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Abstract

Sensitive systems that are based on smart cards use well-studied and well-developed

cryptosystems. Generally these cryptosystems have been subject to rigorous math-

ematical analysis in an effort to uncover cryptographic weaknesses in the system.

The cryptosystems used in smart cards are, therefore, not usually vulnerable to

these types of attacks. Since smart cards are small objects that can be easily placed

in an environment where physical vulnerabilities can be exploited, adversaries have

turned to different avenues of attack.

This thesis describes the current state-of-the-art in side channel and fault anal-

ysis against smart cards, and the countermeasures necessary to provide a secure

implementation. Both attack techniques need to be taken into consideration when

implementing cryptographic algorithms in smart cards.

In the domain of side-channel analysis a new application of using cache accesses

to attack an implementation of AES by observing the power consumption is de-

scribed, including an unpublished extension.

Several new fault attacks are proposed based on finding collisions between a

correct and a fault-induced execution of a secure secret algorithm. Other new fault

attacks include reducing the number of rounds of an algorithm to make a differential

cryptanalysis trivial, and fixing portions of the random value used in DSA to allow

key recovery.

Countermeasures are proposed for all the attacks described. The use of random

delays, a simple countermeasure, is improved to render it more secure and loss

costly to implement. Several new countermeasures are proposed to counteract the

particular fault attacks proposed in this thesis. A new method of calculating a

modular exponentiation that is secure against side channel analysis is described,

based on ideas which have been proposed previously or are known within the smart

card industry. A novel method for protecting RSA against fault attacks is also

proposed based on securing the underlying Montgomery multiplication.
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The majority of the fault attacks detailed have been implemented against actual

chips to demonstrate the feasibility of these attacks. Details of these experiments

are given in appendices. The experiments conducted to optimise the performance

of random delays are also described in an appendix.
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Notation and Abbreviations

| — Divides, i.e. A|B means that A divides B.

∧ — the logical AND function.

¬ — the logical NOT function.

∨ — the logical OR function.

λ — the Carmichael function, where λ(n) is defined for n as the smallest integer m

such that am ≡ 1 (mod n) for every integer a that is coprime to n.

φ — Euler’s Totient function, where φ(x) equals the number of positive integers

less than x which are coprime to x.

3G — This refers to the third generation mobile standards developed by 3GPP.

These standards seek to address the security problems encountered with the

GSM standards.

ALU — Arithmetic Logic Unit, the part of a chip’s CPU that conducts arithmetic

and logical calculations.

BNC — A BNC connector is commonly used to terminate coaxial cable, and is

often used on oscilloscopes.

Comp128 — the original authentication algorithm for 2G GSM networks, although

this algorithm was never standardised nor officially recommended for use. The

details of this algorithm are not officially in the public domain.

Coprime — two numbers are said to be coprime if they share no common divisors.

CDMA — Code Division Multiple Access, a form of multiplexing. This is used in

a U.S. standard defined by QUALCOMM for mobile communications.

CRT — Chinese Remainder Theorem.
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EEPROM — Electrically Erasable and Programmable Read Only Memory, used

to store code and personalisation data such as cryptographic keys.

gcd — Greatest Common Divisor.

GSM — Global System for Mobile Communications, the most common system

used for mobile phones.

Hamming distance — the number of bits that differ between two binary strings

(of equal length), or, equivalently, the Hamming weight of the XOR of the two

strings.

GF — Galois field.

Hamming weight — the number of bits set to 1 in a given bit string.

LFSR — Linear Feedback Shift Register, often used to generate pseudo-random

numbers.

NVM — Non-Volatile Memory, such as EEPROM, flash memory or ROM.

OS — Operating System.

Pr — Probability function.

ROM — Read-Only Memory, used in smart cards to contain the operating system

that is unchanging from one user to another.

S-box — Used to refer to a substitution table in a cryptographic algorithm; these

are a common feature of block ciphers.

Smooth — Describes a number whose factors consist solely of relatively small

numbers.

Subscripts — The base of a value is determined by a trailing subscript, which is

applied to the whole word preceding the subscript. For example, FE16 is 254

expressed in base 16, and d = (dx, dx−1, . . . , d0)2 gives a binary expression for

d.
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XOR — Exclusive-OR, or a bitwise addition with no carry propagation. This is

also denoted by the ⊕ symbol.

Z — The ring of integers under addition and multiplication.

Zp — The ring of integers modulo p.
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Chapter 1

Introduction

In recent years, smart cards have become one of the most common secure com-

puting devices. Their uses include such diverse applications as: providing a secure

wireless communication framework (GSM, CDMA or 3G), banking and identifica-

tion. The secure microprocessors used in smart cards are also starting to appear in

other devices, such as Dongles used to protect software from unauthorised repro-

duction [103]. The security of cryptographic algorithms implemented on embedded

devices is discussed in terms of smart cards in this thesis. However, the attacks

and countermeasures are potentially relevant to all devices that make use of cryp-

tographic algorithms on secure microprocessors.

Direct threats to smart card security include invasive attacks (that alter the chip

inside the card), analysis of a side channel (data leaked from inside the card), induced

faults, as well as more traditional forms of attack. A variety of countermeasures can

be implemented in a smart card to prevent successful attacks that are particular to

secure microprocessors.

This thesis describes the current state-of-the-art in side channel and fault anal-

ysis against smart cards. A brief description of these topics is given below.

Side channel Attacks: Side channel analysis is a class of attacks that seek to de-

duce information in an indirect manner. This is achieved by extracting secret

information held inside a device, such as a smart card, via the monitoring of

information that leaks naturally during its operation.

The first publicly described attack of this type was a timing attack against
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RSA and certain other public key cryptographic primitives [60]. Publication

of this initial result was followed by attacks using power consumption [61] and

electromagnetic emanations [39] as a side channel to extract information.

Fault Attacks: In recent years fault analysis has come to the foreground as a pos-

sible means of attacking devices such as smart cards. This idea was originally

proposed in 1997 [23], in the form of a fault attack against RSA.

The vast majority of papers written on this subject involve very specific faults

(usually a bit-flip in a specific variable) that are extremely difficult to produce

in practice. However, several attacks have been published that have enough

flexibility in the type of fault required that they can be realised with current

fault injection methods.

Fault attacks have been implemented against chips that could be used in smart

cards [8]. This has meant that countermeasures against this type of attack

need to be implemented in embedded devices to protect against this class of

attack, which have predominantly been implemented against secure devices

such as smart cards. However, it has been shown that some of these attacks

can also be applied to standard computers [44].

Both attack techniques need to be taken into consideration when implementing

cryptographic algorithms in smart cards. The attacks detailed in this thesis are

discussed in terms of smart cards, but it is reasonable to assume that other forms

of secure portable devices will also be vulnerable to these attacks. Attacks on em-

bedded platforms, and the necessary countermeasures, that require multi-threaded

systems [14] or large memories [44] will not be considered.

The attacks and countermeasures are discussed in terms of software implemen-

tations. It is assumed at all times that the underlying hardware is vulnerable to

side channel and fault attacks when an algorithm is implemented in a näıve man-

ner. Hardware countermeasures are mentioned where necessary, but it is not always

possible to include such functionality in a chip, and little detail is therefore given

regarding hardware aspects.
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1.1 Summary of Contributions

The following summarises the contributions discussed in this thesis.

• An implementation of a key transfer attack specified in Section 6.1 is described

in Appendix C.

• A novel way of applying cache-based side channel analysis to an implementa-

tion of AES on smart cards is given in Section 6.2.

• An implementation of a fault attack that reduces the number of rounds of

a block cipher is discussed in Section 6.4, and the implementation details

are given in Appendices B and D. These were implemented on a Microchip

Silvercard.

• Random delays can be used to increase the difficulty of implementing an at-

tack. This is described in Section 7.2, along with a method for optimising the

performance and efficiency of this countermeasure. Appendix E shows how

this optimisation was derived, and how this can be applied to random delays

of any length.

• Four novel attacks based on injecting faults into DPA countermeasures are

described in Sections 8.3.2, 8.4.1 and 8.4.2. The implementations of these four

attacks are discussed in Appendices G, H, and I.

• In Section 9.4 the currently accepted specification of a fault attack on the pri-

vate exponent of RSA (when calculated without using the Chinese Remainder

Theorem) was shown to be false when more than one bit of the private expo-

nent is changed. An alternative fault model is proposed in which the attack

is valid.

• A new modular exponentiation algorithm is given in Algorithm 9.8, in Sec-

tion 9.6.1, although this is based on previously published countermeasures.

• A novel method of securing the Montgomery multiplication algorithm against

fault attacks is given in Section 9.8. This includes how the algorithm can be
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securely used to calculate a modular exponentiation. An informal analysis of

this suggests that this algorithm is robust against a range of fault attacks.

A description of an implementation of this algorithm on 32-bit chip and the

results of attempting to overcome the countermeasure by injecting faults with

a laser are given in Appendix K.

• An application of a fault attack that fixes certain values of the random value

used in DSA is described in Section 10.3, and an implementation of this attack

is described in Appendix L. This is the first published practical implementa-

tion of an attack of this type.

• Methods for optimising the calculation of DPA traces are described in Ap-

pendix A.

1.2 Structure

The initial chapters of this thesis concern themselves with the background to side

channel and fault attacks. Chapter 2 details the commonly used cryptographic

algorithms that are found in most smart cards. Chapter 3 explains what a smart

card is, and why there is interest in using smart cards to calculate cryptographic

algorithms. Some of the chip features used for performance or security, are also

detailed, and will be referred to in later chapters. Chapter 4 describes the side

channels that are available when attacking a smart card. Timing and Simple Power

Analysis attacks are briefly discussed, and the capabilities of each type of attack

are described. A more detailed study is made of statistical power analysis, and a

comparison of two methods used to extract information is given. Electromagnetic

Power Analysis is also briefly described. Chapter 5 describes the various methods

of injecting faults that could be used by an attacker. The effects that these faults

could have on the execution of a cryptographic algorithm are also given, and a fault

model is proposed.

The following chapters contain generic attacks and countermeasures that need to

be taken into account when implementing cryptographic algorithms on smart cards.

Chapter 6 details generic attacks that could be applied to any implementation of
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a cryptographic algorithm on a smart card. These include manipulating the key,

transferring a key from NVM to RAM, and cutting short repeating loops. Accessing

S-boxes via a cache is also considered and extended further in this thesis. Chapter 7

details the countermeasures required to prevent the attacks already described, and

that should be applied to every embedded implementation of cryptographic algo-

rithms to prevent side channel and fault attacks. This includes an optimisation to

the use of random delays to improve the performance and security of systems.

Chapters 8–10 are more concerned with specific algorithms. Chapter 8 details

certain attacks that are predominantly applicable to block ciphers. The application

of the previously described power attacks is discussed in terms of block ciphers.

The first fault attack described is Differential Fault Analysis, followed by Collision

Fault Analysis. The modification of S-box elements is then discussed separately, as it

draws upon both Differential and Collision Fault Analysis. A list of countermeasures

required to protect an implementation of a block cipher is also given.

Chapter 9 contains a similar analysis to that given in Chapter 8, but for the RSA

algorithm when implemented using either a simple modular exponentiation or using

the Chinese Remainder Theorem (CRT) [58]. The procedure of applying Simple and

Statistical Power Analysis to the RSA signature is described. The numerous fault

attacks that can be applied to the RSA signature scheme by modifying different

variables of the algorithm are described. This is followed by a description of the

various modular exponentiation algorithms that can be used to calculate the RSA

algorithm. Methods of rendering these algorithms secure against power analysis

are then discussed, including a new algorithm, followed by a description of how the

algorithm can be defended against fault attacks. This discussion is then repeated

for the RSA signature scheme when computed using the CRT. The security of

the underlying multiplication algorithm is also addressed by proposing a secure

Montgomery multiplication algorithm that is resistant to side channel and fault

attacks. Some discussion of the various fault countermeasure techniques is also given

and, as previously, a list of countermeasures is given for a secure implementation of

the RSA signature scheme on an embedded chip.

Chapter 10 describes the security issues surrounding the implementation of DSA
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on an embedded device. This chapter is relatively brief, as a large portion of the

attacks and countermeasures are already discussed in Chapter 9, but the use of

a random value in the algorithm requires a different type of countermeasure. An

attack based on modifying the random value is described. This is followed by

a discussion of the possible countermeasures that can be applied to protect the

generation of the random value. This is followed by the Conclusion in Chapter 11.

Appendix A describes how the calculation of DPA traces can be optimised.

Appendix B details how glitch parameters for a smart card can be determined,

using Microchip’s Silvercard as an example. Appendix E shows how the use of

random delays can be optimised, and how this can be applied to random delays

of any length. Appendices C, D, F, G, H, I, and L describe various fault attacks

and how they are implemented. Appendix K describes experiments performed to

validate the countermeasure proposed for Montgomery multiplication.
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Chapter 2

Cryptographic Algorithms

Numerous cryptographic algorithms are in use today. In this chapter some of the

most commonly used cryptographic algorithms are detailed. These descriptions

cover algorithms that can be used as examples in generic attacks and countermea-

sures. Later in this thesis a description of how implementations of these algorithms

can be made to resist side channel and fault attacks is given. DES and AES are

also used as examples of generic attacks before the algorithm specific attacks are

discussed.

The Data Encryption Standard is described in Section 2.1, the Advanced En-

cryption Standard is described in Section 2.2, RSA is detailed in Section 2.3, and a

description of the Digital Signature Standard is given in Section 2.4.

2.1 Data Encryption Standard

The Data Encryption Standard (DES) was introduced by NIST in the mid 1970s [78],

and was the first openly available cryptography standard. It has since become a

worldwide de facto standard for numerous purposes. It is only in recent years that

it has been practically demonstrated that an exhaustive search of the keyspace

is possible, leading to the introduction of triple DES and the development of the

Advanced Encryption Standard (AES) (see Section 2.2).

DES can be considered as a transformation of two 32-bit variables (L0, R0),

i.e. the message block, through sixteen iterations of the Feistel structure, shown
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in Figure 2.1, to produce a ciphertext block (L16, R16). The Expansion and P-

permutations are bitwise permutations. For clarity of expression, these permuta-

tions will not always be considered and the round function will be written as:

Rn = S(Rn−1 ⊕Kn)⊕ Ln−1

Ln = Rn−1

where S is the S-box function. The eight different S-boxes are applied in each round

to sets of six bits. The subkeys Kn (1 ≤ n ≤ 16) are each 48 bits generated from

the 56-bit key, by permuting the bits of the initial key.

Figure 2.1: The DES round function for round n.

The algorithm also includes an initial and final permutation. These are also

bitwise permutations and will be ignored, as they do not contribute to the security

of the algorithm.

Triple DES

In order to mitigate the key length problem, a modification to DES was proposed to

make an exhaustive key search prohibitively complex. Triple DES is a construction

using two different DES keys and is defined in [78]. In the algorithm below these are
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labelled K1 and K2, and in order to generate a ciphertext block C from a plaintext

block M the following calculation is performed:

C = DES(DES−1(DES(M, K1), K2), K1)

where DES(M, K) denotes the output of the DES encryption algorithm applied to

message block M with key K. Deciphering the ciphertext block C uses the function,

M = DES−1(DES(DES−1(C, K1), K2), K1)

Another version of triple DES is proposed in [78], in which three different keys

are used rather than two.

2.2 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [79] was introduced in 2001 as a replace-

ment to DES. This was because it became apparent that the key used in DES is too

short, as an exhaustive search had become feasible. The key used in AES can have

a bit length of 128, 192 or 256 bits. For simplicity of presentation, in this thesis

only the simplest case of a 128-bit key will be considered.

Algorithm 2.1: Advanced Encryption Standard
Input: M, K
Output: C

X ←M ⊕K
for i← 1 to 10 do

X ← ShiftRow(X)
X ← ByteSub(X)
if i �= 10 then

X ← MixColumn(X)
end
K ← KeySchedule(K)
X ← X ⊕K

end
C ← X

return C

The structure of this algorithm is given in Algorithm 2.1, where a message

block (M) is enciphered using a key (K) to produce a ciphertext block (C). The
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ShiftRow function is a bytewise permutation of the input data. This is followed by

the ByteSub function that is a substitution table applied to each byte of the input

data. This table is an inversion over GF(28) followed by a bitwise permutation.

The XOR with the subkey is also referred to as the AddRoundKey function. The

MixColumn function is given in Algorithm 2.2, where • represents polynomial

multiplication over GF(28) modulo the irreducible polynomial x8 + x4 + x3 + x + 1.

Algorithm 2.2: The MixColumn Function
Input: X = (x0, x1, . . . , x15)256

Output: Y = (y0, y1, . . . , y15)256

for i← 0 to 15 do
yi = 2 • xi ⊕ 3 • x(i+4) mod 16 ⊕ x(i+8) mod 16 ⊕ x(i+12) mod 16

end

return Y

The xtime function, as described in Algorithm 2.3, is given in [79] as a function

that calculates a polynomial multiplication by the polynomial x over GF(28) modulo

the polynomial given above. The first part of the function is a left bit shift of

the input value, which represents multiplication by the polynomial x. The most

significant bit is then tested. If the bit is equal to one then the result of the bit shift

needs to be reduced to provide the result modulo the polynomial x8+x4+x3+x+1.

This is done by subtracting 11B16 (the hexadecimal representation of the polynomial

x8 + x4 + x3 + x + 1), which is equivalent to an XOR as no carry is produced in

polynomial subtraction. The function described in Algorithm 2.3 is optimised so

that the whole calculation can take place in eight bits, i.e. if the most significant bit

is equal to one then it will be removed by the XOR and is therefore only required

for testing purposes.

The KeySchedule is a function that generates a subkey from the previous

subkey. The first subkey is the key with no changes, and subsequent subkeys are

generated using this function. This function is described in Algorithm 2.4, where z

is a constant that varies from one round to another. This function can be inverted,

so the key can be generated given any of the subkeys.

A permutation is sometimes also used on the message and key on entry to the
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Algorithm 2.3: The xtime function
Input: X = (x7, x6, . . . , x0)2
Output: Y = xtime(X)

Y ← (X << 1) ∧ FF16

if x7 = 1 then
Y ← Y ⊕ 1B16

end

return Y

Algorithm 2.4: The AES Key Schedule
Input: X = (x0, x1, . . . , x15)256, z
Output: X = (x0, x1, . . . , x15)256

for i← 0 to 3 do
xi<<2 ← xi<<2⊕ ByteSub(x(((i+1)∧3)<<2)+3)

end
x0 ← x0 ⊕ z
for i← 0 to 15 do

if i �= 0 mod 4 then
xi ← xi ⊕ xi+1

end
end

return X

algorithm, to convert the array format to the grid format used in the specifica-

tion [79]. This is an optional bytewise permutation that changes the way bytes are

addressed within an implementation.

2.3 RSA

RSA was first published in 1978 [94], and was the first published example of a

public key encryption algorithm. The security of RSA depends on the difficulty of

factorising large numbers. This means that RSA keys need to be quite large, because

of advances in factorisation algorithms and the constantly increasing processing

power available in modern computers.

To generate a key pair for use with RSA, two prime numbers, p and q, typically

of equal bit length, are generated; they are then multiplied together to create a value

N , the modulus, whose bit length is equal to that desired for the cryptosystem. That

is, in order to create a 1024-bit modulus, 2511.5 < p, q < 2512. A public exponent,
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e, is chosen that is coprime to both (p − 1) and (q − 1). A private exponent, d, is

generated from the parameters previously calculated, using the formula:

ed ≡ 1 (mod (p− 1)(q − 1)), or equivalently

ed ≡ 1 (mod φ(N))

where φ is Euler’s Totient function.

In the RSA cryptosystem, to encrypt a message, M , and create ciphertext, C,

one calculates:

C = M e mod N

The value of e is often chosen as 3 or 216 + 1, as these values are small and have

a low Hamming weight, which means that the encryption process is fast. However,

the value 3 is rarely used, as if the result of an encryption is less than N then the

message can be retrieved by taking the integer cube root of the ciphertext [67].

Another example of an attack against RSA encryption when a small exponent is

used applies when an attacker can obtain several ciphertexts for the same message

computed using different values for the modulus [67]. For example, suppose an

attacker obtains the ciphertexts

C1 = M3 mod N1

C2 = M3 mod N2

C3 = M3 mod N3.

An attacker can then use the Chinese Remainder Theorem to compute an integer

X that satisfies

X ≡ C1 (mod N1)

X ≡ C2 (mod N2)

X ≡ C3 (mod N3),

where 0 ≤ X < N1N2N3. Since M3 < N1N2N3 (as M < N1, N2, and N3) then

X = M3, and M can be recovered by taking the integer cube root of X. A similar

attack applies if e is any small value.
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To decrypt the ciphertext, the same calculation is carried out but using the

private exponent, d, which generally has the same bit length as N :

M = Cd mod N

The digital signature scheme involves use of the inverse operations. By conven-

tion, this is expressed as:

S = Md mod N

The generation of a signature, S, uses the private exponent d. The verification

therefore uses the public exponent and is expressed as:

M
?= Se mod N

For simplicity the above notation will be used in the attacks described in subse-

quent sections.

Applying the RSA primitive to the message, as described above, will not yield a

secure signature scheme (for reasons beyond the scope of this thesis). To achieve a

secure scheme it is necessary to apply the RSA operation to a transformed version

of the message, e.g. as can be achieved by hashing the message, adding padding,

and/or masking the result.

In the attacks presented in this thesis, it is assumed that the attacker is able

to completely manipulate the message being signed. This is clearly a strong attack

model, but it allows for a more complete exploration of the attacks that could be

applied to the RSA primitive.

Some of the attacks presented in this thesis will not be realistic when a padding

scheme is used. However, it is important that the calculation of RSA is secure

against all possible attacks. If a given implementation does not use padding or,

more realistically, contains a bug that allows an attacker to remove the padding

function the implementation should still be able to resist all known side channel

and fault attacks.
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Using the Chinese Remainder Theorem

The RSA calculation using the private exponent (i.e. where S = Md mod N and

N = p · q) can be performed using the Chinese Remainder Theorem (CRT) [58].

Initially, the following values are calculated,

Sp = (M mod p)(d mod (p−1)) mod p

Sq = (M mod q)(d mod (q−1)) mod q

which can be combined to form the RSA signature S using the formula S = aSp +

bSq mod N , where:

a ≡ 1 (mod p)
a ≡ 0 (mod q)

and
b ≡ 0 (mod p)
b ≡ 1 (mod q)

This can be implemented in the following manner:

S = Sq +
(
(Sp − Sq) q−1 mod p

) · q
This provides a method of calculating an RSA signature that is approximately

four times quicker than a generic modular exponentiation algorithm. This advantage

is offset by an increase in the key information that needs to be stored. Rather than

storing just the value of d, the values of (p, q, d mod (p− 1), d mod (q − 1), q−1 mod

p) need to be precalculated and stored.

2.4 The Digital Signature Standard

The Digital Signature Standard (DSS) is a U.S. standard for generating digital

signatures introduced by NIST in 1991 [83]. The algorithm specified in the standard

is often referred to as the Digital Signature Algorithm (DSA).

The system parameters for DSA are (p, q, g), where p is a prime (typically of

at least 1024 bits), q is a 160-bit prime dividing p − 1, and g ∈ Z
∗
p has order q.

The private key is an integer α ∈ Z
∗
q and the public key is the group element

β = gα mod p.

To sign a message M , the signer generates a random value, referred to as a

nonce, k < q and computes:
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r = gk mod p mod q and

s =
h(M) + αr

k
mod q

where h is a hash function. The signature of M is the pair: (r, s). To check (r, s)

the verifier checks whether:

r
?=

(
gwh(M)βwr mod p

)
mod q

where w = s−1 mod q.
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Chapter 3

Smart Card Architecture

Smart cards are plastic cards containing an embedded microprocessor that are used

as secure devices in a wide range of applications. This chapter describes some of

the main features of smart cards. Particular attention is paid to features that have

importance to subsequent chapters of this document. Further information on smart

card architectures can be found in [91].

This chapter describes the characteristics of smart card architectures. This

is not a complete description, but focuses on the features that are important for

implementing secure cryptographic algorithms.

Section 3.1 describes what a smart card is, and where the definition of a smart

card can be found. The various features of smart card microprocessors are described

in Section 3.2.

3.1 What is a Smart Card?

In the late 1980s, the growing number of smart card applications led to the emer-

gence of international standards for this technology. The International Organization

for Standardization (ISO) has published standards that define all the basic charac-

teristics of smart cards. The main body of smart card specifications is contained in

the ISO/IEC 7816 series of standards.

Physical Properties A smart card, as defined in the ISO/IEC standards, is a

rectangular card with round corners. A chip is inserted in the front side, and

it can have one (or more) magnetic stripes on the back. The card’s form and

38



contact positions specified in the ISO/IEC 7816-1 [53] and ISO/IEC 7816-

2 [54] standards, respectively, and are shown in Figure 3.1.

Figure 3.1: Classic shape and dimensions of a smart card.

Electrical Properties The integrated circuit is a 1 to 30 mm3 silicon chip. This

circuit is located in a micromodule and the chip is not visible (see Figure 3.2).

In accordance with ISO/IEC 7816-2, the micromodule contains an array of

eight contacts, only five of which are connected to the chip.

Figure 3.2: A front and rear view of a micromodule before it is set into a plastic
card.

The standard voltage supplied to the smart card is 5 volts, with a possible

variation of approximately 10%. For GSM applications a voltage range be-

tween 3 and 5 volts is required, as cellular phone components function with a
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3 volt power supply. Smart cards rely totally on a card reader for their power

supply. They do not have their own power supply because of size constraints.

Communication Smart card terminals use a simple protocol to communicate with

the microchip embedded in smart cards. Every time the card is inserted

into a terminal it is reset. After the voltage supply, the clock, and the reset

signal have been applied, the card sends an Answer To Reset (ATR) to the

terminal via the I/O pin. This ATR contains a series of bytes that define the

parameters and communication protocol that can be used by the card during

the session (as specified in the ISO/IEC 7816-3 standard [52]). The terminal

has the ability to change the communication protocol, transaction speed or

other parameters by sending a Protocol Type Selection (PTS) command to

the card. The PTS will specify a set of parameters within the boundaries set

by the card in the ATR. After the protocol has been established, the terminal

can begin to send commands to the card using the Application Protocol Data

Unit format (APDU). These exchanges are depicted in Figure 3.3.

Operating System (OS) At present, smart card Operating Systems fall into one

of two classes: either an OS especially designed for a dedicated application

(also called a native OS) or a Java Card OS that can host several applica-

tions. In the latter case, each application is handled by an applet, and several

applets can be loaded onto the Java Card at a given time. The OS chosen is

closely related to the chip’s characteristics; for example, Java Cards require

much more memory to house the virtual machine, applets, and all the func-

tions the applet could call. The Java Card OS corresponds to a proprietary

implementation of a standardised API defined by SUN Microsystems [102].

All the implementations discussed in this document will be based on smart

cards with a native OS. This is so that the card can be strictly controlled

and its behaviour from one execution to another remains constant. Despite

this, the attacks and countermeasures described in this thesis still apply to

Java Card implementations. However, it is more difficult to determine when

a given algorithm is performed, as the CPU spends a large percentage of its
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Figure 3.3: Communication initialisation between a smart card and a reader.

time executing the virtual machine. There are also events that occur intermit-

tently, e.g. memory defragmentation, that can desynchronise events from one

acquisition to another. This can make things more difficult for an attacker,

but can often be overcome, as described in Section 7.2. The specific problems

surrounding Java Card implementations and applets are beyond the scope of

this thesis.

3.2 Microprocessors

Unlike memory cards and magnetic stripe cards, that are totally passive, the micro-

processor embedded in a smart card can manipulate and control all the data present

in the card. These processors usually employ well-known architectures.
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The 8-bit microprocessors traditionally used in smart cards are based on Com-

plex Instruction Set Computer (CISC) architectures [75]. These are often typically

based on by Motorola’s 6805 or Intel’s 8051 core, with improvements to permit

further optimisation of the embedded software. Continuing technological advances,

along with the growing need for more sophisticated applications, are currently gener-

ating a significant shift in the hardware platforms used in smart cards. More sophis-

ticated smart cards are emerging based on 32-bit Reduced Instruction Set Computer

(RISC) architecture chips, containing dedicated peripherals (cryptographic copro-

cessors, memory managers, large memories, . . . ) [51, 71]. In this thesis, both types

of architecture are analysed with regard to the differences in countermeasure re-

quirements.

3.2.1 Cryptographic Coprocessors

Traditionally smart cards have been based around 8-bit architectures. In order to

manipulate large numbers, e.g. to calculate the RSA algorithm described in Sec-

tion 2.3, dedicated coprocessors can be appended to the CPU. In more modern

32-bit chips [51, 71] a coprocessor is not necessary to compute the RSA algorithm,

as efficient software implementations can be achieved.

DES is also often implemented in a coprocessor to help increase performance,

and AES implementations should be available in the near future. These coprocessors

can increase the smart card’s performance, as hardware implementations of secret

key algorithms can be expected to require 1 or 2 clock cycles per round of the block

cipher. However, the inclusion of coprocessors also increases the size of the chip and

the overall power consumption. This means that chips with coprocessors are usually

more expensive and are not ideal in environments where the amount of available

current is severely limited, e.g. GSM Subscriber Identity Modules.

3.2.2 Random Number Generators

Random number generators are usually included in smart cards, as unpredictable

numbers are an important element in many secure protocols. A true random num-

ber generator is typically based on a signal generated by an analog device (e.g. a
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noisy resistor) which is then treated to remove any bias that may exist, or has been

induced, in the bits generated. The correct functioning of all aspects of a smart

card chip under varied environmental conditions is important, but is critical for

random number generation because the quality of the generated random values can

have a profound effect on cryptographic schemes. Random number generators are

therefore designed to function correctly in a large range of environmental condi-

tions, including temperature, supply voltage, and so on. However, if an attacker

succeeds in modifying the environmental conditions such that the physical source

of randomness is affected, the subsequent treatment is included so that an attacker

will not be able to determine if the change in conditions had any effect.

Pseudo-random number generators are also often included. These are typically

based on Linear Feedback Shift Registers (LFSRs) that are able to generate a new

pseudo-random value every clock cycle, but are deterministic over time and are not

usually used for critical security functions.

Where random values are required in cryptographic algorithms, a true random

number generator is used when the quality of the random value is important, e.g.

the generation of the nonce in DSA (see Section 2.4). Where the quality of the

random value is less important, a pseudo-random number generator can be used, e.g.

to govern the lengths of random delays (see Section 7.2). In some microprocessors

only pseudo-random number generators are available. In this case, mechanisms that

combine a random seed (that can be inserted into the chip during manufacture) with

pseudo-random values can be used to provide random values.

An example of this latter type of random number generator is given in the ANSI

X9.17 [3] standard, that uses DES to provide random values based on a random

seed and another source of pseudo-random information. This functions by taking a

64-bit pseudo-random input (X), a 64-bit random seed (S) and a DES key (K). X

is usually generated by calculating X = DES(D, K), where D is a the date and/or

time, but this information is not available to a smart card and is therefore replaced

with values provided by a pseudo-random number generator. To output a random

value R the following calculation takes place:
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R = DES(X ⊕ S, K),

and the random seed is updated using:

S = DES(R⊕X, K).

For increased security the DES function can be replaced with triple DES, as the key

length used by DES has proven to be too short to entirely resist an exhaustive key

search.

3.2.3 Cache

Sophisticated smart cards are emerging based on 32-bit CPUs, containing dedicated

mechanisms designed to compensate for time-consuming operations or long data

paths. Details of these sophisticated mechanisms are given, for example, in [49, 72].

Two mechanisms that are important in the context of this thesis are pipelining and

caching, and are detailed below.

Pipelining: Pipelining is a technique whereby the execution of each instruction is

decomposed into elementary and independent steps. Each step is implemented

as a separate hardware block that can work in parallel. Typically, a 3-stage

pipeline can be decomposed into an Instruction Fetch (IF), an Execute (EX)

stage and a Write Back (WB) stage. More sophisticated 5-stage pipelines,

such as that discussed in [72], can involve an IF stage, a DC (Decode) stage,

an EX stage, a MEM (Memory access) stage and a WB stage. Each stage

is designed to be completed within one clock cycle, which means that, even

though each instruction takes 5 clock cycles in the case of a 5-stage pipeline,

a new instruction can be issued at every clock cycle.

Caching: Smart card architectures include embedded Non-Volatile Memory (NVM)

such as EEPROM or Flash to store code or data. Such memory usually has

high read latency where, for example, reading one byte involves reading a

whole line that takes several clock cycles. This would mean that the IF stage

and the MEM stage would take more than one clock cycle, which would stall
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the pipeline. This would considerably reduce the rate at which instructions

can be issued. To compensate for these “slow” memories, cache mechanisms

are implemented. A cache is a small, fast RAM whose role is to buffer the

lines of NVM being fetched. Because of the technology used to implement

them, and their small size (leading to faster decode and access times), caches

allow a word to be fetched in one clock cycle.

When the data is to be fetched from the NVM, the CPU will first check

whether this particular word is already in the cache: if yes (this is a cache

hit), the word is fetched directly from the cache. If, on the contrary, this

particular word is not cached, then this is a cache miss. The CPU will then

fetch a whole line (e.g. 16 bytes) within which the targeted word can be found.

This means that, even if fetching this word takes more than one clock cycle,

the other words of this line will already be in the cache when required.

This mechanism considerably increases the instruction issue rate and, there-

fore, performance. Detailed studies of the performance enhancements of cache

mechanisms are given in [49]. In order to keep power consumption low, smart

card CPUs usually only have one level of cache, with a granularity in the order

of 8 to 16 bytes.

3.2.4 Anomaly Sensors

There are usually a number of different types of anomaly detectors present in smart

cards. These are used to detect unusual events in the voltage and clock supplied

to the card, and the environmental conditions (e.g. the temperature). These enable

a smart card to detect when it is exposed to conditions that are outside the pa-

rameters within which it is known to function correctly. When unusual conditions

are detected, the chip will cease to function until the effect has been removed (i.e.

initiate a reset or an infinite loop when the sensor is activated). However, these

measures cannot be relied upon to defend against all fault attacks. For example,

sensors that detect intense light (such as laser light) will only protect a small area

of the chip’s surface; an attacker could potentially find an area were a fault can be

injected and remain undetected.
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3.2.5 Chip Features

The surface of the chip used in a smart card can be uncovered by exposing the

micromodule to fuming nitric acid∗ that will remove the resin visible in Figure 3.2.

Once the chip has been revealed the easiest form of analysis is to simply look at it.

The various different blocks can often be identified, as shown in Figure 3.4.

Figure 3.4: A chip surface with readily identifiable features.

Reverse engineering can target the internal design to understand how a given

chip or block functions. A malicious attacker can use such information to improve

their knowledge of chip design and find potential weaknesses in the chip, which may

allow them to compromise the chip’s integrity.

In modern smart cards, various features used to inhibit reverse engineering are

implemented using glue logic: important blocks are laid out in a randomised fashion

that makes reverse engineering difficult. This technique increases the size of the

block, and is therefore not used in the design of large blocks such as the ROM and

EEPROM.

A common technique to prevent this sort of identification and targeting is to

overlay the chip with another metal layer that prevents the chip’s features being

identified. This can be removed using hydrofluoric acid that eats through the metal
∗Fuming nitric acid is nitric acid with a concentration of over 86%.
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layer; this reaction is then stopped using acetone before further damage is done and

the chip surface can be analysed. The chip becomes non-functional but the layout of

the chip can be determined, so that other chips of the same family can be attacked.

The result of such a process is shown in Figure 3.5.

Figure 3.5: A chip with a shield present and removed. Removing a shield using
hydrofluoric acid renders the chip non-functional but allows the layout to be deter-
mined.

Discovering the layout and functioning of a chip is particularly important when

using a laser as a fault injection mechanism. Different areas of a chip can be targeted

through the metal layer once the layout of a chip is known.

3.3 Summary and Conclusions

This chapter describes some of the features that are present in smart cards. The

physical characteristics of a smart card are defined in the ISO/IEC 7816 series of

standards, some features of which are described above. Common security features

of smart cards are also described. The features described in this chapter will be

referred to in later chapters where appropriate.
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Chapter 4

Side Channel Analysis
Techniques

Sensitive systems that are based on smart cards use protocols and algorithms that

have usually been subjected to rigorous analysis by the cryptographic community.

Attackers have therefore sought other means to circumvent the security of protocols

and algorithms used in smart card based systems. As smart cards are small devices,

they can easily be put in a situation where their behaviour can be observed and anal-

ysed. The simplest form of analysis of this type is intercepting the communication

between a smart card and its reader. Tools are readily available on the Internet [7]

that allow the commands to and from a smart card to be logged. This problem is

relatively easy to solve using secure session key generation to encipher subsequent

communication, as proposed in [43], but highlights the ease of man-in-the-middle

attacks against smart cards.

