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Abstract

Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in

the underlying structure of a cipher. Side-channel attacks, however, look to extract secret

key information based on the leakage from the device on which the cipher is implemented,

be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based

on the power consumption, electromagnetic emanations and execution time have all been

practically demonstrated on a range of devices to reveal partial secret-key information

from which the full key can be reconstructed.

The focus of this thesis is power analysis, more specifically a class of attacks known

as profiling attacks. These attacks assume a potential attacker has access to, or can

control, an identical device to that which is under attack, which allows him to profile the

power consumption of operations or data flow during encryption. This assumes a stronger

adversary than traditional non-profiling attacks such as differential or correlation power

analysis, however the ability to model a device allows templates to be used post-profiling to

extract key information from many different target devices using the power consumption of

very few encryptions. This allows an adversary to overcome protocols intended to prevent

secret key recovery by restricting the number of available traces.

In this thesis a detailed investigation of template attacks is conducted, along with how

the selection of various attack parameters practically affect the efficiency of the secret

key recovery, as well as examining the underlying assumption of profiling attacks in that

the power consumption of one device can be used to extract secret keys from another.

Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable,

are then investigated against both symmetric and asymmetric algorithms with the goal of

key recovery from a single trace. This allows an adversary to bypass many of the currently

proposed countermeasures, particularly in the asymmetric domain.
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An investigation into machine-learning methods for side-channel analysis as an alterna-

tive to template or stochastic methods is also conducted, with support vector machines,

logistic regression and neural networks investigated from a side-channel viewpoint. Both

binary and multi-class classification attack scenarios are examined in order to explore the

relative strengths of each algorithm. Finally these machine-learning based alternatives are

empirically compared with template attacks, with their respective merits examined with

regards to attack efficiency.
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Chapter 1
Introduction

Cryptography is the science of keeping communications secure such that only the intended

recipients can read a message. The value of this was clear to the ancient Romans, who

encrypted their military communications using the Caesar Cipher, one of the first known

algorithms used to encrypt information. For as long as encryption algorithms have been

used, people have also looked to break them, and advances in cryptographic algorithm

design often go step in step with advances in cryptanalysis. Historically, the use of cryp-

tography was limited to the military and governmental organisations, with research in the

area often classified for reasons of national security and subject to export controls due to

cryptography being classed as military technology. This can be seen in the fascinating

work done at Bletchley Park in breaking the German Enigma encoding machines during

World War II which was only released to the public many years later.

While Claude Shannon’s pioneering work on information theory (and subsequently on

the One-Time Pad) was published in the late forties [197], this was declassified wartime

work, and it was not until the mid to late seventies that research into cryptography

really began to become mainstream in universities and research labs. It was then that

IBM developed the Data Encryption Standard (DES) encryption standard in conjunction

with the National Security Agency (NSA) [162], and the seminal work on asymmetric

cryptography such as Diffie-Hellman (DH) [60] and Rivest-Shamir-Adleman (RSA) [192]

was published. Indeed the secretive nature of cryptographic research was such that the

mathematical basis for both DH and RSA had previously been discovered by an English

mathematician Clifford Cocks working for Government Communications Headquarters

(GCHQ), the UK intelligence agency, however the work was only declassified in 1998.
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Section 2

Authentication Proves that a user is who they claim to be

Non-Repudiation Prevents a user subsequently denying that they

sent the data. This is particularly important for

online commerce

Confidentiality Provides secretary between parties such that

only users with knowledge of the key can read

the data.

Integrity Ensures that data has not been tampered with

in transit.

Table 1.1: Cryptographic functions.

While the banking and financial sectors have made widespread use of cryptography, the

advent of the internet and the always connected world of smart-phones, has ensured that

it has turned from an esoteric technology originally only used by the military to some-

thing that is used by the majority of the internet connected people around the world on

a daily basis, often without even realising it as they log into their email accounts, Face-

book, etc. Indeed the recent revelations about widespread monitoring of the internet by

the NSA and GCHQ by the ongoing Edward Snowden document cache only highlights

the importance of securing online communications through the widespread adoption of

cryptographic algorithms and protocols.

End to end encryption between two entities requires the use of a cryptographic protocol

such as transport layer security (TLS)/secure socket layer (SSL) for example, which is a

widely used protocol for internet communications. The goal of a protocol is to provide the

cryptographic functions as defined in Table 1.1 as required. These protocols are in turn

constructed from cryptographic primitives which can be seen as the building blocks of

cryptographic systems. These building blocks can further be classified into symmetric and

asymmetric algorithms. Symmetric algorithms utilise the same key for both encryption

and decryption operations. This allows designers to construct extremely fast and secure

algorithms that can encrypt large amounts of information quite efficiently. Block ciphers

such as DES and the Advanced Encryption Standard (AES) [163], and stream ciphers such

as RC4 are examples of symmetric-key algorithms that form the basis of many protocols.

The disadvantage of symmetric-key algorithms is the requirement for both parties to share

the same key. The key-sharing problem amplifies with scale as every pair of people who

want to communicate require unique keys. The previously mentioned DH key exchange
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overcomes this limitation by allowing two parties who have never previously met to estab-

lish a shared key for secure communications. Further research into asymmetric encryption

led to the development of RSA which has a public encryption key that anybody can use

to encrypt a message, however only the owner of the corresponding private decryption key

can recover the message. More recently, elliptic curve cryptography (ECC) [123, 152] has

been widely adopted for asymmetric purposes due to its shorter key lengths, particularly

in the embedded domain.

Additional primitives are required to achieve the cryptographic functions in Table 1.1.

Hash functions are one-way functions that provide an irreversible fingerprint of a block of

data which is useful for providing integrity, and secure random number generators (RNGs)

are essential to any protocol. Indeed the recent controversy over the dual elliptic curve

deterministic random bit generator [18], shows that tampering with the RNG can be a

somewhat efficient and subtle way to undermine a cryptographic system.

More recently, public cryptographic competitions have been utilised to select new algo-

rithms which provides an insurance that no back doors are present in a new standard.

This was the case with both AES and the recent SHA-3 hash function competition run

by National Institute of Standards and Technology (NIST), as well as eSTREAM, the

European Union funded ECRYPT stream cipher project. As well as algorithm design,

these competitions have lead to great advances in cryptanalysis also, particularly when

combined with parallel computing using graphics cards, or dedicated hardware such as

application-specific integrated circuits (ASICs) or reconfigurable devices such as field pro-

grammable gate arrays (FPGAs). Indeed a brute-force search of DES keys now takes less

than a week with a reconfigurable hardware cracker such as copacobana [128].

Traditionally, attacks on cryptographic primitives have focused on analysing inputs and

outputs of systems, however in the late nineties the first scientific publications of tim-

ing [125] and power [126] attacks showed that the implementation of an algorithm must

also be taken into account, especially in the context of embedded security where an at-

tacker might have direct access to a device. This was followed up with further research

showing that electromagnetic emanations could also leak key information [77, 184]. Since

then a wide body of research has been produced1 by a large number of universities and

research labs around the world, and a large number of conferences such as CHES [26], CT-

RSA [22], SAC [122], and COSADE [183], to name but a few, have dedicated side-channel

tracks.

1As of the 1st April 2014, the original timing and power analysis papers by Kocher et al. have 2583 and

4035 citations respectively according to Google scholar
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Active Passive

Non-Invasive Glitching, Temperature, Volt-

age, . . .

Timing, Power, EM, . . .

Semi-Invasive Light, Radiation, . . . EM (decapsulation), Optical

Inspection, . . .

Invasive Short Circuiting, permanent

circuit change, . . .

Probing, . . .

Table 1.2: Attack taxonomy.

While academic interest in side-channel attacks against cryptographic algorithms grew

after the publications by Kocher et al., some vulnerabilities were known much earlier

against non-cryptographic targets. For example in 1985, van Eck looked at using elec-

tromagnetic radiation from the cathode ray video display units that were in use at the

time to reconstruct what was on the screen [215]. Recently declassified information on the

tempest program conducted by the NSA shows that they were aware of the importance of

blocking (and potential for exploiting) electromagnetic emanations [57]. Indeed acoustic

side-channel attacks have more recently published against keyboard strokes [235] and dot

matrix printers as used in banks [14].

Attacks themselves can be classified into active and passive depending on if they affect the

cryptographic output of the computation being performed. For example voltage glitch-

ing can be used to introduce faults into a computation and subsequently recover the

key [32]. Passive attacks in contrast do not affect the cryptographic result. Attacks can

also be grouped according to their effect on the target device, with attacks that don’t leave

permanent damage to a device classified as non-invasive, with attacks that permanently

damage or destroy it as invasive. A taxonomy of attacks is given in Table 1.2 [142].

The work of this thesis examines Power Analysis Attacks, as originally introduced by

Kocher et al. [126], which utilises the power consumption of a secure device while perform-

ing an cryptographic operation to recover some secret about the device. Power attacks

can be further broken into non-profiling or profiling attacks.

Non-profiled attacks include simple power analysis (SPA) which assumes that an attacker

has access to a single or very few power traces which can be visually inspected to extract

key information through some timing or distinct power consumption pattern. This class of

attacks includes the classical differential power analysis (DPA) [126] and the widely utilised

correlation power analysis (CPA) [34], as well as related attacks which compare many
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recorded power traces with some hypothetical power model for a given key, determining

the correct key through some distinguisher. Collision attacks [196] fall somewhere in-

between SPA and DPA, and look to identify parts of a power trace where the same variable

or operation is processed by comparing the power consumption at that point, with the

number of traces required for successful key recovery dependent on the target device and

context.

Profiling Attacks are the main focus of this thesis. They assume a stronger attack model

with an attacker having access to an identical or similar device to learn the power con-

sumption characteristic of a device by building templates [42] or stochastic methods (SMs)

[195] for example. This model of the power consumption can then be used to break a differ-

ent target device quickly and easily. They can be viewed as a statistical learning problem

for which there is a wide range of literature available such as [30, 63, 95, 106]. Various

adversarial models give attackers different capabilities ranging from having full control

over the identical device and knowing all secret information [42], to simply knowing that

it has some bias in its RNG [3]. They are an important class of attacks as the availability

of a profiling device gives an attacker a wide range of possibilities, as well as being able

to mount very powerful attacks. They are also beneficial in the context of penetration

testing when evaluating the susceptibility of a device to side-channel attacks (SCAs).

Academic publications have shown the real world implications of side-channel analysis,

such as the attacks against the KeeLoq remote entry system [67], attacks against contact-

less payment cards [169], the bit-stream encryption in Xilinx FPGAs [155], and more

recently the YubiKey multi-factor authentication token [171]. In the last two decades

research into SCAs has moved from an niche academic research topic to a large multi-

million dollar industry with companies such as Cryptography Research (http://www.

cryptography.com/) and Riscure (https://www.riscure.com/) selling testing equipment

and countermeasures, the former having been bought out by Rambus for $345.5M .

1.1 Summary of Contributions

The following summarises the contributions discussed in this thesis,

• A thorough evaluation of template attacks (TAs) is performed, and the effect of

practical attack considerations is examined. When conducting a profiling TA there

are many inter-related parameters to choose, and an empirical study is conducted

on various software platforms.
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• The basic premise of a TA requires that the profiling device has a similar power

consumption such that templates built on one device are applicable to another. This

assumption is examined by conducting attacks across twenty different smart-cards

to examine its validity.

• Power attacks in general assume some knowledge of plaintext or ciphertext informa-

tion. An attack is developed that can recover key information based on the power

consumption alone.

• An efficient TA on the key schedule across multiple rounds is presented, and it is

shown how the original key can subsequently be recovered. Again no knowledge of

input or output texts are required.

• It is shown how to build templates to determine if the inputs to a multiplication are

equal or not using only power consumption hence distinguishing between multipli-

cation and squaring operations. An attack on RSA is outlined and the effect of the

key bit-size examined.

• A TA on elliptic curve digital signature standard (ECDSA) is performed based on

distinguishing multiplication and squaring operations. The effect of various coun-

termeasures on the attacks is examined, and practical considerations examined.

• A comparison between different machine learning methods in the context of SCA is

performed to investigate what algorithm is most advantageous to use for different

contexts.

• Logistic regression (LR) and neural networks (NNs) learning algorithms are used

for the first time in the context of SCA, and used to recover key information from

various cryptographic algorithms.

• A new variation of the construction of the SM is presented which is advantageous

where a large number of training examples is available, and empirically compared to

alternative models.

1.2 Thesis Layout

The background chapter, Chapter 2, gives a wide ranging overview of power analysis in

general. Power trace components and trace acquisition setups are explained, as well as

why power attacks are feasible. Some of the many different attack distinguishers are briefly
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examined and attack metrics explained. The effect of pre-processing techniques such as

filtering is also explored here.

Next in Chapter 3 a through investigation of TA is performed. Using AES as a baseline

comparison, different attack choices such as the chosen power model, the effect of data

normalisation, feature selection and target value is explored. The required training set

size for the target device is examined, and how to determine if a larger training set size

will increase the attack feasibility. A brief examination of the how the platform effects the

attack is also conducted, as well as the premise that similar devices have similar power

consumption.

Unknown plaintext attacks are then conducted against AES in Chapter 4. Two methods

are proposed, a higher order attack where multiple templates are built for different oper-

ations around where the key is used, as well as how to efficiently build templates directly

on the sub-keys. The effect of masking in the first scenario is also examined.

TA against secure asymmetric algorithms are then examined in Chapter 5, again with the

goal of using a single power trace only and no input or output information. It is shown

how to utilise the difference in Hamming weight of multiplication and squaring operations

to build templates that can recover key information from RSA and ECC implementations.

Finally in Chapter 6 various non-parametric machine learning methods are explored as

alternatives to Gaussian based TA and SM. An empirical comparison is performed for two

different datasets to determine the different strengths and weaknesses of the algorithms.
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Chapter 2
Background

The field of SCA is by its very nature multidisciplinary, combining number theory for

the analysis of cryptographic algorithms, engineering and signal processing for the acqui-

sition and analysis of side channel information, and statistical analysis to extract secret

information. While the statistical methods for information extraction are what this thesis

is chiefly concerned with, the other steps are equally important in order to successfully

mount an attack on a device. This background section deals with the engineering aspects

of SCAs, from expected attack scenarios, to the physical aspects as to why the attacks ac-

tually work, as well as a brief examination of some signal processing techniques to reduce

the noise of side-channel traces. The notation and success metrics as used throughout the

thesis are also introduced here.

2.1 Embedded Systems

Embedded security is becoming ever more important as the world is increasingly connected.

Many of us carry in our pockets smart-phones that can easily allow us talk, send texts,

check our bank balances, surf the internet etc., through WiFi, GSM, HSDPA, Bluetooth,

NFC . . . . In our wallets we carry bank-cards, transit cards, access cards, all of which

now have some sort of processing capability to enable its functionality. Newer passports

now contain biometric data that is accessed via contact-less technology. All these devices

contain (and leak) personal information which needs to be protected. These low power,

low cost devices can be particularly susceptible to SCAs due to the simplicity of their

underlying architecture. The leakage of information will only become worse as the new
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generation of wearable “smart” devices become more mainstream and personal computing

devices begin to communicate with each other. Looking beyond the security of personal

devices, motor vehicles are an example where security is becoming ever more important

due to the increasing electronic nature of cars. Loss of security in these cyber-physical

systems could lead to events that are considerably worse than your bank account being

emptied or your identity stolen. Interesting research in the area of embedded security for

cars can be found in the proceedings of conferences such as ESCAR (https://www.escar.

info/).

Due to power and cost restrictions, along with the fact that embedded devices often only

need to perform specific tasks, powerful general purpose processors such as those found on

desktop computers are usually not required. For security token type devices, small low-

power 8 or 32-bit micro-controllers are often used. For example, Atmel R© have dedicated

hardware encryption blocks on some of their low cost AVR XMEGA-A devices [13], as

well as security focused CryptoMemory EEPROMS [12] (both of which have been attacked

using power analysis in [121] and [15] respectively).

For large scale deployment dedicated ASICs are often used, where a higher initial develop-

ment cost can be offset by the relatively lower cost of each individual unit both in power

and monetary terms. For passively powered radio-frequency identification (RFID) devices

this might be the only option due to power restrictions. Reprogrammable FPGAs also

have interesting characteristics with regards to security applications, as they can be easily

reprogrammed in situ should updates be required to protocol or algorithm specifications.

While they have higher power requirements due to their reprogrammable nature, they are

particularly useful for developing attacks, and countermeasures, such as with the Sasebo

boards [190].

While in general SCAs are a threat for embedded devices, that is not to say that they

can’t be applied remotely to large-scale server systems either. Also it must be noted that

an attacker might own the device under attack and that he stands to gain by extracting

the secret information in it. An example of this could be breaking a Pay-TV system to

show all available channels, or to arbitrarily add value to a transit or charge card such as

performed by Oswald et al. in [169]. Hence, given that an adversary can possibly have

unlimited access to an embedded security device, as well as controlling environmental con-

ditions such as temperature, supply voltage, etc., it is clear that creating secure embedded

computing devices is far from a trivial problem which the straightforward implementation

of cryptography alone cannot solve.
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2.2 Cryptographic Algorithms

To secure communications and provide the functions specified in Table 1.1, various cryp-

tographic protocols are required such as TLS. These are defined by standards bodies such

as the International Organization for Standardisation (ISO) or NIST to allow for compati-

bility between devices. Cryptographic protocols, can be broadly viewed as the application

of cryptographic algorithms in a specified manner. As mentioned in the introduction, the

algorithms themselves can be roughly split into symmetric (private key) and asymmetric

(private and public key) cryptography.

Symmetric cryptographic algorithms use the same key for encryption and decryption, and

are generally quite fast hence are used for the bulk encryption of data. Block ciphers such

as AES and DES or stream ciphers such as Grain, RC4 or A5/2 are examples of symmetric

algorithms. Asymmetric algorithms use a different key for encryption and decryption,

allowing the encryption key to be made public to allow anybody use it, however only the

holder of the corresponding decryption key can unlock the data. RSA based on integer

factorisation, DH or ElGamal based on discrete logs, and ECC based on the elliptic curve

discrete log problem (ECDLP) are some examples of asymmetric algorithms. Due to the

relative lack of speed when compared to symmetric algorithms, generally they are used for

key exchange and message signatures to provide authentication, rather than encryption of

the data itself. Hash functions form a third grouping, and provide an irreversible one-way

function on the data. While no key per-se is used in the algorithm, they can be used as

the basis for constructions to provide message authentication and data integrity such as

the keyed-hash message authentication code (HMAC).

When implementing cryptographic algorithms, they are themselves composed of smaller

building blocks. For example, finite field arithmetic is usually required in classical algo-

rithms (i.e. algorithms that are not post quantum) as rounding leads to a loss of informa-

tion and could lead to incorrect decryption. AES requires the multiplication of polynomials

modulo an irreducible polynomial, while ECC is commonly performed in either a prime

field Fp or binary extension field Fpn .

2.3 Side-Channel Attacks

In academic literature, classical side-channel attacks generally refer to passive timing,

power or electromagnetic attacks, as outlined in Table 1.2 previously, or fault attacks
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which encompass a wide range of attacker models and capabilities. Fault analysis (FA) can

be quite powerful when used in conjunction with cryptanalysis methods or with passive

attacks. There are other potential side-channels such as acoustic [14, 235] or photonic

emission analysis (PEA) [73], however these somewhat more esoteric methods are not of

relevance here.

2.3.1 Timing Analysis

Trivially, timing leakages could be something as simple as an array comparison when

checking a login pin or password. If the password is checked byte-by-byte, then the length

of time required to verify it is determined by the number of correct bytes at its beginning.

They were the first published SCA, presented by Kocher at Crypto ’96 [125], where

he showed how to recover key bits from asymmetric algorithms by accurately measuring

how long they take to execute. As execution time was dependent on the key value, secret

information could be recovered. Initially timing attacks were most effective against simpler

targets such as smart-cards etc., however it was shown by Brumley et al. that remote

attacks against servers were possible also [36]. It is not just asymmetric algorithms that

are vulnerable however, certain implementations of the MixColumns operation in AES

were shown to be vulnerable [127] also, and cache-timing attacks due to look-up operations

when indexed by some secret value are also feasible [23]. Processor optimisations such as

early termination of multiplication operations when the upper operands are zero can also

lead to serious timing leakages [87]. It must also be noted that it is not just cryptographic

algorithms that are vulnerable to timing attacks, protocol level implementations are also

vulnerable as shown in the recent Lucky Thirteen attack by AlFardan and Paterson [9].

2.3.2 Power Analysis

Power analysis can be broadly divided into three categories with considerable overlap,

with many attacks combining aspects from two or all of the areas.

Simple Power Analysis

SPA is the most straightforward type of attack, and can be used to trivially extract key

bits from a power trace where key dependent operations are performed [126]. For asym-

metric algorithms such as RSA [192], the obvious way of implementing the exponentiation

is though repeated squarings and multiplications. If the power consumption difference

Profiling SCA on Crypto. Algorithms Neil Hanley



Section 2.3: Side-Channel Attacks 12

between these operations can be determined, then the key can be easily read out from a

single trace. As the squaring operation can be performed more efficiently than a multi-

plication [149], for low power devices such as smart-cards this is a real concern. A similar

analysis also applies to ECC [123, 152].

While in general, applying SPA to symmetric algorithms is not quite as straightforward,

it is sometimes possible where conditional branches are present such as during the DES

key schedule [126] or as an alternative to measuring timing information during an afore-

mentioned vulnerable AES MixColumns implementation [127]. SPA is particularly useful

however for selecting areas of time in which to perform differential or profiling attacks

which allows for a significant computational saving.

Non-Profiling

Broadly speaking, non-profiling attacks partition the trace set based on a function of some

key hypothesis. This is repeated for all valid keys and some statistical distinguisher is used

to determine which is the correct guess. These non-profiling attacks are considered in more

detail in §2.7 after the acquisition and make-up of power traces are examined.

Profiling

As profiling attacks are the main concern of this thesis and are dealt with in it later

chapters, if suffices to say here that profiling attacks assume a somewhat stronger attacker

model in that an identical or similar device is available to model the power consumption

prior to the attack. How much control or knowledge of the key they are assumed to have

over said device is open to interpretation per adversarial model, hence this assumption is

not as restricting it may first seem. For example, in [169] a non-profiling attack was first

used to recover a key prior to subsequently using the broken device to build templates.

In [3], it was shown how a device with a faulty RNG suffices to build templates, while

more recently in [137] it was shown how two devices with different unknown keys could

be used. It was also suggested in [92] that public verification functions could be used to

build templates using the device under attack itself. The first published profiling attack

was presented by Fahn and Pearson [70], where they introduced inferential power analysis

(IPA) to make detailed models of the power consumption of a device prior to an attack.
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2.3.3 Electromagnetic Analysis

Electromagnetic (EM) leakages were first demonstrated as source of side-channel leakage

by Quisquater and Samyde [184], and by Gandolfi et al. [77]. Rather than recording the

power consumption of a device, an EM probe is used to measure the changing electrical or

magnetic fields around a circuit due to current flow within it. While the analysis is quite

similar to that as is performed for power traces, there are certain advantages to examining

EM leakage. For example the ability to localise the acquisition to a specific region rather

than measure the power of the chip as a whole, as well as, practically, not having to

directly access the supply current which might not always be easily accessible. On the

other hand, the probe selection, placement and orientation are extra factors to consider,

as well the fact that low-amplitude signal might require decapsulation of the chip in order

to measure it. While EM attacks are not examined in this thesis, the statistical analysis

techniques are equally applicable to EM traces.

2.3.4 Fault Analysis

The area of FAs is quite broad and encompasses a wide range of attacks that all essentially

take a target device outside of its recommended operating conditions in order to induce

an error during the computation. Taking it outside its operating range can mean anything

from increasing the ambient temperature, reducing, glitching or cutting the supply voltage,

varying the clock frequency, blasting the chip with a laser, or even inducing an EM fault

via the spark plug of a car [118], to name but a few. There is also the potential for

inadvertent faults due to bugs in chip design as highlighted by the older Intel 80286 popf

or Pentium fdiv bugs, a risk that increases with chip complexity.

Once an attacker can inject (or knows how to inject in the case of a hardware bug) a

fault, some very elegant attacks can be derived such as the Bellcore attack of Boneh et

al. [32]. While this attack can be performed by injecting a fault at any point in time,

some require much more specific timing or even location based faults. Combining fault

and power analysis can also lead to effective attacks such as previously mentioned attack

an the Atmel R© CryptoMemory EEPROMS [15]. An overview of various FA and methods

can be found in [16].
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2.4 Trace Acquisition

The first step of any power attack is the acquisition of traces from a target device. The

quality of the traces has a major bearing on both the feasibility of an attack, as well as the

number of traces required to recover a key. Indeed version three of the DPA contest [211]

was an acquisition competition to see who could minimise the number of traces required

for an attack through the setup alone.

An example attack setup is given in Figure 2.1, where a controlling personal computer

(PC) synchronises the sending and receiving of messages to the device under attack, while

the power consumption is recorded using an oscilloscope. The external power supply and

function generator are not strictly necessary, however they can help provide cleaner traces.

Where a device is powered via universal serial bus (USB) there can be oscillations on the

line due the PC power supply unit. Likewise an external function generator will likely

provide an more stable clock than an on-board oscillator, even a very slight drift can

cause de-synchronisation over the course of an RSA or ECC operation. Generally this

is less of an issue for symmetric block ciphers such as AES or DES due to their shorter

computation time.
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Device
Target Cryptographic

Figure 2.1: Example power analysis setup.

To measure the power consumption a resistor is usually placed in series with the power
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supply and the target chip, with the varying current drawn by the chip causing a change in

voltage that can be measured. This causes a slight fluctuation at the device Vdd, however

if a small resistor is chosen this can generally be safely ignored. The resistor can equally

be placed on the ground line where a differential probe is not available. A proposal for an

active power measurement circuit has also be demonstrated by Bucci et al. in [37], where

they use Op-Amps to provide a stable voltage to the target device as well as amplifying

the current measurement.

A consequence of using a small resistor to measure the drop in voltage across, is that only a

small fluctuation is available to record. To prevent excessive quantisation noise, the power

trace should occupy the entire range of values of the scope resolution, hence an amplifier

might be required. Analog pre-processing with amplifiers, demodulators, filters, etc.,

can reduce the quantisation noise by ensuring the recorded signal which contains the side-

channel information occupies the majority of the range of the oscilloscope analog-to-digital

converter (ADC). This was used to good effect in [119] to perform low-cost attacks on

contact-less smart-cards. Another low cost attack setup was shown in [166], hence it is

clear that SCA is easily accessible to a wide range of attackers.

Another important aspect is that of triggering, as the traces need to be aligned with each

other for a successful attack. For controlled experiments, an output pin can be easily set

high to allow consistent triggering at the point of interest. Any de-synchronisation is then

likely due to offsets between the clocks of the device and the oscilloscope. However when

attacking a real-world device a suitable trigger must be found (such as the communication

bus) and the traces subsequently aligned.

Unless otherwise specified, the attacks in this thesis are performed against an arm7 mi-

croprocessor [138], and is typical of what would have been found in a previous generation

smart-phone. The software implementations of target algorithms were written by Dr. Mike

Tunstall, and the traces were acquired using a LeCroy AP034 differential probe across a

10Ω resistor on the Vdd side of the arm7 microprocessor, using a LeCroy WaveRunner

104Xi oscilloscope. The clock frequency of the device was supplied by a 7.3728MHz crystal

oscillator, and the power supply was provided via the JTAG programmer unit rather than

directly from an AC/DC converter which caused excessive noise. The sampling frequency

Fs was set to 250MSs-1 and the 20MHz bandwidth limiter of the scope was used. A

dedicated trigger signal was used at the start of an acquisition to allow easy trace align-

ment. The arm7 microprocessor was manufactured by NXP, and the target board was

the LPC-H2124 from Olimex, as shown in Figure 2.2(a). Note this board had a dedicated
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resistor for SCA in its Vdd line. All communication was performed through the serial

port. No averaging was performed to reduce signal noise. The arm7-TDMI core has a

Von Neumann architecture with a single 32-bit data bus carrying both instructions and

data. A block diagram of the core architecture is given in Figure 2.2(b) [138].

(a) Evaluation board.
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Figure 2.2: Target Arm7 microprocessor.

2.5 Power Trace Components

Complementary metal-oxide-semiconductor (CMOS) is the most widely used technology

for constructing integrated circuits (ICs) such as the microprocessors, ASICs and FPGAs

that are widely used for embedded security devices. Circuits typically consist of comple-

mentary pairs of metal oxide semiconductor field effect transistors (MOSFETs) as shown

in the inverter circuit of Figure 2.3. The overall power consumption of a CMOS device

can be viewed as containing static and dynamic power, Ptotal = Pstat + Pdyn. As only

one of the transistors can be on at any time, this arrangement leads to a low static power
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consumption, with Pdyn the dominant factor in the power consumption, Equation 2.1.

Vin Vout

CL

Vcc

Gnd

Figure 2.3: CMOS inverter.

Pdyn = f · CL · α · VDD
2 (2.1)

Here f denotes the clock frequency, CL the capacitive load, α the switching activity, and

VDD the supply voltage of the circuit. The switching activity α refers to the number of

transistors that change state, which itself is dependent on the data and operations being

performed, which is the underlying concept of SCAs. A good overview of the components

of a power trace in the context of SCA can be found in [145].

Again following [145], from an attackers viewpoint the power consumption can be viewed

as containing three parts as in Equation 2.2. The signal itself consists of a constant and

exploitable part, Pconst and Pexp respectively, with the random fluctuations due to natural

variations and quantisation noise represented by Pnoise. The signal-to-noise ratio (SNR)

of a signal gives an idea of how noisy a signal is, which has a direct bearing on an attack

outcome. The constant part of the signal, or the direct current (DC) component, is that

which is, for a given point in time, the same regardless of what data is processed, i.e. the

operation being performed or a bus load. As this is constant across all the traces it has

no effect on the outcome and can easily be removed. The exploitable part due to bits

switching is that which an attacker seeks to exploit. Note that where only a subset of

the bits switching is targeted, the remaining bits can be viewed as algorithmic noise as,

where the data being processed is random, the power consumption of these bits follows a

normal distribution. This is true also for the naturally occurring noise Pnoise which has

been shown in many works to follow a normal distribution also.

Profiling SCA on Crypto. Algorithms Neil Hanley



Section 2.5: Power Trace Components 18

Ptot = Pconst + Pexp + Pnoise (2.2)

An example of this is given in Figure 2.4 where the distribution of a single point in time

of 10 k different traces from the arm7 microprocessor is given. It is clear that the data

follows a Gaussian distribution, with a mean and standard deviation of 135.67mV and

1.64mV respectively. Note that the x-axis of the histogram is labelled mV as the values

represent the voltage drop across the shunt resistor which is proportional to the power

consumption as explained in the previous section. Each bin is a distinct voltage level as

recorded by the oscilloscope. While the 8-bit ADC of the oscilloscope has 256 distinct

levels, for the single time point of the trace examined only 18 of those values are actually

utilised. This is as a larger range of values occur over the length of the power trace hence

the vertical oscilloscope resolution must be set accordingly (over the entire trace > 220

of the ADC levels are utilised). It does mean however, that the quantisation noise can

be greatly reduced where the location of the target power consumption can be narrowly

focused.
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Figure 2.4: Gaussian noise distribution of a trace point.

In order to attack a device, it can be beneficial for an adversary to model the expected

power consumption. As Pdyn is the dominant factor of the power consumption1, use of the

Hamming distance is a straightforward and effective method to model Pexp. The Hamming

distance is a count of the number of bits that change state between two points in time

as shown in Equation 2.3, where Rj,i is the ith bit of register R at time j. While the

previous state is usually required when attacking hardware implementations, in the case

of software it is not always available or required. For example the previous value on a

1Note that as manufacturing processes decrease, it becomes increasingly important to consider Pstat.
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bus might be an op-code call hence will be some constant unknown value when attacking

the output of that operation. Alternatively, lower end microprocessors sometimes pre-set

their data-bus to an all zero or one state. In this scenario the Hamming weight model

can be used, which is essentially the Hamming distance model with an all zero previous

state. In fact when attacking software implementations, the Hamming weight models is

often sufficient. More complex models are available, such as suggested in [179] where they

apply a weighting to the 1 → 0 transition which consumed a slightly different amount of

power than the 0 → 1 transition for their setup. This can obviously be further extended

to have a vector of weights for each separate bit. These weights need to be calculated

somehow which implies some sort of profiling or regression based methods. In general

however, despite their simplicity, the Hamming weight and Hamming distance models

provide accurate enough approximates to allow successful SCA in many scenarios.

HD(Rt1 ,Rt2) =

n−1∑

i=0

Rt1,i ⊗ Rt2,i (2.3)

The point in time used to generate the histogram in Figure 2.4 was selected by taking the

location that returned maximum SNR after calculating it for each time point in the trace.

