy than CPU usage. This makes it more viable as

a covert channel. We use our memory throttling primitive to fill a 40MB array and

then clear the memory with a terminate worker method call. We can successfully

send 1 bit per 5 seconds. We send the bits for ”hello world“ in Figure 5.5. Unlike the

CPU covert channel, the memory covert channel is usable when the user browses the

144

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.5: Memory covert channel sending hello world.

internet or stream videos. This finding is a consequence of the amount of memory

used which far exceeds the memory needed to buffer a video in our tests.

We note that our covert channel does not require a web worker. However, when

executing the covert channel in the UI thread, the browser is less responsive due to the

looping execution of the memory primitive. In addition, our ability to force garbage

collection by terminating the worker must be exactly emulated in the UI thread or it

145

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

will break the covert channel (i.e., no discernable memory usage peaks).

We implement and test this covert channel on OS X using the Firefox and Chrome

browsers. The covert channel is inefficient regarding channel bandwidth; we can send

approximately 1 bit per 5 seconds. We can speed this up by reducing the amount of

memory throttled (e.g., less than 40MB). We could also use more than worker.

5.7 Potential Mitigations

The challenge for the Web Workers API is how to inform users a worker is execut-

ing, what the intent of the execution is, and how the execution is impacting system

resources. We assert that the most effective solution is to provide fine-grained con-

trols for workers similar to pop-up controls, and to restrict the Web Workers API

in the ECMAScript specification. For instance, requiring an explicit intent for every

worker would provide context to what the purpose of the worker is and enable a user

to decide whether to allow it. A Google Chrome extension is a good example because

it uses a manifest file to specify the capabilities of the extension. These capabilities

are analogous to a worker intent.

In the interim, we implement a browser extension to mitigate worker stealthy

computations partially. This mitigation is partial because the browser extension only

informs the user of when a worker has executed. If the worker is named appropriately,

the user is provided with some context of the workers intent, but name mangling and

146

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

poor coding practices will undo this. We call our browser extension wAudit.

wAudit is a Google Chrome content script. Content scripts use the Document

Object Model (DOM) to read and modify details of a visited web page. These scripts,

however, cannot use or modify variables or functions defined by the visited web page.

For wAudit to determine whether a worker exists it must be able to the later.

We programatically inject wAudit as a script into visited web pages using documen-

t.createElement. This function creates an HTML script element that we append to

the document object’s root element using the function document.documentElement.-

appendChild. The injected script recursively searches all DOM objects and identifies

object types of [object Worker].

The script alerts the user if it finds a worker or workers by drawing a banner at

the bottom of the browser window. This banner includes the name of the worker and

a UI button for terminating a selected worker. We implement the terminate function

by crafting the string "workers[i]+".terminate(). This string contains the worker

name and the method call to terminate. We call eval on the string input to execute.

5.8 Related work

Security researchers have found numerous vulnerabilities in the HTML5 APIs

that enable traditional web application attacks such as CSRF and clickjacking, and

HTML5-specific attacks such as cache poisoning and botnets.

147

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Tian et al.205 show that the HTML5 screen-sharing API can allow for cross-site

request forgery (CSRF) attacks, even if the target website utilizes CSRF defenses

such SSL and secure random tokens. The authors are also able to sniff user account,

autocomplete, and browsing history data because it can be viewed directly on the

user’s screen. Potential defenses are enumerated as restrict the loading of view-source

links, enable fine-grained sharing, and constrain cross-origin content.

The HTML5 FullScreen API displays web content that fills the user’s entire screen.

Aboukhadijeh206 describes how a malicious website can trick users into clicking a link

to a legitimate website (e.g., https://www.bankofamerica.com/), and then display a

malicious website in fullscreen. The malicious website imitates the legitimate website

and obscures the domain name and SSL visual indicator.

Kuppan207 overviews multiple HTML5-specific attacks. For example, an attacker

can use the HTML5 Drag and Drop API to trick users into setting target form

fields with attacker controlled data, a clickjacking attack. An attacker can poison

HTML5 caches designed to enable offline browsing with her own pages that recover

user supplied data. Specific to our work, workers enable HTML5 botnets. These

botnets can mount distributed denial-of-service (DDoS) attacks by sending cross-

domain XMLHttpRequests.

Anibal Sacco et al.208 use workers to optimize heap-spray attacks. By employ-

ing multiple workers, the authors show that they can populate the target systems’

memory faster than conventional heap-spray attacks. They leverage HTML5 can-

148

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

vas objects to obtain both full control over consecutive heap pages and to provide

byte-level access to pixel information. This gives four bytes per pixel for use in spray

contents – typically a use-after-free exploit, heap-based buffer overflow, or ROP chain.

Also, due to the increasing prevalence of browser-based devices with HTML5 support

(smartphones, smart TVs, game consoles, etc.) the use of workers as an attack vector

are largely platform and browser agnostic.

The Open Web Application Security Project (OWASP) blog209 mentions the use

of workers to perform denial-of-service attacks. The post gives a cursory treatment of

these vulnerabilities and does not provide any concrete details regarding implemen-

tation, measurement, or countermeasures.

In general, defenses for HTML5 API vulnerabilities include modifications to the

APIs. Son and Shmatikov210 find that many web applications perform origin checks

incorrectly, if at all. The lack of stringent checking allows for cross-site scripting (XSS)

attacks, as well as data injection into local storage. The authors propose accepting

only messages from the origin of the page that loaded a frame and the parent of that

frame.

Akhawe et al.211 find that HTML5 web applications need better privilege sepa-

ration. Rather than advocate for browser redesign or artificial limits on partitions,

the authors propose a way for HTML5 applications to create an arbitrary number of

unprivileged components. Each component executes with its own temporary origin,

isolated from the rest of the components. Unprivileged components interact via a

149

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

privileged component that executes priviledged calls in the main origin of the web

application. The authors show that their system helps reduce the amount of trusted

code by a factor of 6 to 10000.

5.9 Conclusions

We described how the Web Workers API can be used to create workers that

enable stealthy computation and covert channels. We demonstrated the feasibility of

stealthy computation by implementing a distributed password cracker using workers,

a DoS attack against OS X, and a resource depletion attack against Android. We

evaluated the feasibility of a covert channel using CPU and memory throttling, and

implemented the later. Lastly, we gave the first mitigation strategy for the misuse of

workers.

5.10 Health and Medical Systems

Health and medical systems are increasingly becoming networked. An industry

report by Parks Associates predicts that networked medical systems will exceed 14

million sales in 2018.212 These medical systems often employ commodity operating

systems such as Windows Embedded and can access and be accessed over the internet.

Manufacturers troubleshoot and upgrade health and medical systems remotely

using this internet access while physicians control or modify settings. Some of the

150

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

devices host web-based UIs to interact with users locally or over the network.

We investigate the effects of running stealthy computation on Baxa ExactaMix.

The Baxa ExactaMix is an embedded health and medical system that mixes to-

tal parenteral nutrition and other multi-ingredient solutions. The compounder runs

Windows XP Embedded 2002 Service Pack 2 and has a 664 MHz VIA C5 x86 CPU

with 496 MB of memory.213

5.10.1 Experimental Setup

Since our Baxa ExactaMix is running Windows XP Embedded 2002, it has In-

ternet Explorer version 6.0, which does not support HTML5 APIs. However, since

the Baxa ExactaMix can access the internet, we can install a modern browser. We

installed Firefox 29 at the time of this experiment. We note that modern medical

systems use more recent operating systems and thus support Web Workers without

installing a third-party browser.

In our experiment, we first start the Baxa ExactaMix and wait for it to run its

clinical software. We then begin measuring the CPU, memory, and swap usage of

the device to establish a baseline of activity. Next, we launch Firefox and navigate

to a website that we control. This website uses a worker to perform our stealthy

computation, specifically, the DoS attack we describe earlier in Section 5.5. We

continue our measurements for 3 minutes.

151

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

U
sa
ge
(%

)	

Time(s)	

CPU0 Memory Swap

Figure 5.6: Stealthy computation on Baxa ExactaMix.

5.10.2 Results

We note a clear delineation between pre- and post-worker computation in Fig-

ure 5.6. Memory and swap usage are at 60% and 20%, respectively, when the Baxa

ExactaMix first starts. As this is a single-core device, the CPU utilization remains

high for the entire experiment because all processes are scheduled to execute on the

same core. We note linearly increasing memory usage and a near-instantaneous spike

in swap usage to 60% when we visit our website that performs the stealthy compu-

tation.

We also quantitatively evaluated the impact of stealthy computation on the Baxa

152

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

ExactaMix. We define the qualitative metric as a measure of the device’s usability;

specifically, if the Baxa ExactaMix becomes noticeably unresponsive. Repeating the

experimental setup, we attempt to use the clinical software. We measure at a coarse

granularity the time it takes for the clinical software to output a report about its

configuration. With no stealthy computation performed, report generation takes

approximately 5.5 seconds. The execution time increases by a factor of two with

stealthy computation.

5.11 Linux Stealthy Computation

We experiment with stealthy computation and other operating systems. We find

that Chrome and Firefox in Ubuntu 15.10 both allow stealthy computation using web

workers. However, the DoS attack against OS X does not apply here. See Figures 5.7

and 5.8.

153

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.7: Stealthy computation on Ubuntu 15.10 using Chrome.

154

CHAPTER 5. STEALTHY COMPUTATION AND COVERT CHANNELS

Figure 5.8: Stealthy computation on Ubuntu 15.10 using Firefox.

155

Chapter 6

KBID: Kerberos Bracelet

Identification

The use of modern computer systems almost always requires that a user proves

their identity through some process of authentication. A user can authenticate using

methods such as public key authentication, biometrics, and passwords; something

you have, are, or know, respectively. Password-based authentication remains the

most widely used option for authentication because of its ease of use and simple

design.

However, passwords have a human factor weakness as users often choose passwords

that are too simplistic and easily guessed.214 Administrators and systems require users

to select more complex passwords as a consequence; thus, decreasing user satisfaction

as password selection becomes seemingly difficult. Worst yet, complex passwords

156

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

interfere in critical workflow such as clinical care where a patient’s need is most

urgent.

In this chapter we describe an authentication system that requires the user to enter

a password as infrequently as once a day. Specifically, authentication information is

stored on a wearable device, a bracelet in our case, and is transmitted to devices to

which the user wishes to authenticate. The transmission between the bracelet and

device is achieved via using the user’s body as a communication medium.62,215 Our

goal is to reduce the impact on user satisfaction and workflow (i.e., usability) by

removing most of the difficulty of using a complex password.

While we focus on authentication in the medical community use case, we antic-

ipate that other areas such as the financial sector may benefit from our system. In

addition, it is important to note that this system is not a two-factor authentication

solution. The bracelet is not a biometric component and does not provide any addi-

tional information outside of what it stores. It is meant to enhance the user experience

and encourage the use of complex passwords.

6.2 Background

KBID originates from the idea of integrating a wearable device to achieve some

additional property in an authentication system (e.g., de-authentication). In partic-

ular, we are inspired by the design of zero-effort bilateral recurring authentication

157

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

(ZEBRA) by Mare et al.216 In ZEBRA, a user wears a bracelet that encapsulates a

wireless radio, accelerometer, and gyroscope; these components record and transmit

wrist movements to a currently used computer system. This system continually com-

pares received measurements to input it receives from its keyboard and mouse. If

these two measurements are not correlated, the current session is de-authenticated.

At the time, ZEBRA was only envisioned as a method to de-authenticate a user

from a computer system and did not include a way to authenticate the user to the

system. Assuming that the user has already accepted wearing a device that will ef-

fectively de-authenticate them, adding functionality to authenticate rapidly increases

the usefulness of the system.

We avoided using radio frequency (RF) emissions for two reasons. First, RF by

its nature emits information into the environment. That information, once emitted,

can be received by various means. Second, RF relies on the underlying communica-

tion being secure. If an attacker discovers a security flaw in an RF communication

framework, e.g. Bluetooth low energy (BLE),217 then the systems as it exists could

be vulnerable to the flaw. Specifically, there is no need to alter or even monitor the

information exchanged between the system and a wearable device. An attacker would

only need to extend the range of the wireless communication to gain access to the

system.

We instead use body-coupled communication (BCC), or transmission of informa-

tion over the human body as a medium. We are not the first to use BCC to transmit

158

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

a secret. For example, Chang et al. introduce a system for key exchange over a body

area network.62 By applying a small voltage to the tissue of a dead mouse, they were

able to communicate at a rate of 5Hz or 5 bits per second. However, this data rate

is not acceptable for our work as we would need to communicate authentication data

of at least 256 bits, and this would take nearly a minute to transmit.

We designed our authenticated bracelet to be non-transferrable (i.e., authenticat-

ing and then giving the bracelet to someone else). To support this feature, we zero

all authentication information upon bracelet removal.

6.3 Related Work

In addition to the ZEBRA, which we have described previously, there have been

several previous attempts at developing wearable-authentication technology. Two

of note include the Bionym Nymi218 and the Intel Authentication Bracelet.219 The

Bionym Nymi is an authentication wristband that broadcasts a digitally signed au-

thentication signal derived from a user’s heartbeat to nearby devices using BLE.220

The Intel Authentication Bracelet requires a user to log in to a system with a standard

password. A credential is then transmitted to the bracelet using BLE. This credential

is then broadcast to nearby bracelet-enabled devices in order to allow password-less

login.

159

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

6.3.0.1 Limitations of Existing Work

Existing authentication wearables use wireless communication technology (typi-

cally BLE) to broadcast their authentication credentials. Thus the devices are likely

vulnerable to ghost-and-leech attacks.221 Ghost-and-leech attacks occur when an at-

tacker uses a more powerful radio transmitter than the transmitter found on a wireless

device in order to capture and rebroadcast the wireless signal in order to fool a target

into believing that the wireless device is in closer proximity to the target than it

actually is.

6.4 Threat Model

We describe KBID as an authentication mechanism that requires a wearable device

that transmits short-range authentication data via BCC. We recognize confidentiality,

integrity, and availability as security goals specific to KBID. Specifically, data stored

on the device and transmitted to the authentication module should be kept secret

from and not modifiable by unauthorized entities, and the data should be accessible to

both bracelet and authentication module. We omit the privacy of the authenticating

user because the system must validate her access to the system or resource.

Adversaries are typically distinguished based on their goals, capabilities, and rela-

tion to a system. We define the following adversarial classification criteria for KBID:

active adversaries that can read, modify, and inject communication between the device

160

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

and authentication module, and passive adversaries that can eavesdrop on the com-

munication; internal entities that have legitimate access to the device, and external

entities that do not; single or coordinated group entities, and; sophisticated adver-

saries with specialized equipment (e.g., high-gain directional antenna or unauthorized

authentication module), and unsophisticated adversaries with common equipment.

The KBID device or authentication module may both be used as attack surfaces.

For example, an adversary may disrupt KBID authentication by physically damag-

ing the wearable device or authenticator module. We classify this and other KBID

security threats into the following categories: BCC threats, whereby the adversary

can passively eavesdrop on communication, or actively jam, replay, modify, forge, or

drop communication; hardware threats, whereby the adversary can induce incorrect

outputs from a valid device, and; software threats, whereby the adversary can alter

the logic of KBID’s device, authentication module, or client software through software

vulnerabilities.

As a hardware and software solution, the threat model for KBID includes many

subjects that apply to any such system. These include attack types (denial of service,

message forging or tampering, hardware tampering, and others) as well as a study of

potential adversaries and other topics. Here we focus on two threats that are unique

to KBID.

As a hardware and software system, KBID has two unique threats that both

require an active adversary to be within close physical proximity of KBID and an

161

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

authentication module. First, it is possible to impersonate an authentication module.

An attacker could use a counterfeit authentication module that issues Get Status

commands when a user touches something connected to it, e.g. a doorknob. Second,

while we are using body coupled communication to transmit data without emitting

RF, it could be the case that the user’s body acts as a broadcast antenna and emits

the data into the environment. An attacker then intercepts the data.

6.5 Design

Here we describe in detail the design and implementation of the KBID system.

First, we discuss the high-level design where we explain the four major components of

the system. Next, we discuss the interface designs and the communication protocols

between the major components. Finally, we discuss the system workflow.

6.5.1 High Level Design

The system is composed of four main parts: a bracelet (Figure 6.1), an authenti-

cation module (Figure 6.2) an authentication client, and a Kerberos authentication

server. The bracelet is a wearable device that fastened to the user’s wrist. The

bracelet makes contact with the user’s skin and applies a signal directly to the user’s

skin. The authentication module has a sensor with a button under it. When the

user touches the sensor and depresses the button, the authentication module initiates

162

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

Figure 6.1: KBID Prototype Bracelet.

communication with the bracelet. An RS-232 serial cable attaches the authentication

module to the computer system which the user wants to authenticate. A workstation

hosts the authentication client. The client monitors the serial connection for data and

when necessary, opens a connection to the Kerberos server for authentication. Finally,

the Kerberos server is a default installation and uses the default implementation of

the authentication protocol.

