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Abstract (Zusammenfassung)

Digital signatures were introduced to guarantee the authenticity and integrity of the underlying
messages. A digital signature scheme comprises the key generation, the signature, and the verifi-
cation algorithms. The key generation algorithm creates the signing and the verifying keys, called
also the signer’s private and public keys respectively. Thesignature algorithm, which is run by the
signer, produces a signature on the input message. Finally,the verification algorithm, run by any-
one who knows the signer’s public key, checks whether a purported signature on some message is
valid or not. The last property, namely the universal verification of digital signatures is undesirable
in situations where the signed data is commercially or personally sensitive. Therefore, mechanisms
which share most properties with digital signatures exceptfor the universal verification were in-
vented to respond to the aforementioned need; we call such mechanisms “opaque signatures”. In
this thesis, we study the signatures where the verification cannot be achieved without the cooper-
ation of a specific entity, namely the signer in case ofundeniable signatures, or the confirmer in
case ofconfirmer signatures; we make three main contributions.

We first study the relationship between two security properties important for public key en-
cryption, namely data privacy and key privacy. Our study is motivated by the fact that opaque
signatures involve always an encryption layer that ensurestheir opacity. The properties required
for this encryption vary according to whether we want to protect the identity (i.e. the key) of the
signer or hide the validity of the signature. Therefore, it would be convenient to use existing work
about the encryption scheme in order to derive one notion from the other.

Next, we delve into the generic constructions of confirmer signatures from basic cryptographic
primitives, e.g. digital signatures, encryption, or commitment schemes. In fact, generic con-
structions give easy-to-understand and easy-to-prove schemes, however, this convenience is of-
ten achieved at the expense of efficiency. In this contribution, which constitutes the core of this
thesis, we first analyze the already existing constructions; our study concludes that the popular
generic constructions of confirmer signatures necessitatestrong security assumptions on the build-
ing blocks, which impacts negatively the efficiency of the resulting signatures. Next, we show that
a small change in these constructions makes these assumptions drop drastically, allowing as a result
constructions with instantiations that compete with the dedicated realizations of these signatures.

Finally, we revisit two early undeniable signatures which were proposed with a conjectural
security. We disprove the claimed security of the first scheme, and we provide a fix to it in order
to achieve strong security properties. Next, we upgrade thesecond scheme so that it supports a
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desirable feature, and we provide a formal security treatment of the new scheme: we prove that it
is secure assuming new reasonable assumptions on the underlying constituents.
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Preface

This thesis presents the ensemble of my PhD results obtainedin the area of “opaque” signatures,
namely [El Aimani & Vergnaud, 2007; El Aimani, 2008, 2009a,b, 2010]1.

A digital signature is a mechanism that captures most properties satisfied by a “traditional”
signature in the paper world. In fact, digital signatures guarantee that the signed message has not
been altered in transit, and that it comes from the source that claims to be its provenance, namely
the signer. More formally, a digital signature consists of three algorithms: (1) the key generation
algorithm which creates the signing and the verifying keys,(2) the signing algorithm which takes
on input the signing key and a message, and outputs a signature on the input message, (3) and
the verification algorithm which checks the validity of an alleged signature on a given message
using the verifying key. An important feature in digital signatures is the universal verification,
i.e. anyone who knows the verifying key, called also the signer’s public key, can verify signatures
issued by this signer. However, such a property can be undesirable in some applications and needs
to be controlled or limited; we talk then about obscure oropaquesignatures. In this document, we
will focus on confirmer and undeniable signatures. Let us then specify the context.

Consider for example the case of inter-organizational electronic messages; signatures on these
messages are indispensable to resolve disputes as they ensure integrity and authenticity of the
underlying messages, however, self-authentication of these signatures will make the messages vul-
nerable to industrial spy or extortionist. Undeniable signatures come to rescue in this situation
as they: (1) cannot be verified without cooperation with the signer via the confirmation/denial
protocols, (2) are non-transferable since a verifier cannot transfer his conviction, to a third party,
about the validity/invalidity of a signature he has just verified, (3) are binding in the sense that a
signer cannot deny a signature he has actually issued. Unfortunately, the very virtue of undeni-
able signatures (verification with only the signer’s help) became their major shortcoming for many
practical applications since absence of the signer obstructs the entire verification process. There-
fore, the concept of undeniable signatures was upgraded to designated confirmer signatures where
the verification isdelegatedto a designated confirmer.

Building complicated systems upon simple and basic primitives is customary in cryptography
as it allows to re-use existing work about the primitives, and it achieves easy-to-understand and

1The works [El Aimani & von zur Gathen, 2007; El Aimani & Raekow, 2009, 2010] are not reported in this
document as they do not accord with the general theme of the thesis.
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easy-to-prove systems. However, monolithic or dedicated schemes better often, in terms of effi-
ciency, those obtained from instantiating generic constructions with concrete primitives. This is
mainly due to the fact that generic constructions cannot in general use the specific properties of
their underlying components in order to optimize the resulting structure. A tantalizing challenge
will be the design of generic constructions of undeniable/confirmer signatures which find practical
instantiations with the popular cryptographic primitives. This is the main purpose of this thesis.