The SNR was calculated following Equation 2.4 [145, Ch. 4], and it was assumed that the

leakage followed the Hamming weight model, with the output of the first S-Box of the first

round taken as the signal. To calculate Equation 2.4, the mean of each Hamming weight

value is first computed. For σ2
signal, each trace is replaced by its equivalent mean. The

variance is then calculated across the mean replaced signals. For σ2
noise, the corresponding

mean is subtracted from each trace with the variance calculated across the resultant noise

vectors. To put the noise of the power trace in context, the SNR at this point was

calculated to be 0.97. As the SNR also depends on the utilised power model (i.e. exploiting

less bits increases the algorithmic noise), the SNR when the data was assumed to leak only

a single bit of information was calculated at 0.14. For reference, the SNR for the Hamming

weight and bitwise power models after the post-processing stages as described in §2.10,

were 0.23 and 1.66 respectively.

SNR =
σ2
signal

σ2
noise

(2.4)
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2.6 Notation and Methodology

Throughout the thesis, the following notation is utilised. A set of power traces x is of

size m× n where m is the number of traces (or samples) and n is the number points (or

features) in each trace. A single trace (i.e. row vector) from this set is denoted x(i), with

x
(i)
j a single point in time of this trace, or xj a single point in time across the entire trace

set. The plaintexts (resp. ciphertexts) corresponding to this trace set are denoted by p

(resp. c), with a single input again denoted by p(i) (resp. c(i)), and the valid set of values

by P (resp. C). The secret (or key) s from the set S is estimated by an adversary by ŝ

after making a hypothesis on a number of various values for s∗. Each trace x(i) can be

assigned to a class y(i) ∈ K where a class can be some intermediate value or the result

of a leakage mapping such as the Hamming weight. The unique values of y are denoted

by o(1), o(2), . . . , o(|K|), where |K| is the number of elements in K. Estimates and guesses

on y are denoted by ŷ and y∗ respectively as with s. The individual bits of the binary

representation of y are denoted by yj . While performing a SCA it is usual to only attack

a portion of the secret at a time, however no distinction is made here between partial

and full secret recovery as it should be clear from the context what is being referred to.

Additional notation is introduced as required.

When selecting a subset of m traces from a larger acquisition set to perform an attack,

they are always randomly selected to avoid any potential bias. This applies in all cases

whenever a subset is required, including when selecting both training and testing sets

when conducting profiling attacks. Training traces are used for the building of profiling

models, with a separate testing (or attack) set used to verify to model.

With regards the profiling attacks on the arm7 microprocessor, for AES the training and

testing sets are taken from the same device but in two separate runs. When acquiring the

training traces, a random key is used for each trace, while for the testing traces a constant

key is used. For the attacks on the Montgomery multiplication operation, the traces were

acquired in the same run and are randomly allocated to training and test sets each time

an attack is performed. For the attack on ECDSA the training and testing sets had to be

acquired in different acquisitions runs, as will be clear in §5.7.

2.6.1 Cross Validation

Cross validation is a widely used method for estimating prediction error from the training

data, as well as for choosing any learning parameters that may be required. Rather than
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simply calculating the training classification error and using that as a basis for parameter

selection, the training set is split up into CV sets, with CV − 1 sets used as training data

and a single set used for testing, with the model trained CV times. This removes the bias

of testing on the same data that has been used to generate the templates which generally

will predict a lower error than will be obtained on unseen data [95, Ch. 7]. Once the

parameters are selected, the templates are then generated over the entire training data

set. Obviously the greater the cross validation number the greater the computational

complexity, with the leave one out method where CV = m generally only used for very

small data sets. Care must be taken not to choose too small a CV parameter, where

the reduction in the training set size is such that the individual classes can no longer

accurately modelled. Any pre-processing of the data such as normalisation or transforms

must be calculated from the reduced CV training set.

As the acquisition of traces for this thesis is not restricted, cross validation is not used

and a separate testing set is used for parameter selection. A third validation set could

also have be used to estimate the expected error on unseen data after all parameters are

selected, but in practice there was little difference between this validation error and that

of the testing set. The exceptions with regards to cross validation are for the parameter

selection in the attack on ECDSA in §5.7, and for support vector machines (SVMs) in §6.4

where a grid search is implemented for parameter optimisation.

2.7 Non-Profiling Attacks

While there are many different methodologies to perform a non-profiled SCA, when at-

tacking block ciphers they all roughly follow the same sequence of steps. Initially some

target intermediate value or operation y that is a function of the secret s and some known

input p is chosen. Many attacks are also equally valid against a known output ciphertext

c. A suitable target value when attacking block ciphers is often the output of a S-Box due

to its non-linear properties [181]. For all possible values of the secret s∗ ∈ S a hypothetical

intermediate value is calculated and a power model applied if required. Some statistical

distinguisher is then used to determine the most likely key guess ŝ. As generating hy-

pothesis for all possible keys is infeasible for any modern cipher, the key is broken into

appropriately sized chunks and the attack is simply performed multiple times.

While the same steps are used for attacking both hardware and software implementations,

when attacking hardware it will be likely that some previous register value will have to
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be used as already mentioned. Generally speaking, attacking hardware targets will likely

require a greater number of traces to succeed due to both the nature of the leakage, as

well as the parallel nature of designs which induces a larger amount of algorithmic noise

on the traces [207].

2.7.1 Differential Power Analysis

The original DPA attack introduced by Kocher et al. [126], simply partitioned the traces

into two sets based on a projected bit value y = F (p, s∗). Examining the difference

between the means of these two sets as in Equation 2.5, when s∗ ≡ s then peaks should

occur as the sets have been correctly partitioned. These peaks occur at the points in time

wherever y is processed, and for s∗ 6= s no peaks should occur although so called ghost

peaks can occur due to relationships in the data.

∆ =




m∑
i=1

y(i) x(i)

m∑
i=1

y(i)


−




m∑
i=1

(
1− y(i)

)
x(i)

m∑
i=1

(
1− y(i)

)


 (2.5)

As an example to highlight the effectiveness of the attack despite its simplicity, in Fig-

ure 2.5 an attack against an arm7 microprocessor implementation of AES using the setup

as previously described is shown. An overview of the AES algorithm is given in Ap-

pendix A. Only two keys are tested, the correct one and a single incorrect value. The

target bit value is chosen as the least significant bit (LSB) of the S-Box output in the

first round such that y(i) = bitget
(
S
(
p(i) ⊗ s∗

)
, 0
)
. The correct key can be clearly distin-

guished and the peaks in Figure 2.5(a) show the points in time where the LSB is processed

(note the majority of the leakage actually occurs during the use of y in theMixColumns op-

eration rather than the S-Box output). The histograms of each set at the point of the

largest peak are given in Figure 2.5(b) and it can be seen that while there is a significant

overlap between the sets, they can still be clearly distinguished. While m = 5k traces

were used for the example, for this set of traces the attack is feasible with considerably

less traces. The large data set was to provide a clear visualisation of the histograms.

Some post-processing as described later in §2.10 was also applied to the traces prior to

the attack.
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(a) Difference of means traces. (b) Histogram at peak difference of means.

Figure 2.5: Difference of means attack.

2.7.2 Correlation Power Analysis

One of the most widely used methods of performing SCAs is with the use of Pearson’s

correlation coefficient in a CPA attack [33, 34]. This provides a measure of the linearity

between two normally distributed variables, i.e. the recorded power traces and a hypothet-

ical power consumption based on a key guess. Where an accurate power model is used this

can be a very powerful attack which can recover a secret in the presence of considerable

noise. Conversely, where a poor or inaccurate model is used then an attack might not be

possible at all.

The formula for the correlation coefficient is given in Equation 2.6 where y is the hypothet-

ical power consumption, and like the DPA attack, this is applied to every point in a trace.

For a given correlation coefficient, confidence intervals can also be used to determine how

many traces an attacker would expect to need in order to recover a secret following the

rule of thumb as given in [145, Chap. 6].

ρ =

m∑
i=1

(
x(i) − x̄

) (
y(i) − ȳ

)

√∑m
i=1

(
x(i) − x̄

)2√∑m
i=1

(
y(i) − ȳ

)2 (2.6)

Using the same m = 5k traces AES as before, a CPA attack is performed targeting

the output of the S-Box once again and assuming a Hamming weight power model, y =

HW
(
S
(
p(i) ⊕ s∗

))
. There are multiple peaks in Figure 2.6(a) representing different parts

of the AES algorithm where y is used. The peaks are somewhat clearer than in the DPA

case as the leakage due to multiple bits is being utilised. Box-plots of the trace values at the
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point corresponding to the peak correlation and grouped by their Hamming weight are

given in Figure 2.6(b). The linear relationship can be clearly seen and shows that the

Hamming weight model is pertinent choice for this device.
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Figure 2.6: Correlation attack.

When attacking hardware devices such as FPGAs, or a smart-card with a co-processor,

it is beneficial to attack as many bits as is reasonably possible from a computational

viewpoint, as this reduces the algorithmic noise of the traces. It was shown in [34] that

when attacking a subset of bits bsub in a bus of width b, the maximum correlation is given

by Equation 2.7. An example of the practical effect of this is given in [214] where an

increasing number of parallel DES S-Boxes in a smart-card coprocessor are attacked.

ρsub = ρ

√
bsub
b

(2.7)

From a practical viewpoint, performing CPA on larger datasets where the number of

samples m >> 1 k and the number of time points n >> 10 k where each point will

typically be a single or double precision value of 4 or 8 bytes, can require a significant

amount of memory if the traces are loaded directly into memory for the calculation. Hence

it is often more efficient to implement to correlation function recursively as outlined in

[119], or with the proposed efficiency improvements in [139]. This has the added advantage

where the peak correlation is being plotted as a function of the number of required traces

as the intermediate correlations are being calculated regardless.
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2.7.3 More Non-Profiling Attack Methods

While the two attacks as described are widely used SCAs, there are many others. Any

statistical distinguisher that can be used to differentiate set partitions can be used as an

attack method. These are typically referred to as univariate attacks as they exploit the

leakage of a single time point of a trace. There are many variants of the original difference

of means (DOM) attack such as:

All-or-Nothing DPA [151] This is a straightforward extension of the DOM attack which

looks to maximise the DPA peak by partitioning the traces into sets such that

{x ; yi = 0 ∀i} and {x ; yi = 1 ∀i}. This has the disadvantage of leaving traces

where the bits of y contain both 0 and 1 unused for that particular DOM trace

however.

Generalised DPA [151] Here the traces are partitioned into two sets based on if the

Hamming weight is greater or equal to b
2 where b is the number of bits under con-

sideration and is given by b = ⌈log2 (|K|)⌉, with K the set of values y can take.

Enhanced DPA [27] Multiple DOM attacks are performed seperately in an enhanced

DPA attack for each bit yi, with the resultant DOM curves summed in order to

maximise the leakage utilisation.

T-Test DPA [53] This utilises the popular t-test distinguisher which is a difference of

means test which also accounts for the respective variance of the two sets. In the

context of SCA, this generally will be more accurate than a straightforward DOM

test and require fewer samples to succeed. It can also be used in conjunction with

any of the DOM type attacks.

Partitioning PA [131] In partitioning power analysis, the traces are split into multiple

sets based on some power model and a weighted sum of means calculated. This is

quite similar to CPA, however weighting coefficients must be selected.

Absolute Sum DPA [61] This is quite similar to the enhanced DPAmethod, except that

absolute values are summed to ensure bit-dependent leakage doesn’t cancel out.

Variance power analysis [204], and differential cluster analysis [20] have also been sug-

gested, with the clustering method actually a form of unsupervised machine learning.

Equally, rather than using Pearson’s correlation coefficient which assumes the data is nor-

mally distributed, non-parametric rank correlation methods such as Spearman’s, Kendall’s

Tau or the Gamma statistic can be used as suggested in [20], or Gini correlation as exam-
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ined in [201]. These rank correlation methods don’t assume a linear dependency between

the model and the trace data, rather an ordinal one. This can be advantageous in hardware

scenarios where the leakage is more complex. Other useful non-parametric distinguishers

that have been proposed for SCA include mutual information analysis (MIA) [80], regres-

sion analysis [58], and the Kolmogorov-Smirnov test [227], each with its own advantages

and disadvantages. For example, an interesting feature of MIA is its generality and its

natural extension to multivariate attacks [79], however optimal parameter selection is

non-trivial [217] and poor choices can result in the attack failing.

With a wide range of distinguishers available, the obvious question to ask is which is “best”

[98]. Due to the fact that SCAs are by their nature implementation dependent with the

underlying platform and target algorithm dictating the strategy, no single distinguisher is

most efficient in all cases. There are a number of publications which investigate the relative

merits of distinguishers through both theoretical and empirical analysis, for example [61,

82, 141, 146]. Many of these show that the attacks can be viewed as being asymptotically

equivalent, and can be re-written as a function of each other.

2.8 Comparison Metrics

To compare various SCA methods some sort of metric is required. Two commonly used

methods are the success rate and the guessing entropy [206]. To calculate the success rate,

multiple attacks are performed with the results averaged to estimate how the attack would

perform given a random set of traces from the same setup. A 1st order success rate returns

on average how often the correct key is recovered as a function of the number of traces. A

2nd order success rate is how often the correct key is selected among the two most likely

keys, etc.. The guessing entropy is also calculated as a function of the number of traces,

and returns the expected number of key guesses required after applying the distinguisher.

This allows an evaluation of attacks where maybe the majority of keys can be quickly

eliminated, however some (possibly related) keys are harder to distinguish between. An

information theoretic measure is also introduced in [206] to evaluate leakages independent

of adversarial models. Another comparison framework was introduced in [225] which, in

addition to key ranking similar to the success rate, also suggests the use of distinguishing

margins and standard scores.

With regards to comparison of profiling attacks which are the focus of this thesis, it is

of interest to compare the efficiency of both the profiling and attack stages. To compare

Profiling SCA on Crypto. Algorithms Neil Hanley



Section 2.8: Comparison Metrics 27

the profiling step various empirical measures were suggested in [81], while in [205] the

information theoretic measures of [206] were suggested. In both cases the success rate was

used in the classification step.

In this thesis, the goal is the minimise the expected error given a single trace to recover a

secret. This is equal to 1 minus the success rate for a single trace. Intuitively, minimising

the expected error for a single randomly selected trace will also maximise the success rate

where multiple traces are available for secret recovery. Wherever the success rate is used

(e.g. in an amplified TA) then it is the 1st order success rate. Learning curves as commonly

used in machine learning are used here rather than information theoretic methods, with

the efficiency of the training and testing stages evaluated using the training and test error

rates. The training error is the error when classification is performed on the data set

used to build the profiling model, with the testing error the error of a separate trace set

unused in the profiling step. The learning curves are these error rates plotted against some

variable parameter such as the number of samples or features used to build the model.

An advantage of using learning curves is that the bias-variance trade-off of the model

can be easily visualised allowing the selection of parameters to minimise testing error. A

high bias model (under-fitting) can be seen by high training and test error, while a high-

variance model (over-fit) can be seen by low training error and a high testing error [95].

Hence the appropriate steps can be taken to improve the classifier rather than blindly

trying everything. For example, to improve a high variance model an appropriate approach

would be to increase the training set size, or maybe reduce the number of features selected.

Conversely, given a high bias model the addition of extra training samples will unlikely

improve the results and the addition of extra features is a more suitable path to take.

Finally, as previously mentioned in §2.6 when outlining the notation used, when attacking

some cryptographic algorithm via SCA the key is usually recovered step by step. For

example in the case of an embedded software implementation, if attacking AES the ar-

chitecture of the algorithm lends itself to attacking the key a byte at a time, whereas if

targeting DES in the same scenario then 4-bits might be more appropriate. For asymmet-

ric algorithms such as RSA and ECC the key is generally recovered bit-by-bit, with an

attacker maybe using the knowledge of the recovered key bit to extract the next one. In

this work, unless otherwise specified, the error rates are for the recovery of a single byte

of the AES key or a single bit of an asymmetric algorithm.
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2.9 Countermeasures

Various countermeasures have been proposed to protect against SCA, however in practice

provable security is difficult to achieve and a more realistic goal is to make the financial

cost of breaking a system greater than the projected gain. Depending on the adversarial

threat model and the algorithm under consideration, countermeasures based on secure

logic styles [213], masking [41, 85] or randomisation [52] might be appropriate, to name

but a few. In general a countermeasure will have some cost associated with it, such as

longer computation time, extra silicon or FPGA utilisation, increased power consumption

etc.., which must be factored into account when designing a secure system. Further detail is

provided where relevant in later chapters. As the use of countermeasures can be overcome

in a variety of ways, such as with higher-order attacks, a combination of them is usually

preferred where possible. Finally it is worth pointing out that Cryptography Research has

wide ranging patent claims on many countermeasure implementations.

2.10 Trace Pre-Processing

The success rate of SCAs can be improved through the application of trace pre-processing

methods prior to performing the attack itself. These can be filtering methods to reduce

noise on the raw traces or transformations to project the traces into a subspace. Another

application of pre-processing methods is to reduce the computational complexity of an

attack by removing redundant information prior to performing the attack without a sig-

nificant loss of information. This can have large effect on both the length of time it takes

to perform the attack, as well as the storage requirements. It must be noted however, that

the arm7 microprocessor traces used for the attacks here allow for relatively successful

attacks without any pre-processing. Noisier platforms such as FPGAs, or implementa-

tions with noise inducing (or desynchronising) countermeasures will have a greater benefit

from pre-processing. Pre-processing can also lead to attacks where previously none might

have been expected or possible. For example, Agrawal et al. in [2] apply demodulation to

recover amplitude modulated EM key dependent signals.

2.10.1 Direct Current Component Removal

Ideally the DC component of a power trace is unchanging across the entire trace set hence

removing it should have no effect on the outcome of a SCA. However in reality a DC
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drift can sometimes be observed across the length of a power trace, particularly when

recording long trace vectors. Even more noticeable is the DC drift across a large set of

traces acquired over a day or more. As the ambient room temperature changes, this can

have a visible effect on the DC offset of the power traces. Likewise the temperatures of

both the target device, and the oscilloscope probes will affect the DC component value,

hence equipment should be allowed “warm up” prior to acquisition by recording dummy

samples.

A straightforward way to remove the DC component at source is to set the oscilloscope

probe to use alternating current (AC) coupling. A capacitor within the oscilloscope is

then used to block the DC component of the analogue signal collected by the probe before

it is ever converted to a digital signal via the ADC. This might not always be desirable

however, hence two methods for removing the DC component are now examined:

Mean Subtraction: This is the easiest way of removing the DC component and simply

consists of subtracting the average value of a trace from each point in the trace.

Generally this method is very effective, however where there is a significant DC

difference between various sections of the trace, a DC component will still remain

post-subtraction. It has the advantage of affecting all points in the trace equally

however.

High-pass Filter: A high-pass filter can be used to remove the DC component of a sig-

nal [200, Ch. 14], however its effectiveness depends on the filter parameters. Due

to the vast number of filter types and parameters, the comparison here is limited to

examining the application of windowed linear-phase finite impulse response (FIR) fil-

ters while using a Blackman window [94]. The choice of a Blackman window was due

to its slightly wider lobe and greater stop-band attenuation, however experimental

evaluation found little difference in practice between it and other window shapes

such as the Hamming or Bartlett. Fixing the attenuation at the cut-off frequency Fc

to 6 decibel (dB), the filter order N and Fc are varied to see the effect on the traces.

As the end goal of any pre-processing is the improve the practicality of a SCA, the success

rate of a CPA attack against the first S-Box in the first round of AES is calculated for each

method. While there are limitations in using this as a metric for comparing pre-processing

methods (what is optimal for a CPA is not necessarily optimal for other attacks), it is

sufficient for the purposes here as later attacks will be compared on the same data set

anyway. Figure 2.7 gives the success rate for various N and Fc filter parameters, compared

to subtracting the mean and the original data set. All possible bytes are hypothesised for
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the key, and the correlation is calculated across the entire length of the first round (25 k

points in total).
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Figure 2.7: Success rate of DC removal methods.

It can be seen that simply subtracting the DC component, or filtering with [(Fc =

100Hz, N = 100), (Fc = 100Hz, N = 100)] high pass filters makes little difference to

the success rate of the attack. However for the filter with (Fc = 1MHz, N = 1k), there

is a significant drop off in the success rate. Note that these are not particularly suitable

filter parameters to remove a DC component in any case, as many other low-frequency

components are also attenuated. They were chosen to highlight that poor filter selection

can have a negative effect on SCA. As the effect on the success rate in minimal for the

other options, for all following attacks on the AES algorithm implemented on the arm7

microprocessor, the DC component is simply removed by subtracting the mean as this is

computationally the fastest method.

2.10.2 Filtering

As outlined in §2.5, noise is always present on power traces due to both acquisition

noise (such as quantization) and randomly occurring noise. This noise lowers the over-

all SNR and increases the number of traces required to perform a successful SCA. Low-pass

filters can be used to remove noise at high frequencies thereby increasing the SNR, hence

the effectiveness of the attack. Many oscilloscopes also provide an analogue bandwidth

limiter (generally about 20MHz or 25MHz) that suppresses signals above that frequency.

This can be quite effective at increasing the SNR of a trace as spurious noise is removed
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before digitisation, possibly allowing a smaller vertical voltage range to be selected which

in turn reduces the quantization noise. As mentioned previously, custom filters can also be

implemented in the analogue domain in an attempt to reduce quantization noise, however

we are only concerned with digital filters here. Bandpass filters are another option to

reduce noise on a trace. As shown in [145, Ch. 4], the peak that occurs on the rising edge

of a clock cycle is enough to perform an attack as this is where the majority of the power

consumed due to bit transitions occurs (glitching is also another source of power consump-

tion that must be accounted for, particularly when implementing countermeasures [147]).

As these peaks occur at the clock frequency, a bandpass filter can be used to remove

frequencies outside this range. The use of filters to reduce noise prior to performing an

attack, while common in the cryptographic community, is not extensively dealt with in

the literature, with [17, 132, 170, 202] some of the papers that directly look at application

of digital signal processing (DSP) methods to enhance SCA. However the selection of filter

parameters is dependent on the data at hand. Hence there is no all-encompassing set of

filters and parameters that can be recommended for all attack setups.

Moving Average Filter: While an extremely easy and efficient filter to implement, the

moving average filter (MAF) is actually optimal for reducing random white noise

while retaining a sharp step response [200, Ch. 15]. However for frequency domain

signals it is among the worst types of filter so should not be used where frequency

separation is required. The MAF is simply a rectangular windowed FIR filter. This

allows for an extremely fast implementation as a filtered point of a trace, xi, can be

used to calculate xi+1 with only a single addition and subtraction. A longer window

length allows for a cleaner trace as the noise reduction is equal to the square-root of

the window length (i.e. a rectangular window length of 100 will reduce the noise by

a factor of 10). However the longer the window length, the poorer the step response

which can impact an attack as seen for the case where N = 101 in Figure 2.8.

This can be compensated somewhat by an attacker by increasing the sampling rate,

trading acquisition and processing time, and storage space for noise reduction. While

power traces will generally have Gaussian rather than white distributed noise, due

to the simplicity and speed of the filter it is worth examining.

Lowpass Filter: The effect on the success rate of a windowed FIR low-pass filter, again

using a Blackman kernel, of different window lengths is given in Figure 2.9. It is

less efficient to implement than the MAF as it does not allow for a recursive im-

plementation due to the shape of its window. It performs similarly in the time

domain with regards noise suppression while being far superior for frequency sepa-
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Figure 2.8: Success rate of moving average filters.

ration. Once again, the cutoff frequency is kept constant, and the window length

N which is varied. As the clock frequency of the arm7 microprocessor is set at

7.3728MHz, the cut-off frequency of the filter Fc is chosen at 10MHz suppressing

any frequencies above this range including clock harmonics. It can be seen that all

filter kernel lengths reduce the number of traces required for a given success rate,

even the N = 101 point filter which in the MAF case caused a large reduction in

the attack effectiveness.
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Figure 2.9: Success rate of lowpass filters.
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Bandpass Filter: Once again the Blackman FIR filter is used, and the bandpass filter

passband frequencies are set to ±500 kHz either of the clock frequency. As can be

seen in Figure 2.10, in this case larger window lengths actually increase the success

rate of the attack as a sharper cut-off frequency is achieved. While the removal of

the DC component is not strictly necessary if using a bandpass filter as it will be

attenuated anyway, for consistency in the comparison with the other options the

same DC-free traces were used.
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Figure 2.10: Success rate of bandpass filters.

The most effective of each of three filter types are compared in Figure 2.11. The appli-

cation of a bandpass filter about the clock frequency leads to the best CPA attack for

this particular setup, indicating that the interesting power leakage largely occurs at the

clock frequency. Hence for all attacks on the AES algorithm implemented on the arm7

microprocessor in the following chapters, the mean is first subtracted to remove the DC

component, and an N = 51 point Blackman FIR bandpass filter with the passband set to

±500 kHz about the clock frequency is applied to reduce the noise on the trace.

2.10.3 Trace Reduction

The processing and storage requirements of a SCA are directly proportional to the length

of a power trace, hence dependent on both the algorithm being targeted and the sampling

rate. In the case of the traces under consideration, with a sampling rate of 250MSs-1,

each round of AES has ≈ 25 k points therefore requiring over 250 k points per trace, with

each point requiring 8 bytes of storage to store in double precision format. In the case
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Figure 2.11: Success rate comparison of various filters.

of asymmetric key algorithms such as RSA or ECC, storage and processing requirements

can be orders of magnitude larger due to the longer computation times. Reduction of the

sampling rate is one method to reduce the trace length (synchronous sampling methods

have also been shown to be effective [166]), but this is constrained by the Nyquist theorem

which states that the sampling rate must be at least twice the maximum frequency in a

system for an accurate representation of the signal [200, Ch. 3]. Due to the clock harmonics

in the system, the sampling rate needs to be considerably higher than the clock to prevent

aliasing on the traces. Examining the frequency response of the traces under consideration,

11th order clock harmonics were still visible around 81MHz (although greatly reduced in

amplitude) hence the sampling rate of 250MSs-1 was chosen.

In [145, Ch. 4], it is shown that only a single point from the duration of a clock cycle

is required to perform SCAs. This allows the removal all all but one point per clock

cycle in a trace without adversely affecting an attack outcome as mostly only redundant

information is removed. It also has the advantage of realigning power traces acquired from

a device where there is a very slight clock oscillator drift. These compressed traces allow

for both quicker attack evaluation, as well as reduced storage requirements. A method to

reconstruct clock edges from a power trace is given in [65], however for the AES traces

here, ⌊ Fs

Fclk
⌋ is used to approximate how many points per clock. This will not exactly

split up the trace into clock periods unless it is an even division, however as the floor

rather than ceiling function is used no data will be lost. Note this can only be used for

deterministic algorithms with no key or data dependent branches as de-synchronisation
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will occur otherwise. For the ECDSA traces of §5.7 the method of [65] is used. Various

methods are outlined in [145, Ch. 4], a few of which are now outlined:

Maximum point: It can be assumed that the maximum point in a clock period is where

the most bit transitions occur hence this point can be used as representative of the

clock period as a whole.

Integration: This method sums up all the points in a clock period and uses this value to

represent to clock period. This can decrease the SNR where many points consisting

of mostly noise are summed together.

Sum absolute values: This too sums up all the points, but the absolute value is take

prior to summation.

Dot product: This is equivalent to the summation of the squares of each point. The

idea here is that the signal component will amplify itself through the multiplication

hence the summation with points consisting of mostly noise will have a lesser effect.

Using the DC free and bandpass filtered traces from before, the success rate is once again

calculated using the different trace reduction methods. As illustrated in Figure 2.12, all

the summation trace reduction methods actually decrease the attack effectiveness due to

the noise components consisting of a greater portion of a trace point post compression.

Selecting the maximum point per trace on the other hand increases the success rate of

the attack slightly as small desynchronising effects are removed, hence this compression

technique is combined with mean subtraction and the use of a bandpass filter for the

remainder of thesis where this set of traces are used.

2.10.4 Trace Transformations

Further signal processing of the traces can be advantageous for SCA, particularly where

countermeasures have been applied. Performing attacks in the frequency domain [78] or

the use of principal component analysis (PCA) to transform the data prior to an attack

[21] can allow an attack to succeed where otherwise it might have not have due to de-

synchronisation or excessive noise. Similarly where randomised clocking countermeasures

have been utilised, methods have been suggested to reconstruct the original signal [114,

156, 216] through trace transformations and signal processing.
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Figure 2.12: Trace reduction comparison.

2.11 Conclusion

In this background chapter, a broad overview of embedded systems and why they are

vulnerable to SCAs has been presented, along with various categories of SCA and the

ideas behind them. The trace acquisition setup as used in this thesis, along with the

notation and success metrics which are utilised throughout have also been introduced.

A justification of the pre-processing steps applied to the arm7 microprocessor AES traces

in this work was presented through experimental analysis, and it was found that the

following three pre-processing steps help increase the efficiency of a CPA attack against

this dataset:

• Subtraction of the trace mean to remove the DC component.

• Applying a N = 51 point Blackman windowed FIR bandpass digital filter with the

cutoff frequencies set to the clock frequency of 7.3739MHz ± 500 kHz

• Reducing the traces to a single point per clock cycle by extracting the peak value

from each cycle.

These pre-processing steps are applied to all traces used in this thesis acquired from an

arm7 microprocessor while sampling at 250MSs-1.
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Chapter 3
Template Attacks

3.1 Introduction

TAs, first introduced by Chari et al. [42], take a different approach to key extraction

than DPA, CPA or their variants. Rather than modelling the expected power consump-

tion of a device based on some leakage model, TAs look to accurately model the power

consumption using an identical device that an attacker has access to. Due to this strong,

possibly all-encompassing, attacker model, a TA can be viewed as the strongest SCA pos-

sible attack in an information theoretic sense as stated in [42]. There are variants to this

model, for example where an attacker does not have full control of the profiling device

however knows that it contains a faulty RNG [3], or where an attacker simply performs a

DPA attack to recover the key [169], but for the rest of this chapter we assume that the

key is known for the profiling stage. The validity of profiling on one device, and attacking

a second device can also be questioned, especially in smaller fabrication processes [188].

This question is further explored in §3.5, however in general it is assumed that different

devices have sufficiently similar leakage to allow the mounting of a TA. As TAs represent

the strongest possible attacker model, they are also particular useful for device manufac-

turers and vendors in evaluating side-channel resistance in a worst case scenario analysis

testing as suggested in [206].

In this chapter, an overview of template attacks is first given in §3.2. This is followed up

in §3.3 with an exploration of practical attack considerations and their effect on subse-

quent classification success rate, including a comparison of different classification methods

in §3.3.6. These attacks are evaluated in a known plaintext attacker model with the set of
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arm7 microprocessor AES traces acquired as described in §2.4. The attacks work equally

as well in a known ciphertext scenario, as is the case for many SCA, hence only known

inputs are considered here. The effect of artificially adding noise to traces to simulate poor

acquisition setups or noisier target devices is investigated in §3.3.7, and in §3.4 various

implementations of AES on different platforms are compared to show how the underly-

ing target device affects the attack. Finally in §3.5 multiple identical devices are used to

empirically test the validity of the premise of TAs for a given target platform.

3.2 Template Attacks

A significant advantage of TAs is the ability to recover keys with a few or only a single

power trace, overcoming implementations or countermeasures which restrict the number

of traces an adversary can acquire. The flip side of this being the sometimes restrictive

assumption that an identical device is available for profiling the power consumption. A TA

is a two-stage attack, the computationally intensive profiling or training stage on the

identical device, followed by the key recovery or classification stage of the target device.

The templates generated during the profiling stage can subsequently be reused for fast

key recovery from any similar device, potentially giving an attacker a large return for the

initial workload. The first published two-stage attack was IPA by Fahn and Pearson [70],

which made use of averaging to determine the location and leakage of individual key bits.

While it is assumed that an adversary can program, or knows the key of the profiling

device, it is not assumed that the underlying source code is known. Knowledge of the

source code would allow for a much stronger attack, most likely leading to a trivial key

extraction. There are scenarios where an identical device with a known key is not required

however, or the attacker assumptions are not as prohibitive as they might first seem. For

example an attacker might own a cryptographic device such as a smart card with some

unknown secret key. As the device is his own, he has unrestricted physical access to

it and can spend significant time and effort recovering the key using traditional DPA.

Subsequently he can build templates using this information for quick key extraction from

similar devices that he does not have unfettered access to. This was among the ideas

presented by Oswald an Paar in [169], however the authors were unable to transfer the

success of the TA across different profiling and target devices (it was suggested by the

authors this was possibly due to some desynchronising type countermeasure). Similarly, it

was suggested in [93], that in an asymmetric key cryptosystem where a public verification

function is available that uses the same sub-functions as a signature generation function,
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this function could be used to generate templates under the assumption that the public

key is known. No practical evaluation of this has been demonstrated to date however, and

very likely there are many practical issues to overcome. It does highlight however that the

TA model is not as restrictive or unrealistic as it might initially seem.

3.2.1 Template Training

The first stage of a TA is the training or profiling stage. A set of m power traces x, of

length n are collected with their corresponding plaintext p and key s inputs. The target

key space is given by S and contains |S| elements. The traces are assigned a label y ∈ K

such that y = F(p, s). The function F is chosen such that it maps y to a secret s given

p. This does not necessarily have to be a unique mapping, however unless it is bijective

the classification stage will require more than one target trace. The unique values in the

set K are denoted by, o(1), o(2), . . . , o(|K|). If the noise on the traces is additive and follows

a Gaussian distribution, the traces can be assumed to be drawn from the multivariate

normal distribution as given in Equation 3.1.

