299 research outputs found

    Design and Analysis of Opaque Signatures

    Get PDF
    Digital signatures were introduced to guarantee the authenticity and integrity of the underlying messages. A digital signature scheme comprises the key generation, the signature, and the verification algorithms. The key generation algorithm creates the signing and the verifying keys, called also the signer’s private and public keys respectively. The signature algorithm, which is run by the signer, produces a signature on the input message. Finally, the verification algorithm, run by anyone who knows the signer’s public key, checks whether a purported signature on some message is valid or not. The last property, namely the universal verification of digital signatures is undesirable in situations where the signed data is commercially or personally sensitive. Therefore, mechanisms which share most properties with digital signatures except for the universal verification were invented to respond to the aforementioned need; we call such mechanisms “opaque signatures”. In this thesis, we study the signatures where the verification cannot be achieved without the cooperation of a specific entity, namely the signer in case of undeniable signatures, or the confirmer in case of confirmer signatures; we make three main contributions. We first study the relationship between two security properties important for public key encryption, namely data privacy and key privacy. Our study is motivated by the fact that opaque signatures involve always an encryption layer that ensures their opacity. The properties required for this encryption vary according to whether we want to protect the identity (i.e. the key) of the signer or hide the validity of the signature. Therefore, it would be convenient to use existing work about the encryption scheme in order to derive one notion from the other. Next, we delve into the generic constructions of confirmer signatures from basic cryptographic primitives, e.g. digital signatures, encryption, or commitment schemes. In fact, generic constructions give easy-to-understand and easy-to-prove schemes, however, this convenience is often achieved at the expense of efficiency. In this contribution, which constitutes the core of this thesis, we first analyze the already existing constructions; our study concludes that the popular generic constructions of confirmer signatures necessitate strong security assumptions on the building blocks, which impacts negatively the efficiency of the resulting signatures. Next, we show that a small change in these constructionsmakes these assumptions drop drastically, allowing as a result constructions with instantiations that compete with the dedicated realizations of these signatures. Finally, we revisit two early undeniable signatures which were proposed with a conjectural security. We disprove the claimed security of the first scheme, and we provide a fix to it in order to achieve strong security properties. Next, we upgrade the second scheme so that it supports a iii desirable feature, and we provide a formal security treatment of the new scheme: we prove that it is secure assuming new reasonable assumptions on the underlying constituents

    FLBP: A Federated Learning-enabled and Blockchain-supported Privacy-Preserving of Electronic Patient Records for the Internet of Medical Things

    Get PDF
    The evolution of the computing paradigms and the Internet of Medical Things (IoMT) have transfigured the healthcare sector with an alarming rise of privacy issues in healthcare records. The rapid growth of medical data leads to privacy and security concerns to protect the confidentiality and integrity of the data in the feature-loaded infrastructure and applications. Moreover, the sharing of medical records of a patient among hospitals rises security and interoperability issues. This article, therefore, proposes a Federated Learning-and-Blockchain-enabled framework to protect electronic medical records from unauthorized access using a deep learning technique called Artificial Neural Network (ANN) for a collaborative IoMT-Fog-Cloud environment. ANN is used to identify insiders and intruders. An Elliptical Curve Digital Signature (ECDS) algorithm is adopted to devise a secured Blockchain-based validation method. To process the anti-malicious propagation method, a Blockchain-based Health Record Sharing (BHRS) is implemented. In addition, an FL approach is integrated into Blockchain for scalable applications to form a global model without the need of sharing and storing the raw data in the Cloud. The proposed model is evident from the simulations that it improves the operational cost and communication (latency) overhead with a percentage of 85.2% and 62.76%, respectively. The results showcase the utility and efficacy of the proposed model

    Efficient and Provably-secure Certificateless Strong Designated Verifier Signature Scheme without Pairings