Contributions and organization of the document

Apart from the first chapter on the cryptographic tools that will be used throughout the document,
we can group the contributions of this thesis in the following classes:

1. Public key encryption. In this contribution, detailed in Chapter 2, we study the relationship
between two security notions important for public key encryption, namelydata privacyor
indistinguishability, which refers to the hardness of distinguishing ciphertexts based on the
underlyingdata, andkey privacyor anonymity, which denotes the hardness of distinguishing
ciphertexts based on the underlying(public) key. We also define the anonymity notion for
two popular structures used to build public key encryption schemes, that are key and data
encapsulation mechanisms, and we study similarly the connection between this new notion
and indistinguishability in these mechanisms. Our work wasinspired from a similar work on
undeniable signatures, and it is motivated by the fact that opaque signatures involve always
an encryption layer to ensure their opacity. The propertiesthat this encryption layer should
meet vary according to whether we want to hide the identity ofthe signer or the validity of
the signature. Hence, the need for such a study which specifies easy-to-check properties on
any encryption so that data privacy yields key privacy and vice versa, allowing consequently
to use existing results about the system instead of doing thework from scratch.

2. Generic constructions of confirmer signatures. This contribution constitutes the core of
this thesis, and it is described in Part II. More precisely:

• In Chapter 3, we define the model (syntax of confirmer signatures and security proper-
ties) we adhere to in our work. Moreover, we survey the different generic constructions
of confirmer signatures found in the literature. Most such proposals follow either the
sign-then-encrypt or the commit-then-sign paradigms. We also re-write some of the
security proofs of these constructions so that they stay resilient against some malicious
adversaries, and we provide other proofs which were due to appear in forthcoming
papers of the corresponding authors but were not given so far.

• In Chapter 4, we analyze and improve the confirmer signaturesobtained from the sign-
then-encrypt technique. In a nutshell, this method consists in first producing a digital
signature on the message to be signed, then encrypting the resulting signature. This
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method originally required the constituents, that are the underlying signature and en-
cryption schemes, to meet the highest notions of security. In this chapter, we show
that the requirement on the signature scheme is also necessary for the security of the
construction, whilst the condition on the encryption couldbe weakened. However, we
prove also the necessity of this weakened condition, which translates in excluding a
useful type of encryption. Next, we circumvent this problemby modifying slightly
the paradigm so that it accepts a cheap and useful type of encryption, namely homo-
morphic encryption. We demonstrate the efficiency of the resulting construction by
explicitly describing the confirmation and denial protocols, a task which has not been
addressed in all generic constructions of confirmer signatures which implement the
sign-then-encrypt principle.

• In Chapter 5, we analyze the second popular method used to devise confirmer sig-
natures, namely the commit-then-sign paradigm which consists in first producing a
commitment on the message to be signed, encrypting the string used for the commit-
ment, and finally signing the latter. Similarly to the previous chapter, we show that
the paradigm, when used in its basic form, necessitates a strong encryption which ren-
ders the construction inefficient or accept very limited instantiations. However, a small
change of the basic paradigm makes the assumption on the encryption drop drastically,
allowing as a result many practical instantiations. Finally, we shed light on a sub-
case of the paradigm, that is the encrypt-then-sign paradigm. Such a method provides
very efficient confirmer signatures provided there exist efficient non-interactive vari-
ants of the underlying confirmation protocol; this is not a problem nowadays due to the
progress made recently in this area.

3. Undeniable signatures. This part comprises three chapters namely:

• Chapter 6, where we browse through the different realizations of undeniable signatures.
In fact, while the literature on confirmer signatures was more focused on how to ob-
tain them from basic cryptographic primitives, the literature on undeniable signatures
was very diverse. We chose to give this survey in order to better situate our work on
undeniable signatures that comes in the following two chapters.

• Chapter 7, where we revisit the undeniable signatures of Damgård and Pedersen. These
signatures were proposed in 1996 with a conjectured security that was reported a
decade later in a construction of undeniable signatures following the same spirit. In this
chapter, we disprove the conjectured security of Damgård and Pedersen’s undeniable
signatures, and we propose a repair to the scheme which turnsout to be an instantiation
of the construction proposed earlier in Chapter 4.

• Chapter 8, where we revisit the undeniable signatures of Michels, Petersen, and Horster
that were proposed in 1996, and had also a speculative security. We first modify slightly
these signatures so that they support an additional feature, calledgradual conversion,
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which informally means the possibility of converting a set of undeniable signatures
pertained to a given event to publicly verifiable ones. Next,we formally prove that the
security of our recast rests on new reasonable assumptions that we introduce for the
underlying hash function family.

Before ending this preamble, we wish to alert the reader to the importance of carefully check-
ing the security model in which the systems presented in thisdocument are proclaimed to be
secure/insecure. In fact, security models can differ very slightly in their definitions, but the reper-
cussions of these smallish differences can be huge; a systemsecure in one model can be be totally
broken in another. Also, a security property which is impossible to reach for a scheme in a model
can be easily met in another. This actually reflects one of themain challenges in nowadays cryptog-
raphy: proposing efficient schemes which achieve strong security properties based on the hardness
of well-studied problems .
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Notations

General

|a| absolute value of the real numbera
maxA Exp maximum of the expressionExp when the variableA ranges all the

possible values
minA Exp minimum of the expressionExp when the variableA ranges all the

possible values
log x logarithm ofx with respect to some unspecified base
lnn logarithm ofx in the basee =

∑∞
n=0 1/n!