N
(
x | µ(i),Σ(i)

)
=

1√
(2π)n

∣∣Σ(i)
∣∣
e−

1
2(x−µ(i))(Σ(i))

−1
(x−µ(i))

⊤

(3.1)

Where µ(i) and Σ(i) represent the mean vector and noise covariance matrix of the class o(i),

and ⊤ represents the transpose operation. The training stage then consists of empirically

estimating the mean vector µ̂(i) and noise covariance matrix Σ̂(i) pair, for each instance

of o(i), as defined in Equation 3.2 and Equation 3.3. Here i ∈ {1, . . . , |K|}, and x(j,i)

represents the jth acquisition of the class o(i), where j ∈ {1, . . . ,m(i)} and m(i) is the

number of traces available for o(i) such that
∑|K|

i=1m
(i) = m.

µ̂(i) =
1

m(i)

m(i)∑

j=1

x(j,i) (3.2)

Σ̂(i) =
1

m(i) − 1

m(i)∑

j=1

(
x(j,i) − µ̂(i)

)(
x(j,i) − µ̂(i)

)⊤
(3.3)

This estimated mean vector and noise covariance matrix pair
(
µ̂(i), Σ̂(i)

)
is then the tem-

plate associated with o(i) and completely specifies its noise distribution. An example

operation that might be profiled could be the output of an intermediate function in a
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cipher where a known input is combined with an unknown secret. The output of the first

round AES S-Box is suitable in this regard as shown in [181], and used in many of the

experiments here. The choice of target intermediate value can determine the success or

otherwise of the attack, and is further investigated in §3.3.5. The template for each o(i)

is constructed from a large number of traces, x(j,i) where j ∈ {1, . . . ,m(i)}. However, the

actual value of m(i) will vary widely from one device to another, being dependent on a host

of different variables such as the size of the bus in the device under attack, the operation

being performed, the power model etc., which all contribute differing amounts of noise.

The traces used for the following experiments were acquired using randomly distributed

inputs rather recording them on a per class basis. Where the mapping function F is

bijective, the value of each m(i) will be similar, however if the Hamming weight power

model is used it must be kept in mind that randomly selected traces will lead to unbalanced

sets. Where all m(i) are large enough this is not a issue, as the sampling error between

the µ(i) and µ̂(i) will be small. As the noise is assumed normally distributed, the standard

error of the mean is given by σ√
m(i)

, allowing a relative comparison of the accuracy of each

template. A exploration of the effect of the total training set size m is examined in §3.3.4.

Where noise is an issue, it is also possible to perform TAs in the frequency domain as

demonstrated in [186] by applying the discrete Fourier transform (DFT) to the traces.

Trace compression methods such as described previously in §2.10.3 should not be used

where the DFT is being performed, but depending on how many points in the DFT, gen-

erally the computational complexity of generating the templates in the frequency domain

won’t be an issue.

Regardless of whether a trace compression method is used or not, for the construction of

templates further reduction is required to extract the features that the templates will be

based on. One option is to sum the absolute differences between each of the mean traces

and select the required number of highest points [186], which can be viewed as a variant

of the DPA attack. In fact most DPA or CPA type attacks will allow some relevant

features to be extracted as performing these attacks give the points in time where the

target operation or value is processed, which is what is being modelling with the building

of templates. Another approach is to use statistical pre-processing tools such as PCA

[11] or linear discriminant analysis (LDA) [203] to transform the traces into a subspace

of maximum variance. The attack is then performed on this set of transformed traces. A

closer examination of various feature extraction and processing methods is given in 3.3.3.
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3.2.2 Template Classification

To recover key information an attack, or testing, trace is required from the device under

attack, preferably recorded under the same conditions. The trace must first be reduced

in size and processed using the same steps that were used when generating the templates.

For each possible class o(i) ∈ K, the likelihood of the trace corresponding to it is calculated

using the multivariate Gaussian distribution from Equation 3.1, and plugging in the esti-

mated values of
(
µ̂(i), Σ̂(i)

)
. The likelihood of o(i) can then be converted to a probability

by applying Bayes’ theorem as given in Equation 3.4.

Pr
(
o(i) | x

)
=

p
(
x | o(i)

)
Pr

(
o(i)

)
∑|K|

j=1 p
(
x | o(j)

)
Pr

(
o(j)

) (3.4)

Here Pr
(
o(i)

)
is the prior probability of the class occurring, and p

(
x | o(i)

)
is given by

N
(
x | µ(i),Σ(i)

)
. Applying the maximum likelihood principal, the estimated class is then

given by Equation 3.5. If all operations are equiprobable then the application of Bayes’

theorem is unnecessary as it simply scales the likelihood values, and Equation 3.5 can be

applied directly to the likelihood values.

ŝ = F

(
argmax

o
Pr

(
o(i) | x

)
, p

)−1

(3.5)

The success rate of the attack is increased if a set of power traces for a constant secret key

is available such that m > 1. In this scenario, Bayes’ theorem can be applied iteratively if

the power traces are statistically independent thereby increasing the power of the attack

as given in Equation 3.6 [173]. Note this is equivalent to Equation 3.4 when m = 1. Once

again the maximum likelihood is used to return the estimated key ŝ.

Pr
(
o(i) | x

)
=

(∏m
k=1 p

(
x(k) | o(i)

))
· Pr

(
o(i)

)
∑|K|

j=1

((∏m
k=1 p

(
x(k) | o(j)

))
· Pr

(
o(j)

)) (3.6)

3.2.3 Template Attack on AES

As an example TA, an unprotected arm7 microprocessor AES implementation is attacked,

with the traces acquired as described in §2.4. To build the templates, 10 k power traces of

the first round of the encryption algorithm are recorded with different uniformly random

plaintexts and keys for each trace. The choice of 10 k is arbitrary, as are all parameter

selections, and simply provides an initial baseline comparison. The testing traces are

Profiling SCA on Crypto. Algorithms Neil Hanley



Section 3.2: Template Attacks 42

recorded separately on the same device with uniformly random plaintexts and a constant

key. Note that both the plaintext and key need not be random to generate the templates,

just the target intermediate value. Pre-processing as described in §2.10 is applied to traces

prior to template training. The target operation of the attack that the templates are built

for is the output of the first S-Box of the first round. Any key dependent intermediate

value can be chosen, however the S-Box is particularly suitable as shown in §3.3.5.

Template Training

Assuming the arm7 microprocessor follows a Hamming weight power model, the output

byte of the S-Box will give |K| = 9 possible classes. To select the points of interest from

the recorded traces, the sum of squares of differences (sosd) method is used, as suggested

by [42, 186]. As shown in Equation 3.7, this consists of summing the squares of the

differences between each pair of mean traces for each class. The points in this difference

trace are the points that have the highest variance when grouped according to the target

class, which are the points that have the largest power component dependent on the target

leakage operation. The ñ ≤ n features with a significant peak are retained for the building

of templates. This is not the only way to select the relevant features to build templates

with, and various methods are explored in §3.3.3.

∆ =

|K−1|∑

i=1

|K|∑

j=i+1

(
µ̂(i) − µ̂(j)

)2
(3.7)

The selected points are highlighted by the red crosses in Figure 3.1(a). For the example

here we choose all the distinct peaks, which leads us to to select ñ = 20 points. The effect

of selection too many or too few points is also further explored in §3.3.3. The initial peak

is the point in time where the output of the S-Box itself is processed, while the subsequent

smaller peaks are due to the use of the target value in the MixColumns operation. This

corresponds to the correlation peaks as seen in §2.7.2 as broadly the same leakage is being

utilised. Figure 3.1(b) shows the distribution of the all the trace points xj located at the

largest peak coloured according to their respective Hamming weights. It is this separation

of Hamming weight classes that allows templates to be constructed.

To evaluate the templates, the traces used to generate the templates are themselves classi-

fied first to calculate the training error. These traces are classified by taking the maximum

probability returned by Equation 3.4, as due to the Hamming weight distribution, each

template does not have an equal prior probability. The 10 k training traces are classified
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(a) Feature selection. (b) Hamming weight distribution.

Figure 3.1: Template generation.

with an error rate of 0.318, which can be viewed as lowest error rate achievable with these

particular templates, with the error of the testing traces expected to be higher.

Template Testing

To test the templates 25 k traces acquired from the same device and using an identical

setup were acquired, this time with a uniformly random plaintext and constant key as

previously mentioned. The traces were processed in the same manner as before, and the

testing error rate on this unseen data was 0.3461, i.e. approximately a third of the traces

were assigned the incorrect class o(i), each of which represented a different Hamming

weight. The recovery of the correct Hamming weight of the S-Box output does not in

itself return the key, it provides the attacker with a subset of keys. Therefore an amplified

TA is required to recover the secret s [186]. The set of attack traces is randomly split

up into 1 k subsets of 25 traces, and Equation 3.6 is applied to see if the key byte can

be recovered from the 25 traces. All 256 byte values are tested and combined with the

plaintext to calculate a hypothesis for Hamming weight of the S-Box output. The relevant

probabilities returned by the templates are selected, with Figure 3.2(a) showing the result

of an example attack with the correct key plotted in red. This attack is repeated for all

1 k subsets independently, with the success rate as defined in §2.8 plotted in Figure 3.2(b).

It is clear from this plot that 25 traces will allow you to recover the key byte with a

probability close to one for this particular setup.
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(b) Success rate : 1k sets.

Figure 3.2: Template testing.

3.2.4 Full Key Recovery vs Partial Key Recovery

It is worth mentioning that the success rate given in Figure 3.2(b) is only for a single byte

of the key. Repeating the attack 16 times against all the S-Boxes to recover the entire

key, it is clear from Figure 3.3(a) that each S-Box does not leak information equally. To

calculate the expected success rate for an arbitrary key byte from this setup, the average

of all 16 success rates is taken as shown by the solid blue line in Figure 3.3(b). For

comparison the success rate from the first S-Box as used previously is given as the solid

red line. The overall expected success rate for the entire key can then be calculated by

raising the expected byte success rate to the number of bytes in the key, i.e. in this case

16. The actual success rate is given as reference also by computing the product across

each of the individual key bytes and is quite similar as expected, with the difference due

to numerical round-off errors. This shows that the results of the key recovery for a single

byte cannot be arbitrary extrapolated to the key as a whole.

3.3 Practical Attack Considerations

As highlighted by [186], there are many practical issues to be considered when performing

a TA. Attack choices depend on both the quality and quantity of your data, and affect

both the error rate and computational complexity. A comparative analysis of various

parameters is now given using the output of the first S-Box of the first round as the target

value which allows the recovery of a single key byte, unless otherwise stated.

When comparing the effect of various parameters on the classification performance, it is
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(a) Individual S-Box success rates.
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Figure 3.3: Full key recovery.

often more convenient to use the error rate given a single trace rather than the success

rate of an amplified attack with multiple traces. Hence, where the secret value can be

recovered in a single trace, the error rate is used as the comparison metric.

3.3.1 Power Model

Building templates is not restricted to the Hamming weight of the target value alone.

Some common models that can be used and their properties are outlined below.

Single-bit model: The single-bit model targets the same leakage as the original DPA

paper [126]. That is, templates are built for a single bit of the target value.

Multi-bit model: This expands on the single-bit model by building templates for each

individual bit of the target value using the same set of power traces. These bits

are subsequently combined using the probability of their occurrence to allow byte

recovery.

Hamming weight model: This model, as used in the previous experiments, follows

what is thought to be an good model of the power consumption for the device at

hand. It assumes that the power consumption is proportional to the number of bits

set to 1 in the target value. This is a valid model where the bus of a microprocessor

is a constant value, as can often be the case due to pre-charging, or where the same

op-code is called prior to the data being loaded on the bus.

Hamming distance model: Not applicable here, but this model assumes that the power

consumption is proportional to the number of bit-flips between the current and
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Single-bit Multi-bit Hamming weight Identity

Training 0.1118 0.1447 0.3180 0.0020

Testing 0.1165 0.1526 0.3477 0.2764

Table 3.1: Power model error rates.

previous value. This power model is generally more suitable for hardware based

attacks such as FPGAs or ASICs as demonstrated in [1].

Identity model: Here, the templates are built for the target intermediate value directly.

This incurs a greater computational complexity as more templates need to be trained

and classified, i.e. in the case of a byte-sized target value, 256 as opposed to 9

templates when using the Hamming weight model. Therefore additional training

traces are also required to accurately model the extra templates.

The experiment was rerun using 10 k training traces once again, with 20 features retained

for each model using the sosd method, and 1 k testing traces were used to calculate the

test error as given in Table 3.1. As feature selection is calculated with the mean µ̂(i) of

each class o(i), these 20 features are not necessarily the same across models. These values

represent the model classification error rather than the byte recovery error. Examining

Table 3.1, some interesting points appear. The first is that in all cases, the testing error

is worse than the training error which is as expected as the model is fit to the training

set. However, it is worth noting that the difference between the errors for the single-bit

model is only 0.0063, while for the identity model it is 0.2744. This is due to the fact

that on average 10 k ÷ 2 = 5 k traces are available to generate each single-bit template,

but only 10 k÷ 256 ≈ 40 are available to generate each identity template. Also a random

guess in single-bit case will give an expected error of 1
2 , while for the identity case it is

1
256 . Note that the multi-bit errors are greater than the single-bit, with this error value

taken as the mean for all 8-bits. This difference is due to the fact that not all bits will

leak information equally, similar to the byte leakage as previously shown. Most interesting

however, is that the Hamming weight error rates are much higher than that of the identity

model, even though the correct key cannot be determined from a single correct Hamming

weight classification, unlike the identity model case.

In Figure 3.4(a), the difference points of the trace that are used to generate the templates

are highlighted. For the bit models, the section of the trace around the MixColumns op-

eration from 5 → 6µs as bracketed by the green lines, seems to have the most data

dependency with only a small bit of the leakage due to the S-Box output itself, which
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occurs about 3.7µs as highlighted in red. For the Hamming weight model, leakage from

both operations is utilised, and for the identity model the strongest leakage comes from

the S-Box operation which contains a double peak unlike the other models. This double

peak is actually due to the data leakage on both the input and output of the S-Box. As

it is the only model where the inputs and outputs map uniquely, this second peak only

occurs for this model. The multi-bit case is not plotted, as it is 8 individual bit models

which will all be similar to the single-bit plot in Figure 3.4(a).

The overall key byte recovery success rate for the models is given in Figure 3.4(b). As

can be seen, the most accurate model for returning a key byte is the identity model due

to the extra information obtained by modelling the second peak, followed by the multi-bit

model. The multi-bit model is considerably more successful than the single-bit model as

much greater utilisation is made of the available leakage (similar to the difference between

single-bit DPA and enhanced DPA). Hence, unless otherwise specified, the identity model

is used in future experiments. In the case of the attacks on the AES S-Box, each class o(i)

represents a different byte value and |K| = 256.
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Figure 3.4: Power model.

3.3.2 Data Normalisation

Where data is badly conditioned, it can be worthwhile applying a data normalisation tech-

nique prior to feature selection. This prevents a single dominant feature with a large range

from having a disproportionate effect on the subsequent classification. Some normalisation

techniques are as follows:

Norm: This method makes no underlying assumption about the distribution of the data.
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Original Norm Range Scale Z-Score

Training 0.0021 0.0057 0.0017 0.0017 0.0016

Testing 0.2760 0.3790 0.2250 0.2250 0.2180

Table 3.2: Data normalisation error rates.

The mean of each data column xj is subtracted from itself, and is then divided by

its norm such that the features have roughly the same scale.

Range: The principal of this method is similar to that of the norm, however instead of

dividing by the norm of the column vector, the range of the data is used instead.

Scale: This method assumes the data has a uniform distribution with the different points

having distinct ranges. Scaling the data linearly transforms it such that it is in the

range [0, 1]

Z-Score: Assuming that the points of the trace are normally distributed with each point

in time having a distinct mean and variance, calculating the z-score involves sub-

tracting the mean and dividing by the standard deviation so each point has zero

mean and unit standard deviation.

Other non-linear normalisation techniques such as taking the percentiles of the data might

be useful in certain scenarios, however as an underlying assumption of template attacks is

that the noise is Gaussian these are not considered. While the normalisation parameters for

the training set are estimated from the set itself, these parameters are then reused to scale

the testing set accordingly. This is different to the approach by Montminy et al. [154],

where the testing traces are normalised using parameters estimated from the test set

itself. As the objective here is to minimise the error given a single attack trace, it cannot

be assumed that multiple traces are available to accurately estimate the normalisation

parameters. Using templates built with 10 k traces and 20 features using the identity

model, the error rates for the different normalisation methods are given in Table 3.2. As

taking the z-score of the data returns the lowest empirical error, this is reused through the

thesis unless otherwise specified. Normalisation has an added advantage of leading to less

numerical errors when computing the templates, as well faster convergence when training

the machine learning techniques in Chapter 6. Note also that the slight difference for the

original error rate compared with Table 3.1 is due to the random selection of traces.
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3.3.3 Feature Selection

Selecting the points to use in building templates is a non-trivial task. Too many points and

the templates won’t be an accurate representation of the target value (i.e. the templates

will mostly be modelling random noise), and too few points will give poor classification

results. Different methods for ranking the points according to interesting leakage are now

examined:

Sum of squares of difference of means (sosd): This is the method that has been

used to date and is given in Equation 3.7.

Sum of squares of t-difference of means (sost): This method was suggested in [81]

when it was noticed that templates performed poorly when the training set size was

restricted. Student’s t-test is a statistical method for distinguishing two sets taking

into account the variance of the sets as well as the distance between the means.

This was also suggested as an alternative to the classical DOM attack as outlined

in §2.7.3. The points to build the templates are chosen as the largest returned by

Equation 3.8.

∆ =

|K−1|∑

i=1

|K|∑

j=i+1




µ̂(i) − µ̂(j)

√
(σ̂(i))

2

m(i) −
(σ̂(j))

2

m(j)




2

(3.8)

Correlation: This is a logical extension to make for feature extraction given that both

previous methods can be used for classical DPA. As calculating the correlation with

the known intermediate value will show the points in time where that data is pro-

cessed, these points can then be chosen to build the templates. Pearson’s linear

correlation is used here, but for non-parametric data Spearman’s rank correlation

can be used. The equation for calculating the linear correlation coefficient has been

given previously in Equation 2.6.

Principal component analysis (PCA): This method of feature selection was intro-

duced for template attacks by Archambeau et al. in [11]. PCA is a data dimen-

sionality reduction technique which projects the traces into a subspace where the

principal directions are orthogonal to each other and ranked according to variability.

Only directions with a high relative rank are retained for template construction. It

is a linear transformation and computes the subspace directions using linear com-

binations of the original data space [63, Ch. 3]. A projection matrix P calculated
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according to Equation 3.9 [11], can be used to project both the training and test

traces into the subspace and all template calculations performed there. To calculate

P , the covariance matrix Σ of the centred means for each class is first calculated.

Taking the eigendecomposition of Σ to get the eigenvectors U and eigenvalues D,

then allows the calculation of P . Note that D is a diagonal matrix so can be inverted

element-wise.

µ̄ =
1

|K|

|K|∑

i=1

µ̂(i)

Σ =
1

|K|

|K|∑

i=1

(
µ̂(i) − µ̄

)(
µ̂(i) − µ̄

)⊤

ΣU = DU

P =
1√
|K|

µ̂ U D− 1
2 (3.9)

The eigenvalues D can be used to select the directions representing a “large” vari-

ance. Alternatively the cumulative sum of the eigenvalues can be calculated, and

the number of components to be retained determined by how many are required to

reach a given percentage of the variance. As an example, the three eigenvectors cor-

responding to the three largest eigenvalues are given in Figure 3.5(a), for when PCA

is applied to the AES training set. As the transformation is computed via matrix

multiplication x̃ = xP , the first point of a projected trace is the weighted sum of

the original trace according to the weights of the first column of P , the second point

the weighted sum of the second transformation column etc..

Fisher’s linear discriminant: This method also transforms the data to a reduced sub-

space however this time the inter class to intra class ratio is maximised [203]. Where

PCA seeks the directions that best represent the data, Fisher’s linear discriminant

seeks the directions that allow for optimal separation of the data [63]. To calculate

the projection matrix, an inter-class scatter matrix ΣB and an intra-class scatter

matrix ΣW are first calculated. The projection matrix can then be calculated with

an eigendecomposition as shown in Equation 3.10.
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ΣB =

|K|∑

i=1

m(i)
(
µ̂(i) − µ̄

)(
µ̂(i) − µ̄

)⊤

ΣW =

|K|∑

i=1

m(i)∑

j=1

(
x(j,i) − µ̂(i)

)(
x(j,i) − µ̂(i)

)⊤

(
Σ

1
2
B Σ−1

W Σ
1
2
B

)
U = DU

P = Σ
1
2
B U (3.10)

For a full description of Fishers’s linear discriminant in the context of SCA including

numerical optimisation tricks see [45, 203]. Once again after the transformation

matrix P is calculated, both training and testing traces are projected to the subspace

and the attack performed there. The first three columns of the transformation matrix

P are given in Figure 3.5(b). It can be seen that, similar to PCA, the features which

are assigned the greatest weights are those around the time 3.7µs which is where

the S-Box operation occurs. Note also that the maximum number of features that

can be returned is |K| − 1.
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Figure 3.5: Transformation vectors.

Other methods of feature selection have been proposed such as normalised inter-class

variance (NICV) [28] or the use of an F -test [45], however these are not considered here.

Using these methods as outlined above, the learning curves for the template training and

testing error rates are given in Figure 3.6(a) and Figure 3.6(b) respectively, with the

error plotted as a function of the number of retained features. These templates are built
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using the identity model and 10 k normalised training traces, while 1 k traces are used

for testing. As can be seen, the training error decreases with the number of features

retained until an error rate close to zero is achieved for all feature selection methods.

Conversely, while the testing error in Figure 3.6(b) initially decreases as features are

added, it starts to increase towards the end. This is due to an over-fitting of the templates

on the training set, hence the model doesn’t generalise well to unseen data. For the testing

error which is what we are interested in minimising, the use of Fisher’s linear discriminant

for dimensionality reduction gives clear classification performance advantages, hence is

used for feature selection for the following experiments.
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Figure 3.6: Effect of feature selection.

3.3.4 Training Set Size

The size of the required training set is an important parameter in the context of a TA,

especially where an attacker might be somehow bounded in the acquisition stage of the

profiling traces. An interesting and relevant question is how few traces are required for a

successful TA attack, this issue was explored in [68, 81, 205], or how low an error can be

achieved given unlimited traces. Figure 3.7 shows the learning curve for the error rate as

a function of the training set size. The training errors are given by the dashed lines, with

the test error given by the solid lines.

For the identity model plotted in red, 12 features are retained using Fisher’s linear dis-

criminant and it can be seen that increasing the training set size reduces the testing error

(as well as slightly increasing the training error) up to about 20 k samples, after which

the extra samples have little effect. Hence the addition of extra training samples is un-
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likely to further decrease the error. Where the training sample size is less than ≈ 7 k, the

noise covariance matrix Σ(i) for the |K| = 256 classes for each byte cannot be accurately

modelled as only . 7 k
256 ≈ 27 samples per class are available. To evaluate classification

performance with smaller training set sizes, the multi-bit model using the sost method

of feature extraction was used as only two classes need to be estimated giving many more

samples per class. The addition of extra training samples has no effect on the multi-bit

model, however even with 1 k traces there are already ≈ 500 traces to model the leakage

of each bit. However the relatively high error rate of ≈ 0.22 means an amplified TA will

most likely be required. Note that the normalisation and feature selection parameters

were recalculated on the number of training samples under consideration each time.
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Figure 3.7: Effect of training set size.

3.3.5 Target Intermediate Value

The chosen target intermediate value or operation has a large bearing on the success of

an attack. It is shown in [181] that the more resistant an S-Box is to linear cryptanalysis,

the more susceptible it is to CPA attacks. Generally, as the primary function of the S-

Box is to introduce non-linearity in the case of a block cipher, it can be a suitable candidate

function to attack in non-profiling attacks. A study of DPA against Boolean and arithmetic

operations is available in [133]. In the case of profiling attacks, such as TA, the S-Box too

is a suitable candidate function as shown in Figure 3.8. Here templates were built for the

first output byte of all AES functions up to round two1. The section of the power traces

consisting of communications between the PC and arm7 microprocessor board was not

1Note that recovery of the plaintext, MixColumns or round two input bytes will not allow key recovery,

the classification is only to illustrate the effect of selecting various intermediate values.
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considered for the attack, hence the classification of the plaintext and key reflect leakage

during the operation of the algorithm only. The training set size is 25 k samples, hence

only the identity model is used, and 12 features retained using Fisher’s linear discriminant.

When using the identity model, there is a bijective relationship between the round one

input and the S-Box bytes, hence building a template for one is equivalent to building a

template for the other (the error curve of the round one input is hidden by the plot of S-

Box ). The relative classification success of the S-Box operation compared to the others is

not solely due to the reasons outlined in [181]. The plaintext and MixColumns operations

perform poorly as each value is only used once in the algorithm. The key and sub-key

perform slightly better as, the key is stored in memory for reuse across different plaintexts

hence needs to be loaded prior to the AddRoundKey function, while the sub-key needs to be

computed prior to use (only the key rather than the expanded keys are stored in memory).

The S-Box output is subsequently reused four times in the MixColumns operation, as well

as utilising what leakage is relevant for the round input. Therefore more data-dependent

points where these bytes are processed are available.
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Figure 3.8: Error rates for various intermediate values.

3.3.6 Classification Methods

It is suggested in [145, Ch. 5] that in order to avoid numerical errors when inverting

the covariance matrix, as well as reducing computation time, that reduced templates are

used. A reduced template attack is where only the diagonal of the covariance matrix

is used (i.e. the variance of each feature), with all off-diagonal matrix elements set to

zero, which is essentially the Näıve Bayes learning algorithm. Inverting the matrix then

simply consists of inverting each point on the diagonal individually, hence it also scales
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well with an increasing number of features. The underlying assumption behind this is

that the various leakages used to generate the templates are mostly independent, and the

information leakage due to taking the covariances into account is lost due to numerical

errors in the matrix inversion. To verify this assumption, the covariance matrices of the

entire 25 k training set are given in Figure 3.9. The 20 features in Figure 3.9(a) are chosen

through sost, while in Figure 3.9(b) they are chosen with Fisher’s linear discriminant. In

both cases the features are ordered from the from the most “informative” to the least.
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Figure 3.9: Training data covariance matrices.

In the sost case it is clear that there is a significant covariance between the difference

features hence the use of reduced templates will be sub-optimal. The diagonal (i.e. the

variance of each feature) is 1 due to the normalisation of the data. Where the features are

selected with Fisher’s linear discriminant however, the off diagonal elements are all zero

as the projection of the data to the subspace has de-correlated the various features. Hence

in this case the use of reduced templates will have little or no effect on the classification

performance. Note also that the variance of the transformed features increases as they

become less “informative”, as they contain a greater noise component.

A TA such that each class is modelled as a multivariate Gaussian with a mean vector

and covariance matrix, is known as quadratic discriminant analysis (QDA) in statistical

learning as detailed in [95, Ch. 4]. Another option, also detailed in [95, Ch. 4] is to assume

that all classes have the same covariance matrix which is known as LDA, which was also

suggested as a classifier for SCA in [45]. This fits the model of SCA as the covariance

matrix represents the noise on the traces, and there is no reason to believe that the different

classes representing data values would have different noise components.

The error rates for LDA, QDA, reduced LDA and QDA, and the Euclidean distance (this
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assumes the covariance matrix carries no information and it is set to the identity matrix)

are given for sost feature selection in Figure 3.10(a), and for Fisher’s linear discriminant

in Figure 3.10(b). The Euclidean distance performs the worst in both cases, for the case of

Fisher’s linear discriminant it performs no better than a random guess and is not shown

on the plot. While QDA initially performs relatively well, as the features which don’t

contribute as strongly to the classification performance are added, then numerical errors

occur as not enough traces are available to model the noise for those less informative points.

LDA performs strongly in both cases, with the reduced methods also performing equally

as well in Figure 3.10(b) where the data has been transformed such that the features are

strongly uncorrelated.
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Figure 3.10: Classification methods.

An interesting point is that the use of LDA as a classifier with a straightforward feature

selection method such as sost, performs equally as well as feature selection with Fisher’s

linear discriminant combined with any “reduced” classifier. LDA and Fisher’s linear dis-

criminant are closely related however so this is not too surprising (the terms are often

used interchangeably), with LDA seeking to assign a label to data and Fisher’s linear

discriminant looking the assign a continuous variable which allows efficient discrimination

of the data. Regardless of feature selection, in general LDA is a more efficient and robust

classifier than QDA for SCA and is used for future work unless otherwise specified.

3.3.7 Noise Effect

An important aspect of any SCA is how it performs in the presence of increased noise.

Additive noise is often used in conjunction with other countermeasures as a simple yet
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effective method to improve the resistance of a cryptographic implementation against SCA

(note that on its own, an adversary can overcome the addition of noise by simply utilising

more traces). Additionally different target devices will have greatly varying noise charac-

teristics, and acquisition setups or any on-chip parallel processing can an all contribute to

the difficulty of performing an attack. As the noise is assumed Gaussian (as previously

shown in Figure 2.4), averaging multiple traces with the same input can be used to reduce

it. However, in reality this is equivalent to requiring more traces to perform an attack

hence is not used here.

As previously mentioned in §2.5, the SNR can be used to measure the relative strength

of the signal component compared to the noise component of a trace. Using a training

set of 25 k traces each trace is replaced by its equivalent empirical mean, and increasing

additive Gaussian noise is added to evaluate to SNR calculated as shown in Figure 3.11(a).

The SNR of the actual traces is also given for reference by the red circle. The addition

of Gaussian noise to mean-free traces has been used previously in papers such as [188] to

examine the effect of increasing noise on attacks. In Figure 3.11(b), TAs are performed

on the traces with artificially added noise using a training set of 25 k traces, the identity

model, Fisher’s linear discriminant to select 20 features, and LDA to classify the data. It

can be seen that as the noise increases, eventually the testing error rate goes to 1 and a

TA is no longer possible. The error rate for the actual noise is also marked for reference,

also by the circles.
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Figure 3.11: Effect of noise.
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Fclk Fs Filter Reduction

PIC 4MHz 250MSs-1 Low-pass 6MHz Max point per clock

8051 11MHz 250MSs-1 Low-pass 16MHz Max point per clock

arm7 7.37MHz 250MSs-1 Band-pass 6.87→ 7.87MHz Max point per clock

Table 3.3: Power trace acquisition & pre-processing parameters.

Training traces (m) 9 k

Testing traces 1 k

Data normalisation z-score

Model single-bit, Hamming weight, identity

Feature extraction sost

Number of features 2→ 100

Target Byte First byte of S-Box

Table 3.4: Template training parameters.

3.4 Platform Effect

Like all SCA, TAs are platform dependent. Following on from the examination of noise,

three separate software platforms are now attacked to highlight differences due the to un-

derlying target platform, and how those differences will affect subsequent analysis. The

software AES target platforms are a low-cost PIC smartcard, a low-cost Atmel 8051 mi-

crocontroller2, and the arm7 microprocessor chip used previously for reference. While the

template training parameters are kept constant between the platforms, difference acqui-

sition setups were not and are given in Table 3.3. The different filters parameters were

selected through empirical evaluation on a per device basis.

In all cases, the parameters from Table 3.4 are used to build the templates. Restricting

the number of training traces to 9 k was required for the comparison, as only 10 k traces

in total were available for two of the target platforms, and the sost method of feature

selection was chosen over Fisher’s linear discriminant as the number of features for the Bit

and Hamming weight models would have been restricted to 1 and 8 respectively otherwise.

It is clear in Figure 3.12 that the identity model performs well on all platforms where

enough features are taken into consideration. As mentioned previously in §3.3.5, the

extra information contained at the S-Box input helps in this regard. Note also that

2These power traces were supplied by Dr. Elisabeth Oswald of the University of Bristol while conducting

the research in [92]. They are a subset of the traces used extensively in [145]
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further traces for the Bit and Hamming weight models are required to recover the key

byte. It is interesting to note however, that compared to the PIC smartcard and 8051

microcontroller platforms, the Hamming weight model clearly does not accurately reflect

the power consumption of the arm7 microprocessor (This is also borne out in a CPA

attack which has a lower absolute correlation peak for the correct key guess compared

to the other platforms). Hence, while broad recommendations can be made with regards

to how to approach an TA for a given device, analysis is required to find the optimum

parameters.
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(b) 8051 microcontroller
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Figure 3.12: Testing error on various software platforms.

3.5 Model Validity

A pertinent question when examining TAs, is how valid is the assumption that templates

built using one device are transferable to extract keys from another device. Many publi-

cations to date assume that the leakage from the target device is identical to that of the

training device (i.e. the same device is used to acquire both training and testing traces).