6.5.2 Interfaces and Communication

The KBID system includes three interfaces. The interface between the bracelet

and the authentication module takes place over the user’s skin. The interface between

163

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

Figure 6.2: KBID Prototype Authentication Module.

the authentication module and the authentication client takes place over RS-232

serial. Finally, the interface between the authentication client and the Kerberos server

uses the network. As Kerberos server and client communication is well documented,

we will not discuss it in this chapter.

6.5.2.1 Bracelet to Authentication Module

The communication protocol between the bracelet and the authentication module

is a lightweight protocol. The messages that the bracelet sends to the authentication

modules are called statuses. Messages that the authentication module sends to the

bracelet are called commands. Each message sent over this interface is a length

164

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

delimited series of bytes. A status message had the following structure: [Status ID]

[Device ID] [Data Size (in bytes)] [Data]. The bracelet will send one of two statuses,

authenticated or un-authenticated. Authenticated data is transmitted in the data field

if and only if the status message returns authenticated.

A command message has the following structure: [Command ID] [Device ID]

[Payload Size (in bytes)] [Payload]. The authentication module will send three com-

mands: Get Status, Set Token, and De-authenticate. A Get Status command causes

the bracelet to respond with a status message. A Set Token command causes the

bracelet to store the payload in memory as authentication data and set its status to

authenticated. A De-authenticate command causes the bracelet to clear any token it

has and set its status to un-authenticated.

6.5.2.2 Authentication Module to Authentication Client

The authentication module and the authentication client communicate status and

command messages as well. The authentication module can send three statuses to the

authentication client. First is the Un-authenticated Bracelet message. This message

is sent to the authentication client when the authentication module receives an un-

authenticated status from a bracelet.

Next, the authentication module can send an Authenticated Bracelet status to the

authentication client. It will send this status when the bracelet sends a status of

authenticated. The Authenticated Bracelet status will contain the ticket information

165

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

that was in the token section of the bracelet’s message.

Finally, the authentication module can send a Ticket Written status to the authen-

tication client. This is a message that lets the client know that the ticket information

has been successfully written to the bracelet.

The authentication client sends two commands to the authentication module.

First the Write Ticket command. This command instructs the authentication module

to pass the ticket included in the command to the bracelet with a Set Token command.

The authentication client can also send a De-authenticate Bracelet command. This

command instructs the authentication module to issue a De-Authenticate command

to the bracelet.

6.5.3 System Workflow

We describe the system workflow in two use cases. For the sake of brevity, we do

not include any error handling. In the first use case (Figure 6.3) the user is wearing

a bracelet but the bracelet is not yet authenticated. The user touches the sensor on

the authentication module; the authentication module sees that the user’s bracelet

is not authenticated and relays this information to the authentication client. The

client prompts the user for their username and password. The client verifies this

information with the Kerberos server, then instructs the user to touch the sensor on

the authentication module again. The client then instructs the authentication module

to write the ticket to the bracelet. The client unlocks the workstation once the ticket

166

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

Message Exchange with an Un-Authenticated Bracelet

ServerClientModuleBraceletT
im

e

Get Status

Un-Authenticated

Send Credentials

Prompt User for
Username and

Password

Un authenticated
Bracelet

Send Ticket

Write Ticket

Write Token

Store Token In RAM

Verify Credentials

Messages

Internal Activity

Unlock Workstation

Ticket Writen

Verify Ticket
Correctly stored

Authenticated

Get Status

Figure 6.3: Un-authenticated Message Exchange.

is written.

In the second use case (Figure 6.4) the user has an authenticated bracelet. The

user touches the sensor on the authentication module. The module asks for a status,

and the bracelet provides it with the token it has stored. The module passes this

information along to the client which interprets the token as a Kerberos ticket. The

client verifies the ticket with the Kerberos server and unlocks the workstation. Our

goal is to perform this use case in less than one second.

167

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

Message Exchange with an Authenticated Bracelet

ServerClientModuleBraceletT
im

e

Get Status

Authenticated

Send Ticket

Authenticated
Bracelet

Send Valid Status

Verify Ticket

Messages

Internal Activity

Unlock Workstation

Figure 6.4: Authenticated Message Exchange.

6.6 Experiments and Results

6.6.1 Prototype

The hardware prototypes for the bracelet and the authentication module are based

on the Atmel ATMega328 microcontroller operating at 20 MHz and an LM358AN

Amplifier. Both the bracelet and the authentication module have copper pads that

make contact with the user’s skin. The signal from the skin is fed into the amplifier

and the signal to the skin is driven by setting a pin on the microcontroller. We

also built a resistive analogue to represent the resistance from a user’s wrist to their

fingertip. The authentication client is written in Python.

168

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

6.6.2 Results

Initial results are encouraging. We can send commands from the authentication

module to the bracelet. The bracelet can correctly interpret those commands, and it

responds when issued a Get Status command. The time elapsed for a Get Status com-

mand and a status message with a 256-byte token is approximately 500 milliseconds.

We also implemented the functionality that clears the authentication information

when the bracelet is removed. We do this by using one of the hardware interrupts on

the microcontroller.

6.7 Future Work

We encountered two major hurdles during the development of the first prototype.

First, to successfully send a signal, the bracelet, and the authentication module must

have a common reference for voltage. Second, while we have been able to get the

signal to transmit from the authentication module to the bracelet, we have not been

able to get the signal to travel in the opposite direction. In particular, we need the

signal to be interpreted by the authentication module. To solve both of these issues,

we plan on using capacitive coupling to transmit the signal over the user’s skin.

We also plan to implement the system using a microcontroller that can store larger

keys. The Atmel ATMega328 only has 2 kilobytes of ram. Since the system requires

some memory to perform general operations, the remaining memory to store a key is

169

CHAPTER 6. KERBEROS BRACELET IDENTIFICATION

approximately 1 kilobyte. This memory size is not sufficient to store authentication

information in real world environments. We also plan on hardening the system by

adding pre-shared message authentication codes (MACs) to protect against replay

attacks.

6.8 Conclusion

Complex passwords interfere in critical workflow such as clinical care where a pa-

tient’s need is most urgent. In this work, We described an authentication system that

requires the user to enter a password as infrequently as once a day. We implemented

this authentication system using a bracelet and contact-based authentication mod-

ule. The bracelet stores authentication information, and the authentication module

receives this information to authenticate a user to a given device. Our authentica-

tion system reduces the impact on user satisfaction and workflow (i.e., usability) by

removing most of the difficulty of using a complex password.

170

Chapter 7

Applications of Secure Location

Sensing in Healthcare

Tracking and managing assets in real-time are critical for large organizations such

as Hospitals. For example, “more than [one-third] of nurses spend at least 1 hour

per shift searching for equipment and the average hospital owns 35,000 inventory

SKUs and utilization hovers around 32-48%, with nearly $4,000 of equipment per

bed, lost of stolen each year”.222 Moreover, tracking needs to be secure; specifically,

it needs to be resilient to active and passive attacks that aid in the misappropriation

of assets. We implement a real-time tracking system using low-cost Bluetooth Low

Energy (BLE) devices that provide authenticated wireless communication to track

securely assets and people.

We track assets in our system with an external device that can receive BLE trans-

171

CHAPTER 7. SECURE LOCATION SENSING

missions containing location data1, and send location data to a trusted server via

Wi-Fi. We implement a device we call Beacon+ to broadcast location data via BLE.

This type of BLE beacon extends the design of Apple’s popular iBeacon specifica-

tion223 by modifying the advertisement, or unidirectional broadcast, to contain a

monotonically increasing sequence number and message authentication code (MAC).

In particular, the sequence number provides temporal freshness that is resilient

to clock skew without synchronization. The MAC authenticates the Beacon+ to

a trusted server, where the trusted server maintains the absolute location of each

Beacon+. Upon receiving the Beacon+ advertisement, the server updates the location

of an asset.

We use the real-time tracking system as a foundation for secure location sensing

applications. One such example is access control that enforces location-based restric-

tions. This application relies on the authenticity of received Beacon+ advertisements

to compute the relative location to an asset and provide access to asset data if and

only if the accessor (i.e., the person who requires the data) is within close physical

proximity. Location here is only one factor in a multi-factor access control scheme.

For example, nurses and physicians who are away from their personal computer but

moving around with a hospital-issued tablet must log in to the tablet with their cre-

dentials and be within close physical proximity of a patient to access her medical

record.

1Assets that support BLE do not require an additional device.

172

CHAPTER 7. SECURE LOCATION SENSING

Another secure location sensing application we describe is BCMA physical prox-

imity enforcement. BCMAs typically involve scanning barcodes on patients and med-

ications to interface with electronic records. Koppel et al.224 identify 31 unique causes

where healthcare professionals use workarounds to BCMA processes that they con-

sider impractical (e.g., time). However, these workarounds can result in the wrong

administration of medication which impacts patient safety. Therefore, physical prox-

imity enforcement can integrate BLE receivers into scanning devices and require the

user to be in an approved location to enable scanning.

The linchpin of our applications is Beacon+. To build a secure and interopera-

ble Beacon+ device we require the following capabilities: (1) perform symmetric key

operations; (2) modify advertisement fields; (3) transmit unidirectional advertise-

ments, and; (4) retain traditional beacon (e.g., iBeacon) advertisement structure. We

are aware of only one similar, authenticated beacon called Trusted Beacon (TB).225

Beacon+ differs from TB in its choice of cryptographic primitive and number of

advertisements for a single transmission. Specifically, TB lacks (1), (2) and (4).

Moreover, TB uses a weak, factorable226,227 320-bit asymmetric RSA private to

sign a random value that is valid for 5 minutes. An attacker can, therefore, replay

a capture advertisement for up to 5 minutes. In contrast, Beacon+ uses a 128-

bit symmetric AES key to compute a MAC on a monotonically increasing sequence

number that is only valid for 1 second. Beacon+ conforms to the iBeacon standard

because it fits in a single advertisement whereas TB requires multiple advertisements

173

CHAPTER 7. SECURE LOCATION SENSING

(i.e., the signature is longer than the message to be signed).

7.1 Background

While prior work exists for the design of location-based access control proto-

cols,228–230 there has, to the best of our knowledge, been little work done regarding

their implementation and evaluation. Existing technologies such as RFID,231 GPS,232

and WiFi222 have had varying levels of success on tracking and managing assets. In

this section, we will explore the functionality of these technologies, and discuss how

their limitations necessitated Beacon+.

7.1.1 Radio Frequency Identification

Radio Frequency Identification (RFID) provides short-range asset tracking using

tags and readers. Readers interrogate tags and receive unique identifiers along with

other data, and typically placed at ingress and egress points of a particular area.233

The readers then read all tags entering or leaving the monitored area. Communica-

tion range for RFID is limited to tens of centimeters, and different bands of RFID

communication (low frequency, high frequency, ultra high frequency) can increase the

range up to 12 meters.234 However, higher frequency RFID requires expensive anten-

nas to extend the range. Deploying these antennas throughout an extensive area is

impractical and can be considered unsafe depending on hospital RF safety policies.

174

CHAPTER 7. SECURE LOCATION SENSING

7.1.2 Global Positioning System

Global Positioning System (GPS) is a reliable global satellite system for providing

time and location information to any receiver with a clear view of at least four satel-

lites. GPS is well-suited to outdoor tracking applications, but it does not function

well when there is no direct line of sight to at least four satellites. Thus, GPS is not

suitable for establishing indoor positioning235 because it is often not accurate enough

within buildings.

7.1.3 Wi-Fi

Wi-Fi facilitates wireless networking over mid-ranged distances. Multiple wireless

access points are often used to provide coverage to large areas.These access points each

have unique identifiers that bind to specific locations. Therefore, an administrator

could track the location of individual clients by observing the order and location in

which the clients connect with access points over a given period.

Wi-Fi meets the accuracy, timeliness, and communication range requirements for

indoor position management and tracking. Previous work has looked at using Wi-Fi

tags for exactly this purpose.236 One of the benefits of Wi-Fi-based solutions is easy

adoption; Wi-Fi tags are attached to devices or staff and communicate with existing

access points. However, adhesive Wi-Fi tags are not securely integrated with the

devices they manage as tags can be mixed up or maliciously removed. Also, Wi-Fi is

175

CHAPTER 7. SECURE LOCATION SENSING

not as power efficient as other technologies, it requires an additional layer of manage-

ment (e.g., password, SSID, etc.), and it requires bidirectional communication that

increases the attack surface. For example, an attacker can continuously communicate

with the Wi-Fi device, attempting to authenticate and gain access.

7.1.4 Near Field Communication

Near field communication (NFC)237 was invented for extremely short-range com-

munication, on the order of several inches. Therefore, for the applications considered

in this work, NFC is infeasible, as it would require an unreasonable number of NFC

devices.

7.1.5 Bluetooth

Bluetooth238 is a short-range communication protocol supported by most mobile

devices (i.e., smartphones and laptops). Bluetooth-enabled devices initiate connec-

tions to host devices by entering discoverable mode and waiting for a scanning device

to make a connection inquiry. The device then responds to the connection inquiry by

sending information including a device name and a device class. If the host chooses

to connect to the client device, then the two devices go through a pairing process.

Bluetooth technology has been used to build tracking systems .239–242 Previous

work has generally used older Bluetooth versions (older than v4.0) and did not con-

176

CHAPTER 7. SECURE LOCATION SENSING

sider security as a design goal. Some tracking systems required tracked entities to

establish connections with Bluetooth infrastructure devices resulting in two-way com-

munication with potentially untrusted entities .242

Beacons. Nokia introduced Bluetooth low energy (BLE) in 2004 as a wireless per-

sonal area network that later integrated into the Bluetooth 4.0 standard in 2010.243

BLE uses significantly less power than classic Bluetooth, and BLE devices can adver-

tise information to a host device (receiver herein) without requiring the host device

to pair. Conceptually, BLE is similar to NFC, but it is capable of operating at much

longer ranges than NFC. In short, devices that need to broadcast small snippets of

data at irregular intervals use BLE.

Beacon is one implementation of BLE. A beacon is an inexpensive BLE device

(in the range of $5244 to $30245) that repeatedly broadcasts a fixed unique identifier.

Applications interpret these identifiers for a variety of purposes. For example, Apple’s

iBeacon246 broadcasts what it calls an advertisement. The packet structure of an

advertisement reveals a tuple of fixed identifiers that are interpreted by as coupon

data.

Beacon+ bases itself on the iBeacon protocol and thus we adopt their advertise-

ment structure. In particular, this structure is composed of the following fields:246

• UUID: a sixteen-byte unique number used to identify all iBeacons in a particular

deployment.

177

CHAPTER 7. SECURE LOCATION SENSING

• Major: a two-byte number used to identify groups of iBeacons within a deploy-

ment from other groups.

• Minor: a two-byte string used to identify individual iBeacons in a particular

cluster of devices.

Although previous work has looked at using Beacons for indoor tracking,247–250 the

insecurity of the iBeacon protocol makes it poorly suited for this task in the presence

of an attacker.

7.2 Threat Model

We describe Beacon+ as having unspoofable, temporal and authenticated adver-

tisements; as such, we recognize the following security goals unique to Beacon+.

1. Integrity. Advertisements should not be modifiable by an unauthorized entity.

2. Availability. Advertisements should be accessible.

We omit confidentiality because Beacon+ advertisements contain no private data.

Moreover, we do not claim any privacy goals for Beacon+ as the application of track-

ing relinquishes the privacy of an asset or person inherently.

Attackers are distinguished based on their goals, capabilities, and relation to Bea-

con+. Thus, we have the following classification criteria.

178

CHAPTER 7. SECURE LOCATION SENSING

1. Active/Passive Attacker. Active attackers can read, modify, and inject adver-

tisements (i.e., BLE communication). Passive attackers can eavesdrop adver-

tisements.

2. Internal/External entity. Internal entities have legitimate Beacon+ access (e.g.,

hospital administrator).

3. Single/Coordinated group entities.

4. Sophisticated/Unsophisticated Attacker. Sophisticated attackers have access to

specialized equipment (e.g., high gain antennas). Unsophisticated attackers

have access to conventional equipment (e.g., BLE sniffers).

An attacker may use Beacon+, the BLE device, smartphone, and the trusted

server as attack surfaces. For example, an attacker may disrupt Beacon+ advertise-

ments by physically destroying Beacon+ devices, or jamming or dropping advertise-

ments. We classify Beacon+ security threats into the following categories:

1. BLE interface threats. An attacker can passively eavesdrop on advertisements,

or actively jam, replay, modify, forge, or drop advertisements.

2. Software threats. An attacker can alter the logic of Beacon+ through software

vulnerabilities.

3. Application threats. An attacker can compromise the intended functionality of

an application.

179

CHAPTER 7. SECURE LOCATION SENSING

Application-specific threats are unique to Beacon+ and non-obvious. For example,

an active attacker may attempt to circumvent location-based restrictions by physically

moving all Beacon+s to one central location. There exists threats to BLE devices,

smartphones, and trusted servers that we do not cover because it is beyond the scope

of Beacon+.