x← y (for variables2 x, y) assigning the value ofy to x
[a, b] closed interval, i.e. the set of real numbersx in the rangea ≤ x ≤ b
(a, b) open interval, i.e. the set of real numbersx in the rangea < x < b
[[a, b]] the set of integersx in the rangea ≤ x ≤ b
⌊x⌋ floor of the real numberx
a << b a is strictly of smaller order thanb
a >> b a is strictly of larger order thanb

Bit strings

ǫ empty string
a bit complement of the stringa
a‖b concatenation of the stringsa andb
{0, 1}n set ofn-bit strings
{0, 1}∗ set of all finite binary strings

Sets

∅ empty set
#A cardinality of the setA
a ∈ A a is an element of the setA
a /∈ A a is not an element of the setA

2the symbol← has different interpretations according to the context
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A ⊂ B setA is contained in setB
A ⊆ B setA is contained in or equal to setB
A ∪ B union of setsA andB
A ∩ B intersection of setsA andB
A\B difference of setsA andB
A× B Cartesian product of setsA andB
N set of natural numbers
Z set of integers
Q set of rational numbers
R set of real numbers
ZN set of integers moduloN (denoted also the setZ/NZ)
Z×N group of units inZN
Fq finite field of cardinalityq
Fq algebraic closure ofFq
F×q multiplicative group ofFq

Groups

(G,+) groupG is denoted additively
(G, ·) groupG is denoted multiplicatively
0G identity in (G,+)
1G identity in (G, ·)
a−1 inverse of elementa in a group denoted multiplicatively
〈g〉 group generated by the elementg
DLg(y) discrete logarithm of the group elementy in the baseg

Functions

f : A→ B f is function from setA to setB
a 7→ b a is mapped tob (by some function)
f−1 inverse of bijective functionf
poly polynomial function
negl negligible function, i.e. a function of order smaller than the inverse

of any polynomial function

Integers

a rem b remainder of the Euclidian division ofa by b (b 6= 0)
a|b a dividesb
gcd(a, b) greatest common divisor of integersa andb
a = b mod n a is congruent tob modulon

xii



a−1 mod n multiplicative inverse ofa modulon
Φ(n) Euler’s totient function

Events, probabilities, and statistics

¬E complement of eventE
E1 ∧ E2 intersection of eventE1 and eventE2

E1 ∨ E2 union of eventE1 and eventE2

Pr[E] probability of eventE
Pr[E1|E2] probability of eventE1 given eventE2

a← D (for a distributionD) a is sampled from distributionD

a
R←− S (for a finite setS) (denoted alsoa ∈R S) a is selected uniformly at random from setS

Acronyms

ANO anonymity
CCA chosen ciphertext attack
CDCS convertible designated confirmer signature
CDH computational Diffie-Hellman
CMA chosen message attack
CPA chosen plaintext attack
DDH decisional Diffie-Hellman
DEM data encapsulation mechanism
EUF existential unforgeability
FDH full domain hash
GDH gap Diffie-Hellman
HVZK honest verifier zero-knowledge
IND indistinguishability
INV invisibility
KEM key encapsulation mechanism
NIZK non-interactive zero-knowledge
NM non-malleability
OW one wayness
PCA plaintext checking attack
PoK proof of knowledge
PPTM probabilistic polynomial Turing machine
ROM random oracle model
SEUF strong existential unforgeability
SINV strong invisibility
SRSA Strong RSA
WHPOK witness hiding proof of knowledge
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ZK zero-knowledge
ZKIP zero-knowledge interactive proof

Computability

AO A has access to the oracleO
O : a 7−→ b the oracleO getsa as a query and responds withb
a← A(x) A outputs the valuea on inputx
I state information
(P, V )(x) two-party protocol (pair of interactive Turing machines) with com-

mon inputx
P

c−→ V P sendsc to V
P

c←− V P getsc from V

P
PoK←−→ V P andV run the interactive proofPoK
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Chapter 1

The Theory of Cryptography

Abstract. Cryptology evolved from a crossing where branches of mathematics,
computer science, and electrical engineering deposit their contributions, to an au-
tonomic and mature science. In fact, cryptology inherited techniques from various
sciences, successfully reshaped and merged them with new concepts to result in a
self-contained science, capable of constructing and analyzing systems meeting the
imperishable trilogy of requirements: confidentiality, authenticity, and integrity.
In this chapter, we recall aspects of the theory of cryptography that are necessary
for this thesis. We start by reminding some important results from complexity the-
ory, a branch of theoretical computer science where cryptography has scooped up
many concepts. Next, we recite the basic primitives upon which are based more so-
phisticated cryptographic systems. Then, we proceed to thedescription of three of
the theoretical pillars that found modern cryptography, namely reductionist security,
zero knowledge, and bilinear maps.

1.1 Reminders in complexity theory

Complexity theory is a branch of computer science concernedwith the study of fundamental prin-
ciples of computation. It is a vibrant area of research due toits ubiquity in many different fields:
biologists studying models for neuron nets or evolution, electrical engineers developing switching
theory to improve hardware design, mathematicians workingon foundations of logics and arith-
metics, linguists investigating grammars for natural languages, physicists studying the feasibility
of building quantum computers, and of course computer scientists seeking efficient algorithms to
solve important problems.

In this section, we recall some basics of complexity theory.We refer to the book [Papadim-
itriou, 1994] for a comprehensive study of this theory.
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1.1.1 Symbols, alphabets, languages and problems

A symbolis an atomic entity. Examples of frequently used symbols areletters or digits. Astring is
a finite sequence of juxtaposed symbols. The length of a string s is often denoted|s|, and consists
of the number of symbols composing the string. One special string is the string consisting of zero
symbols; it is denotedǫ and is called the empty string. A string is said to be the concatenation of
two stringss andt if it is formed by writings followed byt.