More complex attacks can be realised by monitoring information that leaks natu-

rally when a smart card processes information. These are referred to as side channel

attacks. In this chapter, the types of side channel analysis that are potentially pos-

sible against cryptographic algorithms implemented on embedded platforms are de-

scribed. Particular emphasis is placed on the different versions of Statistical Power

Analysis, to demonstrate the difference in the quality of the results.

Timing analysis is briefly discussed in Section 4.1. The possible uses of Simple

Power Analysis is detailed in Section 4.2. A detailed description of Differential Power

Analysis is given in Section 4.3. Correlation Power Analysis is then described and
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Figure 4.1: Data acquisition tools.

compared with Differential Power Analysis. Electromagnetic Power Analysis is also

briefly described in Section 4.4.

4.1 Timing Analysis

The first published side channel attack [60] targeted public key cryptographic algo-

rithms. Timing analysis involves observing the amount of time it takes to perform

certain operations. By monitoring the length of time taken by a command, deduc-

tions can be made about the data being manipulated within a smart card. This

can either be measured by acquiring the I/O during one command using an oscil-

loscope, as shown in Figure 4.1, or by using certain proprietary card readers. If an

oscilloscope is used, the number of clock cycles taken to perform a given command

can be deduced by analysing the yellow trace visible on the oscilloscope shown in

Figure 4.1. This aspect of side channel analysis will not be covered in depth, as the

countermeasures are trivial, but will be mentioned where relevant.

4.2 Simple Power Analysis

The most basic form of power analysis is known as Simple Power Analysis (SPA).

This involves observing the power consumption of the card via an oscilloscope, and

making deductions about what calculations are being performed based on these

observations. Information regarding power consumption can be acquired using the
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Figure 4.2: The power consumption of an unprotected modular exponentiation im-
plemented using the square and multiply algorithm.

equipment shown in Figure 4.1, where the power consumption is given by the blue

trace on the oscilloscope. A widely known attack involves observing the power

consumption during the execution of a modular exponentiation.

Examination of the power consumption during a modular exponentiation com-

putation can potentially reveal information about the exponent. An example of the

power consumption of a smart card during the execution of a modular exponentia-

tion is shown in Figure 4.2.

Looking closely at the acquired power consumption, a series of events can be

seen. There are two types of event at two different power consumption levels, with

a short dip in the power consumption between each event. This corresponds well

to the simplest algorithm for calculating a modular exponentiation: the square and

multiply algorithm. This is where the exponent is read bit-by-bit, a zero results

in a squaring operation being performed, and a one results in a squaring operation

followed by a multiplication with the original message. This algorithm is detailed

in Algorithm 4.1.

Given the ratio of the two features, it can be assumed that the feature with the

lower power consumption represents the squaring operation and the higher power
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Algorithm 4.1: The Square and Multiply Algorithm
Input: m, d = (d0, d1, d2, . . . , dx)2, n
Output: c = md mod n

c← m
for i← 0 to x do

c← c2 mod n
if di = 1 then

c← c ·m mod n
end

end

return c

Figure 4.3: The power consumption of a DES implementation showing the rounds
of the algorithm.

consumption represents the multiplication. From this, the beginning of the expo-

nent can be read from the power consumption, in this case the exponent used is

F00F000FF0016. Further details of this attack and the relevant countermeasures

are described in Chapter 9.

In a more general sense, the performance of individual functions are also visible

in the power consumption. Figure 4.3 shows the power consumption of a smart card

during the execution of DES. The rounds of the DES algorithm are clearly visible

as a pattern that repeats 16 times.
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Figure 4.4: The power consumption of a DES implementation showing the round
functions.

This analysis can be further improved by closely inspecting the power consump-

tion during one round. The functions executed in the round can be seen. This is

shown in Figure 4.4 where the functions in the second round of a DES implementa-

tion are evident from the power consumption trace. This may not be immediately

apparent, as close inspection of the trace’s features is necessary to identify the in-

dividual functions.

This is important, as the statistical attacks described in Section 4.3 target spe-

cific functions in cryptographic algorithms. A thorough simple power analysis of an

algorithm implementation can greatly increase the speed of statistical attacks, as

the area that needs to be analysed can be defined, therefore reducing the amount

of data that needs to be acquired.

The same is true for fault injection techniques, detailed in later chapters, as it

is often necessary to target specific events. If arbitrary functions can be identified

using the power consumption, the point in time at which an attacker wishes to

inject a fault can be discovered. This can greatly decrease the time required to

conduct a successful attack, as less time is wasted injecting faults into areas of the

computation that will not produce the desired result.

It should be noted that all the examples given in this section have been taken
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from chips that display the differences in an obvious manner. Modern smart cards

rarely display the functions being executed as clearly as in the examples given.

4.3 Statistical Power Analysis

Statistical Power Analysis is a more powerful form of power analysis attack (it can

be further sub-categorised into Differential Power Analysis (DPA) and Correlation

Power Analysis (CPA)). In this type of attack a smart card command is executed

numerous times with different inputs, and the corresponding power consumption

is captured for each input. A statistical analysis is then performed on the data

gathered to infer information about the secret information held inside the card.

These techniques require many more data acquisitions than with Simple Power

Analysis, and a certain amount of treatment a posteriori.

Statistical power attacks are based on the relationship between the power con-

sumption and the Hamming weight of data being manipulated at a given point in

time. The differences in power consumption are potentially extremely small, and

cannot be interpreted individually, as the information will be lost in the noise in-

curred during the acquisition process. The small differences produced can be seen

in Figure 4.5, where traces were taken using a chip where the acquisition noise is

exceptionally low.

The first implementation of this type of attack is known as Differential Power

Analysis (DPA) [61], and works by amplifying the differences in the power consump-

tion. This was followed by Correlation Power Analysis [26], that uses the correlation

between the power consumption and the Hamming weight of the machine word being

manipulated at a given point in time.

4.3.1 Modelling the Power Consumption

Two main models have been proposed to explain how the power consumption

changes as data is being processed.

The Hamming Weight Model: The simplest model, initially proposed in [61,

69], involves an affine relationship between the power consumption and the
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Figure 4.5: Overlaid acquisitions of the power consumption produced by the same
instruction but with varying data.

Hamming weight of the data being manipulated at a given point in time. This

is largely caused by the bus on the microprocessor, that consumes a large

amount of power compared to any other single feature on the chip. This can

be expressed as,

Y = aH(X) + b

where Y is the power consumption, X is the value of the data being ma-

nipulated, and H is a function that calculates the Hamming weight. The

variable b includes the acquisition noise and the variation from one clock cycle

to another, as the commands being executed by the CPU change.

This can be justified by observing that the tracks of the bus will either be

zero (and consume no power) or one (and will therefore consume power). As

each track should consume the same amount of power, the power is therefore

proportional to the number of tracks with current flowing in them. As all

the information being processed by the chip is carried across the bus, this

relationship can be exploited when secret information is sent across the bus.

The Hamming Distance Model: Another model was proposed in [26] that gen-

eralises the Hamming weight model. This model is a similar model but with
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an addition of another variable, P . This model is:

Y = aH(P ⊕X) + b

The notation is the same as described in the previous model, and the value

P represents some previous state. The justification for this model is that the

Hamming weight model is only valid if the bus is set to zero between each

value sent. If this value is not set to zero then there is a transition from state

P to state X, so the change in value of the bus can be modelled by an XOR

between the two values.

A command fetched by the CPU will often consist of several opcodes: usually

an instruction followed by the data being manipulated. In this case, X is

the data being manipulated and P is the instruction opcode. If the data is

being sent over a separate data bus, P will either be previous data or zero,

depending on how the chip manages values on the data bus, i.e. if the bus is

set to zero when it is not in use or if it maintains its previous state.

Both models are used in Statistical Power Analysis. In Differential Power Anal-

ysis it is not necessary to consider the Hamming Distance Model, as this will only

change the sign of the peak produced. The Hamming Distance model becomes

more important when conducting Correlation Power Analysis, where a more com-

plete model of the chip is required.

4.3.2 Differential Power Analysis

Differential Power Analysis (DPA) can be performed on any algorithm in which an

intermediate operation of the form β = S(α ⊕K) is calculated, where α is known

and K is the key (or some segment of the key). The function S is a non-linear

function, usually a substitution table (referred to as an S-box), which produces an

intermediate output value β.

The process of performing the attack initially involves running the target device

N times with N random plaintext values Pi, where 1 ≤ i ≤ N . The encryption

of the plaintext Pi under the key K to produce the corresponding ciphertext Ci
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will result in a power consumption waveforms wi for every i (1 ≤ i ≤ N). These

waveforms are captured with an oscilloscope, and sent to a computer for analysis

and processing.

To find a given partial key (Kj), the output produced from the S-box (�j) when

given Kj and all Pi,j will be used to categorise the power consumption waveforms. A

single output bit b from �j is used for this categorisation. For all possible hypotheses,

i.e. that Kj is an integer in the interval [0, 2m − 1], and each partial message Pi,j , b

will classify whether waveform wi is a member of one of two possible sets. The first

set S0 will contain all the waveforms where b is equal to zero, and the second set S1

will contain all the remaining waveforms, i.e. where the output bit b is equal to one.

For each hypothesis, a differential trace Δn is calculated by finding the average

of each set and then subtracting the resulting values from each other, where all

operations on waveforms are ordinary functions conducted in a pointwise fashion.

Δn =

∑
wi∈S0

wi

|S0| −
∑

wi∈S1
wi

|S1|
The DPA waveform with the highest peak will validate a hypothesis for Kj , i.e.

Kj = n corresponds to the Δn featuring a maximum amplitude. For a single DPA

waveform this involves N − 2 additions (as there will be an average of N
2 elements

in each set, each requiring N
2 − 1 additions to compute) to create the differential

Δn. Therefore, for all hypotheses, the total number of operations to calculate all

DPA waveforms for one S-box is 2m × (N − 2). Some optimisations to the process

of generating DPA traces are described in Appendix A.

Figure 4.6: A DPA trace.
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An example of a DPA trace is shown in Figure 4.6. This is a DPA trace generated

with a correct key hypothesis to predict one bit of the output of the first S-box of

DES. The first peak corresponds to the output of the S-box, the four subsequent

peaks correspond to the same bit being manipulated in the P-permutation. The

size of a peak is considered to be its absolute value.

4.3.3 Correlation Power Analysis

Another version of Statistical Power Analysis called Correlation Power Analysis

(CPA) was proposed in [26], where the equation for generating differential waveforms

is replaced with the formula for Pearson’s correlation coefficient. In this case the

power consumption is measured as before, represented below by aH + b (where H

represents the Hamming weight used in the models given in Section 4.3.1). Rather

than analysing one bit, an attacker seeks to predict the Hamming weight of the

computer word being manipulated at a given point in time. These predictions are

given by H ′ leading to the following formula to calculate the coefficient.

ρ =
cov(aH + b, H ′)

σ(aH+b)σH′

where ρ is the correlation between aH + b and H ′. In practice, this will be calcu-

lated using a series of power consumption traces (wi) and a corresponding list of

predictions for the Hamming weight at a given point (Hi). This gives the following

calculation:

ρ =
N

∑N
i=1 WiHi −

∑N
i=1 Wi

∑N
i=1 Hi√

N
∑N

i=1 W 2
i − (

∑N
i=1 Wi)2

√
N

∑N
i=1 H2

i − (
∑N

i=1 Hi)2

where N acquisitions have been taken. As previously, the calculation is applied to

the series of acquisitions in a pointwise fashion.

The series of data represented by Hi is predicted using one of the models pro-

posed in Section 4.3.1. When the Hamming distance model is used, it is necessary

to calculate the correlation coefficient for every possible value for the unknown pre-

vious state P . The highest correlation coefficient should give the value of P . When

this is used to attack an algorithm, the highest correlation will generally give the
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Key: Red Key hypothesis 42
Cyan Key hypothesis 22
Blue Key hypothesis 24
Magenta Key hypothesis 43
Green Key hypothesis 19

Figure 4.7: DPA traces on bit 1 of S-box1 for various guesses (correct guess is 24).

value for a portion of the key and the previous state at the same time. This subject

is given a more rigorous treatment in [26].

4.3.4 Comparing the Different Methods

It is possible to use DPA to derive a key. However, there are two main problems

with DPA. These are:

1. DPA peaks also appear for wrong hypotheses. These are referred to as “ghost

peaks” [26]. This can cause problems when trying to differentiate the various

possible hypotheses. An example of this phenomenon can be seen in Figure 4.7,

where there are various peaks, all corresponding to different key hypotheses

for six bits of a DES subkey.

2. The DPA for an incorrect guess can also be larger than for the correct guess.

This can be seen in Figure 4.7, where the magenta waveform represents a false

hypothesis but has the most significant DPA peak.

A worked example of how this is possible is given in [26] and is repeated here.

Consider the leftmost bit of the output of the fifth S-box of DES when the in-

put data (M) varies from 0 to 63 and is combined with two different subkeys,
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Key: Red Key hypothesis 63
Cyan Key hypothesis 10
Blue Key hypothesis 24
Magenta Key hypothesis 05
Green Key hypothesis 15

Figure 4.8: CPA traces on 4 bits of S-box1 for various guesses (correct guess is 24).

(MSB(S-box �5(M ⊕ 0)) and MSB(S-box �5(M ⊕ 3616))). The series of bits pro-

duced by the varying messages can be predicted. These are listed below, followed

by the XOR between the two sets of data.

1101101010010110001001011001001110101001011011010101001000101101
1001101011010110001001011101001010101101011010010101001000111001
0100000001000000000000000100000100000100000001000000000000010100

The third line contains eight bits set to one. This means that there are only

eight values that will distinguish between the two possible key values. When these

values are used to produce a DPA trace, the false key key value would produce a

DPA peak whose height is 56/64 that of the correct value. Given that a certain

amount of noise cannot be avoided, this could cause problems.

Another potential problem arises as DPA makes the assumption that all the

data not under direct consideration is uniformly distributed. This is not always the

case, as the structure of the S-boxes will give some bias to the Hamming weight

of the data not being considered. This can potentially change the resulting value

by reducing the DPA peak for a correct hypothesis or by supporting an incorrect

hypothesis.
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CPA removes these problems by considering the whole machine word being ma-

nipulated at a given point in time. This can also necessitate making some assump-

tions about the implementation details [26]. Figure 4.8 shows the CPA waveforms

for the same data used to generate the DPA waveforms shown in Figure 4.7. A

significant distinction can be seen between the correct hypothesis and the incorrect

ones. This demonstrates that CPA can provide more reliable results for an attacker,

as it is based on a more complete model of the chip. This is discussed in more depth

in [26].

4.4 Electromagnetic Analysis

Electromagnetic analysis [39] is only different to power analysis in the way in which

data is acquired. After this, all the a posteriori treatment remains the same. The at-

tacks previously described for Simple Power Analysis and Statistical Power Analysis

will function in the same manner for electromagnetic acquisitions.

However, the measurement of different types of event is possible via electromag-

netic analysis, as the probe is very small when compared to the size of the chip. An

example electromagnetic probe is shown in Figure 4.9, where the probe is shown

above an opened smart card chip. The probe is of an equivalent size to the chip’s

features, which can be seen as blocks on the chip’s surface. This means that the

probe can be placed just above a given feature to try and get a strong signal from

this part of the chip, e.g. the bus between two areas of the chip, while excluding

noise from other areas of the chip.

This technique can also be used to overcome certain hardware countermeasures

such as current scramblers. Unfortunately, it is a much more complicated attack

to realise, as the chip needs to be open, as shown in Figure 4.9. If the chip is not

open the signal is usually not strong enough for any information to be deduced.

The tools required to capture this information are also more complex, as the power

consumption can be measured by simply reading the potential difference over a

resistor in series with a smart card. To measure the electromagnetic field involves

building a suitable probe (the probe in Figure 4.9 is handmade) and the use of
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Figure 4.9: Electromagnetic probing of a chip.

amplifiers, so that an oscilloscope can detect the signal.

4.5 Summary and Conclusions

This chapter provides some of the basic side channel attack techniques that will be

referred to in later chapter. The techniques of Timing and Simple Power Analysis

are described. The two predominant versions of Statistical Power Analysis are also

described. It is shown that Correlation Power Analysis allows for a better distinction

between a correct hypothesis and an incorrect hypothesis than Differential Power

Analysis.
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Chapter 5

Fault Injection Techniques

One of the first examples of fault injection in microprocessors was accidental. It

was noticed that radioactive particles produced by elements naturally present in

packaging material [66] caused faults in chips. Specifically, these faults were caused

by Uranium-235, Uranium-238 and Thorium-230 residues present in the packaging

decaying to Lead-206 and releasing α particles. These particles created a charge in

sensitive chip areas causing bits to flip. Whilst these elements were only present

in two or three parts per million, this concentration was sufficient to change the

chip’s behaviour. Subsequent research included studying and simulating the effects

of cosmic rays on semiconductors [112]. Cosmic rays are very weak at ground level

because of the Earth’s atmosphere, but their effect becomes more pronounced in

the upper atmosphere and outer space.

This has provoked a great deal of research by organisations such as NASA and

Boeing, and most of the work on fault resistance was motivated by this vulnerability

to charged particles in space and the upper atmosphere. Considerable engineering

endeavours were devoted to the “hardening” of electronic devices designed to operate

in harsh environments. Various other fault induction methods have since been

discovered, but all have similar effects on chips. For example, a laser can be used to

imitate the effect of charged particles [45]. The different faults that can be produced

have been characterised to enable the design of suitable protection mechanisms.

This chapter describes the different fault effects that an attacker could apply to

a smart card. This includes both transient and permanent faults, although transient

faults are more likely to be of interest to an attacker. The aim of this chapter is to
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define a model for the effects that could potentially be produced by a fault.

Section 5.1 details the types of fault injection methods that are potentially avail-

able to an attacker. Section 5.2 describes the types of faults that can be provoked at

the silicon level of a chip. In Section 5.3, the types of effect that an attacker would

expect to be able to provoke in an algorithm are described. A brief description of

how side channel analysis can aid in injecting faults is given in Section 5.4. Some

of the work in this chapter has been published in [10, 11], and some work remains

unpublished [81].

5.1 Injection Techniques

Several ways of inducing faults in smart cards have been discussed in the literature.

The most common fault injection techniques are:

Variations in Supply Voltage: [5, 22] during execution may cause a processor

to misinterpret or skip instructions. An example of how glitch parameters can

be determined is given in Appendix B.

Figure 5.1: Supply voltage glitch fault injection equipment.

Variations in the External Clock: [5, 6, 64] may cause data to be misread (the

circuit tries to read a value from the data bus before the memory has time to

latch out the correct value) or an instruction miss (the circuit starts executing
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instruction n + 1 before the microprocessor has finished executing instruction

n).

Temperature: [23, 44] Circuit manufacturers define upper and lower temperature

thresholds within which their circuits will function correctly. An attacker, for

example, can vary the temperature using an alcoholic cooler until the temper-

ature drops below the threshold for the chip under attack. When conducting

temperature attacks on smart cards, two effects can be obtained: the random

modification of RAM cells due to heating, and the exploitation of the fact that

read and write temperature thresholds do not coincide in most Non-Volatile

Memories (NVMs). By tuning the chip’s temperature to a value where write

operations work but read operations do not, or the other way around, a num-

ber of attacks can be mounted.

White Light: [5] All electric circuits are sensitive to light because of the photo-

electric effect. The current induced by photons can be used to induce faults if

a circuit is exposed to intense light for a brief period of time. This can be used

as an inexpensive means of fault induction [100]. An example of equipment

for injecting faults using this method is shown in Figure 5.2.

Figure 5.2: White light fault injection equipment.

Laser Light: [37, 45, 90] A wide variety of faults can be produced with laser light,

and can be used to simulate faults induced by particle accelerators. The effect

produced is similar to white light, but the advantage of a laser over white light
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is the directionality that allows a small circuit area to be precisely targeted.

An example of laser fault injection equipment is shown in Figure 5.3.

Figure 5.3: Laser fault injection equipment.

X-rays and ion beams: [13] can also be used as fault sources (although these are

less common). These have the advantage of allowing the implementation of

fault attacks without necessarily de-packaging the chip. However, the equip-

ment required is extremely expensive.

Electromagnetic flux: [95] has also been shown to be able to change values in

RAM, as eddy currents can be made strong enough to affect microprocessors.

5.2 The Types of Fault

Electronic circuits can be subjected to two classes of fault: provisional (transient)

and destructive (permanent) faults. In a provisional fault, silicon is locally ionised

so as to induce a current that, when strong enough, is falsely interpreted by the

circuit as an internal signal. As ionisation ceases, so does the induced current (and

therefore the resulting faulty signal), and the chip recovers its normal behaviour.

Conversely, destructive faults, created by deliberately inflicted defects in the chip’s

structure, have a permanent effect. Once induced, such faults will affect the chip’s

behaviour permanently.
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5.2.1 Provisional Faults (Taxonomy)

Provisional faults have reversible effects and the circuit will recover its original

behaviour after the system is reset or when the stimulus ceases.

Single Event Upsets: (SEUs) are flips in a cell’s logical state to a complementary

state. The transition can be temporary, if the fault is produced in a dynamic

system, or permanent if it appears in a static system. SEUs were first no-

ticed during a space mission in 1975 [84, 88] and stimulated research into the

mechanisms by which faults could be created in chips. SEUs can also manifest

themselves as a variation in an analogue signal such as the supply voltage or

the clock signal.

Multiple Event Upsets: (MEUs) are a generalisation of SEUs. The fault consists

of several SEUs occurring simultaneously. A high integration density can

provide conditions favourable to the genesis of MEUs.

Dose Rate Faults: [63] are caused by several particles whose individual effect is

negligible but whose cumulative effect generates a sufficient disturbance for a

fault to appear.

5.2.2 Destructive Faults (Taxonomy)

Destructive faults provoke a permanent fault in a circuit and the chip will not

return to its original behaviour. There are four different types of destructive faults,

classified in the following manner:

Single Event Burnout faults: (SEBs) are caused by a parasitic thyristor∗ being

formed in the MOS power transistors [65, 101]. This can cause thermal run-

away in the circuit causing its destruction i.e. the current flowing through the

affected portion of the circuit will heat the circuit damaging it.
∗A thyristor is a device similar to a diode, with an extra terminal that is used to turn it on.

Once activated, the thyristor will remain on as long as there is a significant current flowing through
it. If the current falls to zero the device switches off.
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Single Event Snap Back faults: (SESs) [62] are caused by the self-sustained

current by the parasitic bipolar transistor in MOS transistor channel N. This

type of fault is not likely to occur in devices with a low supply voltage.

Single Event Latch-up faults: (SELs) [1, 37] are propagated in an electronic

circuit by the creation of a self-sustained current with the releasing of PNPN

parasitic bipolar transistors in CMOS technology. This can potentially destroy

the circuit. This effect is shown in Figure 5.4.

Figure 5.4: Single event latch-up — parasitic transistors T1 and T2.

Total Dose Rate faults: [27] are caused by a progressive degradation of the elec-

tronic circuit subsequent to exposure to an environment that can cause defects

in the circuit [93].

When using fault injection as an attack method, provisional faults are the

method of choice. These allow for faults under a variety of experimental condi-

tions to be attempted until the desired effect is achieved, and also leaves the chip in

a functional state after the attack has been completed. A destructive fault would

(usually) render the target unusable and will necessitate the manufacturing of a

clone.

5.3 Fault Models

The fault injection methods described above have many different effects on silicon.

They can be modelled in ways that depend on the type of fault injection that has

been used. The following list indicates the possible effects that can be created by

these methods:
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Resetting Data: an attacker could force the data to the blank state, i.e. reset a

given byte, or bytes, of data back to 00 or FF16, depending on the logical

representation.

Data randomisation: an attacker could change the data to a random value. How-

ever, the adversary does not control the random value, and the new value of

the data is unknown to the adversary. Such an effect can be seen in the power

consumption, as shown in Figure 5.5, although it is not clear if the data is

randomised or reset.

Modifying opcodes: an attacker could change the instructions executed by the

chip’s CPU, as described in [5]. This will often have the same effect as the

previous two types of attack. Additional effects could include removal of

functions or the breaking of loops. The previous two models are algorithm

dependent, whereas the changing of opcodes is implementation dependent.

Such an effect can been seen in the power consumption as shown in Figure 5.6.
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The blue trace represents a normal execution. The red trace shows the same code
being executed but with a fault injected that modifies the data being manipulated.

Figure 5.5: The effect of a glitch on data being manipulated by a chip, as visible in
the power consumption.

These three types of attack cover everything that an attacker could hope to do

to an implementation of an algorithm. It is not usually possible for an attacker to

create all of these possible faults in any particular implementation. Nevertheless,
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it is important that algorithms are able to tolerate all types of fault, as the fault

injection methods that may be realisable on a given platform are unpredictable.

While an attacker might only ever have a subset of the above effects available, if

that effect is not taken into account then it may have catastrophic consequences for

the implementation.

The blue trace represents a normal execution. The red trace shows the same code
being executed but with a fault injected that modifies the code being executed
during the time that the glitch is taking place.

Figure 5.6: The effect of a glitch on an instruction, where the instruction during
the glitch is affected.

These effects can be demonstrated by a supply voltage glitch. In Figure 5.5 the

power consumption of a normal execution and a execution where a glitch has been

applied can be seen. After the glitch is applied the chip continues to execute the

correct code, but the data it is manipulating has changed. This can be seen by the

difference in the power consumption at the point indicated in the image.

A different effect can be seen in Figure 5.6. The blue trace represents the power

consumption of a normal execution, and the red trace represents the power con-

sumption in the case where a glitch has been used to inject a fault in the chip.

After the introduction of the glitch, the chip continues to execute its program as if

nothing had happened. A successful glitch will have changed the instruction being

executed, where the glitch is applied.
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5.4 Combining Faults with Side Channel Attacks

The use of Simple Power Analysis, as described in Section 4.2, is an important

aid in conducting fault attacks. SPA can be used to determine at what point in

a command a given function has taken place. For example, Figure 4.4 shows how

individual functions within a round can be identified in secret key algorithms. This

allows an attacker to target small functions within a cryptographic command with

a high degree of accuracy.

5.5 Summary and Conclusions

This chapter described the types of fault that could be applied by an attacker. In the

following chapters only the transient faults described in Section 5.2.1 are considered.

It is potentially possible to base an attack on a permanent fault (see Section 5.2.2),

but achieving an implementation will be difficult. In theory, transient faults can be

applied at different points during a process until an attack succeeds. This is not

possible with permanent faults because of their destructive nature.

A model for the different fault effects that are possible within a smart card is

proposed in Section 5.3. Some of the attacks described in this thesis will make use

of this model.
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Chapter 6

Generic Attacks

This chapter covers some of the generic attacks that are possible against crypto-

graphic algorithms. The attacks are presented in the context of block ciphers, but

some of these attacks are also potentially applicable to public key algorithms.

The first attack detailed in this chapter is an insecure method of key manipula-

tion, that can leak information by Simple Power Analysis. In Section 6.2, an attack

involving analysing cache hits and misses during the execution of an AES imple-

mentation to derive information on the key being used is described. Section 6.3

describes a fault attack that changes the transfer of a key from one type of memory

to another, progressively changing more and more of the key so that an exhaustive

key search becomes trivial. Section 6.4 details how the number rounds of an al-

gorithm can be reduced, and a simple cryptanalysis technique that can be applied

to the resulting algorithm. Some of the work in this chapter has been published

in [31, 38].

6.1 Simple Power Analysis of Key Manipulation

It is shown in Section 4.2, that functions and repeating loops are visible in the power

consumption of an algorithm implementation. By performing a detailed analysis

of one of more power consumption traces, differences of one or more clock cycles

can potentially leak secret information. For example, a compiler could implement

the bitwise permutations used in DES in an insecure manner. An example of an

algorithm that could be produced is given in Algorithm 6.1, where each bit in buffer
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X is tested to determine whether a bit in buffer Y should be set.

Algorithm 6.1: Insecure bitwise permutation function
Input: X = (x0, x1, . . . , xn)2, P [·] containing the indexes of the permutation
Output: Y = (y0, y1, . . . , yn)2
Y ← 0
for i← 0 to n− 1 do

if xP [i] = 1 then yi ← 1
end

return Y

Figure 6.1: Two power consumption acquisitions showing the difference produce by
a conditional bit set.

This is not a secure implementation because of the conditional test present in

the algorithm. The setting of one bit in buffer Y will take a certain amount of

time when the tested bit in buffer X is equal to 1. If a power consumption trace

for this function is compared to a trace taken during the manipulation of a known

key, for example all zeros, the point where the two traces differ will reveal the first

manipulated bit that is not equal to the known key. An example of such a difference

is shown in Figure 6.1, where a bit in a register is rotated into the carry and is then

tested. The result of this test will determine whether a bit is set in the output

buffer or not. In the case where the known key is all zeros, the power consumption

will diverge where the manipulated bit of the unknown key is equal to one. In
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this case, all previous bits were therefore equal to 0. The power consumption trace

corresponding to the unknown key can then be shifted to take into account the time

difference caused by this bit, and the process can then be repeated for the rest of

the key.

This problem can be avoided by implementing a bitwise permutation, as shown

in Algorithm 6.2, where each bit is taken separately for buffer X and assigned to

buffer Y . This is usually more time consuming than Algorithm 6.1, as each bit

needs to be taken from the relevant machine word and placed in the target machine

word.

Algorithm 6.2: Secure bitwise permutation function
Input: X = (x0, x1, . . . , xn)2, P [·] containing the indexes of the permutation
Output: Y = (y0, y1, . . . , yn)2
for i← 0 to n− 1 do

yi ← xP [i]

end

return Y

6.2 Cache-Based Power Analysis

From the description of the cache mechanism given in Section 3.2.3, it can be seen

that the pipeline is not stalled and normal execution occurs in the case of a cache

hit. In the case of a cache miss, the pipeline flow is stalled and the NVM is accessed.

When data read from memory provokes a cache miss then:

1. The instruction takes more cycles than a cache hit.

2. The power consumed by the execution is significantly higher than in the case

of a cache hit, because NVM accesses will typically consume more power than

normal.

With these observations, a power analysis attack based on the distinctive signa-

tures of cache hits and cache misses can be constructed. An example of a hardware

simulation of this side channel is described in [15], where a cache hit and a cache

miss is simulated. To simplify the discussion below, the cache line size is set to 16
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bytes for the architecture under attack, i.e. each cache miss will mean that 16 bytes

are loaded into the cache. Cache line sizes may vary, which will modify the details

of the attack but the principles will remain the same.

In the following sections several attacks using this side channel are described that

could be applied to AES implementations, where we assume that a message block

M = (m1, m2, . . . , m16)256 is being enciphered with a key K = (k1, k2, . . . , k16)256.

This is followed by a brief discussion of how this type of side channel attack could

be applied to other algorithms.

6.2.1 The First ByteSub Function

This attack is implemented against the AES algorithm as detailed in Section 2.2.

The first step of the attack targets the ByteSub function of the first round. Just

before entering this function the input data is XORed with the key. The resulting

16 bytes enter the ByteSub function, which is usually implemented as a look-up

table with 256 entries.

Information on the key used can be derived from the cache access events during

the table look-up, which depend on the order in which the look-up table is loaded

into the cache. It is assumed that, for each acquisition, the cache has been flushed,

which can easily be provoked by resetting the smart card under observation.

The attack presented in this section extends the work published in [15, 85]; the

major difference here is that this attack relies purely on the observation of the side

channel described in Section 6.2. The attacks described in [15, 85] also require the

cache to be modified, which is not possible on a smart card. Less information is

generated in the version described here, but the attack is more powerful. This is

because an attacker only needs to manipulate the message blocks being enciphered,

and observe the cache access pattern generated.

The first byte of the message block is set to a fixed value, m1, and different values

for the second byte of the message block, m2, are tried until a cache hit occurs. In

the case under study there are sixteen possible values that can be tried for m2, as

only the upper nibble needs to be modified to test each of the possible cache lines

that could have been initialised by m1.
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When a cache hit is observed, we know that m1 ⊕ k1 ≈ m2 ⊕ k2 (i.e. m1 ⊕ k1 is

approximately equal to m2⊕k2) as m1⊕k1 and m2⊕k2 both access the same cache

line when the ByteSub function is called. In the case under study, only the high

nibbles of the two expressions will be equal, i.e. (m1⊕k1)∧F016 = (m2⊕k2)∧F016.

This can be rearranged to place the known values on the left hand side of the

equation i.e. to obtain,

(m1 ⊕m2) ∧ F016 = (k1 ⊕ k2) ∧ F016.

Thus, once a cache hit is observed, an attacker is able to calculate (k1 ⊕ k2)∧ F016,

i.e. the XOR of the upper nibbles of k1 and k2.

Once (k1⊕k2)∧F016 has been found, (k2⊕k3)∧F016 can be found using the same

method, by choosing m1 and m2 so that a cache hit is always generated between

the first two look-ups, and testing the 16 different values for the upper nibble of

m3. It is important to have a cache hit between the first two look-ups, as otherwise

it is not known which cache line corresponds to the observed cache hit, and some

information is lost. If this process is repeated for each subsequent key byte, the

high nibble of each byte will be known as a function of the high nibble of the first

byte. With at most 240 acquisitions the complexity of an exhaustive search to find

the key of an AES implementation can be reduced from 2128 to 268.

In practice, this will only be true if the implementation is known. The Byte-

Sub function can be implemented before or after the ShiftRow function, as the

ShiftRow function is a bytewise permutation. A permutation is also sometimes

used on the message block and key on entry to the algorithm to convert the array

format to the grid format used in the specification. This is an optional bytewise

permutation that will change addressing during the algorithm. Both permutations

will change the order in which the data is treated by the ByteSub function.

In the following sections it will be assumed that the implementation details are

known, as the added complexity arising from these permutations is negligible. The

grid permutation will be ignored and the ShiftRow function will be assumed to

take place after the ByteSub function.
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6.2.2 Finding the Rest of the Key

The first step described in Section 6.2.1 reduces the size of the keyspace to 268, and

is theoretically trivial. There are several ways to continue the attack to derive the

rest of the key using the same side channel. These methods are described below.

The Second ByteSub Function with Precalculated Subkeys

The second ByteSub function (i.e. the ByteSub of the second round of AES) can

be used to determine the rest of the key in a manner similar to that described in [85].

Plaintexts are chosen such that there are no cache misses in the first ByteSub

function, except for the first table look-up. The plaintext bits that are XORed with

the unknown bits of the key (i.e. the first byte and the lower nibbles of the rest of

the plaintext) are randomised for each acquisition.

It is assumed that all of the subkeys are stored in NVM, i.e. the subkeys are

precalculated and fetched from NVM as required, rather than being calculated on-

the-fly, and the ByteSub calls in the key schedule will therefore not affect the cache.

If the first look-up in the second ByteSub function is a cache hit, then information

on the unknown key bits can be derived. In this case the following relationship is

known:

(2 • S(m1⊕k1)⊕ 3 • S(m6 ⊕ k6)⊕ S(m11 ⊕ k11)

⊕S(m16 ⊕ k16)⊕ k1 ⊕ S(k8)⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016,

where the function S represents the look-up table used in the ByteSub function

and • represents polynomial multiplication over GF(28). All the indices for key

bytes are for the AES key, i.e. the key schedule for the second subkey is included.

The first byte of the second subkey will be equal to k1 ⊕ S(k8)⊕ 1. The rest of the

left hand side of the equation is produced by the operation of the first round on the

message block.

The value of (k1 ⊕ k2) ∧ F016 is known from the first part of the attack, as

described in Section 6.2.1. The value of k1 is unknown but, given k1, the high

nibbles of k6, k11, k16 and k8 can be derived. This means that there are 24 unknown
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bits in the equation. One in 16 of the 224 possible combinations for the left hand side

of the equation will be equal to (k1 ⊕ k2) ∧ F016. One message block that produces

a cache hit in the second ByteSub function will therefore reduce the unknown bits

in the equation from 224 to 220.

A second cache hit with a different plaintext can then be analysed, the correct

key values will be in the intersection of the two sets of 220 values produced. With

6 evaluations of the above equation all the unknown bits can be derived. This

corresponds to 96 acquisitions, as the cache hit occurs with a probability of 1/16,

given that the input is mostly random. This reduces the number of unknown key

bits from 68 to 44. The cache misses could also be used, as they would reduce the

keyspace by 15/16, but given the small amount of acquisitions required this should

not be necessary.

Any acquisition with two successive cache hits can then be used to derive in-

formation on a further 5 key bytes. If the second look up in the second ByteSub

function is also a cache hit, the following equation holds:

(2 • S(m2⊕k2)⊕ 3 • S(m7 ⊕ k7)⊕ S(m12 ⊕ k12)

⊕S(m13 ⊕ k13)⊕ k2 ⊕ k1 ⊕ S(k8)⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016,

using the same conventions as before. In this case the second byte of the second

subkey is given by k2 ⊕ k1 ⊕ S(k8)⊕ 1.