7.3 Beacon+

Apple’s iBeacon and the majority of other beacons lack authentication and there-

fore are susceptible to spoofing; i.e., an attacker can advertise another beacons UUID

to trick receivers into believing that the beacon is within range. These beacons also

lack a mechanism to provide receivers with a notion of time or, specifically, the notion

of advertisement generation (temporal freshness).

Beacon+ prevents spoofing by adding lightweight authentication by way of a

MAC, and it provides temporal freshness via a monotonically increasing sequence

number. Each BLE advertisement has both MAC and sequence number appended to

it. This advertisement maintains the single 27-byte payload structure and unidirec-

tional broadcast protocol defined in the iBeacon specification.223

Upon initialization, each Beacon+ is assigned a unique identification number that

we distinguish from the UUID of regular beacons by labeling it as ID, an initial value

for the monotonically increasing sequence number, and a secret key that is used to

180

CHAPTER 7. SECURE LOCATION SENSING

iBeacon	 Adver-sement	

BLE	 Adver-sement	 Payload	
31	 bytes	

UUID	
(16	 bytes)	

Major	
(2	 bytes)	

Minor	
(2	 bytes)	

Ad	 Structure	 1	

Size	
(1	 byte)	

BLE	 Flags	
(2	 bytes)	

Ad	 Structure	 2	

Size	
(1	 byte)	

TX	 Power	
(1	 byte)	

Unused	
(1	 byte)	

Beacon+	 Adver-sement	

ID	
(2	 bytes)	

Sequence	 Number	
(8	 bytes)	

MAC	
(16	 bytes)	

Ad	 Structure	 1	

Size	
(1	 byte)	

BLE	 Flags	
(2	 bytes)	

Ad	 Structure	 2	

Size	
(1	 byte)	

TX	 Power	
(1	 byte)	

Reserved	 (4	 bytes)	 User-‐Defined	 Data	 (27	 bytes)	 	

Reserved	 (4	 bytes)	 User-‐Defined	 Data	 (27	 bytes)	 	

Figure 7.1: iBeacon and Beacon+ advertisement formats. BLE advertisements can
support up to a 31-byte payload – 4 bytes are reserved for BLE structures and flags,
leaving 27 bytes for user-defined data.

compute a MAC. The secret key is assigned a priori to deployment. As with current

beacons, the TX Power (i.e., signal strength) to the Beacon+ at 1 meter in Decibel-

milliwatts (dBm) is measured and set. The ID, current sequence number, secret key,

and TX Power are stored in non-volatile memory on the Beacon+ to ensure that the

values persist even if removing power.

The trusted server maintains both the initial sequence number and the secret

key that will authenticate Beacon+ advertisements and check for temporal freshness.

Beacon+ computes a MAC on the concatenation of TX Power, ID, and current se-

quence number with padding. Each second, Beacon+ increments it sequence number,

computes a new MAC, and replaces the previous advertisement with the current one.

181

CHAPTER 7. SECURE LOCATION SENSING

Figure 7.1 compares the advertisement format of Beacon+ and iBeacon. Beacon+

uses 2 bytes for the ID and 8 bytes for the monotonically increasing sequence number.

One restriction of this specific byte allocation is that it supports only 216 or 65535

IDs. We choose to use 2 bytes for the ID in order to allocate 8 bytes for the sequence

number.

Beacon+ broadcasts advertisements at a predetermined rate. Faster rates (e.g.,

eight times per second) improve the likelihood that receivers detect Beacon+ devices

in range but increase the power consumption. Slower rates conserve power consump-

tion but may result in receivers failing to detect Beacon+s in range. We configure

Beacon+ to broadcast advertisements at a rate of eight times per second (i.e., every

125µs) which matches the rate of iBeacon.

We represent time using monotonically increasing sequence numbers that incre-

ment at a regular timeout of once per second. The trusted server maintains the

initial and subsequent sequence numbers, and upon receiving an authenticated ad-

vertisement, it will compare the received sequence number with the highest seen so

far. The advertisement is accepted if the received number is not more than some

threshold below the highest seen.

7.3.1 Implementation

We implemented the Beacon+ specification using the Texas Instruments MSP430FR5969

LaunchPad Development Kit251 and Bluegiga Bluetooth Low Energy BoosterPack for

182

CHAPTER 7. SECURE LOCATION SENSING

Figure 7.2: Beacon+ is implemented using the TI MSP430 LaunchPad (underlying
red board) and Bluegiga Bluetooth BLE BoosterPack.

the LaunchPad252 (see Figure 7.2). The MSP430 board runs the control logic of Bea-

con+. During initialization, each MSP430 board is assigned an ID, starting sequence

number (usually 1), secret key, and the appropriately calibrated TX Power. We place

the MSP430 board at a chosen location in the environment, and we share the ID,

starting sequence number, secret key, and chosen location with the trusted server.

Once per the timeout rate, the MSP430 board increments the sequence number,

computes the MAC using AES-128 bit CBC-MAC, and sends the new advertisement

to the BLE BoosterPack via the UART communication interface. The BLE Booster-

Pack receives the latest advertisement from the MSP430 and sends it out at a regular

interval of eight times per second. The transmitted advertisements are then collected

by devices moving throughout the environment and passed to the trusted server for

validation (see Section 7.4).

183

CHAPTER 7. SECURE LOCATION SENSING

7.4 Applications

Beacon+ serves as a foundation for building many secure location sensing appli-

cations. We describe and implement two such applications, namely secure real-time

asset tracking and location-based restrictions on access control. We also describe

BCMA physical proximity enforcement.

7.4.1 Secure Real-Time Asset Tracking System

The tracking system is composed of three components: (1) Beacon+, (2) BLE–

speaking devices that will be tracked (e.g. smartphone or tablet), and (3) backend

server (trusted server hereon) that validates Beacon+ advertisements and calculates

tracked devices’ positions. The system is initialized by placing Beacon+s throughout

the environment at chosen locations that provide good coverage of the area. This cho-

sen location and the Beacon+’s assigned unique ID, secret key, and starting sequence

number is shared with the trusted server, which is run by the system administrator 2.

As per the specification, each Beacon+ periodically broadcasts the authenticated BLE

advertisement containing its unique ID, monotonically increasing sequence number,

TX Power, and the corresponding MAC of the data.

Tracked BLE–speaking devices periodically collect the authenticated BLE adver-

tisements and corresponding received signal strength (RSSI) from all Beacon+ within

2Administer can return to a Beacon+ to refresh keys, apply firmware updates, or even replace it
entirely.

184

CHAPTER 7. SECURE LOCATION SENSING

range. The device then sends a device update that contains the latest collected Bea-

con+ advertisements to the server using some other communication medium such as

Wi-Fi, cellular, or wired LAN. This device functionality can be added to existing

medical devices that support BLE with only a small modification, while older devices

can use a BLE module or data collector (e.g., smartphone or computer).

To track personnel, each individual can carry their own smartphone or borrowed

hospital-issued tablet. These types of computing devices are increasingly used in

health-related environments due to the adoption of health information technology

and Bring-Your-Own-Device (BYOD).253 An App is installed on the devices that

collects Beacon+ advertisements and sends them over Wi-Fi or cellular networks to

the trusted server.

Figure 7.3 shows an example of two different devices that are tracked. The first

device is a physician’s iPhone, which can communicate directly to the trusted server.

The second device is a heart rate monitor that cannot communicate directly with the

trusted server, and relies on a data collection computer to forward communication.

In both cases, the devices collect the authenticated BLE advertisements from the

Beacon+ within range, aggregate the advertisements and corresponding RSSI values,

and send them to the backend server, which will use this information to determine

the location of the device.

Upon receiving a device update, the trusted server validates each of the Beacon+

advertisements contained within that update. The trusted server checks, using the

185

CHAPTER 7. SECURE LOCATION SENSING

Beacon+

Unidirectional
broadcast

Multidirectional wireless
communication

Beacon+ Backend Server

Data Collector

Medical Device

Beacon+ Beacon+

Beacon+

Beacon+

Smartphone

Figure 7.3: Secure Real-Time Asset Tracking System based on Beacon+.

shared secret key for each Beacon+, that the MAC appended on an advertisement

matches the computed MAC over the data. If the MAC does not match, that ad-

vertisement is discarded and not included in the location calculation. In addition,

each advertisement is checked for freshness by comparing the monotonically increas-

ing sequence number on the advertisement with the highest received sequence number

received so far from that Beacon+. If the sequence number on the advertisement is

not within a valid range of the highest sequence number seen to date (e.g., more than

X sequence numbers older), that advertisement is not valid.

After Beacon+ advertisements in a device update are validated, the trusted server

can compute the location of the device. Given a device’s RSSI value to a Beacon+, the

186

CHAPTER7. SECURELOCATIONSENSING

trustedservercancalculatethedistancebetweenthetwoentitiesusingthefollowing

equation:

rssi=−10n∗log10(d)+A (7.1)

d=10
(rssi A)

10n (7.2)

whererssiisthemeasuredreceivedsignalstrengthindBm,Aisthesignalstrength

totheBeacon+(indBm)at1 meter(i.e.,theTXPower),disdistancein meters

betweentheBeacon+andthedevice,andnisthepropagationconstantorpath-loss

exponent(freespacehasn=2forreference,thisvalueshouldbecalibrateddepending

ontheenvironment).

Thetrustedservercandeterminethelocationofthedeviceusingtrilateration254–256

giventhedistancecalculationbetweenthedeviceandatleastthreeBeacon+sand

pre-existingknowledgeofthephysicallocationofeachBeacon+. Thedeviceislo-

catedattheintersectionofthreecircles,onecirclecenteredateachBeacon+,where

theradiusofeachcircleisequaltothedistancecalculatedbetweenthedeviceand

thatBeacon+.Inordertotrackadevice’spositionatalltimesusingtrilateration,

it mustbewithinrangeofatleastthreeBeacon+inorderforthecomputationto

succeedatthetrustedserver.

Inadditiontocomputingadevice’slocation,thetrustedservercontinuallyup-

datesadatabase,whichcontainsthelocationofeachBeacon+,thelocationofeach

187

CHAPTER 7. SECURE LOCATION SENSING

b3

b2
b1

r1

r2

r2

X

Figure 7.4: Trilateration Example. r1, r2, and r3 (radius of the b1, b2, and b3
circles respectively) correspond to the calculated distance between the tracked device
and each Beacon+. The intersection of the three circles (marked by an X) determines
the location of the device.

tracked device, acceptable boundaries for each device, and a log of system events.

A web application reads the database an displays the location of each Beacon+ and

tracked devices, the boundaries of each device, and the system events as they occur

in real-time. The trusted server and web application can take action (e.g., raise an

alarm, send an email or text message) in response to problematic events, such as

when a device has left or is close to leaving the acceptable boundary.

Figure 7.5 shows a snapshot of an example web application that visualizes the

location of 10 Beacon+ (blue circles), one device being tracked (solid red block), and

the acceptable boundary of that device (red square outline) on a single floor of a

university building. The web application enforces access control to ensure that the

location of devices (and Beacon+) can only be seen by authorized individuals.

188

CHAPTER 7. SECURE LOCATION SENSING

Figure 7.5: Example Web Application Showing Secure Real-Time Tracking System.
The blue circles are Beacon+, the solid red block is a tracked device, and the red
square outline is the acceptable boundary of that device.

Attack Mitigations. An active attacker may steal a device. However, since devices

are tracked in real-time, the appropriate authority is notified if the device moves

outside its intended location. The attacker may also physically damage a Beacon+,

remove the power source, or perform a sophisticated wireless jamming attack. The

tracking system expects Beacon+ advertisements and device updates (i.e., heartbeat)

at regular intervals; therefore, the trusted server can implement a detection policy

(much like a network intrusion detection system) that generates alerts. Or, the trusted

server can generate audit logs for retroactive analysis.

189

CHAPTER 7. SECURE LOCATION SENSING

7.4.2 Location–Based Restrictions

Sensitive data such as electronic medical records are protected using encryption

and single-factor access control mechanisms (e.g., PIN numbers, passwords) to limit

access to authorized individuals. However, this approach raises a major security

concern as an attacker that is able to bypass or break the access control security

gains access to all of the sensitive data in the database with a single breach. This

threat is made worse in the context of a hospital, where computing devices are often

used to access sensitive patient information, and a stolen or compromised device can

provide an attacker with a large portion of private data.

To address this threat, we implement a prototype application that provides an

access control mechanism that enforces location-based restrictions. The application

relies on the authenticity of received Beacon+ advertisements to compute the relative

location of an authenticated device compared to an asset and provides access to the

asset data if and only if the device is within close physical proximity. In the hospital

setting, nurses and physicians who are away from their personal computer but moving

around with their smartphone must be within close physical proximity of a patient to

access her medical record. With this scheme, an access control breach only results in a

small fraction of sensitive data leakage, since an attacker that steals an authenticated

device only gets access to data that is within proximity. The location is only one

factor in a multi-factor access control scheme to authenticate a user.

Implementing the location-based restrictions application requires only minor addi-

190

CHAPTER 7. SECURE LOCATION SENSING

tions to the secure real-time tracking system. Personnel can use the same smartphone

or BLE device they sign into for the tracking system to access sensitive data. As per-

sonnel move about the organization, the trusted server tracks their location. When

the tracked device enters the close proximity of assets, the trusted server checks the

credentials of the device and authenticity of the Beacon+ advertisements and sends

the device the appropriate data from assets in range. Similarly, when devices leave

proximity of an asset, the trusted server revokes access to that asset’s data and the

App removes the record3. The trusted server can choose the level of granularity on

which to enforce location-based restrictions. For example, in the hospital context,

the trusted server may choose to organize patient records based on room, rather than

solely using distance as the metric. In addition, the trusted server can tailor the

information sent to the devices based on the credentials of the user (e.g., physicians

may be sent more sensitive information about a patient than nurses).

This approach provides location-based restrictions without the need of additional

authentication at every step. While an attacker that steals one of these authenticated

devices can see the sensitive information about nearby patients, the threat is not much

different from the existing accepted threat in which an attacker could walk around

the hospital and take the paper medical records that often sit unattended outside of

patient rooms. One possibility is to have physicians re-authenticate upon entering

each room which prevents an attacker from walking around with a device to get basic

3The App is also setup to remove data from the display after a configurable timeout, which
protects against an attacker that cuts network communication in an effort to force an asset’s data
to persist on the screen even after moving out of range of the asset.

191

CHAPTER 7. SECURE LOCATION SENSING

patient information but puts a burden on physicians and nurses. This is a trade-off

between privacy and usability which can be set as desired, and the App supports both

configurations.

In some cases, a physician might require accessing more details of a patient’s

health records or may require accessing a medical record for a patient that is not

in the same room. In this case, the App on the device allows physicians to provide

further forms of authentication (e.g., fingerprint, additional password) to increase

their access. Note that this access is only provided temporarily each time additional

authentication is provided, preventing an attacker from breaking the location-based

restrictions if she steals the device. Additionally, physicians can always return to

their private offices to use traditional access control techniques to gain access to a

wider range of medical records.

By using location-based restrictions for access control, hospitals get the techno-

logical and convenience benefits of electronic medical records with the traditional

privacy model of paper medical records, in that successful attackers only get access

to localized sensitive information rather than access to a large database of many

records.

Attack Mitigations. An active attacker may perform a denial-of-service attack

on the tracking system to cause patient harm or thwart productivity. This attack

is mitigated by having authorized individuals use additional authentication meth-

192

CHAPTER 7. SECURE LOCATION SENSING

ods to bypass the location-based restrictions and temporarily gain access to patient

records, or return to an authorized computer system (e.g., office computer). This

type of adversary can also steal an authenticated device (i.e., a physician logged in

and misplaced the device) and use it to obtain patient records via the location-based

restrictions application. The application mitigates this attack by deleting patient

records on a set time interval and when it moves outside the range of patients.

Note that the location-based restrictions application requires that the trusted

server have knowledge of patient locations in the hospital (either at a physical loca-

tion or room-level granularity). The tracking system can be made to track patient

locations by associating BLE devices with patients, or the trusted server can link

with existing hospital management techniques that track patient locations.

7.5 Experiments

We deployed eight evenly spaced Beacon+ prototypes of one side of the floor in our

building to emulate a setup that would be used in typical hospital settings. Each Bea-

con+ was placed at its chosen location and assigned a unique ID and secret key that is

shared with the trusted server. Upon startup, each Beacon+ begins broadcasting an

authenticated BLE advertisement containing its unique ID, latest sequence number

(monotonically increasing once per second), calibrated transmit power at 1 meter,

and MAC. Advertisements are broadcast every 125µs. We experimented with several

193

CHAPTER 7. SECURE LOCATION SENSING

values for n, the propagation constant from equation 7.1, and ultimately decided on

n = 2.7 for our experiments. It provided the most accurate measured distance from

compared with the actual location of tracked devices.

We used a Google Nexus 4 smart phone as the tracked device. We created an

Android App to periodically scan and collect all Beacon+ advertisements within

range (aggregating the measured RSSI values for each Beacon+ ID). The collected

advertisements are then bundled into a device update and sent via Wi-Fi to the

trusted server, which authenticates each of the advertisements in the update and

calculates the position of the device.