An alphabetis a finite set of symbols. Alanguageis a set of strings of symbols from some
alphabet. For instance, ifΣ is a given alphabet,Σ⋆ denotes the language consisting of all possible
strings composed of symbols inΣ. One alphabet that will occur often in this document is the
alphabet{0, 1}.

A problemis intrinsically associated to a certain question; for example computing the greatest
common divisor of two integers. Once one specifies values forthe input, one obtains aninstance
of the problem to which corresponds some values forming the solutions to the input. Therefore,
if we formulate the possible inputs and outputs of a given problem as strings over some alphabet
Σ, a problem can be viewed as a subset ofΣ⋆ × Σ⋆. In fact, we assume that for every input
questionq ∈ Σ⋆, there exists an output answerr ∈ Σ⋆, for instance we consider “no solution”
also a possible answer. An important category of problems isthat consisting of problems that
accept only two possible answers{“yes”, “no”}, i.e. the so-calleddecision problems. We can
simplify the representation of decision problems by considering only the “language” consisting
of questions that have “yes”-answers. We say that a system, e.g. computer, decides a decision
problem if it identifies successfully the positive instances, i.e. the questions having “yes”-answers.
Finally, decision problems arise very often in complexity theory, and one is especially interested
in knowing whether a given decision problem can be decided bysome computer or not. To answer
such a question, one needs to introduce a formal and universal model of computer.

1.1.2 Computability & Turing machines

A computationis informally speaking a process by which one obtains an answer to a certain ques-
tion. A computation requires a system which performs the computation. This system or “com-
puter” will move from an initial state, which is independentof the question, to a final state where
it outputs the answer, if any. A fundamental problem has beenthe universalization of the compu-
tation model. i.e. provide a model for every “computable” function that computes an answer (if it
exists) to any question from the set of possible questions. The non-trivial part of this task lies in
having to define a model of a “computer”, restricted by known physical laws, to perform any kind
of computations. Nevertheless, all computational models that have been developed so far, were
shown to be equivalent to a very simple model, the so-called Turing machine. This lead Church
and Turing to conjecture in 1936 that every computable function can be computed by a Turing
machine.

The basic Turing machine has an input tape comprised of infinitely many cells, and a tape head
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which scans one cell of the tape at a time. Each cell contains asymbol from a finite alphabet
intrinsic to the machine. Initially, the tape contains onlythe input of the problem (the question),
the rest of the tape being blank. Throughout the computations, the configuration of the machine
ranges a finite set of states. Finally, if the machine halts (reaches one of the final states), it writes
the output on its tape. The machine operates sequentially: as long as it does not reach the final
state, it performs one operation, at a time, which depends solely on the current state and the symbol
pointed to by its head. An operation of the machine can be either a change of the current state, a
writing/overwriting of a symbol on the scanned cell or a move(in both directions) of the head. The
function that maps a pair consisting of a symbol and a state toan operation is called the program of
the machine. Finally, a language accepted or decided by a Turing machine TM is the set of strings,
composed from symbols of the machine alphabet, which cause the TM to enter a final state.

1.1.3 Extended Turing machines

Multi-tape Turing machines

A multi-tape Turing machine is comprised ofk tape heads andk tapes, each has an infinite number
of cells. A configuration of the machine at some time point consists of the current state and of
the positions of thek tape heads. Similarly to single-tape Turing machines, one operation of a
multi-tape Turing machine depends only on the current configuration, and can be either a change
of the current state, a print of a new symbol on each of the cells scanned by the heads, or a move
of the heads independently in both directions. Initially, all the tapes are blank except the first one
where the input is written. When the machine halts, one recovers the output in the last tape.

Probabilistic Turing machines

A probabilistic (single or multi-tape) Turing machine has an extra tape consisting of symbols form-
ing a support for the uniform distribution. This induces a probability distribution on the outcome
corresponding to a given input. In fact, oppositely to adeterministicTuring machine, to a given
input correspond several computation paths in a probabilistic Turing machine. Therefore, it may
well be that for some inputx, there are computations which halt and others which don’t.

Non-deterministic Turing machines

A non-deterministic Turing machine is a probabilistic Turing machine which accepts strings if
at least one computation path, started on these strings, leads to one final state of the machine.
Similarly, a languageL is accepted (decided) by a non-deterministic Turing machine if the latter
accepts all stringsx ∈ L.
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Oracle Turing machines

An oracle Turing machine is a Turing machine with an extra tape called the oracle tape, and two
additional states called the “oracle invocation” and the “oracle appeared” respectively. The con-
figuration of the machine at some time point with state different from the state “oracle invocation”
is defined as usual. If a configuration involves the state “oracle invocation” and the stringq on
the oracle tape, then the next configuration of the machine isidentical to the previous one with
the exception of moving to the state “oracle appeared” and having on the oracle tape the stringr
instead.q is called the oracle query andr is the oracle reply. The introduction of such types of
machines is motivated by the need to capture the notion of reducibility, which we will see later in
this section.

