11 research outputs found

    Secure Cryptographic Algorithm Implementation on Embedded Platforms

    Get PDF
    Sensitive systems that are based on smart cards use well-studied and well-developed cryptosystems. Generally these cryptosystems have been subject to rigorous mathematical analysis in an effort to uncover cryptographic weaknesses in the system. The cryptosystems used in smart cards are, therefore, not usually vulnerable to these types of attacks. Since smart cards are small objects that can be easily placed in an environment where physical vulnerabilities can be exploited, adversaries have turned to different avenues of attack. This thesis describes the current state-of-the-art in side channel and fault analysis against smart cards, and the countermeasures necessary to provide a secure implementation. Both attack techniques need to be taken into consideration when implementing cryptographic algorithms in smart cards. In the domain of side-channel analysis a new application of using cache accesses to attack an implementation of AES by observing the power consumption is described, including an unpublished extension. Several new fault attacks are proposed based on finding collisions between a correct and a fault-induced execution of a secure secret algorithm. Other new fault attacks include reducing the number of rounds of an algorithm to make a differential cryptanalysis trivial, and fixing portions of the random value used in DSA to allow key recovery. Countermeasures are proposed for all the attacks described. The use of random delays, a simple countermeasure, is improved to render it more secure and less costly to implement. Several new countermeasures are proposed to counteract the particular fault attacks proposed in this thesis. A new method of calculating a modular exponentiation that is secure against side channel analysis is described, based on ideas which have been proposed previously or are known within the smart card industry. A novel method for protecting RSA against fault attacks is also proposed based on securing the underlying Montgomery multiplication. The majority of the fault attacks detailed have been implemented against actual chips to demonstrate the feasibility of these attacks. Details of these experiments are given in appendices. The experiments conducted to optimise the performance of random delays are also described in an appendix

    A Survey of Microarchitectural Timing Attacks and Countermeasures on Contemporary Hardware

    Get PDF
    Microarchitectural timing channels expose hidden hardware states though timing. We survey recent attacks that exploit microarchitectural features in shared hardware, especially as they are relevant for cloud computing. We classify types of attacks according to a taxonomy of the shared resources leveraged for such attacks. Moreover, we take a detailed look at attacks used against shared caches. We survey existing countermeasures. We finally discuss trends in attacks, challenges to combating them, and future directions, especially with respect to hardware support