In [188], the authors use the concept of perceived information (PI) to account for discrep-

ancies between the template models and actual target device leakage. The targets of their

experimentation are nano-scale devices however, and inter-chip power variation increases

as the chip fabrication process decreases. In [69], the authors examine the portability of

templates by comparing acquisitions taken from the same chip at different times (they

compare two sets of traces, taken four years apart with different acquisition setups) and

supply voltage. Rather than the PI approach, they use attack metrics to justify their

work, which is also the approach used here. Also, in [154] PIC smartcards are used to

examine the validity of electromagnetic emanation based templates as it has been shown

that electromagnetic emissions can be used as a form of physically unclonable function

(PUF) [51], hence the leakage must have some device dependency. In [139], three micro-
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processors from each of {350, 130, 90} nm manufacturing processes (i.e. nine in total) are

used to evaluate the building of templates on one device and testing on another for various

families.

Here 20 of the PIC smartcards, as used in the previous section, are used to examine power

based templates, with the work in this section forming the basis of [91]. As mentioned, the

clock supplied to the card is 4MHz, and the sampling rate is 250MSs-1. For each card, 10 k

power traces with random plaintexts and random keys are acquired. As no suitable trigger

signal is available, the communication bus is used to trigger the oscilloscope leading to

the traces being widely out of sync with each other. Each set is individually synchronised

using cross-correlation after filtering, before reduction to the maximum point per clock

cycle. Finally the sets of traces are aligned using euclidean distances between the means

of each set.

While the Hamming weight model best fits the PIC smartcard as shown in Figure 3.12(a),

the templates are built for the identity model as this allows for a more concise comparison

based on the recovery of a key byte. Templates were first built with 9 k traces from each

set individually, and these used to classify 1 k traces from every other set. To train the

templates the z-scores of the data is first taken, then Fisher’s linear discriminant is used

to project the feature set into a reduced subspace retaining 20 features. When calculating

the z-scores, it is important to note that the mean and standard deviation normalisation

values for the testing data must be taken from the training set, i.e. it is not assumed

that enough traces are present in the attack stage to accurately estimate the mean and

standard deviation of the test set which is the approach taken in [154]. As an advantage of

TA is that keys can be recovered with few or even a single trace, if many traces are present

to accurately calculate the z-score, then a regular DPA attack can simply be performed.

The top left to bottom right diagonal in Figure 3.13(a) is the error rate when classifying

the devices using templates generated by the same device. This can be viewed as a baseline

‘best case’ scenario (the green coloured bars in Figure 3.14 also display these values). It

is clear from the image that classification is not even between all devices. For example,

building templates with devices 〈1, 2, 11, 12, 16, 17, 20〉 generally return a higher error rate

regardless of what device is being tested, as can be seen by the “redder” colouring. On

the contrary however, templates built with devices 〈6− 8〉 allow for a low error rate when

attacking any device as indicated by the blue.

It is interesting to note that pairs of devices don’t always have similar classification as

might be expected. For example, when device 1 is being attacked, building templates with
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Figure 3.13: Template attacks using different devices.

device 13 returns a high error rate, while building with device 16 gives a low error. It is

reasonable to expect that a somewhat similar relationship will hold when attacking device

2, however in that case both devices 13 and 16 give a low error rate. This can be further

explored by examining Figure 3.13(b) where the point in time at the output of the S-Box

is manipulated, selected via the sost method, is represented by a box-plot for each of the

20 PIC smartcards. This allows the difference in the mean values, as well as the spread

of the points as a whole, to be easily compared. It can be seen that the mean of device

1 is below the average, and less than the mean of both devices 13 and 16, however much

closer to device 16. The mean of device 2 however falls in between those two means. This

gives a rough indication as to why, counter-intuitively, the classification of pairs of devices

don’t always follow each other as expected.

A more general way to generate the templates, is to use traces from many devices as

suggested in [188]. Figure 3.14 shows error rates where 9 k randomly selected traces from

across 19 devices are used to generate the templates, and used to classify 1 k traces from

the other device. Only 9 k in total are selected rather than 9 k from each to allow for

a fair comparison with the same training set size. For comparison, the average error

rate of generating the templates with difference devices, and the error rate of generating

the templates with the same device are also given. When generating the templates from

multiple devices, there is a substantial reduction in the error across most devices, with set

18 the only set retaining a substantial error.

This section highlights that the presumption that templates are immediately applicable

to any other ‘identical’ device is not entirely accurate. It must also be kept in mind
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Figure 3.14: Multi-device templates.

that the PIC smartcard cards used in this work are inherently quite basic devices so are

likely to more ‘similar’ than other devices such as the arm7 microprocessor3. Overall

performing TAs while using the same device to acquire both training and testing traces

has merits however, especially for penetration or standardisation labs, as it can be viewed

as worst case scenario testing, i.e. real world performance is likely to be somewhat less than

projected. From an adversarial point of view however, if multiple identical devices can be

used to attack a separate unseen device, then the attack performance can be improved.

3.6 Conclusion

TAs have been extensively examined in this chapter, with various training options ex-

plored with respect to how they effect the resultant classification error. The effect of

increasing noise and different target platforms was also examined. Finally the validity of

the underlying assumption that an identical device is available is explored using favourable

devices.

It was found that taking the z-scores of the data should be the first step in any profiling

attack as it helps reduce numerical errors by scaling the data. Using a pooled covariance

matrix with LDA rather than the originally suggested QDA, improves both the classifica-

tion performance and reduces the computational complexity as only a single matrix needs

to be inverted. The use of a single covariance matrix to model the noise is justified as the

noise is independent of the feature components of each class. Looking to directly recover

3The PIC smartcards were used for the comparison rather than a different device such as the arm7

microprocessor as many cards could be purchased due to their cheap cost.
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the byte component as opposed to the Hamming weight can also be advantageous when

attacking a software target as there will be multiple points in time where a linear function

of the byte will be computed on which can also leak side-channel information that can be

utilised by the model. Note when targeting hardware designs this is unlikely to be the case

due to the varying initial register state, and following the Hamming distance model will

possibly give better performance. Although feature selection is a vital step of an attack,

it was shown that simpler methods such as sost can perform as well as transforming the

data through Fisher’s linear discriminant, when LDA is used as a classifier and a larger

number of features are retained. The larger number of features in the original set doesn’t

necessarily contain more leakage information however, as the projected traces are linear

combinations of the entire original data set.

While different classification methods are looked at such as quadratic and linear discrimi-

nant analysis, as well as reduced TAs, a notable exclusion from this chapter is alternatives

to TAs such as SMs [195] or SVMs [103, 135]. These are dealt with, along with other

machine learning methods in Chapter 6.
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Chapter 4
Trace Only Template Attacks - AES

4.1 Introduction

In the TAs conducted in the previous chapter, it is assumed that either the plaintext or

ciphertext is available to use in conjunction with the power traces to recover the key. This

generally is true also of most non-profiling attacks attacks against symmetric algorithms.

In this chapter, TAs that only require a power trace are presented, i.e. no plaintext or

ciphertext information is required, the key is recovered entirely from the power trace. This

is achieved in two different ways, firstly by attacking more than one intermediate value in

the trace [92], and secondly by building templates on the key value directly.

In some respects, building templates on multiple intermediate values is closely related to

algebraic side-channel attacks [189]. Algebraic attacks were first proposed as a powerful

cryptanalysis technique against block ciphers [55]. They were subsequently extended to

a powerful class of side-channel attacks firstly against the block cipher Present [189], and

then AES [187]. Algebraic attacks make use of SAT solvers to solve an over-defined system

of equations to recover key information from a single trace in an unknown plaintext or

ciphertext adversarial model. Templates are used to provide inputs to the SAT solver based

on the power model of the device, from multiple intermediate stages of the encryption.

Recently, the attacks were extended to include probabilistic intermediate values [168] to

allow for non-ideal template classification which allows for use in practical scenarios.

In the attacks presented here, the restriction on recovering the key from a single trace is

relaxed in order to reduce the complexity of the attack which makes use of SAT solvers.

This is felt to be a reasonable trade-off as while recovering the key from a single power
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trace highlights the power of SCA, the overheads of having a different key for every block

of data to be encrypted are substantial so it is likely to be applicable in specific, real-world

scenarios such as challenge response protocols. Hence there will be many cryptographic

devices which will encrypt multiple blocks per key. It must be noted too also, that de-

pending on the power model, i.e. if there is a bijection between the target intermediate

values based on a function of the key, and the noise of the device under attack, the key

can also be recovered from a single trace in the simpler attacks presented here.

Comparing to classical non-profiled attacks, attacking multiple intermediate values or

operations can be viewed as a form of higher-order attack [150]. However here multiple,

multi-variate attacks are performed, while in non-profiled attacks a combination function

is often used to combine the data prior to performing a univariate attack (for a more

detailed discussion on non-profiled higher-order attacks see [208]). While higher-order

attacks look to overcome masking type countermeasures, here we look to remove the need

for plaintext or ciphertext. The effect of the attack when the masking countermeasure is

used is also examined in §4.3.

While it may not be immediately obvious why key recovery is useful if the corresponding

ciphertext isn’t known, there are many scenarios in which this could be useful. A concrete

example is when data is encrypted in Counter Mode [66], as shown in Figure 4.1. Here,

even if the ciphertext is known, the input or output of the encryption block itself is not

known, so in the context of a SCA the ciphertext is essentially unknown. The nonce and

counter values must still be known or guessed for plaintext recovery however. Knowledge

of the key could allow an adversary to verify any guess made at the counter values,

or even possibly perform a DPA attack against the inputs. A non-profiled attack which

doesn’t require knowledge of the plaintext, ciphertext or initial counter value was presented

in [105] based on the sequential nature of the counter provided the input to the block

cipher. Another attack not requiring plaintext values was presented in [143] against the

key schedule, where multiple scenarios are presented where no plaintext knowledge is

available, such as smart card applications employed by banks, credit card companies, pay-

tv broadcasters etc. While the precise input value might not be known due to randomness,

the protocol used or error-correcting-codes for example, the underlying cipher used such

as AES or triple-DES (3-DES) might be recognisable through the power trace patterns.

In this chapter, an outline of how the recover key bytes from AES without any knowledge

of plaintext or ciphertext values with the use of TA is given in §4.2, with the expected

number of traces required derived in §4.2.1. An empirical evaluation is carried out on two
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Figure 4.1: Block cipher counter mode of operation.

software targets in §4.2.2, with practical improvements to the attack suggested in §4.2.3.

The effect of the masking countermeasure on the attack is discussed in §4.3, as well as

strategies to overcome it. Finally an efficient TA on the key schedule is presented in §4.4.

4.2 Trace only Key Recovery

If we consider a straightforward implementation of a block cipher, a TA can be used

to extract key information without using any known plaintext (or ciphertext) values by

targeting two separate intermediate states in the encryption algorithm.

When attacking a block cipher a natural choice would be to build templates on y and z,

where z = S(y ⊕ s) where S is a substitution table, and s is some portion of the secret

key or sub-key. In the case of AES, y, z and s would each be eight bit values and 〈y, z〉

could be given by, but not limited to, the red or green pairs of lines in Figure 4.2.

Sub
Bytes

Mix
Column

Shift
Rows

Sub
Bytes

Plaintext

Key Subkey

Round 1

Figure 4.2: AES unknown plaintext attack target.

Where the templates are built for the intermediate value itself rather than the Hamming

weight, and the intermediate targets are chosen such that there is a bijective function

between them and the key value, the key can be recovered in a single trace. As shown

in §3.3.5 however, in the specific case of AES, due to the linear properties of the Mix-

Columns operation, the error rate is quite high when using the identity model. This can

be expected to apply to other symmetric algorithms also as examined in [181]. Where the
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templates are built following the Hamming weight model, an attacker would be interested

in constructing templates to identify the Hamming weight of y and z and using this to

derive s. If the second template is built on z, where z occurs before the substitution table

(i.e. z = y ⊕ s), the key cannot be extracted as there is a linear relationship between the

two template sets and a unique value cannot be determined.

An advantage for an attacker is that the attack can be applied to any round of a block

cipher, allowing countermeasures that are implemented on certain rounds, such as the

initial or final rounds, such as suggested with masking in [6, 8], to be circumvented. An

informal discussion is now given of the expected number of observations an attacker would

be required to make to derive s if applying this attack using the Hamming weight model

when targeting the S-Box function of AES is conducted. Of course, if the templates are

built for the identity model then, given “clean” traces with a high SNR, the key bytes

can be recovered from a single trace. However due to the greater separation required to

distinguish between 256 rather than 9 templates, this will be somewhat less robust and

more susceptible to noise for the MixColumns operation.

4.2.1 Computing the Number of Key Hypotheses for AES

Assuming templates are built for the Hamming weight of an intermediate value and that

they are correctly classified each time, the amount of possible values that y and z can

take can be computed from the Hamming weight h as
(
b
h

)
, where b is given by ⌈log2(|K|)⌉,

where K is again the set y and z can be drawn from. Trivially, we can say that if either

y or z have a Hamming weight of 0 or b, then the number of hypotheses returned for the

key will be dictated by the Hamming weight of the other variable. For a given pair of

observations, the number of valid key hypothesis returned can be computed by counting

all the valid combinations when the inverse S-Box is applied to z. The number of valid

key bytes for a pair of Hamming weight observations is given in Table 4.1.

The overall expectation can be computed from this by multiplying each table entry by

the probability of it occurring, i.e.
( b
HW(y))·(

b
HW(z))

22 b , and computing the sum of the result.

In the case of the b = 8 as is being examined, this produces an expected number of key

hypotheses for a single observed pair, HW(y) and HW(z), to be 246.5. This means that one

would expect to acquire log2(256/246.5) = 0.0545 bits of information from one observed

pair, and to derive all eight bits would therefore be expected to require 8/0.0545 = 146.743

observations. This is assuming that the Hamming weight is correctly identified every time,

so this can be viewed as the expected lower bound on the number of traces required.
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HW(y)

0 1 2 3 4 5 6 7 8

0 1 8 28 56 70 56 28 8 1

1 8 54 163 219 236 218 153 58 8

2 28 146 251 256 256 256 249 153 28

3 56 222 256 256 256 256 256 226 56

HW(z) 4 70 244 256 256 256 256 256 246 70

5 56 222 256 256 256 256 256 226 56

6 28 146 251 256 256 256 249 153 28

7 8 54 163 219 236 218 153 58 8

8 1 8 28 56 70 56 28 8 1

Table 4.1: The number of key hypotheses.

4.2.2 Experimental Results

To experimentally verify the attack, the Atmel 8051 microcontroller traces from §3.4 are

used due as their leakage closely follows the Hamming weight model. Looking at the

expected error rate for the S-Box as previously shown in Figure 3.12(b), it is clear that

the identity model also leads to a very low error rate so the attack is conducted for both

models. To re-iterate, the traces were acquired with a clock frequency of 11MHz and a

sampling rate of 250MSs-1. The mean of each trace was subtracted and it was then filtered

with a low-pass filter with a cut-off frequency of 16MHz.

Correlation Analysis

The correlation coefficient is useful sanity check to perform in order to determine the leak-

age from a given function and/or intermediate variable. The success or otherwise of a TA

cannot however, be inferred by the strength of the correlation coefficient. Concentrating

on the first possible attack target pair from Figure 4.2, i.e. the plaintext input and S-Box

output, Pearson’s correlation is calculated with the knowledge of the correct intermediate

values in order to gauge the respective leakage of each value as shown in Figure 4.3.

There are two interesting points to take from Figure 4.3. Firstly, the correlation peaks for

the Hamming weight model are close to one, and are higher than their respective identity

model peaks which verifies that the power consumption closely follows the Hamming weight

model, and secondly, there are many more peaks, in both models, for the S-Box operation

Profiling SCA on Crypto. Algorithms Neil Hanley



Section 4.2: Trace only Key Recovery 69

0 10 20 30 40 50 60 70 80 90
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (µs)

ρ

 

 
Plaintext
S−Box

(a) Hamming weight model

0 10 20 30 40 50 60 70 80 90
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (µs)

ρ

 

 
Plaintext
S−Box

(b) Identity model

Figure 4.3: Correlation of intermediate target values → 1 k traces.

than for the plaintext where the S-Box output is re-used in the MixColumns function.

Intuitively, one would then expect a higher error rate in the classification of the plaintext

than the S-Box as fewer data-dependent points are available to generate the templates.

Template Attack

As only 10 k traces in total were available, the set was split into two sets of 5 k, one for

training and one for testing. The sost method of feature selection was used to select 30

points of interest to build the templates, with this value chosen from the learning curve

in Figure 3.12(b). The z-scores of the trace set were taken prior to feature selection and

the templates were built for both the Hamming weight and identity models. LDA with

the pooled covariance matrix is used as a classifier.

The separate set of 5 k testing traces were then used to conduct the attack, split into 25

distinct sets of 200 randomly selected traces without replacement. This was to ensure that

no short term acquisition effects could adversely effect the results. As the plaintext inputs

are random uniformly distributed numbers, each key probability can be multiplied on a

trace by trace basis for key recovery over a number of traces. In an ideal scenario when a

key hypothesis is classified as incorrect, it has a probability of 0 so will subsequently be

eliminated by multiplication. However, in a practical attack, the correct Hamming weight

is not classified with a probability of 1, with incorrect values consequently 0. Therefore,

keys are not ruled out on a trace by trace basis, but instead are multiplied by a smaller

probability.

A single instant of an attack against the 8051 microcontroller when the Hamming weight
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model is used is shown in Figure 4.4(a). After ≈ 60 traces the correct key byte has a

significantly higher probability than the incorrect keys, and the probability is close to one

after ≈ 100 traces. The success rate as averaged over 25 sets is given in Figure 4.4(b), and

while 25 is a relatively small number to average over, the trend in the data is still clear. The

empirically calculated expected number of traces required for a successful attack follows

the theoretically calculated value of 146.7 quite well. This indicates that the Hamming

weight for both the plaintext and S-Box is classified correctly the majority of the time. A

closer inspection of the error rates for each individual Hamming weight shows that this is

the case. In Table 4.2 the Hamming weight error between the actual and estimated values

are given for both the plaintext and S-Box cases. When the attack was performed using

the identity model, both target bytes were classified correctly nearly every time, with the

error is given in Table 4.3. Hence the key was correctly recovered from only a single power

trace over 99% of the time.
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Figure 4.4: Unknown plaintext attack on 8051 with Hamming weight model.

Conducting the attack against the arm7 microprocessor software implementation of AES

the attack is not so successful however, with keys only recovered successfully sporadically

when using the Hamming weight model, hence it is not plotted here (the success rate after

250 traces was ≤ 0.1). The same template generation parameters were used except 50

rather than 30 features were retained. Also, this time a larger trace set was available so

25 k training traces were used, and a separate set of 25 k traces were used for testing, split

into 100 sets of 250 traces. Again, inspecting the Hamming weight error rates as shown

in Table 4.2, it is clear that intermediate values are classified much less successfully than

in the case of the 8051 microcontroller, especially so for the plaintext. Therefore the error

in the cumulative probability of the keys prevents the correct one being identified.
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HW 8051 arm7

Error Plaintext S-Box Plaintext S-Box

0 0.9992 1.0000 0.2716 0.6155

1 0.0008 0.0000 0.4394 0.3628

2 0.0000 0.0000 0.2148 0.0211

3 0.0000 0.0000 0.0611 0.0005

4 0.0000 0.0000 0.0113 0.0001

Table 4.2: Comparison of Hamming weight errors.

8051 arm7

Plaintext S-Box Plaintext S-Box

Error 0.0082 0.0082 0.9868 0.0320

Table 4.3: Comparison of byte errors.

Examination of the model error rates in the previous chapter such as in Figure 3.12(c),

shows that this poor classification performance on the arm7 microprocessor when using

the Hamming weight model should not be too surprising. The same figure does show

however that using the identity model gives a much lower error rate. The attack on the

arm7 microprocessor was re-run using the same parameters except using the identity

model instead with the results given in Figure 4.5.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

# Traces

 

 
Correct key
Incorrect keys

(a) Single attack instance.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st
 O

rd
er

 s
uc

ce
ss

 r
at

e

# Traces

(b) Success rate over 100 sets.

Figure 4.5: Unknown plaintext attack on arm7 microprocessor with identity model.

The extremely poor classification of the plaintext values on the arm7 microprocessor

as shown in Table 4.3, requires that multiple traces can be expected to be required to

recover the secret key, unlike the successful recovery with only a single trace for the 8051
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microcontroller. This low classification rate is in line with the results from §3.3.5 where

the classification of various target intermediate values were compared. On the one hand

it is quite surprising that the attack works due to the fact that the plaintext is classified

correctly so infrequently, however as noted previously, an incorrect classification does not

mean that the correct plaintext value has been discarded, rather that it was not assigned

the highest probability for that trace. Over a number of traces, eventually the correct

value will be chosen with a greater frequency as shown in Figure 4.5(b), however the

success of the attack cannot be guaranteed.

4.2.3 S-Box Only Attack

On the arm7 microprocessor platform, given the discrepancy between the classification

of the S-Box operation and the plaintext or MixColumns operations (Figure 3.8 shows

that the classification performance of the MixColumns operation is similar to that of the

plaintext), it makes sense to see can the key be recovered while solely targeting the S-Box

operation.

Looking at the AES description in Appendix A, we can see that the MixColumns input

to the AddRoundKey function, depends on 4 S-Box outputs. Therefore to recover a single

sub-key byte, templates have to be built for 4 S-Boxes in round r and a single S-Box in

round r+1 as illustrated in Figure 4.6. The four recovered bytes are then used to calculate

the MixColumns operation output to allow for sub-key recovery. As the key expansion

operation for AES is reversible, the recovery of a full round sub-key allows an attacker to

learn the secret key.

This method of applying the attack introduces some restrictions however, as the Hamming

weight model can no longer be used due to the fact that the combination of all possible per-

mutation inputs to the MixColumns operation doesn’t reduce the search space. Likewise,

key probabilities from different traces can no longer be combined either, as combining the

probabilities of each permutation of the 4 bytes doesn’t allow for any one value to achieve

a higher probability. In the previous attack strategy, incorrect keys were still retained and

the cumulative probabilities removed it from contention. However, if targeting 4 bytes to

generate the MixColumns output rather than the output itself, there are 232 combinations

to keep track of which is extremely computationally intensive1. A consequence of this is

that there is no direct way to combine multiple traces for an amplified TA for key recovery

1While not computationally infeasible, the effort required would make it unlikely that this would be

the most efficient method for key recovery.
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Figure 4.6: Target S-Boxes to extract the first sub-key byte.

bar majority voting, so where possible the keys should be extracted from a single trace.
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Figure 4.7: Success rate for each sub-key byte.

As each sub-key is dependent on four S-Boxes from round r and a single S-Box from

round r+1, any time a single S-Box is classified incorrectly from round r, 4 sub-keys will

be incorrectly guessed. Figure 4.7 gives the success rate for each of the 16 sub-key bytes

calculated using the method described for round 1 of AES on the arm7 microprocessor

platform. It is interesting to note that the first 4 sub-keys are classified correctly signifi-

cantly more often than the other sub-keys. A closer examination of the individual S-Box

errors in Table 4.4 explains why, as S-Boxes 〈1, 6, 11, 16〉 from round 1 all have very low

error rates, and due to the ShiftRows operation these are the 4 bytes that are used by
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S-Box

Round 1 2 3 4 5 6 7 8

1 0.0087 0.1088 0.0753 0.0752 0.1271 0.0037 0.1555 0.1020

2 0.0104 0.0490 0.1103 0.0704 0.1068 0.0075 0.1632 0.1491

S-Box

Round 9 10 11 12 13 14 15 16

1 0.1170 0.0731 0.0050 0.1209 0.1279 0.1194 0.0797 0.0108

2 0.1911 0.1232 0.0124 0.1941 0.1931 0.1190 0.1467 0.0098

Table 4.4: Comparison of S-Box classification errors.

the MixColumns operation to calculate the input the the AddRoundKey operation for the

first four bytes.

The overall success rate for a given sub-key byte in this experiment can be approximately

estimated as (1−0.0927)5 = 0.6149, where 0.0927 is the expected error rate averaged over

all 32 S-Boxes from Table 4.4. This compares with the empirically calculated value of

0.6525 through direct calculation of the estimated MixColumns values. The discrepancy

between the values, while small, is still relatively larger than might be expected given the

sample size (10 k traces were used to estimate the error in this case), however this is due

to the fact that each S-Box classification from round 1 affects 4 sub-key bytes, which was

not taken into account.

4.3 Application to Masking

As outlined in [145], there are two main approaches to counteract power and electro-

magnetic attacks, hiding and masking. Hiding looks to obscure the amplitude of data-

dependent leakage, for example with additive noise to decrease the SNR or custom logic

styles [140] to equalise the power consumption. Alternatively traces can be desynchronised

in the time domain, for example via shuffling of operations or randomising the clock. Each

countermeasure has specific time, memory, area and power trade-offs depending on the

user requirements or projected attacker model, and must be carefully selected to minimise

any potential leakage. These type of countermeasures are generally applied in conjunction

with some methods from the second class of countermeasures, masking [7, 41, 85, 150].

Masking, or secret sharing [161], are algorithmic level countermeasures which seek to break
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the link between the intermediate value that is being processed and the power consump-

tion by randomising the value for every encryption run. This prevents an adversary being

able to hypothesise on intermediate values to perform a DPA attack. Of course such ran-

domisation must be removed prior to the end of the algorithm to ensure correct operation.

Therefore, there can be a significant performance and memory penalty incurred in keeping

track of masks, and the number and updating of masks must be tailored to the device at

hand. Common methods of masking are additive, affine, boolean, and multiplicative. It

must be noted however, that while hiding and masking countermeasure combine to make

an adversaries job considerably harder if implemented correctly, there is no technique that

can guarantee perfect side-channel resistance against higher-order attacks [150] or more

advanced power models such as those which take into account glitching [147]. A designer

seeks to implement countermeasures such that the benefit of breaking the device is not

worth the effort to do so.

Examining Boolean masking, anywhere an intermediate state is stored in memory, it is

xored with some random value that varies for each execution. This random value is

chosen to be a convenient size for a given block cipher2, e.g. for AES this would typically

be an 8-bit value because of the S-Box function. The target equation would then become:

z ⊕ τ = S′(y ⊕ s⊕ τ) = S(y ⊕ s)⊕ τ (4.1)

where τ is a random value generated for each execution of the implementation of AES.

This is illustrated in Figure 4.8. Note this is not the only way to implement masking, for

example in [7] the output of the masked S-Box function would be given as S(y ⊕ s)⊕ τ ′,

where τ ′ is a different mask. However for the purposes of the analysis this is the method

we focus on. As previously mentioned, masking inner and outer rounds only as suggested

in [6, 8] can be trivially overcome using the proposed attack, however the application of

masking in this way has also been shown to be weak in the context of regular DPA [89]

and is not recommended.

Using templates against masked implementations of AES was originally examined in [173,

178], as well as a different approach using Gaussian Mixture Models in [134]. In all these

attacks the plaintext is required however. To attack a masked implementation of AES with

unknown inputs where the target device follows the Hamming weight power model, the

observations become HW(y⊕τ) and HW(z⊕τ). There will be some values of τ that will not

be possible given a pair of observations (dictated by the structure of the function S), the

2This applies for other masking methods also.
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Figure 4.8: Boolean masking for AES.

simplest method of evaluating the expected number of hypotheses returned by evaluating

a pair of observations is to again count all the possibilities as given in Table 4.5.

HW(y ⊕ τ)

0 1 2 3 4 5 6 7 8

0 163 254 256 256 256 256 256 254 163

1 254 256 256 256 256 256 256 256 254

2 256 256 256 256 256 256 256 256 256

3 256 256 256 256 256 256 256 256 256

HW(z ⊕ τ) 4 256 256 256 256 256 256 256 256 256

5 256 256 256 256 256 256 256 256 256

6 256 256 256 256 256 256 256 256 256

7 254 256 256 256 256 256 256 256 254

8 163 254 256 256 256 256 256 254 163

Table 4.5: The number of masked key hypotheses.

As described in §4.2.1, the overall expectation can be computed from this by multiplying

each table entry by the probability of it occurring, i.e.
( b
HW(y⊕τ))·(

b
HW(z⊕τ))

22 b , and computing

the sum of the result. This produces an expected number of key hypotheses for an ob-

served H(y ⊕ τ) and H(z ⊕ τ) to be 255.9. This means that one would expect to acquire

log2(256/255.992) = 4.299 × 10−5 bits of information from one pair of observations, and

to derive all 8 bits would therefore be expected to require 8/4.299× 10−5 ≈ 186k samples,

once again assuming the Hamming weight is correctly identified each time.

Examining this in the context of the identity model, each observation pair will return

163 valid keys, i.e. the same as when the Hamming weight observations in Table 4.5

are both either 〈0, 8〉. Following the analysis above, this gives an expected number of key

hypothesis for an observed y⊕τ and z⊕τ pair to be 163×2562

2562
= 163, giving log2(256/163) =

0.6513 bits of information. Assuming that each value is correctly classified each time, then
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(8/0.6513) ≈ 12.3 traces are required to successfully extract the correct key value.

4.3.1 Attacking Masked Implementations

Eliminating the Mask

To successfully attack a masked implementation while using the Hamming weight model,

an attacker would be required to construct a third set of templates on τ . A known plaintext

version of this attack is described in [173]. In the unknown plaintext scenario, the attack

is restricted to the first round only, as one of the templates must be built on y before it is

masked, not y⊕ τ which would allow any round to be targeted. In the case of building the

templates for y⊕ τ , removing the mask from both y⊕ τ and z⊕ τ by xoring both sets of

values with the third template on the mask τ , limits the amount the valid key-space can

be reduced when subsequently combining the values after the removal of the mask which

prevents key extraction. On the other hand, by using templates built on τ to just remove

the mask on z by xoring all possible combinations together, then the templates based on

y can be used to extract the secret data s in z = S(y ⊕ s) as before. The attack reverts

as the previously explained method without masking, at the cost of extra traces being

required to deal with the extra unknown value τ . Hence, similar to the result presented

in [173], Boolean masking does not theoretically prevent key extraction in the context of

an unknown plaintext template attack, but the attack will be device dependent. However

extra traces will be required regardless of the device under attack.

Extending this to the identity model, if templates could be built for τ , y⊕τ (or simply y as

in the Hamming weight case), and z⊕τ , then the key can be trivially extracted with a single

trace if the values are successfully classified, as the mask can simply be removed. However

previous experiments have shown that successful TAs against intermediate values other

than the S-Box are non-trivial classification problems, and the extension of the attack to

the S-Box only attack of §4.2.3 is not feasible as each byte will have a different mask value.

The validity of being able to build templates for the random mask values is also open

to question. Ideally the masks would be generated internally on a secure device, so even

though an attacker posses an identical device to generate the templates, knowledge of the

mask value would be still unknown. However, in the context of worst case analysis it

makes sense to give an attacker this capability. For example collision-based attacks [196]

with known data could be used to estimate the mask values, or if there is the capability

to program the identical device, then knowledge of the mask values could be read out
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through some known function.

Predicting the Plaintext

It has also been shown in [105] that DPA is possible against an implementation of a block

cipher where a counter is part of the plaintext, e.g. counter mode used for random number

generation [66]. The initial value of the counter does not need to be known for an attacker

to mount an attack against an implementation where no countermeasures are present. The

same technique could be used to guess the values of a counter present in the plaintext to

guess values of y such that information can be derived in a similar manner, by evaluating

all the possible values of τ and z ⊕ τ , from templates constructed on y ⊕ τ and z ⊕ τ .

The advantage of this attack over eliminating the mask is that templates only need to be

constructed on two points, however it is assumed the input can be accurately predicted

somehow.

4.4 Building Templates On the Key

SCAs against the key schedule are somewhat under-represented in the literature relative

to targeting intermediate values of an algorithm, as DPA requires randomly varying val-

ues to succeed. Also, where memory is not an issue, the key expansion might only be

performed once prior to the encryption and stored in memory to encrypt many blocks of

data. However in resource constrained devices where throughput is not a priority, such as

smart-cards, the key expansion can often performed in line with the encryption.

Prior to the selection of Rijndael as the winner of the AES competition, a theoretical anal-

ysis of the key schedules for all AES candidates was carried out in [29], and a SPA attack

against the key expansion of AES was presented in [143]. More recently, machine learning

techniques were examined in [135] while targeting the key of a 3-DES implementation.

Although the authors did not build their models on the key schedule per se, the labels

were assigned directly on the key bits hence the classification is still determined by the

key expansion. As the key schedule of DES consists of bit-shifts and permutations rather

than an non-linear operations such as in AES, it is suited to this kind of analysis as each

key bit will influence the power consumption across multiple rounds, as shown originally

in [1].

The SPA in [143] can be viewed as a template attack as the author looks to identify
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Hamming weights of intermediate values of the key schedule and use this knowledge to

reduce the brute-force search space of the key. Averaging is suggested to reduce noise to

allow distinguishing between values, as well as profiling on another device as suggested

originally in [70]. This paper pre-dates TAs as presented in [42], which are ideally suited

to this scenario. An attack is now presented that can be viewed as an extension to that

presented in [143].

Templates were built for each key byte directly with a set of 25 k traces from the arm7

microprocessor, each trace with a different uniformly random plaintexts and keys. As

before the data was normalised by taking the z-scores of the data, the identity model was

used, and sost was used to select 50 features to build the templates with. The results of

using LDA for each key byte on a separate set of 1 k traces are given in Figure 4.9. As a

comparison the peak correlation value between the 1 k traces and corresponding key bytes

is also given so show that the presence of a correlation peak does not necessarily imply a

successful TA.
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Figure 4.9: Error rate for each key byte → 1 k traces.