1.1.4 Complexity classes: P, PSPACE, NP, and co-NP

Let DTM be adeterministicTuring machine. If for every input word of lengthn, the machine
halts after at mostt(n) moves, then TM is said to have atime complexityt(n), and the language
accepted by DTM is said to be oftime complexityt(n). The family of languages of deterministic
time complexityO(t(n)) forms acomplexity classwhich we denoteDTIME(t(n)). One important
complexity class is the class

P = ∪k≥1DTIME(nk)

consisting of languages which can be decided efficiently by adeterministic polynomial Turing
machine.

Similarly, if DTM is a deterministic Turing machine that, for every input string of lengthn, vis-
its at mosts(n) cells before halting, then DTM is said to be ofspace complexitys(n), and so is the
language accepted by DTM. The family of languages of (deterministic) space complexityO(s(n))
forms a complexity class denotedDSPACE(s(n)). The class PSPACE consists of languages that
can be decided using a polynomial amount of space .

PSPACE = ∪k≥1DSPACE(nk).

Let now NTM be anon-deterministicTuring machine. If for everyn-length string, NTM
halts after at mostt(n) moves, regardless of the selected computational path, thenNTM is said to
have a time complexityt(n). We define similarlyNTIME(t(n)) to be the class of languages that
can be decided non-deterministically in timeO(t(n)). The most important non-deterministic time
complexity class is the class

NP = ∪k≥1NTIME(nk)

consisting of languages that can be decided efficiently by a non deterministic polynomial Turing
machine.

Finally, to define the class co-NP, one needs to define the complement of a language. According
to Subsection 1.1.1, we defined a language L to be the set of positive instances to its underlying
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decision problem P. The complement of L, which we denoteL, consists of the negative instances
of the problem P. In this way, co-NP is the class comprised of languages whose complements are
in NP.

It is not hard to see that P is a subset of NP and co-NP, which areboth subsets of PSPACE.
The most important question in complexity, which is also called the million dollar question, is to
prove/disprove that P is different from NP.

1.1.5 Reductions and completeness

A reductionis a transformation of a problem to another. Informally speaking, we say that problem
A reduces to problemB if one can solveA given an oracle that solvesB. In this case, we say
thatB is at least as hard asA, and we writeA ≤ B or A ⇐ B. Such a reduction is known in
the literature as a Turing reduction, where multiple calls to the oracle solving the harder problem
are allowed. In case of decision problems, we often use the notion of many-one reduction which
corresponds to a Turing reduction where one call to the oracle is allowed. More precisely, a many-
one reduction maps an instancex of problemA, to an instanceR(x) of the harder problemB such
thatx is a positive instance ofA if and only ifR(x) is a positive instance ofB. Finally, reductions
must be efficient to compute in order to have coherent results. The appropriate notion of efficiency
depends on the problems we are studying, for instance, in case of problems/languages in NP, it is
convenient to talk about reductions computable in polynomial time.

LetC be a complexity class andL be a given language. We say thatL isC-completeif L ∈ C,
and every language inC is reducible to it. In caseL /∈ C, but still every language inC is reducible
to L, we say thatL is C-hard. Complete problems are important as they are considered to be
representatives of the class. In fact, any solution to the complete problem can be used to solve
problems in the underlying class. This explains why reductions should be efficient to compute; it
would be absurd to have a solution to a complete problem derive a difficult to compute solution to
an easier problem.

1.1.6 One way functions and indistinguishability

The bright side of the conjectureP 6= NP consists in suggesting different levels of hardness. The
most notable ones are the hardness of computing some given values and the hardness of comparing
two different entities.

A one way functionis map which is easy to compute but hard to invert. More precisely, a one
way functionf is a map fromΣ⋆ to itself,Σ being some alphabet, such that the following holds:

1. for allx ∈ Σ⋆, f(x) is at most polynomially longer or shorter thanx,

2. there exists a polynomial time Turing machine that, on theinputx, outputsf(x).
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3. given a uniformly chosen elementy from Σ⋆, there exists no polynomial time Turing ma-
chine that returns, with non-negligible probability,x such thatf(x) = y if such anx exists,
or “no” otherwise.

A trapdoor one way function is a one way function such that the knowledgeof an additional
information (the trapdoor) allows an efficient (polynomialtime) computation of its inverse.

Equivalence of two entities varies according to the situations and applications. For exam-
ple, in some applications, two objects are considered to be equivalent if there exists noefficient
procedure that differentiates them. This motivates the definition of the different notions ofindis-
tinguishability. Letp andq be two probability distributions, over some countable probability space
E ⊆ {0, 1}n, that are considered at the security parameterk ∈ N.

1. p andq areperfectly indistinguishableif they are equal.

2. p andq arestatistically indistinguishableif their statistical difference is negligible inn. We
define the statistical difference (or variation distance) of p andq as follows:

∆(n) =
∑

e∈E

|p(e)− q(e)|

3. p and q are computationally indistinguishableif for every probabilistic polynomial time
Turing machineM , the following holds:

∣∣∣∣ Prx←p
[M(x) = 1]− Pr

x←q
[M(x) = 1]

∣∣∣∣ ≤
1

nk

where the expressionx ← p denotes thatx has been sampled according to the probability
distributionp.

1.1.7 Examples of one way functions

One way functions arise abundantly in cryptography as they offer the possibility of being easy to
compute in one way and hard in the other. In fact, this dualityeasiness/difficulty translates in cryp-
tography into efficiency/security that a cryptographic system should have, since we naturally want
the latter to be easy to implement for the honest players but difficult to obstruct by the opponents.