    Profiling side-channel attacks on cryptographic algorithms

    Get PDF
    Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency

    Sécurité collaborative pour l internet des objets

    Get PDF
    Cette thèse aborde des nouveaux défis de sécurité dans l'Internet des Objets (IdO). La transition actuelle de l'Internet classique vers l'Internet des Objets conduit à de nombreux changements dans les modèles de communications sous-jacents. La nature hétérogène des communications de l IdO et le déséquilibre entre les capacités des entités communicantes qui le constituent rendent difficile l'établissement de connexions sécurisées de bout en bout. Contrairement aux nœuds de l Internet traditionnel, la plupart des composants de l'Internet des Objets sont en effet caractérisés par de faibles capacités en termes d'énergie et de puissance calcul. Par conséquent, ils ne sont pas en mesure de supporter des systèmes de sécurité complexes. En particulier, la mise en place d'un canal de communication sécurisé de bout en bout nécessite l établissement d'une clé secrète commune entre les deux nœuds souhaitant communiquer, qui sera négociée en s'appuyant sur un protocole d'échange de clés tels que le Transport Layer Security (TLS) Handshake ou l Internet Key Exchange (IKE). Or, une utilisation directe de ces protocoles pour établir des connexions sécurisées entre deux entités de l IdO peut être difficile en raison de l'écart technologique entre celles-ci et des incohérences qui en résultent sur le plan des primitives cryptographiques supportées. Le sujet de l'adaptation des protocoles de sécurité existants pour répondre à ces nouveaux défis a récemment été soulevé dans la communauté scientifique. Cependant, les premières solutions proposées n'ont pas réussi à répondre aux besoins des nœuds à ressources limitées. Dans cette thèse, nous proposons de nouvelles approches collaboratives pour l'établissement de clés, dans le but de réduire les exigences des protocoles de sécurité existants, afin que ceux-ci puissent être mis en œuvre par des nœuds à ressources limitées. Nous avons particulièrement retenu les protocoles TLS Handshake, IKE et HIP BEX comme les meilleurs candidats correspondant aux exigences de sécurité de bout en bout pour l'IdO. Puis nous les avons modifiés de sorte que le nœud contraint en énergie puisse déléguer les opérations cryptographiques couteuses à un ensemble de nœuds au voisinage, tirant ainsi avantage de l'hétérogénéité spatiale qui caractérise l IdO. Nous avons entrepris des vérifications formelles de sécurité et des analyses de performance qui prouvent la sureté et l'efficacité énergétique des protocoles collaboratifs proposés. Dans une deuxième partie, nous avons porté notre attention sur une classe d attaques internes que la collaboration entre les nœuds peut induire et que les mécanismes cryptographiques classiques, tels que la signature et le chiffrement, s'avèrent impuissants à contrer. Cela nous a amené à introduire la notion de confiance au sein d'un groupe collaboratif. Le niveau de fiabilité d'un nœud est évalué par un mécanisme de sécurité dédié, connu sous le nom de système de gestion de confiance. Ce système est lui aussi instancié sur une base collaborative, dans laquelle plusieurs nœuds partagent leurs témoignages respectifs au sujet de la fiabilité des autres nœuds. En nous appuyant sur une analyse approfondie des systèmes de gestion de confiance existants et des contraintes de l IoD, nous avons conçu un système de gestion de confiance efficace pour nos protocoles collaboratifs. Cette efficacité a été évaluée en tenant compte de la façon dont le système de gestion de la confiance répond aux exigences spécifiques à nos approches proposées pour l'établissement de clés dans le contexte de l'IdO. Les résultats des analyses de performance que nous avons menées démontrent le bon fonctionnement du système proposé et une efficacité accrue par rapport à la littératureThis thesis addresses new security challenges in the Internet of Things (IoT). The current transition from legacy Internet to Internet of Things leads to multiple changes in its communication paradigms. Wireless sensor networks (WSNs) initiated this transition by introducing unattended wireless topologies, mostly made of resource constrained nodes, in which radio spectrum therefore ceased to be the only resource worthy of optimization. Today's Machine to Machine (M2M) and Internet of Things architectures further accentuated this trend, not only by involving wider architectures but also by adding heterogeneity, resource capabilities inconstancy and autonomy to once uniform and deterministic systems. The heterogeneous nature of IoT communications and imbalance in resources capabilities between IoT entities make it challenging to provide the required end-to-end secured connections. Unlike Internet servers, most of IoT components are characterized by low capabilities in terms of both energy and computing resources, and thus, are unable to support complex security schemes. The setup of a secure end-to-end communication channel requires the establishment of a common secret key between both peers, which would be negotiated relying on standard security key exchange protocols such as Transport Layer Security (TLS) Handshake or Internet Key Exchange (IKE). Nevertheless, a direct use of existing key establishment protocols to initiate connections between two IoT entities may be impractical because of the technological gap between them and the resulting inconsistencies in their cryptographic primitives. The issue of adapting existing security protocols to fulfil these new challenges has recently been raised in the international research community but the first proposed solutions failed to satisfy the needs of resource-constrained nodes. In this thesis, we propose novel collaborative approaches for key establishment designed to reduce the requirements of existing security protocols, in order to be supported by resource-constrained devices. We particularly retained TLS handshake, Internet key Exchange and HIP BEX protocols as the best keying candidates fitting the end-to-end security requirements of the IoT. Then we redesigned them so that the constrained peer may delegate its heavy cryptographic load to less constrained nodes in neighbourhood exploiting the spatial heterogeneity of IoT nodes. Formal security verifications and performance analyses were also conducted to ensure the security effectiveness and energy efficiency of our collaborative protocols. However, allowing collaboration between nodes may open the way to a new class of threats, known as internal attacks that conventional cryptographic mechanisms fail to deal with. This introduces the concept of trustworthiness within a collaborative group. The trustworthiness level of a node has to be assessed by a dedicated security mechanism known as a trust management system. This system aims to track nodes behaviours to detect untrustworthy elements and select reliable ones for collaborative services assistance. In turn, a trust management system is instantiated on a collaborative basis, wherein multiple nodes share their evidences about one another's trustworthiness. Based on an extensive analysis of prior trust management systems, we have identified a set of best practices that provided us guidance to design an effective trust management system for our collaborative keying protocols. This effectiveness was assessed by considering how the trust management system could fulfil specific requirements of our proposed approaches for key establishment in the context of the IoT. Performance analysis results show the proper functioning and effectiveness of the proposed system as compared with its counterparts that exist in the literatureEVRY-INT (912282302) / SudocSudocFranceF