In this equation there are 20 unknown bits, as the values of k1 and k8 are

provided by the evaluation of the previous step. As previously, each evaluation

of this equation reduces the number of unknown values by a factor of 16. It is

expected that 5 such equations need to be evaluated, taking the intersection as

before, to provide one value for all of the key bytes in the equation. This event

occurs with a probability of 1/256 so the acquisition phase will be lengthier than

the previous step. A total of 1280 acquisitions should be required.

If all of the key bytes in the above equations are derived, the key can then be

found by an exhaustive search of the remaining unknown key bits. This will be a

search in a keyspace of size 224 (i.e. 9 complete key bytes are given by the formulae

above; for the remaining six the high nibble is known, leaving 24 unknown bits),
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which can easily be performed on a PC. This is fortunate, as continuing the attack

for three successive cache hits would be difficult, as the probability of seeing such

an event is 1/4096, which would make the attack excessively time consuming.

The last set of equation evaluations are time consuming, which means that it

can be advantageous to acquire less data and let the exhaustive search complete

the key search. If, for example, an attacker takes 768 acquisitions, the expected

size of the remaining exhaustive key search would be around 232. Another means of

speeding up the evaluation of the possible key values for the second equation would

be to use the event of a cache hit followed by a cache miss, which occurs with a

probability of 15/256, each of which will reduce the size of the unknown keyspace

by a factor of 15/16.

The Second ByteSub Function without Precalculated Subkeys

The attack in the previous section assumes that the subkeys used in AES are gen-

erated and then stored in NVM for later use. These keys are then accessed when

they are required. In Section 2.2 the definition of AES states that the subkeys are

generally generated on-the-fly, as the memory requirements are generally too costly

to store all of the subkeys in NVM.

The generation of a subkey from the previous subkey involves four accesses to

the look-up table used in the ByteSub function. If X is defined as the value present

in memory that is used for the first table look-up in the second round, i.e.

X = (2 • S(m1⊕k1)⊕ 3 • S(m6 ⊕ k6)⊕ S(m11 ⊕ k11)

⊕S(m16 ⊕ k16)⊕ k1 ⊕ S(k8)⊕ 1) ∧ F016,

then:

X =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(k1 ⊕ k2) ∧ F016 with probability = 1
5

k8 ∧ F016 with probability = 1
5

k12 ∧ F016 with probability = 1
5

k16 ∧ F016 with probability = 1
5

k4 ∧ F016 with probability = 1
5

as the lines accessed by the key schedule will also be present in the cache. This

assumes that (k1⊕ k2)∧ F016, k8 ∧ F016, k12 ∧ F016, k16 ∧ F016, and k4 ∧ F016 are all
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pairwise distinct, and is therefore a simplification of the actual attack. Some of the

nibbles may be equal, although this can easily be seen by analysing the information

gleaned in the first phase of the attack (see Section 6.2.1). This will be visible when

the XOR difference is zero for the four most significant bits.

In the case where subkeys are precalculated, each evaluation of a cache hit at

the beginning of the second round reduces the size of the keyspace by a factor of

16. In the above case, the size of the keyspace will be reduced by 5/16, as there are

more possibilities for a cache hit. An attacker would therefore need to generate 15

cache hits with different message blocks to be sure of deriving all the 24 unknown

bits. This process would take an expected number of 48 different message blocks.

This is more efficient than the previous attack as, although more evaluations are

required, the cache hit has a higher chance of occurring because of the key schedule.

To derive the rest of the key the attack is continued, as described in the previous

section, by analysing two consecutive cache hits in the second round, i.e. where

X ≡ (2 • S(m2⊕k2)⊕ 3 • S(m7 ⊕ k7)⊕ S(m12 ⊕ k12)

⊕S(m13 ⊕ k13)⊕ k2 ⊕ k1 ⊕ S(k8)⊕ 1) ∧ F016

and X is distributed as before. This event occurs with probability 25/256. In this

case, there are 20 unknown bits, and it will require 12 evaluations of cache hits to

derive all the unknown bits. This should require a further 123 acquisitions, giving

a total of 171 acquisitions for the second phase.

Again this leaves a key search of 224 hypotheses that can easily be exhausted

on a PC. Thus attacking a smart card that generates its subkeys on-the-fly is much

more efficient than if they are all precalculated.

The xtime Function

Another method that could be used to reduce the key search space is to focus on

the xtime function. The xtime function is a polynomial multiplication by two over

GF(28), and is used in the MixColumn function. The xtime function is typically

implemented as a bit shift followed by a conditional XOR (as detailed in Section 2.2).

This is difficult to implement securely in smart cards, as there is a danger that the
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result of the conditional test will be visible in the power consumption, since the two

branches will take different amounts of time to complete. Even if this is implemented

so that the calculation always takes the same amount of time, there is still a risk of

a partitioning attack [92] (a brief description of this attack is given in Section 7.1).

In smart cards, a possible replacement for this function is a look-up table of

256 bytes that will avoid the need for any conditional testing. This protects the

implementation against Simple Power Analysis, but the table will be in Non-Volatile

Memory, so will be accessed via a cache, as with the look-up table used in the

ByteSub function. The pattern of cache hits and misses can therefore be analysed

in a similar way to the first phase of the attack described in Section 6.2.1. The first

look-up to the xtime table will be a cache miss. If this is followed by a cache hit

then:

S(m1 ⊕ k1) ∧ F016 = S(m6 ⊕ k6) ∧ F016

where, as previously, the S represents the look-up table in the ByteSub function.

The right hand side of the equation uses m6 ⊕ k6 rather than m4 ⊕ k4 because of

the ShiftRow function. In this equation there are 212 possible combinations of

values for the variables, given that the high nibble of k6 is known as a function of

the high nibble of k1, from the first part of the attack described in Section 6.2.1.

Searching through all the combinations will give 28 possible values for the pair (k1,

k6). Because S is non-linear, another cache hit can be found with a different message

block which will provide a different set of 28 values. The correct key will be in the

intersection between the two sets of possible values. After three cache hits with

three different message blocks have been found, there should only be one hypothesis

for both k1 and k6. Each cache hit will occur with a probability of 1/16, so 48

acquisitions should be sufficient to find the values of k1 and k6.

The next cache access is the first xtime function call for the next output byte.

The values for m1 and m6 can be fixed so that a cache hit is always generated

between the first two xtime look-ups. If a cache hit occurs for the next xtime

look-up then:
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S(m6 ⊕ k6) ∧ F016 = S(m2 ⊕ k2) ∧ F016

In this case, k6 is known and the high nibble of k2 is known. This is because k1

has already been determined, and therefore the high nibble of all the key bytes are

known. The four unknown bits of k2 in the equation can be exhausted for the value

of m2 that provokes a cache hit. One cache hit of this nature would be enough to

determine the four unknown bits. This process can be continued using the following

equations:

S(m2 ⊕ k2) ∧ F016 = S(m7 ⊕ k7) ∧ F016

S(m7 ⊕ k7) ∧ F016 = S(m3 ⊕ k3) ∧ F016

S(m3 ⊕ k3) ∧ F016 = S(m8 ⊕ k8) ∧ F016

S(m8 ⊕ k8) ∧ F016 = S(m4 ⊕ k4) ∧ F016

S(m4 ⊕ k4) ∧ F016 = S(m5 ⊕ k5) ∧ F016

This process can determine the first 8 bytes of the key with a total of 192 acquisi-

tions, leaving an exhaustive search amongst 232 possible keys. An exhaustive search

of size 232 is somewhat time consuming, so further analysis would be advantageous.

The next four cache accesses can be analysed requiring a further 64 acquisitions (for

a total of 256 acquisitions), giving the following equations.

s(p6 ⊕ k6) ∧ F016 = s(p11 ⊕ k11) ∧ F016

s(p7 ⊕ k7) ∧ F016 = s(p12 ⊕ k12) ∧ F016

s(p8 ⊕ k8) ∧ F016 = s(p9 ⊕ k9) ∧ F016

s(p5 ⊕ k5) ∧ F016 = s(p10 ⊕ k10) ∧ F016

There will be no need to compare s(p11 ⊕ k11) with s(p7 ⊕ k7), as if a cache hit

is generated between s(p6 ⊕ k6) and s(p11 ⊕ k11) a cache hit will also be generated

with s(p7 ⊕ k7), due to the selected message. This reduces the number of unknown

key bits to 16. An exhaustive search amongst 216 keys is trivial, so no further

acquisitions are required to derive the key.
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6.2.3 Other Algorithms

The above attack technique has been presented exclusively against AES. Previous

work of this type has included attacks on DES [87, 104]. More generally, this type

of attack can be applied to numerous algorithms that access Non-Volatile Memories

via a cache.

6.3 Fault Attacks on Key Transfer or NVM

In this scenario [18], a fault is injected during the transfer of secret data from one

type of memory to another. The attack is applicable to any algorithm; the example

given here will be for a DES key being transferred from NVM to RAM. If parts

of the key can be forced to some fixed value (for example, one byte at a time) it

becomes possible to discover the key.

Suppose that a message block M is encrypted with DES to obtain a faultless

ciphertext block C0. This process is repeated and, during the key transfer from

NVM to RAM, one key byte is changed to a fixed known value (00 in this example).

The resulting ciphertext block, C1, is recorded and the process is repeated by forcing

two bytes to a fixed value, then three bytes, and so on. This continues until the

whole key apart from one byte has been set, byte-by-byte, to the fixed value.

This procedure is shown in Table 6.1, where Ci represents the ciphertext block of

an unknown key with i bytes set to a fixed value. Once this data has been collected

it can be used to derive the DES key.

Table 6.1: The Biham–Shamir Attack
Input DES Key Output
M → K0 = XX XX XX XX XX XX XX XX → C0

M → K1 = XX XX XX XX XX XX XX 00 → C1

M → K2 = XX XX XX XX XX XX 00 00 → C2

M → K3 = XX XX XX XX XX 00 00 00 → C3

M → K4 = XX XX XX XX 00 00 00 00 → C4

M → K5 = XX XX XX 00 00 00 00 00 → C5

M → K6 = XX XX 00 00 00 00 00 00 → C6

M → K7 = XX 00 00 00 00 00 00 00 → C7

Let Kn represent the original DES key with n bytes replaced with known values.
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To find K7 the 128 different possible values for the first byte of the DES key are

tried until one produces the ciphertext block C7
∗. After this K6 can be found by

searching through the 128 different possible values for the second byte, as the first

byte will be known. Finding the entire key will require searching through a total

of 128× 8 = 1024 different keys. This attack can also be used when known data is

manipulated by an unknown algorithm. The pre-requisite for such an attack is the

ability to re-key the device (running the unknown algorithm) with arbitrary keys.

In this case the exhaustive search phase can be performed using the attacked device

itself. An example of an implementation of this attack is given in Appendix C.

6.4 Round Reduction Using Faults

Block ciphers, such as DES and AES, are based on a function that is computed

iteratively as a series of rounds to provide a high level of security. This function is

referred to as the round function. In [6] the idea was put forward to implement a

fault attack that would effectively reduce the number of rounds of a block cipher to

enable the key to be derived.

The location where a fault can be injected to reduce the number of rounds to one

can potentially be determined by observing the power consumption, as described

in Section 4.2. If a card is available for which it is possible to change the key, a

variety of faults can be induced. The expected output after one round can then

be searched for within the data acquired, i.e. the outputs can be checked for the

ciphertext block produced by one round of an algorithm. This will indicate the case

when the algorithm has been reduced to one round.

If the key cannot be changed, the I/O can be acquired each time a glitch is

applied. This can be used to signal when an attack has been successful, as the time

between the command and the response will shorten when a large section of code

has been bypassed. An example of such an approach is shown in Figure 6.2, where

the shortening of the command can be seen in the I/O and is confirmed by the

power consumption. This shortening of the command time is only significant when
∗Although one byte is unknown, only 128 different values are possible as the least significant bit

is a parity bit.
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the status returned by a smart card implies that everything has executed correctly

and sixteen bytes have been returned. Otherwise, it could be confused with a reset

provoked by an overly aggressive attack.

Once the means has been found of launching such a round-reducing attack has

been found, the implementation can be attacked several times with different message

blocks to acquire the data needed to derive the AES key being used in the smart

card under attack. An implementation of AES that has been reduced to one round

will consist of the functions described in Algorithm 6.3.

Algorithm 6.3: One Round of the Advanced Encryption Standard
Input: M, K
Output: C

X ←M ⊕K
X ← ShiftRow(X)
X ← ByteSub(X)
X ← MixColumn(X)
K ← KeySchedule(K)
X ← X ⊕K
C ← X

return C

These functions are described in Section 2.2. The MixColumn function is not

necessarily included, as the test that determines the end of the loop calling the round

function can be placed before or after this function. An assembly implementation

could have a jump at the end of the loop, with the round counter being tested before

the MixColumn function is called. In a compiled programming language, C for

example, this test would generally appear after the MixColumn as a programmer

would use a for or a do-while loop.

If we present two message blocks (M1 and M2) to this algorithm to produce two

corrupt ciphertext blocks (C1 and C2 respectively), then the data acquired can be

compared in the following fashion:

ByteSub (M1 ⊕K)⊕ByteSub (M2 ⊕K) = MixColumn−1 (C1 ⊕ C2)

where K is the first subkey. The ShiftRow function is not taken into account as it
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The acquisitions from top to bottom: The I/O trace of a normal AES execution
and its power consumption, where the rounds can be seen. This is followed by the
I/O trace of an AES execution where the number of rounds have been reduced to
one and the power consumption shows the reduction in the number of rounds.

Figure 6.2: The effect of a successful round-reducing fault on the I/O and power
consumption.
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is a bytewise permutation. The last XOR is ignored as the effect of this function is

removed by XORing the two corrupt ciphertext blocks together.

The right hand side of the equation equals the XOR of the AES calculations after

the ByteSub function. As M1 and M2 are known, this equation can be evaluated

for all the possible values of the first subkey in a bytewise fashion.

With two ciphertext blocks this will usually lead to two different hypotheses for

each byte of the first subkey. There is no calculation involved in the generation of

the first subkey, so these hypotheses apply directly to the key. This can be seen

by calculating a table of differentials, as used in [16] for DES. This leads to an

exhaustive search amongst 216 possible keys, as:

(
Σ(Non zero differentials)
#(Non zero differentials)

)16

= 216

If three ciphertext blocks are available, then the number of keys that are included

in an exhaustive search is much reduced. This is because three different comparisons

can be made using the formula described above. Each one provides approximately

two different hypotheses for each byte of the key.

In practice, the data acquired is likely to be noisy, as there will be some faults

that will produce a corrupt ciphertext block and change the I/O but will not have

the desired properties. For this reason it is best to compare each ciphertext block

that comes from a command that returned 16 bytes that are not equal to the correct

ciphertext block with all the others that fulfil the same criteria. This optimises the

attack, as faulty ciphertext blocks without the desired properties can be managed.

This procedure does not slow down the attack because if one, or both, ciphertext

blocks do not have the required properties then the calculated Hamming distance

will be meaningless, as deriving a list of hypotheses will not be possible. The

probability that random data will produce at least one hypothesis for every byte of

the key is:

(
#(Non zero differentials)

2562

)16

= 3.14× 10−3

Even with a large amount of acquired data the time needed to search for the
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key remains reasonable. A description of an implementation of this attack is given

in Appendix D.

This attack can be directly applied to other block ciphers. The main difference

is in the manner in which the data acquired is exploited. In the case of the DES,

hypotheses on the key can be derived by inspection, because of the structure of

the Feistel network. This will give a keyspace of 224 to be searched as a result

of one corrupt ciphertext block. The size of the search can be further reduced

by examining other corrupt ciphertext blocks to derive the first subkey. Reducing

subsequent DES executions to two rounds can then give direct information on the

eight bits not present in the first subkey. As stated in [6], this can also provide

a method of attacking the DES without knowledge of the message blocks being

enciphered.

An equivalent attack can be implemented if the number of rounds is reduced by

one. It will then be possible to derive hypotheses on the last subkey rather than

the first. This is because it will be possible to compare the effect of the last round

of the calculation by comparing the actual ciphertext block with a ciphertext block

that was calculated with the same algorithm but with one less round.

6.5 Summary and Conclusions

This chapter provides a description of some of the possible generic attacks. These

attacks include manipulating secret data (e.g. a key) in a non-deterministic man-

ner, observing cache access patterns, progressively setting parts of a key to a fixed

value, and reducing the number of rounds of an algorithm. The attack described

in Section 6.1 is well-known within the smart card industry. The attack described

in Section 6.2 is novel, and is part of the contribution of this thesis. The attacks

presented in Sections 6.3 and 6.4 have been proposed previously in the literature,

and implementations of these attacks are described in Appendices C and D, and are

presented as part of this thesis.
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Chapter 7

Generic Countermeasures

A variety of countermeasures can be deployed to defend against the attacks already

detailed in this thesis. In this chapter we consider generic countermeasures, i.e. those

that are applied to implementations of cryptographic algorithms to prevent side

channel and fault attacks, but do not necessarily provide protection against attacks

that are specific to one algorithm. Details for protecting individual algorithms are

given in subsequent chapters.

Section 7.1 details basic countermeasures that can be applied to stop trivial tim-

ing and Simple Power Analysis attacks. A description of the use of random delays to

hinder an attacker is given in Section 7.2. This description includes a novel optimi-

sation of the use of such delays, to improve the performance and security of systems

using random delays. Section 7.3 explains the use of execution randomisation to

further inhibit an attacker, a measure that complements the random delays already

defined. Section 7.4 describes the use of data whitening to mask the data being

manipulated, to prevent Statistical Power Analysis. Section 7.5 details some of the

fault countermeasures that can be used to prevent faults from changing the compu-

tation of an algorithm. Some of the work described in this chapter has previously

been published in [10, 11, 12].

7.1 The Basic Principles

There are two basic principles that should be followed when implementing cryp-

tographic algorithms on embedded platforms to avoid the simplest attacks. These
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are:

Constant Time: The various forms of timing analysis, described in Section 4.1,

can be avoided by making sure that commands are always executed in the

same number of clock cycles. Any variation in the length of the time taken to

execute a command should not depend on secret information.

Constant Execution: As described above, the time taken by an algorithm should

remain constant, so that no deductions regarding secret information can be

made. This extends to individual processes being executed by a smart card. If

a process takes different lengths of time depending on some secret information,

and the difference in time is made up by a dummy function, then there is a

good chance that this will be visible in the power consumption (as detailed in

Section 4.2). It is therefore important that an algorithm is written so that the

same code is executed for all the possible entry values. Even small differences

can produce attacks that completely compromise the security of an algorithm.

For example, the Partitioning attack [92] detects information from the carry

after the addition of two 8-bit variables in the Comp128 algorithm. In the

case of cache accesses, as described in Section 3.2.3, constant execution can

be achieved by using commands that avoid using the cache [71].

7.2 Desynchronisation Techniques

The use of random delays in embedded software is often proposed as a generic

countermeasure against side channel analysis, such as Simple Power Analysis (SPA)

and Statistical Power Analysis. Statistical analysis is meaningless in the presence

of desynchronisation; an attacker must resynchronise acquisitions at the area of

interest before being able to interpret what is happening at a given point in time.

7.2.1 Desynchronisation in Software

A specific case of this countermeasure is considered in [34], where a CPU inserts

delays of 1 clock cycle at random points in time. An attack against these small
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random delays can be conducted, based on evaluating the integral of a window of

acquisitions rather than in a pointwise fashion (as described in Section 4.3).

This attack is not applicable in the case of software random delays, as the

information is spread over too many clock cycles. In general, a software random

delay will consist of a dummy loop where a random value is generated and then

decremented until the random value reaches zero before executing any further code.

An example of code that could be used in the 8051 assembly language is as follows:

mov a, RND

mov r0, a

Delay_Label:

djnz r0, Delay_Label

This adds very little extracode to the overall program as this moves the random

value held in the register RND to another register (via the accumulator), and then

decrements this value and loops until the accumulator contains zero. Generally,

random number generators in embedded devices employ a noisy resistor or a clock

generator with a bad ring∗, and are tested using a suite of tests (see e.g. [58]). The

value placed into the accumulator can therefore be considered to be uniformly dis-

tributed across all the admissible values. In the case of the 8051 assembly language,

designed for an 8-bit architecture, this would be expected to be an integer from the

interval [0, 255].

These loops are inserted to prevent Statistical Power Analysis and fault attacks.

An example of power consumption acquisitions that include a random delay are

shown in Figure 7.1. All three acquisitions are synchronous at the left hand side of

the figure. This is followed by a random delay, visible as a result of the repeating

pattern of the loop, after which the acquisitions are no longer synchronous.

To conduct a Statistical Power Analysis, an attacker needs to exploit the rela-

tionship between the data being manipulated at a given point in an algorithm and

the power consumption. In order to do this, the acquisitions need to be synchronised
∗A clock generator with a bad ring will have non-deterministic transitions between zero and one.

This is a hinderance for circuit design, but can be used to generate random values.
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Figure 7.1: Random delays visible in the power consumption over time.

a posteriori at the point that an attacker wishes to analyse. As the size of the ran-

dom delay increases, an attacker is obliged to acquire more information to be sure

of acquiring the point of interest. The amount of work required to resynchronise

the acquisitions also increases, as pattern-matching software will have to search in

a larger window to find the same point in each acquisition.

An attacker wishing to conduct a fault attack needs to synchronise the fault in-

jection with the event that they wish to affect in real time. There are certain features

that can be synchronised with automatically, such as I/O events or an EEPROM

write command, but this will only remove a certain amount of the desynchronisation

effect. Because of the ease of synchronising with events of this type it is considered

prudent to include a random delay after such events, with the delay length taken

from a comparatively large interval. This measure is designed to hinder an attacker

that can synchronise in real time. In the presence of such measures, an attacker is

obliged to inject a fault where the event is likely to occur, and then repeatedly inject

the fault until the event coincides with the targeted point. This renders an attack

more complex, as an attacker cannot be sure where the fault has been injected, and

a means of detecting that the desired fault has occurred needs to be implemented

(e.g. analysing the power consumption a posteriori). A notable exception to this is

the first published fault attack, that attacks the RSA when it is calculated using

the Chinese Remainder Theorem [23] (see Section 9.3). In this case, the target is so

large that the use of any form of random delay is unlikely to hinder the attack.

In general, a smart card operating system will typically incorporate a few large
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random delays placed at strategic points to prevent fault injection attacks. Secret

key cryptographic algorithms will typically have smaller random delays placed be-

tween every subfunction of every round function (the use of random delays in public

key algorithms is somewhat similar). More random delays are typically included in

cryptographic algorithms to hinder attempts to conduct Statistical Power Analysis.

In the presence of such delays, if an attacker synchronises a set of power acquisitions

for a given function, then the next function will still be desynchronised, and will

require further work to synchronise.

The use of random delays is not a particularly robust countermeasure, as it

cannot prevent an attack from taking place. However, it can render an attack so

time consuming that an attack is no longer practical.

As random delays are rarely used in just one place, an attacker is likely to be

dealing with the cumulative delay of several random delays. The cumulative delay

is therefore distributed with a cumulative uniform distribution. This distribution is

shown in Figure 7.2 for some small numbers of random delays, where the y-axis is

normalised to show how the form of the distribution changes.

The cumulative random delay generated by a sequence of random delays gener-
ated from uniformly distributed random variables. The number of random delays
considered are 1, 2, 3, 4, and 10, from top left to bottom right.

Figure 7.2: The cumulative random delay.
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As can be seen, as the number of random delays increases, the distribution

rapidly becomes binomial in nature, i.e. it approximates to a discrete normal dis-

tribution. It is also interesting to note that after 10 such random delays there is a

tail on either side of the binomial, where the probability of a delay of this length

occurring is negligible.

Modifying the Distribution of Software Random Delays

A modification to the distribution of individual random delays can be incorporated

to increase the standard deviation and reduce the mean of the cumulative distribu-

tion. To use the modified distribution in a constrained environment, for example a

smart card, the delays will need to be expressed as a table, where the number of

entries for a given value represents the probability of that value being chosen. A

uniformly distributed random number can then be used to select an entry from this

table.

A function (chosen arbitrarily, see Appendix E for more details) that can be used

to govern the number of entries for each value of x, where x takes integer values in

the interval [0, N ], is:

y = �akx + bkN−x

where a and b represent the values of the probability function when x takes 0 and

N respectively, and y governs the number of entries in a table implementing the

function for each value of x. The sum of y for all values of x will therefore give the

total number of table entries. The value of k governs the slope of the curve and

can take values in the interval (0, 1). Different values for a and b are used so that a

bias can be introduced into the sum distribution to lower the mean delay. The two

elements akx and bkN−x are both close to zero when x is approximately equal to

N/2 for the majority of values of k that will be of interest. The ceiling function is

therefore used to provide a minimum number of entries in the table for each value.

This is important, as if values are removed from the distribution it will decrease the

number of values that the random delay can take, and therefore reduce the desired

randomising effect.
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To provide a table that can be efficiently implemented, the number of entries

in the table should be a power of two. A random number generator can be used

to provide a random word, and the relevant number of bits can then be masked off

and used to read the value at the corresponding index of the table to dictate the

length of each random delay. If the number of entries is not equal to a power of two,

any values generated between the number of entries and the next power of two will

have to be discarded. This testing of values will slow down the process, and have a

potentially undesirable effect on the distribution of the random delays, as suitable

random numbers will only be generated with a certain probability.

Parameters that were found to naturally generate a table of 29 entries are shown

in Table 7.1. It would also be possible to choose some parameters and then modify

the table so that it has 29 entries, but this seemed overly complicated, as the desired

number of entries can be made to occur naturally. The percentage changes shown

are in comparison to the mean and standard deviation of a uniformly distributed

random delay. The change in the mean and the standard deviation is not dependent

on the number of random delays that are added together, i.e. it is not dependent

on the number of random delays that occur.

Table 7.1: Parameter characteristics for tables of 29 entries
a b k Mean σ

% decrease % increase
22 13 0.88 13.4 34.5
23 12 0.88 16.3 33.5
23 15 0.87 11.6 35.4
24 11 0.88 19.7 32.1
24 14 0.87 13.4 34.9
25 10 0.88 22.6 30.7
26 6 0.89 32.8 23.5
26 9 0.88 25.6 29.0
26 12 0.87 19.7 32.5
32 8 0.86 31.4 25.8

As can be seen, a large change is achieved in the mean and standard deviation.

It can also be seen that we cannot achieve the largest standard deviation increase
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and mean decrease at the same time. Implementers will have to make a compromise

between maximising the standard deviation and minimising the mean.

An example of the effect of using this sort of method to govern the length

of random delays on the cumulative distribution is shown in Figure 7.3, where

a = 26, b = 12 and k = 0.87. The y-axis is normalised to show the change in the

cumulative distribution. The last graph shows the cumulative distribution for 10

random delays taken from the modified distribution plotted alongside the cumulative

distribution for 10 random delays generated from uniformly distributed random

delays. The differences in the mean and standard deviation can clearly be seen, and

the tail present on the left hand side is much smaller for the cumulative distribution

of random delays from the modified distribution. Further details of how these

parameters were derived are given in Appendix E.

The cumulative random delay generated by a sequence of random delays generated
from a biased distribution. The number of random delays considered are 1, 2, 3, 4,
and 10, from top left to bottom right. The last graph also shows the distribution of
10 uniformly distributed random delays for comparative purposes.

Figure 7.3: The cumulative random delay using a modified distribution.

7.2.2 Desynchronisation in Hardware

The most effective form of desynchronisation is the use of an unstable internal clock.

This changes the acquired power consumption to that shown in Figure 7.4. The two
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acquisitions start with the external clock and are therefore synchronous, and after

the internal clock is started the two waveforms diverge. This makes it difficult to

even achieve a local synchronisation for power attacks, and will also create problems

for an attacker wishing to inject a fault.

��������	
�� ����������	
��

Figure 7.4: Unstable internal clock generation, as visible in the power consumption.

7.3 Execution Randomisation

If the order in which operations in an algorithm are executed is randomised, it

becomes difficult to predict what the machine is doing at any given clock cycle. An

example of this is given in Algorithm 7.1 for the process of copying 256 bytes from

buffer A to buffer B. For most fault attacks this countermeasure will only slow

down a determined adversary, as eventually a fault will hit the desired instruction.

However, this will thwart attacks that require faults in specific places or in a specific

order. In the case of Statistical Power Attacks, it spreads the desired information

across a number of clock cycles. This is one of the most effective countermeasures

against Statistical Power Analysis, especially when combined with data whitening

(see Section 7.4).

7.4 Data Whitening

The most commonly discussed defence against statistical power analysis, described

in Section 4.3, is to use data whitening, where the message block being manipulated

is masked with a random value. The data is then manipulated in such a way that the

value present in memory is always masked with the same random value. This mask
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Algorithm 7.1: Randomised Data Transfer
Input: A = (a0, a1, a2, . . . , a255)256, four random bytes {x, y, z, w} where x is

odd.
Output: B = (b0, b1, b2, . . . , b255)256 containing A.

for i← 0 to 255 do
j ← (x× (i⊕ w) + y mod 256)⊕ z
bi ← aj

end

return B

is then removed at the end of the algorithm to produce the ciphertext block. The

most common form of masking is Boolean masking, where all data manipulated is

XORed with a random value. A function will take the masked value and produce a

result that is masked with the same random value. This countermeasure was initially

proposed in [28], and an example of this sort of implementation is described in [2].

The size of the random value is generally limited, as look-up tables need to be

randomised before the execution of the algorithm. This is so that the input and

output values of the S-box leak no information. An example of how this can be

achieved is given in Algorithm 7.2. As described here, the random value used for

masking the input data can be no larger than n, and the random value used for the

output value can be no larger that x. As the same S-box is used numerous times,

this affects the size of the random mask that can be used in the algorithm.

Algorithm 7.2: Randomising S-Box Values
Input: S = (s0, s1, s2, . . . , sn)x containing the S-box, R a random value

∈ [0, n], and r a random value ∈ [0, x).
Output: RS = (rs0, rs1, rs2, . . . , rsn)x containing the randomised s-box.

for i← 0 to n do
rs(i⊕R) ← si ⊕ r

end

return RS

In the case of AES, both R and r will be one byte, which means that the random

mask used during the calculation is likely to be one byte long. There are theoretical

attacks against this protection method [68] called higher order Differential Power

Analysis, but these are not feasible when this countermeasure is implemented with
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the random effects described in Sections 7.2 and 7.3. An implementation of second

order DPA under controlled conditions is described in [86].

This measure does not directly apply to public key cryptographic algorithms

such as RSA, but the principal can be applied to modular exponentiation. This is

covered in Chapter 9.

7.5 Integrity Checks

Various types of countermeasure can be implemented to defend against fault attacks.

These are usually based on existing techniques used for integrity purposes. It would

normally be expected that anomaly sensors are implemented in a smart card that

would detect an attempted fault attack, but (as described in Section 3.2.4) this

cannot always be relied upon. Some of the software countermeasures that can be

used in embedded software to prevent fault are listed below.

Checksums — These can be used to verify the integrity of data at all times. This

is especially important when data is being moved from one memory area to

another. For example, checksums can be used to prevent the key transfer

attack described in Section 6.3.

Variable redundancy — This refers to the reproduction of a variable in memory,

and functions are then performed on each copy of the variable independently.

The result will be known to be correct if the two answers are identical. This

can be used for round counters to prevent attacks, such as the round reduction

attack given in Section 6.4.

Execution redundancy — The same function, part of the function, or its inverse

can be executed after a given function. The results of the two executions are

then compared to verify that no fault has occurred.

Ratification counters and baits — This involves including small functions in

sensitive code that perform a calculation and then verify the result. When

an incorrect result is detected, a fault is known to have been injected. A
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possible reaction to this would be to decrement a counter, and when this

counter reaches zero the smart card would then cease to function.

7.6 Summary and Conclusions

This chapter provides a description of some of the generic countermeasures that are

commonly used in embedded implementations of cryptographic algorithms. All of

the countermeasures described above are well-known within the smart card industry.

However, the modification to the distribution that governs the lengths of random

delays (see Section 7.2) is novel, and is part of the contribution of this thesis. Further

details of this modification are given in Appendix E.
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Chapter 8

Block Cipher Implementations

In most widely implemented block ciphers, a “simple” function is used as a round

function and is repeated a set number of times to encrypt a block of data. Typically,

a round function will involve permutations, arithmetic operations, substitution func-

tions (S-boxes), and XOR operations. This chapter describes some of the attacks

that are particular to block ciphers, and the countermeasures that are required to

prevent the realisation of these attacks, using DES and AES as examples.

Section 8.1 details how power analysis can be applied to block ciphers. Differen-

tial Fault Analysis (DFA) is discussed in terms of DES in Section 8.2, with a short

discussion of how this technique can be applied to other algorithms. Collision Fault

Analysis is described in Section 8.3 in terms of DES, and versions of this attack are

described that can be applied to DPA-resistant algorithms are given in Section 8.3.2.

The modification of S-box elements is then discussed separately in Section 8.4, as

this draws upon both Differential and Collision Fault Analysis. Possible counter-

measures for implementations of a block cipher are listed in Section 8.5. Some of

the work in this chapter has been published in [4].

Differential Fault Analysis is well-known within the smart card industry and de-

scriptions of implementations have been published. The method behind exploiting

faults is presented in detail, as little information is presented in the literature [18, 42].

The extension to triple DES is novel, and is part of the contribution of this thesis.

Collision Fault Analysis is more recent, although the analysis is somewhat similar

to Differential Fault Analysis. The application of DFA and CFA to DPA-resistant
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implementations of DES and AES, i.e. that use data whitening and execution ran-

domisation (see Chapter 7), is described.

Implementations of four of the attacks described in this chapter are discussed in

Appendices G, H, and I, and are also part of the contribution of this thesis.

8.1 Power Analysis of Block Ciphers

Simple Power Analysis is not typically a problem for implementations of block ci-

phers, as it is straightforward to implement block ciphers using the principles given

in Section 7.1. However, if these principles are not applied, then attacks become

possible, e.g. the key manipulation attack given in Section 6.1.

Statistical power analysis, as described in Section 4.3, can be used to break a

block cipher. An attacker forms a hypothesis about the result of a given function,

e.g. an S-box, where the following computation is performed:

I = S(M ⊕K)

i.e. a part of the message block M is XORed with part of the key K, and then passed

through an S-box (the function S) to produce an intermediate state I. Normally,

this value is not visible to an attacker, but can be determined using DPA and related

attacks.

An attacker calculates a DPA trace for each possible value for K. If a peak

occurs in the DPA trace, then this will validate the hypothesis for K, allowing part

of the key to be deduced. This would appear to be analogous to an exhaustive

search, but the output of one S-box in DES, for example, depends on six bits of

the key. An attacker therefore only needs to test 64 hypotheses for these six bits to

determine their value. The process can then be repeated for each S-box to derive

the entire key. This was discussed in more detail in Section 4.3.

8.2 Differential Fault Analysis

The first differential fault attacks to be made public were against DES, and were

published in [18]; one-bit faults were assumed to occur in random places throughout
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an execution of DES. The ciphertext blocks corresponding to faults occurring in the

fourteenth and fifteenth round were taken, enabling the derivation of the key through

differential cryptanalysis. This was possible as the effect of a one-bit fault in the

last three rounds of DES is visible in the ciphertext block when it is compared with

a correct ciphertext block. This allowed the key to be recovered using between 50

and 200 different ciphertext blocks. It is claimed in [18] that, if an attacker can be

sure of injecting faults towards the end of the algorithm, the same results could be

achieved with only ten faulty ciphertext blocks, and that, if a precise fault could be

induced, only three faulty ciphertext blocks would be required.

This algorithm was improved upon in [42], using ideas given in [17]. When

searching for a key, the number of times a given hypothesis is found is counted.

This means that faults from earlier rounds can be taken into account. It is claimed

in [42] that faults from the eleventh round onwards can be used to derive information

on the key, and that in the ideal situation only two faulty ciphertext blocks are

required.

The mechanisms that allow the secret key to be derived from faulty/correct

ciphertext block pairs are described in detail, since the literature does not provide

detail on how this attack functions [18, 42] beyond noting that the differentials

produced can be exploited using differential cryptanalysis.