Public key cryptography rests heavily upon two one way functions related to two number the-
oretic hard problems, namely factoring integers and computing discrete logarithms. Both decision
variants of those two problems happen to be in NP, but withoutbeing proven to be NP-complete.
In fact, one of the main differences between complexity theory and cryptography is that the former
considers the worst-case complexity analysis whereas the latter is interested in the average-case
analysis. The knapsack problem is one illustration of this difference since it is proven to be NP-
complete, however most instances that were used in cryptography have been broken. The upshot
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is that one needs an efficient generation of difficult instances of problems in order to be able to use
them in cryptography. In this sense, factoring integers andcomputing discrete logarithms proved
to be good candidates for use, which explains the massive design of cryptographic systems based
on those problems, or the important mathematic ingenuity spent to solve them.

Factoring

Factoring an integer consists in finding its prime factors. Aprime is naturally defined to have only
1 and itself as divisors. Factoring can be easily seen as a one way function since the operation
consisting in building an integer from its prime factors, i.e. the multiplication, can be efficiently
performed whilst the reverse does not seem to have an efficient algorithmic solution. We summa-
rize in the table below the most known methods to factor ann-bit integer. For a comprehensive
and exhaustive list, we refer for example to [Cohen, 1996].

method year time
trial division −∞ O(2n/2)

Pollard’sp− 1 method 1974 O(2n/4)

Pollard’sρ method 1975 O(2n/4)

Dixon’s random squares1981 exp(O(n1/2))

Lenstra’s elliptic curves 1987 exp(O(n1/2))

Number Field Sieve 1991 exp(O(n1/3))

The biggest integer of general form that has been factored sofar is the768-bits RSA challenge
using the number field sieve method. An RSA challenge is product of two primes of the same bit
size. We refer to [Kleinjunget al., 2010] for details about the factorization of this challenge.

Discrete logarithm

Let (G, ·) be a multiplicative cyclic group generated by some element,sayg. The discrete loga-
rithm problem consists in, given an elementy ∈ G = 〈g〉, computingx such thaty = gx.

It can be easily proven that solving the discrete logarithm problem in a group of orderd, with
known factorization, can be efficiently reduced to solving the same problem in groups whose orders
are the prime factors ofd (see for example [Stinson, 2006, Chapter 6]). This explainswhy we
consider in the literature only groups of prime order.

The discrete logarithm problem is proven to be difficult for generic group algorithms. In fact,
in [Shoup, 1997], it is proven that algorithms that use no special properties of the considered group
need at leastO(

√
d) group operations to solve the discrete logarithm problem, whered is the group

order. A popular illustration of groups without special properties is given by the group of points
of an elliptic curve over a finite field. However, as soon as oneconsiders multiplicative groups
of a finite fieldZ×q (for a primeq), the cost of solving the discrete logarithm drops drastically to
exp(O(n1/3)) using the number field sieve, wheren is the bit-size of the considered group order.
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On that account, elliptic-curve-cryptography betters finite-field or ring-cryptography as it achieves
the same level of security at shorter size parameters. However, we should point that elliptic curves
still lose in efficiency when compared to finite fields as it is known that group operations in elliptic
curves are much more expensive than their similars in finite fields.

Finally, we note that both factoring and discrete logarithmpossess an efficient algorithmic
solution using a quantum computer [Shor, 1994]. However, the progress in this area is still not
threatening as the largest integer that has been factored sofar using this algorithm is 15. Neverthe-
less, there is a recent trend in cryptography that encourages looking for hard problems that remain
hard even in the presence of quantum computers, e.g. latticeor codes-related problems.

1.2 Basic cryptographic primitives

Cryptography was historically associated with the design of systems ensuring confidentiality, namely
encryption schemes. However and throughout the years, cryptography evolved to include more sys-
tems that serve further purposes. In fact, the digital era gave birth to new applications that require
special mechanisms to protect against misuse. Thus, the most appropriate definition of cryptog-
raphy is, according to [Goldreich, 2001], a science “concerned with construction of schemes that
should be able to withstand any abuse. Such schemes are constructed as to maintain a desired
functionality, even under malicious attempts aimed at making them deviate from their prescribed
functionality”.

In this section, we first present the axioms assumed in any cryptographic system, then pro-
ceed to a brief description of the most important cryptographic primitives that we will encounter
throughout this thesis.

1.2.1 Kerckhoffs’ principles

In 1883, Auguste Kerckhoffs formulated in [Kerckhoffs, 1883] the laws or axioms that one should
assume about any encryption scheme:

1. The system must be practically, if not mathematically, indecipherable;

2. It must not be required to be secret, and it must be able to fall into the hands of the enemy
without inconvenience;

3. Its key must be communicable and retainable without the help of written notes, and change-
able or modifiable at the will of the correspondents;

4. It must be applicable to telegraphic correspondence;

5. It must be portable, and its usage and function must not require the concourse of several
people;
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6. Finally, it is necessary, given the circumstances that command its application, that the system
be easy to use, requiring neither mental strain nor the knowledge of a long series of rules to
observe.

The most famous law that cryptography owes to Kerckhoffs is stated in the second item, that is,
a system should remain secure even if everything except its key is publicly known. This law was
reformulated by Claude Shannon by “the enemy knows the system”, and later universally adopted
in cryptography and in all the subsequent related disciplines, for instance steganography.

1.2.2 Encryption

An encryption scheme is given by the following three algorithms:

Key generation (keygen). This is a probabilistic algorithm which returns pairs of encryption and
decryption keys(ke, kd) depending on the security parameterk.