    Get PDF
    Strong designated verifier signature (generally abbreviated to SDVS) allows signers to obtain absolute control over who can verify the signature, while only the designated verifier other than anyone else can verify the validity of a SDVS without being able to transfer the conviction. Certificateless PKC has unique advantages comparing with certificate-based cryptosystems and identity-based PKC, without suffering from key escrow. Motivated by these attractive features, we propose a novel efficient CL-SDVS scheme without bilinear pairings or map-to-point hash operations. The proposed scheme achieves all the required security properties including EUF-CMA, non-transferability, strongness and non-delegatability. We also estimate the computational and communication efficiency. The comparison shows that our scheme outperforms all the previous CL-(S)DVS schemes. Furthermore, the crucial security properties of the CL-SDVS scheme are formally proved based on the intractability of SCDH and ECDL assumptions in random oracle model

    A framework for comparing the security of voting schemes

    Get PDF
    We present a new framework to evaluate the security of voting schemes. We utilize the framework to compare a wide range of voting schemes, including practical schemes in realworld use and academic schemes with interesting theoretical properties. In the end we present our results in a neat comparison table. We strive to be unambiguous: we specify our threat model, assumptions and scope, we give definitions to the terms that we use, we explain every conclusion that we draw, and we make an effort to describe complex ideas in as simple terms as possible. We attempt to consolidate all important security properties from literature into a coherent framework. These properties are intended to curtail vote-buying and coercion, promote verifiability and dispute resolution, and prevent denial-of-service attacks. Our framework may be considered novel in that trust assumptions are an output of the framework, not an input. This means that our framework answers questions such as ”how many authorities have to collude in order to violate ballot secrecy in the Finnish paper voting scheme?

    How to Make a Mint: The Cryptography of Anonymous Electronic Cash

    Get PDF

    Cryptography in privacy-preserving applications.