7.5.1 Tracking System Accuracy

To measure the accuracy of our Beacon+ tracking system, we placed the device

at various locations and compared the calculated location from the tracking system

with the actual location in the building. Initially, we measured the accuracy using the

trilateration approach, using the measurements from the three Beacon+ prototypes

with the strongest received signal strength for that update. However, we found that

the measured signal strength from our BLE hardware contained a fair amount of noise,

often causing the trilateration calculation to fail (i.e., the resulting circles created from

the distance measurements did not intersect). Rather than using trilateration in our

experiments, we calculated the position of devices using an approach that is less

accurate, but more flexible.

194

CHAPTER 7. SECURE LOCATION SENSING

Translated Midpoint Method. For each device update received, the trusted server

sorts the valid Beacon+ advertisements in order of received signal strength and can

calculate the device’s position for this update as long as at least two advertisements

are valid. If there are three or more valid advertisements, the trusted server uses the

top three Beacon+ ads (based on RSSI values) and forms a triangle, with one vertex

corresponding to each of the Beacon+ locations in the environment. Each vertex

is then translated toward the midpoint of the opposite side of the triangle, with

translation distance proportional (or in our case, equal) to the measured distance

between the device and that Beacon+.

If there are only two advertisements, a line is formed between the two Beacon+

locations, and each point is translated toward the other point with a distance equal

to the measured distance from the device to that Beacon+. Finally, the device’s

position is calculated as the centroid of the resulting triangle (in the case of three

valid Beacon+ advertisements) or midpoint of the resulting line (in the case of two

Beacon+ advertisements). Using the new approach resulted in position calculation

with precision 1-2 meters in the best case and 9-10 meters in the worst case.

Using the translated midpoint method, the resulting Beacon+ tracking system is

flexible and accurate, providing a position calculation with the precision of 1-2 meters

in the best case and 9-10 meters in the worst case. Compared to the trilateration

approach, the translated midpoint method achieves a better overall tracking system

in the environment of our experimentation.

195

CHAPTER 7. SECURE LOCATION SENSING

b1

 b2

b3

 b1

b2

X

Xr1

r2

r3

r1
r2

Figure 7.6: Translated Midpoint Method to calculate device position.

7.5.2 Power Consumption

We connected an MSP-430 LaunchPad to an Agilent programmable power supply.

Since the MSP430 LaunchPad runs off of a +5V power source, we set the output

voltage to 5 volts and maximum current to 1A. Our power supply showed that in the

case of the MSP430 emulating an iBeacon, the power draw was between 15 and 20

mA. In the case of the MSP430 emulating a Beacon+, the power draw was between

22 and 25 mA. Therefore, the overhead of Beacon+ over a standard Beacon running

on our test platform was between 20% and 46%.

7.5.3 Location-Based Restrictions

We created an Android App that collects and forwards Beacon+ advertisements

to the trusted server and displays patient records sent in return. After validating a

device and calculating its position, the trusted server compares the device position

196

CHAPTER 7. SECURE LOCATION SENSING

with the location of patients in the building and only sends records of nearby patients

(10 meters in our experiments). When a device moves out of range of a patient, that

patient record is removed from the list in the App.

For this experiment, we created a mock patient record database on the trusted

server based on the OpenMRS Demo Data,257 and set the location of four of the

patients in the database to locations in the building environment (yellow squares are

shown in Figure 7.9). Then, we walked around the building with the smartphone

running the App to view the records of the nearby patients, i.e., the patients that

were within 10 meters of the device’s tracked position.

Figure 7.9 shows four snapshots (a through d) of the experiment in action. The

visual GUI of the Beacon+ tracking system is shown on the right. The GUI shows

the location of the Beacon+ prototypes (blue circles), the patients in the building

(yellow squares), and where the device is located at each snapshot (a through d). For

each snapshot in Figure 7.9, we also include the screen capture of the device running

the patient record access App at its respective location.

7.6 No Central Trusted Authority

We assume a central trusted authority (i.e., the trusted server) in our secure

location sensing application architecture. However, this assumption is susceptible to

an attacker who gains unauthorized access to the trusted server. If this should happen,

197

CHAPTER 7. SECURE LOCATION SENSING

b

c

d

1

2

3 4

1

2

a

3

4

5

6

7

8
(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)
Figure 7.7: Location-Based Restrictions on Access Control.

198

CHAPTER 7. SECURE LOCATION SENSING

all security guarantees are invalidated because the attacker would have access to the

private keys of every Beacon+. Removing the trusted server is a complicated problem

because Beacon+ supports unidirectional communication only; therefore, we cannot

use a two-way protocol to assert trust nor can we introduce an out-of-band channel

for weak authentication.71,75

To remove the trusted server we construct a protocol based on the timed efficient

stream loss-tolerant authentication (TESLA) broadcast protocol. This protocol as-

sumes a large set of mutually untrusted receivers in a sensor network with packet loss.

A sender computes the MAC t of a message with a key k known only to itself. The

sender broadcasts the authenticated message m, t, and some set of receivers buffer the

message. Time t later, the sender discloses the key k and the receiver authenticates

the packet. This protocol is unlike our previous Beacon+ protocol because it assumes

that the sender and receiver clocks can be loosely synchronized. It also introduces

hash chains to authenticate keys at the receiver.

A hash chain is generated by selecting a random element s and repeatedly applying

a one-way function F . We can verify any element of the chain through commitment

si by performing F j−i(sj) = si, where i < j. TESLA uses hash chains to generate

authentication values, k from the above, and discloses k at time t (e.g., one key per

second).

We design Beacon+’s new protocol without a trusted server as follows. We initially

generate a random secret s and unique ID. We then calculate HN = HN(s) where

199

CHAPTER 7. SECURE LOCATION SENSING

HN is the hash of s, N times. We put HN and ID into a digital certificate C and

sign it with a certificate authority’s private key. C, s, and ID are placed on the

Beacon+. At each time period i, the Beacon+ sends an advertisement containing

C, ID, a message M containing the value i, a MAC on M computed with the key

HN−(i+1)(s), and the value HN−i.

The verifier in this protocol is the smartphone or medical device. The verifier

collects advertisements from two adjacent time periods (i initial and j final) and

checks that the advertisements are current based on its own internal clock. Next, the

verifier validates C and hashes HN−j(s), j times, to obtain HN . This value is in C,

thus, it can be validated. The verifier then verifies time period i’s MAC using the

key output from time period j. We diagram this protocol in Figure 7.8.

We differ from TESLA in how we do synchronization. Specifically, TESLA requires

a digital signature key pair on the sender and a nonce from the receiver. The receiver

records the current time and sends the sender a nonce. The sender replies with its

clock time and the nonce signed with its public key. Clock synchronization is useful

for the receiver because it can check that the key k received has been disclosed yet.

Beacon+ is strictly unidirectional, thus, cannot receive a nonce like the sender in

TESLA. Instead, the verifier in our protocol can check if two adjacent time periods

are current by querying the tracking server described below.

Removing the trusted server in our architecture adds new entities and roles. For

example, the secure real-time asset tracking system adds a certificate authority, track-

200

CHAPTER 7. SECURE LOCATION SENSING

 [Sender] Beacon+ [Verifier] Phone

ID = {0,1}128

S = {0,1} 256

HN = HN(s)

C = {ID, HN, sig{ID, HN}}
1

Collect M from time period iAt time period i, send Message M:

i, ID
tagi = MAC(M, HN-(i+1)(s))

 ki = HN-i(s)

2

At time period j, send Message M:

j, ID
 tagj = MAC(M, HN-(j+1)(s))

kj = HN-j(s)

3

Collect M from time period j

{i, ID, tagi, ki}

{j, ID, tagj, kj}

Check time is current, verify cert

Hj(HN-j(s)) =? HN

Verify tagi with kj

Setup

Load unique secret (S), unique
ID (ID), and certificate (C) onto

Beacon+
{S, ID, C}1

4

5

Figure 7.8: Beacon+ protocol without central trusted authority.

ing server, and map authority (i.e., database server). We logically separate the track-

ing server and map authority because these components could be distributed. The

certificate authority issues a signed certificate to every Beacon+. The medical device

and smartphone later verify the signature on the Beacon+ certificate when receiving

Beacon+ advertisements.

The tracking server allows both the medical device and smartphone to make

application-specific queries to the map authority. For example, a medical device

would send a location query 4 that contains a set of unique Beacon+ IDs, the lat-

est time period j and kj where kj = HN−j(s). The tracking server would verify

Hj(HN−j(s)) = HN where HN is in the Beacon+ certificate. If and only if verifica-

tion succeeds and kj has not been previously seen, the tracking server processes the

4We expect other queries such as location-based access queries.

201

CHAPTER 7. SECURE LOCATION SENSING

Beacon+ Beacon+

Certificate Authority

Map Authority

Medical Device

Beacon+ Beacon+

Beacon+

Beacon+

Smartphone

signed(ids, locations)

Tracking &
Location-based
Access Queries

Figure 7.9: Secure Real-Time Asset Tracking System with no Trusted Server.

query using the map authority and returns a result.

There exists an implicit assumption that devices that can verify Beacon+ adver-

tisements are also trusted. We can make this an explicit assumption by requiring

mutual authentication between the smartphone or medical device and the tracking

server. In this case, only trusted devices can communicate with the tracking server.

7.7 Conclusion

In this work, we have shown that Beacon+ can be used to implement secure

location sensing applications that have the potential to improve healthcare processes

in terms of security, efficiency, and safety. We implemented a secure real-time tracking

system for hospitals that also provides a foundation for a novel application that applies

202

CHAPTER 7. SECURE LOCATION SENSING

location-based restrictions on access control.

203

Chapter 8

Summary

In this dissertation, we have examined a particular set of challenges in health

and medical systems and introduced new systems that improve security, privacy, and

usability. We presented a survey of related work in embedded health and medical

systems that uncover and motivate research challenges. We performed an analysis

of Apple iMessage and found significant vulnerabilities that exemplify the challenges

of BYOD and protocol development. We showed that memory copying performed

by DMA engines could be chained together to perform arbitrary computation on

numerous computer systems. We implemented and exploited stealthy computation

and covert channels using the HTML5 Web Workers API. Health and medical systems

such as patient portals and pharmaceutical compounders are directly affected by

this finding. We introduced an authentication system that addresses the problem of

complex passwords and poor usability. And, we implemented a real-time tracking

204

CHAPTER 8. SUMMARY

system that uses a custom-built security device called Beacon+. This device enabled

other secure location sensing applications such as location-based access restrictions.

205

Bibliography

[1] J. Carrigan, P. Martin, and M. Rushanan, “Kbid: Kerberos bracelet identifica-

tion,” in Proceedings of the 20th annual Conference on Financial Cryptography

and Data Security, ser. FC ’16, 2016.

[2] M. Rushanan and S. Checkoway, “Run-dma,” in Proceedings of the 9th annual

USENIX Workshop on Offensive Technologies, ser. WOOT ’15, 2015.

[3] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “Sok: Security

and privacy in implantable medical devices and body area networks,” in

Proceedings of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14.

Washington, DC, USA: IEEE Computer Society, 2014, pp. 524–539. [Online].

Available: http://dx.doi.org/10.1109/SP.2014.40

[4] C. Garman, M. Green, G. Kaptchuk, I. Miers, and M. Rushanan, “Dancing

on the lip of the volcano: Chosen ciphertext attacks on apple imessage,” in

Submission to the 25th annual USENIX Security Symposium, 2016.

[5] P. Martin, T. Tantillo, A. D. Rubin, and M. Rushanan, “Applications of se-

206

http://dx.doi.org/10.1109/SP.2014.40

BIBLIOGRAPHY

cure location sensing in healthcare,” in Submission to the 2nd International

Conference on Health Informatics and Medical Systems, ser. HIMS ’16, 2016.

[6] M. Rushanan, D. Russel, and A. D. Rubin, “Malloryworker: Stealthy computa-

tion and covert channels using web workers,” in Submission to the 10th annual

USENIX Workshop on Offensive Technologies, ser. WOOT ’16, 2016.

[7] M. Astani, K. Ready, and M. Tessema, “Byod issues and strategies in organi-

zations,” Issues in Information Systems, vol. 14, no. 2, pp. 195–201, 2013.

[8] J. Zhu, L. Chen, A. Chen, G. Luo, X. Deng, and X. Liu, “Fast 3d dosimetric

verifications based on an electronic portal imaging device using a gpu calculation

engine,” Radiation Oncology, vol. 10, no. 1, pp. 1–11, 2015.

[9] “Exactamix compounder,” http://www.baxtermedicationdeliveryproducts.

com/pdf/801686 Electronic Version.pdf/, Jun. 2013, accessed May 27, 2014.

[10] S. Sinclair and S. W. Smith, “What’s wrong with access control in the real

world?” IEEE Security & Privacy, vol. 8, no. 4, pp. 74–77, 2010.

[11] K. E. Hanna, F. J. Manning, P. Bouxsein, and A. Pope, Innovation and Inven-

tion in Medical Devices: Workshop Summary. The National Academies Press,

2001.

[12] (2011, Jun.) Insulin pumps - global pipeline analysis, opportunity assessment

and market forecasts to 2016. [Online]. Available: http://www.globaldata.com.

207

http://www.baxtermedicationdeliveryproducts.com/pdf/801686_Electronic_Version.pdf/
http://www.baxtermedicationdeliveryproducts.com/pdf/801686_Electronic_Version.pdf/
http://www.globaldata.com

BIBLIOGRAPHY

[13] (2011, Jun.) US healthcare equipment and supplies - diabetes. [Online]. Avail-

able: http://www.research.hsbc.com.

[14] M. Patel and J. Wang, “Applications, challenges, and prospective

in emerging body area networking technologies,” Wireless Commun.,

vol. 17, no. 1, pp. 80–88, Feb. 2010. [Online]. Available: http:

//dx.doi.org/10.1109/MWC.2010.5416354

[15] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser, and H. O.

Marcy, “Wireless integrated network sensors: Low power systems on a chip,”

in Proc. 24th European Solid-State Circuits Conference (ESSCIRC ’98), 1998,

pp. 9–16.

[16] J. Zheng and M. J. Lee, “Will IEEE 802.15.4 make ubiquitous networking

a reality?: A discussion on a potential low power, low bit rate

standard,” vol. 42, no. 6, pp. 140–146, Jun. 2004. [Online]. Available:

http://dx.doi.org/10.1109/MCOM.2004.1304251

[17] X. Zhang, H. Jiang, X. Chen, L. Zhang, and Z. Wang, “An energy efficient

implementation of on-demand MAC protocol in medical wireless body sensor

networks,” in Proc. IEEE International Symposium on Circuits and Systems

(ISCAS 2009), 2009, pp. 3094–3097.

[18] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem,

Z. Rahman, and K. S. Kwak, “A comprehensive survey of wireless body area

208

http://www.research.hsbc.com
http://dx.doi.org/10.1109/MWC.2010.5416354
http://dx.doi.org/10.1109/MWC.2010.5416354
http://dx.doi.org/10.1109/MCOM.2004.1304251

BIBLIOGRAPHY

networks,” J. Med. Syst., vol. 36, no. 3, pp. 1065–1094, Jun. 2012. [Online].

Available: http://dx.doi.org/10.1007/s10916-010-9571-3

[19] A. Kailas and M. A. Ingram, “Wireless communications technology in telehealth

systems,” in Proc. 1st International Conference on Wireless Communication,

Vehicular Technology, Information Theory and Aerospace Electronic Systems

Technology (Wireless VITAE 2009), 2009, pp. 926–930.

[20] Code of Federal Regulations, “Title 47 Part 95 Section 401 (e) C.F.R 47,

95.401 (e), Federal Communications Commission - The Wireless Medical

Telemetry Service (WMTS),” http://transition.fcc.gov/Bureaus/Engineering

Technology/Orders/2000/fcc00211.pdf.

[21] G. Kolata. (2013, Oct.) Of fact, fiction and Cheney’s defibrilla-

tor. [Online]. Available: http://www.nytimes.com/2013/10/29/science/

of-fact-fiction-and-defibrillators.html.

[22] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,

W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers

and implantable cardiac defibrillators: Software radio attacks and zero-

power defenses,” in Proc. 29th Annual IEEE Symposium on Security

and Privacy (SP 2008), May 2008, pp. 129–142. [Online]. Available:

http://www.secure-medicine.org/icd-study/icd-study.pdf

[23] K. Fu and J. Blum, “Inside risks: Controlling for cybersecurity risks of medical

209

http://dx.doi.org/10.1007/s10916-010-9571-3
http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://www.nytimes.com/2013/10/29/science/of-fact-fiction-and-defibrillators.html
http://www.nytimes.com/2013/10/29/science/of-fact-fiction-and-defibrillators.html
http://www.secure-medicine.org/icd-study/icd-study.pdf

BIBLIOGRAPHY

device software,” Communications of the ACM, vol. 56, no. 10, pp. 21–23, Oct.