8.2.1 The Fifteenth Round

The simplest case of a fault attack on DES involves injecting a fault in the fifteenth

round, and such an attack is well-known within the smart card industry. The last

round of DES, as described in Section 2.1, can be expressed in the following manner:

R16 = S(R15 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ L15

If a fault occurs during the execution of the fifteenth round, i.e. R15 is randomised

by a fault to become R′
15, then:

R′
16 = S(R′

15 ⊕K16)⊕ L15

= S(L′
16 ⊕K16)⊕ L15
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and

R16 ⊕R′
16 = S(L16 ⊕K16)⊕ L15 ⊕ S(L′

16 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ S(L′
16 ⊕K16)

This provides an equation in which only the last subkey, K16, is unknown. All

of the other variables are available from the ciphertext block. This equation holds

for each S-box in the last round, which means that it is possible to search for key

hypotheses in sets of six bits. All 64 possible key values corresponding to the XOR

just before each S-box can be used to generate a list of possible key values for these

key bits. After this, all the possible combinations of the hypotheses can be searched

though, with the extra eight key bits that are not included in the last subkey, to

find the entire key.

If R′
15 is randomised by a fault, then the expected number of hypotheses that

are generated can be predicted. For a given input and output difference (XOR),

there are a certain number of values that could create the pair of differences. As

shown in [16], the number of input and output values that will create a given pair

of differences can be set out in tabular form.

Table 8.1 shows part of this table for the first S-box, where columns represent the

output difference and the rows represent the input difference. Only the first twenty

rows are given as an example. The information this table gives is the number of key

hypotheses that will be returned for a given input and output difference over one

S-box. Each S-box has its own table, as the structure of each S-box is different.

The first row represents the 64 possible entries that have a difference of zero,

which will always produce an output with a difference of zero. This is trivial as the

same input values to the S-box will produce the same output values. The second

row represents the 64 possible entries that have an input difference of one. This

time the output difference can take the values 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15.

It is interesting to note that the other 5 output differences cannot occur.

The average number of hypotheses returned by a differential across the k-th S-

box can be calculated as the expected number for a random pair (Sin, S′
in). This is

equal to:
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Table 8.1: Frequency of input and output pairs for the first S-box.

Sout ⊕ S′
out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4

Sin 8 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
⊕ 9 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
S′

in 10 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
11 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
12 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
13 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
14 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
15 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
16 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
17 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
18 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
19 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Ek =
16∑
i=1

64∑
j=1

xij
xij

642

where xij is the value in the table for S-box k (1 ≤ k ≤ 8) corresponding to column

i and row j. This equation can be applied to the table corresponding to each S-box,

and gives the results shown in Table 8.2.

The expected number of hypotheses for the last subkey will be the product of

all eight expected values Ek; this gives an expected number of around 224. This is

just for the last subkey, an actual exhaustive search will need to take into account

the eight bits that are not included in the last subkey, giving an overall expected

keyspace size of 232.

If more than one faulty ciphertext block has been acquired, the intersection
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Table 8.2: The expected number of hypotheses per S-box for one faulty ciphertext
block.

S-box Ek

1 7.54
2 7.67
3 7.58
4 8.36
5 7.73
6 7.41
7 7.91
8 7.66

between the keyspaces can be used for the final exhaustive search. The expected

intersection of two keyspaces generated in the above manner has an expected in-

tersection size as shown in Table 8.3 [33]. As previously, the expected number of

hypotheses given for the last subkey will be the product of the expectations per

S-box. This gives 26 hypotheses for the last subkey, and therefore 214 hypotheses

for an exhaustive search of the entire key.

Table 8.3: The expected number of hypotheses per S-box for two faulty ciphertext
blocks.

S-box Ek

1 1.68
2 1.70
3 1.69
4 1.86
5 1.72
6 1.65
7 1.76
8 1.70

A discussion of an implementation of this attack using ciphertext blocks acquired

with faults in the fifteenth round is given in Appendix F. The first published

description of an implementation of this attack appears in [42].
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8.2.2 Faults in Earlier Rounds

The attack described in the previous section corresponds to the ideal situation where

a large fault can be injected in the fifteenth round. This fault model will only allow

an attack when R15 is changed. If Rn is randomised where n < 15, then L15 will

also become randomised and will not cancel as required. A smaller fault is therefore

required to minimise the change in L15.

In [18], a one-bit fault model was considered, which is used in this section. The

aim of the following analysis is to determine in which rounds a one-bit fault will

allow information on the key to be deduced, and how many faulty ciphertext blocks

are required to be able to deduce the key.

The Fourteenth Round

In order to determine the effect of a one-bit fault in R14, the effect of a one-bit

fault was simulated in a software implementation. A program was written that

simulated all the possible on-bit faults in R14, for all the possible values of R14 (i.e.

232 × 32 = 237 possible faults). The effect of this fault was observed in R15 and

the entry to the S-boxes in the sixteenth round by comparing the intermediate state

with the expected intermediate state. The change produced by each fault was noted

to characterise the effect of a one-bit fault on the subsequent round.

If a one-bit fault is introduced into R14, then the created R′
15 will have between

two and eight bits that are different to R15. This would be expected to modify 3.82

bits in R15, which would modify 5.74 bits across 4.92 different S-boxes. A one-bit

fault therefore has a significant impact on the subsequent round, although there will

also be a one-bit fault in L′
15, as this value is equal to R14.

We also have:

R16 ⊕R′
16 = S(R15 ⊕K16)⊕ L15 ⊕ S(R′

15 ⊕K16)⊕ L′
15

= S(L16 ⊕K16)⊕ L15 ⊕ S(L′
16 ⊕K16)⊕ L′

15

This will be equal to S(L16 ⊕K16)⊕ S(L′
16 ⊕K16) if L15 = L′

15. If the formula

is applied to each S-box to determine six-bit fragments of the key, it will hold for

only seven of the eight S-boxes. That is, one of the S-boxes will generate erroneous
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hypotheses, as L15 will not be equal to L′
15, because of the one-bit fault.

This means that it may not be possible to derive the key from one fault, as the

keyspace generated will not necessarily contain the last subkey. If the position of the

bit that was changed in R14 is known, then this problem can be avoided, but this

position information will not be available from an analysis of the ciphertext block

alone. When several keyspaces are generated, it is also no longer possible to look at

the intersection of the hypotheses generated for each S-box. It becomes necessary

to use the most frequently generated hypotheses (this algorithm is detailed in [42]).

For a one-bit fault in R14, the probability that L15 = L′
15 is 7/8 for each S-box.

Using the simulation described at the beginning of this section, it can be shown

that the expected number of bits that would not have a difference of zero on the

input of the S-boxes of the fifteenth round is approximately 5.74. If the distribution

of the number of bits that are different are observed, the probability that a group of

six bits are all equal to zero, given a one-bit fault in R14, is Pr(six bits = 0) = 0.469.

Therefore, the probability that information can be derived regarding the key

for each S-box per faulty ciphertext block is Pr ((δSin �= 0) ∧ (L15 = L′
15)) = (1 −

0.467)× 7
8 = 0.465, where δSin is the differential on entry to the S-box.

The case where δSin gives weight to every hypothesis, i.e. when L15 �= L′
15 or

δSin = 0, and the hypotheses derived are uniformly distributed over all the possible

key values, will occur with probability 1− Pr ((δSin �= 0) ∧ (L15 = L′
15)) = 0.535.

If δSin = 0 and L15 = L′
15 then all 64 key hypotheses will be valid. When

δSin �= 0 and L15 �= L′
15 the analysis will either return no hypotheses (i.e. an

impossible differential occurs) or a set of hypotheses. The number of hypotheses

returned will be dictated by the table of possible differences (as shown in Table 8.1).

However, the probability of a given number of hypotheses being returned is not

weighted, as each possibility will occur with the same probability. In this case the

expected number of key hypotheses generated is:

Ek =
16∑
i=1

64∑
j=1

xij
1

(16× 64)

although the generated hypotheses will not necessarily include the key. The expected

107



number of hypotheses generated will be different for each S-box. The value for each

S-box is shown in Table 8.4.

Table 8.4: The expected number of hypotheses per S-box when L15 �= L′
15.

S-box Ek

1 5.03
2 5.09
3 5.02
4 5.83
5 5.22
6 4.97
7 5.18
8 5.18

Assume that δSin �= 0 for every S-box. If L15 �= L′
15 for the first S-box, the ex-

pected number of returned hypotheses is 5.03, and the expected number of weight

given to each hypothesis will be 5.03/64 = 0.0786. This will occur with a probability

of 1/8. If L15 = L′
15 then an expected 7.54 hypotheses are generated, which will

include the correct key hypothesis. The expected weight given to the correct hy-

pothesis is therefore 1, and the expected weight added to the other key hypotheses

is (7.54− 1)/(64− 1) = 0.104.

In order to distinguish the correct hypothesis from the erroneous hypotheses, the

difference in the expected weight should be at least one. Let Ew be the weight given

to the correct key hypothesis per evaluation of a correct/faulty ciphertext pair, and

Ef be the weight given to the erroneous hypotheses. The number, X, of evaluations

that will be required to determine the six key bits used before the first S-box can

be calculated as follows:

(Ew − Ef )X > 1((
5.03
64
× 1

8
+ 1× 7

8

)
−

(
5.03
64
× 1

8
+

(7.54− 1)
(64− 1)

× 7
8

))
X > 1

(0.885− 0.101)X > 1

0.784X > 1

X > 1.28
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where the expected number of hypotheses generated are taken from Tables 8.2

and 8.4. Since X has to be an integer value, we have X ≥ 2. This applies to

each S-box individually, with the same final inequality that X ≥ 2.

However, in practice δSin will be equal to zero for some of the data acquired.

As described above, a one-bit fault will change between two and eight bits in the

following round across an expected 4.92 different S-boxes. It would therefore be

prudent to evaluate sufficient pairs of faulty/correct ciphertext blocks to have at

least two differentials across each S-box.

Other Rounds

An algorithm for exploiting small faults is described in [42]; it is claimed that this

technique can be used to derive information on the last subkey from one-bit faults

in the eleventh round onwards. A program was written in C to simulate this attack,

that could generate faulty/correct ciphertext block pairs with one-bit faults in an

given Ri (0 ≤ i ≤ 15). Another program was written to analyse an arbitrary

number of faulty/correct ciphertext block pairs to derive the key. This allowed the

attack to be characterised to determine what faults could produce a viable attack.

It was possible to recover the key for faults between the eleventh and fifteenth round

using less than 1000 faulty/correct ciphertext block pairs, which could potentially

be acquired in a reasonable period of time. It was possible to determine the key

from faults in the tenth round, but several million faulty/correct ciphertext block

pairs were required. This number of pairs of faulty/correct ciphertext blocks would

take an excessive amount of time to acquire and it is therefore not likely to be a

realistic attack.

Gaining Extra Rounds

The round-specific complexity numbers given above can be transferred to a point

two rounds earlier given the trivial observation that, for each fault in Rn there will

be an equivalent fault in Ln−1. However, Ln−1 is a static value and is therefore a

difficult target for a fault attack. This value is written to memory when Rn−2 is

duplicated at the beginning of round n− 1. The identification of the point in time
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when this duplication takes place should be possible using Simple Power Analysis,

as described in Section 4.2. Whether this value can be attacked depends on how

the duplication of Rn−2 is implemented. If the value is duplicated and stored until

required, the fault attack is possible; however, if it is used immediately to calculate

the round function then the fault attack is no longer possible.

It should therefore be possible to derive key information by using one-bit faults

in L10, by targeting the duplication of R9 in the eighth round. If there is no limit

to the number of faulty ciphertext blocks that can be acquired this can be extended

to R8, but this appears unlikely to be a realistic scenario.

8.2.3 Triple DES

Differential Fault Analysis can also be applied to triple DES by independently in-

jecting faults in the second and third instantiations of DES involved in a triple DES

computation. A method for attacking triple DES is given in [18], which involves

first deriving the last subkey of the last round, and then the penultimate subkey,

in order to derive the key used for the third instantiation of DES. This approach

then allows faults in the second instantiation to be exploited. This assumes that

the fault injection is perfect; a more robust and novel approach would be to use an

extended version of the algorithm presented in Section 8.2.1, and this approach is

part of the contribution of this thesis.

This approach involves independently injecting faults into the fifteenth round

of the second and third instantiations of DES. Let the correct ciphertext block

(generated from message block M) be C, a ciphertext block derived as a result of a

fault in the fifteenth round of the third instantiation of DES be C ′, and a ciphertext

block derived as a result of a fault in the fifteenth round of the second instantiation

of DES be C ′′.

An attacker can compare C and C ′ to generate a set of possibilities for the key

used in the last instantiation of DES. For each key hypothesis in this set, C and

C ′′ are deciphered, to give a hypothesised state between the second and the third

instantiations of DES. These candidate deciphered values can then be compared

to yield information on the last subkey of the second instantiation of DES. The set
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of candidate keys resulting from this process can then be searched through, using

the key used to decipher C and C ′′ to encipher M . When the key for the second

instantiation of DES is found, the key hypothesis used to generate the input and

the output of the second instantiation of DES is also validated.

For one attack on the fifteenth round of the second and third instantiation of

DES, the total number of hypotheses generated will be 232 × 232 = 264, i.e. the

expected size of the set of possibilities produced by combining C and C ′ as shown

in Section 8.2.1, each of which will produce a set of the same expected size.

This is a significant reduction when compared to the exhaustive search of size

2112 that is required to attack triple DES by exhaustively searching all the possible

key values. This can be improved upon by acquiring more data; if two faulty

ciphertext blocks are acquired for both the second and third instantiation of DES;

the number of hypotheses generated becomes 214 × 214 = 228, as demonstrated in

Section 8.2.1.

This can be further reduced if we take into account the fact that some deciphered

values of C and C ′′ will not produce a valid keyspace. If C and C ′′ are deciphered

with an incorrect key, then the intermediate states produced will be random values.

When these values are compared, the relationship between L16 and R16 in the gener-

ated intermediate state will not depend on any bits of the key. The values generated

will therefore no longer be distributed with the frequencies given in Table 8.1, but

will be uniformly distributed across all the possible combinations.

If an impossible differential (i.e. where the table entry for (Sin⊕S′
in , Sout⊕S′

out)

is 0 in Table 8.1) is created when analysing the deciphered C and C ′′, then the key

hypothesis used for deciphering C and C ′′ can be discarded.

The probability that all eight S-boxes produce a valid contribution to the keyspace

is the product of the fraction of possible differentials for all of the S-boxes. This

gives a probability of 0.125, so the keyspace generated by this attack becomes

232× (232× 0.125) = 261 for one faulty ciphertext block from a fault in the fifteenth

round of the second instantiation, and one faulty ciphertext block from a fault in the

third instantiation of DES. This can be improved to 214×(214×0.1252) = 222, if two

faulty ciphertext blocks are produced for both the second and third instantiations
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Table 8.5: The fraction of possible differentials per S-box.
S-box Fraction of

Possible Differentials
1 814/1024
2 805/1024
3 816/1024
4 702/1024
5 784/1024
6 824/1024
7 791/1024
8 790/1024

of DES.

This attack can be extended to triple DES with three independent keys, in which

case faults will be required in each the fifteenth round of each of the three instan-

tiations of DES. Following the same reasoning as for two-key triple DES leads to a

keyspace of size 232 × (
232 × 0.125× (

232 × 0.125
))

= 290 for one faulty ciphertext

block from a fault in the fifteenth round of each instantiation of DES. This can be

reduced to 214 × (
214 × 0.1252

(
214 × 0.1252

))
= 230 if two faulty ciphertexts are

generated by injecting faults into each instantiation of DES.

This is the simplest attack scenario; a more robust version of this attack can be

implemented using the algorithm described in Section 8.2.2.

8.2.4 Other Algorithms

Differential Fault Analysis (DFA) is applicable to all block cipher implementations

where a predictable fault can be induced. The analysis presented above is based

on techniques used in differential cryptanalysis. The discussion in Section 8.2.2

would suggest that DFA should be as efficient across as many rounds as differential

cryptanalysis. The first results of differential cryptanalysis of DES, for example,

could break a DES where the number of rounds had been reduced to eight. The

algorithm given in [42] (described in Section 8.2.2) could be used to conduct a chosen

message attack against an implementation of DES where the number of rounds

have been reduced to eight. However, the difference between the fault-induced and
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correct intermediate state within the algorithm (i.e. the message blocks in terms

of differential cryptanalysis) is not necessarily known. It is also a time-consuming

task to gain a significant number of faulty ciphertext blocks (which is trivial in the

differential cryptanalysis attack model), as a certain amount of effort is required to

gain each one.

Since the adoption of AES, several different methods for breaking AES using

DFA [22, 29, 36, 40, 89] have been proposed. The structure of AES is more resistant

to DFA than DES, and it is only possible to exploit faults in the last three rounds

of AES.

8.3 Collision Fault Analysis

The use of collisions to find and exploit a fault occurring at the beginning of an

algorithm has appeared in several papers [22, 48]. This method of fault attack in-

volves injecting faults in the early stages of an algorithm. A message block is then

found that would naturally give the same ciphertext block, i.e. another message

block is found that produces the faulty ciphertext block without any fault occurring

during computation. This involves enciphering message blocks, each with a small

difference to the original message block, to try to produce the observed faulty ci-

phertext block. Once a collision has been found, the two message blocks can be

used to derive information, where the analysis is similar to DFA. If an attacker is

able to encipher and decipher with the same device, conducting such an attack is

trivial, as the faulty ciphertext can be deciphered to find the desired message block.

A trivial case of this type of attack is given in [22], where a known bit of the first

AddRoundKey (see Section 2.2) in AES is assumed to be forced to zero. If the

ciphertext block changes then this bit would have been a one; if the ciphertext block

remains the same then the bit is a zero. This approach can be used to break an

AES implementation with 128 executions with successful fault injections. However,

modifying bits in such a manner requires too much precision to be practical.

Another trivial Collision Fault Analysis (CFA) based attack on AES is a bytewise

implementation of the attack given in [22]. If a fault is injected so that a byte of the
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output becomes zero during the first AddRoundKey function, a similar attack can

be implemented. All the possible combinations of message block bits corresponding

to the modified byte can be tested and the algorithm executed for each value. This

process is stopped once a collision is found with the faulty ciphertext block. This

will give a message block with an intermediate state where the fault was injected

that is naturally equal to zero. This means that the message byte found is equal

to zero after being XORed with the corresponding key byte, and the two values are

therefore equal. This approach requires 16 faulty ciphertext blocks to be generated,

and a search of size 28 with the targeted device to find each key byte, giving a total

search complexity of 16× 28 = 212.

8.3.1 Attacking DES

In [48] a method of exploiting faults in the early rounds of a DES implementation

is described. Faults are injected during the execution of DES to produce a faulty

ciphertext block. A message block is then found that will produce this ciphertext

block when enciphered with the same key without a fault being applied. This

produces a pair of message blocks that are related in exactly the same way as the

two ciphertext blocks considered in the DFA applied to DES described in Section 8.2.

The only difference here is that the attacker derives hypotheses regarding the first

subkey rather than the last subkey, by comparing the two message blocks.

The search for all possible faults to conduct this attack is prohibitively complex,

so an attacker is required to assume that all possible faults can be modelled as a

change of between one to four bits in the exit of one S-box. This allows collisions

to be found in a reasonable amount of time, and ensures that, when collisions are

found, information can be determined about the key. This allows an attacker to

derive information from faults in the first three rounds of DES. In theory, faults

in later rounds would allow information on the first subkey to be derived, but the

finding a collision becomes too time-consuming after the third round. The number

of message blocks that need to be tested, to cover all the different effects that the

fault could have produced, becomes prohibitively large, especially as each message

block has to be tested using the device under attack.
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8.3.2 DPA-Resistant Algorithms

An implementation of a block cipher on an embedded platform should be resistant

to DPA, and must therefore use the data whitening countermeasure (as described

in Section 7.4). This requires the implementation of functions present specifically

to manage this masking. These functions can be subjected to CFA in the same way

that the algorithm can. Two such attacks are described below, and are part of the

contribution of this thesis.

Attacking the First XOR of DPA-Resistant AES

At the beginning of the computation of AES, an XOR between the message block

and the key is conducted before the first ByteSub function. This calculation is

described in Algorithm 8.1.

Algorithm 8.1: The First XOR
Input: M = (m1, m2, m3, . . . , m16)256 containing the message block,

K = (k1, k2, k3, . . . , k16)256 containing the key masked with a random
byte R.

Output: KM = (km1, km2, km3, . . . , km16)256 also masked with R.

for i← 1 to 16 do
kmi ← mi ⊕ ki

end

return KM

If the for loop in Algorithm 8.1 is attacked, so that the loop only runs to 14

rather than 16, two bytes will not be written to KM , i.e. two bytes will remain

untouched. This means that these bytes could be set to 0 in RAM, and therefore

the final two output bytes of KM will take the value of the random byte R, as

a result of the masking. The effects of this approach depend on the logic used in

the chip, i.e. whether empty memory is interpreted by the chip as a zero or a one,

and whether the memory has been previously used by other functions. This latter

possibility can be minimised by resetting the smart card being attacked before each

attempt at injecting a fault.

If the fifteenth and sixteenth byte of the result of the first XOR are set to zero,

it will be possible to find a collision where m15⊕k15⊕R = 0 and m16⊕k16⊕R = 0,
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by generating ciphertexts and trying the 216 possible values for m15 and m16. If a

collision is found then

m15 ⊕ k15 ⊕R = m16 ⊕ k16 ⊕R

m15 ⊕ k15 = m16 ⊕ k16

m15 ⊕m16 = k15 ⊕ k16

where the left hand side of the equation is known, i.e. the effect of R is removed.

If the value of the memory becomes FF16, for example, it can still be assumed to

be 00 and the error included in the value of R. It is therefore not important what

values km15 and km16 become, but they do need to be the same value.

This reduces the size of the keyspace from 2128 to 2120. The attack can be

continued by repeating the attack with three bytes of the key being left uninitialised

by Algorithm 8.1. The above method can then be used to derive k14⊕k15, requiring

the same amount of work as required to determine k15 ⊕ k16. This process can be

continued until the whole key is derived. This is similar to the attack described in

Section 6.3, but an attacker needs to search through 216 different values to determine

the message values that enable information on the key to be derived. This also needs

to be done with the smart card under attack as the rest of the key is unknown; the

attack is therefore time-consuming.

In DPA-resistant algorithms, it is usual to perform as much as possible of the

computation in a random order (see Section 7.3). The loop given in Algorithm 8.1

would therefore take one of the 120, i.e.
(
16
2

)
, different orders possible for this process.

This is so that the data being manipulated from one execution to another will be

manipulated at different points in time.

If the random order countermeasure is implemented, and the last two bytes are

not assigned, the algorithm will take these bytes as identical random bytes equal

to R. To find a collision, an attacker will have to search through the 120 × 216

(approximately 223) possible message blocks. The random value R involved will be

different each time, so if we consider the results from two successful faults, e.g.
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ki ⊕mi ⊕R = 0, kj ⊕mj ⊕R = 0, and

kj ⊕m′
j ⊕R′ = 0, kl ⊕m′

l ⊕R′ = 0

information of three bytes of the key is not immediately visible. However, if they

have one index in common (in this case j) it is possible to change the random mask

so that they become the same by XORing the two values together, i.e.

kj ⊕mj ⊕R⊕ kj ⊕m′
j ⊕R′ = 0

and hence

R⊕R′ = mj ⊕m′
j .

As mj and m′
j are known, these values can be used to find R⊕R′. This value

can then combined with the equation kl ⊕m′
l ⊕R′ = 0 to yield kl ⊕m′

l ⊕R = 0.

This then gives:

mi ⊕R = ki

mj ⊕R = kj

m′
l ⊕R = kl

A further pair, e.g.

kx ⊕m′′
x ⊕R′′ = 0 and ky ⊕m′′

y ⊕R′′ = 0

can then be used to derive information on another key byte, if either x or y has the

same value as either i, j or k. This process can then be repeated until information

is derived on every byte of the key, then each key byte is known XORed with R.

This continues until an attacker has seen all of the index values twice. This then

leaves an exhaustive search of 28 to find the value of R and therefore the key.

An implementation of this attack on an implementation using the random order

countermeasure is described in Appendix G.

A more efficient version of this attack would be to generate pairs,
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kx ⊕mx ⊕Ri = 0 and ky ⊕my ⊕Ri = 0

where x and y represent the indexes for a given pair, and Ri is the random value

generated to mask AES during the i-th attack. An attacker can continue to acquire

pairs until each index value has been seen once. This will allow each unknown

element to be determined using linear algebra. The fact that Ri varies from one

pair to another is not an issue, as enough repetitions will occur while an attacker is

waiting until each index had been observed to make the system overdetermined.

In order to be able to find collisions an attacker needs to generate a dictionary

of 223 entries. These values depend on the key so they need to be generated with

the device under attack. This is difficult for devices, such as smart cards, that use

relatively slow communication protocols. To form an idea of the amount of time

required to create a dictionary, a smart card with a DPA-resistant AES was timed.

It took the smart card approximately 149 milliseconds to create one dictionary entry.

The whole dictionary would therefore require around 14.5 days to create with this

smart card.

This can be reduced by generating a certain amount of the dictionary and con-

ducting more fault attacks to generate the data required to derive the key. For

example, if a dictionary of size 219 was generated, which would take around 21

hours with the test card, faulty ciphertext blocks could be generated until a colli-

sion was found. It would be expected that one in 24 faulty ciphertext blocks would

be present in the dictionary. An attacker would therefore need 16 times more data

compared to the attack described above, but, as only a few faulty ciphertext blocks

are required to realise the attack, this is an efficient option.

Attacking the Key Masking of DPA-Resistant AES

Before the key can be used by the algorithm in the fashion described in Section 7.4,

the random value, R, that is applied to the S-boxes needs to be applied to the

key. The key values are usually stored XORed with a random value of the same bit

length as the key. This is because this random value is a static value for a card and

is stored in EEPROM. This mask needs to be removed, and replaced with R with

118



the key value remaining masked. This process is shown in Algorithm 8.2. Again,

this happens in a random order rather than as shown.

Algorithm 8.2: Masking the Key
Input: KR = (kr1, kr2, kr3, . . . , kr16)256 masked with a random

R = (r1, r2, r3, . . . , r16)256, R a random byte.
Output: K = (k1, k2, k3, . . . , k16)256 masked with R.

for i← 1 to 16 do
ki ← kri ⊕R
ki ← ki ⊕ ri

end

return K

A similar attack to that described in Section 8.3.2 can be envisaged against this

process. If only one byte is initialised by this loop, the resulting memory could be

predominately set to zero. Again, the algorithm will take this value as being equal

to R. There are 216 different values for the combination of the initialised key byte

and R. However, the random order countermeasure will mean that an attacker will

not know which of the 16 key bytes has not been initialised. This means that the

dictionary for this attack will contain 16 × 216 = 220 possible ciphertext blocks,

that need to be generated before the attack is conducted. This dictionary can be

generated on a PC, as the dictionary entries are independent of the key being used.

This attack can be repeated until enough information is derived about the key to

enable an exhaustive search to take place. The expected number of faulty ciphertext

blocks needed to derive each byte in this way can be calculated using the Coupon

Collectors Test given in [58]. In the case of AES this attack requires 50 ciphertext

blocks to derive the whole key. An implementation of this attack is described in

Appendix H.

8.3.3 Other Algorithms

The above attacks apply to all block cipher implementations. A version of CFA

applied to AES appears in [19]. The attacks described in Section 8.3.2 are also

generic, and can be applied to other algorithms with very little modification, as the

targeted features are common to all DPA-resistant implementations.
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8.4 Changing S-Box Values

In algorithms that implement data whitening, as detailed in Section 7.4, S-boxes

need to be moved from NVM to RAM. In this section, two attacks are described

against this mechanism, whose operation depends on how S-boxes are transferred

into RAM. These attacks are described separately, as they draw from both DFA

and CFA. An implementation of these attacks is described in Appendix I.

8.4.1 Modifying Known S-Box Values of DES

If the S-box values are created in RAM in a known order, a fault attack can then

be constructed around the modification of known S-box values.

The first value of the first S-box is modified by a fault, and the algorithm is exe-

cuted with a message block for which the corresponding ciphertext block is known.

If the ciphertext block is not equal to the known ciphertext block, then this S-box

value was used by the algorithm; if it stays the same, then the S-box value was not

used anywhere in the algorithm. All 64 values of the first S-box can each be changed

in this manner and the algorithm executed. After which, all the S-box entries used

from the first S-box will be known for a given message block.

The expected number of S-box entries used per DES execution can be calcu-

lated using the solution to the Classical Occupancy Problem, as described in [67],

giving a value of 14.3. Therefore, if the attack is repeated for each S-box, a list

of approximately 14 different values will be given for the number of entries used in

each S-box.

If these values are taken as possible hypotheses for the S-box entries used in the

first round, the index values of the S-box entries can be turned into hypotheses on

the first subkey. To do this, the index values simply need to be XORed with the

relevant message bits. This will produce slightly under 231 hypotheses for the first

subkey leading to a total exhaustive search of size 239 to find the entire DES key.

In order to reduce the size of the exhaustive search, the attack can be repeated

with a different message block. The intersection of the two keyspaces will contain

the first subkey. This provides an expected number of 14.255× (14.255/64) = 3.18
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different hypotheses per S-box, which gives 213 hypotheses for the first subkey,

leading to a total exhaustive key search of size 221.

In practice, embedded implementations of DES are unlikely to have the 512 S-

box values necessary for DES written separately in memory. These are generally

compressed to optimise the amount of memory required by the DES implementation.

One way of achieving this is to store the data in 256 bytes, where the odd

numbered S-boxes are stored in the high nibbles and the even numbered S-boxes are

stored in the low nibbles. This corresponds to the attack implementation detailed

in Appendix I, and all further discussion will assume that this is the case. There

are several other ways in which the S-box data could be compressed; however, this

is not considered to be something that an attacker needs to know before conducting

an attack, as all the possible combinations can be attempted until the correct one

is found.

The number of key hypotheses generated by implementing this attack against

an implementation of DES using compressed S-boxes is shown in Table 8.6 for

different numbers of message blocks used. As can be seen, this is more efficient than

modifying one S-box value, as information on two boxes can be gained at once, i.e.

fewer faults are required to derive the key.

Table 8.6: The hypotheses generated by attacking a compressed S-box.
Message Hypotheses per Hypotheses for Total
Blocks S-box pair the first round key Keyspace

1 25.3 237 245

2 10.0 227 235

3 3.97 216 224

4 1.57 25 213

This attack can be further optimised by analysing the faulty ciphertext blocks

generated by the modified S-boxes. It should be apparent from the ciphertext block

if a faulty S-box value has been used in the fifteenth or sixteenth round. As the aim

is to try to derive hypotheses on the first subkey, these ciphertext blocks provide

no information. Ciphertext blocks where the faulty S-box is used in the last round
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can be considered to be equivalent to the S-box value not being used. If the faulty

value is used in the fifteenth round, no information is provided, as the detection

of this event is subject to false positives (as described in Section 8.4.2), and a

different message block needs to be used to provide information on this S-box value.

This allows some faulty ciphertext blocks to be treated in the same way as correct

ciphertext blocks, reducing the number of key hypotheses produced.

One possible countermeasure for this attack is to randomise the order in which

the S-boxes are randomised. This applies to the order in which the S-boxes are

treated, and to the order in which the S-box elements are masked, i.e. the counter

is XORed with a random value before being used so that the order in which the

S-box elements are treated is unknown.

If just the order in which the S-boxes are treated is randomised, an attack could

be envisaged based on searching for S-box elements that never change the ciphertext

block when modified. This is because the information about which index value has

been changed will be present. If the same S-box element is repeatedly changed, but

after numerous executions with the same message block the ciphertext block never

changes, it can reasonably be assumed that this index value does not represent a

key hypothesis for any part of the first subkey. The expected number of executions

required to be sure of this information is 22 (from the Coupon Collectors Test as

defined in [58]). The randomisation of the order of treatment would therefore make

the attack significantly more complex. 1408 fault injections would be required to

treat every S-box value for a given message block, and this would give an expected

number of hypotheses of 55.5 per S-box, and a total key search of 254.3 possibilities.

A total of ten different message blocks would be required to bring the expected key

search to 239.5, which would lead to a time-consuming, but not infeasible, exhaustive

search. However, such a large number of fault injections may be unrealistic if the

effect of the fault is not deterministic.

8.4.2 Modifying Unknown S-Box Values of DES

If an S-box element can be modified, but the attacker does not know which element

has been modified, the attack described in Section 8.4.1 will not work. Nevertheless,
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an attack can still be implemented using Differential Fault Analysis.

If one S-box value is modified and used in round 15, and only in round 15, then

the ideas described in [18] will apply. The modification of one S-box look-up in the

fifteenth round will, on average, change the entry value for 3.2 different S-boxes in

the sixteenth round, providing differentials across these S-boxes for key hypothesis

testing.

The advantage of this attack over the attack described in Section 8.4.1 is that

the effect of the desired fault can be seen in the ciphertext block. The fault can be

detected by calculating the differential of the S-box output in the fifteenth round,

which can be achieved by examining the ciphertext block. If only one nibble in this

value is not equal to zero, then there is a high probability that the corresponding

S-box value was only used in the fifteenth round. The probability that this event

occurs is
(

63
64

)15 1
64 = 0.0123.

This probability is high enough that an attacker can conduct the attack a number

of times until the desired event is observed. Information about the key can then be

derived and the process repeated.

There is a possibility that the S-box is used in the fourteenth round and that this

will yield a value that will be detected as a S-box value used in the fifteenth round.

This occurs when the modification in the fourteenth round produces a one-bit fault

(all the output bits from an S-box go to different S-boxes). There are four possible

values among the 15 possible faults that will produce this effect. Half of these values

will modify more than one S-box in the fifteenth round, i.e. they will span two S-

boxes as a result of the expansion permutation. This leaves only two possible values

from the fifteen possible faults that affect just one S-box. The probability of a false

positive is therefore 2
15

(
63
64

)15 1
64 = 0.00165.

The probability of a false positive is relatively high compared to the probability

of the event that will enable the attack. That is, approximately 1 in 7 detections

will be false positives. However, as described in [42], the false hypotheses introduced

by these false positives will not have a major effect on the success of the attack.

As discussed in Section 8.4.1, S-box values are usually stored in a compressed

state, so an attacker may be forced to modify several S-box entries at once. If two
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S-box entries are modified, the probability of one of the values being used in the

fifteenth round is 2
(

63
64

)15 1
64

(
63
64

)16 = 0.0192.

This is more efficient than modifying one S-box value, as the probability of

the S-box value being used in the fifteenth round is higher. This probability will

change following the method of S-box compression, but only the case under study

is analysed.

The probability of one S-box value being used in the fourteenth round, and

causing a false positive then this can be calculated as before. If two modified S-

box values are used in the fourteenth round this can also provoke a false positive if

two 1-bit errors are caused and these bits are then used in the same S-box without

being reproduced by the expansion permutation in the fifteenth round. The prob-

ability of such an event was derived by simulating all the possible combinations,

giving a value of 89/147456. The overall probability of a false positive is therefore

2 2
15

(
63
64

)15 1
64

(
63
64

)16 + 89
147456

((
63
64

)15 1
64

)2
= 0.00256.

The probability of a false positive, given that a detection has occurred, is about

the same (approximately 2/15), given that the event has been detected for both

implementations. The implementation using a compressed S-box will provide results

using fewer induced faults, as the desired event occurs with a higher probability.

In the case of an implementation using compressed S-boxes, it would be logical

to use the event of both faulty S-box values being used in the fifteenth round.

As previously, this can be observed by looking for two nibbles with a non-zero

differential in the ciphertext block. This information can be combined with the

event of one nibble having a differential in the ciphertext block. The probability of

this occurring is 2
(

63
64

)15 1
64

(
63
64

)16 +
((

63
64

)15 1
64

)2
= 0.0193.

As previously, there is a chance of a false positive. In this case the events of one

or two modified S-box values being used in the fourteenth round could potentially

simulate one or two changed values in the fifteenth round. If one S-box value is

changed in the fourteenth round, the probability that two values are modified in

the fifteenth round is 1/5. If two values are changed in the fourteenth round, the

probability that two values are changed in the fifteenth round is 914609/29491200.
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Again, these were derived by simulating all the possible combinations. The prob-

ability of a false positive is therefore 2 2
15

(
63
64

)15 1
64

(
63
64

)16 + 89
147456

((
63
64

)15 1
64

)2
+

21
5

(
63
64

)15 1
64

(
63
64

)16 + 914609
29491200

((
63
64

)15 1
64

)2
= 0.00640.

The probability of getting useful information remains approximately the same

as when only one modified S-box is considered, but the probability of a false positive

is approximately 2.5 times greater. The data acquired will therefore be much more

noisy and will increase the amount of time required to conduct the attack. There

is therefore little interest in conducting the attack in this manner.