    Get PDF
    Tsang Pak Kong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 95-107).Abstracts in English and Chinese.Abstract --- p.iiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Privacy --- p.1Chapter 1.2 --- Cryptography --- p.5Chapter 1.2.1 --- History of Cryptography --- p.5Chapter 1.2.2 --- Cryptography Today --- p.6Chapter 1.2.3 --- Cryptography For Privacy --- p.7Chapter 1.3 --- Thesis Organization --- p.8Chapter 2 --- Background --- p.10Chapter 2.1 --- Notations --- p.10Chapter 2.2 --- Complexity Theory --- p.11Chapter 2.2.1 --- Order Notation --- p.11Chapter 2.2.2 --- Algorithms and Protocols --- p.11Chapter 2.2.3 --- Relations and Languages --- p.13Chapter 2.3 --- Algebra and Number Theory --- p.14Chapter 2.3.1 --- Groups --- p.14Chapter 2.3.2 --- Intractable Problems --- p.16Chapter 2.4 --- Cryptographic Primitives --- p.18Chapter 2.4.1 --- Public-Key Encryption --- p.18Chapter 2.4.2 --- Identification Protocols --- p.21Chapter 2.4.3 --- Digital Signatures --- p.22Chapter 2.4.4 --- Hash Functions --- p.24Chapter 2.4.5 --- Zero-Knowledge Proof of Knowledge --- p.26Chapter 2.4.6 --- Accumulators --- p.32Chapter 2.4.7 --- Public Key Infrastructure --- p.34Chapter 2.5 --- Zero Knowledge Proof of Knowledge Protocols in Groups of Unknown Order --- p.36Chapter 2.5.1 --- The Algebraic Setting --- p.36Chapter 2.5.2 --- Proving the Knowledge of Several Discrete Logarithms . --- p.37Chapter 2.5.3 --- Proving the Knowledge of a Representation --- p.38Chapter 2.5.4 --- Proving the Knowledge of d Out of n Equalities of Discrete Logarithms --- p.39Chapter 2.6 --- Conclusion --- p.42Chapter 3 --- Related Works --- p.43Chapter 3.1 --- Introduction --- p.43Chapter 3.2 --- Group-Oriented Signatures without Spontaneity and/or Anonymity --- p.44Chapter 3.3 --- SAG Signatures --- p.46Chapter 3.4 --- Conclusion --- p.49Chapter 4 --- Linkable Ring Signatures --- p.50Chapter 4.1 --- Introduction --- p.50Chapter 4.2 --- New Notions --- p.52Chapter 4.2.1 --- Accusatory Linking --- p.52Chapter 4.2.2 --- Non-slanderability --- p.53Chapter 4.2.3 --- Linkability in Threshold Ring Signatures --- p.54Chapter 4.2.4 --- Event-Oriented Linking --- p.55Chapter 4.3 --- Security Model --- p.56Chapter 4.3.1 --- Syntax --- p.56Chapter 4.3.2 --- Notions of Security --- p.58Chapter 4.4 --- Conclusion --- p.63Chapter 5 --- Short Linkable Ring Signatures --- p.64Chapter 5.1 --- Introduction --- p.64Chapter 5.2 --- The Construction --- p.65Chapter 5.3 --- Security Analysis --- p.68Chapter 5.3.1 --- Security Theorems --- p.68Chapter 5.3.2 --- Proofs --- p.68Chapter 5.4 --- Discussion --- p.70Chapter 5.5 --- Conclusion --- p.71Chapter 6 --- Separable Linkable Threshold Ring Signatures --- p.72Chapter 6.1 --- Introduction --- p.72Chapter 6.2 --- The Construction --- p.74Chapter 6.3 --- Security Analysis --- p.76Chapter 6.3.1 --- Security Theorems --- p.76Chapter 6.3.2 --- Proofs --- p.77Chapter 6.4 --- Discussion --- p.79Chapter 6.5 --- Conclusion --- p.80Chapter 7 --- Applications --- p.82Chapter 7.1 --- Offline Anonymous Electronic Cash --- p.83Chapter 7.1.1 --- Introduction --- p.83Chapter 7.1.2 --- Construction --- p.84Chapter 7.2 --- Electronic Voting --- p.85Chapter 7.2.1 --- Introduction --- p.85Chapter 7.2.2 --- Construction . --- p.87Chapter 7.2.3 --- Discussions --- p.88Chapter 7.3 --- Anonymous Attestation --- p.89Chapter 7.3.1 --- Introduction --- p.89Chapter 7.3.2 --- Construction --- p.90Chapter 7.4 --- Conclusion --- p.91Chapter 8 --- Conclusion --- p.92A Paper Derivation --- p.94Bibliography --- p.9