As has been shown previously, the classification of the output of the S-Box function far

outperforms that of the other functions, which is again the case when building templates

directly for the key as is clear from Figure 4.9. Even though all 16 sub-key bytes have a

strong correlation with the power traces, only the final 4 key bytes have low error rates.

Examining the key schedule from [163], it can be seen that these four key bytes are passed

through the S-Box function.

This leads to the question of can all the key bytes be recovered by solely recovering the

output of the S-Boxes in the key schedule which is now examined. The difference between

the attack presented here and the one in [143], is that while in [143] the author assumes
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the Hamming weight of arbitrary values in the key schedule can be recovered, here the

attacker is assumed to be able to successfully recover the output byte value of the S-Box

functions only. Note the attack in [143] can be seen as a precursor to Algebraic SCA [189].

Depending on underlying leakage properties of the target device, this assumption might

hinder or assist the attacker.

While the analysis here is for AES with a 128-bit key, it is equally valid for 192 and

256-bit keys. Following the notation of [163], the entire secret key is split up into 32-bit

words, with the entire sub-key consisting of 44 of these words. As mentioned previously,

recovery of any single sub-key for any round (i.e. the consecutive words w0,1,2,3 where

〈0, 1, 2, 3〉 ∈ 0 . . . 43 (mod 4) ), allows an attacker to recover the actual key due to the

reversible nature of the key schedule. The key expansion consists of rotations, xor’s and

the S-Box function. The S-Box function, which is the attack target, is only used on every

4th word, i.e. 4 bytes of each round sub-key.

Recovery of the four bytes of w3 is possible by attacking the first use of the S-Box, where

in the following description S-Box indicates the use of it across the 4 bytes of a word.

Attacking the next use of it then allows an attacker to recover w7. However as w3 is also

known, this allows w6 to be recovered as when i 6= 0 (mod Nk) (for AES-128, Nk = 4),

then wi = wi−1⊗wi−Nk → w6 = w7⊗w3. Advancing to the next use of the S-Box gives an

attacker w11, with w6,7 used to recover w9,10. Finally attacking the 4th use of the S-Box in

the key expansion combined with w9,10,11 gives an attacker the entire sub-key, w12,13,14,15,

which is the sub-key used for round 3 of the encryption. Note this is not taking advantage

of all instances of the S-Box used in the key expansion, where a sub-key byte is classified

with a small probability, further rounds can be looked at to increase the certainty of the

classification. Figure 4.10 gives the success rate over 1 k sets for key recovery of the entire

128-bit key, where multiple traces are available to allow an amplified TA, with the product

of the success rate for the individual key bytes taken to calculate this overall success rate.

4.5 Conclusion

This chapter is based on the work published in [92], and outlines TAs against AES in which

it is assumed an adversary has no knowledge of the inputs or outputs of an AES encryption.

A single plaintext/ciphertext pair is useful for an attacker after key recovery to test the key

hypothesis, although by no means necessary. The expected number of traces required for a

successful key recovery in the case of a target device following the Hamming weight power
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Figure 4.10: Success rate for the entire key → 1 k sets.

model was developed, and compared to empirical estimations from two different target

devices, an 8051 microcontroller which closely follows the Hamming weight power model

and an arm7 microprocessor which does not.

The attack was subsequently modified to achieve better classification results while target-

ing the arm7 microprocessor, by focusing only on the S-Box operations which have been

both proved in the literature [181], and heuristically shown in the majority of DPA publi-

cations to be an suitable target for SCA. Two S-Box only attack methods were presented,

one targeting the data path and another attacking the key schedule.

The application of the attacks in the context of masking was examined, however there is

scope for much further work in this regard. As well as improvements in algorithmic or key

recovery efficiencies, unsupervised or semi-supervised machine learning algorithms such as

that in [134, 137] could be a quite interesting avenue to further explore. Unsupervised

learning algorithms could be especially useful in the context of randomised countermea-

sures such as masking as mask knowledge might not be required in the profiling step [134].

Clustering has already been suggested as both a DPA type SCA distinguisher [20], as

well as for key recovery in the context of non-profiled single trace attacks for public-key

algorithms [100] which is the topic of the next chapter.
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Chapter 5
Trace Only Template Attacks -

Multiplication

5.1 Introduction

While the attacks in Chapter 4 looked to recover the secret key from ciphers by building

templates on intermediate values in an algorithm, in this chapter a different approach

is taken, again with the goal of key recovery from a single trace where possible. While

asymmetric ciphers such as RSA [192] and ECC [123, 152] are targeted, the approach

also can also work for some symmetric ciphers depending on their underlying primitive

operations. The work in [93] forms the basis for this chapter. While attacks in the

literature are often explained in the context of RSA or ECC, due to the duality between

the square & multiply ⇔ double & add methods of implementation, the attacks are often

applicable to both.

To recover the secret key, the approach here is to try and distinguish between multiplication

and squaring operations, even when the same software code or hardware unit is used to

calculate the operation so as to prevent SPA type attacks. It was shown by Amiel et al. in

[10] that the expected Hamming weight of the result of a multiplication is different to that

of a squaring. This is utilised to build templates to distinguish between the operations as

detailed below.

The construct of asymmetric algorithms is vastly different from that of symmetric ones

due to the need for a back-door function to enable the public/private key pair to en-

crypt/decrypt. For example, the security of RSA is based on the assumed difficulty of
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factoring large integers, while the security of ECC is based on the assumption that finding

the discrete logarithm of a random elliptic curve element with respect to a known base

point is computationally infeasible. While the required doubling and addition group op-

erations for ECC are performed on an elliptic curve with a given set of parameters, the

underlying addition, subtraction, multiplication and inversion field operations are gener-

ally performed in prime, GF (p) or binary Galois GF (2m) fields. Integer multiplication and

squarings are an essential operation in both algorithms, as well as many other asymmetric

algorithms such as ElGamal [76] or Paillier [176], and it is these operations that are now

targeted in this chapter. The attack is demonstrated by attacking a single Montgomery

multiplication algorithm [153], with subsequent application to a secure RSA cryptosys-

tem explained. The attack method is then extended to a practical demonstration against

ECDSA power traces.

The ability to recover the secret key component from a single trace has many advantages,

not least in the context of countermeasures such as outlined by Coren in [52] which might

seek to restrict an adversary to a single side-channel trace, but also in the case of ECDSA

where the scalar operand is different on every use [165] by design which inherently limits

an adversary to just one sample.

A very brief overview of RSA and ECC is now given in §5.2, followed by a look at some

of the proposed single-trace attacks against them in §5.3. The source of the leakage

that is targeted in this chapter is explained in §5.4 and the building of templates with this

leakage to attack a multi-precision multiplication is demonstrated in §5.5. How this affects

secure RSA implementations is examined in §5.6, with the attack extended to a practical

demonstration against an ECDSA ephemeral scalar multiplicand in §5.7. An attack on a

hardware Montgomery multiplier is examined in §5.8 before a brief overview of where the

attack could be applicable in a symmetric-key setting in §5.9. Various countermeasures

are looked at in §5.10, before conclusions are drawn in §5.11.

5.2 Asymmetric Algorithms

While asymmetric cryptography incorporates encryption, key exchange and signature pro-

tocols, the attacks here focus on RSA exponentiation [192] and the ECC scalar multipli-

cation [123, 152], which form the basis for these constructions. A brief overview of both

is now given.
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5.2.1 RSA Exponentiation

RSA is a widely used algorithm introduced by Rivest, Shamir and Adleman [192] which

provides both encryption and signature capabilities. A public key accessible to anybody

is used for encryption of data, with only the owner of the corresponding private key

able to decrypt it. Its security is based on the difficulty of factoring the product of two

large primes p and q. A modulus N = p q is computed which is part of both the public

and private key. A count of the relatively prime numbers to N is then calculated by

φ(N) = φ(p)φ(q) = (p − 1) (q − 1), where φ is Euler’s totient function. The second part

of the public key e is then chosen such that 1 < e < φ(N) and gcd(e, φ(N)) = 1. The

corresponding private key part d is calculated as d ≡ e−1 mod φ(N), which can be derived

using the extended Euclidean algorithm. Encryption and decryption is simply modular

exponentiation as shown in Equation 5.1.

c = me mod N

m = cd mod N (5.1)

When implementing Equation 5.1, the bit-size of the private key d should be at the very

least 2048-bits in size hence an efficient implementation such as that given in Algorithm 5.1

[149] will be required, however the public key e can be chosen to be much smaller. Here

the bits of the exponent are stepped through one at a time, performing a squaring on each

step and a multiplication where the exponent bit is 1, with all operations done modulo

N . In practice RSA needs to be used in conjunction with some padding mechanism

such as PKCS #1 v2.2 [129] due to the homomorphic properties of the exponentiation.

As embedded devices will generally have an 8, 16 or 32-bit single-precision multiplication

unit, the multiplication and squaring operations in each loop are still much too large to

be implemented directly. Hence each is a multi-precision operation, consisting of many

single-precision multiplications which use the hardware multiplier unit in the processor

core.

5.2.2 ECC Scalar Multiplication

Elliptic curves have recently gained widespread acceptence due to their lower key sizes

for equivalent security which has speed and storage advantages, particular for low power

embedded designs. For the work here, an elliptic curve E over a prime finite field Fp
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Algorithm 5.1: Square and multiply algorithm.

Input: N , x < N , e ≥ 1, b the binary length of e (i.e. 2b−1 ≤ e < 2b)

Output: A = xe mod N

1 A← 1 ;

2 for i = b downto 0 do

3 A← A ·A mod N ;

4 if ei = 1 then A← A · x mod N ;

5 end

6 return A ;

consists of points (x, y), with 〈x, y〉 ∈ Fp, that satisfy the short Weierstraß equation in

Equation 5.2.

E : y2 = x3 + a x+ b (5.2)

with 〈a, b〉 ∈ Fp also, and the point at infinity denoted O. The short Weierstraß form of

the curve is used since the attack targeting ECC described in this thesis will be conducted

against an instance of ECDSA using the P-192 elliptic curve, as described in the FIPS

186-3 [165]. The set E(Fp) is defined in Equation 5.3.

E(Fq) = {(x, y) ∈ E |x, y ∈ Fp} ∪ {O} (5.3)

where E(Fp) forms an Abelian group under the chord-and-tangent rule andO is the identity

element [198]. The addition of two points P = (x1, y1) and Q = (x2, y2) with P 6= −Q is

given by P+Q = (x3, y3) where:

x3 = λ2 − x1 − x2

y3 = (x1 − x3)λ− y1 (5.4)

with λ =





y1 − y2
x1 − x2

if P 6= Q [addition operation]

3x1
2 + a

2y1
if P = Q [doubling operation]

.

The scalar multiplication of a given point is a fundamental operation in cryptographic

algorithms that use elliptic curve arithmetic, i.e. [k]P for some integer k < |E|. This
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operation uses algorithms analogous to standard exponentiation algorithms such as in

Algorithm 5.1, with squarings replaced by point doublings, and multiplications replaced

by point additions.

5.3 Single-Trace Attacks

The original SPA attack [126], as previously mentioned in §2.3.2, showed that straight-

forward implementations of both RSA and ECC could be trivially broken through visual

inspections of the power traces due to the different power consumption profile of the condi-

tional operation. This can be easily prevented through the use of square & multiply always

(or double & add always for ECC) [52], or through unified [35] or atomic [44] algorithms.

A more through examination of countermeasures and how they affect the proposed attack

is given in §5.6.

One of the first single trace attacks against asymmetric algorithms was the Big Mac attack,

introduced by Walter in [219]. This is a non-profiled attack. which, like the work here,

also tries to recover secret exponent bits by distinguishing between side-channel atomic

[44] multiplication and squaring operations, as well as not requiring knowledge of the input

plaintext values. A template trace is required, but can be computed from the first multi-

plication operation of the target trace which is known to be a squaring operation for RSA

(see line 3 of Algorithm 5.1). It works against both m-ary and sliding windows exponenti-

ation methods [149, Ch. 14], however cannot recover key bits from regular exponentiation

algorithms which perform the same order of operations regardless of the key [110]. Aver-

age traces for the single-precision multiplications in each loop of a multi-precision integer

multiplication are computed and compared to the known squaring multiplication at the

beginning of the algorithm. As the power consumption of the multiplier is correlated to

the number of bits that flip, and the number of bits that flip is also proportional to the

Hamming weight of the input operands, squarings can be distinguished from multiplica-

tions by examing the Euclidean distance between the power consumption of the unknown

operation under consideration and the initial known squaring operation.

Another single trace attack is Horizontal Correlation Analysis as introduced in [48]. This

is a powerful attack to recover secret key exponents by correlating across the single-

precision multiplications in a long-integer multiplication to determine if a given operand

was used. If a correlation is present then the operation was a multiplication, otherwise it

was a squaring. This method has the advantage of working against regular exponentiation
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algorithms, unlike the Big Mac attack and the work presented here, but requires knowledge

of the padded message or curve base point. While suggestions are given to overcome

scenarios where the base exponent is blinded (hence unknown) [43], the effectiveness of

the attack is reduced. Another interesting single-trace attack using clustering algorithms

was introduced in [100]. Using this non-profiled machine learning method, the authors were

able to recover the secret exponent from an elliptic curve scalar multiplication. However,

multiple measurements from the same execution were required to improve the SNR to

allow the attack to succeed.

Recent advances in Collision attacks, first introduced in [196] targeting DES, have also

led to single-trace key recovery against asymmetric algorithms. The doubling attack [75]

was the first collision attack against RSA, with furter attacks introduced in [102, 230,

233]. These attacks require two or more acquisitions however, hence can be protected

against through randomising the exponent (or scalar multiplier). Rosetta analyses [47]

can overcome this limitation and allows an attacker to distinguish between multiplications

and squarings regardless of message or exponent blinding. The collision attacks presented

in [90] expand this even further by detailing how to attack an exponentiation even when

implemented as a regular algorithm. While collision attacks can be powerful, in reality

all the attacks proposed to date require relatively clean traces to allow the collisions to

be detected which is where templates have a significant advantage, at the cost of stronger

adversarial model.

5.3.1 Template Attacks on Asymmetric Algorithms

Most TA to date have focused on symmetric algorithms, generally targeting AES, DES,

and to a lesser extend RC4. One of the first TAs published against an asymmetric algo-

rithm was against ECDSA [148]. The authors built templates for multiple intermediate

values for the initial bits of the ephemeral ECDSA key. This was then either iteratively

repeated (i.e. the templates for the entire key could not be built in advance), or else

lattice-reduction based attacks used to recover the full key from a few known exponent

bits as shown in [160]. While the attack only requires a single trace to work, the base

point is required hence it is ineffective against multiplicative blinding of the base point.

A related paper [97] extends this work to show how the masking of the point can be re-

moved by building templates for the Hamming weight of intermediate partial products in

a long integer multiplication, and subsequently filtering out invalid masks which cannot

occur. The attack of [148] can then be applied to recover the ephemeral key. Another TA
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is shown against an FPGA target [101] where the authors perform an attack against a

decapsulated Xilinx Spartan-3 FPGA running an elliptic curve scalar multiplication. This

attack is somewhat different from the attacks in [97, 148], or the work presented here as

they target leakage from the physical location of registers rather than intermediate values

or operations. A TA against ECDSA was presented in [157], however the templates are

built for the modular inversion required in ECDSA rather than attacking the elliptic curve

operation itself.

There is a large body of publications on secure implementations and attacks for both the

RSA and ECC cryptosystems. Informative surveys of attacks against ECC and subsequent

countermeasures are available in [59, 71, 72], while a survey of regular exponentiation

algorithms for both ECC and RSA is available in [110, 112]. The attack as presented here

has advantages over many other single-trace attacks due to its applicability in the presence

of many countermeasures, and the fact that its not as susceptible to noise as some other

methods. This of course comes with the tradeoff that a similar device must be available

to build templates.

5.4 Target Leakage

It was observed in [10] that the expected Hamming weight of the result of a multiplication

is different than the result of a squaring operation. The difference in the expected Ham-

ming weight can be observed by measuring these side channels as shown in [10]. As this

observation applies to a single-precision operation, i.e. whenever the hardware multiplier

unit in a microprocessor is used for example, this difference will be present in many time

locations in any word-by-word multiplication algorithm. Non-profiling attacks based on

distinguishing multiplications and squarings were also shown in [4, 223] on the basis that

the number of internal bit-flips, hence power, in a hardware multiplier is linearly related

to the Hamming weight of the input operands. However, as shown later, this is not the

main source of leakage that is utilised here.

This observation on the leakage of multipliers assumes that the power consumption of

the device under consideration is proportional to the Hamming weight of the values being

manipulated. It was shown in Chapter 3 that for the arm7 microprocessor the Hamming

weight model is not wholly accurate. However it suffices for that attack here, particularly

when coupled with that advantage that no intermediate values need to be known to con-

duct the attack which is advantageous when countermeasures are present as explained in
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§5.6. Many devices also conform to the Hamming distance model, for example attacks on

hardware such as FPGAs or ASICs rather than software implementations on microproces-

sors will often need knowledge of the previous register value in order to be successful. This

complicates the attack somewhat as the power consumption is no longer solely dependent

on the input operands. For the attacks presented in this chapter it is assumed that the

target device corresponds to the Hamming weight model unless otherwise specified.

Assuming that a multiplication takes place between two random uniformly distributed

b-bit values, the expected Hamming weight output can be calculated for smaller values

of b using Equation 5.5 as shown in [10]. This essentially consists of taking the average

of the Hamming weight of the product of all pairs of possible input values. Likewise, the

expected Hamming weight value for a squaring can be calculated with Equation 5.6.

E(X · Y ) =
2b−1∑

i=0

2b−1∑

j=0

HW (i · j) · Pr[X = i ∧ Y = j] =
1

22b

2b−1∑

i=0

2b−1∑

j=0

HW (i · j) (5.5)

E(X2) =
2b−1∑

i=0

HW (i2) · Pr[X = i] =
1

2b

2b−1∑

i=0

HW (i2) (5.6)

Using these equations, the expected Hamming weight difference between multiplications

and squarings for different operand bit lengths b were calculated as shown in Figure 5.1(a).

It can be seen that for a 16-bit multiplication, the expected Hamming weight of the output

of a multiplication is ∼ 0.9 greater than that of a squaring. A closer examination of why

this is so can be see in Figure 5.1(b) for 16-bit input operands, giving a 32-bit output.

The probability of each bit output being equal to one is plotted for both operations. The

restricted set of values that a squaring operation can take is reflected in the distribution

of the lower bit probabilities. As this occurs every time a multiplication is calculated, this

difference will be present in each of the single-precision multiplications that are required to

compute a multi-precision multiplication. The plot in Figure 5.1 is only directly calculated

for up to b = 16-bit operand lengths due to the computational complexity of greater

bit-lengths, however the same leakage is present in larger bit-lengths also as shown in

Appendix D where a subset of all possible values are selected.

Before looking at the practical effect of this on the arm7 microprocessor device used pre-

viously, a short description of how the multiplier on this device operates is first outlined.

The hardware long multiplication operation mull on an arm7 microprocessor is imple-

mented such that it computes the multiplication of two 32-bit words in 2→ 5 clock cycles
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Figure 5.1: Hamming weight analysis.

[138]. The number of clock cycles required depends on the bit length of one of the multi-

plicands, that is the multiplication will terminate early if a number of the most significant

bytes of one multiplicand are set to zero. The precise algorithm of how the mull op-code

operation is defined in Algorithm 5.2 [87].

Algorithm 5.2: A functional description of arm7 multiplication.

Input: The 32-bit integers x and y.

Output: The 64-bit result A = x · y.

1 A← 0;

2 for i = 0 to 3 do

3 Astep ← x · y7...0;

4 A← A+ (Astep ≪ 8i);

5 y ← y ≫ 8;

6 if y = 0 then return A;

7 ;

8 end

9 return A ;

Several attacks are described in [87] that demonstrate that näıvely using this multiplier

to implement cryptographic algorithms will provide an attacker with an exploitable vul-

nerability. That is, the number of clock cycles taken by each multiplication can be seen in

the power consumption and used to deduce information on the values being operated on.

This means that the multiplier has to be used such that it will perform a multiplication in

a constant amount of time irrespective of the bit length of the multiplicands. An example

of such an algorithm is shown in Algorithm 5.3 [87]. For the implementation of the attack
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here, this algorithm was used to provide an implementation with a minimum level of

security. That is, an implementation that is not vulnerable to attack by simply inspecting

a small number of power traces.

Algorithm 5.3: A constant time algorithm to replace arm7 multiplication.

Input: The 32-bit integers x and y.

Output: The 64-bit result A = x · y.

1 γ ← (y ∧ 00FFFFFF(16)) + 01000000(16) ;

2 τ ← (y ∧ FF000000(16))≫ 24 ;

3 A← x · γ ;

4 A← A+ ((x · τ)≪ 24) ;

5 A← A− (x≪ 24) ;

6 return A ;

Algorithm 5.3 ensures a constant time implementation of the multiplication by replacing

the most significant byte with 0x01 hence always ensuring the full 5 clocks are required.

The multiplication by the most significant byte is then performed separately as a 32 × 8

operation requiring 2 clock cycles.

Using Algorithm 5.3, the leakage of the multiplier output can now be examined. Fig-

ure 5.2(a) shows a portion of a power trace recorded while the arm7 microprocessor was

performing the constant-time multiplication as given in Algorithm 5.3. The trace is aver-

aged over 10 k acquisitions with random uniformly distributed values. The sampling rate

was 250MSs-1, and the clock frequency 7.3728MHz, and for the example here no filtering

nor reduction of the acquisitions was performed1. The 32-bit single-precision multipli-

cation corresponding to line 3 of Algorithm 5.3 can be seen as a decrease in the power

consumption at the start of the trace, while the shorter 32× 8 multiplication of line 4 can

be seen as the second shorter decrease just following it.

Following [10] where the power consumption difference between a multiplication and squar-

ing is shown by looking at the difference of means of a large set of traces, Figure 5.2(b)

shows the difference of means trace between the 10 k multiplication traces from Fig-

ure 5.2(a), and 10 k squaring traces. The largest peak occurs right at the end of the

32-bit single precision multiplication, just after 13.5µs. There is a smaller peak towards

the start of the multiplication, likely due to the effect of bit flips dependent on the inputs as

explained in [4, 223]. The arm7 microprocessor multiplier returns the 64-bit multiplicand

as two 32-bit words [138], and as a sanity check, the correlation of the least significant

1The traces used in this example are a subset of the traces used in §5.5 prior to pre-processing.
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word for the multiplication traces is given in Figure 5.2(c). The strongest correlation oc-

curs at the same point in time as the DOM peak, which is expected from Figure 5.1(b).

This confirms that the leakage at the output of the multiplier is what is causes the DOM

peak. No DOM is present for the upper 32-bit word as examining line 1 of Algorithm 5.3,

it can be seen that the most significant byte is replaced with 0x01 therefore the upper bits

where a difference is expected to occur cannot be set. While in [10] a DOM attack was

suggested to utilise this leakage, templates are now built to allow distinguishing between

the operations with a single trace.
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Figure 5.2: Multiplier target leakage.

5.5 Application of Templates

In this section an example TA exploiting the described leakage is conducted, targeting the

Montgomery multiplication algorithm [153] as would be used in an RSA exponentiation,

or the underlying field multiplications in an ECC scalar multiplication.

5.5.1 Montgomery Multiplication

When implementing modular exponentiation a commonly used multiplication algorithm is

Montgomery multiplication [153], since the modular reduction is interleaved with the mul-

tiplication. The result of a modular multiplication using this algorithm is not x y mod N ,

the algorithm actually returns x y R−1 mod N , where R−1 mod N is introduced by the
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algorithm as shown in Algorithm 5.4. R = bw, where the modulus consists of w words

of size b, with b generally chosen according the architecture size of the device being pro-

grammed for, i.e. b = 232 would generally be chosen for the arm7 microprocessor under

consideration as it has a 32-bit architecture. In order to use Montgomery multiplication,

x and y need to be first converted to their Montgomery representation, i.e. x̃ ← xR

mod N and ỹ ← y R mod N . Then, when x̃ and ỹ are multiplied together using Mont-

gomery multiplication, the result is x y R mod N . This algorithm requires 2w (w + 1)

single-precision multiplications [149]. Where repeated multiplications are required, such

as exponentiation or elliptic curve scalar multiplication, this has computational advantages

as the division is simply shifting by a power of 2.

Algorithm 5.4: Montgomery product.

Input: N = (Nw−1, . . . , N1, N0)b, x = (xw−1, . . . , x1, x0)b, y = (yw−1, . . . , y1, y0)b with

0 ≤ x, y < N , R = bw, gcd(N, b) = 1 and N ′ = −N−1 mod b.

Output: A← x y R−1 mod N .

1 A← 0 ;

2 for i = 0 to w − 1 do

3 ui ← (a0 + xi y0)N
′ mod b ;

4 A← (A+ xi y + ui N)/b ;

5 end

6 if A ≥ N then A← A−N ;

7 return A ;

Algorithm 5.4 has been demonstrated to be vulnerable to side channel because of the final

conditional subtraction that takes place if A ≥ N on line 6. This conditional subtraction

affects the entire execution time of an exponentiation leading to an attack based on total

time taken to compute an exponentiation [224]. It has also been shown that individual sub-

tractions will be visible in the power consumption, or electromagnetic emanations, leading

to efficient attacks [220, 221]. The simplest countermeasure would be to always conduct

the subtraction and take the result as required. However, this approach is problematic

since the bit that is used to make this choice may be visible in a side channel. More-

over, this could potentially be attacked by a fault attack, where a fault in a subtraction

that does not affect the result of an exponentiation identifies a dummy subtraction [232],

similar to the square and multiply always fault attack. More effective countermeasures

involve increasing the number of iterations of the main loop so that the final subtraction

becomes unnecessary [88, 218]. However, these attacks and countermeasures do not have

any impact on the attack as described and can be considered beyond the scope of this
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work. Note also that while the attack here is conducted against an implementation using

the Montgomery multiplication, it is equally valid against many other multiple-precision

multiplication algorithms such as long-integer or Comba.

5.5.2 Difference of Means

To put the attack into practice, a 1024-bit Montgomery multiplication algorithm was

implemented on the arm7 microprocessor and power traces of multiplication and squaring

operations recorded. In all cases the inputs are uniformly randomly distributed. The

acquisition parameters were the same as for the AES traces, i.e. a clock frequency of

7.3728MHz, a sampling rate 250MSs-1 with the 20MHz bandwidth limiter of the scope

turned on. Each trace was also pre-processed using the parameters as outlined previously

in §2.10. In total, 10 k traces for each of multiplication and squaring operations were

recorded, with 9 k of each used for training (i.e. m = 18 k) with the remaining 1 k of

each used for estimating classification accuracy. Each trace is randomly allocated to one

of the two sets to remove any potential hidden bias present between traces that were

recorded in close proximity time-wise. The operations are labelled such that y0 represents

a multiplication, and y1 is a squaring.

The difference between the mean of the two classes of the training set is given in Fig-

ure 5.3(a). As the arm7 microprocessor contains a 32-bit multiplier, to compute the

1024-bit multiplication 1024 ÷ 32 = 32 iterations of the Montgomery multiplication loop

are required. This can be seen in the 32-peaks of Figure 5.3(a), corresponding the the

xi · y operation on line 4 of Algorithm 5.4. This 32× 1024-bit multiplication is performed

as 32 separate single-precision multiplications. The power difference occurs when xi = yj

in the case of a squaring, as the equality isn’t present (other than random chance) in the

case of a multiplication.

A closer examination actually reveals 33 peaks, as well as a number of smaller peaks at

the beginning of the trace. Figure 5.3(b) highlights the section which corresponds to the

first loop of the Montgomery multiplication at the beginning of the trace in Figure 5.3(a).

The initial large peak of Figure 5.3(b) at ≈ 0.03ms is actually due line 3 of Algorithm 5.4

where x0 = y0 in the first round. The multiple smaller peaks can then be attributed to

the re-use of u0 on line 4 as u0 = x0 · y0 ·N
′ mod b.
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(b) Initial Montgomery multiplication loop.

Figure 5.3: Difference of means trace.

5.5.3 Template attack

To perform the template attack, the peaks from Figure 5.3(a) were used to build the

templates. As there are only two class labels, i.e. multiplication and squaring, taking the

absolute magnitude of the peaks is the same as the sost method as outlined in §3.3.3.

Prior to feature selection, the traces were normalised by taking the z-scores of the traces.

Using the full set ofm = 18 k training traces, the error rate of classifying the multiplication

and squaring test traces is given in Figure 5.4(a).
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Figure 5.4: Error rate for 1024-bit Montgomery multiplication.

It can be seen that very low error rates are achievable for the attack on this particular

device. The five different classification methods from §3.3.6 are used, distance again

simply denotes the Euclidean distance. The error rates are given as a function of the
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number of features retained, with the features sorted according to the height of their

absolute peaks. There are two peaks that can be utilised to build the templates for each

single-precision multiplication on line 4 of Algorithm 5.4 which leaks information, along

with the extra peaks from the initial round. It is interesting to note that for the Euclidean

distance and reduced LDA methods, where no covariance matrix and a shared variance

vector respectively are used, that the error increases with the number of features when

the number of features is & 70, which roughly corresponds to the two points per peak.

These particular features have lower absolute difference peaks hence contribute less to

the classification, or might not be leakage points at all. QDA gives the most accurate

classification results as the large training set coupled with the small number of classes,

|K| = 2, allows the mean vector and covariance matrix to be accurately estimated for both

classes. QDA outperforms LDA here as the covariance matrices are no longer equal due to

the small peaks from the partial products in the initial Montgomery multiplication loop.

To check if the acquisition of a greater number of traces for template building would be

beneficial, the training and testing error rates are plotted as a function of the training set

size in Figure 5.4(b). The z-score normalisation was again re-calculated on each iteration

only using the training trace sub-set, which themselves were randomly selected out of the

full training set. QDA was used to classify the data while retaining 100 features. As

can be seen both the training and testing error are quite low and stable, indicating extra

training samples won’t greatly improve the results.

Figure 5.5: Log-likelihood comparison for multiplication and squaring operations.

As it is a binary classifier and amplified template attacks are not being considered (i.e.
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the operation needs to be determined from a single trace), there is no need to compute

the probability of each operation when classifying. Hence in the results of Figure 5.4

only the log-likelihood is considered, with the operation being assigned according to the

template which returns the maximum log-likelihood. To visualise the overall classification

performance, the difference between the log-likelihoods for both operations are given as

a histogram in Figure 5.5, coloured according to their actual class. For each test trace,

the log-likelihood of it being a squaring was subtracted from the log-likelihood of it being

a multiplication. Hence, if the result is positive it is more likely to be a multiplication,

and if negative then it is assigned to be a squaring. The histogram in Figure 5.5 gives the

distribution of both operations, with 0 as the decision boundary. This plot also shows that

the error (i.e. the blue occurances less than zero or the red greater) is evenly distributed

between both operations, with no bias towards classifying one of them with a greater

accuracy.

Effect of Multiplier Length

The low classification error rate of the testing traces in the previous section benefits

from the large number of features that are available to build templates. For the 1024-bit

Montgomery multiplication example, on the arm7 microprocessor architecture with a 32-

bit embedded multiplier, a total of 33 single-precision multiplications will leak information,

as well as the multiple smaller peaks. A 1024-bit multiplier such as this would be used

for the multiplication or squaring operation in the loop of Algorithm 5.1 in a typical RSA

encryption with 1024-bit keys. For longer keys, the number of available features should be

even greater, e.g. for a high security 4096-bit exponent, there will be 129 multiplications

available to characterise a Montgomery multiplication on this platform. Therefore, as

previously noted for the same reasons in [47, 220], long keys should counter-intuitively

provide less security against this attack as there are a greater number of single-precision

multiplications to model.

Conversely, this also means that for shorter exponent lengths that there is less information

leakage hence they are harder to break. While RSA exponents should obviously never be

set less than 1024-bits, and should be set to at least 2048-bits for any new implementations,

ECC provides equivalent security for much smaller bit-lengths. For example a 1024-bit

RSA key and a 160-bit ECC key, both have approximately the same security against

known mathematical attacks, which is computationally equivalent to brute forcing 80-

bits of a symmetric cipher key. While for ECC the Montgomery multiplication is used
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to calculate the group operation rather than the main addition chain as in RSA, it is

included here to see how the multiplier bit-length affects the attack, while a full attack on

a scalar multiplication is subsequently given in §5.7. For an wide-ranging comparison on

the required key lengths for various cryptographic algorithms see [83].