8.4.3 Other Algorithms

The attacks described above have been discussed in terms of DES, but this is a

generic attack and can be applied to any DPA-resistant algorithm. The AES, for

example, uses the same S-box throughout the algorithm. There are a total of 200

accesses to this table of 256 different elements. The expected number of different S-

box elements used is 139 (given by the Classical Occupancy Problem, as described

in [67]). These elements could be modified and used to derive information in a

similar manner to those described in Section 8.4.1. An attacker would be able to

form hypotheses on the first subkey and would also know that these S-box values

were used to generate the rest of the subkey. The number of hypotheses could be

significantly reduced using this information. In the case where an attacker does not

know which value is being modified, it would be expected that a differential fault

attack could be formed using the techniques given in [22, 29, 36, 40, 89].

8.5 Countermeasures

There are many different countermeasures that can be used to protect implementa-

tions of block ciphers on an embedded platform. They are listed individually here

for clarity.

Constant Execution — As described in Section 7.1, it is important to implement

block ciphers in a way that the same code is executed for all possible entry
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values. This is important to avoid attacks such as those described in Sec-

tion 6.1. This also applies to functions like the xtime function in AES, as

detailed in Section 2.2. This will also remove the time side channel, as the

use of the same code implies that the algorithm must always have the same

execution time and therefore removes any possibility of a timing attack (see

Section 4.1).

Variable Randomisation — The data manipulated by a block cipher should be

masked by a random value that is generated at the beginning of each execu-

tion. This process is described in Section 7.4, and prevents Statistical Power

Attacks, as described in Sections 4.3 and 8.1.

Random Delays — These cannot directly prevent an attack, but can complicate

an attacker’s task, as described in Section 7.2. These should be placed between

each subfunction of the round function.

Random Execution — Block ciphers should be implemented so that as much of

the computation as possible is conducted in a random order (see Section 7.3).

Each subfunction can generally be conducted in a random order, as these

functions usually operate on portions of the data or key being manipulated.

Also, when variables are transferred from one part of the chip to another,

e.g. from NVM to RAM, they need to transferred in a random order to avoid

attacks, such as those described in Section 6.3. The use of a checksum attached

to each variable is also advisable, in order to be able to verify the integrity of

the data once it has been moved.

Round Redundancy — In order to prevent Differential and Collision Fault Anal-

ysis (see Sections 8.2 and 8.3) the rounds at the beginning and the end of a

block cipher should be repeated to detect faults. In the case of DES it would

be advisable to repeat the last six rounds and the first three rounds (if an at-

tacker is able to execute the inverse DES, it is necessary to repeat the first six

rounds). This represents slightly over half the algorithm and is therefore more

efficient than simply repeating the whole algorithm. Theoretically, attacks in
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the area that is not repeated are still possible, but not currently practical.

It may be possible to inject the same fault in the algorithm and then in the

redundant code, although this will be extremely difficult in the presence of

random delays. For this reason, it may be prudent to use the inverse round

function, where possible, in the redundant code to minimise this possibility.

Checksums — If S-boxes need to be constructed in RAM they need to be pro-

tected by a checksum to prevent the attacks described in Section 8.4. The

simplest method of achieving this would be to XOR all the values together af-

ter the table has been created, i.e. after the table has been written to memory.

This has the added advantage of removing the data whitening countermea-

sure (see Section 7.4), as the number of entries in the S-box will be an even

number. Nevertheless, this is not adequate to defend against the attacks de-

scribed above. If the checksum is on 1 byte an attacker could modify several

values and have a probability of 1/256 of having a valid checksum. A second

checksum calculated in a different manner could remove this problem, as the

second checksum can be chosen such that there is no fault that will allow both

checksums to remain valid.

Memory Randomisation — All “work” areas of RAM used can be filled with

independent random values before the start of the algorithm. The feasibility

of the attacks described in Section 8.3 would then rest on the quality of the

random values used. If, for example, an LFSR was used to generate these

values it may be possible to predict the value of one byte if the previous byte

is known. This could mean that the attack described in Section 8.3.2 is still

possible with some changes, i.e. the initial state of the LFSR is included as an

extra variable to be derived by linear algebra.

8.6 Summary and Conclusions

This chapter provides a description of some of the attacks that can be applied

to implementations of block ciphers on embedded platforms. Differential Fault

Analysis, described in Section 8.2, is well-known within the smart card industry,
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and descriptions of implementations have been published. However, the extension

to triple DES described in Section 8.2.3 is novel, and is part of the contribution

of this thesis. Collision Fault Analysis, described in Section 8.3, is more recent,

although the analysis is somewhat similar to Differential Fault Analysis.

The application of DFA and CFA to DPA countermeasures, described in Sec-

tions 8.3.2 and 8.4, is novel, and is part of the contribution of this thesis.

Implementations of four of the attacks described in this chapter are discussed in

Appendices G, H, and I, and are also part of the contribution of this thesis.
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Chapter 9

Implementations of RSA

The RSA algorithm [94], described in Section 2.3, is one of the most commonly

used public key cryptographic algorithms. Implementations of RSA are therefore

often included in smart cards, so that the RSA private key can be protected by the

smart card’s tamper resistant environment. The problems of implementing RSA on

a smart card are detailed here, as they are significantly different to the problems

encountered when implementing block ciphers.

This chapter will present the attacks that are possible against a näıve RSA

implementation. This is followed by details of the various types of exponentiation

algorithm that can be implemented on a smart card, and how these can be rendered

resistant to side channel and fault attacks. The best method of combining the

various types of protection is then discussed.

Section 9.1 describes Simple Power Analysis of RSA, as previously described

in Section 4.2. The possible application of Statistical Power Analysis to RSA is

discussed in Section 9.2. The different possible fault attacks that can be applied to

the calculation of RSA are detailed in Sections 9.3–9.5. The different algorithms for

calculating a modular exponentiation, i.e. RSA, are discussed in Section 9.6. The

same discussion is applied to the calculation of RSA using the Chinese Remainder

Theorem (CRT), with a description of the different side channel and fault resistant

algorithms in Section 9.7.

In Section 9.8, the underlying multiplication algorithm that is used to calcu-

late RSA is discussed. The application of side channel and fault attacks to Mont-

gomery multiplication is discussed in Sections 9.8.1 and 9.8.2. The application of
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this method to the calculation of RSA with or without CRT is described in Sec-

tion 9.8.4.

A comparison of the various fault protection methods is given in Section 9.9,

followed by a list of all the countermeasures that are required to protect against

side channel and fault attacks when implementing RSA in Section 9.10. Some of

the work in this chapter has been published in [10, 11], and some work remains

unpublished [81].

9.1 Simple Power Analysis of RSA

As described in Section 4.2, an RSA implementation can be vulnerable to Simple

Power Analysis if an attacker can distinguish between the two functions that are

used to calculate a modular exponentiation. If the square and multiply algorithm is

considered (see Algorithm 4.1); the key can be derived if an attacker can distinguish

between a squaring operation and a multiplication. This issue was discussed in

Section 4.2.

Distinguishing a square from a multiplication can be immediately obvious (as in

Figure 4.2), but is often more subtle. The differences can be in execution time or

power consumption patterns.

Figure 9.1: The electromagnetic emanations of an RSA implementation.

Figure 9.1 shows the electromagnetic emanations of an RSA implementation

for two different keys, (FFA5FF16 and 66666616). This gives a different example

of a different way in which RSA can leak information, that is less obvious than

Figure 4.2. However, the differences are still significant enough that an attack using

Simple Power Analysis should be possible.
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9.2 Statistical Power Analysis of RSA

The use of Statistical Power Analysis against RSA is not well documented, but it

should be possible to determine the bits of the private RSA exponent d in a manner

similar to that described in Section 4.3. It should be possible to replace the function

in the attack described in Section 8.1 with a series of squares and multiplications

from the square and multiply algorithm (see Algorithm 4.1).

An example of the results of the calculation for the first three bits of d is given

in Figure 9.2 for a message M , assuming that the most significant bit is dx = 1. A

statistical attack could be used to predict the outcome for a given hypothesis for

selected bits of d, and generate a DPA or CPA waveform to verify this hypothesis.

M
dx−1 = 0 dx−1 = 1

↙ ↘
M2 M3

dx−2 = 0 dx−2 = 1

↙ ↘
M4 M5

dx−3 = 0 dx−3 = 1

↙ ↘
M10 M11

Figure 9.2: An example calculation path for the square and multiply algorithm.

This attack is not necessarily practical, as the word size manipulated by a co-

processor may be too large to enable the generation of CPA waveforms with a

significant peak. Some results on the use of DPA to derive information on a secret

RSA exponent are given in [70], although such an approach is expected to suffer

greatly from false positives when used against systems deploying coprocessors that

use large word sizes. However, it remains necessary to defend against this attack in

case a practical attack becomes possible.
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9.3 Fault Attack on RSA Signature with CRT

The first published fault attack [23], proposed an attack focused on an implementa-

tion of RSA using the Chinese Remainder Theorem (CRT). The attack allows for

a wide range of fault injection methods, as it only requires one fault to be inserted

in order to factorise the RSA modulus.

The technique requires an attacker to obtain two signatures for the same mes-

sage, where one signature is correct and the other is the result of the injection of

a fault during the computation of Sp or Sq (see Section 2.3). That is, the attack

requires that one of Sp and Sq is computed correctly, and the other is computed

incorrectly.

Without loss of generality, suppose that S′ = aSp + bS′
q mod N is the faulty

signature, where Sq is changed to S′
q �= Sq. We then have:

Δ ≡ S − S′ (mod N)

≡ (aSp + bSq)− (aSp + bS′
q) (mod N)

≡ b(Sq − S′
q) (mod N).

As b ≡ 0 (mod p) and b ≡ 1 (mod q), it follows that Δ ≡ 0 (mod p) (but Δ �≡ 0

(mod q)) meaning that Δ is a multiple of p (but not of q). Hence, we can derive

the factors of N by observing that p = gcd(Δ mod N, N) and q = N/p.

In summary, all that is required to break RSA is one correct signature and one

faulty one. This attack will be successful regardless of the type or number of faults

injected during the process, provided that all faults affect the computation of either

Sp or Sq.

Although initially theoretical, this attack (an implementation is described in [8])

stimulated the development of a variety of fault attacks against a wide range of

cryptographic algorithms.

9.4 Fault Attack on RSA Signature Without CRT

We now describe a different type of fault attack that involves modification to a

single bit of the private exponent. Suppose that, due to a fault, one bit in the
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binary representation of the secret key d flips from 1 to 0 or vice versa, and that

this faulty bit position is randomly located. Suppose than an attacker arbitrarily

chooses a plaintext M and causes the smart card to compute a signature S on M .

While the signature is being generated the attacker generates a fault causing one bit

of the private exponent to be changed, resulting in a faulty signature S′. Assuming

that the i-th bit of d is complemented, then, as described in [9], we have:

S′

S
≡Md′−d ≡

{
M2i

(mod N) if the i-th bit of d = 0,
1

M2i (mod N) if the i-th bit of d = 1.

where S is the correct signature.

In [56] it was shown that this attack can be significantly improved by raising the

formula to the power of the public exponent e, giving:

S′e

M
≡

⎧⎨⎩(M e)2
i

(mod N) if the i-th bit of d = 0,
1

(Me)2
i (mod N) if the i-th bit of d = 1.

In this case it is not necessary to know the correct signature S.

An attacker can compute S′e
M mod N for all the possible one-bit fault errors in

d. This requires a total of log2 d trials to completely derive d.

This attack has been extended to cover the case where more than one bit is

changed [9]. If, for example, two bits (j and k) are changed in the private exponent,

then

d′ = d± 2j ± 2k.

If

S′ = Md′ mod N

then this can reveal information on the private key using the following relationships.
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S′e

M
≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M e)2
j
(M e)2

k
(mod N) if the j-th bit of d = 0

and the k-th bit of d = 0
(M e)2

j 1

(Me)2
k (mod N) if the j-th bit of d = 0

and the k-th bit of d = 1
1

(Me)2
j (M e)2

k
(mod N) if the j-th bit of d = 1

and the k-th bit of d = 0
1

(Me)2
j

1

(Me)2
k (mod N) if the j-th bit of d = 1

and the k-th bit of d = 1

Unfortunately, the above analysis is flawed, and the attack only works if just

one bit is flipped. To see this, rewrite the above expression

S′

S
≡Md′−d ≡M±2j±2k

where the ± depends on how the bit has been changed. It can be seen that another

two faults (changing bits l and n) will yield the same value for d′ if:

±2j ± 2k = ±2l ± 2n

For example, if the fifth and sixth bits of d are flipped by a fault from 0 to 1 to

produce d′, and the fifth bit of d flips from 1 to 0 and the seventh bit of d flips from

0 to 1 to produce d′′, then:

Md′ = Md+26+25
= Md+27−25

= Md′′

since 26 + 25 = 27 − 25. In this case the attacker has ambiguous information about

the private exponent d, i.e. the attacker knows that either the fifth and sixth bits

are zero, or that the fifth bit is one and the seventh bit is zero, and hence the

attack becomes ineffective. This ambiguity worsens when greater numbers of bits

are changed by fault injection, as more combinations of faults give equivalent results.

The ambiguities arising in the above version of the attack would be removed if

an attacker knows precisely which bits are affected by a fault, although this degree

of precision not currently possible (as described in Section 8.3). The effect of a
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fault will generally correspond to one of the three models proposed in Section 5.3,

where bytes are modified rather than individual bits. However, one of these models

will produce a feasible attack. If bits are only changed in one direction, i.e. the

data resetting model, it is sufficient to know in which direction the bits change. For

example, if a byte of d is set to zero, each of the possible 28 values for S′ will be

unique.

Another method of avoiding this problem is described in [41], and is repeated

here in terms of faults in the private exponent used in RSA. Suppose that the i-th

byte of d, referred to as d[i], is randomised to become d̃[i], then we have:

d[i] + γ = d̃[i]

where γ represents the effect of the induced fault. Both d[i] and d̃[i] are indi-

vidual bytes of a larger value, i.e. the private exponent, and therefore d[i], d̃[i] ∈
{0, 1, . . . , 255}. The effect of the fault γ has to allow d[i] and d̃[i] to take any values

in {0, 1, . . . , 255}, so γ ∈ {−255,−254, . . . , 255}, where γ = 0 is represents no fault

in d[i]. However, in practice γ ∈ {−d[i],−d[i] + 1, . . . , 255− d[i]}.
From the two bit fault example, given above, it can be seen that the integer

representation of the fault can be determined, as

Md+26+25
= Md+27−25

= Md+96.

An attacker can therefore determine the integer change produced by a fault but not

the exact bits that have changed. The integer value of a fault will, however, restrict

the value that d[i] can take. For example, if γ = 96, then

d[i] + 96 = d̃[i].

Note that d̃[i] is ∈ {0, 1, . . . , 255}, and therefore d[i] is ∈ {0, 1, . . . , 159} (i.e. the

maximum integer that d[i] could take is 255− 96 = 159).

In [41] the authors then consider two faults, γ and γ′, where they seek to max-

imise the difference between the two faults. If we define γ < γ′, then if γ′− γ = 255
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the byte d[i] can be uniquely determined and will be equal to −γ. This is because

there will only be one value of d[i] that will allow the faults γ and γ′ to occur.

In practice, it may not be possible to find two faults with a difference of 255

within a reasonable amount of time, as each fault injection requires a certain amount

of effort. In [41] the statistically expected amount of faults required to reduce the

possible values of d[i] to n hypotheses are given for 1 ≤ n ≤ 8. This information is

repeated in Table 9.1.

Table 9.1: The number of faulty signatures required to identify one byte.
Number of Faulty Signatures

hypotheses for d[i] Required
1 384
2 213
3 149
4 115
5 94
6 79
7 69
8 60

This process could be repeated for each byte of the private exponent to derive

its value, or reduce the number of possibilities to aid an exhaustive search.

9.5 Faults in the Modulus

We next describe two major classes of attack based on injecting faults into the

modulus N before it is used to generate or verify a signature.

9.5.1 Forging a Signature

An attack of this type is presented in [97]. This attack involves changing the modulus

N to N ′, where N ′ is prime and e (the public RSA exponent) is coprime to φ(N ′) =

N ′−1. Since N ′ is prime, finding a d such the ed ≡ 1 (mod N ′−1) is straightforward.

The attacker then constructs a fraudulent signature using this value of d with N ′,

and manipulates the card to use the modified N ′ when verifying the signature.

Given that e is often chosen to be prime, obtaining a value N ′ such that N ′ is

coprime to e is trivial. However, obtaining a value for N ′ that is itself prime is more
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complex. For a random change to N , assuming N ′ is odd, the probability that N ′

is prime is given in [74] as,

Pr(N ′ is prime) ≈ 2
lnN ′ >

2
ln 2n

≡ 2
n ln 2

if N ′ is bounded by 2n−1 ≤ N ′ < 2n. A more complete analysis is given in [97].

This attack was extended in [74] to cover the case where N ′ is any value that

is easy to factorise. For example, when N ′ is smooth it can be readily factorised.

This involves slightly more work than the attack detailed in [97], but remains com-

putationally trivial. The bound for the largest factor in N ′ is, arbitrarily, set to

210 in [74] but a higher bound is certainly acceptable. This increases the possibility

of being able to implement this attack, as the amount of values that N ′ can take

increases. The exact details of this more general attack are beyond the scope of this

thesis.

In the case where N can be directly modified this attack is trivial to implement.

However, this is not possible in the case of a smart card. An attacker could poten-

tially target the key when it is being transferred from EEPROM to RAM before

the RSA algorithm is executed. An example of such an attack is described in Sec-

tion 6.3, where parts of the key being transferred in RAM are set to 0. Given the

fault models given in Section 5.3, if a byte, or bytes, can be randomised, the attack

becomes potentially feasible.

The problem arises in knowing what fault has been injected a priori, since fac-

torising N ′ (and hence computing an appropriate d) requires its value to be known.

An attacker needs to predict the effect of the fault mechanism at the point in time

that it is applied, factorise N ′, and then generate a signature which will be accepted

as valid if the appropriate fault is induced. This signature is then presented when

conducting the attack. Such a procedure is likely to be overly complex in the case of

smart cards, especially where desynchronisation countermeasures are implemented

(described in Sections 7.2 and 7.3).
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9.5.2 Recovering the Key

A second class of attack based on injecting faults into the modulus is given in [25],

in which the aim is to recover the secret exponent d inducing a target to verify a

faulty signature. As previously, a fault is injected to transform N to N ′, so that N ′

is uniformly distributed across the integers in the interval [1, 2log2 N ].

A series of pairs of plaintexts Mi and signatures Si are gathered, each of which is

assumed to have a different fault. So for each pair there will be a corresponding, and

unknown, N ′
i . These pairs are then used to determine d by determining d mod pk

for some small prime powers pk. When the product T =
∏

k pk exceeds N and

therefore also φ(N), d can be recovered by using the Chinese Remainder Theorem.

The algorithm for deriving d mod pk is shown in Algorithm 9.1 and is taken from [25].

Algorithm 9.1: Predicting d mod p by counting
Input: p = qf , a small power of a prime
Output: a prediction for dp = d mod p

for i← 0 to p− 1 do count[i]← 0

r ← 2p + 1
while r is not prime do

r ← r + p
end

foreach (Mi, Si) do
if (r � |Mi) ∧ (r � |Si) then

end
if (p| order of Mi mod r) ∧ (DL(Mi, Si, r, p) exists) then

count[DL(Mi, Si, r, p)] + +
end

end

return Maximum from (count[0], . . . , count[p− 1])

The function DL(Mi, Si, r, p) used in Algorithm 9.1 comes from the discrete

logarithm of Si with respect to the basis (Mi mod r) mod p. This value is either an

integer modulo p or does not exist, which means that Si is not a power of Mi mod r.

A simulation of this attack is given in [25], in which 25000 faults are required

to derive 512 bits of residue information about d. This is enough to recover a 1024

bit key with a small public exponent. While this attack is powerful as it does not
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require very specific faults, it is not practical because of the massive amount of

information required.

A further attack based on building a dictionary for possible values of N ′ is also

discussed in [25], which is a more efficient method of implementing the attack as

more information can be derived. The difficulty in this method is predicting and

applying the fault that needs to be injected to successfully implement the attack.

The details of this attack are beyond the scope of this thesis.

9.6 Exponentiation Algorithms

Many different algorithms can be used to calculate the modular exponentiation al-

gorithm required for RSA. All the algorithms described in this section assume that

the exponent is treated in a left to right manner. Some of the algorithms have a

version that treats the exponent in a right to left manner, but these are omitted for

brevity. In practice, a large number of algorithms cannot be implemented on smart

cards, as the amount of available memory does not usually allow numerous interme-

diate values to be stored in RAM. However, this problem is starting to disappear

as smart cards with large amounts of RAM are appearing on the market [71].

The manipulation of large numbers is usually performed using a coprocessor (see

Section 3.2.1), as implementing a multiplication on an eight-bit platform would not

give the desired performance level. Within a cryptographic coprocessor there are

usually only a limited number of registers available to store values. The transfer

of data from RAM to the coprocessor that manipulates the numbers is often an

expensive process, as all the information has to travel across a bus that is small

in comparison to the size of the number being moved, although this is less of a

problem with the more recent 32-bit chips. It is therefore desirable to design the

exponentiation algorithm to use as few registers as possible. In the algorithms

given in this chapter, the registers are expressed as R followed by a number. This

makes it straightforward to see how many registers are required to implement each

algorithm. Variables that do not need to be kept within a coprocessor are given

arbitrary names.
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The simplest algorithm is the square and multiply algorithm [67], given in Al-

gorithm 9.2. It has already been shown in Sections 4.2 and 9.1 that this algorithm

is insecure when the difference between a squaring operation and a multiplication

can be determined. This algorithm uses two registers and has an expected number

of operations of 1.5 log2 d, i.e. each bit of d requires one square and half of the bits

of d will require an extra multiplication. This is because d can be assumed to have

half its bits set to 1, as it is essentially a random value.

Algorithm 9.2: The Square and Multiply Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N
Output: C = Md mod N

R0 ← 1
R1 ←M
for i← x to 0 do

R0 ← R0
2 mod N

if (di = 1) then
R0 ← R0 ·R1 mod N

end
end

return R0

This algorithm can be optimised by precalculating M t mod N for some small

values of t. One example of this is also given in Algorithm 9.3, which is a specific

case of the sliding-window exponentiation given in [67]. In this algorithm the current

working value is squared until a bit of d is equal to 1, at which point a multiplication

by M or M3 will take place, depending on whether one or two consecutive bits are

set to 1 in the exponent. This algorithm has an expected number of operations

equal to 1.333 log2 d [59], and uses three registers.

Another version of this type of optimisation is given in Algorithm 9.4, which is

a specific case of the left to right k-ary exponentiation scheme given in [67]. This

is based on the same principle as Algorithm 9.3, but treats the exponent in blocks

of two bits. This assumes the exponent has an even number of bits, although the

algorithm can be readily adjusted for an odd number of bits by setting dx to zero.

This algorithm has an expected number of operations equal to 1.375 log2 d, and uses

three registers.
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Algorithm 9.3: The (M ,M3) Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N
Output: C = Md mod N

R0 ← 1
R1 ←M
R2 ←M3 mod N
i← x
while i ≥ 0 do

if (di = 0) then
R0 ← R0

2 mod N
i← i− 1

end
else if (di = 1) ∧ ((di−1 = 0) ∨ (i = 0)) then

R0 ← R0
2 mod N

R0 ← R0 ·R1 mod N
i← i− 1

end
else if (di = 1) ∧ (di−1 = 1) then

R0 ← R0
2 mod N

R0 ← R0
2 mod N

R0 ← R0 ·R2 mod N
i← i− 2

end
end

return R0

Both of these algorithms increase the performance of the algorithm, but cannot

be regarded as secure against Simple Power Analysis, as the pattern of squares and

multiplications will still vary depending on the bits of d. It is not likely that an

attacker will be able to distinguish between a multiplication by M or M3 mod N ,

but an attacker will still be able to derive the majority of the key using SPA. It has

also been suggested that a detailed SPA can detect the if-else structure, and detect

which branch has been taken [60].

9.6.1 Side Channel Resistant Algorithms

The simplest countermeasure against side channel analysis is to try to remove the

difference between a square and a multiplication by avoiding the calculation of a

square with the cryptographic coprocessor. This means that, to square a value

x, the calculation of x2 mod N is replaced with x · x mod N . This idea is put
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Algorithm 9.4: The 2-ary Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N
Output: C = Md mod N

R0 ← 1
R1 ←M
R2 ←M3 mod N
i← x
while i ≥ 0 do

R0 ← R0
2 mod N

if (di = 0) ∧ (di+1 = 0) then
R0 ← R0

2 mod N
end
else if (di = 0) ∧ (di+1 = 1) then

R0 ← R0
2 mod N

R0 ← R0 ·R1 mod N
end
else if (di = 1) ∧ (di+1 = 0) then

R0 ← R0 ·R1 mod N
R0 ← R0

2 mod N
end
else if (di = 1) ∧ (di+1 = 1) then

R0 ← R0
2 mod N

R0 ← R0 ·R2 mod N
end
i← i− 2

end

return R0

forward in [30], where two instructions are defined as side channel equivalent if they

are indistinguishable through side channel analysis, and algorithms are termed side

channel atomic if the algorithm can be broken down into indistinguishable blocks.

This principle, applied to the square and multiply algorithm, is demonstrated in

Algorithm 9.5. This has the same expected number of operations and register usage

as the square and multiply algorithm.

This approach will make it harder to distinguish between a square and a multi-

plication, as the coprocessor makes no distinction between them. However, for the

remainder of this section it will be assumed that an attacker is able to make the

distinction between a square and a multiplication. The use of an index to find the

desired register is also more secure against SPA than a series of if-else statements.
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Algorithm 9.5: Side Channel Atomic Square and Multiply Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N
Output: C = Md mod N

R0 ← 1
R1 ←M
i← x
k ← 0
while i ≥ 0 do

R0 ← R0 ·Rk mod N
k ← k ⊕ di

i← i− ¬k
end

return R0

The evaluation of if-else commands will take a different amount of time depending

on which of the if-else statements is true. The evaluation of an index will take a

constant amount of time, as this is usually implemented as a variable offset from

a fixed point in RAM. In the case where registers are used in a cryptographic

coprocessor, the case under consideration, this index could be used to select the

relevant register. However, the exact details are totally dependent on the design of

the coprocessor and are therefore beyond the scope of this thesis.

A modification to the square and multiply algorithm is proposed in [35] that

changes it to always calculate a multiplication, and is detailed in Algorithm 9.6. In

this case a dummy register is included that takes the result of the multiplication

when di = 0. This modification increases the number of operations to 2 log2 d and

uses three registers.

This is a big reduction in efficiency compared to the square and multiply algo-

rithm, but is secure against SPA as the only change in execution, that depends on

the key, is to which register the result of the multiplication is written.

This provides an algorithm that is secure against Simple Power Analysis but

not Statistical Power Analysis. In order to prevent Statistical Power Analysis the

data being manipulated needs to be masked at every point in the algorithm. In [55]

a method of randomising the calculation is proposed that is analogous to the data

whitening countermeasure, as described in Section 7.4. This involves modifying
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Algorithm 9.6: The Square and Multiply Always Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N
Output: C = Md mod N

R0 ← 1
R1 ← 1
R2 ←M
for i← x to 0 do

R1 ← R1
2 mod N

Rdi ← R1 ·R2 mod N
end

return R1

each parameter with a small random value and then removing it at the end of

the algorithm. Each random value used has the effect that each multiplication is

randomised by a value whose effect is equivalent to a multiplication by 1 mod N and

is therefore easily removed at the end. This algorithm is detailed in Algorithm 9.7.

Algorithm 9.7: Randomised Exponentiation Algorithm
Input: M, d, N, small random values r1, r2, r3

Output: C = Md mod N

M ′ ←M + r1 ·N
d′ ← d + r2 · λ(N)
N ′ ← r3 ·N
C ′ ←M ′d′ mod N ′

C ← C ′ mod N

return C

The bit length of the random values used is often determined by the algorithm

and/or the architecture used. For example, if Montgomery multiplication [73] is

used, the most natural choice would be to have a random value whose bit length

is the same as the basic data unit (see Section 9.8 for a definition of Montgomery

multiplication). In the case of cryptographic coprocessors the bit length of the

random values will typically be dictated by the size of the registers available. A

coprocessor will typically be designed for a specific modulus bit length, with extra

bits available to allow some flexibility in how they are used. The role of these random

values is to make the branch prediction described in Section 9.2 prohibitively time-

consuming. This should be possible if r1, r2, and r3 are independent random values.
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The change in d will make any statistical analysis meaningless, as an attacker will

have to guess the mask for each acquisition, and is further complicated by the

modifications to M and N .

A novel combination of Algorithms 9.4 and 9.7 can be used to provide a secure

modular exponentiation algorithm. This is described in Algorithm 9.8, and is one of

the contributions of this thesis. As previously, each input variable is multiplied by

a small random value to prevent Statistical Power Analysis. The significant change

this allows is in the case where (d′i = 0) and (d′i+1 = 0), as a multiplication by a

value equivalent to 1 mod N can be conducted. Such a change could not be used

before, as the presence of 1 mod N may be detected by the coprocessor, resulting

in no computation taking place. When values are loaded into the coprocessor it

would be natural for the values to be reduced modulo N once loaded, as modular

multiplication by a value greater than the modulus would be inefficient. A multi-

plication by one could either be detected by the coprocessor and ignored, or take

place in a very short period of time, which may be visible in the power consumption

when compared to a multiplication with a value whose bit length is similar to the

modulus. As the modulus is increased to r3 · N the calculation can be multiplied

by a value equivalent to 1 mod N .

The other major change in this algorithm applies when (d′i = 1) and (d′i+1 = 0);

in this case the multiplication is by M ′2 mod N ′. This allows the square function

to always take place twice before the multiplication. This means that each loop of

the algorithm contains two squares and a multiplication. As with Algorithm 9.4,

this assumes that the exponent comprises an even number of bits, and the most

significant bit needs to be set to zero if this is not the case. The expected per-

formance of this algorithm is 1.5 log2 d′ operations, and it uses five registers. This

returns us to the efficiency of the square and multiply algorithm, but requires more

registers. This algorithm will also take the same amount of operations irrespective

of the value of d′, and should therefore be immune to timing attacks and Simple

Power Analysis.

Algorithm 9.8 can be made more efficient by changing the algorithm so that it

analyses three bits per loop rather than two. This would require eight registers to
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Algorithm 9.8: Secure 2-ary Algorithm
Input: M, d = (dx, dx−1, . . . , d0)2, N, small randoms r1, r2, r3, r4

Output: C = Md mod N

M ′ ←M + r1 ·N
d′ ← d + r2 · λ(N)
N ′ ← r3 ·N
R0 ← r4 ·N + 1 mod N ′

R1 ←M ′

R2 ←M ′2 mod N ′

R3 ←M ′3 mod N ′

R4 ← 1
i← �log2 d′�+ 1
while i ≥ 0 do

R4 ← R4
2 mod N ′

R4 ← R4
2 mod N ′

R4 ← R4 ·R2d′i+d′i−1
mod N ′

i← i− 2
end
R4 ← R4 mod N

return R4

contain all the precomputed values for M ′i, where 0 ≤ i ≤ 7. Each loop would then

consist of three squarings and one multiplication. This would therefore require nine

registers and have an expected complexity of 1.333 log2 d′ operations. This is prob-

ably not practical on a coprocessor because of the amount of registers required, but

could potentially be implemented on a 32-bit chip where the calculation is conducted

by the CPU. However, the memory requirements are probably still prohibitive, as

a certain amount of memory needs to be available for the operating system.

This idea can be further extended to n bits, requiring 2n + 1 registers and

giving an expected performance of
(
1 + 1

n

)
log2 d′ operations. However, given that

analysing three bits in each loop is likely to be prohibitively complex, calculating a

modular exponentiation with larger values of n is unlikely to be practical.

9.6.2 Fault Resistant Algorithms

Several different approaches can be used to protect a modular exponentiation against

fault attacks. The simplest mechanism for detecting a fault attack is to duplicate

data and code, and then check that the results are identical. Because of the nature
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of physical perturbations, different executions of the same fault injection are likely

to have different consequences. This in turn results in a difference between one

execution and its duplicate, which can be detected by the implementation. However,

this would typically double the execution time of an algorithm, and is therefore not

desirable from a performance perspective.

Another protection technique is to include redundant code as a verification stage.

This usually consists of executing the inverse of an algorithm instead of repeating

it. This prevents two identical faults from bypassing the verification stage of the

countermeasures, which is a potential problem with simply repeating code.

The RSA signature scheme provides a good example of where a verification stage

can be efficiently implemented. This would involve calculating S = Md mod N

followed by M ′ = Se mod N . The consistency check would be to verify that M ′ =

M . This technique offers superior performance to the duplication method, as the

public exponent e is usually much smaller than the secret exponent d.

Another alternative is the generic method, described in Section 9.8, that involves

applying a checksum that can easily be applied to a modular exponentiation.

9.6.3 Attacking Side Channel Resistant Algorithms

A fault attack is presented in [57] that uses the structure of the square and multiply

always algorithm (see Algorithm 9.6) to derive the exponent being used. If a fault

is injected in a multiplication, this will change the resulting ciphertext if it used,

i.e. the relevant bit of the exponent is equal to one. This can be done for each

multiplication in succession, to reveal each bit of the exponent. This is similar

in nature to the attack on S-boxes presented in Section 8.4.1. It is therefore not

advisable to have dummy functions or registers that are only present to prevent side

channel analysis, as this can be detected using a fault attack.

9.7 Secure Exponentiation Using CRT

Signatures are rarely generated using a simple modular exponentiation, as the signa-

ture can be generated using the Chinese Remainder Theorem (see Section 2.3) four

times more quickly. If this approach is used, then the algorithm must be protected
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in a different way to that described in Section 9.6, as the algorithm has different

characteristics.

9.7.1 Side Channel Resistant Algorithms

The calculation of RSA using CRT can be protected against Simple Power Analysis

in the same way as proposed for RSA in Section 9.6, i.e. the exponentiations in the

CRT algorithm can be performed using the Algorithms given in Section 9.6. The

rest of the algorithm can then be executed using the constant time and constant

execution countermeasures given in Section 7.1.

The algorithm needs to be randomised to protect it against Statistical Power

Analysis. This can be achieved by using a slightly more complex version of Algo-

rithm 9.7. Such an approach is described in Algorithm 9.9 [105], in which all the

entry variables, except the message, are multiplied by a small random value to mask

the actual value being used. These random masks are then removed at the end by

taking the result modulo p · q.

Algorithm 9.9: Randomised Exponentiation Algorithm using CRT
Input: M, p, q, d, q−1 mod p, small random values r1, r2, r3, r4

Output: S = Md mod p · q
p′ ← p · r1

d′p ← (d mod (p− 1)) + r2 · (p− 1)
q′ ← q · r3

d′q ← d mod (q − 1) + r4 · (q − 1)
S′

p ← (M mod p′)d′p mod p′

S′
q ← (M mod q′)d′q mod q′

S ← (S′
q + (((S′

p − S′
q) · q−1 mod p) mod p′) · q) mod (p · q)

return S

9.7.2 Fault Resistant Algorithms

Several different methods have been proposed to protect RSA using CRT from fault

attacks, other than simply repeating the entire function or its inverse and verifying

the result. The first method of protecting the RSA algorithm using the Chinese

Remainder Theorem was proposed in [98]. This essentially involved randomising

the modular exponentiations by multiplying the primes used in RSA by a small
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random prime, and then verifying that the results are coherent. This protects the

modular exponentiations, but does not protect the end calculation, when Sp and

Sq are combined. The attack described in [23] will therefore still be possible by

attacking the recombination process. An implementation of the original attack and

an attack on the recombination are described in [8]; further countermeasures are

also proposed to secure the entire calculation, as shown in Algorithm 9.10.

Algorithm 9.10: Verifying the computation of the RSA algorithm using CRT
Input: M, p, q, d, q−1 mod p, a small random prime r
Output: S = Md mod (p · q) or error

p′ ← p · r
d′p ← d mod ((p− 1) · (r − 1))
S′

p ← (M mod p′)d′p mod p′

if ¬(p′ (mod p) ≡ 0) ∧ (d′p (mod p− 1) ≡ dp) then
return error

end

q′ ← q · r
d′q ← (d mod (q − 1)) · (r − 1)
S′

q ← (M mod q′)d′q mod q′

if ¬(q′ (mod q) ≡ 0) ∧ (d′q (mod q − 1) ≡ dq) then
return error

end

Sp ← S′
p mod p

Sq ← S′
q mod q

S ← Sq + ((Sp − Sq) · q−1 mod p) · q
if ¬((S mod p = Sp) ∧ (S mod q = Sq)) then

return error
end

Spr ← S′
p mod r

dpr ← d′p mod r − 1
Sqr ← S′

q mod r
dqr ← d′q mod r − 1

if S
dqr
pr ≡ S

dpr
qr (mod r) then

return S
else

return error
end

In [111] the concept of infective computing is presented, where if a fault is

produced in one exponentiation it would have an effect on a second exponentiation.
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This approach was proposed in an effort to avoid having decisional testing for error

detection. An attack on this system was presented in [110]. Another algorithm

based on the same idea was proposed in [20], and some attacks were presented

in [106], although not all of the attacks seem to be valid [21].