2013. [Online]. Available: http://www.csl.sri.com/users/neumann/cacm231.

pdf

[24] W. Burleson, S. S. Clark, B. Ransford, and K. Fu, “Design challenges

for secure implantable medical devices,” in Proc. 49th Annual Design

Automation Conference (DAC ’12), 2012, pp. 12–17. [Online]. Available:

http://doi.acm.org/10.1145/2228360.2228364

[25] (2013, Jun.) Content of premarket submissions for management of cyber-

security in medical devices: Draft guidance for industry and Food and

Drug Administration staff. http://www.regulations.gov/#!documentDetail;D=

FDA-2013-D-0616-0002.

[26] A. B. Mullen. (2013, Sep.) Premature enforcement of CDRH’s draft cy-

bersecurity guidance. http://www.fdalawblog.net/fda law blog hyman phelps/

2013/09/premature-enforcement-of-cdrhs-draft-cybersecurity-guidance.html.

[27] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel,

“Security and privacy for implantable medical devices,” vol. 7, no. 1, pp. 30–39,

Jan. 2008. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.16

[28] C. Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin pump: Security

attacks and defenses for a diabetes therapy system,” in Proc. 13th IEEE Inter-

210

http://www.csl.sri.com/users/neumann/cacm231.pdf
http://www.csl.sri.com/users/neumann/cacm231.pdf
http://doi.acm.org/10.1145/2228360.2228364
http://www.regulations.gov/#!documentDetail;D=FDA-2013-D-0616-0002
http://www.regulations.gov/#!documentDetail;D=FDA-2013-D-0616-0002
http://www.fdalawblog.net/fda_law_blog_hyman_phelps/2013/09/premature-enforcement-of-cdrhs-draft-cybersecurity-guidance.html
http://www.fdalawblog.net/fda_law_blog_hyman_phelps/2013/09/premature-enforcement-of-cdrhs-draft-cybersecurity-guidance.html
http://dx.doi.org/10.1109/MPRV.2008.16

BIBLIOGRAPHY

national Conference on e-Health Networking Applications and Services (Health-

Com 2011), 2011, pp. 150–156.

[29] M. Rostami, W. Burleson, F. Koushanfar, and A. Juels, “Balancing

security and utility in medical devices?” in Proc. 50th Annual Design

Automation Conference (DAC ’13), 2013, pp. 13:1–13:6. [Online]. Available:

http://doi.acm.org/10.1145/2463209.2488750

[30] M. Zhang, A. Raghunathan, and N. K. Jha, “Towards trustworthy

medical devices and body area networks,” in Proc. 50th Annual Design

Automation Conference (DAC ’13), 2013, pp. 14:1–14:6. [Online]. Available:

http://doi.acm.org/10.1145/2463209.2488751

[31] S. S. Clark and K. Fu, “Recent results in computer security for

medical devices,” in International ICST Conference on Wireless Mobile

Communication and Healthcare (MobiHealth), Special Session on Advances

in Wireless Implanted Devices, Oct. 2011. [Online]. Available: https:

//spqr.eecs.umich.edu/papers/clark-mobihealth11.pdf

[32] D. Foo Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,

Y. Kim, and W. Xu, “Ghost talk: Mitigating EMI signal injection

attacks against analog sensors,” in Proc. 34th Annual IEEE Symposium on

Security and Privacy (SP 2013), 2013, pp. 145–159. [Online]. Available:

http://dx.doi.org/10.1109/SP.2013.20

211

http://doi.acm.org/10.1145/2463209.2488750
http://doi.acm.org/10.1145/2463209.2488751
https://spqr.eecs.umich.edu/papers/clark-mobihealth11.pdf
https://spqr.eecs.umich.edu/papers/clark-mobihealth11.pdf
http://dx.doi.org/10.1109/SP.2013.20

BIBLIOGRAPHY

[33] P. Bagade, A. Banerjee, J. Milazzo, and S. K. S. Gupta, “Protect your BSN: No

handshakes, just namaste!” in IEEE International Conference on Body Sensor

Networks (BSN), 2013, pp. 1–6.

[34] S. Heath, Embedded Systems Design, 1st ed. Butterworth-Heinemann, 1997.

[35] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks:

Technology, Protocols, and Applications. Wiley, 2007. [Online]. Available:

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471743003.html

[36] V. Shnayder, B. Chen, K. Lorincz, T. R. F. Fulford Jones, and M. Welsh,

“Sensor networks for medical care,” in Proc. 3rd International Conference on

Embedded Networked Sensor Systems (SenSys ’05), 2005, p. 314. [Online].

Available: http://doi.acm.org/10.1145/1098918.1098979

[37] United States Statutes at Large, “Federal Food, Drug,

and Cosmetic Act (FD&C Act), Section 201 (21

U.S.C. 321),” http://www.fda.gov/RegulatoryInformation/

Legislation/FederalFoodDrugandCosmeticActFDCAct/

FDCActChaptersIandIIShortTitleandDefinitions/ucm086297.htm.

[38] (2011, Nov.) U.S Food and Drug Administration, Office of Inter-

national Programs (OIP). [Online]. Available: http://www.fda.gov/

AboutFDA/CentersOffices/OfficeofGlobalRegulatoryOperationsandPolicy/

OfficeofInternationalPrograms/ucm236581.htm.

212

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471743003.html
http://doi.acm.org/10.1145/1098918.1098979
http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/FDCActChaptersIandIIShortTitleandDefinitions/ucm086297.htm
http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/FDCActChaptersIandIIShortTitleandDefinitions/ucm086297.htm
http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/FDCActChaptersIandIIShortTitleandDefinitions/ucm086297.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofGlobalRegulatoryOperationsandPolicy/OfficeofInternationalPrograms/ucm236581.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofGlobalRegulatoryOperationsandPolicy/OfficeofInternationalPrograms/ucm236581.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofGlobalRegulatoryOperationsandPolicy/OfficeofInternationalPrograms/ucm236581.htm

BIBLIOGRAPHY

[39] Federal Communications Commission, “Report and Order (FCC No 00-211),

Paragraph 24,” http://transition.fcc.gov/Bureaus/Engineering Technology/

Orders/2000/fcc00211.pdf.

[40] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “From

verification to implementation: A model translation tool and a pacemaker

case study,” in Proc. IEEE 18th Real Time and Embedded Technology and

Applications Symposium (RTAS ’12), 2012, pp. 173–184. [Online]. Available:

http://dx.doi.org/10.1109/RTAS.2012.25

[41] R. K. Shepard and K. A. Ellenbogen, “Leads and longevity: How long will your

pacemaker last?” Europace, vol. 11, no. 2, pp. 142–143, 2009.

[42] Code of Federal Regulations, “Title 47 Part 95 Subpart I C.F.R 47, 95 Sub-

part I, Federal Communications Commission - Medical Device Radiocommu-

nication Service (MedRadio),” http://transition.fcc.gov/Bureaus/Engineering

Technology/Orders/2000/fcc00211.pdf.

[43] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on

wireless body area networks,” Wireless Networks, vol. 17, no. 1, pp. 1–18, Jan.

2011. [Online]. Available: http://dx.doi.org/10.1007/s11276-010-0252-4

[44] D. Foo Kune, K. K. Venkatasubramanian, E. Vasserman, I. Lee, and Y. Kim,

“Toward a safe integrated clinical environment: A communication security per-

213

http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://dx.doi.org/10.1109/RTAS.2012.25
http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf
http://dx.doi.org/10.1007/s11276-010-0252-4

BIBLIOGRAPHY

spective,” in Proc. 2012 ACM workshop on Medical Communication Systems,

2012, pp. 7–12.

[45] M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and D. Ayyagari,

“Developing a standard for personal health devices based on 11073,” in Proc.

29th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBS 2007), 2007, pp. 6174–6176.

[46] (2011, Nov.) Health level seven international. http://www.hl7.org/.

[47] (2014, Mar.) Integrating the healthcare enterprise. http://www.ihe.net/.

[48] ASTM F-29.21, “Medical devices and medical systems — essential safety re-

quirements for equipment comprising the patient-centric integrated clinical en-

vironment (ICE),” 2009.

[49] T. Denning, A. Borning, B. Friedman, B. T. Gill, T. Kohno, and W. H.

Maisel, “Patients, pacemakers, and implantable defibrillators: Human values

and security for wireless implantable medical devices,” in Proc. SIGCHI

Conference on Human Factors in Computing Systems (CHI ’10), 2010, pp.

917–926. [Online]. Available: http://doi.acm.org/10.1145/1753326.1753462

[50] P. Kumar and H.-J. Lee, “Security issues in healthcare applications using

wireless medical sensor networks: A survey,” Sensors, vol. 12, no. 1, pp. 55–91,

2011. [Online]. Available: http://www.mdpi.com/1424-8220/12/1/55

214

http://www.hl7.org/
http://www.ihe.net/
http://doi.acm.org/10.1145/1753326.1753462
http://www.mdpi.com/1424-8220/12/1/55

BIBLIOGRAPHY

[51] S. Avancha, A. Baxi, and D. Kotz, “Privacy in mobile technology for personal

healthcare,” ACM Comput. Surv., vol. 45, no. 1, pp. 3:1–3:54, Dec. 2012.

[52] K. Ellis and N. Serinken, “Characteristics of radio transmitter fingerprints,”

Radio Science, vol. 36, no. 4, pp. 585–597, 2001.

[53] J. Hall, M. Barbeau, and E. Kranakis, “Detecting rogue devices in bluetooth

networks using radio frequency fingerprinting,” in IASTED International Con-

ference on Communications and Computer Networks, 2006.

[54] K. B. Rasmussen and S. Čapkun, “Implications of radio fingerprinting on the

security of sensor networks,” in Proc. 3rd International Conference on Security

and Privacy in Communications Networks and the Workshops (SecureComm

2007), 2007, pp. 331–340.

[55] M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-heart (H2H):

Authentication for implanted medical devices,” in Proc. 20th ACM Conference

on Computer and Communications Security (CCS 2013), Nov. 2013. [Online].

Available: http://www.aceslab.org/sites/default/files/H2H.pdf

[56] N. Henry Jr., N. Paul, and N. McFarlane, “Using bowel sounds to create a

forensically-aware insulin pump system,” in Proc. 4th USENIX Workshop on

Health Information Technology (HealthTech), 2013.

[57] C. Hu, X. Cheng, F. Zhang, D. Wu, X. Liao, and D. Chen, “OPFKA: Se-

215

http://www.aceslab.org/sites/default/files/H2H.pdf

BIBLIOGRAPHY

cure and efficient ordered-physiological-feature-based key agreement for wireless

body area networks,” Proc. 32nd IEEE International Conference on Computer

Communications (INFOCOM 2013), 2013.

[58] L. Shi, J. Yuan, S. Yu, and M. Li, “ASK-BAN: Authenticated secret

key extraction utilizing channel characteristics for body area networks,”

in Proc. 6th ACM conference on Security and privacy in wireless and

mobile networks (WiSec ’13), 2013, pp. 155–166. [Online]. Available:

http://doi.acm.org/10.1145/2462096.2462123

[59] H. Alemzadeh, R. Iyer, Z. Kalbarczyk, and J. Raman, “Analysis of safety-

critical computer failures in medical devices,” vol. 11, no. 4, pp. 14–26, 2013.

[60] N. O. Tippenhauer, L. Malisa, A. Ranganathan, and S. Čapkun, “On

limitations of friendly jamming for confidentiality,” in Proc. 34th Annual IEEE

Symposium on Security and Privacy (SP 2013), 2013, pp. 160–173. [Online].

Available: http://dx.doi.org/10.1109/SP.2013.21

[61] M. Zhang, A. Raghunathan, and N. Jha, “MedMon: Securing medical devices

through wireless monitoring and anomaly detection,” vol. 7, no. 6, pp. 871–881,

Dec. 2013.

[62] S. Chang, Y. Hu, H. Anderson, T. Fu, and E. Y. L. Huang, “Body area

network security: Robust key establishment using human body channel,” in

Proc. 3rd USENIX Workshop on Health Security and Privacy (HealthSec),

216

http://doi.acm.org/10.1145/2462096.2462123
http://dx.doi.org/10.1109/SP.2013.21

BIBLIOGRAPHY

vol. 37, no. 6, Aug. 2012. [Online]. Available: https://www.usenix.org/

conference/healthsec12/workshop-program/presentation/Chang

[63] D. B. Kramer, M. Baker, B. Ransford, A. Molina-Markham, Q. Stewart, K. Fu,

and M. R. Reynolds, “Security and privacy qualities of medical devices: An

analysis of FDA postmarket surveillance,” PLoS ONE, vol. 7, p. e40200, Jul.

2012. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pone.0040200

[64] L. Shi, M. Li, S. Yu, and J. Yuan, “BANA: Body area network authentication

exploiting channel characteristics,” in Proc. 5th ACM conference on Security

and Privacy in Wireless and Mobile Networks (WiSec ’12), 2012, pp. 27–38.

[Online]. Available: http://doi.acm.org/10.1145/2185448.2185454

[65] I. Martinovic, D. Davies, M. Frank, D. Perito, T. Ros, and D. Song, “On

the feasibility of side-channel attacks with brain-computer interfaces,” in

Proc. 21st USENIX Security Symposium (USENIX Security ’12), 2012, p. 34.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.2362827

[66] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “PSKA: Usable

and secure key agreement scheme for body area networks,” vol. 14, no. 1, pp.

60–68, 2010.

[67] A. D. Jurik and A. C. Weaver, “Securing mobile devices with biotelemetry,” in

Proc. 20th International Conference on Computer Communications and Net-

works (ICCCN 2011), 2011, pp. 1–6.

217

https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
http://dx.doi.org/10.1371%2Fjournal.pone.0040200
http://doi.acm.org/10.1145/2185448.2185454
http://dl.acm.org/citation.cfm?id=2362793.2362827

BIBLIOGRAPHY

[68] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R. Mangharam, “Real-time heart

model for implantable cardiac device validation and verification,” in Proc.

2010 22nd Euromicro Conference on Real-Time Systems (ECRTS ’10), 2010,

pp. 239–248. [Online]. Available: http://dx.doi.org/10.1109/ECRTS.2010.36

[69] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu, “They can

hear your heartbeats: Non-invasive security for implantable medical devices,”

SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 2–13, Aug. 2011.

[Online]. Available: http://doi.acm.org/10.1145/2043164.2018438

[70] K. K. Venkatasubramanian and S. K. S. Gupta, “Physiological value-based

efficient usable security solutions for body sensor networks,” ACM Trans. Sen.

Netw. (TOSN), vol. 6, no. 4, pp. 31:1–31:36, Jul. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1777406.1777410

[71] T. Halevi and N. Saxena, “On pairing constrained wireless devices based on

secrecy of auxiliary channels: The case of acoustic eavesdropping,” in Proc. 17th

ACM conference on Computer and Communications Security (CCS 2010), 2010,

pp. 97–108. [Online]. Available: http://doi.acm.org/10.1145/1866307.1866319

[72] F. Xu, Z. Qin, C. Tan, B. Wang, and Q. Li, “IMDGuard: Securing implantable

medical devices with the external wearable guardian,” in Proc. 30th IEEE Inter-

national Conference on Computer Communications (INFOCOM 2011), 2011,

pp. 1862–1870.

218

http://dx.doi.org/10.1109/ECRTS.2010.36
http://doi.acm.org/10.1145/2043164.2018438
http://doi.acm.org/10.1145/1777406.1777410
http://doi.acm.org/10.1145/1866307.1866319

BIBLIOGRAPHY

[73] X. Hei, X. Du, J. Wu, and F. Hu, “Defending resource depletion attacks on

implantable medical devices,” in Proc. IEEE Global Telecommunications Con-

ference (GLOBECOM 2010), 2010, pp. 1–5.

[74] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “Plethysmogram-

based secure inter-sensor communication in body area networks,” in Proc. Mil-

itary Communications Conference (MILCOM 2008), Nov. 2008, pp. 1–7.

[75] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Čapkun,

“Proximity-based access control for implantable medical devices,” in Proc.

16th ACM conference on Computer and Communications Security (CCS 2009),

2009, pp. 410–419. [Online]. Available:

[76] T. Denning, Y. Matsuoka, and T. Kohno, “Neurosecurity: Security and

privacy for neural devices,” Journal of Neurosurgery: Pediatrics, vol. 27, no. 1,

p. E7, Jul. 2009. [Online]. Available: http://thejns.org/doi/abs/10.3171/2009.

4.FOCUS0985?ai=rw&mi=0&af=R

[77] L. Ballard, S. Kamara, and M. K. Reiter, “The practical subtleties of

biometric key generation,” in Proc. 17th conference on Security Symposium

(SS ’08), 2008, pp. 61–74. [Online]. Available: http://dl.acm.org/citation.cfm?

id=1496711.1496716

[78] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “EKG-based

219

ç
http://thejns.org/doi/abs/10.3171/2009.4.FOCUS0985?ai=rw&mi=0&af=R
http://thejns.org/doi/abs/10.3171/2009.4.FOCUS0985?ai=rw&mi=0&af=R
http://dl.acm.org/citation.cfm?id=1496711.1496716
http://dl.acm.org/citation.cfm?id=1496711.1496716

BIBLIOGRAPHY

key agreement in body sensor networks,” in Proc. 2nd Workshop on Mission

Critical Networks (INFOCOM Workshops 2008), 2008, pp. 1–6.