Encryption (encrypt). This is a probabilistic algorithm which takes as input an encryption key
ke and a plaintextm, runs on a random tapeu and returns a ciphertextc.

Decryption (decrypt).This is a deterministic algorithm which takes on input a decryption keykd,
a ciphertextc and returns the corresponding plaintextm or the symbol⊥. We require that if
(ke, kd) is a valid key pair, then

∀m : decryptkd
(
encryptke(m)

)
= m.

Since the antiquity, encryption schemes were conceived such that the keys used for encryption
and decryption are the same, which forces the protagonists to meet physically or discuss through a
secure channel in order to agree on the key. It is worth notingthat such a type of encryption, called
symmetric or conventional encryption, was mostly practiced in secret service or military chambers
in order to protect state and military communications.

In 1976, Whitfield Diffie and Martin Hellman [Diffie & Hellman,1976] invented public key
encryption, called also asymmetric encryption, where the sender and receiver do not have to agree
on the same key to exchange encrypted messages. In fact, the receiver generates a pair of keys
ke andkd that will be used for encryption and decryption respectively. The receiver will publish
the encryption key and store privately the decryption key. With this mechanism, it is obvious that
anyone can encrypt a message usingke, whilst only the receiver can decrypt a ciphertext (obtained
usingke) using the private keykd. The repercussions of inventing public key cryptography are
huge. First it motivated the design of new mechanisms and theintroduction of new analysis tools.
Then and most importantly, it gave cryptography a scientificshape by allowing more individuals or
institutions to participate; cryptography is no longer theworkings of some people locked in highly
secret military cells, but a production of a whole communitythat is constantly designing/analyzing
systems and publishing the results in well established conferences or journals.
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Despite its attractive feature, namely flexibility of the key management, public key encryption
did not overwrite symmetric encryption. In fact, the lattercompares much better than the former in
terms of efficiency. Thus, in most practical applications, both disciplines cohabit under the name
“hybrid encryption”: public key encryption is first used to communicate a short key, that will be
later used to decrypt a huge document, e.g. movie.

Security notions for encryption schemes

Encryption schemes should satisfy a certain security levelwhich clearly identifies thesecurity goal
the scheme should attain, and theadversarial powerthe attacker against the scheme has. The pair
consisting of the security goal and the adversarial power defines what is called thesecurity notion
for the encryption scheme.

The typicalsecurity goalsa public key encryption scheme should attain are:

1. Unbreakability (UBK):it is difficult to recover the private key from the public key of the
encryption scheme.

2. One wayness (OW):without the private key, it is computationally impossible to recover the
plaintext.

3. Indistinguishability (IND): the ciphertext reveals no information about the plaintext to a
polynomial adversary.

4. Non-Malleability (NM):no polynomial adversary can derive from a given ciphertext another
ciphertext such that the underlying plaintexts are meaningfully related.

The typical scenario attacks for public key encryption schemes are:

1. Chosen Plaintext Attack (CPA):the adversary can encrypt any message of his choice. This
is inevitable in public key settings.

2. Plaintext Checking Attack (PCA):the adversary is allowed to query an oracle on pairs (m, c)
and gets answers whetherm is really encrypted inc or not. There is the natural restriction
of not querying the oracle on pairs which will help the attacker solving his challenge.

3. Chosen Ciphertext Attack (CCA):the adversary is allowed to query a decryption oracle for
ciphertexts of his choice. There is again the restriction ofnot querying the oracle on cipher-
texts that will help the attacker solving his challenge.

Remark 1.1. In the literature, the scenario attack CCA is referred to as CCA2, and is called
adaptive chosen ciphertext attack. This is due to the presence of thenon-adaptive chosen ciphertext
attackor the lunch time attackscenario, which is denoted CCA1 and where the adversary has the
liberty to request the decryption of any ciphertext of his choice up to the challenge phase.
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It is obvious that the CCA attack model is stronger than the PCA attack model which is stronger
than the CPA one. We summarize in Figure 1.1 the relations among the different security notions
obtained from pairing a security goal GOAL∈ {OW, IND,NM} and an attack model ATK∈
{CPA,PCA,CCA}. The notationNotion1 → Notion2 indicates that if an encryption scheme is
secure in the senseNotion1, then it is also secure in the senseNotion2; we say thatNotion1 implies
Notion2. The notationNotion1 ↔ Notion2 means that bothNotion1 andNotion2 imply each other.
Details about the formal definitions of the notions or the proofs underlying Figure 1.1 can be found
in [Bellareet al., 1998]. Actually, this work gives also some separation results which we do not
report in Figure 1.1 as they are either obtained under some strong assumptions, or they involve
notions we do not consider in the thesis (IND− CCA1 or NM− CCA1). Finally, we will provide
in Subsection 1.3.1 the formal definitions of the security notions (for public key encryption or for
signature schemes) that we will encounter throughout this thesis.