The attack is re-run against a 160-bit Montgomery multiplication using exactly the same

acquisition settings, post-processing and template training parameters. There are now w =

5 words in Algorithm 5.4, leading to 6 single-precision multiplications that can be utilised

to generate the templates with. As can be seen in Figure 5.6(a), the error rate when using

QDA has now risen to just over 0.062% up from 0.012% from the longer multiplication

before, which is also clear from the greater overlap in the histograms of the log-likelihood

difference plot in Figure 5.6(b). As before there are two points per multiplication that are

efficient to construct the templates with and, as can be seen in Figure 5.6(a), retaining

& 20 features leads to a higher error rate for classification methods which don’t take

into account the covariance matrix, i.e. least-squares, and reduced LDA/QDA. Taking

into account the fewer single-precision multiplicatoins, this is similar to the 1024-bit case

in Figure 5.4(a) where when retaining & 70 features an increase occurs for the same

classification methods.
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Figure 5.6: 160-bit Montgomery multiplication analysis.

An important point to note however is that although the error rate is higher for elliptic

curve size multiplications, the elliptic curve doubling and addition group operations will

contain many of these prime field multiplications. This is explored in more detail in §5.7.
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Building Templates from a Single Multiplication

It was suggested in [93] that when performing TAs against asymmetric algorithms on an

embedded device, an identical device might not be required for characterisation. If the

public verification function executes using the same code, which is a reasonable assump-

tion, then templates could be built using power traces from these operations instead. This

is a significant weakening of the attacker capabilities both in terms of having an open

identical device to program, as well as eliminating the effect of the power consumption

variation between devices. Another possibility is that an attacker might be able to access

the multiplier in a non-cryptographic setting and have the ability to build templates on

just a single, single-precision multiplication. It is this scenario that is now examined.

Using the 1024-bit Montgomery multiplication traces from before, the 33 multiplications

which leak information are extracted. While cross correlation using the difference of means

peaks is used here to extract the required multiplications, in a real-world attack the power

traces could just as easily be extracted without this information due to, either the regular

nature of the algorithm, or correlating with the known input data of whatever function

is being used to find the multiplication location. This time, rather than utilising all 33

single-precision multiplication leakages, just one is randomly selected from each of the

m = 18 k training samples. The rest are discarded to allow comparison of the results with

the previous experiments by keeping the same training set size. Once again 2 k testing

traces are used, with the single-precision multiplications extracted in the same manner.

All 33 of these are retained however.

To build the templates, all 50 points of the reduced trace multiplication are retained and

normalised by taking the z-score. The templates are then applied to each of the single-

precision multiplications of the testing traces individually. The classification results of

Figure 5.7 are for taking an increasing number of multiplications into account. Where

only a single multiplication is used, the attack is barely better than randomly guessing the

operation. However as the number of multiplications is increased comparable performance

to building templates with the entire trace length is achieved, even though the same

template has been used to classify every multiplication. The error rate from building

templates on the entire trace from §5.5.3 is given in red for comparison.

As expected, the greater the number of multiplications utilised, the lower the error rate

although there are some exceptions which adversely affect the error. When all the mul-

tiplications are used, the error rate is quite similar to the original results from using the

full trace length giving credence to the hypothesis that, where possible, non-cryptographic
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Figure 5.7: Classification using a single multiplication.

functionality of a device could be used to build templates. Although this is a somewhat

contrived experiment, it gives a useful insight into the portability of the attack, as well as

providing a nice visualisation as to how a longer key helps rather than hinders the attack

as explained previously, as well as providing the basis for an interesting avenue of future

research.

5.6 Application to Secure RSA Implementations

The attacks to date show how to distinguish between a multiplication and a squaring

operation, with various examples for a single Montgomery multiplication of different word

sizes. The implications of this for secure RSA implementations is now discussed.

As mentioned previously, if an RSA exponentiation is straightforwardly implemented us-

ing the left-to-right binary exponent algorithm as given in Algorithm 5.1, the key can be

trivially read out from a power or electromagnetic emanation trace due to the different

power profile of the multiplication and squaring operations. The most straightforward

method to counteract this is through the use of the square & multiply always algorithm,

where the multiplication is always performed regardless of the bit value, and discarded

if not required. This obviously has a performance disadvantage as on average half the

performed multiplications are redundant. However it is also susceptible to Safe Error

[232] type attacks where an attacker can introduce faults during a multiplication opera-

tion. Given a correct/faulty exponentiation pair, it can be determined if the operation

where the fault was injected was redundant allowing the key bit to be determined. Hence
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regular algorithms such as the Montgomery powering ladder [113] where the order of op-

erations is the same regardless of exponent, are preferred. Greater information on regular

exponentiation algorithms can be found in [110, 112]

Another option is to remove the difference between a squaring operation and a multipli-

cation. This means that, to square a value x, the calculation of x2 mod N is replaced

with x · x mod N rather than using a dedicated squaring algorithm which is often the

case in resource constrained environments. This idea is put forward in [44], where two

instructions are defined as side channel equivalent if they are indistinguishable through

side channel analysis, and algorithms are termed side channel atomic if the algorithm can

be broken down into indistinguishable blocks. This principle, applied to the square and

multiply exponentiation in Algorithm 5.1, is demonstrated in Algorithm 5.5. This algo-

rithm would prevent an attacker from being able to distinguish a multiplication from a

squaring operation by simply observing the difference in a side channel, since an optimized

squaring operation is not used.

Algorithm 5.5: Side channel atomic square and multiply algorithm.

Input: N , x < N , e ≥ 1, b the binary length of e (i.e. 2b−1 ≤ e < 2b)

Output: A0 = xe mod N

1 A0 ← 1; A1 ← x; i← b− 2; k ← 0 ;

2 while i ≥ 0 do

3 A0 ← A0 ·Ak mod N ;

4 k ← k ⊕ bit(e, i) ;

5 i← i− ¬k ;

6 end

7 return A0

If RSA is implemented in a side-channel atomic manner following Algorithm 5.5, typically

using Algorithm 5.4 or a variant to implement to multiplication step, recovering the secret

exponent is equivalent to distinguishing between the multiplication and squaring opera-

tions hence side-channel resistance cannot be assumed. However, when implementing a

cryptographic algorithm on a device that is potentially vulnerable to side channel analysis,

one would typically include other specific countermeasures, in conjunction with side chan-

nel atomicity, to prevent an attacker being able to derive information on cryptographic

keys.

For RSA this would typically mean implementing the blinding countermeasures, such that

the input message and exponent are randomised on every execution, following the blind
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signature scheme [43]. These countermeasures modify the exponentiation algorithm such

that the values being operated on at a given point in time cannot be predicted by an

attacker. Given that the Hamming weight leakage model as utilised above is based on

the number of bits being manipulated at a given point in time, these countermeasures

randomize the bitwise representation of all the variables being manipulated. For instance,

to implement a function to compute a RSA signature ς = ϕ(m)d mod N , where m is the

message, d the secret exponent, and ϕ an appropriate padding scheme such as PKCS #1

v2.2 [129], each variable would be modified with a random value as shown in Algorithm 5.6.

This is referred to as blinding since an attacker is unable to determine the values being

manipulated at a given point in time, and different intermediate values would be computed

for two instantiations of the same signature.

Algorithm 5.6: Blinded exponentiation.

Input: m, d,N , ϕ a padding function, φ Euler’s Totient function and non-zero random

values ri, for i ∈ {1, 2, 3}.

Output: ς = ϕ(x)d mod N .

1 m′ ← ϕ(m) + r1 N ;

2 N ′ ← r2 N ;

3 d′ ← r3 φ(N) + d ;

4 ς ′ ← µ(m)d
′

mod N ′

5 return ς ′ mod N

The addition of r1N to ϕ(m) provides a redundant representation of ϕ(m) modulo N

and is referred to a message blinding. Given that ϕ(m) + r1N ≡ ϕ(m) mod N , and

this will remain true for all the intermediate states during the execution of the algorithm,

the computation should not take place in the set of invertible elements (Z/NZ)∗ (where

Z/NZ = {0, 1, . . . , N − 1}) since the blinding would be removed. The bit length of the

modulus is therefore increased by multiplying it by a random value so that the computation

takes place in (Z/N ′
Z)∗ = (Z/r2NZ)∗ instead. The values held in memory at a given

point during the computation of the exponentiation cannot be predicted without knowing

these random values. However, the values held in memory at a given point in time would

represent the same value in (Z/NZ)∗ for a fixed exponent.

The bitwise representation of the exponent is also modified by replacing the exponent

d with r3 φ(N) + d, where φ is Euler’s Totient function, and is referred to as exponent

blinding. Any value raised to a multiple of φ(N) will be equal to itself in (Z/NZ)∗, i.e.

it is an identity function. Adding a multiple of φ(N) to the exponent changes the bitwise

representation of the exponent without changing the result of its use in (Z/NZ)∗.
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One would typically choose the values of ri, for i ∈ {1, 2, 3}, to be at least 32 bits. As

noted in [199], one would also want the bit length of r2 to be longer than the longest

run of zeros in the bitwise representation of φ(N) so that all the bits of d are blinded.

Furthermore, some side channel attacks could potentially derive an exponent if the bit

length of these random values is too small [48].

When implementing a TA as described on the output of the multiplication operation, the

use of message blinding aids an attacker as it randomises the bitwise representation of the

values being operated on by the exponent. This helps an attacker since the values being

operated on will be random and uniformly distributed and any values set to a constant

will be randomized, e.g. the PKCS padding scheme sets parts of its output bytes to fixed

values. The increase in the bit length of the modulus will also mean that the Montgomery

multiplication will require at least one more iteration of the main loop, providing more

single-precision multiplications that can be analysed by an attacker. As illustrated in

Figure 5.7, the more single-precision multiplications available to build templates with, the

higher the success rate of the attack.

The use of exponent blinding randomizes the bit wise representation of the exponent

and therefore randomizes the sequence of multiplication and squaring operations that are

computed. An attacker would be unable to take several acquisitions in an amplified TA

type attack to improve the quality of classification since the operation being computed at a

given point in time during the execution of the algorithm will vary from one instantiation

to another. This means that an attacker has to determine whether an operation is a

multiplication or a squaring operation from one single acquisition. From a practical aspect,

an attacker also needs to acquire a single trace that includes the power consumption during

an entire exponentiation to attempt to derive the exponent used, and therefore recover a

value equivalent to the exponent d. Due to the computation time of RSA, it is a non-trivial

issue to record a power trace of this length while retaining a high enough sampling rate.

Alternatively some synchronous sampling method such as the low-cost proposal in [167]

could be used to reduce the memory and storage requirements.

The TA results from the previous section can distinguish between 1024-bit multiplications

and squarings with an expected error rate of only 0.012, so for a given acquisition of Algo-

rithm 5.6 on an arm7 microprocessor, an attacker could expect to correctly identify ≈ 99%

of the bits of an exponent. The incorrect classification of operations can be corrected to a

certain extent, since the Hamming weight of the entire exponent can be computed by ob-

serving the total number of operations, and that a multiplication will always be preceded,
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and followed by, a squaring operation in a side-channel atomic implementation such as

Algorithm 5.5. One approach to conducting this analysis is through the use of hidden

Markov models (HMMs) as suggested in [86, 116, 172]. Overall the attack highlights the

importance of using regular exponentiation algorithms such as the Montgomery Ladder

[113] which perform the same sequence of operations regardless of the input hence, distin-

guishing between a multiplication and squaring operation does not leak key information.

Further countermeasures are examined in §5.10.

5.7 Attack on ECDSA

The attack is now extended to recover the secret multiplicand from an ECC scalar multi-

plication. Unlike previously where the training and testing traces were of the same format,

i.e. the both consisted of a single Montgomery multiplication, here templates are built for

point doubling and addition operations, while the testing traces are a full ECDSA power

trace. The individual point operations must first be extracted, and the same templates

then used to determine each operation. The ECDSA algorithm is given in Appendix B,

however it suffices to say here that the scalar operand k must be random for each signa-

ture so that only a single trace is ever available to recover the secret, similar to exponent

blinding in the case of RSA. Where k is not always random, it leads to a complete break

of the system which is what happened in the Sony PS3 console attack [38]. Hence only

the ECC scalar multiplication component of ECDSA is of interest here.

In practice a combination of countermeasures is used to increase the level of side-channel

resistance. To protect the arm7 microprocessor implementation against side-channel at-

tacks, a number of countermeasures are also implemented. Randomised projective co-

ordinates are used where the base point is blinded by replacing the Z-coordinate with a

192-bit random value and modifying the x and y-coordinates as required on every exe-

cution. Projective coordinates [229] are an efficient implementation method to avoid the

need for the costly point inversion operation when computing point doubling and addition

by changing the point representation from (x, y) to (X,Y, Z). The introduction of Z means

that the points are no longer unique hence any Z value can be chosen to calculate x = X
Z

and y = Y
Z
. A side channel atomic left to right binary multiplication algorithm is used

following Algorithm 5.5 where squarings are replaced by doublings, and multiplications

by additions. Unified group operations [35] as described for Edward’s Curves in [24] and

given in Algorithm 5.7 are used. Blinding of the base point P as suggested in [52] is not

implemented, however as no knowledge is assumed of P this does not affect the attack.
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Likewise, randomisation of the scalar multiplicand [52] similar to the exponent blinding

for RSA is unnecessary as the scalar is only used once regardless.

Algorithm 5.7: Edwards curve → unified addition formula.

Input: Input projective coordinate points {X1, Y1, Z1},{X2, Y2, Z2}

Output: Output projective coordinate point {X3, Y3, Z3}

1 A← Z1 × Z2 ;

2 B ← A2 ;

3 C ← X1 ×X2 ;

4 D ← Y1 × Y2 ;

5 E ← D × C ×D ;

6 F ← B − E ;

7 G← B + E ;

8 X3 ← A× F × ((X1 + Y1)× (X2 + Y2)− C −D) ;

9 Y3 ← A×G× (D − C) ;

10 Z3 ← C × F ×G ;

11 return {X3, Y3, Z3}

This TA is considerably different to that presented against ECDSA previously in [97, 148]

as no knowledge of intermediate values is required, hence the use of point blinding or

randomised projective coordinates has no bearing on the outcome of the attack as a

hypothesis is not being made on intermediate values. Similarly, the previously mentioned

TA against ECDSA by De Mulder et al. [157] targets the modular inversion, and the attack

by Fouque et al. presented in [74] looks to defeat exponent randomisation by attacking

the randomisation steps, rather than attacking the elliptic curve operation itself.

The acquisition setup for these traces was slightly different, with the traces recorded at

the University of Bristol by Dr. Mike Tunstall as due to the execution time of the ECDSA

operation the memory of the oscilloscopes available were too small. The same model of

arm7 microprocessor board as used previously was targeted again, however this time the

sampling rate was reduced to 125MSs-1, with the resultant traces containing ≈ 185M

points. In total 100 traces were recorded for testing the classification error. For building

the templates, 4.5 k training traces of each of the unified point doubling and addition

operations were recorded (i.e. m = 9k), with these traces being ≈ 640 k points long. The

traces were filtered as before, however to compress the traces the individual clock cycles

had to be initially extracted using the inverse fast Fourier transform (FFT) as suggested

in [65] before taking the maximum point to prevent de-synchronisation of the traces as

explained in §2.10.3.
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5.7.1 Attack Procedure

A sample trace of the entire ECDSA operation is given in Figure 5.8(a), while in Fig-

ure 5.8(b) the mean of the unified group operations in the training set is plotted. Due to

the scale of the ECDSA trace it is difficult to discern any information from Figure 5.8(a)

and it is simply provided for reference. It is worth pointing out that the end of the trace

around ∼ 1.3 s has a distinctly different power profile than the rest of the trace. This is

where the hash computation and multiplication/inversion steps as given in Appendix B

are performed. A quick sanity check can be performed by checking that the length of

time the point operation takes roughly corresponds to the length of time for the ECDSA

algorithm, i.e. 192 × 4ms × 1.5 = 1.15 s ≈ 1.3 s where 192 is the bit length b, 4ms is

approximately the length of time of the unified point operation (as can be seen on the

x-axis in Figure 5.8(b)), 1.5 assumes that half the bits are 1 (hence the group operation is

performed twice), and 1.3s is approximately the length of time for the scalar multiplication

section of the trace in Figure 5.8(a). This is only a rough approximation, however suffices

for checking that the traces represent what is expected.
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(a) Full ECDSA power trace.
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(b) Mean unified elliptic curve point operation.

Figure 5.8: ECDSA target & training power traces.

To extract the group operations from the trace, the cross correlation between the ECDSA

traces and the mean unified group operation as shown in Figure 5.8(b) was calculated for

each of the 100 testing traces individually. A randomly selected cross correlation plot is

shown in Figure 5.9(a). Note the cross correlation values were scaled such that the largest

value is equal to 1. For the particular trace the correlation plot is shown for, the 192-bit

key has a Hamming weight of 87 which, ignoring the msb, gives 275 group operations,

each of which corresponds to a single peak. A zoomed section of the trace is shown in
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Figure 5.9(b) for clarity. No peaks occur after ∼ 1.3 s where the power consumption in

Figure 5.8(a) is distinctly different, again validating what was expected. On a practical

note, the group operations can be automatically extracted more reliably when the cross

correlation is performed prior to trace reduction at the cost of a longer running time and

greater memory requirements, hence extraction of the group operations from the ECDSA

trace is recommended prior to trace compression. This likely holds true when extracting

operations for other attacks also.
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(b) Zoomed cross correlation trace.

Figure 5.9: Unified group operation extraction.
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Figure 5.10: Template building of unified group operations.

To build the templates, features were extracted as before by examining the difference of

means trace of the unified operation which is plotted in Figure 5.10(a). The peaks again

indicate the points in time where the Hamming weight of the output of a single-precision

multiplication differs depending on if the inputs are equal. While the training set traces
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represent point addition and point doubling traces, the underlying leakage is still that

of field multiplications or field squarings. A different approach to selecting the number

of features to build the templates with is used here, as the training and testing traces

no longer directly correspond with each other like previously. Rather than estimating

the error on the test set for an increasing number of features, 10-fold cross validation

is used on the training set to select the number of features to use. The templates are

then built across the entire training set for this number of features. This cross validation

error is shown in Figure 5.10(b). The traces were normalized by taking the z-scores of

the individual cross validation training sets separately, and QDA was used to classify the

examples. It is clear from Figure 5.10(b) that when too many features are retained that

the training error continues to decrease while the cross validation error increases hence

the templates are over fitting the training data. An attacker would expect that retaining

30 → 40 features should give the best classification for these particular traces as this is

what minimises the cross validation error.

When classifying the extracted group operations from the test ECDSA traces however,

the mean error rate was found to be significantly higher at ≈ 0.3. This mean error rate

was calculated by classifying all group operations from all 100 test traces individually and

averaging, hence it is an operation error rather than a bit error. A plot of the error rate

as a function of the number of features retained is given in Figure 5.11(a) where it is clear

that using in the region of 12 features gives considerably better results than when using

the 35 predicted by cross validation. A closer examination of this result reveals that the

12 features are all in two large peaks of Figure 5.10(a), where each peak is actually 6

distinct peaks. Using only these 12 features results in a mean error rate of 0.113 which

is closely aligned to the expected cross validation test error for this number of features.

The distribution of the mean error for each of the 100 individual ECDSA traces is given

in Figure 5.11 to estimate how accurately an adversary could recover the entire scalar

operand. For a 192-bit scalar multiplication, an attacker would expect to incorrectly

classify 192× 1.5× 0.113 = 32.54 point operations per trace. Hence to successfully forge

an ECDSA signature, these mis-classified bits at unknown locations must be corrected

somehow.

5.7.2 Hand-tuning the Results

The use of the test error in Figure 5.11(a) to select the number of features to use can

be viewed as somewhat cheating as post attack information is required, i.e. an attacker
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Figure 5.11: Analysis of testing error rates.

won’t have the correct secret to verify the results hence allowing the choice of the best

parameters. However the knowledge that the ratio of point doublings to additions will be

approximately 2 : 1 can be used to manually adapt the selection of training parameters

according to the test probabilities. As an example, in Figure 5.12(a) the training traces

were classified using the templates they built and a histogram of the probability of each

trace being a doubling operation is shown. As it is a binary classification system, the closer

to zero a probability is, the higher the chance of it being a point addition. As the number of

point doubling and addition training traces are evenly distributed in the training set, there

is a symmetry to the graph as the operations are largely classified correctly. In contrast,

Figure 5.12(b) shows the classification distribution of the operations extracted from all the

ECDSA trace group operations when 35 features are retained following the cross validation

results. Here there is a very clear bias towards classifying doubling operations which

indicates the templates are a poor fit and don’t generaise well. In contrast Figure 5.12(c),

where 12 features are used which is known to provide the lowest error rate, the distribution,

although still biased towards classifying point doublings, is a much closer to the expected

ratio of 2 : 1. It must be acknowledged that this is a somewhat ad-hoc method of refining

the template parameters, however is likely to be applicable to many scenarios where the

classifier can be hand tuned.

A closer examination of the error rates in Table 5.1 looks at the misclassification differences

between point doublings and additions for both the training and testing traces, where 12

features are retained. Its interesting to note that while the errors are evening distributed

for the training set, there is a large bias towards classifying the test operations as point

doublings, hence reducing the point doubling error rate compared to the training set and
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(a) Training distribution. (b) Testing distribution - 35 fea-

tures.

(c) Testing distribution - 12 fea-

tures.

Figure 5.12: Distribution of point doubling & addition classification probabilities.

Training Testing

Doubling 0.1156 0.0473

Addition 0.1153 0.2441

Table 5.1: Comparison of point operation errors.

increasing the point addition error rate. This is a somewhat trickier problem for an attacker

as while the traces under examination here have this effect, there is no reason to assume

that a set from a different target platform (or even a set on the same target platform

using a different group operation formula) will have a similar effect. Setting the decision

boundary larger than 0.5 will rebalance the error rates, but without prior knowledge an

attacker will simply be making random choices as to how to proceed. One scenario where

this might apply could be where an attacker is looking to break many ECDSA signatures,

each with a different ephemeral scalar operand. After performing an attack on the first

trace where considerable effort might be required to recover the secret, this information

could be used to further refine the key recovery stage. Iteratively updating the template

model in a reinforcement type learning manner should lead to greater accuracy hence a

faster correction stage, i.e. the greater the number of elliptic curve multiplicands recovered,

the faster it is to recover them.

5.7.3 Correcting Scaler Multiplicand Bit Errors

As mentioned previously, the error rate can be corrected somewhat due to the fact that two

consecutive addition operations cannot appear. HMMs [63, Ch. 3] were used to perform

this correction as suggested in [86, 116], however a slightly different approach is taken here.

Rather than the hidden states representing key bits as suggested in the previous work, the

hidden states here represent doubling and addition operations directly. In [116] emissions
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correspond to double or double-add, which is impractical for this analysis as it only allows

correction of errors between those operations. A more realistic approach is presented

in [86] where an extra variable is introduced to keep track of the number of operations

analysed allowing for distinguishing errors between point doubling and point additions

directly. This approach can be simplified here however due to the extra information

available due to our template training data set. By classifying the training set itself, the

emission probabilities of the HMM can be estimated, hence removing the extra complexity

of the tracking variable required in [86].

To generate the emission probabilities of state 0, i.e. the doubling state, a template is

first built for the doubling operation using the available traces. These doubling traces are

then classified using that template, with each trace being assigned a probability that it is

a doubling. The mean, and one minus the mean, of these probabilities are then used as

the emission probabilities for that state. The same procedure is repeated for the emission

probabilities of the addition state using the addition traces. Note that ideally, the traces

used to generate the emission probabilities would be separate to those used to build the

templates. A diagram of the HMM for this particular attack is given in Figure 5.13. These

HMM parameters can be viewed as extra parameters to train in the profiling stage, with

the emission probabilities dependent on the data under consideration. This slightly reduces

the overall error rate from 0.1131 to 0.1084, with a similar distribution to Figure 5.11(b).

Note that this method still does not make full use of the available information. The

classification probabilities of the predicted test operations go unused and the integration

of this information into the HMM could be an interesting topic to explore.

0

1

0.5

0.5

1

1 | 0.8332

0 | 0.1668

1 | 0.16750 | 0.8325

Figure 5.13: Hidden Markov model parameters.

To correct remaining key bits after the template attack, a few options are available. Where

the base point and scalar multiplication output are known, a brute force search can be

attempted. Note the output template probabilities give a natural search order to the
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key bits. A lattice based attack was also proposed in [193] where if a few bits of the

ephemeral nonce from the elliptic curve scalar multiplicands from several signatures was

available, the secret key can be recovered. Lattice based attacks require correct nonce

bits to work however. The work in [157] takes into account the probabilistic nature of

templates using Bleichenbacher’s Solution [31] when correcting ECDSA ephemeral scalar

multiplicand bits.

5.8 Attack on Hardware Montgomery Multiplier

The attacks to date have been all been against software algorithms running on the arm7

microprocessor. This is a suitable target device as it leaks, like many other microproces-

sors, a Hamming weight approximation of the values being manipulated. Hence it is worth

exploring how the attack would fare against a hardware platform such as an FPGA where

the leakage would approximately follow the Hamming distance model.

A 1024-bit version of the coarsely integrated operand scanning (CIOS) Montgomery mul-

tiplier [124] algorithm as given in Algorithm 5.8, was implemented with the architecture as

given in Figure 5.14. The target device was the Sasebo-G evaluation board with a Xilinx

Virtex-II FPGA, and 10 k each of the multiplication and squaring traces were taken from

the circuit while running at 2MHz, while recording the power consumption using a Pico-

Scope 3400 oscilloscope with a sampling rate of 250MSs-1. Algorithm 5.8 as implemented

requires w (2w+6)+2 clock cycles to complete. The radix b is set according the to size of

the single-precision multiplier, which is set to 32-bits in this case, and w = ⌈1024/b⌉ = 32.

While the choice of 32-bits is to allow for a more direct comparison with the software

results from the arm7 microprocessor, it must be noted that this is not an ideal choice

for the underlying FPGA device. A dedicated 18-bit signed embedded multiplier block

is available on the Virtex-II device [231], so for the choice of 32-bits cascaded multiplier

blocks must be used. As no pipe-lining is present between the embedded multipliers this

is a suboptimal use of resources, however it is adequate for the evaluation purposes here.

The CIOS architecture was chosen from the available options in [124] as the additions

could be scheduled to allow the use of a shift register rather than random access memory

(RAM) as shown in Figure 5.14.

The traces were filtered using a 100-point bandpass FIR filter with a Blackman window

and cut-off frequencies of 100 kHz and 9MHz, and the traces were reduced to a single

point per clock cycle by selecting the maximum point per clock. A sample multiplication
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Algorithm 5.8: CIOS Montgomery product.

Input: m = (mn−1, . . . ,m1,m0)b, x = (xn−1, . . . , x1, x0)b, y = (yn−1, . . . , y1, y0)b with

0 ≤ x, y < m, R = bn, gcd(m, b) = 1 and m′ = −m−1 mod b.

Output: A← x y R−1 mod m.

1 for i = 0 to n− 1 do

2 C ← 0 ;

3 for j = 0 to n− 1 do

4 (C, S)← aj + xj yi + C ;

5 aj ← S ;

6 end

7 (C, S)← an + C ;

8 an ← S ;

9 an+1 ← C ;

10 C ← 0 ;

11 t← a0 m
′ mod R ;

12 (C, S)← a0 + tm0 ;

13 for j = 1 to n− 1 do

14 (C, S)← aj + tmj + C ;

15 aj−1 ← S ;

16 end

17 (C, S)← an + C ;

18 an−1 ← S ;

19 an ← an+1 + C ;

20 end

21 return A

trace is given in Figure 5.15(a) for reference, and the difference of means for all traces is

given in Figure 5.15(b).

Three distinct peaks are visible in the difference of means trace in Figure 5.15(b), two at

the beginning and one at the very end. A delay was implemented between reading and

writing data from the serial port, and execution of the multiplication to ensure that any

leakage is from the multiplication itself rather than the communications which can have a

significant effect on the power due to driving the loads of the pin-outs. Using the Xilinx

simulation tools to determine exactly where the peaks occur, the first two peaks can be

attributed to line 4 of Algorithm 5.8 when i ≡ j ≡ 0 and i ≡ j ≡ 1 respectively. The

third peak can be attributed to the last loop of line 19 where the output of the second

multiplication loop is input to the shift register. While this leakage point seems to be at
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Figure 5.14: CIOS Montgomery product architecture.

odds with what is expected, closer examination reveals that the control signal for shift

register a also controls shift register y, and this final multiplication step results in x0, y0

once again being routed though the embedded multiplier blocks although the output is

not used. Unlike when targeting a software implementation, a peak is not present for

for every time i = j however. This is likely due to the fact that the output register a

has to be cleared after each full multiplication for the correct accumulation of the single-

precision multiplication outputs hence it is only at the start that the Hamming weight is

leaked. While this does not fully explain the leakage of the final peak, it is likely to be

something similar due to the resetting of the circuit states back to their original values. It

is worth pointing out that the leakage is indeed due to the output Hamming weight of the

multiplier and not the bit transitions within the multiplier unit as described in [4, 223],

as if the latter was the reason for the leakage peaks would occur on line 4 of every loop

iteration when i = j.

Templates were built with 15 k traces randomly selected for the training set out of the set

of out of the 20 k, with the remaining 5 k allocated for testing. As before, the templates

were built by taking the z-scores of the traces, using the difference of means to select points

of interest. Cross validation is not used here as with the ECDSA attack, as the training

and testing traces are drawn from the same set. The expected classification error when

using QDA for this particular setup is given in Figure 5.16(a) as a function of the number

of features retained. When compared to the results from the arm7 microprocessor, the
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(b) Difference of means trace.

Figure 5.15: CIOS Montgomery multiplication architecture trace examples.

error rate is much higher at ≈ 0.37, and the number of features that minimises the error is

much less due to the fewer number of peaks available to build the model. In Figure 5.16(b)

the error is plotted as a function of the training set size to see if a larger training set would

reduce the error rate however both the training and test errors are similar for a training

set size greater than approximately 10 k, hence a larger training set will unlikely decrease

the error.
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(a) Error rate as a function of retained features.
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Figure 5.16: Error rate for CIOS Montgomery multiplication architecture traces.

Despite the relatively few leakage points due to the Hamming weight difference under con-

sideration, templates can still be built to distinguish between multiplication and squaring

operations, albeit with a larger error rate than when attacking software implementations.

Hence in the context of key recover from an elliptic curve cryptosystem the attacker might

require multiple acquisitions with the same scalar multiplicand to compensate. Other
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options to improve the error rate could be to adopt a different strategy for feature extrac-

tion such as examining non-linear combinations of the data. The most effective method

however would be to take a more targeted approach to building templates. Currently

no knowledge of the underlying circuit architecture is assumed and the general approach

used is favourable to attacks against software implementations, however if an adversary

had access to source code or a bit file a more detailed template model could be built based

on bit transitions or a custom power model.

5.9 Application to Symmetric Key Algorithms

While the nature of asymmetric algorithms such as RSA and ECC encryption is suited

to being attacked by distinguishing multiplications and squarings, it can also be applied

against symmetric algorithms where multiplications are required. While it might not be

the most efficient method to recover a key for a given number of traces, there could be

scenarios in which building templates based on intermediate values is not feasible, for

example due to applied countermeasures.

Taking AES as an example, the MixColumns operation is in fact polynomial multipli-

cation modulo an irreducible polynomial. This involves byte-wise multiplications, with

the required operands being 2 and 3. If AES is implemented in this manner then the

templates could be built to determine when the input to the MixColumns is one of these

values which would allow key extraction in a known plaintext (or ciphertext) scenario. In

an 8-bit device it is likely look-up tables would be used, however in [25] an efficient method

to implement the MixColumns on 32-bit platforms using the multiplier is presented. As

this involves 32-bit words a chosen plaintext adversarial model is likely more appropriate.

Likewise the block cipher International Data Encryption Algorithm (IDEA) [130] also

requires multiplications as shown in Figure 5.17. The algorithm has a 64-bit state with

128-bit keys, where each data path of Figure 5.17 is 16-bits wide. A chosen plaintext

attack where a squaring can be distinguished from a multiplication would trivially return

sub-keys k1, k4 with at most 216 inputs. The sub-keys k3, k5 can be jointly recovered by

varying the input to the modular addition with k3 while holding the other inputs constant.

Once the value that causes a squaring with k5 has been found a search of the 216 × 216

possible sub-keys returns the valid pairs. Sub-keys k2, k6 can be recovered in a similar

manner. Finally sub-keys k7, k8, which are used in the following round, can be trivially

found once the other sub-keys are known.
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Figure 5.17: IDEA block cipher round function.

5.10 Countermeasures

The presented attack highlights the importance of using regular exponentiation algorithms

such as the Montgomery Ladder [113], square only exponentiation for RSA [49] or add

only scalar multiplication for ECC [110]. An in-depth look at regular exponentiation

algorithms can be found in [110, 112]. It has been shown here that commonly used coun-

termeasures for RSA or ECC cryptosystems such as randomisation of the message/base

point, randomisation of the exponent/scalar multiplicand, side-channel atomic/unified al-

gorithms or the restriction of exponent/scalar use to a singe case, can be easily defeated if

templates can be built to distinguish between single-precision multiplication and squaring

operations.

The authors in [4] also attack ECC by distinguishing between squarings and multiplica-

tions. While they propose a method to recover the scalar operand when the Montgomery

ladder algorithm is used, the attack requires the use of a special elliptic curve point and

the attack does not generalise. Many attacks exist against regular algorithms however, and

all regular exponentiation algorithms were shown to be potentially vulnerable to collision
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attacks in [90]. This highlights the difficulty of protecting devices against SCAs due to

the varied adversarial threats.