A further algorithm is given in [32], as detailed in Algorithm 9.11, that builds

on the algorithms proposed in [20, 111]. This method functions by generating three

values c1, c2 and k that are used to detect an error; when no error is present then

c1 = c2 = k = 1. The last step is to raise the output to the power of k that will

change the output so that no key information can be derived from an incorrect

result.

Algorithm 9.11: Infective computation of RSA
Input: M, p, q, d, small random coprime values r1, r2, a small random value

r3

Output: S = Md mod p · q
p′ ← p · r1

dp ← d mod (p− 1)
q′ ← q · r2

dq ← d mod (q − 1)
iq′ = q′−1 mod p′

S′
p ←Mdp mod p′

S′
q ←Mdq mod q′

s1 ← (Mdp mod φ(r1)) mod r1

s2 ← (Mdq mod φ(r2)) mod r2

S′ ← S′
q + q′ · iq′ · (S′

p − S′
q) mod p′

c1 ← (S′ − s1 + 1) mod r1

c2 ← (S′ − s2 + 1) mod r2

k ← �(r3c1 + (2log2 r3 − r3) · c2)/2log2 r3�
S ← S′k mod (p · q)
return S

9.8 Secure Montgomery Multiplication

The basic function that is used to calculate the modular exponentiation for RSA is

modular multiplication. One of the most common methods of calculating a modu-

lar multiplication is using Montgomery multiplication [73] because of its efficiency,
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especially as it can be parallelised in hardware. A description of Montgomery mul-

tiplication is given in Algorithm 9.12 [67]. Here b is the size of the basic data unit,

usually a machine word, and z is the number of words in the representation of N ,

X and Y .

Algorithm 9.12: Montgomery Multiplication
Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b,

N = (nz−1, . . . , n1, n0)b, R = bz with gcd(N, b) = 1, and N ′ = −N−1

mod b
Output: A = XY R−1 mod N

A← 0 (Notation A = (az, az−1, . . . , a1, a0)b.)

for i = 0 to z − 1 do
ui ← (a0 + xiy0)N ′ mod b
A← (A + xiY + uiN)/b

end

if A ≥ N then A← A−N

return A

Montgomery multiplication does not return the simple product of X and Y mod-

ulo N . The algorithm actually returns XY R−1 mod N , where R−1 mod N is intro-

duced by the algorithm (R = bz). In order to use Montgomery multiplication X and

Y need to be converted to their Montgomery representation, i.e. X̃ ← XR mod N

and Ỹ ← Y R mod N . Then, when X̃ and Ỹ are multiplied together using Mont-

gomery multiplication, the result is XY R mod N . This is useful when calculating

numerous multiplications, e.g. an exponentiation, as the input can be changed to

the Montgomery representation and the result of each Montgomery multiplication

will also be in the Montgomery representation.

9.8.1 Side Channel Resistant Algorithms

The Montgomery multiplication is potentially vulnerable to a side channel attack,

since the last step of the algorithm involves a conditional subtraction [60]. This can

potentially be detected by observing the power consumption, where the presence, or

absence, of the last subtraction may be visible. Attacks based on this reduction have

been applied to RSA, as the time taken to calculate an exponentiation Md mod q

is proportional to how close M is to q.
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As M increases the number of extra reductions in a modular exponentiation

increases, that need to be performed as part of an RSA. At exact multiples of p or

q the number of extra reductions drops dramatically, providing information on the

factors of N .

A simple modification can be made to the algorithm to remove this side channel,

namely to always calculate the extra reduction, as shown in Algorithm 9.13. In the

case where A < M , the value of B will not contain any useful information, but an

attacker will not know which value has been returned.

Algorithm 9.13: Time Constant Montgomery Multiplication
Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b,

N = (nz−1, . . . , n1, m0)b, R = bz with gcd(N, b) = 1, and
N ′ = −N−1 mod b

Output: A = xyR−1 mod m

A← 0 (Notation A = (az, az−1, . . . , a1, a0)b.)

for i = 0 to z − 1 do
ui ← (a0 + xiy0)N ′ mod b
A← (A + xiY + uiN)/b

end

B ← A−N

if A ≥ N then
return B

else
return A

end

However, this is potentially vulnerable to a fault attack, as described in Sec-

tion 9.6.3, where a fault is injected into the last subtraction. If this changes the

result then the reduction has been used. A similar attack to that proposed in [57]

can therefore be derived from this observation.

In [46, 107, 108] it is pointed out that the final modular subtraction can be omit-

ted, as even without this subtraction, the output of a Montgomery multiplication

will be less than 2N . Furthermore, if both input values, i.e. X and Y , are less than

2N , then the output of the Montgomery multiplication will also be less than 2N . A

series of Montgomery multiplications can therefore take place without any need for

a conditional subtraction at each stage. The final Montgomery multiplication by
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R−1 mod N will produce a result less than N (as shown in [107, 108]). This removes

the side channel without making the algorithm vulnerable to a fault attack. In the

following sections the final conditional subtraction will be included for complete-

ness but is not taken into account when considering the security of Montgomery

multiplication.

9.8.2 Fault Resistant Algorithms

A method of securing modular arithmetic against fault attacks is described in [109],

based on applying a checksum to the input and output variables. This is poten-

tially a more efficient solution than the fault resistant algorithms described in Sec-

tion 9.7.2, as less computation is involved in deriving the checksum than the other

techniques described there.

One of the most natural checksum functions is the modulo operation with respect

to a modulus D. This enables each function being calculated to be verified after

calculation. This is similar to the idea behind Algorithm 9.10, but each modification

of a variable can be checked. The check function is of the form

f(A) = A mod D

where D > 1 and is coprime to 2b, where b is the word size of the processor. If a

step of the algorithm requires the computation of A⊗B mod N , for some function

⊗, then the check function needs to satisfy.

f(A⊗B) = f(A)⊗ f(B)

This typically means that we need to ensure that D divides N , and needs to

be adjusted so that it takes into account the modular reductions. If there are Q

subtractions of N , then the check function can be written as.

f(A⊗B) = f(A)⊗ f(B)− f(Q)× f(N) mod D

which is valid for modular arithmetic functions such as addition, multiplication and

exponentiation; i.e. this could be used to verify all the steps of the calculation of RSA
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using CRT. This method is not secure against all fault attacks, as the checksum is

valid throughout the calculation of A⊗B. In the case of a multiplication, if the loop

terminates early the checksum will be valid, as the number of modular reductions

counted will be correct for the reduced number of iterations.

We next consider a specific example of the check function defined in [109], for

the case where the modulus is set to b− 1. This is more convenient for calculations,

and will allow for more efficient code. This check function is defined as:

f(X) =
k∑

i=0

xi mod (b− 1) = X mod (b− 1),

where X = (xk, . . . , x1, x0)b. This checksum function has the desired property that

any change to the data units of X should result in a different value of f(X). It also

has the following properties:

• f(X) + f(Y ) = f(X + Y ) mod (b− 1),

• f(X) · f(Y ) = f(X · Y ) mod (b− 1),

• f(X/b) = f(X) mod (b− 1), if b divides X.

The security provided by a checksum depends on its size. It is assumed that the

value of b is reasonably large, e.g. a 32-bit word. Smart cards have typically been

based around eight-bit chips, but modern smart cards are starting to use 32-bit

technologies [51, 71], so this is not an unreasonable assumption.

9.8.3 Modified Montgomery Algorithm with Redundancy

Using the checksum function f(X) = X mod (b − 1), a modified Montgomery

algorithm with redundancy is proposed in Algorithm 9.14, where the variables in

bold have been introduced as checksums for redundancy purposes.

One trivial way of adding redundancy is to include a redundant instruction for

each instruction of the algorithm. In the proposed algorithm, redundant code for the

generation of ui is not required, as the same value of ui can be used in the modular

multiplication and the redundant code. This avoids having an extra calculation for

the check function, thereby increasing the efficiency of the algorithm.
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Algorithm 9.14: Montgomery Multiplication with Redundancy
Input: X = (xz−1, . . . , x1, x0)b, X = X mod (b− 1), Y = (yz−1, . . . , y1, y0)b,

Y = Y mod (b− 1), N = (nz−1, . . . , n1, m0)b, N = N mod (b− 1),
R = bz with gcd(N, b) = 1, and N ′ = −N−1 mod b

Output: A = XY R−1 mod N and A

A← 0 (Notation A = (an, an−1, . . . , a1, a0)b.)
A← 0 (Notation A = (a0)b.)

for i = 0 to z − 1 do
ui ← (a0 + xiy0)N ′ mod b
A← (A + xiY + uiN)/b
A← A + uiN mod (b− 1)

end

A← A + XY mod (b− 1)

if A ≥ N then A← A−N mod (b− 1)
if A ≥ N then A← A−N

return A,A

The conditional statement at the end of the algorithm could be a potential

vulnerability. With side channel analysis the decision may be detected, leading to

information leakage about what has been calculated. This can be avoided by always

calculating A − N and deciding which value to return depending on the carry bit

generated by A − N . Detecting this will require a much more subtle side channel

analysis than a näıve implementation, and such an attack could be impossible,

depending on the implementation. A more serious problem could be created by a

fault attack, in which a fault changes the decision taken by the if statement, so that

the algorithm returns the valid pair A−N , A−N instead of A, A or vice versa. It

is for this reason that steps five and six are independent if statements, as two faults

would be required to change both to the false value. However, these steps can be

omitted as described in Section 9.8.1.

Redundancy Verification: During the computation, the integrity of the interme-

diate value A can be verified by checking the relation A ≡ A (mod (b−1)) where A

is the checksum corresponding to A. Such checks can be implemented at any place

in the code. These checks can be part of the method used to decide whether or not

an answer is given. All the algorithms described in this, and subsequent, sections
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assume that the calling function will test the output after the function has returned

its result and checksum. If a random fault occurs in the generation of A, then the

checksum will still be valid with a probability of 1/(b − 1), which is the best that

can be achieved with a checksum of size b− 1.

Security Analysis: Algorithm 9.14 can be shown to provide a robust defence

against fault attacks. The probability of a fault remaining undetected has a prob-

ability of 1/(b− 1) for the majority of the possible faults, where the possible faults

are dictated by the three models presented in Section 5.3. The probability of a

fault remaining undetected is 2/(b − 1) for the specific case where an iteration of

the for loop is omitted. The only major problem is that if X and Y are known,

and (xjY + ujN) ≡ 0 (mod (b − 1)), then it is not possible to detect a fault that

causes A← (A + xiY + uiN)/b to be omitted during computation. This is covered

in more detail in Appendix J.

9.8.4 RSA Computation using CRT with Redundancy

In this section an implementation of the RSA signature generation using CRT with

the redundancy technique given above is described. This involves defining secure

implementations of the basic building blocks for the algorithm, and then showing

how these can be used to give a secure implementation of the RSA signature scheme

using CRT.

Modular Multiplication with Redundancy

To build an RSA implementation using Algorithm 9.14, a modular multiplication

algorithm with redundancy is required to convert values to their Montgomery repre-

sentation. This algorithm is a trivial case of adding redundancy to the conventional

modular multiplication algorithm, as given in Algorithm 9.15.

Note that the if statements at the end of the algorithm involve the same test,

but are repeated. This is to a prevent a fault attack in which an attacker targets

the evaluation of the if function. In this algorithm an attacker would have to target

both if functions for the checksum to remain valid.

This algorithm is secure against a single fault attack, as there is no common
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Algorithm 9.15: Modular Multiplication with Redundancy
Input: X = (xz−1, . . . , x1, x0)b, X = X mod (b− 1), Y = (yz−1, . . . , y1, y0)b,

Y = Y mod (b− 1), N = (nz−1, . . . , n1, m0)b, and
N = N mod (b− 1)

Output: A = XY mod N and A

A← 0
A← 0 (A = (az−1, . . . , a1, a0)b A = (a0)b)
q← 0 (q = (q0)b)

if Y ≥ N then Y ← Y −N mod (b− 1)
if Y ≥ N then Y ← Y −N

A← XY mod (b− 1)

for i = z − 1 to 0 do
A← Ab + xiY mod N
q← xiY div N
A← qN + A mod (b− 1)

end

return A,A

variable between the computation of the output and its redundancy. While the

performance of this algorithm is not good, it is acceptable, as it is only used once for

each exponentiation, i.e. to convert the message to its Montgomery representation.

Another method of calculating this modular multiplication is given in [109].

Montgomery Exponentiation Algorithm with Redundancy

A Montgomery exponentiation algorithm with redundancy is given in Algorithm 9.16.

In this algorithm, the modulus N is assumed to be greater than R/2, which is the

standard case for RSA moduli. Hw(e) is used to denote the Hamming weight of e,

MulModR(X,X, Y,Y, N,N) to denote Algorithm 9.15 (which computes XY mod

N with redundancy). The function MontR∗(X,X, Y,Y, N,N, R, N ′, e) is used to

denote Algorithm 9.14. The additional parameter e is included to provide a trace

mechanism; each execution of MontR∗ will also include the instruction: e← e− 1.

At the beginning of the algorithm e is set to the number of MontR∗ calls that will

take place during the algorithm, and this will be decremented down to zero as the

algorithm executes. If an incorrect number of multiplications has taken place, then

A + e �≡ A (mod (b− 1)) and the checksum returned will be incorrect.
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Algorithm 9.16: Montgomery Exponentiation with Redundancy
Input: N = (nz−1, . . . , n1, n0)b, N = N mod (b− 1), integer 1 ≤ X < N ,

X = X mod (b− 1), e = (ek−1, . . . , e1, e0)2, e = Hw(e) + k + 1,
R = bz with gcd(N, b) = 1, and N ′ = −N−1 mod b

Output: A = Xe mod N and A

A← R mod N
A← b− 1−N mod (b− 1)

(r̃, r̃)←MulModR(R, 1, R, 1, N,N)
(X̃, X̃)←MontR∗(X,X, r̃, r̃, R, N ′, e)

for i = k − 1 to 0 do
(A,A)←MontR∗(A,A, A,A, R, N ′, e)
if ei = 1 then (A,A)←MontR∗(A,A, X̃, X̃, R, N ′, e)

end

(A,A)←MontR∗(A,A, 1, 1, R, N ′, e)

return A,A + e

As Algorithm 9.16 consists of a sequence of calls to Algorithms 9.14 and 9.15,

any data randomisation attack or data reset attack would be detected by these two

algorithms. Opcode modification attacks against Algorithms 9.14 and 9.15 would

also be detected by these algorithms (see Appendix J). Opcode modification attack

on the jumps to the subroutines are protected with the trace mechanism e← e− 1,

as described above.

Algorithm 9.16 is a square and multiply algorithm with a checksum calculation

added, and is not secure against side channel attacks. To address this, other expo-

nentiation techniques can be used (see Section 9.6.1). The redundancy techniques

above can be readily applied to side channel resistant complex algorithms, but for

clarity the simplest case is given in Algorithm 9.16.

RSA Computation with Redundancy

Using the algorithms described above, an RSA computation using the CRT tech-

nique with redundancy is proposed in Algorithm 9.17. Here ModExpR(xy mod m)

denotes Algorithm 9.16 that computes xy mod m. As there are no common vari-

ables in the computation of S and S, this algorithm is secure against a single fault

injection attack, assuming that Algorithm 9.16 is secure. The performance of this
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algorithm is proportional to the performance of the Montgomery multiplication al-

gorithm, as other overheads are negligible in comparison to the basic multiplication

algorithm.

Algorithm 9.17: RSA Computation with Redundancy
Input: M,M = M mod (b− 1), p,p = p mod (b− 1), q,q =

q mod (b− 1), d, v = q−1 mod p,v = v mod (b− 1), (N = p · q)
Output: S and S

(Sp,Sp)←ModExpR(Md mod p)
(Sq,Sq)←ModExpR(Md mod q)
S ← Sq + (Sp − Sq) · v · q
S← Sq + (Sp − Sq) · v · q
return S, S

9.9 Comparing the Fault Protection Methods

Several methods for protecting the calculation of an RSA against fault attacks have

been described. In each case we have considered an attacker that can inject one

fault into the algorithm. The security of these algorithms also needs to be evaluated

against an attacker that can implement multiple faults, as given sufficient equipment,

this should be possible.

Nevertheless, this type of fault injection is very difficult to achieve, as an attacker

needs to be absolutely sure about the effect of the fault and where it needs to be

produced. When a single fault attack is attempted, an attacker will seek a method

of detecting when a fault has occurred in the result or a side channel. The attacker

can then continue until the fault has occurred and been detected. In the case of

two faults, both faults need to be injected at the right points in time in order to

have the desired effect. Until both faults are in the correct positions an attacker will

have no indication that one of the faults is correctly placed, unless this is visible in

a side channel. The use of random delays in the implementation of the algorithm

(as described in Section 7.2) can render this process exceedingly difficult.

In the case of RSA implementations where the modular exponentiation is cal-

culated directly as Md mod N , the only available countermeasure in order to verify
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that the calculation has been completed correctly is to repeat the algorithm or cal-

culate its inverse. This is potentially vulnerable to two faults: one to modify the

algorithm and one to change the evaluation of the redundant function.

In the generation of an RSA signature using CRT (see Algorithm 9.10), a fault

could be induced during the execution of the CRT and then a precisely positioned

second fault used to change the result of the verification stage. However, it may be

necessary to fault several verifications before the attack can be completed. Never-

theless, an attacker only needs to be accurate with the faults used on the verification

stages, as the first fault can occur in numerous places and still provoke the desired

effect.

Algorithms 9.16 and 9.17 can be made secure against this sort of attack, because

it is possible to verify the relationship A ≡ A (mod (b − 1)) at numerous points

during the algorithm. An attacker would therefore need to identify and then inject

a fault at each one of these tests, rendering an attack much more difficult, especially

in the presence of random delays. This would not significantly alter the algorithm’s

performance, as the calculation of a checksum for a given variable is inexpensive

when compared to a single multiplication. If, for example, this condition was veri-

fied after each multiplication, it would be difficult to inject the hundreds of faults

required to fault each test.

It is expected that an implementation based on this countermeasure will be

more efficient than implementations based on infective computing [20, 32, 111],

as demonstrated in Algorithm 9.11, even if the checksum is verified after every

multiplication in the calculation. It has also yet to be proven that these algorithms

are secure against fault attacks, as two of the three algorithms have been subject

to theoretical attacks [106, 110], although mistakes have been found in some of

the attacks [21]. Modular exponentiation algorithms based on infective computing

should be resistant to multiple faults, but the evaluation of these algorithms is

beyond the scope of this thesis.

The real advantage of using Algorithms 9.16 and 9.17 is that they also provide

integrity for the input variables, as each variable can be stored with its checksum.

Any modification of the variable before calculation will be detected in the same
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way as a dynamic fault, which protects against the attacks described in [25, 74, 97].

However, this protection does not extend to the exponents used, so other mecha-

nisms need to be employed to protect against the modification of these variables.

These other mechanisms are needed to prevent attacks based on transient faults in

the private exponent [47, 9]. In Algorithm 9.16 the value of e could be stored with

the exponent, and would therefore act as a checksum. An attacker would therefore

have to modify the exponent so that e remains valid.

9.10 Countermeasures

There are many different countermeasures that need to be applied to an implemen-

tation of RSA in order to achieve a secure solution. These are listed individually

here for clarity.

Variable Randomisation — To defend against Statistical Power Analysis the

randomisation given in Algorithm 9.7 needs to be used. This masks the vari-

ables being used with a small random value. This is analogous to the principles

of data whitening, as described in Section 7.4.

Constant Execution — The most important countermeasure for RSA is that an

attacker should only be able to see a constant pattern of squaring operations

and multiplications in the power consumption. Algorithms 9.5 and 9.8 prevent

this type of attack. Algorithm 9.5 will leak the Hamming weight of the key,

but this will be masked in a real implementation, as this would be combined

with Algorithm 9.7.

Random Delays — These are not directly necessary but can complicate an attack,

as described in Section 7.2, and should be placed at the beginning of each loop

in the exponentiation.

Random Execution — When variables are transferred from one part of the chip

to another, e.g. from NVM to RAM, they need to be transferred in a random

order so as to avoid attacks such as those described in Section 6.3. Attaching

161



a checksum to each variable is also advisable, in order to be able to verify the

integrity of the data once it has been moved.

Fault Resistance — Several methods for providing fault resistance have been de-

scribed in this chapter. In the case where a coprocessor is used, the Algorithm

described in Algorithm 9.11 should be implemented, as this provides more

protection against multiple faults. In the case where the RSA algorithm is

being implemented on a 32-bit chip, the algorithm proposed in Section 9.8.4

can be used. This has the added advantage of naturally providing integrity,

in the form of a checksum, to the input variables when they are moved into

RAM before computation.

However, if the modular exponentiation is being calculated directly, care needs

to be taken to include the randomisation described in Algorithm 9.7. Other-

wise, if an attacker can control the input into an implementation of an RSA

signature scheme, a fault attack could be based around the observation that,

when X and Y are known and (xjY + ujN) ≡ 0 (mod (b − 1)), the algo-

rithm cannot detect an opcode modification attack which skips instruction

A← (A + xiY + uiN)/b in Algorithm 9.14.

9.11 Summary and Conclusions

This chapter provides a description of some of the attacks that can be applied to

implementations of RSA on embedded platforms.

The fault attack described in Section 9.4 is shown to apply to one-bit faults in the

private key used in RSA, and that the version described in [9, 56] cannot be applied

to more than one bit. This observation is novel and is part of the contribution of

this thesis. An alternative fault model is proposed in which the attack is valid, and

another attack described [41] is detailed that allows an attacker to derive information

if more than one bit is modified.

The different methods for computing RSA are described. The algorithms that

can be used to calculate a modular exponentiation are described. The secure al-

gorithm described in Section 9.6.1 (see Algorithm 9.8) is novel, and part of the
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contribution of this thesis. The algorithms that can be used to compute RSA using

the Chinese Remainder Theorem are also described.

The modular multiplication used to compute RSA is often conducted using

Montgomery multiplication. The security issues implied by the use of this algorithm

are described. A novel method of securing Montgomery multiplication against fault

attacks is proposed in Section 9.8, and is part of the contribution of this thesis. An

analysis of the security of this algorithm is given in Appendix J. The application of

this method to provide a fault resistant implementation of RSA is also described.

An implementation of this method is described in Appendix K, and is part of the

contribution of this thesis.
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Chapter 10

Implementations of DSA

The Digital Signature Algorithm (DSA) is used as an alternative to RSA as a

signature scheme, and is described in Section 2.4. This chapter discusses the attacks

that are applicable to DSA when implemented on an embedded platform.

This chapter is relatively brief, as a large portion of the attacks and counter-

measures have already been discussed in Chapter 9; however, use by the algorithm

of a random value adds new vulnerabilities and creates the need for corresponding

countermeasures. The application of power analysis to DSA is briefly discussed

in Section 10.1. A fault attack that relies on modifying the secret key is given in

Section 10.2, and an attack based on modifying the random value used in DSA is

described in Section 10.3. This is followed by a discussion of the countermeasures

that can be applied to protect the generation of the random value in Section 10.4.

Some of the work in this chapter has previously been published in [76].

10.1 Power Attacks on DSA

Applying power analysis to an implementation of DSA is similar in nature to the

attacks on RSA (see Sections 9.1 and 9.2). The target of a power attack against DSA

will typically be the value of the random value k generated during the calculation

of a signature. If this value is known, the private key can be calculated from the

public information.

A statistical power analysis of DSA will function in the same manner as described

for RSA in Section 9.2, as the first calculation conducted with k is the computation
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of gk mod p, i.e. a modular exponentiation. The Simple Power Analysis of DSA will

be similar in that an attacker will seek to determine the bits of k by analysing this

modular exponentiation.

10.2 Faults in the Private Key

An attack is described in [9] in which the value of the private key used in DSA (α) is

altered during the calculation of s. As in the other fault attacks we have described,

it is assumed that the i-th bit is flipped, i.e.

α′ =

{
α + 2i if the i-th bit of α = 0,
α− 2i if the i-th bit of α = 1.

which, in turn, gives,

r =
(
gk mod p

)
mod q, and

s′ =
h(m) + rα′

k
mod q.

Using the values for r and u′ = s′−1 mod q an attacker can calculate:

T = gu′h(m) mod qyu′(h(m)+αr) mod q

=
(
gu′(h(m)+αr) mod q mod p

)
mod q

If we let Ri =
(
gu′r2i mod q mod p

)
mod q for all possible values of i, then we

have

TRi =
(
gu′(h(m)+r(α+2i)) mod q mod p

)
mod q

T

Ri
=

(
gu′(h(m)+r(α−2i)) mod q mod p

)
mod q

which can be simplified, to give,

(r mod p) mod q ≡
{

TRi if the i-th bit of s = 0
T
Ri

if the i-th bit of s = 1

where TRi and T/Ri can be precalculated for all possible values of i.

This attack has the same complexity as the attack described for RSA in Sec-

tion 9.4. In [9] it is suggested that this attack will be applicable to faults on more
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than one bit. However, faults on multiple bits will not necessarily be uniquely de-

termined, following the reasoning presented in Section 9.4. In order to apply a

multiple bit attack, an attacker needs to know exactly which bits are being affected

by a fault, or find a fault that will only set bits to a fixed value.

As described in Section 9.4, another possible attack would be to analyse the

integer value of the fault induced on a byte of the private key. This attack is

described in detail in [41].

10.3 Faults in the Nonce

A fault applied to a nonce k can allow the lattice attacks of [50, 82] on El Gamal

type signature schemes to be applied to DSA. If a few bits of the corresponding k

are known for many DSA signatures, such attacks can recover the private key. The

resetting data fault model given in Section 5.3 allows an attacker to set an arbitrary

amount of data to its uninitialised state, which is ideal for the attacks proposed

in [50, 82]. The attack described in this section was published in [76], and was

developed and characterised by Phong Q. Nguyen. It is included here to provide

the theory behind the implementation described in Appendix L.

Roughly speaking, lattice attacks focus on the linear part of DSA, that is, they

exploit the congruence s ← SHA-1(m)+αr
k mod q used in the signature generation.

When no information on k is available this reveals nothing, but if partial information

is available each congruence discloses some information about the private key α. If

a sufficient number of signatures are collected, this can be used to recover α. If �

bits of k are known for each of a number of signatures, we expect that about 160/�

signatures will suffice to recover α.

The attack is described below. For a rational number z and m ≥ 1, we denote

by �z�m the unique integer a, 0 ≤ a ≤ m − 1, such that a ≡ z (mod m) (provided

that the denominator of z is coprime with regard to m). The operator |.|q is defined

as |z|q = minb∈Z |z − bq| for any real z.

Assume that we know the � least significant bits of a nonce k ∈ {0, . . . , q − 1}
which will be used to generate a DSA signature (for an analysis of the case where

166



the attacker knows other bits, e.g. the most significant bits or bits in the middle

of k, see [82]). That is, we are given an integer a such that 0 ≤ a ≤ 2� − 1 and

k − a = 2�b for some integer b ≥ 0. Given a message m (whose SHA-1 hash is h)

signed using the nonce k, the congruence

αr ≡ sk − h (mod q),

can be rewritten for s �= 0 as:

αr2−�s−1 ≡ (a− s−1h)2−� + b (mod q).

If we define t and u as

t =
⌊
2−�rs−1

⌋
q
,

u =
⌊
2−�(a− s−1h)

⌋
q

then both values can be readily computed by the attacker from the publicly known

information, as b is in the range 0 ≤ b ≤ q/2�. This gives

0 ≤ �αt− u�q <
q

2�
.

which can be rewritten as

|αt− u− q/2�+1|q ≤ q

2�+1
.

The attacker therefore knows an integer t and a rational number v = u + q/2�+1

such that:

|αt− v|q ≤ q

2�+1
.

This gives an approximation to αt mod q. If this is repeated for many signatures,

an attacker can create d DSA signatures (ri, si), with corresponding message hashes

hi (where 1 ≤ i ≤ d) where the � least significant bits of the corresponding nonce

ki are known. The attacker can then calculate integers ti and rational numbers vi

such that:
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|αti − vi|q ≤ q

2�+1
.

Using this information to recover the DSA private key α is very similar to the so-

called hidden number problem introduced in [24]. In [24, 82], the problem is solved

by transforming it into a lattice closest vector problem. More precisely, consider the

(d + 1)-dimensional lattice L spanned by the rows of the following matrix:

⎛⎜⎜⎜⎜⎜⎜⎝
q 0 · · · 0 0

0 q
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 q 0
t1 . . . . . . td 1/2�+1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The inequality |vi − αti|q ≤ q/2�+1 implies the existence of an integer ci such

that:

|vi − αti − qci| ≤ q/2�+1.

Note that the row vector �c = (αt1+qc1, . . . , αtd+qcd, α/2�+1) belongs to L, since

it can be obtained by multiplying the last row vector by α and then subtracting

appropriate multiples of the first d row vectors. The last coordinate of this vector

discloses the hidden number α. The hidden vector, �c, is very close to the (publicly

known) row vector �v = (v1, . . . , vd, 0). By trying to find the closest vector to �v in

the lattice L, one can thus hope to find the hidden vector �c and therefore the private

key α. The article [82] presents provable attacks of this kind, and explains how the

attack can be extended to bits at other positions.

In the case of bits being reset to an uninitialised state, the previously mentioned

lattice and the target vector �v can be constructed, and an attempt can be made to

solve the closest vector problem with respect to �v. This can be achieved using an

embedding technique that heuristically reduces the lattice closest vector problem to

the shortest vector problem, as described in [82]. For each close vector candidate,

a candidate y for α can be derived from its last coordinate that can be evaluated

using the public key to see whether the candidate satisfies β = gy mod p.
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To estimate more precisely the efficiency of the lattice attack, the success rates

were computed by running the attack 100 times with different parameters. These

results are given in Table 10.1. The number of signatures is small, and the lattice

dimension is therefore also relatively small, which makes the running time of the

lattice attack negligible. For example, on an Apple PowerBook G4, the lattice attack

takes about 1 second for 25 signatures, and 20 seconds for 38 signatures.

Table 10.1: Experimental attack percentage success rates: n is the number of bytes
reset in k, and d is the number of signatures.

Number d of Signatures
n ↓ 2 3 4 5 6 7 8 10 11 12 22 23 24 25 26 27

1 0 10 39 63 87 100
2 0 69 100
3 0 69 100
4 0 100
5 0 2 100
6 0 100
7 0 96 100

10 6 100
11 100

Table 10.1 shows how many signatures are required to make the lattice attack

work, depending on the number of least significant bytes reset in k. Naturally,

there will be a trade-off between the fault injection and the lattice reduction: when

generating signatures with nonces with more reset bytes, the lattice phase of the

attack will require less signatures. When only one signature is available, the lattice

attack cannot work because there is not enough information in the single available

congruence. However, if a signature is generated using a value of k for which a

large proportion of its bytes are set to zero, it might be possible to compute k by

exhaustive search (using the congruence r ← (
gk mod p

)
mod q), and then recover

α. From Table 10.1, we see that, when two signatures are available, the lattice

attack starts working when 11 bytes are reset in each k. When only one byte is

reset in k, the lattice attack starts working (with non-negligible probability) with

23 signatures.

It should be stressed that the lattice attack does not tolerate mistakes. For

instance, 27 signatures with a single byte reset in k are enough to conduct the attack,
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but the attack will not work if one of the signatures is not generated using a value for

k where no bytes were reset. It is therefore important that the signatures input to

the lattice attack satisfy the assumption about the number of bytes that have been

reset. Hence, if one is able to obtain many signatures such that the corresponding

value of k is expected (but not necessarily all the time) to have a certain number

of reset bytes, then one should not input all the signatures to the lattice attack.

Instead, one should pick at random a certain number of signatures from the whole

set of available signatures, and launch the lattice attack on this subset of signatures:

Table 10.1 can be used to select the minimal number of signatures that will make

the lattice attack successful. This leads to a combination of exhaustive search and

lattice reduction. An implementation of this attack is described in Appendix L.

10.4 Countermeasures

The countermeasures that can be used to protect implementations of DSA are equiv-

alent to the countermeasures used for RSA. The discussion of modular exponenti-

ation methods is directly applicable to the treatment of the random value k, and

the same conclusions regarding the countermeasures can be drawn. The arguments

concerning the use of fault resistant Montgomery multiplication described in Sec-

tion 9.8 are also directly applicable to DSA. The same list of countermeasures can

therefore be used. However, it is also necessary to protect the generation of the

value k against fault attacks, to prevent the attack described in Section 10.3. Un-

like the case of fault attacks on RSA signatures using CRT [23] (see Section 9.3),

the faulty DSA signatures generated by this attack will pass a verification process,

so it is necessary to protect the generation of k itself. Some possible methods of

achieving this are as follows.

Checksums — The checksum function described in Section 9.8 can be applied to

k once it is generated. This will protect subsequent manipulations of k but

cannot protect the generation of k.

Execution Randomisation — As described in Section 7.2, if the order in which

an algorithm is processed is randomised it becomes difficult to predict what
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the machine is doing at any given clock cycle. This can be applied to the

generation of k, and will be very effective in preventing the attack described

in Section 10.3. This is because the attack is only possible when the bits set

to a fixed value are known for every signature, as the fault attack does not

allow for noisy data.

Repeated refreshments — k can be protected by generating several nonces and

XORing them with each other, separating each nonce generation from the

previous by a random delay. This forces an attacker to inject multiple faults

at randomly shifting points in time in order to reset specific bits of k.

Testing the Random Value — It may also be possible to provide real time test-

ing of the random numbers being generated by the smart card, such as that

proposed in FIPS140-2 [80]. However, even if this is practical, it may be of

limited use, as successfully attacking k requires very few signatures. Conse-

quently, the attack may well be complete before the modification is detected.

10.5 Summary and Conclusions

This chapter provides a description of some of the attacks that can be applied to an

implementation of DSA. The attack described in Section 10.2 is described in [9]; the

observation that this attack only applies to one-bit faults is novel, and is part of the

contribution of this thesis. The attack described in Section 10.3 was developed and

characterised by Phong Q. Nguyen. However, an implementation of this attack is

presented in Appendix L, and is part of the contribution of this thesis. To the best

of the author’s knowledge, this is the first practical implementation of this attack.
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Chapter 11

Conclusion

This thesis describes the current state-of-the-art in side channel and fault analysis

that can be applied to embedded devices, such as smart cards. The necessary coun-

termeasures are discussed in a general sense. The attacks specific to block ciphers,

RSA, and DSA are then discussed, with a list of countermeasures for each algorithm

that a programmer would need to implement to achieve a secure implementation.

As described in Chapter 2, this thesis only discusses the implementation issues

on embedded platforms. There are other issues concerning the implementation of

cryptographic algorithms, but these issues are beyond the scope of this thesis. This

thesis is concerned with how to securely implement cryptographic algorithms on

embedded platforms, rather than how they are to be used.

11.1 Summary of Contributions

The following summarises the contributions discussed in this thesis.

• An implementation of a key transfer attack specified in Section 6.1 is described

in Appendix C.

• A novel way of applying cache-based side channel analysis to an implementa-

tion of AES on smart cards is given in Section 6.2.

• An implementation of a fault attack that reduces the number of rounds of

a block cipher is discussed in Section 6.4, and the implementation details
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are given in Appendices B and D. These were implemented on a Microchip

Silvercard.

• Random delays can be used to increase the difficulty of implementing an at-

tack. This is described in Section 7.2, along with a method for optimising the

performance and efficiency of this countermeasure. Appendix E shows how

this optimisation was derived, and how this can be applied to random delays

of any length.

• Four novel attacks based on injecting faults into DPA countermeasures are

described in Sections 8.3.2, 8.4.1 and 8.4.2. The implementations of these four

attacks are discussed in Appendices G, H, and I.

• In Section 9.4 the currently accepted specification of a fault attack on the pri-

vate exponent of RSA (when calculated without using the Chinese Remainder

Theorem) was shown to be false when more than one bit of the private expo-

nent is changed. An alternative fault model is proposed in which the attack

is valid.

• A new modular exponentiation algorithm is given in Algorithm 9.8, in Sec-

tion 9.6.1, although this is based on previously published countermeasures.

• A novel method of securing the Montgomery multiplication algorithm against

fault attacks is given in Section 9.8. This includes how the algorithm can be

securely used to calculate a modular exponentiation. An informal analysis of

this suggests that this algorithm is robust against a range of fault attacks.

A description of an implementation of this algorithm on 32-bit chip and the

results of attempting to overcome the countermeasure by injecting fault with

a laser are given in Appendix K.