    Individual verifiability in electronic voting

    Get PDF
    This PhD Thesis is the fruit of the job of the author as a researcher at Scytl Secure Electronic Voting, as well as the collaboration with Paz Morillo, from the Department of Applied Mathematics at UPC and Alex Escala, PhD student. In her job at Scytl, the author has participated in several electronic voting projects for national-level binding elections in different countries. The participation of the author covered from the protocol design phase, to the implementation phase by providing support to the development teams. The thesis focuses on studying the mechanisms that can be provided to the voters, in order to examine and verify the processes executed in a remote electronic voting system. This work has been done as part of the tasks of the author at the electronic voting company Scytl. Although this thesis does not talk about system implementations, which are interesting by themselves, it is indeed focused on protocols which have had, or may have, an application in the real world. Therefore, it may surprise the reader by not using state of the art cryptography such as pairings or lattices, which still, although providing very interesting properties, cannot be efficiently implemented and used in a real system. Otherwise, the protocols presented in this thesis use standard and well-known cryptographic primitives, while providing new functionalities that can be applied in nowadays electronic voting systems. The thesis has the following contents: A survey on electronic voting systems which provide voter verification functionalities. Among these systems we can find the one used in the Municipal and Parliamentary Norwegian elections of 2011 and 2013, and the system used in the Australian State of New South Wales for the General State Elections in 2015, in which the author has had an active participation in the design of their electronic voting protocols. A syntax which can be used for modeling electronic voting systems providing voter verifiability. This syntax is focused on systems characterized by the voter confirming the casting of her vote, after verifying some evidences provided by the protocol. Along with this syntax, definitions for the security properties required for such schemes are provided. A description of the electronic voting protocol and system which has been used in 2014 and 2015 elections in the Swiss Canton of Neuchâtel, which has individual verification functionalities, is also provided in this thesis, together with a formal analysis of the security properties of the scheme and further extensions of the protocol. Finally, two new protocols which provide new functionalities respect to those from the state of the art are proposed: A new protocol providing individual verifiability which allows voters to defend against coertion by generating fake proofs, and a protocol which makes a twist to individual verifiability by ensuring that all the processes executed by the voting device and the remote server are correct, without requiring an active verification from the voter. A formal analysis of the security properties of both protocols is provided, together with examples of implementation in real systems.Aquesta tesi és fruit de la feina de l'autora com a personal de recerca a la empresa Scytl Secure Electtronic Voting, així com de la col·laboració amb la Paz Morillo, del departament de matemàtica aplicada a la UPC, i el Alex Escala, estudiant de doctorat. A la feina a Scytl, l'autora ha participat a varis projectes de vot electrònic per a eleccions vinculants a nivell nacional, que s'han efectuat a varis països. La participació de la autora ha cobert tant la fase de disseny del protocol, com la fase de implementació, on ha proveït suport als equips de desenvolupament. La tesi estudia els mecanismes que es poden proporcionar als votants per a poder examinar i verificar els processos que s'executen en sistemes de vot electrònic. Tot i que la tesi no parla de la implementació dels sistemes de vot electrònic, sí que s'enfoca en protocols que han tingut, o poden tenir, una aplicació pràctica actualment. La tesi té els continguts següents: Un estudi en sistemes de vot electrònic que proporcionen funcionalitats per a que els votants verifiquin els processos. Entre aquests sistemes, trobem el que es va utilitzar a les eleccions municipals i parlamentàries a Noruega als anys 2011 i 2013, així com el sistema utilitzat a l'estat Australià de New South Wales, per a les eleccions generals de 2015, sistemes en els que l'autora ha participat directament en el diseny dels seus protocols criptogràfics. La tesi també conté una sintaxi que es pot utilizar per modelar sistemes de vot electrònic que proporcionen verificabilitat individual (on verifica el votant). Aquesta sintaxi s'enfoca en sistemes caracteritzats pel fet de que el votant confirma la emissió del seu vot un cop ha verificat unes evidències sobre ell, proporcionades pel protocol. A més de la sintaxi, es proporcionen definicions de les propietats de seguretat d'aquestts sistemes. La tesi també conté una descripció del sistema i protocol de vot electrònic que s'utilitza al cantó Suís de Neuchâtel a partir del 2014, el qual té funcionalitats per a que els votants verifiquin certs processos del sistema. La tesi a més conté un anàlisi de la seguretat de l'esquema, així com possibles extensions del protocol. Finalment, la tesi inclou dos protocols nous que proporcionen noves característiques i funcionalitats respecte als existents a l'estat de l'art de la tècnica. El primer permet a un votant defendre's de un coaccionador generant proves falses, i el segon fa un canvi de paradigma de la verificabilitat individual, de forma que el votant no ha de verificar certs processos per a saber que s'han efectuant correctament. La tesi inclou un anàlisi formal de les propietats de seguretat dels dos protocols, així com exemples de com podrien ser implementats en un escenari real.Postprint (published version