[79] T. Denning, K. Fu, and T. Kohno, “Absence makes the heart grow fonder:

New directions for implantable medical device security,” in Proc. 3rd conference

on Hot Topics in Security (HotSec ’08), 2008, pp. 5:1–5:7. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1496671.1496676

[80] K. K. Venkatasubramanian and S. K. S. Gupta, “Security for pervasive health

monitoring sensor applications,” in Proc. 4th International Conference on In-

telligent Sensing and Information Processing (ICISIP), 2006.

[81] S. Cherukuri, K. K. Venkatasubramanian, and S. K. S. Gupta, “BioSec: a

biometric based approach for securing communication in wireless networks of

biosensors implanted in the human body,” in Proc. International Conference

on Parallel Processing Workshops, 2003, pp. 432–439.

[82] C. C. Y. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method to se-

cure wireless body area sensor networks for telemedicine and m-health,” vol. 44,

no. 4, pp. 73–81, 2006.

[83] M. Li, S. Yu, J. D. Guttman, W. Lou, and K. Ren, “Secure ad hoc trust

initialization and key management in wireless body area networks,” ACM

Trans. Sen. Netw. (TOSN), vol. 9, no. 2, pp. 18:1–18:35, Apr. 2013. [Online].

Available: http://doi.acm.org/http://dx.doi.org/10.1145/2422966.2422975

220

http://dl.acm.org/citation.cfm?id=1496671.1496676
http://doi.acm.org/http://dx.doi.org/10.1145/2422966.2422975

BIBLIOGRAPHY

[84] C. Hu, N. Zhang, H. Li, X. Cheng, and X. Liao, “Body area network security:

A fuzzy attribute-based signcryption scheme,” vol. 31, no. 9, pp. 37–46, Sep.

2013.

[85] F. Miao, L. Jiang, Y. Li, and Y.-T. Zhang, “Biometrics based novel key dis-

tribution solution for body sensor networks,” in Proc. Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC

2009), 2009, pp. 2458–2461.

[86] G. Zhang, C. C. Y. Poon, and Y. Zhang, “A fast key generation method based

on dynamic biometrics to secure wireless body sensor networks for p-health,”

in Proc. Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC 2010), 2010, pp. 2034–2036.

[87] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, K. Fu, and D. Song,

“Take two software updates and see me in the morning: The case for software

security evaluations of medical devices,” in Proc. 2nd USENIX conference on

Health Security and Privacy (HealthSec ’11), 2011, p. 6. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2028026.2028032

[88] P. Roberts. (2011, Oct.) Blind attack on wireless insulin pumps

could deliver lethal dose. [Online]. Available: http://threatpost.com/

blind-attack-wireless-insulin-pumps-could-deliver-lethal-dose.

[89] J. Radcliffe. (2011, Aug.) Hacking medical devices for fun and insulin: Breaking

221

http://dl.acm.org/citation.cfm?id=2028026.2028032
http://threatpost.com/blind-attack-wireless-insulin-pumps-could-deliver-lethal-dose
http://threatpost.com/blind-attack-wireless-insulin-pumps-could-deliver-lethal-dose

BIBLIOGRAPHY

the human SCADA system. http://media.blackhat.com/bh-us-11/Radcliffe/

BH US 11 Radcliffe Hacking Medical Devices WP.pdf.

[90] S. Brands and D. Chaum, “Distance-bounding protocols,” in Advances in

Cryptology - EUROCRYPT’93, ser. Lecture Notes in Computer Science,

vol. 765, 1994, pp. 344–359. [Online]. Available: http://dx.doi.org/10.1007/

3-540-48285-7 30

[91] Z. Kfir and A. Wool, “Picking virtual pockets using relay attacks

on contactless smartcard,” in Proc. 1st International Conference on

Security and Privacy for Emerging Areas in Communications Networks

(SECURECOMM ’05), 2005, pp. 47–58. [Online]. Available: http:

//dx.doi.org/10.1109/SECURECOMM.2005.32

[92] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno, “RFIDs and secret

handshakes: Defending against ghost-and-leech attacks and unauthorized

reads with context-aware communications,” in Proc. 15th ACM conference

on Computer and Communications Security (CCS 2008), 2008, pp. 479–490.

[Online]. Available: http://doi.acm.org/10.1145/1455770.1455831

[93] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Čapkun, “Distance

hijacking attacks on distance bounding protocols,” in Proc. 33rd Annual IEEE

Symposium on Security and Privacy (SP 2012), 2012, pp. 113–127. [Online].

Available: http://dx.doi.org/10.1109/SP.2012.17

222

http://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
http://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1109/SECURECOMM.2005.32
http://dx.doi.org/10.1109/SECURECOMM.2005.32
http://doi.acm.org/10.1145/1455770.1455831
http://dx.doi.org/10.1109/SP.2012.17

BIBLIOGRAPHY

[94] M. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun, “Loud and

clear: Human-verifiable authentication based on audio,” in Proc. 26th IEEE

International Conference on Distributed Computing Systems (ICDCS 2006),

2006, p. 10.

[95] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of

mobile malware in the wild,” in Proc. 1st ACM Workshop on Security and

Privacy in Smartphones and Mobile Devices (SPSM ’11), 2011, pp. 3–14.

[Online]. Available: http://doi.acm.org/10.1145/2046614.2046618

[96] T. H. Faris, Safe and Sound Software: Creating an Efficient and Effective Qual-

ity System for Software Medical Device Organizations. ASQ Quality Press,

2006.

[97] Z. Jiang, M. Pajic, and R. Mangharam, “Model-based closed-loop testing of

implantable pacemakers,” in Proc. IEEE/ACM 2nd International Conference

on Cyber-Physical Systems, 2011, pp. 131–140.

[98] K. Sandler, L. Ohrstrom, L. Moy, and R. McVay, “Killed by code: Software

transparency in implantable medical devices,” http://www.softwarefreedom.

org, Jul. 2010.

[99] K. Fu, “Trustworthy medical device software,” in Health Effectiveness of the

FDA 510(k) Clearance Process: Measuring Postmarket Performance and Other

Select Topics: Workshop Report, Jul. 2011.

223

http://doi.acm.org/10.1145/2046614.2046618
http://www.softwarefreedom.org
http://www.softwarefreedom.org

BIBLIOGRAPHY

[100] (2014, Mar.) Peach fuzzer. http://peachfuzzer.com/.

[101] (2014, Mar.) Archimedes: Ann Arbor Center for Medical Device Security. http:

//secure-medicine.org.

[102] American National Standards Institute/Association for the Advancement of

Medical Instrumentation (ANSI/AAMI), “Active implantable medical devices

— Electromagnetic compatibility — EMC test protocols for implantable cardiac

pacemakers and implantable cardioverter defibrillators,” 2007.

[103] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,

R. G. Mark, J. E. Mietus, G. B. Moody, C. Peng, and H. E. Stanley, “Phys-

ioBank, PhysioToolkit, and PhysioNet: Components of a new research resource

for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220,

Jun. 2000.

[104] I. Radojičić, D. Mandić, and D. Vulić, “On the presence of deterministic chaos

in HRV signals,” in Computers in Cardiology 2001, 2001, pp. 465–468.

[105] (2010) NIST special publication 800-22rev1a: A statistical test suite for the

validation of random number generators and pseudo random number gener-

ators for cryptographic applications. http://csrc.nist.gov/groups/ST/toolkit/

rng/documents/SP800-22rev1a.pdf. NIST.

[106] V. Fischer, “A closer look at security in random number generators design,”

224

http://peachfuzzer.com/
http://secure-medicine.org
http://secure-medicine.org
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

BIBLIOGRAPHY

in Constructive Side-Channel Analysis and Secure Design, ser. Lecture Notes

in Computer Science, 2012, vol. 7275, pp. 167–182. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-29912-4 13

[107] W. Schindler and W. Killmann, “Evaluation criteria for true (physical) random

number generators used in cryptographic applications,” in Cryptographic

Hardware and Embedded Systems (CHES 2002), ser. Lecture Notes in

Computer Science, 2003, vol. 2523, pp. 431–449. [Online]. Available:

http://dx.doi.org/10.1007/3-540-36400-5 31

[108] M. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, mul-

tiparameter physiological measurements using a webcam,” vol. 58, no. 1, pp.

7–11, Jan. 2011.

[109] S. Kwon, H. Kim, and K. S. Park, “Validation of heart rate extraction using

video imaging on a built-in camera system of a smartphone,” in Proc. Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC 2012), Aug. 2012, pp. 2174–2177.

[110] H. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman, “Eule-

rian video magnification for revealing subtle changes in the world,” ACM Trans.

Graph. (SIGGRAPH), pp. 65:1–65:8, Jul. 2012.

[111] G. Barbosa, “Apple execs Eddy Cue & Craig Federighi talk Apple Music, App

Store & more in new interview,” Available at http://9to5mac.com/2016/02/12/

225

http://dx.doi.org/10.1007/978-3-642-29912-4_13
http://dx.doi.org/10.1007/3-540-36400-5_31
http://9to5mac.com/2016/02/12/apple-execs-eddy-cue-craig-federighi-talk-apple-music-app-store-more-in-new-interview/
http://9to5mac.com/2016/02/12/apple-execs-eddy-cue-craig-federighi-talk-apple-music-app-store-more-in-new-interview/

BIBLIOGRAPHY

apple-execs-eddy-cue-craig-federighi-talk-apple-music-app-store-more-in-new-interview/,

February 2016.

[112] A. Covert, “Apple’s iMessage is the DEA’s worst nightmare,” Available at http:

//money.cnn.com/2013/04/07/technology/security/imessage-iphone-dea/,

April 2013.

[113] M. Apuzzo, D. E. Sanger, and M. S. Schmidt, “Apple and

other tech companies tangle with U.S. over data access,”

Available at http://www.nytimes.com/2015/09/08/us/politics/

apple-and-other-tech-companies-tangle-with-us-over-access-to-data.html,

September 2015.

[114] D. Paletta, “FBI Chief Punches Back on Encryption,” Wall Street

Journal, July 2015. [Online]. Available: http://www.wsj.com/articles/

fbi-chief-punches-back-on-encryption-1436217665

[115] A. Griffin, “WhatsApp and iMessage could be banned under

new surveillance plans,” The Independent, January 2015. [Online].

Available: http://www.independent.co.uk/life-style/gadgets-and-tech/news/

whatsapp-and-snapchat-could-be-banned-under-new-surveillance-plans-9973035.

html

[116] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, W. W. Diffie,

J. Gilmore, M. Green, S. Landau, P. G. Neumann, R. L. Rivest, J. I. Schiller,

226

http://9to5mac.com/2016/02/12/apple-execs-eddy-cue-craig-federighi-talk-apple-music-app-store-more-in-new-interview/
http://9to5mac.com/2016/02/12/apple-execs-eddy-cue-craig-federighi-talk-apple-music-app-store-more-in-new-interview/
http://money.cnn.com/2013/04/07/technology/security/imessage-iphone-dea/
http://money.cnn.com/2013/04/07/technology/security/imessage-iphone-dea/
http://www.nytimes.com/2015/09/08/us/politics/apple-and-other-tech-companies-tangle-with-us-over-access-to-data.html
http://www.nytimes.com/2015/09/08/us/politics/apple-and-other-tech-companies-tangle-with-us-over-access-to-data.html
http://www.wsj.com/articles/fbi-chief-punches-back-on-encryption-1436217665
http://www.wsj.com/articles/fbi-chief-punches-back-on-encryption-1436217665
http://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-and-snapchat-could-be-banned-under-new-surveillance-plans-9973035.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-and-snapchat-could-be-banned-under-new-surveillance-plans-9973035.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-and-snapchat-could-be-banned-under-new-surveillance-plans-9973035.html

BIBLIOGRAPHY

B. Schneier, M. A. Specter, and D. J. Weitzner, “Keys under doormats,”

Commun. ACM, vol. 58, no. 10, pp. 24–26, Sep. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2814825

[117] N. Messieh, “Apple’s iMessage and Facetime blocked in the UAE,”

TheNextWeb, November 2011. [Online]. Available: http://thenextweb.com/

me/2011/11/13/apples-imessage-and-facetime-blocked-in-the-uae/

[118] Apple Inc., “Privacy,” Available at http://www.apple.com/privacy/

approach-to-privacy/, 2015.

[119] Apple Computer, “iOS Security: iOS 9.0 or later,” Available at https://www.

apple.com/business/docs/iOS Security Guide.pdf, September 2015.

[120] F. Raynal, “iMessage privacy,” Available at http://blog.quarkslab.com/

imessage-privacy.html, October 2013.

[121] “iMessage,” In OpenIM Wiki, Available at https://imfreedom.org/wiki/

IMessage.

[122] G. Shih and P. Carsten, “Apple begins storing users’ personal data on servers

in China,” Reuters, August 2014.

[123] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith,

“SoK: Secure messaging,” in IEEE S&P (Oakland) ’15, 2015.

227

http://doi.acm.org/10.1145/2814825
http://thenextweb.com/me/2011/11/13/apples-imessage-and-facetime-blocked-in-the-uae/
http://thenextweb.com/me/2011/11/13/apples-imessage-and-facetime-blocked-in-the-uae/
http://www.apple.com/privacy/approach-to-privacy/
http://www.apple.com/privacy/approach-to-privacy/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://blog.quarkslab.com/imessage-privacy.html
http://blog.quarkslab.com/imessage-privacy.html
https://imfreedom.org/wiki/IMessage
https://imfreedom.org/wiki/IMessage

BIBLIOGRAPHY

[124] D. Chiba, T. Matsuda, J. C. N. Schuldt, and K. Matsuura, “Efficient generic

constructions of signcryption with insider security in the multi-user setting,” in

ACNS ’11, 2011, pp. 220–237.

[125] M. Bellare and C. Namprempre, “Authenticated encryption; relations among

notions and analysis of the generic composition paradigm,” J. Cryptol., vol. 21,

no. 4, pp. 469–491, Sep. 2008.

[126] S. Vaudenay, “Security flaws induced by CBC padding - applications to SSL,

IPSEC, WTLS,” in EUROCRYPT ’02, vol. 2332 of LNCS. London, UK:

Springer-Verlag, 2002, pp. 534–546.

[127] P. Deutsch, “RFC 1952: GZIP file format specification version 4.3,” May 1996.

[128] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[129] “Pushproxy: A man-in-the-middle proxy for ios and os x device push connec-

tions,” Available at https://github.com/meeee/pushproxy.

[130] M. Bellare and P. Rogaway, “Optimal asymmetric encryption: How to en-

crypt with RSA,” in EUROCRYPT ’94, A. D. Santis, Ed., vol. 950 of LNCS.

Springer, 1994, pp. 92–111.

[131] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record communication, or,

why not to use PGP,” ser. WPES ’04. ACM Press, 2004, pp. 77–84.

228

https://github.com/meeee/pushproxy

BIBLIOGRAPHY

[132] “Textsecure,” https://github.com/WhisperSystems/TextSecure/wiki/

ProtocolV2, accessed: 2014-11-13.

[133] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman,

“CONIKS: Bringing key transparency to end users,” in USENIX ’15. Wash-

ington, D.C.: USENIX Association, Aug. 2015, pp. 383–398.

[134] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz, “How

secure is TextSecure?” Cryptography ePrint Archive, October 2014. [Online].

Available: https://eprint.iacr.org/2014/904

[135] I. Goldberg, B. Ustaoğlu, M. D. Van Gundy, and H. Chen, “Multi-party off-

the-record messaging,” in CCS ’09, ser. CCS ’09. New York, NY, USA: ACM,

2009, pp. 358–368.

[136] N. Unger and I. Goldberg, “Deniable key exchanges for secure messaging,”

in Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp.

1211–1223. [Online]. Available: http://doi.acm.org/10.1145/2810103.2813616

[137] Y. Chen, T. Li, X. Wang, K. Chen, and X. Han, “Perplexed messengers from

the cloud: Automated security analysis of push-messaging integrations,” in CCS

’15, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 1260–1272.

[138] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay,

229

https://github.com/WhisperSystems/TextSecure/wiki/ProtocolV2
https://github.com/WhisperSystems/TextSecure/wiki/ProtocolV2
https://eprint.iacr.org/2014/904
http://doi.acm.org/10.1145/2810103.2813616

BIBLIOGRAPHY

“Efficient padding oracle attacks on cryptographic hardware,” in CRYPTO ’12.

Springer, 2012, vol. 7417 of LNCS, pp. 608–625.

[139] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, “Password interception

in a SSL/TLS channel,” in CRYPTO ’03. Springer Berlin Heidelberg, 2003,

vol. 2729 of LNCS, pp. 583–599.