• An application of a fault attack that fixes certain values of the random value

used in DSA is described in Section 10.3, and an implementation of this attack

is described in Appendix L. This is the first published practical implementa-

tion of an attack of this type.
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• Methods for optimising the calculation of DPA traces are described in Ap-

pendix A.
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Appendix A

Optimising the Differential
Calculation

This appendix is concerned with optimising the calculation required to generate

DPA waveforms, as described in Section 4.3.2. The work described in this section

has been published in [77].

The method typically used to conduct Differential Power Analysis is repeated

here for clarity. DPA can be performed on any algorithm in which an intermediate

operation of the form β = S(α ⊕K) is calculated, where α is known and K is the

key (or some segment of the key). The function S is a non-linear function, usually a

substitution table (referred to as an S-box), which produces an intermediate output

value β.

The process of performing the attack initially involves running the target device

N times with N random plaintext values Pi, where 1 ≤ i ≤ N . The encryption

of the plaintext Pi under the key K to produce the corresponding ciphertext Ci

will result in a power consumption waveforms wi for every i (1 ≤ i ≤ N). These

waveforms are captured with an oscilloscope, and sent to a computer for analysis

and processing.

To find a given partial key (Kj), the output produced from the S-box (�j) when

given Kj and all Pi,j will be used to categorise the power consumption waveforms. A

single output bit b from �j is used for this categorisation. For all possible hypotheses,

i.e. Kj is an integer in the interval [0, 2m − 1], and each partial message Pi,j , b will

classify whether waveform wi is a member of one of two possible sets. The first set
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S0 will contain all the waveforms where b is equal to zero, and the second set S1

will contain all the remaining waveforms, i.e. where the output bit b is equal to one.

For each hypothesis, a differential trace Δn is calculated by finding the average

of each set and then subtracting the resulting values from each other, where all

operations on waveforms are computed in a pointwise fashion.

Δn =

∑
wi∈S0

wi

|S0| −
∑

wi∈S1
wi

|S1|
The DPA waveform with the highest peak will validate a hypothesis for Kj , i.e.

Kj = n corresponds to the Δn featuring a maximum amplitude. For a single DPA

waveform this involves N − 2 additions (as there will be an average of N
2 elements

in each set) to create the differential Δn. Therefore, for all hypotheses, the total

number of operations to calculate all DPA waveforms for one S-box is 2m× (N −2).

A.1 The Global Sum

The simplest optimisation for calculating DPA traces involves the calculation of the

global sum G. This is the summation of all the power consumption waveforms that

have been acquired,

G =
N∑

i=1

wi.

The calculation of the DPA waveform now only involves the summation of a

single set.

Δn =
G−∑

wi∈Sleast
wi

N − |Sleast| −
∑

wi∈Sleast
wi

|Sleast|
where Sleast represents the set with the least number of elements, i.e.

Sleast =

{
S0 when |S0| ≤ |S1|
S1 when |S0| > |S1|

The expected number of additions required to generate Sleast is:
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If, for example, 1000 acquisitions were taken, this would result in an expected

number of additions per hypothesis of 487. This is an improvement over the case

where a set is chosen arbitrarily, when the expected number of additions would be

499 (i.e. N
2 − 1).

The cost of precalculating G for a single hypothesis is obviously not worthwhile.

Note, however, that separate pre-computation of G is not mandatory. The trick

here consists in computing a first hypothesis, just as in the original version of DPA,

and then summing the two resulting average waveforms to get G, thereby allowing

the complexity of the next 2m−1 hypotheses calculations to be reduced at no extra

cost.

In the remainder of this analysis, Sleast will no longer be used. This is because of

the optimisations described in the following sections, where the change in which the

raw data is distributed does not allow this optimisation to be used. In subsequent

sections the differential trace Δn will be calculated by subtracting the average of

the waveforms in either S0 or S1 from G, where the choice between S0 or S1 is

completely arbitrary.

A.2 Formation of Waveform Equivalence Classes

The input to each S-box will consist of partial bits Pi,j of the plaintext Pi and partial

bits Kj of the key K. If we consider Pi,j , there are only 2m possible values which

can enter a given S-box. Therefore, a number of the waveforms will have the same

value for Pi,j , and thus can be treated in the same manner (i.e. they can be divided

into a different set of equivalence classes∗). Wn is defined for �j as:

∗Note the waveforms form an equivalence class for each �j , i.e. for �0 the representative waveforms
will be formed in a particular way, for �1 they will be formed in a different way, etc.
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Wn =
N∑

i=1

χiwi where χi =

{
1 if Pi,j = n

0 otherwise

This will produce 2m representative waveforms from the N acquisitions. The

partitioning of the power traces according to the key hypothesis will result in N/2m

waveforms in each set. Therefore, creating each representative waveform will require
N
2m − 1 additions, and this will be repeated for each of the 2m possible entry values.

The differential trace can therefore be calculated as,

Δn =

∑
Wi∈S0

Wi

|S0| −
∑

Wi∈S1
Wi

|S1|
where S0 and S1 will now contain exactly 2m elements†. The pre-calculation involves

the formation of the representative waveforms Wn and the global sum G. G can be

constructed as a function of Wn:

G =
2m∑
n=1

Wn.

The generation of G will require a further 2m − 1 additions. Generating a

single DPA waveform will require 2m − 1 additions. For all hypotheses, a total of

2m (2m − 1) additions will be required to calculate all the DPA waveforms for one

S-box.

Therefore, the total number of operations that will be incurred in generating all

DPA waveforms is:

Total Calculations = 2m

(
N

2m
− 1

)
+ (2m − 1) + 2m (2m − 1)

= N − 1 + 2m (2m − 1)

where for waveforms W1 to W2m , approximately N
2m − 1 additions will be required

to make up each Wn. An additional 2m−1 summations will be required to form the

global sum G, and 2m−1 additions will be required to generate each DPA waveform,

for the 2m key hypotheses.
†If the case arises where a value for Wn does not occur, this may create a bias. This is the only

situation where |S0| �= 2m or |S1| �= 2m.
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A.3 Combining Waveforms

Pre-calculating certain waveform combinations enables groups of waveforms, that

occur in the same set for one hypothesis, to be recycled in subsequent hypothesis

testing. Since we are dealing with 2m representative waveforms, pre-computing all

possible 2m! waveform combinations is infeasible. Therefore it is proposed that the

waveforms are partitioned into groups of size x, and the different possible combina-

tions for each group are pre-computed.

For example, for x = 2, adjacent waveforms are summed. We define each pair

as the value W2n,2n+1, where n takes the integer values in the interval [0, 2m−1] (i.e.

[0, 2m/2]).

W2n,2n+1 = W2n + W2n+1

The use of the combined waveforms W2n,2n+1 in the evaluation of the set S0,

results in three possible scenarios for each pair:

1. The pair occurs, i.e. W2n + W2n+1 appears in S0. The probability of this

occurring is 1
4 . In this case, one additional summation must be performed.

2. The pair does not appear in S0, i.e. the pair is in G. The probability of this

happening is also 1
4 . In this case, no action is performed.

3. The two waveforms W2n and W2n+1 appear in two separate sets. There is a

higher probability of this happening, i.e. 1
2 . In this case, a single addition is

required.

The expected number of additions per Δn (assuming the global set already

exists), is therefore 3
4 × 2m−1. This is because there are 2m−1 groups of three

elements (W2n,W2n+1 and W2n,2n+1), one of which will be used to add to S0 with

probability 3
4 .

If x = 3 then the following combinations of waveforms will be created from W3n,

W3n+1 and W3n+2:
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W3n,3n+1 = W3n + W3n+1

W3n+1,3n+2 = W3n+1 + W3n+2

W3n,3n+2 = W3n + W3n+2

W3n,3n+1,3n+2 = W3n + W3n+1 + W3n+2

Following the same reasoning as above, the number of additions per Δn is 7
8× 2m

3 .

However, if 2m is not divisible by three, then there will be a set of waveforms (of

size 2m mod 3) that cannot be combined in the same way. These waveforms will

have to be combined separately. The therefore the number of additions per Δn is
7
8 ×

⌊
2m

3

⌋
+ 22m mod 3−1

22m mod 3

For all values of x this can be generalised to:

Additions per Hypothesis =
(

2x − 1
2x

) ⌊
2m

x

⌋
+

22m mod x − 1
22m mod x

This comprises two expressions, as x will not always divide evenly into 2m, which

will leave 2m mod x elements to be grouped together separately (as described above

for the case where x = 3). Note that this is only an approximation for the amount

of additions required for each set. In practice the number of additions involved in

generating Δn will depend on the contents of the set, and whether the pre-computed

combinations appear or not.

The combined waveforms need to be generated before DPA traces can be gener-

ated. This involves generating the 2x−1 combinations necessary for each group of x

waveforms (this is not 2x, as one combination excludes all of the x waveforms). This

will involve 2x−x− 1 additions, as x waveforms already exist and one addition will

be required for each unknown combination. The waveform combinations that are

formed out of more than two waveforms still only require one addition, as they can

be formed from previously computed combinations, e.g. when x = 3, W3n,3n+1,3n+2

can be calculated using W3n,3n+1 and W3n+2. This can be repeated for each of the⌊
2m

x

⌋
groups of size x. The last group that will be present when x does not divide

into 2m will produce a smaller group of containing 2m mod x waveforms, which will

require 22m mod x − (2m mod x) − 1 additions to form its own group, following the
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reasoning above.

Generating Wn and G will involve adding together will require 2m
(

N
2m − 1

)
+

(2m − 1) ≡ N − 1 additions, following the reasoning given in Section A.2. The

amount of pre-calculation involved (incorporating G, Wn and the pre-computed

combinations) is therefore:

Pre-Additions = N − 1 + (2x − x− 1)
⌊

2m

x

⌋
+ 22m mod x − (2m mod x)− 1

The total number of additions required to generate 2m DPA waveforms is:

Total Calculations =2m ×Additions per Hypothesis + Pre-Additions

The memory requirement is a vital factor, as the more pre-computed values that

are required, the more memory they will take up, and the more time it will take to

load these values into memory. In order to balance the time-memory trade off and

achieve the optimal attack, the number of memory that is required for any value of

x needs to be derived.

The amount of waveforms that need to stored in memory for each of the
⌊

2m

x

⌋
groups of x waveforms that are combined is 2x − 1. There will be a further smaller

group of 2m mod x waveforms that is created when x does not divide into 2m, which

will require that a further 22m mod x − 1 waveforms are stored in memory.

Memory Required = (2x − 1)
⌊

2m

x

⌋
+ (22m mod x − 1)

This value gives the number of representative waveforms Wn that need to be

stored in memory. Each point in this waveform will need to be stored in a 32-bit

word so that no information is lost. The value generated will therefore need to be

multiplied by four times the size of one acquisition (assuming that each point of an

acquisition occupies one byte of memory).
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A.4 Chosen Plaintext Differential Power Analysis

The pre-calculations previously made for S-box �j will be redundant for �j+1, as the

power consumption waveforms, when classified according to the partial input Pi,j ,

will fall into different equivalence classes to those that apply for Pi,j+1. Therefore,

for S-box �j+1, regeneration of the representative waveforms will be required.

In classical DPA the message given to the algorithm under attack is random.

However, if plaintexts can be chosen, the precalculated Wi can be used to attack

subsequent S-boxes. The simplest case is where the input to S-box �1 can be made

the same for �1, �2, . . . , �NS
(where NS is the number of S-boxes used in one round of

the algorithm under consideration). For example, suppose we construct the plaintext

so that all plaintext bytes are equal, i.e. byte[1] = byte[2] = . . . = byte[16] in AES.

This means that there are 256 possible values for the plaintext. Calculating the

DPA waveform for the first S-box will calculate the DPA waveform for all others at

the same time, giving sixteen peaks at the points in time at which the sixteen key

bytes are being manipulated. Using this method may not always be advantageous,

as some confusion can arise as to which peak corresponds to which key byte.

A similar approach can be applied to an implementation of DES, where the

plaintext can be generated such that the value Pi,j entered into the even-numbered

S-boxes (�j mod 2=0) are all equal, and the value of Pi,j entered into the odd num-

bered S-boxes (�j mod 2=1) are all equal. All the even numbered S-boxes can use the

same set of data generated during the pre-calculation for the first S-box. The odd

numbered S-boxes also use this data but with a permutation on the value associated

with each representative waveform. This does not affect the quality of the results

produced, as each S-box uses a different permutation. The DPA peak will be at the

same level as if a random plaintext was used.

Note that these optimisations are applicable when the attack is concentrating

on the first round of a block cipher. If the attack focuses on the last round, where

the DPA waveforms are related to the ciphertext, then these optimisations will be

useless as the data cannot be controlled.
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A.5 Optimisation Results

The optimisations are described in terms of performing DPA on DES, where 1000

power consumption acquisitions have been taken. In experiments, this often appears

to be sufficient to determine a relationship between the power consumption and the

data manipulated. It may be necessary to use more acquisitions, or possibly to use

less, but 1000 has usually proven to be a good starting point.

Given N = 1000 power consumption waveforms wi, Table A.1 details the number

of operations that must be performed to generate the differential traces for the key

hypotheses.

Table A.1: Optimisation results

Precalc. Additions per Additions Waveforms Memory
hypothesis per S-box in Megabytes

Theoretical dpa - 998 63872 - -
Optimisation 1:
Global Sum 999 487 32167 1 4
Optimisation 2:
Equivalence Classes 999 31 2983 65 260
Optimisation 3:
2 bits 1031 23.3 2519 96 384
3 bits 1083 18 2235 148 592
4 bits 1175 14.1 2075 240 960
5 bits 1322 11.6 2064 387 1548
6 bits 1580 9.8 2207 645 2580
7 bits 2079 8.4 2619 1144 4576
8 bits 2975 7.0 3421 2040 8160
9 bits 4513 6.5 4928 3578 14312
10 bits 7088 5.9 7468 6153 24612

The more bits that are grouped together, the more memory is required to conduct

the attack. It has been assumed that the power consumption acquisitions consist of

a million points, where each point occupies one byte; therefore each representative

waveform requires the equivalent of four million points, because of the required

increase in variable size.

As shown in Table A.1, the best results for a realistic amount of memory are
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obtained when five bits are grouped together at a time. However, the memory

requirement for this is 1.5 Gigabytes. The amount of additions when three bits are

combined is slightly larger, but requires a much more modest amount of memory.

The optimal location for the storage of the representative waveforms is obviously

in the computer’s RAM. This is because the access times are significantly faster

than those of a hard drive, especially as the amount of data being processed is too

large for the hard drive to store in its cache.

A.6 Remarks

In the example given, the time taken for the processing of all the hypotheses for

one six-bit section of the key is reduced by a factor of thirty. In actuality, this time

will be further decreased, as the acquisitions on the computer’s hard drive are only

accessed during the construction of the representative curves Wn. The rest of the

processing takes place in RAM.

The ideas expressed in Section A.4 have not been discussed in the example, as

the gain for the overall attack depends on how the message can be manipulated.

The gain for an attack where the plaintext can be freely manipulated should reduce

execution time by a factor of approximately sixty.

In this analysis, it is assumed that each power consumption waveform consists

of one million points. In practice this can vary depending on a number of factors,

such as the storage capacity of the oscilloscope, the amount of time spent localising

the S-boxes using Simple Power Analysis, and the algorithm being attacked. In

the case of AES, larger S-boxes are used, and so there will be a greater number

of key hypotheses, which will result in an increase in the number of precomputed

waveforms that need to be stored in RAM. The worst possible scenario is where the

memory requirement becomes unmanageable and pre-computation actually inhibits

the attack. There are two approaches that an attacker can employ to combat this

situation. In the case, where the acquisitions captured are large, the acquisitions

can be split into sections (e.g. each waveform can be divided into two segments),

and the DPA calculation performed on each section and the results concatenated to
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construct the full DPA waveform Alternatively, the formula given for the memory

usage in Section A.3 can be used to determine how much pre-computation is possible

with the memory available, allowing an attacker to achieve the maximum benefit

from the optimisations described.
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Appendix B

Finding Glitch Parameters

Section 5.3 described the effect of a glitch, and showed that a glitch is capable of

modifying both data and code that is being manipulated by a chip. In order to find

a glitch that could be used to inject a fault in a process running on a Microchip

Silvercard, an implementation of AES was used as a fault detection mechanism. Nu-

merous different glitch configurations were applied to a smart card implementation

of AES, using a known key and no effort was made to produce any particular effect.

The glitch configuration was detected by observing when a ciphertext was returned

that did not correspond to the expected ciphertext.

Various different configurations were considered within the functional limits im-

posed by the ISO/IEC standards [52]. The external clock speed was varied between

one and five megahertz in steps of one megahertz. The size of the glitch was varied

between one to ten clock cycles in steps of one clock cycle. The applied voltage

started at three volts, and was incremented in steps of 0.5 volts to five volts. The

250 different combinations of these three parameters were each tested at 200 dif-

ferent positions during the AES computation. Different positions were tested in

order to try to prevent the code being executed by the smart card from affecting

the results.

The voltage level of a glitch that could potentially be used to inject a fault was

determined by finding the limit at which the smart card did not respond correctly.

In smart cards without a glitch sensor (or poorly implemented sensors), the voltage

required to inject a fault should be slightly above the level required to provoke a

reset. This process was automated using the equipment shown in Figure B.1, a
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proprietary smart card reader called a Clio reader. This reader was modified to

inject arbitrary glitches at any given point during a command. This allowed a

program to be developed to entirely automate this process.

Figure B.1: A modified Clio reader.

Upper and lower boundaries were used to determine the magnitude of the voltage

glitch on the Vcc. These were initially set to the voltage applied during the normal

functioning of the smart card and 0.25 volts. The point midway between the two

bounds was selected as the starting point for the voltage applied during the glitch.

When the glitch was applied during the AES computation three different response

could result:

1. The card could complete its calculation without any faults. In this case the

voltage applied during the glitch will need to be lower than this value in order

to achieve an effect, and hence this voltage became the new upper bound.

2. A “Card is Mute” status could be returned, i.e. the card stalls or is reset by

the glitch. In this case the voltage applied during the glitch is known to be

too low to achieve the desired effect, and this voltage became the new lower

bound.
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3. A faulty ciphertext could be returned, with a status word indicating that the

AES enciphering was successful. In this case the configuration that induced

the fault was noted and the next configuration was tested.

If a glitch configuration that can succesfully inject a fault was not found, the ex-

periment was then repeated with modified bounds. The Clio reader used can set a

voltage to an arbitrary level, with an accuracy of ±0.01 volts. When the difference

between the two bounds approached 0.01 volts, any subsequent results would be

meaningless, and so in such a case it was assumed that the current configuration

would not allow a glitch to inject a fault, and the next configuration was tested.

The complete process took approximately 24 hours.

The corrupt responses were used to determine the various glitch configurations

that succeeded in inducing a fault. The voltage applied to the smart card can

be chosen arbitrarily from amongst the configurations that successfully induced a

fault. Of the various different configurations that induced a fault, the smallest

glitch size that created a fault was chosen for future work; this was to give as much

precision as possible for a subsequent fault attack, since a large glitch may affect

numerous processes at once, whereas a small glitch will minimise this possibility. In

the implementation that was tested the smallest glitch size that was found to have

the desired effect had a length of one clock cycle. The voltage applied during the

glitch itself was not deemed to have any importance, as the effect of a particular

glitch voltage was assumed to be variable, given that the chip’s behaviour changes

as it heats up through constant activity.

This process provides a list of possible glitches that could be applied to a Mi-

crochip Silvercard; however, the whole process would need to be repeated in order

to find a glitch that could be applied to another chip.

188



Appendix C

Attacking a Key Transfer

In Section 5.3 faults are described that change the code being executed by a chip.

These faults could force a for loop to be terminated before it has finished all of

its iterations. An example of how this can be used to implement an attack against

DES is described in Section 6.3, and an implementation of this method is described

in this appendix.

If the memory where the result of the XOR between the message block and the

key is to be stored has not previously been used, it has a high chance of being equal

to either 0016 or FF16, depending on the logical representation of the physical state.

If a fault is applied to the for loop, an arbitrary number of bytes can be set to the

empty physical state. In Section 6.3 an attack is described in which one byte is set

to zero, then two, etc., as in Table C.1; this attack was originally proposed in [18].

Table C.1: The Biham–Shamir attack
Input AES Key Output
M → K0 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX → C0

M → K1 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 → C1

M → K2 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00 → C2

M → K3 = XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00 00 → C3

..

.
..
.

..

.
M → K14 = XX XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00 → C14

M → K15 = XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 → C15

Such an attack can be achieved using a total of 15 successful faults. The first

byte of the key can then be found by searching through the 29 possible key values

that could produce C15, i.e. 28 values for XX and 2 possible values for the rest of the

bits depending on the logical representation of the physical state. Once the first key
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byte is known, the second key byte can be found with a further 28 AES executions

using C14. This process can be continued, with 28 AES executions required to

determine each subsequent byte, giving a total of 213 AES executions to derive the

entire key.

The basic attack (where the memory content is set to 0016) was implemented on

an eight-bit smart card microprocessor using a glitch as a fault injector by scanning

the entire loop that copies the key from NVM to a temporary working RAM buffer

at the beginning of an AES execution (just before the XOR with the first subkey).

This produced 127 different faulty ciphertext blocks (whereas 15 different ones were

expected), giving as a result the 22 different keys listed below (in base 16). These

were found by searching though the results in a bytewise fashion.

00000000000000000000000000000000

FE000000000000000000000000000000

FEDC0000000000000000000000000000

FEDCBA00000000000000000000000000

FEDCBA98000000000000000000000000

FEDCBA98760000000000000000000000

FEDCBA98765400000000000000000000

FEDCBA98765432000000000000000000

FEDCBA98765432100000000000000000

FEDCBA98765432100100000000000000

FEDCBA98765432100123000000000000

FEDCBA98765432100123450000000000

FEDCBA98765432100123456700000000

FEDCBA98765432100123456789000000

FEDCBA98765432100123456789ABCDEF

FEDCBA98765432100123456789ABCD00

FEDCBA98765432100123456789ABCDCD

FEDCBA98765432100123456789AB0000

FEDCBA98765432100123456789AB00EF
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FEDCBA98765432100123456789AB00AB

FEDCBA98765432100123456789ABEF00

FEDCBA98765432100123456789AB5300

Desynchronisation effects, and the exhaustive scanning of the copy loop, mean

that unexpected faulty ciphertext blocks were produced. In the set of possible keys

as listed above, there are several possible values for the last two bytes, which makes

the attack slightly more complicated than originally supposed; however, the attack

still remains practical. The correct key was:

FEDCBA98765432100123456789ABCDEF
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Appendix D

Round Reduction of AES

If an attacker can modify the code being executed, as described in Section 5.3, there

are numerous ways in which the number of rounds of a block cipher can be reduced.

In this appendix the various possible faults that can be used to realise such an attack

are discussed, and some experimental results obtained using a Microchip Silvercard

are described. The faults described in the Appendix were induced using a glitch,

derived using the method given in Appendix B.

In general, the implementation of a block cipher in the PIC assembly language

(the Silvercard is based around a PIC16F877), will have the following format.

movlw 0Ah

movwf RoundCounter

RoundLabel

call RoundFunction

decfsz RoundCounter

goto RoundLabel

The RAM variable (RoundCounter) is set to the number of rounds required; in

AES this value is 0A16 in hexadecimal. The round function is executed, which has

been represented here by a call to the function RoundFunction. The RoundCounter

variable is then decremented, and the round is repeated until RoundCounter is equal

to zero, at which point the loop exits. It is this loop that needs to be changed, so

that it exits earlier than expected.
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D.1 The Possible Effects

The target of the fault attack is the decfsz step, which consists of a decrement, a

test, and a conditional jump. The conditional jump involves a jump of one instruc-

tion when the test is positive; otherwise the next instruction is executed. The aim

of the attack is to reduce the algorithm to one round. It is not possible to remove

the first round entirely, as the first conditional test is after the first round has been

executed.

The decfsz instruction can be broken down into three different tasks: a decre-

ment, a test and a modification to the program counter. The first step is therefore:

Decrement task:

RoundCounter := RoundCounter - 1

Three tasks must be performed when a variable in RAM is decremented by one.

All three of these tasks represent a potential target for a fault attack. They are:

1. The transfer of the RAM variable contents to the internal processor accumu-

lator.

2. a decrement of the internal processor accumulator.

3. Transfer of the contents of the internal processor accumulator to RAM.

After the RoundCounter variable has been updated, its content is tested to see

if it equals zero.

Testing task:

If (RoundCounter = 0)

Status := 1

Else

Status := 0

An injected fault could potentially have an effect during two different phases of

the execution of the testing task. These are:
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1. The register content test.

2. The change to the Status variable.

Following the status of the test the program counter (PC) will take one of two

different values, i.e. either zero or one. The jump task will then assign one of two

different values to the program counter∗ (PC).

Jump task:

If (Status = 1)

PC := PC1

Else

PC := PC2

If the Status variable is equal to one, the hardware sets the program counter

to PC1. Otherwise it sets the program counter to PC2. In the case of the decfsz

command, PC1 will be equal to the program counter plus two, and PC2 will be the

program counter plus one. This gives two further potential targets for a fault attack:

1. The Status value test.

2. The modification to the value of PC.

In the case of the PIC16F877 chip, the jump task executes in one clock cycle

when the test is negative, and two when the following instruction is not executed.

The next instruction is a goto that will change the program counter so that the

round function is executed again, which takes two clock cycles to execute. This

means that the target for the attack is three cycles long, where the first two tasks

are present in the decfsz step and the last is in the goto.

D.2 Experimental Results

In order to perform this attack, one of the possible faults described in the previous

section needs to be found within a command that computes AES. An AES com-

putation can easily be detected by monitoring the power consumption of a smart
∗The program counter is a register that contains the address of the next command that will be

executed by the CPU. A jump in memory is achieved by modifying this register.
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card, because the round function will create a pattern that will repeat itself (as

described in Section 4.2). Figure D.1 gives an example of the power consumption

during a command that computes AES. A pattern that repeats itself nine times is

visible, with a tenth pattern that is slightly shorter because of the absence of the

MixColumn function in the last round of AES.

Figure D.1: A power consumption waveform that shows the rounds of AES visible
as a repeating pattern.

This can be used to give the approximate position of the execution of the target

opcode. The more effort that is put into this stage, the quicker the attack can

proceed. I.e. if the functions within the round function can be identified, the number

of positions that need to be tried to get the desired results can be reduced. There is,

however, a lower limit to the amount of positions that will need to be tested, as the

test that will exit the loop could be placed either before or after the MixColumn

function.

In conducting this attack, the simplest case was taken by applying a voltage

glitch, the size of which was determined using the method described in Appendix B,

at what appears to be the middle of the first round, and incrementing the glitch

position in steps of one clock cycle to the middle of the second round. Approximately

48 hours of testing were required to test 9000 different glitch positions. This process

yielded five different positions which caused only one round of AES was computed,

although it was not possible to determine how these relate to the theoretical targets

given above.

If the key can be changed on a test card, the result of one round of AES can
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searched for using the data acquired. This will show when the algorithm has been

reduced to one round. Once the fault position has been found, an identical approach

can be applied to other cards that use the same implementation of AES, i.e. the

same product. This was the case chosen during the experiment described in this

Appendix.

If, however, the key cannot be modified, the I/O channel needs to be acquired

each time the glitch is applied. This can be used to signal when the attack has been

successful, as the time between the command and the response will shorten, since

nine rounds of AES have been removed. An example of this is shown in Figure 6.2,

where the shortening of the command can be seen in the I/O and is confirmed by

the power consumption. This shortening of the command time is only significant

when the status returned by the smart card implies that everything has executed

correctly, and sixteen bytes have been returned. Otherwise it could be confused

with a reset provoked by an overly aggressive glitch.

The five different positions where a glitch had been found to reduce the number of

rounds executed to one, were each used as the basis of an attack for three different

message blocks. Again the voltage level of the glitch was varied, as the glitch

configuration used for the initial search would not necessarily apply, since the chip

will have been heated during the constant activity required by the search. This

resulted in 150 different attempts to reduce AES to one round. All of the responses

were kept for subsequent interpretation with the corresponding messages.

From the 150 glitch attempts made against the Silvercard, a pair of results that

produced a correct key hypothesis was trivial to find, using the method described

in Section 6.4.
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Appendix E

Efficient Use of Random Delays

The use of random delays in embedded software is discussed in Section 7.2. In this

appendix we describe the results from experiments in which the distribution behind

the generation of each random delay was modified.

The lengths of individual software random delays are generally governed by a

uniformly distributed random value. The distribution of the random value could

be modified to improve the properties of the cumulative distribution. This section

defines the design criteria for the modified distribution of random delays, and then

explains how a solution was designed.

E.1 Design Criteria

The ideal criteria for the new distribution would be the following:

1. Random delays should provide greater variation when compared to the same

number of random delays generated using a uniformly distributed random

variable.

2. The overall decrease in performance arising from the inclusion of random de-

lays should be similar or better than if the random delays are generated from

a uniformly distributed random variable. This means that the mean of the

cumulative distribution should be less than, or equal to, the mean of the cu-

mulative uniform distribution.

3. Individual random delays should not make an attack trivial in the event that
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there is only one random delay between the synchronisation point and the

target process.

4. It should be a non-trivial task to derive the distribution of the random delay

used.

These conditions represent the ideal; some compromise will be needed between

the conditions, as the uniform distribution will probably be preferable for criterion 3.

Our main aim in this section is to optimise criteria 1 and 2, since the reverse

engineering of a random delay distribution is rarely conducted (furthermore, it will

be shown that this involves more effort than assuming the distribution is uniform)

and individual efficiency is rarely applicable due to the numerous random delays

used (as described above).

In order to be able to compare different distributions, the mean and the standard

deviation are used to capture the characteristics of the cumulative distribution of

random delays. This was a natural choice, as the cumulative distribution is based

on a binomial distribution, which is the discrete version of a normal distribution

(characterised by the mean and variance). However, the standard deviation was

chosen rather than the variance, as this represents the mean deviation from the

mean.

E.2 Deriving a Suitable Distribution

In order to increase the variation in the cumulative distribution, the probabilities

of the extreme values occurring were increased, i.e. the minimum and maximum

values of one random delay. The formation of a binomial distribution after several

random delays cannot be avoided, as the number of combinations close to the mean

value is far too large. Any modification is also required to be subtle, as one random

delay needs to be able to provide desynchronisation between two sensitive areas

(criterion 2). It was initially assumed that this could be achieved by a distribution

of the form shown in Figure E.1.

To use this probability function in a constrained environment, for example a

smart card, this function will need to be expressed as a table, where the number of
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Figure E.1: An example of a modified probability function.

entries for a given value represents the probability of that value being chosen. A

uniformly distributed random value can then be used to select an entry from this

table. The function that was chosen to govern the amount of entries for each value

of x, where x takes integer values in the interval [0, N ], was:

y = �akx + bkN−x

where a and b represent the values of the probability function when x takes the

values 0 and N respectively, and y governs the number of entries in a table for each

value of x that can be used to represent this function. The sum of y for all values

of x will therefore give the total number of table entries. The variable k governs

the slope of the curve, and can take values in the interval (0, 1). Different values

for a and b are used, so that a bias can be introduced into the sum distribution

to lower the mean delay. The two elements akx and bkN−x are both close to zero

when x ≈ N/2 for the majority of values of k that will be of interest. The ceiling

function is therefore used to provide a minimum number of entries in the table for

each value. This is important, because if values are removed from the distribution it

will decrease the number of values the random delay can take, and therefore reduce

its effect.

The parameters that generate this shape were changed, and the effect on the sum

distribution was tested, in order to search for the best configuration that would sat-

isfy the criteria given above. As given in the example, the length of each individual

random delay can be an integer value in the interval [0, 255].
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For values of a and b that are approximately equal, the change in k will have

an effect on the mean and the standard deviation, as shown in Figure E.2. This

graph was generated by analysing a large number of random values generated by a

random look-up in a table, as described above.

Figure E.2: The mean and the standard deviation against k for approximately equal
values of a and b.

The mean in Figure E.2 is fairly constant for all the values of k tested. The

variance shows an optimal value of k = 0.92. This experiment was repeated for

various different values of a and b and the optimal value for k remained constant.

This value was used to look at the effect of varying b on the mean and the

standard deviation, as shown in Figure E.3. As can be seen, the mean can be

reduced by an asymmetric distribution that favours the lower extreme over the

higher extreme values. The mean shows an almost linear relationship with b, and

the standard deviation has a logarithmic relationship with b. The best configuration

would be to minimise the mean value and maximise the standard deviation. This

is not possible, and a compromise needs to be found between the two. The choice

b = 16 seemed to be a good compromise, and this was used as the basis of further

investigations.

To provide a table that can be efficiently implemented, the number of entries

in the table should be a power of two. A random number generator will provide

a random word, for which the relevant number of bits can be masked off and used

to read the value at the corresponding index of the table in order to dictate the
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Figure E.3: The mean and the standard deviation against b for fixed values of a and
k.

length of each random delay. If the number of entries is not equal to a power of two,

any values generated between the number of entries and the next power of two will

have to be discarded. This testing of values will slow down the process and have a

potentially undesirable effect on the distribution of the random delays, as suitable

random numbers will only be generated with a certain probability.

The parameters that were found to naturally generate a table of 29 entries are

shown in Table E.1. It would be possible to choose some parameters and then

modify the table so that it has 29 entries, but this was deemed overly complicated

as tables with an appropriate number of entries occur naturally. The percentage

changes shown are in comparison to the mean and standard deviation of a uniformly

distributed random delay. The change in the mean and the standard deviation is

not dependent on the number of random delays that are added together, which is

not dependent on the number of random delays that occur.

As can be seen, a large variation is visible in the change in the mean and standard

deviation. It can also be seen that we cannot achieve the best standard deviation

increase and mean decrease at the same time. The designer will have to make a

compromise between maximising the standard deviation and minimising the mean.

Table E.2 shows parameters that naturally generate a table of 210 entries. The

effect of the modified random delays is more pronounced when based on a table of 210

entries, as it is possible to approach the optimal value of 0.92 for k. However, it may
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Table E.1: Parameter Characteristics for Tables of 29 Entries
a b k Mean σ

% decrease % increase
22 13 0.88 13.4 34.5
23 12 0.88 16.3 33.5
23 15 0.87 11.6 35.4
24 11 0.88 19.7 32.1
24 14 0.87 13.4 34.9
25 10 0.88 22.6 30.7
26 6 0.89 32.8 23.5
26 9 0.88 25.6 29.0
26 12 0.87 19.7 32.5
32 8 0.86 31.4 25.8

not be realistic to have a table containing 1024 entries in a constrained environment

such as a smart card, although in modern smart cards the problem of lack of code

memory is beginning to disappear. An example of the effect of using this sort of

method to govern the length of random delays on the cumulative distribution is

shown in Figure 7.3, where a = 26, b = 12 and k = 0.87. As previously, the y-axis

is normalised to show the change in the cumulative distribution. The last graph

shows the cumulative distribution for 10 random delays generated using random

values from the modified distribution, plotted alongside the cumulative distribution

for 10 random delays generated using uniformly distributed random delays. The

differences in the mean and standard deviation can be clearly seen, and the tail

present on the left hand side is much smaller for the cumulative distribution of

random delays governed by random values taken from the modified distribution.

This distribution satisfies criteria 1 and 2 as described in the introduction. It

is unlikely to satisfy criterion 3, as the distribution does have some undesirable

properties. The probability of a 0 being produced by the table is (a + 1)/T , where

T is the number of entries in the table.
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Table E.2: Parameter Characteristics for Tables of 210 Entries
a b k Mean σ

% decrease % increase
33 18 0.94 21.3 39.2
37 14 0.94 32.2 32.7
50 32 0.90 16.2 46.5
53 29 0.90 21.3 44.6
54 28 0.90 23.3 43.6
55 19 0.91 35.8 34.7
56 34 0.89 18.2 46.6
58 32 0.89 21.5 45.3
59 23 0.90 32.3 38.4
60 22 0.90 34.3 36.9

E.3 Reverse Engineering the Distribution

If an attacker knows the distribution of the random delays used, this could poten-

tially be used to increase the speed of an attack, rather then hinder it. However,

situations where this information is useful are likely to be rare. If one random delay

can be isolated, attacks can be designed around the fact that the distribution of the

length of the random delay has been modified. The aim of changing the distribu-

tion is to make an attacker work harder to conduct a side channel or fault attack.

Situations where the modification allows an attacker to increase the efficiency of an

attack are highly undesirable.

E.3.1 Potential Attack Scenarios

In the case of Statistical Power Analysis, an attacker is unlikely to be able to pro-

voke a situation where the desynchronisation present at the point the attacker is

interested in is caused by just one random delay. A suitable target for Statisti-

cal Power Analysis will only arise after several functions have already taken place

within a cryptographic algorithm and, therefore, after several random delays (as

described in Section 7.2). The same argument can be applied to faults injected

within a cryptographic algorithm.