    Authentication Protocols and Privacy Protection

    Get PDF
    Tato dizertační práce se zabývá kryptografickými prostředky pro autentizaci. Hlavním tématem však nejsou klasické autentizační protokoly, které nabízejí pouze ověření identity, ale tzv. atributové autentizační systémy, pomocí kterých mohou uživatelé prokazovat svoje osobní atributy. Tyto atributy pak mohou představovat jakékoliv osobní informace, např. věk, národnost či místo narození. Atributy mohou být prokazovány anonymně a s podporou mnoha funkcí na ochranu digitální identity. Mezi takové funkce patří např. nespojitelnost autentizačních relací, nesledovatelnost, možnost výběru prokazovaných atributů či efektivní revokace. Atributové autentizační systémy jsou již nyní považovány za nástupce současných systémů v oficiálních strategických plánech USA (NSTIC) či EU (ENISA). Část požadovaných funkcí je již podporována existujícími kryptografickými koncepty jako jsou U-Prove či idemix. V současné době však není známý systém, který by poskytoval všechny potřebné funkce na ochranu digitální identity a zároveň byl prakticky implementovatelný na zařízeních, jako jsou čipové karty. Mezi klíčové slabiny současných systémů patří především chybějící nespojitelnost relací a absence revokace. Není tak možné efektivně zneplatnit zaniklé uživatele, ztracené či ukradené autentizační karty či karty škodlivých uživatelů. Z těchto důvodů je v této práci navrženo kryptografické schéma, které řeší slabiny nalezené při analýze existujících řešení. Výsledné schéma, jehož návrh je založen na ověřených primitivech, jako jsou Σ\Sigma-protokoly pro důkazy znalostí, kryptografické závazky či ověřitelné šifrování, pak podporuje všechny požadované vlastnosti pro ochranu soukromí a digitální identity. Zároveň je však návrh snadno implementovatelný v prostředí smart-karet. Tato práce obsahuje plný kryptografický návrh systému, formální ověření klíčových vlastností, matematický model schématu v programu Mathematica pro ověření funkčnosti a výsledky experimentální implementace v prostředí .NET smart-karet. I přesto, že navrhovaný systém obsahuje podporu všech funkcí na ochranu soukromí, včetně těch, které chybí u existujících systémů, jeho výpočetní složitost zůstává stejná či nižší, doba ověření uživatele je tedy kratší než u existujících systémů. Výsledkem je schéma, které může velmi znatelně zvýšit ochranu soukromí uživatelů při jejich ověřování, především při využití v elektronických dokladech, přístupových systémech či Internetových službách.This dissertation thesis deals with the cryptographic constructions for user authentication. Rather than classical authentication protocols which allow only the identity verification, the attribute authentication systems are the main topic of this thesis. The attribute authentication systems allow users to give proofs about the possession of personal attributes. These attributes can represent any personal information, for example age, nationality or birthplace. The attribute ownership can be proven anonymously and with the support of many features for digital identity protection. These features include, e.g., the unlinkability of verification sessions, untraceability, selective disclosure of attributes or efficient revocation. Currently, the attribute authentication systems are considered to be the successors of existing authentication systems by the official strategies of USA (NSTIC) and EU (ENISA). The necessary features are partially provided by existing cryptographic concepts like U-Prove and idemix. But at this moment, there is no system providing all privacy-enhancing features which is implementable on computationally restricted devices like smart-cards. Among all weaknesses of existing systems, the missing unlinkability of verification sessions and the absence of practical revocation are the most critical ones. Without these features, it is currently impossible to invalidate expired users, lost or stolen authentication cards and cards of malicious users. Therefore, a new cryptographic scheme is proposed in this thesis to fix the weaknesses of existing schemes. The resulting scheme, which is based on established primitives like Σ\Sigma-protocols for proofs of knowledge, cryptographic commitments and verifiable encryption, supports all privacy-enhancing features. At the same time, the scheme is easily implementable on smart-cards. This thesis includes the full cryptographic specification, the formal verification of key properties, the mathematical model for functional verification in Mathematica software and the experimental implementation on .NET smart-cards. Although the scheme supports all privacy-enhancing features which are missing in related work, the computational complexity is the same or lower, thus the time of verification is shorter than in existing systems. With all these features and properties, the resulting scheme can significantly improve the privacy of users during their verification, especially when used in electronic ID systems, access systems or Internet services.

    LiS: Lightweight Signature Schemes for continuous message authentication in cyber-physical systems

    Get PDF
    Agency for Science, Technology and Research (A*STAR) RIE 202
    corecore