[140] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and

DTLS record protocols,” in IEEE S&P (Oakland) ’13, 2013, pp. 526–540.

[141] T. Jager and J. Somorovsky, “How to break XML encryption,” in ACM CCS

’2011. ACM Press, October 2011.

[142] D. Kupser, C. Mainka, J. Schwenk, and J. Somorovsky, “How to break XML

encryption – automatically,” in Proceedings of the 9th USENIX Conference on

Offensive Technologies, ser. WOOT’15. Berkeley, CA, USA: USENIX Associ-

ation, 2015.

[143] M. Stay, “ZIP attacks with reduced known plaintext,” in Fast Software En-

cryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-4,

2001, Revised Papers, 2001, pp. 125–134.

[144] E. Biham and P. C. Kocher, “A known plaintext attack on the PKZIP stream

cipher,” in Fast Software Encryption: Second International Workshop. Leuven,

Belgium, 14-16 December 1994, Proceedings, 1994, pp. 144–153.

230

BIBLIOGRAPHY

[145] J. Kelsey, “Compression and information leakage of plaintext,” in FSE ’02, vol.

2365 of LNCS. Springer, 2002, pp. 263–276.

[146] T. Kohno, “Attacking and repairing the winZip encryption scheme,” in ACM

CCS ’2004. ACM Press, 2004, pp. 72–81.

[147] J. Rizzo and T. Duong, “The CRIME Attack,” Available at

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu

-lCa2GizeuOfaLU2HOU/edit#slide=id.g1d134dff 1 222, September 2012.

[148] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “RFC 4880:

OpenPGP Message Format,” Available at https://tools.ietf.org/html/rfc4880,

November 2007.

[149] “MCABBER,” Available at https://mcabber.com/.

[150] “Trustwave to escape ‘death penalty’ for SSL skeleton key,” 2012. [Online].

Available: http://www.theregister.co.uk/2012/02/14/trustwave analysis/

[151] “Apple pulls ad-blocking apps that can ‘compromise’ security,” Engadget,

October 2015. [Online]. Available: http://www.engadget.com/2015/10/09/

apple-pulls-ad-blocking-ads-that-can-compromise-security/

[152] R. Shapiro, S. Bratus, and S. W. Smith, ““Weird machines” in ELF: A

spotlight on the underappreciated metadata,” in Proceedings of WOOT 2013.

231

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1d134dff_1_222
https://tools.ietf.org/html/rfc4880
https://mcabber.com/
http://www.theregister.co.uk/2012/02/14/trustwave_analysis/
http://www.engadget.com/2015/10/09/apple-pulls-ad-blocking-ads-that-can-compromise-security/
http://www.engadget.com/2015/10/09/apple-pulls-ad-blocking-ads-that-can-compromise-security/

BIBLIOGRAPHY

USENIX, Aug. 2013. [Online]. Available: https://www.usenix.org/conference/

woot13/workshop-program/presentation/Shapiro

[153] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc

without function calls (on the x86),” in Proceedings of CCS 2007, S. De Capi-

tani di Vimercati and P. Syverson, Eds. ACM Press, Oct. 2007, pp. 552–61.

[154] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instructions

go bad: Generalizing return-oriented programming to RISC,” in Proceedings of

CCS 2008, P. Syverson and S. Jha, Eds. ACM Press, Oct. 2008, pp. 27–38.

[155] A. Francillon and C. Castelluccia, “Code injection attacks on Harvard-

architecture devices,” in Proceedings of CCS 2008, P. Syverson and S. Jha,

Eds. ACM Press, Oct. 2008, pp. 15–26.

[156] F. Lidner, “Developments in Cisco IOS forensics. CONFidence 2.0,” http://

www.recurity-labs.com/content/pub/FX Router Exploitation.pdf, Nov. 2009.

[157] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and

H. Shacham, “Can DREs provide long-lasting security? The case of return-

oriented programming and the AVC Advantage,” in Proceedings of EVT/-

WOTE 2009, D. Jefferson, J. L. Hall, and T. Moran, Eds. USENIX/AC-

CURATE/IAVoSS, Aug. 2009.

[158] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and

232

https://www.usenix.org/conference/woot13/workshop-program/presentation/Shapiro
https://www.usenix.org/conference/woot13/workshop-program/presentation/Shapiro
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf

BIBLIOGRAPHY

M. Winandy, “Return-oriented programming without returns,” in Proceedings

of CCS 2010, A. Keromytis and V. Shmatikov, Eds. ACM Press, Oct.

2010, pp. 559–72. [Online]. Available: https://www.cs.jhu.edu/∼s/papers/

noret ccs2010.html

[159] T. Kornau, “Return oriented programming for the ARM architecture,” http:

//zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf, 2009, master

thesis, Ruhr-University Bochum, Germany.

[160] R. Roemer, “Finding the bad in good code: Automated return-oriented pro-

gramming exploit discovery,” Master’s thesis, UC San Diego, Mar. 2009, online:

https://cseweb.ucsd.edu/∼rroemer/doc/thesis.pdf.

[161] R. Hund, T. Holz, and F. Freiling, “Return-oriented rootkits: Bypassing ker-

nel code integrity protection mechanisms,” in Proceedings of USENIX Security

2009, F. Monrose, Ed. USENIX, Aug. 2009, pp. 383–98.

[162] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh, “Hacking

blind,” in Proceedings of IEEE Security and Privacy (“Oakland”) 2014, May

2014, pp. 227–42.

[163] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith, “Page-fault weird

machine: Lessons in instruction-less computation,” in Proceedings of WOOT

2013. USENIX, Aug. 2013. [Online]. Available: https://www.usenix.org/

conference/woot13/workshop-program/presentation/Bangert

233

https://www.cs.jhu.edu/~s/papers/noret_ccs2010.html
https://www.cs.jhu.edu/~s/papers/noret_ccs2010.html
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
https://cseweb.ucsd.edu/~rroemer/doc/thesis.pdf
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bangert
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bangert

BIBLIOGRAPHY

[164] J. Vanegue, “The weird machines in proof-carrying code,” in Proceedings

of SPW 2014. IEEE Computer Society, May 2014, pp. 209–13. [Online].

Available: http://www.ieee-security.org/TC/SPW2014/papers/5103a209.PDF

[165] S. Bratus, T. Darley, M. Locasto, M. L. Patterson, R. Shapiro, and A. Shubina,

“Beyond planted bugs in “trusting trust”: The input-processing frontier,” Se-

curity Privacy, IEEE, vol. 12, no. 1, pp. 83–87, Jan. 2014.

[166] S. Dolan, “mov is Turing-complete,” Jul. 2013. [Online]. Available:

http://www.cl.cam.ac.uk/∼sd601/papers/mov.pdf

[167] D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger,

“Turing machines, transition systems, and interaction,” Information and

Computation, vol. 194, no. 2, pp. 101–28, Nov. 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0890540104001257

[168] M. Atkinson, F. ois Bancilhon, D. DeWitt, K. Dittrich, D. Maier,

and S. Zdonik, “The object-oriented database system manifesto,” in

Proceedings of DOOD 1989, W. Kim, J.-M. Nicolas, and S. Nishio,

Eds. Elsevier, Dec. 1989, pp. 223–40. [Online]. Available: https:

//www.cs.cmu.edu/∼clamen/OODBMS/Manifesto/Manifesto.PS.gz

[169] Intel Platform Controller Hub EG20T: Datasheet, Intel, Jul. 2012. [Online].

Available: http://www.intel.com/content/www/us/en/intelligent-systems/

queens-bay/platform-controller-hub-eg20t-datasheet.html

234

http://www.ieee-security.org/TC/SPW2014/papers/5103a209.PDF
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://www.sciencedirect.com/science/article/pii/S0890540104001257
https://www.cs.cmu.edu/~clamen/OODBMS/Manifesto/Manifesto.PS.gz
https://www.cs.cmu.edu/~clamen/OODBMS/Manifesto/Manifesto.PS.gz
http://www.intel.com/content/www/us/en/intelligent-systems/queens-bay/platform-controller-hub-eg20t-datasheet.html
http://www.intel.com/content/www/us/en/intelligent-systems/queens-bay/platform-controller-hub-eg20t-datasheet.html

BIBLIOGRAPHY

[170] CoreLinkTM DMA Controller DMA-330, ARM, Jul. 2010. [On-

line]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0424c/

DDI0424C dma330 r1p1 trm.pdf

[171] V. Srinivasan, A. K. Santhanam, and M. Srinivasan. (2005, Dec.) Cell

broadband engine processor dma engines, part 1: The little engines that

move data. [Online]. Available: http://www.ibm.com/developerworks/library/

pa-celldmas/

[172] Intel Server Platform Group, “Intel QuickData technology software guide for

Linux,” May 2008. [Online]. Available: http://www.intel.com/content/dam/

doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf

[173] BCM2835 ARM Peripherals, Broadcom Corporation, Feb. 2012. [On-

line]. Available: https://www.raspberrypi.org/wp-content/uploads/2012/02/

BCM2835-ARM-Peripherals.pdf

[174] C. Böhm, “On a family of Turing machines and the related programming lan-

guage,” International Computation Centre Bulletin, vol. 3, pp. 187–94, Jul.

1964.

[175] C. Böhm and G. Jacopini, “Flow diagrams, Turing machines and languages

with only two formation rules,” Communications of the ACM, vol. 9, no. 5, pp.

366–71, May 1966.

235

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0424c/DDI0424C_dma330_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0424c/DDI0424C_dma330_r1p1_trm.pdf
http://www.ibm.com/developerworks/library/pa-celldmas/
http://www.ibm.com/developerworks/library/pa-celldmas/
http://www.intel.com/content/dam/doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

BIBLIOGRAPHY

[176] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-assisted malware,”

in Proceedings of MALWARE 2010, J.-Y. Marion, N. Rathaus, and C. Zhou,

Eds. IEEE Computer Society, Oct. 2010, pp. 1–6. [Online]. Available:

http://dcs.ics.forth.gr/Activities/papers/gpumalware.malware10.pdf

[177] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioannidis,

“You can type, but you can’t hide: A stealthy GPU-based keylogger,”

in Proceedings of EuroSec 2013, T. Holz and S. Ioannidis, Eds. ACM,

Apr. 2013. [Online]. Available: http://www.cs.columbia.edu/∼mikepo/papers/

gpukeylogger.eurosec13.pdf

[178] L. Duflot and Y.-A. Perez, “Can you still trust your network card?”

Presented at CanSecWest 2010, Mar. 2010. [Online]. Available: http:

//www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

[179] A. Triulzi, “Project Maux Mk.II,” Nov. 2008.

[Online]. Available: http://www.alchemistowl.org/arrigo/Papers/

Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf

[180] ——, “The Jedi packet trick takes over the Deathstar,”

2010. [Online]. Available: http://www.alchemistowl.org/arrigo/Papers/

Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf

[181] L. Duflot, Y.-A. Perez, and B. Morin, “What if you can’t trust your

network card?” in Proceedings of RAID 2011, R. Sommer, D. Balzarotti,

236

http://dcs.ics.forth.gr/Activities/papers/gpumalware.malware10.pdf
http://www.cs.columbia.edu/~mikepo/papers/gpukeylogger.eurosec13.pdf
http://www.cs.columbia.edu/~mikepo/papers/gpukeylogger.eurosec13.pdf
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf

BIBLIOGRAPHY

and G. Maier, Eds. Springer, Sep. 2011, pp. 378–397. [Online]. Available:

http://www.ssi.gouv.fr/IMG/pdf/paper.pdf

[182] M. Becher, M. Dornseif, and C. N. Klein, “FireWire: all your memory are

belong to us,” Presented at CanSecWest 2005, May 2005. [Online]. Available:

https://cansecwest.com/core05/2005-firewire-cansecwest.pdf

[183] T. Garrison. (2011, Sep.) Firewire attacks against Mac OS Lion FileVault

2 encryption. [Online]. Available: http://www.frameloss.org/2011/09/18/

firewire-attacks-against-mac-os-lion-filevault-2-encryption/

[184] A. Boileau, “Hit by a bus: Physical access attacks with firewire,” Sep. 2006.

[Online]. Available: http://www.security-assessment.com/files/presentations/

ab firewire rux2k6-final.pdf

[185] P. Panholzer, “Physical security attacks on Windows Vista,” Mar.

2008. [Online]. Available: https://www.sec-consult.com/fxdata/seccons/prod/

downloads/vista physical attacks.pdf

[186] L. Kalenderidis and S. Collinson, “Thunderbolts and lightning, very very

frightening,” Presented at SyScan 2014, May 2014. [Online]. Available:

https://www.youtube.com/watch?v=0FoVmBOdbhg

[187] P. Stewin and I. Bystrov, “Understanding dma malware,” in Proceedings

237

http://www.ssi.gouv.fr/IMG/pdf/paper.pdf
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://www.frameloss.org/2011/09/18/firewire-attacks-against-mac-os-lion-filevault-2-encryption/
http://www.frameloss.org/2011/09/18/firewire-attacks-against-mac-os-lion-filevault-2-encryption/
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
https://www.sec-consult.com/fxdata/seccons/prod/downloads/vista_physical_attacks.pdf
https://www.sec-consult.com/fxdata/seccons/prod/downloads/vista_physical_attacks.pdf
https://www.youtube.com/watch?v=0FoVmBOdbhg

BIBLIOGRAPHY

of DIMVA 2012. Springer-Verlag, Jul. 2012, pp. 21–41. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-37300-8 2

[188] A. Tereshkin and R. Wojtczuk, “Introducing ring −3 rootk-

its,” Presented at Black Hat Briefings, Jul. 2009. [Online].

Available: http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/

BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf

[189] D. Farmer, “IPMI: Freight train to hell,” Jan. 2013. [Online]. Available:

http://fish2.com/ipmi/itrain.pdf

[190] H. Moore. (2013, Jul.) A penetration tester’s guide to IPMI and BMCs.

[Online]. Available: https://community.rapid7.com/community/metasploit/

blog/2013/07/02/a-penetration-testers-guide-to-ipmi

[191] C. Miller, “Battery firmware hacking: Inside the innards of

a smart battery,” Presented at Black Hat Briefings, Aug.

2011. [Online]. Available: http://media.blackhat.com/bh-us-11/Miller/

BH US 11 Miller Battery Firmware Public WP.pdf

[192] M. Brocker and S. Checkoway, “iSeeYou: Disabling the MacBook webcam

indicator LED,” in Proceedings of USENIX Security 2014). USENIX

Association, Aug. 2014, pp. 337–52. [Online]. Available: https://www.usenix.

org/conference/usenixsecurity14/technical-sessions/presentation/brocker

238

http://dx.doi.org/10.1007/978-3-642-37300-8_2
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
http://fish2.com/ipmi/itrain.pdf
https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-penetration-testers-guide-to-ipmi
https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-penetration-testers-guide-to-ipmi
http://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_WP.pdf
http://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_WP.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/brocker
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/brocker

BIBLIOGRAPHY

[193] Aleph One, “Smashing the stack for fun and profit,” Phrack Magazine, vol. 49,

no. 14, Aug. 1996. [Online]. Available: http://www.phrack.org/issues.html?

issue=49&id=14

[194] Solar Designer, “Getting around non-executable stack (and fix),” Bugtraq, Aug.

1997. [Online]. Available: http://seclists.org/bugtraq/1997/Aug/0063.html

[195] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique,” Sep. 2005, http://www.suse.de/∼krahmer/no-nx.pdf.

[196] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made

easy,” in Proceedings of USENIX Security 2011, D. Wagner, Ed., Aug. 2011.

[Online]. Available: http://users.ece.cmu.edu/∼ejschwar/papers/usenix11.pdf

[197] J. Oakley and S. Bratus, “Exploiting the hard-working DWARF: Trojan

and exploit techniques with no native executable code,” in Proceedings

WOOT 2011. USENIX Association, Aug. 2011. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2028052.2028063

[198] P. Stewin, “A primitive for revealing stealthy peripheral-based attacks on

the computing platform’s main memory,” in Proceedings of RAID 2013,

Oct. 2013, pp. 1–20. [Online]. Available: http://link.springer.com/chapter/10.

1007%2F978-3-642-41284-4 1

[199] Trusted Computing Group, “TCG PC client specific implemen-

239

http://www.phrack.org/issues.html?issue=49&id=14
http://www.phrack.org/issues.html?issue=49&id=14
http://seclists.org/bugtraq/1997/Aug/0063.html
http://www.suse.de/~krahmer/no-nx.pdf
http://users.ece.cmu.edu/~ejschwar/papers/usenix11.pdf
http://dl.acm.org/citation.cfm?id=2028052.2028063
http://link.springer.com/chapter/10.1007%2F978-3-642-41284-4_1
http://link.springer.com/chapter/10.1007%2F978-3-642-41284-4_1

BIBLIOGRAPHY

tation specification for conventional BIOS,” Jul. 2005. [On-

line]. Available: http://www.trustedcomputinggroup.org/files/temp/

64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.

pdf

[200] I. Hickson, “Web workers editor’s draft 19 may 2014,” http://www.w3.org/TR/

workers/, May 2014.