If an attacker synchronises a set of power consumptions at a given point in a
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The cumulative random delay generated by a sequence of random delays generated
from a biased distribution. The number of random delays considered are 1, 2, 3, 4,
and 10, from top left to bottom right. The last graph also shows the distribution of
10 uniformly distributed random delays for comparative purposes.

Figure E.4: The cumulative random delay using a modified distribution.

cryptographic algorithm, then there will only be one random delay between that

point and the following function. There will be a certain number of acquisitions

that remain synchronised because of the use of a modified distribution. In theory

an attacker could take a + 1 times as many acquisitions than would normally be

necessary to conduct a Statistical Power Analysis, and then extract the curves that

remain synchronised to have a large area synchronised at the desired point. However,

this represents much more work than would be required to synchronise before and

after the random delay in question.

The only point where an attacker is able to isolate one random delay is when

attempting to inject a fault into the operating system running on an embedded

device. In Section 7.2, mechanisms for synchronising with events in the operating

system are described, followed by one random delay that hinders attacks on a large

area of the operating system. If a modified distribution is used in this situation,

an attacker could greatly increase the chances of injecting a fault at a desired point

by attacking the point in time that would correspond to the minimum value of the
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random delay. It is therefore of interest to know how to determine the distribution

of a random delay at a given point in a command.

E.3.2 Hypothesis Testing

In order to determine whether the length of a random delay at a certain point in

a command is uniformly distributed or not, a reasonable amount of data would

need to be collected and the lengths of the random delays stored. These values

could then be tested statistically to determine whether or not they correspond to

a uniform distribution or not. This could be done by conducting a χ2 test on the

acquired data. An attacker will most likely be required to measure each delay by

hand, which will be a lengthy and tedious process. It would be possible to develop a

tool for a given chip that would generate this information, but, as soon as the chip

is changed, the tool would need to be updated. This because different chips change

the power consumption in different ways.

This process can be quite complex if hardware random delays are also present.

These normally take the form of randomly inserted clock cycles (where the chip

randomly insert clock cycles where no processing occurs) or an unstable internal

clock. This is likely to add serious complexity to the resynchronisation process.

These effects are ignored in this analysis for simplicity, but would make an attacker

work much harder for the desired information.

It can be shown that the random delay being observed is not based on a uni-

formly distributed random value by using a χ2 test with a null hypothesis that the

random delays are uniformly distributed. In order to conduct this test, the mini-

mum frequency threshold should be around 5(N +1) (a rule of thumb given in [58]).

In the example, given the minimum frequency threshold, 1280 samples would be

required. In practice, far fewer samples are required to consistently provide evi-

dence against the null hypothesis when one of the proposed distributions is used.

However, the attacker cannot trust these results without repeating the test with

independent acquisitions, so the actual amount of data required will probably still

be around 5(N + 1).

Nevertheless, an attacker can base certain attacks on the assumption that the
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length of a random delay may use the modified distribution, and at the same time not

reduce the chances of the attack being successful. For example, an attacker injecting

a fault after one random delay could attack the point in time corresponding to the

minimum length of one random delay, thus maximising the chances of the attack

being successful. If the length of a single random delay is uniformly distributed this

strategy is as good as any other, as the chances of the minimum length occurring

are the same as any other length.

E.4 Remarks

In this appendix we have demonstrated that the standard deviation of cumulative

random delays can be increased by using a specific distribution for each individual

random delay. It has also been shown that the expected amount of time lost due to

random delays can be reduced to minimise the impact of this countermeasure on the

performance of functions they are protecting. Given the heuristic design process,

the solution is not claimed to be optimal, but it appears likely to be close.

The modified distribution presented satisfies all the design criteria given, except

when one random delay is used after a synchronisation point to hinder attacks on the

operating system, as described in Section E.3.1. The strategy for implementing this

countermeasure is therefore to use the uniform distribution where one random delay

is being used to protect the operating system, and to use the modified distribution

where numerous random delays are going to be used.

This represents an unusual situation, where a method of increasing the security

of a process can also reduce the amount of computational time required. Given

the nature of random delays, this increase in efficiency is actually a reduction in the

time lost due to the use of random delays. Typically, in smart card implementations

of cryptographic algorithms the addition of more security features brings about a

reduction in performance.
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Appendix F

Differential Fault Analysis on
DES

In this appendix we describe the results obtained from a practical implementation of

the attack described in Section 8.2, which was conducted against a smart card that

was enciphering the message block 000000000000000016 to produce the ciphertext

block

6FB23EAD0534752B16.

Faults were injected into the fifteenth round producing the ciphertext blocks

EB327EBD0534712B16 and DA8AE85B4C55F35816.

The faulty ciphertext blocks were compared to the correct ciphertext block, as

described in Section 8.2.1, and the key was found after 6.39 × 105 DES executions

from a total of 1.13× 106 possible keys.

The differential R15⊕R′
15 can be calculated by computing the inverse of the final

permutation and taking the first 32 bits of the result. The change in the ciphertext

block between a correct and a faulty ciphertext block can then be observed.

For EB327EBD0534712B16, the inverse final permutation of this gives

456E3CD909EF8D8716.

The last four bytes XORed with the value given by
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6FB23EAD0534752B16

gives

0300000016.

This does not give much information by itself, but if the expansion permutation is

conducted on this, the result is

000620000000000016,

where the input into each S-box is represented by two digits. As can be seen, the

fault changes three bits, creating a differential across two S-boxes. It is interesting

to note that this was caused by two false S-box values, as can be seen if the inverse

P-permutation is conducted on 0300000016 giving 0000801016, where each nibble

represents the differential at the exit of an S-box of the fifteenth round.

The same calculation on DA8AE85B4C55F35816 gives a differential in the S-box

input of

091B35162225191816,

which demonstrates that a differential was created across each S-box. Looking at

the differential on the exit of the S-boxes in the fifteenth round (AA7CA60A16), it can

be seen that the exit value of all the S-boxes were changed.

The breakdown of the key information gained from each faulty ciphertext block

is shown in Table F.1. As can be seen, the first faulty ciphertext block does not

reduce the total keyspace by very much. The second ciphertext block reduces the

size of the keyspace for the last subkey to 217, reducing the complexity of a complete

key search to 226. When combined with the information given by the first ciphertext

block, the size of the keyspace can be reduced to 220, as the hypotheses for the key

bits used before the second and third S-box are reduced to one possible value by

the extra information.
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Table F.1: The breakdown of hypotheses per ciphertext block.
Faulty Ciphertext Differential on Hypotheses Total Subkey

Block S-box entry Derived Hypotheses
EB327EBD0534712B16 0016 64

0616 10
2016 2
0016 64
0016 64
0016 64
0016 64
0016 64 240

DA8AE85B4C55F35816 0916 2
1B16 2
3516 10
1616 8
2216 2
2516 4
1916 6
1816 6 217
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Appendix G

CFA of the First XOR of
DPA-Resistant AES

An implementation of the attack described in Section 8.3.2 is desdescribed in this

appendix. The implementation was conducted under the same conditions as de-

scribed in Appendix C, with two exceptions. Firstly, the implementation used was

DPA resistant; it implemented all the countermeasures described in Section 8.5 ex-

cept for the random delays that were removed for simplicity. Secondly, the timing

of the glitch injection was also fixed, as the random order provided the temporal

variation. The key was known a priori so the dictionary was generated with a com-

puter rather than with the smart card, which took around 4 minutes on a standard

PC.

By conducting faults using glitches on the Vcc for approximately one hour, 118

faulty ciphertext blocks were obtained. Amongst these, 72 unique collisions were

extracted. This provided information of the form shown in Table G.1, which has

been re-ordered for clarity.

Table G.1: Information derived from 72 collisions.

Collision Key Information
0 F11A----------------------------
1 00------00----------------------
2 8E--------21--------------------
3 00--------88--------------------
4 5B----------C7------------------
5 24------------A9----------------
6 00------------88----------------
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7 7D--------------0F--------------
8 9C----------------FF------------
9 AA------------------FA----------
10 14--------------------55--------
11 32------------------------15----
12 E7--------------------------F3--
13 --DF--FD------------------------
14 --B4----------D2----------------
15 --06------------9F--------------
16 --B6--------------------6B------
17 ----7F6E------------------------
18 ----B2--D4----------------------
19 ----82------C6------------------
20 ----4B--------1E----------------
21 ----3E----------94--------------
22 ----79--------------F1----------
23 ----F1------------------1F------
24 ----03----------------------CF--
25 ----D8------------------------05
26 ------8D----D8------------------
27 ------B3--------08--------------
28 ------17------------8E----------
29 ------A9--------------21--------
30 ------C6------------------28----
31 ------2D--------------------F0--
32 ------FD----------------------31
33 --------89----BA----------------
34 --------0D------C1--------------
35 --------2D------E1--------------
36 --------C4----------2A----------
37 --------F2--------------7A------
38 --------1B------------------B1--
39 --------A7--------------------1C
40 ----------AD9E------------------
41 ----------8C----51--------------
42 ----------89------45------------
43 ----------FC--------03----------
44 ----------6D------------F4------
45 ----------DE--------------56----
46 ------------E4F5----------------
47 ------------37----C8------------
48 ------------B0------7C----------
49 ------------76------------CD----
50 ------------C6----------------5F
51 --------------EF----32----------
52 --------------D6--------6D------
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53 --------------CB----------61----
54 --------------87------------1E--
55 ----------------F0E1------------
56 ----------------62--40----------
57 ------------------F2C1----------
58 ------------------9E--BC--------
59 ------------------E1----B4------
60 ------------------19------5D----
61 ------------------58--------2F--
62 ------------------92----------F4
63 --------------------CD--AB------
64 --------------------83----F4----
65 --------------------59------1D--
66 --------------------F3--------A6
67 ----------------------EC9B------
68 ----------------------52----07--
69 ------------------------9A--B8--
70 ------------------------C2----F1
71 ----------------------------1D0C

The information in these 72 collisions was processed in around 10 minutes on a

standard PC to find 31 unique keys, where there are no linear relationships between

any of the keys. These are shown below:

A6487B6A1D0C3F2ED1C0F3E29584B7A6

BA76455423320110EFFECDDCABBA8998

4A1F2C3D4A5B68798697A4B5C2D3E0F1

7D93A0B1C6D7E4F50A1B28394E5A6C7D

D61A29384F5E6D7C8392A1B0C7F1E5F4

D31F2C3D4A5B687986978392C2D3E0F1

E5291A0B7C6D5E4FB08692A4F4C2F1C7

F11F2C3D4A5B68798692A1B5C2D3E0F1

5EB08392E5F4C7D6293D0E1A6D7C4A5E

09E2D1C0B7A695847B6A59483F2E1D0C

7DB18293E4F5C6D7281E2D1B6C7D695F

D31F2C3D4A5B685B869783B5C2D3E0F1
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BA76455423320132C8FECDFBABBA8998

84487B6A1D0C3F09D1C0F3E29584B7A6

2376455423AB0110EFFECDDCABBA3798

5EB08392E5D6C7D629380B1A6D794F5E

A7F2C1D0A72F85946BC449582F3E0D1C

1D487B6A1D953F2E6FC0F35C958409A6

1D487B6A1D953F95D1C0F35C958409A6

A7F2C1D0A72F852F6BC449582F80B31C

D61A2938D65E6D7C8392A1B0C7D6E5F4

BA764554BA320110EFFECDFBABBA8998

BA764554BA320132EFFECDDCABBA8998

D61A2938D65E6D5E8392A1B0C7F1E5F4

5EB083925ED6C7D629380B1A6D7C4F5E

9876455498100410EFFECDDCABBA8C98

A6487B6AA62E3A2ED1C0F3E79584B2A6

96784B5A961E0A1EE1F5C3D7A5B18296

9873455423100110EFFBCDDCABBA8C98

9873455498320110EFFBCDDCABBA8C98

F11A2C3DF17968798697A4B5C2D3E0F1

As 31 hypotheses were produced, this shows that some fault injections have

produced some collisions not related to the key values. However, the number of keys

produced can easily be tested to determine the correct key, requiring 31× 28 ≈ 212

AES executions.

By exhaustive search the correct key information from the previous list is

09E2D1C0B7A695847B6A59483F2E1D0C

masked with the value

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

giving as result the value of the key used

FA112233445566778899AABBCCDDEEFF.
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Appendix H

CFA of the Key Masking of
DPA-Resistant AES

An implementation of the attack described in Section 8.3.2 was tested using exactly

the same conditions as the implementation described in Appendix G. The same

software implementation was run on the same smart card.

The dictionary required for this attack was generated in a matter of minutes on

a standard PC. Unlike the attack described in Appendix G, the dictionary does not

depend on the value of the key used, so the dictionary generated would be valid for

any key value.

After attacking the implementation for approximately one hour, around 60 col-

lisions were generated from faulty ciphertext blocks. These ciphertext blocks, and

the information derived from them, are shown in Table H.1.

Table H.1: Information derived from 60 collisions.

Ciphertext Block Index Key Information
F81E9C53601A9D27BF14A439CFB89329 13 CC
9589F701F254450A95B9ACE3F56CC525 8 77
D5B7691596141F967B8933B3EC19D80E 5 44
FA88725F36EED9A99DA1BC318861F1CA 5 44
0CA8BF1D394DA73B5DB36C03C6F19540 16 FF
7ED1484607BBCF135F90B460DADA1FCD 4 33
A1EDC486CAD6C32EA16DE3CFDD309201 4 33
0CA8BF1D394DA73B5DB36C03C6F19540 16 FF
B2C5E49D5B5AE03478A06D7212151870 16 FF
96FA183C668222C6094A5D5D2791F489 1 FA
15F059E21A7B3C549A3B8A008DBE1092 15 EE
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7F0BC5470530ACEB8FEED67EFB05DE67 12 BB
DCFBF05B975F16C7D9F7AF1D2C7F261D 14 DD
301E921E4DDC1406857EA9085A518668 7 66
06D7E8AD7EF7E3996150365A2BF9F0CC 11 AA
80B7F9B4DDE348C06569A5DCBBD95583 16 FF
30062C6D66449A243C5D8E977DD52877 15 EE
7AA9849D02F539FB45E8AF200EBCD3CA 14 DD
E25DF37A1A72327DF0B850C2ABFEC1E4 13 CC
4EB5A2152C7369137B2F8713051A5685 8 77
CAEB530099B8C71195D8EFA435C8D44B 11 AA
66222AF67A6B9901CBCDA3307AAC000D 5 44
E6C3A6C4A9E166C790A63CE245CEA16F 1 FA
E6CFEBD771ADBC6CF3DAFD3242D629C9 4 33
431DFF0951C5013A00A48C458A3174AB 16 FF
9B676E73FB6FE09199C3926FB260C7E3 12 BB
EC39B70B7EF824DF75F04A7A71497A60 5 44
83215DE1E76D80284614FAC872567D94 6 55
0227F87F6164E5D5658FC2B66C15ED6C 13 CC
CEA80CF8E7B8D19647C0D0A0C6444E1C 10 99
A98BF5AA64719312AB186914246FD798 11 AA
33996299B4A6997066AF8EF3EDDBE249 8 77
A9E394105305283D108CE4A6104E5042 8 77
DC5F1D3F237590837A4E4AE3A6ED839A 9 88
620B8D1257593AB2C5D163AAC07C65E0 10 99
B9E733C89AF5F84D34984412A70C1650 4 33
8C31C9275D27A07992A4806252299A10 8 77
1770FCDC7DA9D70A26071F8D3C2F315E 4 33
79DDB2428F1045946CCBB602C18C72EF 13 CC
AA5CCACBBA4C821D46163E7D29A99CBA 10 99
3EE40ED0F8FA4885FA4E83C679AACDE0 12 BB
1E69C676370BB86D254707D27E6B75EF 16 FF
FF7259BB2952C2E8362BC88257F4FB7A 3 22
DD390F4428D9C7C64DC06A93D04D0E59 14 DD
2BE37107241BFE78C82EECEA2713FAAD 2 11
704EBDB101AC884CB0CF01BC4DE2308E 16 FF
E9F20F24D4A570F57A087CED882D861E 13 CC
EC012644E475C01AF37DD00745EEAEF8 7 66
403FB21648A1A5D85B91069643D38133 16 FF
67D4DF6B38A9300B2F161A63B86442FB 15 EE
5EE7DCD69164B870FDC6EEAC861328C3 4 33
1F1D2DC23B8BED58C26E671ABC973BB4 1 FA
D88983BD1FBEE5808E4A624F37DEF88D 15 EE
87B4D54527B230B351FEEB7EF60DB086 10 99
BEE66E610C45F758EB807993D698A5B7 16 FF
BCFF001FD8876BEF2CBB26895FFA4968 12 BB
7E3C2C98E9B4CE0F0F6C0A6CA82748FD 11 AA
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37BE59099E6F6B12CF3107F853B944A7 3 22
CF9B0E7CB5C86085814F53CACDE04943 1 FA
8F68CEDF861567D593965008B26DED9B 10 99

After acquiring these ciphertext blocks, the a posteriori processing was trivial,

as no incorrect hypotheses were produced by the collisions found. The key can be

seen to be:

FA112233445566778899AABBCCDDEEFF.
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Appendix I

S-Box Modification in
DPA-Resistant DES

In attempting to implement the attacks described in [18], it was observed that when

the duty cycle∗ of the clock given to the smart card was too small, an incorrect

ciphertext block was produced. Further study revealed that if the duty cycle was

below 15%, data written to certain areas of the chip’s memory would be written

incorrectly. This essentially meant that random bytes were written to the correct

memory address, and this was therefore a different fault injection effect to the other

experiments mentioned in this thesis. Once this effect was found it was relatively

trivial to implement fault attacks based on this effect. However, this fault effect

exploits a bug in a particular chip, and is only likely to apply to one chip type.

The attack described in Section 8.4.1 could be implemented against a smart card

using this effect. The attack was conducted with three different message blocks,

followed by a small exhaustive search to find the key. The entire attack took 45

minutes using tools created specifically for this purpose. This was possible because

of the manner in which the fault was injected, but is unlikely to be possible with

other fault injection methods. An attacker cannot always be as certain that a

fault has occurred, as a fault is generally expected to be successful with a certain

probability when it is applied to a chip [22]. In this case the probability of success

was equal to one.

The attack described in Section 8.4.2 was also implemented against the same
∗The duty cycle is the amount of time that a voltage is applied to the clock pin compared to

the time no voltage is applied, e.g. a standard clock will have a duty cycle of 50%.
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chip, as the fault effect discovered was ideal for modifying the S-box values as they

were created. The first attempt at this attack was against a DES implementation

that used data masking and constructed S-boxes in RAM, as described in Section 7.4.

Tools were developed to automate this attack; these tools waited until at least one

differential had been found across each S-box before conducting an exhaustive search

of the hypotheses derived from the fault injection. These tools found the key after

eight minutes.

A second attempt was conducted with the addition of random execution ordering

(see Section 7.3) random delays (in both hardware and software), as described in

Sections 7.2, so that a fault would be produced with a lower probability. The same

tools took 20 minutes to derive the key.

This second attack was easier to implement, as only one fault injection position

was needed to attack a random S-box entry. In the first attack it was necessary to

shift the position of the fault injection for each new fault injection attempt.
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Appendix J

Security Analysis of
Montgomery Multiplication
with Redundancy Check

We present here a security analysis of the Montgomery multiplication algorithm

proposed in Section 9.8.2. The work described in this appendix was conducted by

Khanh Nguyen, but remains unpublished [81].

For clarity, let Ai and Ai respectively be the values of A and A after iteration

i of the loop in step 3 of Algorithm 9.14. First, the completeness of the algorithm

is analysed.

Completeness: Consider the integrity relation

f(A)−A ≡ 0 (mod b− 1)

between A and A. This integrity relation needs to holds at the end of the algorithm,

but not necessarily at every step of the algorithm. After step 2, this function holds

if both A and A are zero. In step 3, at iteration i, we have

f(Ai)−Ai ≡
i∑

j=0

xjY (mod b− 1).

Thus at the end of step 3,
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f(Az−1)−Az−1 ≡
z−1∑
j=0

xjY (mod b− 1)

≡ XY (mod b− 1).

At the end of step 4, we have

f(A)−A ≡ f(Az−1)−Az−1 −XY

≡ XY −XY (mod b− 1)

≡ 0 (mod b− 1).

This establishes the completeness of the algorithm.

To analyse the security of the algorithm, we consider the effects of a single

fault, whose effect will correspond to the data randomisation, data reset or opcode

modification attacks described above.

In the analysis, steps five and six of the algorithm are ignored, as they could be

eliminated using techniques from [46]. It is assumed that N , X and Y are random

and unknown to the adversary. This is the case in RSA implementations using CRT,

or where exponents are multiplied by a small random value before performing the

exponentiation (see Section 9.6.1).

Resistance to Opcode Modification Attacks: An opcode modification attack

allows the adversary to cause the algorithm implementation to skip a number of

operations. Attacks against steps one and two are trivial, and will clearly fail. If

the attack is against step four, it would cause the checksum evaluation to fail, as A

would not be equal to f(A) but to f(A) −∑n−1
i=0 xiY at the end of (the skipped)

step four. The probability of the checksum remaining valid is 1/(b− 1).

If the attack is against step three, the attack could skip a number of iterations

in step three, or skip calls to the instructions 3(a), 3(b) or 3(c) at some iteration

j. Skipping the iteration j would cause the final value of f(A) − A to differ by

xjY mod (b− 1). In this case, the probability that the integrity relation A ≡ A

(mod b− 1) holds is approximately equal to 2/(b− 1), as the checksum will be valid

if either xj or Y are equal to 0 mod (b− 1).

Similarly, skipping either 3(b) or 3(c) would cause A to change by (xjY + ujN)
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and f(A) by −ujN mod (b− 1) respectively. This would cause the checksum eval-

uation to be valid with a probability of 1/(b − 1). Note that when X and Y are

known and (xjY + ujN) ≡ 0 (mod b− 1), the algorithm cannot detect the opcode

modification attack which skips the instruction 3(b).

Resistance to Data Randomisation Attacks: A data randomisation attack

allows an adversary to randomise a variable at a time of the adversary’s choosing.

As there is no common variable used in computing A and A except the ui’s and

i, a single fault injection against any variable, except the ui’s and i, will change

only one of A or A. This would cause the integrity relation A = f(A) to be valid

with a probability of 1/(b− 1), as before. Randomising i would cause the algorithm

to skip some iterations at step three. This is an opcode modification attack and

has been considered above. Randomising variable ui to a random and different

value u′
i at iteration i would cause both Ai and Ai to change after step 3(b) and

3(c). Here Ai = Ai−1 + u′
iN and Ai = (Ai−1 + xiY + u′

iN)/b. As u′
i �= ui, b does

not divide Ai−1 + xiY + u′
iN and thus f(Ai) �= f(Ai−1 + xiY + u′

iN). This gives

f(Ai−1) ≡ Ai−1 +
∑i−1

j=0 xjY (mod b− 1). Hence f(Ai) �≡ f(Ai−1 + xiY + u′
iN) ≡

Ai−1 +
∑i−1

j=0 xjY + xiY + u′
iN ≡ Ai +

∑i
j=0 xjY (mod b − 1). This means the

intermediate state would no longer correspond to that given above at the end of

iteration i, and therefore the checksum evaluation would fail at the end of the

algorithm.

Resistance to Data Reset Attacks: Resetting a random value to its virgin state

causes the variable to change its value by a random quantity. When X, Y and N are

unknown to the adversary, values ui, A and A are also unknown to the adversary

at all stages of the algorithm. A data reset attack against any of them would cause

a similar impact to a data randomisation attack. A data reset attack against b or

b− 1 would cause a division by zero error from the processor.
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Appendix K

Implementation of Montgomery
Multiplication with
Redundancy Check

In order to evaluate the performance of the algorithm proposed in Section 9.8.2,

the standard Montgomery multiplication was implemented on a chip with a MIPS

instruction set, with and without the checksum mechanism. The checksum itself is

the size of one machine word, which, in the case of the MIPS architecture, is a 32-bit

word. In order to be able to give a comparison with existing countermeasures, an

implementation using the sort of multiplication required for the countermeasures

proposed for RSA in [98] was also implemented. This involves calculating XY

mod rN instead of XY mod N , where r is a small random number. The random

value used was assumed to be the same size as the checksum used, i.e. the size of

one machine word.

The functions were written in C, and we used the MIPSsde tool chain to gener-

ate the code loaded into the chip. The code was written to avoid using any of the

standard functions that do not exist in the assembly language to avoid any unnec-

essary function calls. The ALU was known to be able to hold a 64-bit variable, so

variables of this size were freely used in the code.

The calculation of the checksum was optimised to avoid using the modulus func-

tion available in C to calculate the modulo b−1 reduction, i.e. the % operator. This

was because it was assumed that this function call would take a considerable amount

of time using the C libraries, as such a function will be written for parameters of
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any size. A specific solution will typically be considerably faster than a generic one

provided in a C library. This algorithm used to calculate A← A + uiN mod b− 1

is given in Algorithm K.1. Step 3 involves an incrementation to take into account

the case where X = b− 1.

Algorithm K.1: Calculate A← A + uiN mod (b− 1)
Input: A, ui, N
Output: A + uiN mod b− 1

1. X ← (ui ×N) + A

2. X ← X/b + (X mod b)

3. A← (X + 1)/b + (X mod b)

return A

This algorithm is efficient as the functions that divide by the word size can be

implemented in one assembly instruction, and bit shifts of an arbitrary length are

available as one instruction in the MIPS instruction set. Instruction sets will usually

have functions that allow an efficient implementation of this algorithm. The same

is true of the modulo b function, as this is just an AND function to mask off the

lower log2 b bits.

The maximum variable size produced at each stage is given below:

1. (b− 1)(b− 1) + (b− 1) = (b2 − 2b + 1) + (b− 1) = b2 − b

2. (b− 1) + (b− 2) = 2b− 3

3. b− 2

This shows that X needs to be able to contain log2 b2 bits in order to be able to

receive the output of the first step of the equation; so this will need to be taken into

account in any implementation. As the ALU used was known to be of length 64

bits, this was trivial to implement, but would be more problematic in cases where

the ALU is the same size as the machine word size.

The computation times for a variety of different modulus lengths are given in

the table below. The algorithm proposed in [98], and described in Section 9.6.2,
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was also implemented for comparative purposes. The implementation was limited

to a modular multiplication, so this algorithm was reduced to a Montgomery mul-

tiplication with a word size one larger than the implementation using the checksum

algorithm.

The timing figures are given in clock cycles, as this gives an indication of the

speed of the algorithm without being affected by the speed of the clock being used

by the chip. This was measured by incorporating an I/O peak∗ either side of the

relevant code. The communication was then observed during the execution of this

code using a proprietary card reader. The tool used for this observation can give

the number of clock cycles between any two events on the I/O. This is usually used

to debug I/O routines, but for our purposes provided a quick and accurate tool for

measuring algorithm performance.

Table K.1: Speed comparisons.
Modulus Normal Random % Checksum %

Bit Length Implementation Modulus increase increase

256 11233 13945 24.1 12167 8.3
512 41563 46721 12.4 43011 3.5
768 91483 99081 8.3 93491 2.2
1024 156759 166536 6.2 159336 1.6

As can be seen, both types of fault protection have an additional cost in time;

the use of a checksum to protect the Montgomery multiplication is approximately

four times more efficient than using a modulus multiplied by a small random value.

The figures given should not be taken as a reference for the speed of the Mont-

gomery multiplication on a MIPS platform. The code doubtless has room for op-

timisation, especially in an assembly language implementation. It should also be

noted that some of the parameters used in the Montgomery multiplication were de-

clared as constants, which will have been taken into account by the compiler. The

values are therefore given only as an indication of the performance levels of a MIPS

implementation.
∗An I/O peak is a quick transition from 1 to 0 and back again. This is ignored by the card

reader as it will be much shorter than one elementary time unit in the T = 0 and T = 1 protocols,
but can be seen with an oscilloscope or proprietary tools.
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The algorithm implementation was tested by subjecting the chip to a laser shot

during its execution. The chip used was known to be vulnerable to fault injections

by laser†, so a location on the chip’s CPU was readily found that produced a fault

with a high probability. The first attempts targeted the middle of the algorithm

execution to make sure that a fault could be provoked. Once a laser configuration

was found that produced a fault, a more methodical analysis was conducted.

A 512-bit implementation of the Montgomery multiplication with redundancy

was then scanned, starting near the beginning of the multiplication. Two laser

shots were taken at each clock cycle, so that there would be a high probability of

producing a fault, as faults can rarely be produced with a 100% success rate. The

chip was clocked with an external clock so that the best possible coverage of the code

could be achieved. This resulted in 9000 fault attack attempts at 4500 successive

clock cycles, 2521 of which produced erroneous data and 438 produced a “Card

is Mute” status, where the laser provoked a fault that the chip could not recover

from. All of the faulty results produced had an incorrect checksum. This validated

the countermeasures for large changes in the output data. This was considered

adequate, as the 4500 successive clock cycles cover 1.5 loops of the algorithm, so a

fault injection had been attempted at every instruction in the main algorithm loop.

A second series of fault injections was tried at the end to make sure that a

small change in the algorithm could also be detected. The end of the algorithm was

scanned in the same way. The difference here was that the position was decremented

from just after the end of the algorithm. This produced 1300 fault attempts on the

last 650 clock cycles of the algorithm, 309 of which gave corrupted results and a

further 874 resulted in the “Card is Mute” status. The first faults seen were the

algorithm returning zero with the correct checksum; it was assumed that these

faults were affecting the transfer of data from the results buffer to the I/O buffer.

This problem is beyond the scope of this thesis. The next set of faults seen were

modifications in the checksum with the correct answer given, corresponding to the

last two manipulations of the checksum. The rest of the results were modifications
†The chip used was a prototype that was vulnerable to fault attacks; subsequent versions of

this chip have proven to be more robust. This is in no way a negative comment on the MIPS
architecture or smart cards in general.
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in both the result and the checksum, where the fault attacked the last loop in the

algorithm. The faults in this set modified one 32-bit word of the result, then two,

etc. As before, no faulty answer and checksum were found that were valid.

This gives an indication of the effectiveness of fault injection attacks on the

checksum algorithm proposed in Section 9.8. These results are by no means exhaus-

tive and it is not known which model described in Section 5.3 corresponds to the

faults produced.
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Appendix L

Glitching k During DSA
Computations

An implementation of the attack described in Section 10.3 is described below. DSA

was implemented on a chip known to be vulnerable to Vcc glitches. For testing

purposes a separate implementation for the generation of k was also developed.

This attack on DSA proceeds as follows: several DSA signatures are generated

where the random value generated for k has been modified so that a few of the least∗

significant bytes of k are set to zero†. This faulty k will then be used by the card to

generate a (valid) DSA signature. Using lattice reduction, the secret key α can be

recovered from a collection of such signatures (see Section 10.3). In this section each

of the stages in the attack is detailed in turn, showing first how k can be modified

and how this technique can then be applied to a complete implementation.

In DSA a 160-bit nonce is generated and compared to q. If k ≥ q − 1 the nonce

is discarded and a new k is generated. This is done in order to ascertain that k is

drawn uniformly from Zq (assuming that the source used for generating the nonce

is perfect). The code fragment (modified for simplicity) that was used to generate

k is given below:

PutModulusInCopro(PrimeQ);

RandomGeneratorStart();

∗It is also possible to run a similar attack by changing the most significant bytes of k. This is
determined by the implementation.

†It would have also been possible to run a similar attack where these bytes are set to FF16.
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status = 0;

do {

IOpeak();

for (i=0; i<PrimeQ[0]; i++)

{

acCoproMessage[i+1] = ReadRandomByte();

}

IOpeak();

acCoproMessage[0] = PrimeQ[0];

LoadDataToCopro(acCoproMessage);

status = 1;

(j=0; j<(PrimeQ[0]+1); j++)

{

if (acCoproResult[j] != acCoproMessage[j])

status = 0;

}

} while (status == 0);

RandomGeneratorStop();

Note that the IOpeaks‡ featured in the above code were also included in the

implementation of DSA. The purpose of this is to be able to easily identify the code

sections in which a fault can be injected to produce the desired effect. This could

also have been done by Simple Power Analysis (see Section 4.2), but would have

greatly increased the complexity of the task.

The tools used to create the glitches can be seen in Figure L.1. The card reader

is a modified Clio reader, which is a specialised high precision reader that allows

one glitch to be introduced, following an arbitrarily chosen number of clock cycles

after the command is sent to the card. A BNC connector is present on the Clio

reader which allows the I/O to be easily read; another connector produces a signal

‡An I/O peak is a quick transition from 1 to 0 and back again. This is ignored by the card
reader as it will be much shorter than one elementary time unit in the T = 0 and T = 1 protocols,
but can be seen with an oscilloscope or proprietary tools.
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when a glitch is applied (in this case used as a trigger). The power consumption

was measured using a differential probe situated on top of the Clio reader.

Figure L.1: Experimental set up

The command that generated k was attacked in every position between the two

IOpeaks in the code. It was found that the fault did not affect the assignment of k to

the RAM, i.e. the instruction acCoproMessage[i+1] = ReadRandomByte(); which

was always executed correctly. However, it was possible to change the evaluation

of i during the loop. This enabled the number of least significant bytes that were

reset to be chosen arbitrarily. In theory, this would produce the desired fault in

k with probability q/2160, as, if the modified k happens to be larger than q, it is

discarded anyway. In practice the probability of inducing the desired fault is likely

to be lower, as it is unusual for a fault induction method to work correctly every

time.

An evaluation of a position that reset the last two bytes was performed. Out of

2000 attempts, 857 were corrupted. This is significantly less than would be expected,

as the theoretical probability is � 0.77. The practical results were expected to have

a success rate lower than the theory would suggest, due to a slight variation in the

amount of time that the smart card takes to arrive at the position where the data

corruption is performed. There were other positions in the same area that return k

with the same fault but with a lower frequency.

The position found was equated to the generation of k in the command that
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computed the DSA signature. This was done by using the last I/O event at the end

of the command sent as a reference point, and gave a rough position of where the

fault needed to be injected.

As changes in the value of k were not visible in the signature, results would

only be usable with a certain probability. This made the attack more complex, as

the subset signatures having faulty k values had to be guessed from amongst those

acquired.

To be able to identify the correct signatures, the I/O and the power consumption

signals were monitored during the attacks. An example of a trace from such a

monitoring is given in Figure L.2. The object of these acquisitions was to measure

the time T elapsed between the end of the command sent to the card and the

beginning of the calculation of r. This can be seen in the power consumption, as

the chip will require more energy when the cryptographic coprocessor is activated.

Figure L.2: I/O and power consumption (beginning of the trace of the command
used to generate signatures).

If we denote by t the time taken to reach the start of the calculation of r, knowing

that the generated k was smaller that q (i.e. that it was not necessary to restart this

process), then, if T = t we know that the command has executed properly and that

k was picked correctly the first time. If T > t then any fault targeting k would be a
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miss (as k was regenerated given that the value of k originally produced was greater

than q). Signatures resulting from commands that feature such running times can

be discarded as the value of k will not present any exploitable weaknesses. When

T < t we know that the execution of the code generating k has been cut short,

so some of the least significant bytes will be equal to zero. This allows signatures

generated from corrupted k values to be identified a posteriori.

As the position where the fault should be injected was only approximately iden-

tified, glitches were injected in twenty different positions until a position that pro-

duced signatures with the correct characteristics (as described above) was found.

The I/O peaks left in the code were used to confirm these results. Once the cor-

rect position was identified, more attacks were conducted at this position to acquire

a handful of signatures. From 200 acquisitions, 38 signatures where T < t were

extracted.

This interpretation had to be done by a combination of the I/O and the power

consumption, as after the initial calculation involving k the command no longer

takes the same amount of time. This is because 0 < k ≤ q and therefore k does not

have a fixed size; consequently any calculations involving k will not always take the

same amount of time. In particular, the algorithm used to calculate the modular

exponentiation and the modular inverse will not take the same amount of time from

one execution to another. This problem is amplified if random delays are included,

as described in Section 7.2.

The lattice attack described in Section 10.3 was applied to these 38 DSA sig-

natures, using the NTL [99] implementation of the Schnorr–Euchner BKZ Algo-

rithm [96] with block size 20 as the lattice basis reduction algorithm. Out of the 38

signatures, 30 were taken at random to launch the lattice attack, and these turned

out to be enough to disclose the DSA private key α after a few seconds on an Apple

PowerBook G4. 30 signatures were taken as this number should be sufficient to

reveal the private key, and to allow for any signatures in the set of 38 that did not

have the relevant bits set to zero. If the attack had been unsuccessful another subset

of 30 signatures would have been selected and the analysis restarted.
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