    Secure multi party computations for electronic voting

    Get PDF
    Στην παρούσα εργασία, μελετούμε το πρόβλημα της ηλεκτρονικής ψηφοφορίας. Θεωρούμε ότι είναι έκφανση μιας γενικής διαδικασίας αποφάσεων που μπορεί να υλοποιηθεί μέσω υπολογισμών πολλαπλών οντοτήτων, οι οποίοι πρέπει να ικανοποιούν πολλές και αντικρουόμενες απαιτήσεις ασφαλείας. Έτσι μελετούμε σχετικές προσεγγίσεις οι οποίες βασιζονται σε κρυπτογραφικές τεχνικές, όπως τα ομομορφικά κρυπτοσυστήματα, τα δίκτυα μίξης και οι τυφλές υπογραφές. Αναλύουμε πώς προσφέρουν ακεραιότητα και ιδιωτικότητα (μυστικότητα) στην διαδικασία και την σχέση τους με την αποδοτικότητα. Εξετάζουμε τα είδη λειτουργιών κοινωνικής επιλογής που μπορούν να υποστηρίξουν και παρέχουμε δύο υλοποιήσεις. Επιπλέον ασχολούμαστε με την αντιμετώπιση ισχυρότερων αντιπάλων μη παρέχοντας αποδείξεις ψήφου ή προσφέροντας δυνατότητες αντίστασης στον εξαναγκασμό. Με βάση την τελευταία έννοια προτείνουμε μια τροποποίηση σε ένα ευρέως χρησιμοποιούμενο πρωτόκολλο. Τέλος μελετούμε δύο γνωστές υλοποιήσεις συστημάτων ηλεκτρονικής ψηφοφοριας το Helios και το Pret a Voter .In this thesis, we study the problem of electronic voting as a general decision making process that can be implemented using multi party computations, fulfilling strict and often conflicting security requirements. To this end, we review relevant cryptographic techniques and their combinations to form voting protocols. More specifically, we analyze schemes based on homomorphic cryptosystems, mixnets with proofs of shuffles and blind signatures. We analyze how they achieve integrity and privacy in the voting process, while keeping efficiency. We examine the types of social choice functions that can be supported by each protocol. We provide two proof of concept implementations. Moreover, we review ways to thwart stronger adversaries by adding receipt freeness and coercion resistance to voting systems. We build on the latter concept to propose a modification to a well known protocol. Finally, we study two actual e-Voting implementations namely Helios and Pret a Voter

    Cloud-based homomorphic encryption for privacy-preserving machine learning in clinical decision support

    Get PDF
    While privacy and security concerns dominate public cloud services, Homomorphic Encryption (HE) is seen as an emerging solution that ensures secure processing of sensitive data via untrusted networks in the public cloud or by third-party cloud vendors. It relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data meaningfully while still in encrypted form; although there are major stumbling blocks to overcome before the technology is considered mature for production cloud environments. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. Machine Learning (ML) is employed in CDS applications that typically learn and can personalise actions based on individual behaviour. A relatively simple-to-implement, common and consistent framework is sought that can overcome most limitations of Fully Homomorphic Encryption (FHE) in order to offer an expanded and flexible set of HE capabilities. In the absence of a significant breakthrough in FHE efficiency and practical use, it would appear that a solution relying on client interactions is the best known entity for meeting the requirements of private CDS-based computation, so long as security is not significantly compromised. A hybrid solution is introduced, that intersperses limited two-party interactions amongst the main homomorphic computations, allowing exchange of both numerical and logical cryptographic contexts in addition to resolving other major FHE limitations. Interactions involve the use of client-based ciphertext decryptions blinded by data obfuscation techniques, to maintain privacy. This thesis explores the middle ground whereby HE schemes can provide improved and efficient arbitrary computational functionality over a significantly reduced two-party network interaction model involving data obfuscation techniques. This compromise allows for the powerful capabilities of HE to be leveraged, providing a more uniform, flexible and general approach to privacy-preserving system integration, which is suitable for cloud deployment. The proposed platform is uniquely designed to make HE more practical for mainstream clinical application use, equipped with a rich set of capabilities and potentially very complex depth of HE operations. Such a solution would be suitable for the long-term privacy preserving-processing requirements of a cloud-based CDS system, which would typically require complex combinatorial logic, workflow and ML capabilities

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    ESARDA 37th Annual Meeting Proceedings

    Get PDF
    The 37th ESARDA symposium on Safeguards and Nuclear Non-Proliferation was held in Manchester, United Kingdom from 19-21 May, 2015. The Symposium has been preceded by meetings of the ESARDA Working Groups on 18 May 2015. The event has once again been an opportunity for research organisations, safeguards authorities and nuclear plant operators to exchange information on new aspects of international safeguards and non-proliferation, as well as recent developments in nuclear safeguards and non-proliferation related research activities and their implications for the safeguards community. The Proceedings contains the papers (118) submitted according to deadlines.JRC.E.8-Nuclear securit
    corecore