[201] W. H. A. T. W. Group, “Web workers,” http://www.whatwg.org/specs/

web-apps/current-work/multipage/workers.html, Jul. 2014.

[202] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards a

formal foundation of web security,” in Proceedings of the 2010 23rd IEEE

Computer Security Foundations Symposium. IEEE Computer Society, 2010,

pp. 290–304. [Online]. Available: http://dx.doi.org/10.1109/CSF.2010.27

[203] D. Glasser, “An interesting kind of javascript memory leak,” http://info.meteor.

com/blog/an-interesting-kind-of-javascript-memory-leak, 2014.

[204] J. Biniok, “Hash me if you can - a bitcoin miner that supports pure javscript,

webworker and webgl mining.” https://github.com/derjanb/hamiyoca, 2015.

[205] Y. Tian, Y.-C. Liu, A. Bhosale, L.-S. Huang, P. Tague, and C. Jackson, “All

your screens are belong to us: Attacks exploiting the HTML5 screen shar-

240

http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://dx.doi.org/10.1109/CSF.2010.27
http://info.meteor.com/blog/an-interesting-kind-of-javascript-memory-leak
http://info.meteor.com/blog/an-interesting-kind-of-javascript-memory-leak
https://github.com/derjanb/hamiyoca

BIBLIOGRAPHY

ing api,” in Proc. 35th Annual IEEE Symposium on Security and Privacy (SP

2014), May 2014.

[206] F. Aboukhadijeh, “Using the HTML5 fullscreen api for phishing attacks,” http:

//feross.org/html5-fullscreen-api-attack/, Oct. 2012, accessed May 27, 2014.

[207] L. Kuppan, “Attacking with HTML5,” in Black Hat Abu Dhabi, Oct.

2010. [Online]. Available: https://www.usenix.org/conference/healthsec12/

workshop-program/presentation/Chang

[208] A. Sacco and F. Muttis, “Html5 heap sprays, pwn all the things,” 2012,

eUSecWest. [Online]. Available: https://eusecwest.com/speakers.html

[209] “Html5 security cheat sheet,” https://www.owasp.org/index.php/HTML5

Security Cheat Sheet#Web Workers/, apr 2014.

[210] S. Son and V. Shmatikov, “The postman always rings twice: Attacking and

defending postmessage in html5 websites,” in Proc. 20th Annual Network

and Distributed System Security Symposium (NDSS). The Internet Society,

2013. [Online]. Available: http://dblp.uni-trier.de/db/conf/ndss/ndss2013.

html#SonS13

[211] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in html5

applications,” in Proc. 21st USENIX Conference on Security Symposium,

241

http://feross.org/html5-fullscreen-api-attack/
http://feross.org/html5-fullscreen-api-attack/
https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
https://eusecwest.com/speakers.html
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Web_Workers/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Web_Workers/
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#SonS13
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#SonS13

BIBLIOGRAPHY

Aug. 2012, pp. 23–23. [Online]. Available: http://dl.acm.org/citation.cfm?id=

2362793.2362816

[212] “Networked medical devices to exceed 14 million unit sales in 2018,” https:

//www.parksassociates.com/blog/article/dec2013-medical-devices, Dec. 2013.

[213] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, and K. Fu,

“Wattsupdoc: Power side channels to nonintrusively discover untargeted mal-

ware on embedded medical devices,” in Presented as part of the 2013 USENIX

Workshop on Health Information Technologies. USENIX, 2013.

[214] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memorability and

security: Empirical results,” IEEE Security and Privacy, Sep. 2004. [Online].

Available: http://dx.doi.org/10.1109/MSP.2004.81

[215] A. T. Barth, M. A. Hanson, H. C. Powell, D. Unluer, S. G. Wilson,

and J. Lach, “Body-coupled communication for body sensor networks,” in

Proceedings of the ICST 3rd International Conference on Body Area Networks,

2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1460257.1460273

[216] S. Mare, A. Markham, C. Cornelius, R. Peterson, and D. Kotz, “Zebra: Zero-

effort bilateral recurring authentication,” in Security and Privacy (SP), 2014

IEEE Symposium on, May 2014.

[217] M. Ryan, “Bluetooth: With low energy comes low security,” in Proceedings of

242

http://dl.acm.org/citation.cfm?id=2362793.2362816
http://dl.acm.org/citation.cfm?id=2362793.2362816
https://www.parksassociates.com/blog/article/dec2013-medical-devices
https://www.parksassociates.com/blog/article/dec2013-medical-devices
http://dx.doi.org/10.1109/MSP.2004.81
http://dl.acm.org/citation.cfm?id=1460257.1460273

BIBLIOGRAPHY

the 7th USENIX Conference on Offensive Technologies. USENIX Association,

2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=2534748.2534754

[218] A. Goode, “Bring your own finger–how mobile is bringing biometrics to con-

sumers,” Biometric Technology Today, vol. 2014, no. 5, pp. 5–9, 2014.

[219] B. Krzanich, “Intel developer forum san francisco opening keynote,” Intel Cor-

poration, Tech. Rep., 2015.

[220] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of

bluetooth low energy: An emerging low-power wireless technology,”

Sensors, vol. 12, no. 9, p. 11734, 2012. [Online]. Available: http:

//www.mdpi.com/1424-8220/12/9/11734

[221] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno, “Rfids and secret hand-

shakes: defending against ghost-and-leech attacks and unauthorized reads with

context-aware communications,” in Proceedings of the 15th ACM conference on

Computer and communications security. ACM, 2008, pp. 479–490.

[222] Ekahu, “Asset tracking & management,” 2015. [Online].

Available: http://www.ekahau.com/real-time-location-system/solutions/

healthcare/asset-tracking-management

[223] “iBeacon for Developers,” https://developer.apple.com/ibeacon/, accessed:

2015-08-17.

243

http://dl.acm.org/citation.cfm?id=2534748.2534754
http://www.mdpi.com/1424-8220/12/9/11734
http://www.mdpi.com/1424-8220/12/9/11734
http://www.ekahau.com/real-time-location-system/solutions/healthcare/asset-tracking-management
http://www.ekahau.com/real-time-location-system/solutions/healthcare/asset-tracking-management
https://developer.apple.com/ibeacon/

BIBLIOGRAPHY

[224] K. R, W. T, T. JL, and K. BT, “Workarounds to barcode medication adminis-

tration systems: their occurrences, causes, and threats to patient safety,” J Am

Med Inform Assoc, vol. 15, pp. 408–423, 2008.

[225] T. Labs, “Trusted beacon reference,” Apr. 2015. [Online]. Available:

http://docs.twocanoes.com/trusted beacon/index.html

[226] S. Contini, “The factorization of rsa-140,” RSA Laboratories’ Bulletin, vol. 10,

pp. 1–2, 1999.

[227] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,

P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik et al., “Factorization of

a 768-bit rsa modulus,” in Advances in Cryptology–CRYPTO 2010. Springer,

2010, pp. 333–350.

[228] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of location

claims,” in Proceedings of the 2Nd ACM Workshop on Wireless Security,

ser. WiSe ’03. ACM, 2003, pp. 1–10. [Online]. Available: http:

//doi.acm.org/10.1145/941311.941313

[229] E. Bertino and M. S. Kirkpatrick, “Location-based access control systems

for mobile users: concepts and research directions.” in SPRINGL. ACM,

2011, pp. 49–52. [Online]. Available: http://dblp.uni-trier.de/db/conf/gis/

springl2011.html#BertinoK11

244

http://docs.twocanoes.com/trusted_beacon/index.html
http://doi.acm.org/10.1145/941311.941313
http://doi.acm.org/10.1145/941311.941313
http://dblp.uni-trier.de/db/conf/gis/springl2011.html#BertinoK11
http://dblp.uni-trier.de/db/conf/gis/springl2011.html#BertinoK11

BIBLIOGRAPHY

[230] M. Portnoi and C. Shen, “Location-aware sign-on and key exchange using

attribute-based encryption and bluetooth beacons,” in IEEE Conference on

Communications and Network Security, 2013, pp. 405–406. [Online]. Available:

http://dx.doi.org/10.1109/CNS.2013.6682750

[231] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location

sensing using active rfid,” Wireless networks, vol. 10, no. 6, pp. 701–710, 2004.

[232] I. LiveViewGPS, “Gps tracking - tracking systems - you can trust,” 2015.

[Online]. Available: http://www.liveviewgps.com

[233] M. Bhuptani and S. Moradpour, RFID field guide: deploying radio frequency

identification systems. Prentice Hall PTR, 2005.

[234] K. Finkenzeller, RFID Handbook: Radio-frequency identification fundamentals

and applications. Wiley, 1999.

[235] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and

Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.

[236] F. Schrooyen, I. Baert, S. Truijen, L. Pieters, T. Denis, K. Williame, and

M. Weyn, “Real time location system over wifi in a healthcare environment,”

Journal on Information Technology in Healthcare, vol. 4, no. 6, pp. 401–416,

2006.

245

http://dx.doi.org/10.1109/CNS.2013.6682750
http://www.liveviewgps.com

BIBLIOGRAPHY

[237] R. Want, “Near field communication,” IEEE Pervasive Computing, no. 3, pp.

4–7, 2011.

[238] B. Specification, “Version 1.1,” Includes: IMS Learning Resource Meta-data In-

formation Model IMS Learning Resource Meta-data XML Binding Specification

IMS Learning Resource Meta-data Best Practice and Implementation Guide

Available at: www. imsproject. org, 2001.

[239] S. Feldmann, K. Kyamakya, A. Zapater, and Z. Lue, “An indoor bluetooth-

based positioning system: Concept, implementation and experimental evalua-

tion.” in International Conference on Wireless Networks, 2003, pp. 109–113.

[240] R. Bruno and F. Delmastro, “Design and analysis of a bluetooth-based indoor

localization system,” in Personal wireless communications. Springer, 2003, pp.

711–725.

[241] S. Hay and R. Harle, “Bluetooth tracking without discoverability,” in Location

and context awareness. Springer, 2009, pp. 120–137.

[242] S. K. Opoku, “An indoor tracking system based on bluetooth technology,” arXiv

preprint arXiv:1209.3053, 2012.

[243] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low

energy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9,

pp. 11 734–11 753, 2012.

246

BIBLIOGRAPHY

[244] Gimbal, “The gimbal store,” Aug. 2015. [Online]. Available: https:

//store.gimbal.com

[245] Estimote, “Estimote: Real-world context for your apps,” Aug. 2015. [Online].

Available: http://estimote.com/#jump-to-products

[246] A. Developer, “Getting started with ibeacon,” 2014.

[247] J. Yang, Z. Wang, and X. Zhang, “An ibeacon-based indoor positioning systems

for hospitals,” 2015.

[248] Z. Chen, Q. Zhu, H. Jiang, H. Zou, Y. C. Soh, L. Xie, R. Jia, and C. Spanos,

“An ibeacon assisted indoor localization and tracking system.”

[249] S. A. Ortiz and L. M. Ortiz, “Systems and methods for tracking assets using

associated portable electronic device in the form of beacons,” Mar. 2014, uS

Patent App. 14/194,953.

[250] M. Kouhne and J. Sieck, “Location-based services with ibeacon technology,”

in Artificial Intelligence, Modelling and Simulation (AIMS), 2014 2nd Interna-

tional Conference on. IEEE, 2014, pp. 315–321.

[251] Texas Instruments, “MSP430FR5969 launchpad development kit,” Jul. 2015.

[Online]. Available: http://www.ti.com/tool/MSP-EXP430FR5969

[252] Hardware Breakout, “Bluetooth low energy boosterpack for the launchpad,”

247

https://store.gimbal.com
https://store.gimbal.com
http://estimote.com/#jump-to-products
http://www.ti.com/tool/MSP-EXP430FR5969

BIBLIOGRAPHY

Aug. 2015. [Online]. Available: http://store.hardwarebreakout.com/index.

php?route=product/product&product id=65

[253] T. Bradley, “Pros and cons of bringing your own device to work,”

Dec. 2011. [Online]. Available: http://www.pcworld.com/article/246760/

pros and cons of byod bring your own device .html

[254] D. Manolakis, “Efficient solution and performance analysis of 3-d position esti-

mation by trilateration,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. 32, no. 4, pp. 1239–1248, Oct 1996.

[255] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,”

Robotics, IEEE Transactions on, vol. 21, no. 1, pp. 93–101, Feb 2005.

[256] W. Murphy and W. Hereman, “Determination of a position in three dimensions

using trilateration and approximate distances,” Department of Mathematical

and Computer Sciences, Colorado School of Mines, Golden, Colorado, MCS-

95, vol. 7, p. 19, 1995.

[257] “OpenMRS Wiki Rosources - Demo Data,” https://wiki.openmrs.org/display/

RES/Demo+Data, accessed: 2015-08-17.

248

http://store.hardwarebreakout.com/index.php?route=product/product&product_id =65
http://store.hardwarebreakout.com/index.php?route=product/product&product_id =65
http://www.pcworld.com/article/246760/pros_and_cons_of_byod_bring_your_own_device_.html
http://www.pcworld.com/article/246760/pros_and_cons_of_byod_bring_your_own_device_.html
https://wiki.openmrs.org/display/RES/Demo+Data
https://wiki.openmrs.org/display/RES/Demo+Data

Vita

Michael Rushanan received his B.S. degree in Com-

puter Science from the University of Baltimore County

in 2009. He received his M.S.E degree in Computer

Science and M.S. degree in Security Informatics from

the Johns Hopkins University in 2015. He enrolled in

the Computer Science Ph.D. program at Johns Hop-

kins University in 2011. He was inducted into Upsilon

Pi Epsilon International Computer Science Honor Society in 2011 and served as presi-

dent for two years. His research interests include systems security, health information

technology security, privacy, and applied cryptography. His hobbies include embed-

ded system design and implementation (e.g., Arduino and Raspberry Pi), mobile

application development (e.g., iOS and Android), and programming.

249

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Our Approach
	SoK: Security and Privacy in Implantable Medical Devices and Body Area Networks
	Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage
	Run-DMA
	MalloryWorker: Stealthy Computation and Covert Channels using Web Workers
	KBID: Kerberos Bracelet Identification
	Applications of Secure Location Sensing in Healthcare

	Outline of This Work

	SoK: Security and Privacy in Implantable Medical Devices and Body Area Networks
	Introduction
	Background and Definitions
	Implantable Medical Devices and Body Area Networks
	Implantable medical devices
	Body area networks

	Security and Privacy in IMDs and BANs
	Security and Privacy Goals
	Adversarial Model
	Threats

	Medical Device Security and Privacy Trends
	Securing the Wireless Telemetry Interface
	Biometrics
	Distance-Bounding Protocols
	Out-of-Band (OOB) Authentication
	External Wearable Devices
	Anomaly Detection

	Software Threats

	Research Challenges and Emerging Threats
	Reproducibility challenges
	Physiological values as an entropy source
	Emerging threats: sensors, remote attacks, and privacy

	Concluding Remarks

	Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage
	Introduction
	Responsible disclosure
	Attack Model

	The iMessage Protocol
	System overview

	Security goals & Threat model
	High-level Protocol Analysis
	Attacks on the Encryption Mechanism
	Attack setting
	Attack overview
	A format oracle attack for gzip compression
	An Attack on Attachment Messages

	Implementation and Evaluation
	Estimating attack duration
	Simulation results

	Mitigations
	Immediate mitigations
	Long term recommendations

	Related Work
	Conclusion
	Attacks on Key Registration
	Key Substitution Attack
	Credential theft
	Updates in OS X 10.11

	Bypassing TLS

	Run-DMA
	Introduction
	Background
	Constructing DMA gadgets
	A Turing-complete gadget set
	BF details
	Basic building blocks
	BF interpreter gadgets
	Other gadgets

	A DMA rootkit
	Implementation
	Related work
	Conclusions

	MalloryWorker: Stealthy Computation and Covert Channels using Web Workers
	Introduction
	Background
	Threat Model
	Web Worker Primitives
	Stealthy Computation
	Denial-of-Service
	Resource Depletion

	Covert Channel
	Potential Mitigations
	Related work
	Conclusions
	Health and Medical Systems
	Experimental Setup
	Results

	Linux Stealthy Computation

	KBID: Kerberos Bracelet Identification
	Introduction
	Background
	Related Work
	Limitations of Existing Work

	Threat Model
	Design
	High Level Design
	Interfaces and Communication
	Bracelet to Authentication Module
	Authentication Module to Authentication Client

	System Workflow

	Experiments and Results
	Prototype
	Results

	Future Work
	Conclusion

	Applications of Secure Location Sensing in Healthcare
	Background
	Radio Frequency Identification
	Global Positioning System
	Wi-Fi
	Near Field Communication
	Bluetooth

	Threat Model
	Beacon+
	Implementation

	Applications
	Secure Real-Time Asset Tracking System
	Location–Based Restrictions

	Experiments
	Tracking System Accuracy
	Power Consumption
	Location-Based Restrictions

	No Central Trusted Authority
	Conclusion

	Summary
	Bibliography
	Vita