A countermeasure proposed in [48] was to randomise the internal order of the single-

precision multiplications in a long integer multiplication. For the Montgomery multipli-

cation outlined in Algorithm 5.4, this would involve randomising the order that xi y was

computed on line 4. This should have a relatively low computational overhead, however

will make an attackers job considerably harder as he now has to determine if one single-

precision multiplication per loop is a squaring. For the arm7 microprocessor, this should

provide a strong level of security as looking at Figure 5.7 the classification rate of a single

multiplication isn’t much better than a random guess.

5.11 Conclusion

In this chapter it is demonstrated that the principle of side channel atomicity is not valid

simply because the same code is executed for a given function for all possible inputs. This

was done by characterizing the difference in expected Hamming weight of the result of a

multiplication and squaring operation given random uniformly distributed inputs to gen-

erate templates, based on previous descriptions of this difference in [10]. These templates

are generated by considering single-precision multiplications rather than multiplications

between multi-precision values.

These templates can be used to characterize multiplications and squaring operations to

determine a private exponent when an RSA signature is generated using Algorithm 5.5.

Previous work in this area [97, 148] has concentrated on building templates on inter-

mediate values (e.g. such as observing where the input value is reused in a left-to-right

exponentiation algorithm) rather than the expected distribution of the result of a given

function.

An advantage of this work over previous work based on the template model originally

proposed in [42] is that an attacker does not need an open identical device to conduct

the attack as demonstrated in §5.5.3. That is, an attacker does not need a device where

all the input and cryptographic keys can be changed to arbitrary values. An attacker

can use an identical device with a known key, or a verification functions that uses the

same operations. Furthermore, the values being operated on do not need to be known, an

attacker just needs to know that the values are random.

The work also applies to elliptic curve scalar multiplication as shown in §5.7. If strongly
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unified formulae such as those defined for Edward’s [24] or Weierstraß curves [35] are used,

then an algorithm equivalent to Algorithm 5.5 can be defined. While the bit length of the

prime field using in ECC is significantly smaller than the bit length of an RSA modulus

there are numerous operations in the prime field for each operation, i.e. the addition and

doubling operation, that could be exploited.

The attack is similar to the Big-Mac attack [219] in that recovery of the secret is due to

determining if an operation is a multiplication or squaring, however it trades a stronger

adversarial model, i.e. an attacker can generate templates, for a more robust attack.

Horizontal CPA [48] also looks to determine if an operation is a multiplication or squaring,

however intermediate values are used to determine the path taken by the algorithm. The

TA described here will also, counter-intuitively, become more effective with longer key

lengths due to the extra single-precision multiplications required, as previously noted in

[220] for similar reasons. This is also true of many of the other related attacks mentioned

in this chapter. Overall this work gives a strong argument for using regular exponentiation

algorithms such as found in [112], rather than, or in conjunction with, side channel atomic

algorithms.
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Chapter 6
Machine Learning Methods for

Side-Channel Attacks

6.1 Introduction

While TAs are the main method of choice for profiled SCA, they are not the only one. SMs

were introduced by Schindler et al. [195] as an alternative method to conduct profiling

attacks based on linear regression. However both TAs (or discriminant analysis) and

SMs assume a Gaussian distribution of the variables. While in the context of SCA this

assumption is often valid, there can be scenarios where it is not so, or where it would be

beneficial for an attacker not to be constrained by such assumptions. Hence supervised

machine learning methods seem a suitable topic for application to profiled attacks.

There is a large body of research in the computer science domain on machine learning

techniques which can be adapted for attacks, much of which pre-dates the topic of SCA

itself. Machine learning as a topic is becoming ever more important in the age of big data

to extract value from the slew of information being constantly generated.

One of the first references of machine learning in the context of cryptography was by

Rivest [191], who explored how advances in cryptanalysis contributed to advances in ma-

chine learning, and vice versa. It was many years then before one of the first uses of su-

pervised machine learning, as opposed to discriminant analysis, in the context of SCA was

used in an acoustic attack against dot matrix printers [14]1. Recently there has been a num-

ber of papers investigating the use of machine learning in the context of “classical” SCA,

1Cluster analysis was used prior to that in an unsupervised machine learning attack by Batina et al. [20]
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such as SVMs [19, 96, 99, 103, 104, 135], random forests [135, 136] and self-organising

maps [135]. Näıve Bayes [63] is a widely used probabilistic classifier which assumes mul-

tiple independent features. It is essentially equivalent to the reduced TA of [145, Ch. 5]

where the off-diagonal elements of the covariance matrix are set to zero, thereby removing

any correlation between the features. Another profiling attack was presented by Sugawara

et al. [209] based on multivariate regression analysis. This is somewhat similar to the SM

as it uses linear regression to model expected power consumption values, however in the

classification step CPA (or any other non-profiling distinguisher) is used for key recovery.

This was also suggested by Whitnall et al. in [226]. Gaussian mixture models (GMM)

as previously used in [134] is another method for which closer examination could lead to

interesting results. There has also been a number of papers investigating unsupervised

methods for non-profiling attacks based on clustering [20, 100], as well as investigating

clustering as a means to improve classical TA [137], however these unsupervised methods

are outside the scope of this thesis which focuses on profiled attack methods. Although

profiling attacks were originally suggested at the 1999 CHES workshop [70], the same

year Kocher et al. first presented power analysis in the Crypto conference, it is only

recently that the large body of literature on widely used machine learning algorithms

have begun to be applied. Hence any general purpose book on statistical learning such as

[30, 56, 63, 95, 106] will have relevant algorithms and techniques to improve classification

performance.

To compare classification methods, the error rate of unseen testing data is used which is

essentially the inverse of the success rate as outlined in §2.8. Although all algorithms are

used such that they return probabilistic outputs allowing for amplified TAs, key recovery

from a single trace is preferred hence the error rate is the main metric used to compare

algorithms. A paper by Standaert et al. comparing TAs and SM [205], uses an entropy

reduction matrix to compare the efficiency of the profiling stage, with the mutual informa-

tion [80] directly derived from it. This idea was further expanded in [188] with the notion

of perceived information which can be viewed as the mutual information where a different

device is used to build templates, as it accounts for the difference in power consumption

between devices. Perceived information is upper bounded by the mutual information as

identical leakage between devices can be seen as the best case scenario for an attacker.

Two trace sets are used in the following, the first are the 160-bit multiplication traces

from §5.5.3 implemented using a constant time 32-bit single precision multiplier. This is a

binary classification problem where the goal is to distinguish between a multiplication and

a squaring operation. A total of 10 k traces are allocated as training traces, and the error
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rate is calculated over a separate set of 5 k testing traces. These 15 k traces are randomly

selected for each experiment from a larger set of 40 k. The training traces are normalised

by taking their z-scores, with the empirical mean and standard deviation then applied

to the testing traces. Feature selection is always performed using the sost method as

outlined in §3.3.3, as due to the binary classification problem Fisher’s linear discriminant

can only return a single feature. Note also that the use of Fisher’s linear discriminant will

bias the features prior to non-parametric methods such as SVMs or NNs. Where the error

curve is a function of the training set size, the z-score and feature extraction calculations

are performed using the current number of training samples.

The second set of traces used are the AES traces from the arm7 microprocessor that have

been used extensively through this thesis. The target is always the value of first byte of

the S-Box output in round one, giving a K = 256 multi-class classification problem. Here

25 k traces are used for the training set, chosen at random from a set of 50 k for each

experiment, with 5 k samples again used for error calculation, chosen from a different set

of 50 k traces from the same device. Feature selection is also performed using the sost

method to ensure consistency with the binary classification results.

The first four sections of this chapter deal with Stochastic Methods §6.2, Logistic Regression

§6.3, Support Vector Machines §6.4, and Neural Networks §6.5. An overview of each is

given, with attacks against the two trace sets as described above evaluated for various

parameter selections. A comparison between the classifiers is given in §6.6 using the

parameters that minimise the error for each model. An overview of the importance of

feature selection is given in §6.7, with conclusions drawn in §6.8.

6.2 Stochastic Methods

SM were first introduced by Schindler et al. [195] as an alternative profiling attack to TA.

The stated goal of the approach aims to achieve the efficiency of the template attacks in the

key extraction phase but requiring far less measurements in the profiling phase [195]. While

works such as [81, 205, 226] have already discussed the relative merits of SM compared to

templates, here different methods of building SM are explored, before comparing them to

different machine learning techniques in §6.6.

SM allow an adversary to take advantage of any knowledge he may have about the target

device during the profiling stage, however they can equally be generalised such that an

adversary is assumed to have no prior device specific information. Following the description
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in [205], given a set of leakage traces x(i) for 1 ≤ i ≤ m, there will a some point in time

where x
(i)
t which corresponds to the target leakage function Lt(F(p

(i), s)) where p(i) is a

known input corresponding to x(i), s is the secret we wish to recover and Lt(F()) some

leakage at a specific time corresponding to a function of both inputs, such as the S-

Box function of AES. For illustrative purposes it is be assumed that recovering y(i) =

F(p(i), s) is equivalent to recovering s, hence the error is calculated for y(i) ∈ K. While

this will not necessarily always be the case, the model can be easily adapted when it is

not so.

The SM assumes that the leakage function Lt can be written as a deterministic and a

random part, i.e. Lt(y
(i)) = δt(y

(i))+ρt. Both parts are then profiled separately to build a

model for key recovery. The training samples are split into two (not necessarily equal) sets

{ẋ, ẍ} such that ẋ∩ ẍ is empty, with m1 samples in ẋ, m2 samples in ẍ, and m = m1+m2.

6.2.1 Approximation of the Deterministic Part

Assuming that the deterministic part of the model can be computed as a linear sum,

δt(y
(i)) =

∑u−1
j=0 βj,t ·gj,t(y

(i)) for some base functions gj,t, the coefficients β can be approx-

imated using linear regression. The problem is then reduced to finding u base functions

gj,t that allow an accurate approximation of δt.

In practice, the chosen base function is simply the bit values of the chosen target function.

For example, if the target when attacking AES was the output byte of an S-Box, this

would give gj,t(y
(i)) = bit( S(p(i) ⊗ s), j ) for 1 ≤ j ≤ 8. A bias term is required for the

approximation of the β coefficients via linear regression therefore g0,t(y
(i)) = 1 ∀ i, hence

u = 9 in this particular scenario. This choice of base function, while simple, is generally

quite effective as it has been shown that different bits will contribute varying amounts to

the power consumption [5].

The matrix A is constructed as in Equation 6.1 for each of the m1 training samples,

allowing the β weighting values to be then calculated according to Equation 6.2. As

y(i) can only take on |K| finite values, an approximation of δt for each possible value

can be precomputed for use in both the approximation of the random part, as well as

the classification stage using Equation 6.3, where G is similar to the matrix A, except

constructed for the |K| distinct values of y(i).
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A =




g0,t(y
(1)) g1,t(y

(1)) · · · gu−1,t(y
(1))

g0,t(y
(2)) g1,t(y

(2)) · · · gu−1,t(y
(2))

...
...

. . .
...

g0,t(y
(m1)) g1,t(y

(m1)) · · · gu−1,t(y
(m1))




(6.1)

bt = [β0,t, β1,t, . . . , βu−1,t] = (A′ ×A)−1 ×A′ × ẋ (6.2)

∆̂t = [δ̂0,t, δ̂1,t, . . . , δ̂|K|−1,t] = G× bt (6.3)

6.2.2 Approximation of the Random Part

As outlined in [195], approximation of the random part of the traces is not strictly neces-

sary, however in practice a lower classification error is achieved when it is. For each of the

m2 traces, the δ̂i,t corresponding to y
(i) is subtracted to leave a noise vector r(i) = ẍ(i)−δ̂i,t.

An empirical covariance matrix Σ̂t, can then be calculated using these noise vectors. This is

similar to the calculation of the single noise covariance matrix calculation for LDA, §3.3.6

(as opposed to the classical QDA which has a noise covariance matrix for each class).

Rather than subtracting the empirical mean vector µ̂(i), the deterministic section of a

trace δ̂i,t is used instead. It is worth pointing out that using a separate set of traces to

model the noise component would likely be beneficial for regular TA also. However in the

case of QDA a substantial penalty on the number of training traces would be required.

There are no set rules as to the ratio to split the training set m into m1 and m2. In

previous work, a split [195, 81, 134, 205] of 0.5 is commonly used. The optimum split is

wholly dependent on the target device and acquisition setup, with particularly low noise

devices maybe benefiting from a larger number of traces allocated towards estimating the

deterministic trace parts. In the experiments that follow, all traces are allocated evenly

and at random between m1 and m2, and any plot indices representing the number of

traces used for training represent the the number of traces used for both m1 and m2. The

random allocation of traces from across m rather than just the first or second half is also

important to prevent any potential biases adversely affecting the results.
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6.2.3 Classification using Stochastic Models

The classification stage differs depending on if the random part is modelled or not. Where

it is not available, the attack is known as Min, and the minimum distance between the

attack trace x(i) and the various δ̂i,t indicates the most likely intermediate value. It was

shown in the original paper [195] that this is not as efficient as the Max method which

includes the noise covariance estimation, however for completeness is is included here.

The likelihood of an attack trace given a set of learned stochastic models, including the

noise covariance, can be calculated using Equation 6.4, which again is quite similar to

classical TAs. Indeed from an implementation perspective, the main difference between

a TA and using the SM is in the generation of the mean vectors µ̂(i) and the deterministic

trace parts δ̂i,t. Once the likelihoods for all models is computed the maximum value is

taken as most likely, or if probabilities are required then Bayes’ theorem, Equation 3.4,

can be used. Likewise for an amplified attack where more than one trace is available

for key extraction, Bayes’ can be applied iteratively as in Equation 3.6. It is also worth

noting that in the case of a Min attack, likelihoods can be calculated by taking the identity

matrix, I, in place of the noise covariance matrix, Σ̂t, allowing the same equation to be

used.

L
(
x(i) | δ̂i,t, Σ̂t

)
=

1√
(2π)n

∣∣∣Σ̂t

∣∣∣
e−

1
2(x

(i)−δ̂i,t)Σ̂−1
t (x(i)−δ̂i,t)

⊤

(6.4)

6.2.4 One-Hot Encoding

The choice of the base function gj,t() greatly affects the outcome of a Stochastic based

attack. While the selection of intermediate bit values as explained previously is widely

used, it is not the only method. It was also suggested in [195] that a Hamming weight based

model could be used by appending the Hamming weight of the intermediate value to

the bias term as shown in Equation 6.5 to give a two-dimensional basis. From here

it is a straightforward step to simply append the intermediate value itself rather than

the Hamming weight as in Equation 6.6.
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A =




1 HW (y(1))

1 HW (y(2))

. . . . . .

1 HW (y(m))




(6.5) A =




1 y(1)

1 y(2)

. . . . . .

1 y(n)




(6.6)

Another option, which has not been previously examined in the literature, is to encode the

intermediate target value using one-hot encoding, for example as in Equation 6.7, where

only a single column of each row besides the bias term contains a 1. An advantage of this

is that each β parameter now represents a different intermediate value as opposed to a part

of a weight sum. This allows a more accurate representation, as power consumption due to

bijections of the target value (such as the S-Box input in the case of targeting the AES S-

Box output) are now also considered. A disadvantage of this encoding however, is the

extra β parameters that need to be estimated, which is now of the order of the number

of unique classes, rather than log2 of the number, hence a greater number of traces is

required for the profiling stage.

A =




1 0 0 · · · 0 1

1 0 0 · · · 1 0
...

...
...

. . .
... 0

1 0 1 · · · 0 0

1 1 0 · · · 0 0




(6.7)

Using the AES traces acquired from the arm7 microprocessor as described in the intro-

duction, a profiling attack using the SM was conducted for various base vectors. Note

Hamming weight based models were not considered as the goal is to recover the key with

only a single trace.

Examining Figure 6.1, training errors are given by the dashed lines, with the testing error

given by the solid lines. The plotting of the training error in learning curves is useful as

the relationship between the error curves can help to distinguish bias or variance in the

model. It is clear from the graph that using one-hot encoding provides the lowest error

rate, keeping in mind that a large number of training samples were used (m = 25 k as

specified in §6.1). It is interesting to note however, that when only using a small number

of features, the Min and Max attacks give somewhat similar results, likely due to the fact

that all 25 k traces are used for estimating β in the Min attack while in the Max attack
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they are split between estimating β and Σ. Simply appending the target values in the

case of the identity model gives poor results as is expected.
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Figure 6.1: Error rate as a function of retained features.

6.2.5 Polynomial Basis Functions

Another option for the basis function is to explore polynomial combinations of the bits,

as suggested by Whitnall and Oswald [226]. A related, lower order approach was also

examined by Gierlichs et al. in [81] where they utilised a 17-point basis function to include

S-Box input leakage by incorporating the bits of the input and the output. Here, every

combination of bits is calculated hence contributions due to the square or cube of bits

are calculated, unlike in [226]. This leads to larger computational complexities for higher

orders however as the expansion has u =
(
b+ℓ
ℓ

)
terms where ℓ is the expansion order and

b the bit-length of the target value. For example for a ℓ = 6th order polynomial, there are

u =
(
8+6
6

)
= 3003 base function components. Practically, this matrix needs to be inverted,

and the exponential nature of the expansion means that larger values become infeasible.

Looking at Figure 6.2(a), it is clear that by increasing the polynomial order that the error

rate can be significantly reduced compared to the base function based on the bit values,

and is comparable to the identity model using the one-hot encoding. Only the Max

method using the bit and one-hot basis functions are retained from Figure 6.1, as they

are they original, and give the lowest error rate respectively. The training error is omitted

in Figure 6.2(a) for clarity. Fixing the number of retained features to 100 to minimise

the testing error (note in a real-world attack cross-validation would need to be used to
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determine the number of features to retain), the effect of the training set size is examined

in Figure 6.2(b), with the training error again represented by the dashed lines. The use

of a 6th order polynomial gives comparable performance to that of the one-hot method,

however with the advantage that profiling is still possible for a low number of training

samples, unlike the one-hot method which requires at least 4 traces per intermediate value

(2 each for the deterministic and random parts).
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Figure 6.2: Error rate of polynomial expansion.

6.2.6 Higher-Order Stochastic Attack

To see exactly why polynomial expansion of the basis function gives improved results,

higher-order attacks are examined. Figure 6.3(a) gives the error rate when attacking the

both the S-Box input and output, as well as combining the probabilities of both profiling

attacks to give a higher-order attack. The lines with circles here represent the original

base function based on bit values, while the lines with the crosses are where a 6th order

polynomial is used. It can be seen that the higher order attack greatly reduces the error

rate for the Bit model, while it only slightly improves the polynomial expansion results.

As shown in [117], plotting the β characteristics can reveal interesting information about

where the trace leakage occurs. Here, instead of the β values, a plot of the sum across

∆̂ is provided instead in Figure 6.3(b). No feature reduction method is used here prior

to model building to give an idea of the β weighting values in the time dimension. This

then gives the expected trace representation as modelled by the SM. For reference, the red

crosses along the base of the graphs represent the first 100 features as would have been

selected by using the sost method. The top two graphs of Figure 6.3(b) have different
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peaks referring the input data (upper) and the MixColumns operations (middle). They

share a common peak around where the S-Box operation occurs, but closer examination

shows that the large peaks are slightly offset as they represent the S-Box input and output

respectively. In contrast in the lower plot from the high-order polynomial basis, all the

peaks are present, including a wider peak about the S-Box. Hence the error rate is lower

due to the greater utilisation of the leakage data.
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Figure 6.3: Error rate for higher order stochastic attack.

Overall, if conducting a SM attack and a large training set is available, then building the

basis functions using the one-hot method will give the best results, however as a larger

training set is required this negates the main advantage of the SM, i.e. the small profiling

base. For smaller set sizes, setting the basis functions as polynomial expansions of the

bit components of an intermediate value should give a significant improvement in the

classification over simply taking the bit-values.

6.3 Logistic Regression

LR is a widely used binary classification algorithm [95, 158] that can also be use to con-

duct side-channel attacks. It is similar in ways to the linear regression based SM attack as

presented in the previous section. In a stochastic attack the weighting parameters, β, are

used to determine an empirically modelled trace, δ̂, for some hypothetical intermediate

value in an attack. This is then subtracted from the actual attack trace to leave a noise

vector, and the multivariate Gaussian distribution is used to determine the likelihood of

that intermediate value occuring, given the target trace. In contrast, in LR the weighting
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values, θ, are applied directly to the selected features of the attack trace to give a hypoth-

esis of between 0 and 1, with 0.5 generally being the decision boundary between the two

classes.

To perform classification using LR, it is required to learn weights for each feature (i.e. se-

lected trace points) such that 0 ≤ hθ(x) ≤ 1. This can be achieved with the use of the

Sigmoid function as shown in Equation 6.8.

hθ(x) = g(θ⊤x) =
1

1 + eθ⊤x
(6.8)

A graphical representation of the sigmoid function is given in Figure 6.4, and it shows that

the larger the negative (resp. postive) input is, then the asymptotically closer to 0 (resp.

1) the function outputs. Therefore if we train our θ values such that negative numbers

represent class 0, and postive numbers class 1 then we have a bounded output which also

gives us the probability that the input trace x belongs to class 1.
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Figure 6.4: Sigmoid function.

Following the tutorial as provided in [158], to learn the θ parameters, the cost function

as given in Equation 6.9 must be minimised. This is a convex minimisation problem and

can be solved using normal equations, similar to the SM in Equation 6.2, or through

methods such as gradient descent. The use of normal equations becomes problematic for

larger training sets due to the requirement of a matrix inversion of the order of the num-

ber of features. However, packages such as Matlab and GNU Octave contain efficient

numerical minimisation algorithms that are often faster than gradient descent, especially

for training sets with a large number of samples and/or features. In the work here, an

slightly modified version of the gradient descent minimisation algorithm provided by the

tutorials in [158] is used. Plotting the cost as function of the number of iterations in the

minimisation algorithm gives an efficient way of viewing the convergence of the algorithm.
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J(θ) = −

[
1

m

m∑

i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x

(i)))

]
+

λ

2m

n∑

j=1

θ2j (6.9)

The number of training samples is represented by m, x(i) is a training feature vector,

and y(i) the corresponding class label. A regularisation parameter λ is also included in the

cost function to prevent over-fitting of the model, as otherwise the minimisation algorithm

could lead to a result that perfectly fits the training samples but generalises poorly to the

population sample as a whole.

6.3.1 Attack on Multiplication

As LR is a binary classifier, it is first applied to the 160-bit multiplication & squaring traces

from §5.5.3, using 10 k training traces with feature selection as outlined in the introduction.

Both the training (dashed line) and testing (solid line) error rate for an increasing number

of features is given in Figure 6.5(a). It can be seen that larger values of λ not only lead

to a lower testing error, but also increase the training error hence preventing the selection

of θ values which cause over-fitting of the model.
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Figure 6.5: LR attack on 160-bit multiplications.

The error rate as a function of the number of training samples is also given in Figure 6.5(b),

with 1 k features and λ = 100 used to train the classifier. It can be seen that the testing

error is still falling as the training set size is increased, hence the error could likely be

further decreased with the addition of extra training traces. The increase in the training

error again shows that the model is beginning to fit the model as a whole rather than the

subset of the training samples.
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To analyse why the LR based attack works, the training stage is again run using 10 k

training traces, except this time without any feature selection pre-processing step. The

z-scores of the traces are still taken however, as this allows a faster convergence of the

gradient descent algorithm. The learned θ values are shown in the lower plot of Figure 6.6,

with the sost selection trace given for comparison in the upper plot. Note the largest

peak is truncated for clarity in the sost plot. It can be seen that LR largely assigns

weights according to the sost peaks, except for the initial smaller peaks which are due

to the re-use of y0 in line 3 of Algorithm 3. When classifying using LR, the weighted

sum of θ with the target trace should only be greater than 0 prior to the application of

the sigmoid function when the target class is multiplication operation. This is because a

multiplication is expected on average to consume more power that a squaring, hence the

negative weights at the points of interest will cause the sum of a squaring trace to add up

to less than 0.
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Figure 6.6: LR weighting values.

6.3.2 Attack on AES

To utilise LR classifier or any other binary classifier, such as SVMs, to recover a key byte

from AES, for example, an extension to a multi-class classifier is required. Two widely used

methods utilised in machine learning literature are One-v-All and One-v-One [106]. These

are used here along with a bit-wise model as now explained in the context of attacking a

byte-sized intermediate value:

Bit: Each target key byte can be simply decomposed into its binary format, and models
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built individually for these bits. The probability of each byte is subsequently calcu-

lated through the product of its individual bits. This gives a total of 8 models to be

trained for byte recovery, and all of the available traces are used for each model.

One-v-All: In this method, a model is trained for each byte individually, with each trace

belonging to that byte assigned to one class and all other training traces assigned to

the second class. All traces are again used for the training of each model, and 256

models in total need to be trained. It is worth keeping in mind that the class sizes

are no longer symmetric and, assuming uniformly random plaintext inputs, the ratio

of traces in each class is expected to be 1
256 . Where the training set is large enough to

accurately model the θ parameters for the smaller class this is not an issue, however

for smaller training set sizes it could introduce a skew to the classifier. The correct

byte is then simply chosen as the one that gives the largest probability.

One-v-One: Depending on the data set size and number of classes, this can be quite a

computationally intensive method to train as it requires training a classifier for all

pairs of classes. In the case of classifying an S-Box output,
(
256
2

)
= 32640 separate

models are required. However, as only two bytes are considered for each model, only

2
256 of the training traces are used for each model. To perform the classification the

target trace is classified using every model, with the byte that is assigned most likely

assumed to be the correct one.

It must be noted that these are not the only binary to multi-class options available, and the

nature of power analysis is such that algorithms can be tailored for the problem at hand.

For example a binary tree based method could utilise a divide-and-conquer approach for

key recovery. This is the approach followed in [19], however it requires a strict order in

terms of the power consumption of each class such as the Hamming weight model.

The three methods listed above were used to classify both the AES traces, with the error

rate as a function of the number of retained features given in Figure 6.7. For this initial

analysis, 25 k training traces are used and λ = 0. It can be seen that the computationally

intensive One-v-One method outperforms the other methods with regards to byte-wise

classification, however the One-v-All method also performs relatively well. It is interesting

to see that the Bit method, while the most straightforward and quickest to implement,

performs significantly worse. This is somewhat expected as only the leakage of a bit is

being utilised for training a classifier rather than the leakage of a byte. Each bit also leaks

different amounts, this is shown in greater detail in Appendix C.
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Figure 6.7: LR multi-class comparison.

Due to the computational overhead for the One-v-One multi-class method for a K =

256 problem, the One-v-All method is used in future experiments where applicable. In

Figure 6.8(a), the effect of λ is examined and in contrast to the binary classification with

the 160-bit multiplication traces, larger values of λ give a higher error. Taking λ = 1 and

100 features, the effect of the training set size is explored in Figure 6.8(b). The error rate

is asymptotically decreasing as the number of training samples is increased with a larger

set size likely to further decrease the error rate, albeit by a small amount as the curve is

flattening out.
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(b) LR training set size comparison.

Figure 6.8: LR attack on AES.
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When presented with a set of traces to perform supervised learning on, applying LR as

a first test is worthwhile, particulary if it is a large dataset with many training samples

and features, as it is quick to run and can give results comparable to more advanced

algorithms. Even where the results aren’t as accurate, it can give an indication as to what

to try next. The disadvantage of course is the lack of a native multiclass classification

method, with the extension choice directly affecting the error rate.

6.4 Support Vector Machines

As previously mentioned SVMs [54], have recently been proposed for use in profiling

attacks [104, 135], with further subsequent studies in [19, 96, 99, 103]. SVMs offer an

interesting alternative to TAs due to their non-parametric approach, thereby removing

the assumption of Gaussian distributed data. While power traces from many different

devices have been shown to be inherently Gaussian in nature, this could allow for some

interesting artificial feature constructions, such as that in [96] where the authors include

the plaintext bits when attacking an xor operation. Work to date has largely focused on

the Hamming weight leakage of software AES implementations running on basic micro-

controllers. An exception to this is the work by Lerman et al. [135] which looks at an

FPGA implementation of DES. They build models on the key-bits directly, the fact that

the key expansion in DES is simply bit-shifting means that key leakage occurs across the

full length of the encryption trace. Previous work [19, 99] has also shown that SVM based

profiling attacks can allow model building with a smaller number of training traces. As

before, we are interested in the error rate for a key byte given only a single trace, hence

models based on the Hamming weight leakage are not examined here.

Like LR, SVMs are a binary classification algorithm without any natural extension to

multi-class classification. Two assumptions underpinning the algorithm are that trans-

forming data into a higher dimensional feature space can convert complex decision bound-

aries to simpler, linear boundaries, and that the training samples closest to the decision

boundaries provide the most useful information for classification.

Following the explanation as given in [212], the SVM training process looks the maximise

the margin between the two classes as illustrated in Figure 6.9, where w is the normal to

the hyperplane H given by the solid line, b
||w|| is the perpendicular distance to the origin,

and 2
||w|| is the distance between the hyperplanes H−1 and H1, which are represented by

the dashed lines. To ensure the model generalises well, the hyperplane is chosen such that
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it maximally separates the two classes. The vector x(i) that represents H is that which

sets Equation 6.10 to 0, with the hyperplanes H−1 and H1 given by f(x(i)) = {−1, 1}

respectively.
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Figure 6.9: SVM decision boundary.

f(x(i)) = w · x(i) − b (6.10)

Given a set of m training samples, in order for them to be correctly classified, each trace

must satisfy Equation 6.11, however as we are also seeking to maximise the distance

between H−1 and H1, therefore
2

||w|| must be as large as possible. Hence, finding H can

be seen as the problem of minimising 1
2 ||w||

2 subject to Equation 6.11. This original

primal optimisation problem and can be solved using the Lagrange function given in

Equation 6.12, where the Lagrange multipliers satisfy αi ≥ 0 for all i.

y(i) f(x(i)) ≥ 1, ∀i (6.11)

L(w, b, α) =
||w||2

2
−

m∑

i=1

αi

[
y(i) f(x(i))− 1

]
(6.12)

Consequently, this leads to
∑m

i=1 αi y
(i) = 0, and w =

∑m
i=1 αi y

(i) x(i), which can subse-

quently be substituted back into Equation 6.12 leading to the dual optimisation problem

as given in Equation 6.13. This is a convex quadratic programming (QP) problem for

which there are efficient solutions. A through explanation of the SVM algorithm is given

in textbooks such as [56, 95]. Note the use of a dot product x(i) · x(j) in Equation 6.13

which is important for the use of kernels as explained below.
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maximize
m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

αi αi y
(i) y(j) (x(i) · x(j))

s.t.





m∑

i=1

αi y
(i) = 0

αi ≥ 0 ∀i

(6.13)

When the weights αi and bias b are calculated, classification is performed by taking the sign

of Equation 6.14 when applied to a test vector, where ms ≤ m is the number of support

vectors. Note that the SVM only returns what class a sample belongs to, it doesn’t return

any confidence measure of how correct it is, however f(x(i)) does return the distance to

the hyperplane which can be used to determine a probabilistic output as explained below.

Note that the two classes are given by y(i) ∈ {−1, 1} as opposed to the more usual {0, 1},

and that only the samples denoted support vectors, as indicted in red in Figure 6.9, are

required for the classification. Where a large percentage of the input samples are support

vectors, it can be a sign of over-fitting to the training set, or alternatively that the classes

are poorly separable.

f(x(i)) =

ms∑

j=1

αj y
(j) (x(i) · x(j))− b (6.14)

Soft Margins: Due to noise on the training traces, a separating hyperplane is unlikely

to exist, or where a kernel as described below is used, the hyperplane is unlikely to

generalise well and over-fit the training data if it is found. Hence slack variables, ξi,

are introduced for each training sample to allow its misclassification if it increases the

overall accuracy of the model. This modifies Equation 6.11 to that in Equation 6.15.

Trivial solutions exist where the ξi are made arbitrarily large, hence a regularisation

parameter C is introduced such that there is a Cost associated with each slack

variable. Note this performs a similar function as λ in LR, except it is now inverted

such that as C →∞ errors are not allowed hence the SVM becomes a hard margin

classifier with the slack variables set to zero. As C decreases a greater number of

errors are allowed and it is known as a soft margin classifier. Another way of looking

at this is that a large C gives a low bias, high variance model, while a small C gives

a higher bias, low variance model [158]. The primal optimisation problem now looks

to minimise 1
2 ||w||

2 + C
∑m

i=1 ξi subject to Equation 6.15.

y(i)f (x(i)) ≥ 1− ξi where ξi ≥ 0 ∀i (6.15)
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Kernel Usage: The use of kernels allows the classification of non-linearly separable data

through mapping to a higher dimensional feature space where it is linearly separable.

The dot product in Equation 6.13 and Equation 6.14 is replaced by a non-linear

mapping Φ such that 〈x(i) · x(j)〉 → 〈φ(x(i)), φ(x(j))〉. There is no need to know this

mapping explicitly, only the kernel K(x(i), x(j)) which is known as the kernel trick.

Commonly used kernel functions which are also used here given in Equation 6.16.

Linear x(i) · x(j)

Polynomial
(
x(i) · x(j)

)d

Gaussian e
−
(

|x(i)−x(j)|2

2σ2

)

(6.16)

The linear kernel is equivalent to not using a kernel, and is only suitable in cases

where the data is linearly separable. As shown in [19], for low noise target devices

this is enough to allow the classification of Hamming weights. The Gaussian kernel is

also commonly referred to as the radial basis function (RBF) kernel and the terms are

used interchangeably here. Good visualisations of how the different kernels affect

the decision boundary in the two-dimensional case are given in [103, 104]. These

are not the only kernel functions however, and while arbitrary functions cannot be

specified as a kernel (functions need to satisfy Mercer’s Theorem [56]), there are

many other options such as perceptrons, string, chi-square, histograms, etc. One

disadvantage of using kernels is the extra parameter that now must be chosen, e.g. d

and σ for polynomial and Gaussian kernels respectively, as well as the cost C. For

the Gaussian kernel, increasing σ has the effect of smoothing the decision boundary

thereby giving a lower variance model and vice-versa. This is the opposite to the cost

C, however the relationship between them is non-linear. The classification algorithm

is now modified by taking the sign of Equation 6.17.

f(x(i)) =

ms∑

j=1

αj y
(j)K

(
x(i), x(j)

)
− b (6.17)

Probabilistic Output: The SVM classification is given by the sign of Equation 6.17,

and as previously mentioned this does not provide any probabilistic information on

the decision. Due to the inherent noise in a SCA, probabilistic values are useful

to determine the key by analysing multiple traces, or to enable an enhanced brute

search correction of an estimated key guess. It was suggested by Platt in [180] to

fit to Sigmoid function, as previously shown in Figure 6.4, to the returned distances
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f(x(i)) as shown in Equation 6.18, where the parameters {PA, PB} are found by min-

imising the negative log-likelihood of the training data. This method of generating

a probabilistic output was also used in [19], and a full explanation is given in [180].

Pr
(
y(i) = 1|x(i)

)
=

1

1 + ePA f(x(i))+PB

(6.18)

The work in [103, 104] use a different variant of SVMs as just described, which is known

as least squares support vector machines (LS-SVM) [210]. Here the model is formulated

such that a solution can be found by solving a set of linear equations rather than a QP

problem. Rather than building support vectors based only on a subset of samples, all

samples are assigned some weighting value hence every sample is a support vector. Larger

weights indicate a greater contribution to the training sample to the decision boundary. In

practice, experiments indicate little difference in classification performance with the data

sets under consideration. While LS-SVM can be faster for smaller data sets, a matrix

inversion of the order of the number of training samples is required which can become

prohibitive so the original SVM construction is used here.

The attacks presented here use the SVMlight library [108] with the Matlab wrapper from

Anton Schwaighofer available at [107]. A secondary wrapper as used in [212] is used to

implement a grid search for the SVM cost parameter, as well as the extra parameters

depending on the kernel if required. The grid search alternates holding one parameter

constant while searching across a range of values for the other, using 10-fold cross validation

to minimise the error, hence both parameters are selected with respect to each other.

While this removes to need to select the SVM parameters, it does so at the expense of a

considerably longer training time.

6.4.1 Attack on Multiplication

Using the same multiplication traces as in the LR based attack previously, classification

is performed using SVMs to determine if a trace is from a multiplication or squaring

operation. The choice of 10 k training traces for this data set across all machine learning

methods, is actually due to the length of time it takes to train the SVM parameters.

Larger trace sets incur memory problems, as well as a considerably longer training time

due to the cross validation required to optimise parameter selection.

The error rate for the three kernels mentioned previously is given in Figure 6.10(a), where

the dashed lines indicate the training error and the solid lines the test error. It can be
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Linear Polynomial Gaussian

Cost 0.002 0.005 0.2

Kernel Param. – 1 (d) 8.41× 10−4 (σ)

Platt
PA 4.5310 3.9410 8.5171

PB 0.0876 0.0766 0.0907

Table 6.1: Learned SVM parameters.

seen that the linear and polynomial kernels outperform the Gaussian one, indicating that

the data sets are somewhat linearly separable. The parameters learned using 1 k features

for the three kernels are given in Table 6.1. The estimates for the Platt parameters, PA

and PB to return a probabilistic value are also given.

The SVM algorithm was rerun, except this time setting the number of features to 1 k

and varying the number of training traces, while using the linear kernel. As seen in

Figure 6.10(b), the error rate is still falling as the number of training traces is increased,

hence it is likely that further training samples would further decrease it, as was the case

with the LR classification method. However the error rate is already quite low for smaller

training set sizes.
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(a) SVM kernel comparison.
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(b) SVM training set size comparison.

Figure 6.10: SVM attack on 160-bit multiplications.

6.4.2 Attack on AES

To extend SVMs for use in multi-class problems to determine the output of the AES

S-Box, the same methods as before can be utilised again, that is bitwise, one-v-all, one-

v-one. An empirical study of multi-class options for SVMs was undertaken in [62], and
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found a modified version of the one-v-one method incorporating Platt’s probabilities [180]

was most efficient. However for the data set here, the
(
8
2

)
number of combinations when

using one-v-one leads to an unrealistic training time despite the fact only a portion of the

training set is used each time. Likewise, due to the poor performance of the bitwise model

previously in §6.3.2, this method is also discounted. Hence only the one-v-all method is

used, however the large training set size again causes memory issues. To work around these

memory problems, for each of the 256 classes, the class under consideration is labelled 1,

and the −1 class is randomly selected from the remaining samples such that it is 10 times

larger. This arbitrary value of 10 is chosen such that the resultant subset of the training

set that is fed to the SVM has ≈ 1 k samples, which through experimental analysis, allows

the training of the SVM in a reasonable length of time without losing too much accuracy.

When training unbalanced data sets, the use of cross-validation to select parameter values

that minimises the error rate can be problematic as biasing the model towards always

correctly classifying the larger of the two classes will artificially lower the error rate and

generalise poorly to unseen samples. The SVM construction allows for separate cost

parameters, C, for both classes leading to asymmetric soft margins. However in this

scenario, the penalisation of one class over another isn’t desirable as both classes have an

equal a priori probability of occuring. Hence rather than looking to minimise the overall

error, the mean of the individual scaled class errors is minimised.

As can be seen in Figure 6.11(a), the Gaussian kernel gives the best results using 30 fea-

tures. Also, unlike in the previous experiment distinguishing multiplication and squaring

operations, as the number of features is increased the error rate also increases as features

which do not contribute to the target leakage skew the model towards lowering the training

error. Looking at the effect of the training set size in Figure 6.11(b), the error rate is once

again asymptotically decreasing. For smaller training set sizes, at least two samples per

class must be present to allow for training hence at least 512 samples are required, but as

the samples are randomly selected from a larger set, in reality closer to 1 k are required

before all classes have at least two samples. Finally it must be remembered that all sam-

ples are not used for training every multi-class SVM, hence even for smaller training set

sizes the actual fraction of samples used is expected to be only ≈ 11
256 .

For both attacks, the SVM performs similarly to LR which is also a binary classifier, despite

only a subset of the training samples being selected because of computational issues due to

the grid search in the AES case. Compared to regular TA, for the experiments here SVMs

are not as effective, and required a considerably longer training time. While inefficient for
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(a) SVM kernel comparison.
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(b) SVM training set size comparison.

Figure 6.11: SVM attack on AES.

this particular experiment, there is many scenarios where they are advantageous however,

and are interesting in a hardware context where the noise does not necessarily follow a

Gaussian distribution.

6.5 Neural Networks

NNs were originally envisioned so as to mimic the operation of the brain, with multiple

interconnected layers of neurons allowing the learning complex decision boundaries. Partly

due to their computational overhead, and partly due to the fact SVMs were totally different

to what had come before, they fell out of favour somewhat with the emergence of SVMs in

the 90s. However with the advent of deep-learning methods and more powerful multi-core

computers, they are once again considered state of the art [158].

A brief overview is given here, however for a through description of the topic one of the

many books available such as [30, 63, 95] provide a good reference. A sample NN diagram

is given in Figure 6.12. It consists of the input layer where each unit2 represents an input

feature, multiple hidden layers with differing number of hidden units, and an output layer

where each unit represents a class. The model in Figure 6.12 has 3 features, 2 hidden

layers with 4 and 3 units respectively, and is a binary classifier. A nice property of a NN

over an SVM is that it naturally extends to the multi-class case with the addition of extra

output units. Each layer except the output also has an extra bias unit which is fed into

2The units are alternatively known as neurons after as they were originally envisioned as representing

neurons of the brain.
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the following layer to account for the intercept term.
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Figure 6.12: Artificial NN nodes.

Following the description in [158], every hidden unit and those in the output layer, has an

activation function a
(i)
j where j is the unit in a given layer, and i is the layer itself. While

this activation unit is often the Sigmoid function as previously shown in Figure 6.4, other

functions such as Gaussian (RBF) or step models are also possible. The initial activation

units are assigned the input feature values as shown in Equation 6.19, with subsequent

units calculated via some function G, of the weighted sums of the previous layer, where G

is the Sigmoid function in this work, and the weights are given by Θ. For clarity the unit

subscripts in Equation 6.19 are omitted, and each a(i) term is a vector. As each element

in the vector a(i) has a different set of weights for each unit of the previous layer Θ(i) is

therefore a matrix, e.g. in the illustration of Figure 6.12, Θ(1),Θ(2) and Θ(3) are of size

5×4, 4×5 and 2×4 respectively, taking into account the bias units. The decision of a NN

model given a input vector is given by hΘ(x
(i)) = a(l), where l is the number of layers in

the model. Each unit of the feed-forward NN3 outputs a non-linear function of its inputs,

which themselves have been mapped non-linearly, allowing complex decision boundaries

to be learned [63, ch. 6].

a(1) = x(i), a(i) = G(Θ(i−1) a(i−1)) (6.19)

3There are also recurrent NN that allow feedback within the network which essentially leads to a

memory capability within the model.
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Training a NN model requires the learning of the weighting parameters Θ for each layer

to minimise the cost function as given in Equation 6.20 [158]. The most common method

to determine these weights is through the use of the backpropagation algorithm. Random

initial weights for Θ are assigned, and for each training sample the output hΘ(x
(i)) is

calculated. The error is then calculated by subtracting the actual class label y(i) (note that

the one-hot encoding is used to encode the labels), and the errors for each training sample

are propagated back through the network to calculate the error at each layer. Minimisation

of Equation 6.20 entails modifying the weights Θ through an iterative algorithm like

gradient descent such that error is reduced. The number of classes in Equation 6.20 is

denoted by K, the number of samples by m, the number of layers by l, and the number

of units in a given layer by ui. A regularisation parameter λ is again present as in LR, to

prevent over-fitting of the training data through the selection of arbitrarily large Θ values.

J (Θ) = −
1

m




m∑

i=1

K∑

j=1

y
(i)
j log(hΘ(x

(i)))j + (1− y
(i)
j ) log((1− hΘ(x

(i)))j)




+
λ

2m

l−1∑

i=1

ui∑

j=1

ui+1∑

k=1

(
Θ

(i)
kj

)2
(6.20)

There are no set rules with regards the selection of parameters for NN, with the number

of hidden units/layers greatly affecting the classification performance. Due to the com-

putational complexity of training a NN, a cross validated grid search as with the SVMs

is inefficient to implement, and neither it is clear how to optimally trade off hidden units

and layers while searching. There are a few rules of thumb to select parameters however.

It must also be pointed out that if the data is linearly separable, then no hidden layers are

required, and the NN is similar to LR. It is suggested in [158] that the number of hidden

layers should initially be set to 1, and the number of hidden units set to approximately

the number of features, subsequently extra hidden layers can be added in an attempt to

improve performance. Where a large number of features are available however, this re-

quires a significant amount of time to train. It is suggested in [30] that multiple layers

often add little in the way of performance improvement except in specialised cases, and

that choosing the number of units to be the mean of the input and output units gives a

good starting point. Regardless of selection advice followed, the optimal parameters are

going to be determined by the data.

The NN was implemented following the tutorial in [158], with the same gradient descent

based minimisation function as used for LR once again used here. The weighted inputs
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for the activation units for each layer can be efficiently calculated en bloc using matrix

multiplication, with subsequent unrolling allowing a vectorised input to the minimisation

function. The number of gradient descent iterations was restricted to a maximum of 250,

this number was heuristically chosen by examining the cost as a function of the number

of iterations such as in Figure 6.13. Here, as was the case with many other experiments,

minimisation occurred within 100→ 150 iterations.
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Figure 6.13: NN cost function.

6.5.1 Attack on Multiplication

Using the 160-bit multiplication and squaring traces as before, a NN model with a single

layer was trained for different values of λ. The number of hidden units was set to be

equal to number of input features, with the error rate as a function of the number of

features given in Figure 6.14(a). As can be seen, in this binary classification problem the

λ parameter has little effect, with λ = 100 giving slightly better results similar to LR.

Taking this value of λ, the number of hidden units is then varied independently of the

number of input features. This makes little difference to the error rate as shown in Fig-

ure 6.14(b), however smaller values for the number of hidden units are considerably faster

to train hence 100 units is chosen to examine the effect of multiple hidden layers in Fig-

ure 6.14(c). Again, the addition of extra layers has little effect on the error indicating

that, for this dataset, the rule of thumb as given in [30] is appropriate. The NN model

appears somewhat robust to parameter selection in this scenario, hence the parameters

can be picked with regards to efficiency of training.

Finally the error as a function of training set size for a single hidden layer NN model with

100 units and λ = 100 is plotted in Figure 6.14(d). Like the LR and SVM based attacks,

the error rate is still falling hence it is reasonable to expect that a larger training set will

further decrease the error.
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(a) NN lambda comparison.
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(b) NN hidden units comparison.
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(c) NN hidden layers comparison.
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(d) NN training set size comparison.

Figure 6.14: NN attack on 160-bit multiplication.

6.5.2 Attack on AES

Following the same method as with the multiplication traces, NN models were trained for

the arm7 microprocessor AES traces for various values of λ, using a single hidden layer

with the number of hidden units of the order of the number of features. Figure 6.15(a)

shows that large values of λ significantly affect the results for the worse, with λ = 〈1, 10〉

giving the lowest error.

Taking λ = 1, the number of hidden features for a single layer was varied independently

of the input feature size, Figure 6.15(b). Here, in contrast with the multiplication traces,

too few hidden units gives a large error as the small number of units doesn’t allow for

accurate modelling of the K = 256 multi-class problem. More than 100 units doesn’t

further decrease the error, hence in Figure 6.15(c), the effect of the number of hidden layers

is examined, while setting λ = 1 and the number of hidden units to 100. Interestingly,
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increasing the hidden layers actually increases the error, with more layers giving a larger

error. This isn’t necessarily due to over-fitting of the data set, as the training error also

increases proportionally.

Finally the error as a function of the training error using only a single hidden layer is

plotted in Figure 6.15(d). The error converges quite fast with only a small decrease in the

error as the set size increases beyond 10 k traces.
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(b) NN hidden units comparison.
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(c) NN hidden layers comparison.
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(d) NN training set size comparison.

Figure 6.15: NN attack on AES.

In the two experiments above, NN have been shown to be a particularly effective for

profiling attacks, as well as being somewhat robust to parameter selection when reasonable

values for λ and the number of hidden units are selected. The selected parameters are

by no means optimal and a logarithmic grid search as implemented for the SVMs could

further reduce the error.
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Classifier Parameters

LDA single covariance matrix for all classes

QDA separate covariance matrix for each class

SM Max method with half the trace for estimating the noise, 2nd order

polynomial expansion performed on class labels

LR regularisation parameter λ = 100

SVM linear kernel with 10-fold cross validation used to estimate cost C

NN single layer with 100 hidden units and λ = 100

Table 6.2: Classification parameters → multiplication.

6.6 Comparison

As previously mentioned, comparisons between TAs and stochastic based attacks have

previously been performed in [81, 205], and comparisons between TAs and SVMs in [19,

99, 135]. Here, the parameters for the various classification algorithms which give the

lowest testing error are plotted against each other for the multiplication and AES traces.

6.6.1 Attack on Multiplication

Using the algorithm parameters as given in Table 6.2 determined by the previous sections,

the various learning algorithms are compared in Figure 6.16(a) by plotting the error as a

function of the number of retained features. While the multiplication traces weren’t used

previously for SM attacks in §6.2, experimental analysis shows that a 2nd order polynomial

minimises the error. It is noticeable that all the multivariate Gaussian distribution based

methods run into numerical difficulties when more than 700 features are retained, however

the extra features contribute some information as the error rate continues to fall for the

LR, SVM and NN methods.

Taking the number of features that minimises the error for 10 k training traces, the error as

a function of the training set size is given in Figure 6.16(b). Again there is little difference

between using LR, SVM or NN, with QDA having close to twice the error rate of these.

Note that results for LDA and QDA are different to that in §5.5.3, as a different feature

selection method and training set size is used.
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(a) Error as a function of features.
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Figure 6.16: Classification performance comparison → multiplication.

6.6.2 Attack on AES

The selection parameters for each classification algorithm when attacking the AES traces

are given in Table 6.2, with the error rate as a function of the number of features given in

Figure 6.17(a). It is clear that the use of LDA still gives the best classification performance,

with NN and high-order polynomial based SM also giving very low error rates. In contrast

the original TA (QDA) gives comparatively poor results, as well as becoming numerically

unstable for higher numbers of features. This is expected due to the fewer traces available

to model the covariance matrix for each class. As noise is independent of the deterministic

power consumption (i.e. the mean vectors µ(i)) it’s perfectly reasonable to use a single

covariance matrix. The LR and SVM binary classifiers perform poorly in this multi-class

experiment, however keeping in mind that the One-v-All method was used when the One-

v-All method gave, in the case of LR, slightly more accurate results. Also, with regards

to the SVM results, the full training set wasn’t used for each model.

Looking at the effect of the training set size, the number of features that minimised the

error for each classification algorithm are retained and used in Figure 6.17(b). It is clear

that LDA is the most efficient here, as well as having the lowest error rate. One particular

advantage of the SM is its ability to build models given very few profiling traces, as

previously noted in [81, 205], as a profiling trace for each class label is not necessarily

required due to the choice of base function. Note that if the one-hot method was used

as a base function then its profiling sample size requirements would be similar to that of

LDA and NNs.
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Classifier Parameters

LDA single covariance matrix for all classes

QDA separate covariance matrix for each class

SM Max method with half the trace for estimating the noise, 6th order poly-

nomial expansion performed on bit decomposition of class values

LR One-v-All multi-class, regularisation parameter λ = 1

SVM One-v-All multi-class with the number of “All” samples restricted to

×10 of the “One”, Gaussian kernel with 10-fold cross validation used to

estimate cost C and sigma σ.

NN single layer with 100 hidden units and λ = 1

Table 6.3: Classification parameters → AES.
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Figure 6.17: Classification performance comparison → AES.

6.7 A Note on Feature Selection

A central step prior to the application of the machine learning algorithms above, was the

selection of relevant time instants to pass to the learning algorithm as features. This topic

was previously explored in §3.3.3, however warrants a further mention here with regards to

the non-parametric SVM and NN algorithms. Recall that the sost method as introduced

in [81], is an adaptation of the Student’s t-test in Equation 3.8 (or Welch’s t-test where

the class variances are not assumed equal) to determine the points in time of a trace where

the mean class values are different. This method of feature selection immediately biases

the results in favour of LDA/QDA and SM, as they seek to classify based on distinguishing

means assuming the Gaussian distribution of data (remember the SVM results are further
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disadvantaged due to the use of a likely sub-optimal multi-class method, and the fact only

a subset of the training samples are used due to computational issues). This is not to say

that SVMs and NNs would give better results without feature selection, but it is worth

keeping in mind when conducting a profiling attack.

LR and NN based classification methods are somewhat robust to feature selection as they

learn a weighting or ranking value to each input feature during the profiling stage. This

was shown for LR previously when targeting the multiplication traces by plotting the

weights in Figure 6.6. This can equally be shown for the weighting values in a single layer

NN and is given in Figure 6.18, where the weights for each of the 100 hidden units are

overlaid on top of each other in the lower graph. Therefore, the feature reduction step isn’t

strictly required, however it can give more accurate results as it prevents over-fitting of

the model to points in time which don’t contribute to distinguishing between the classes.

Note that LDA too is somewhat robust to feature selection, however due to the matrix

inversion required on the order of the number of features, larger traces must be reduced

somehow. Something similar was suggested by Bartkewitz et al. in [19] for SVMs where,

after learning the Lagrange multipliers αi, low values of the weight vector |wj | were set

to zero as they contribute less to the classification performance. There is much further

research in the field of computer vision as to how to optimally select features for SVMs

such as [159].
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Figure 6.18: NN hidden layer weights.

An interesting application of non-parametric learning algorithms could be with regards to

feature construction. As previously mentioned, this was already briefly looked at in [96]

when using an SVM to extract DES keys from a smart-card by appending plaintext bits.

Appending or replacing traces with mean (or distances to means), variance or entropy

values could lead to interesting low-order non-Gaussian datasets to classify. Likewise,
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non-linear or polynomial expansions of the training data (as opposed to the expansion of

the basis function of the training labels as in SM attacks) could also be interesting higher

order attack to explore as it would allow dependencies in the time domain to be taken

into account also. A similar approach taken by Lerman et al. in [136] has particular merit,

as it remaps the training traces to take into account said time-wise dependencies prior to

applying the learning algorithm.

6.8 Conclusion

In this chapter a comprehensive empirical comparison between different profiling attacks

was conducted on two data sets. Extensions to the SM of profiling attacks were looked at,

and LR and NN were evaluated for the first time in the context of SCA. The performance

of SVMs was also examined, using a grid search algorithm in conjunction with cross

validation for optimal parameter selection.

The results show that for data sets that follow a Gaussian distribution, LDA is hard to

beat and should be the first algorithm utilised by an attacker. As well as returning the

lowest error rate, it is also exceptionally quick to train as only mean traces for each class

and a single covariance matrix need be modelled. NN have significant potential in the

context of SCA also and further research on protected implementations is an interesting

topic. While they take slightly longer than LDA to train, they seem relatively robust to

numerical errors and are a useful general classifier to use in conjunction with LDA as they

do not assume Gaussian distributed data.

Where there was a large (|K| = 256) number of multi-class values, the performance of

the binary LR and SVM classification algorithms suffered, however they should not be

discounted as in the binary case when attacking the multiplication traces, SVMs performed

as well as the other algorithms. In scenarios where a particularly large data set with a

high-order number of features, the simplicity of LR might ensue that its the only feasible

learning algorithm to use. At the very least it would be worthwhile to initially train using

LR to see if slower algorithms such as SVMs or NNs are worth pursuing or do the features

need to be looked at first.

Finally the results in this chapter all pertain to software implementations, however the non-

parametric nature of some of the learning algorithms would likely suit a hardware target.

For example, the nature of FPGA leakage is such that it is dependent on the placement of

logic within the slice look-up tables (LUTs) and the subsequent path along the interconnect
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that data travels. The contribution of the interconnect can often be significantly more than

that of the slices themselves. Hence it is considerably more irregular than an embedded

software implementation, and the use of non-parametric learning algorithms such as NN

or SVM could have significant advantages over LDA.
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Chapter 7
Conclusion

In the connected world we now live in, embedded systems play an increasing role as “smart

devices” become ever more prevalent. The ability to check bank balances, transfer money,

send email, read social media messages on the go, etc., is no longer considered a rarity

but is an expectation. Coupled with the expanding use of sensor data for increasing

automation in motor vehicles, the use of cryptography is essential to allow these devices

perform their functionality without leaking sensitive or critical information. The recent

Snowden revelations only highlight the need for secure end-to-end encryption in all digital

communications, as it is not just faceless criminals that seek to exploit our data. In

this thesis, a comprehensive evaluation of various profiling SCAs has been carried out

against cryptographic algorithms implemented on an arm7 microprocessor such as would

be utilised in an embedded scenario.

7.1 Contributions of this Thesis

In Chapter 3 a thorough analysis of template attacks was carried out, with various param-

eters in the training stage analysed to see the effect on the resultant classification error.

It was found that linear discriminant analysis with only a single covariance matrix was

generally more effective than the classical method, quadratic discriminant analysis, where

a covariance matrix for each class was required. It also had the advantage of being less

susceptible to numerical errors as all the traces were used to estimate the single covari-

ance matrix. The effect of noise was also examined through artificially adding normally

distributed Gaussian data to the arm7 microprocessor traces, as well as comparing the

154



Section 7.1: Contributions of this Thesis 155

error rate of the attack on different software platforms. Finally the underlying concept

of the template attack in that power traces from one device can be used to attack an-

other is empirically evaluated for a set of smart-cards, and it is shown how to improve the

cross-device classification error by performing the training step with traces from multiple

devices.

In Chapter 4, the work from the paper Unknown Plaintext Template Attacks [92] as pre-

sented at the 10th International Workshop on Information Security Applications confer-

ence is presented and expanded upon. Key recovery is performed in this case without any

knowledge of the input or output data by building multiple templates at different points

of the power consumption trace. Theoretical results are given for the expected number of

traces required when the Hamming weight model is used, as well as how to decrease the

attack error by targeting only the S-Boxes. The effect of masking on the attack is also

examined, as is an analysis where the attack is performed on the key schedule, highlighting

the importance of protecting all steps of an algorithm.

Chapter 5 is based on the work from Using templates to distinguish multiplications from

squaring operations [93] as published in the International Journal of Information Security.

An analysis of the power consumption difference between a squaring and multiplication is

presented, and a template attack is derived utilising this leakage. Practical results against

an implementation of the Montgomery multiplication algorithm are presented, as well an

analysis of how the length of the key affects the classification accuracy. The effect of

countermeasures in the case of an RSA cryptosystem is examined, and the attack is then

extended to ECC based cryptosystems where a practical attack is conducted against a

protected ECDSA implementation. This attack builds templates on the underlying curve

doubling and addition formulas, which are then used across the ECDSA trace length in

order to recover the entire key. It is shown that many commonly applied countermeasures

are ineffective against this type of attack.

Finally in Chapter 6, machine learning methods are investigated for SCA. Different en-

coding schemes for the stochastic method are examined, with a comparison to the original

proposal given. Logistic regression and neural networks are used for the first time in the

context of SCA, with various respective parameter choices examined. In the case of logis-

tic regression different multi-class options are also examined. The use of support vector

machines is also explored, and all methods are compared to classical template attacks.

The comparison is conducted using the both the multiplication traces which is a binary

classification problem, and the AES trace set which is a multi-class problem, to evaluate
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the respective performance of the algorithms. It is shown that linear discriminant analysis

or neural networks are both effective general classifiers which should be applicable in a

wide range of scenarios.

7.2 Future Research Directions

Machine learning is an exciting area of research and there is considerable potential for

further research in the context of SCA here. The use of unsupervised machine learning

methods to overcome randomisation countermeasures needs to be further examined. As

mentioned in §6.7 on feature selection, the artificial construction of features is another

research topic that has a wide scope. The use of unsupervised learning methods such

as clustering, auto-encoder networks or support vector machine based feature selection,

to allow learning of features from unlabelled data could be applicable here also. Note

that these would not just be suitable for profiling attacks, but more general non-profiling

attacks also. The use of HMMs for error correction of incorrectly classified bits as in §5.7.3

also needs to be further explored.

Practically, a successful application of templates on a real world product has yet to be

fully realised (the attack as presented in [169] did not transfer across smart-cards due

to countermeasures present). The building of templates across multiple devices is also

worth further examination, particularly with regards to hardware implementations where

in the case of FPGAs, the circuit layout might not be exactly the same should a bit file be

regenerated prior to programming the next device. It might be possible to determine some

sort of rule of thumb as to how many devices and adversary should aim to model on based

on the SNR of the traces. A real-world analysis of building templates on public verification

functions, or indeed just a single multiplication operation, could also be powerful addition

to template attack if proven practically feasible.

From a learning algorithm viewpoint, there are many more learning methods that could

be used for SCA. Custom kernels could also be explored for support vector machines

optimised for some leakage model, or custom activation units in the case of neural networks.

Recurrent neural networks which allow for feedback within the model, could be interesting

to explore where there is time-series dependencies such as in masking, or in the context

of asymmetric algorithms where some patterns of key bits won’t be possible. The use of

ensemble learning, where a multitude of classifiers are used, to attack some cryptographic

system could also be examined for optimal error reduction.
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Appendix A
Advanced Encryption Standard

In 2001, the block cipher Rijndael by Joan Daemen and Vincent Rijmen, was selected

by NIST to become AES [163] as a replacement for the outdated DES algorithm. It is

an substitution-permutation network (SPN) based iterative block cipher which acts on

plaintext blocks of 128-bits and supports significantly larger key sizes than DES, i.e. 128-

bits, 192-bits or 256-bits. Depending on the key size, the number of rounds is either 10,

12 or 14 respectively. For the work in this thesis, only the 128-bit key size is used.

Algorithm A.1: Advanced Encryption Standard.

Input: Plaintext p , 128-bit Key s

Output: Ciphertext c

1 state ← p ;

2 state ← AddRoundKey(state, s0) ;

3 for i = 1 to 10 do

4 state ← S-Box (state) ;

5 state ← ShiftRows(state) ;

6 if i 6= 10 then state ← MixColumns(state) ;

7 state ← AddRoundKey(state, si) ;

8 end

9 return c←state

Algorithm A.1 outlines a high-level description of the AES algorithm. First, the plaintext

block p is copied into the state variable, which is a 4× 4 matrix of bytes. Then, an initial

AddRoundKey function simply xors the initial key to the state. This is followed by nine

identical round transformations which include the steps S-Box, ShiftRows, MixColumns,

and AddRoundKey. The tenth round skips the MixColumns operation to generate the
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ciphertext block c.

AddRoundKey : Each byte of the state array is XORed with the corresponding byte

of a sub-key that is generated from the secret key. The key applied in the first

AddRoundKey operation is the secret key, and subsequent sub-keys are generated

using a key schedule.

S-Box : Each byte of the state undergoes a non-linear byte substitution by combining its

multiplicative inverse in GF (28) with an invertible affine transformation. Typically,

the S-Box operation is pre-computed and stored in a 256-entry table. In this way,

the S-Box operation becomes a simple table look-up.

ShiftRows: This operation cyclically shifts the last three rows of the state by different

offsets.

MixColumns: As the name implies, this operation acts on the columns of the state

individually. The four bytes of each column are mixed by applying a linear trans-

formation.
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Appendix B
Elliptic Curve Digital Signature Algorithm

ECDSA [165] provides an elliptic curve varient of the digital signature standard. This

allows a smaller key size for a given security level compared to DSA. The system parameters

are {E ,G, n} where G is a point of prime order n on the elliptic curve E . The signer has

a private key d (randomly chosen from [1, n− 1]) and public key E where E = [d]G. H is

a suitable hash function such as SHA-256 [164].

Signature: To sign a message m, the signer picks a random 0 < k < n and computes:

r ← x mod n where (x, y) = [k]G

s← k−1 (H(m) + r d) mod n

The signature of m is the pair: {r, s}.

Verification: To check {r, s} the verifier ascertains that:

r
?
= x mod n where (x, y) = [u1]G+ [u2]E ,

u1 = H(m) s−1 mod n and u2 = r s−1 mod n .
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Appendix C
Logistic Regression Bit Analysis

The leakage of each bit of the AES S-Box contributes differing amounts to the overall

side channel leakage. Hence when training a LR classifier on the individual bits, (using

25 k training traces and 100 features) there is a large divergence between the error rates.

Histograms of the classification probabilities for each bit are plotted below, with any red

samples having a probability greater than 0.5 incorrectly classified, and any blue sample

less than 0.5 incorrect. It is clear that bit 5, and to a lesser extent bits 3 & 7 have poor

classification accuracy which contributes to the disappointing byte classification in §6.3.2.

(a) S-Box output - Bit 1. (b) S-Box output - Bit 2.
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(c) S-Box output - Bit 3. (d) S-Box output - Bit 4.

(e) S-Box output - Bit 5. (f) S-Box output - Bit 6.

(g) S-Box output - Bit 7. (h) S-Box output - Bit 8.

Figure C.1: Analysis of individual bit leakages with LR.
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Appendix D
Multiplier Hamming Weight Difference

The calculation of Equation 5.5 and Equation 5.6 in §5.4 is practically feasible for up to

l ≈ 16. For l ≥ 16 the computational requirements begin to become excessive, and for

l ≈ 32 or larger its not practical to evaluate over all possible inputs.

To illustrate that side-channel leakage due the difference in Hamming weight of multipli-

cation and squaring operations will also present for larger operand bit-lengths, the exper-

iment was re-run using 1M random, uniformly distributed inputs for bit-lengths up to 64.

As can be seen in Figure D.1(a), for input bit-lengths greater than about 20 the Hamming

weight difference no longer increases. Looking at Figure D.1(b), it is clear from both the

32 and 64-bit graphs, as well as the 16-bit graph in Figure 5.1(b), that the leakage only

occurs at the upper and lower bits, and the middle bits are equally likely to be 0 or 1.
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Figure D.1: Hamming weight analysis.
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