CPA PCA CCA

UBK

OW

IND

NM

Figure 1.1: Relations among security notions for PKE

Examples of encryption schemes

The most famous public key encryption scheme dates back to 1978 [Rivestet al., 1978]. It is
named RSA, which refers to the initials of its inventors, andis depicted in Figure 1.2. The RSA
encryption scheme is OW-CPA (one way against a chosen plaintext attack) under theRSA assump-
tion, which posits the difficulty of extractinge-th modular roots. However, it is not IND-CPA
(indistinguishable against a chosen plaintext attack) since it reveals information about the plain-
text, namelyme mod N . Less it is NM-CPA (non-malleable against a chosen plaintext attack) as
one can compute, given a ciphertextc, another ciphertext, sayc′ = 2ec mod N , whose plaintext
m′ is meaningfully related to the plaintextm underlyingc; m′ = 2m.
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Key generation Choose two equally-sized primesp, q and compute the modulusN = pq,

choosee
R←− Z×φ(N), whereφ is the Euler totient function,

computed = e−1 mod φ(N),
set the public keypk to (e,N) and the private keysk to (d,N).

Encryption For a messagem ∈ Z×N , compute its encryption asc = me mod N .
Decryption given a ciphertextc, compute the plaintext asm = cd mod N .

Figure 1.2: The RSA encryption scheme

Setup Choose a group(G, ·) generated byg with prime orderd.

Key generation Choosex
R←− Zd and computey ← gx,

setpk← (d, g, y) andsk← (d, g, x).

Encryption For a messagem ∈ G, chooset
R←− Zd,

computec1 ← gt andc2 ← myt,
set the ciphertext to(c1, c2).

Decryption Given a ciphertext(c1, c2), compute the corresponding plaintext asm← c2c
−x
1 .

Figure 1.3: The El Gamal encryption scheme

The second famous encryption is due to El Gamal [El Gamal, 1985] and is depicted in Figure
1.3. It was invented in 1985, and it uses the hardness of the discrete logarithm problem. El Gamal’s
encryption is OW-CPA if the problem, that consists in computing gxt from gx andgt, is difficult.
Moreover, it is IND-CPA if the problem consisting in distinguishinggxt, givengx andgt, from
random elements inG, is difficult. We will give in Subsection 1.3.2 a precise definition of these
problems.

Encryption with labels Encryption with labels was first introduced in [Shoup & Gennaro, 2002].
In these schemes, the encryption algorithm takes as input, in addition to the public keypk and
the messagem intended to be encrypted, a labelL which specifies information related to the
messagem and its encryption context. Similarly, the decryption algorithm takes additionally to
the ciphertext and private key the label under which the ciphertext was created. Security notions
are then defined as usual except that the adversary specifies to his challenger the label to be used in
the challenge ciphertext, and in case he (the adversary) is allowed to query oracles, then he cannot
query them on the pair formed by the challenge ciphertext andthe label used to form it.

1.2.3 Signatures

A signature scheme is given by the following three algorithms:
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Key generation (keygen). This is a probabilistic algorithm which returns random pairs of private
and public keys(sk, pk) according to the security parameterk.

Signature (sign). This is a probabilistic algorithm that takes on input a private key sk and a
plaintextm and returns a signatureσ.

Verification (verify). This is a deterministic algorithm that takes on input a public key pk, a
signatureσ and outputs1 if the signature is valid and0 otherwise. We require that if(sk, pk)
is a valid key pair derived from the algorithmkeygen, then for allm, the following holds

verifypk (signsk(m), m) = 1.

Security notions for signature schemes

Similarly, a signature scheme must meet certain security goals which we list below:

1. Unbreakability (UBK):it is difficult to recover the signing key from the verification key.

2. Universal Unforgeability (UUF):it is difficult for a polynomial time attacker to obtain a valid
signature, without necessarily recovering the private key, on everymessage in the message
space.

3. Selective Unforgeability (SUF):it is difficult for a polynomial time attacker to produce a
valid signature on a message he committed to prior to knowingthe public key.

4. Existential Unforgeability (EUF):no polynomial time adversary can come up with a valid
pair of message and corresponding signature.

It is obvious that existential unforgeability implies universal unforgeability which implies unbreak-
ability.

Moreover, the typical scenario attacks in signature schemes are:

1. Key Only Attack (KOA):the adversary has only access to the public key of the scheme,which
is unavoidable in the public key scenario.

2. Known Message Attack (KMA):the adversary has access to signatures for a set of known
messages that he committed to prior to knowing the public keyof the scheme.

3. Chosen Message Attack (CMA):the adversary can use the signer as an oracle (full access),
and may request signatures on any message of his choice.

Remark 1.2. There exist two further attack scenarios which are weaker than the CMA attack,
namely theDirected Chosen Message Attack (DCMA)and theSingle Occurrence Chosen-Message
Attack (SOCMA). In the first attack, the adversary chooses non-adaptively aset of messages{mi}i
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and is given the corresponding signatures{σi}i. Whereas in the second attack, the adversary has
full access to the signing oracle with the restriction of notquerying more than once the same
message for signature.

Likewise, pairing the above security goals and the above scenario attacks results in twelve
security notions which we describe in Figure 1.4 along with the relations they satisfy. We will
provide in Subsection 1.3.1 the formal definitions of the security notions that we will need in this
thesis.

KOA KMA CMA

UBK

UUF

SUF

EUF

Figure 1.4: Relations among security notion for signature schemes

The RSA signature scheme

One popular signature scheme is the analogous of the RSA encryption scheme which was also
described in [Rivestet al., 1978]; we depict it in Figure 1.5. It is obvious that the RSA signature
is not existentially unforgeable since one can first choose asignatures ∈R ZN , then compute its
corresponding message asm = se mod N .

1.2.4 Commitment schemes

A commitment scheme [Brassardet al., 1988] consists of the following algorithms:

Setup (setup). This is the algorithm that, on input a certain security parameterk, generates the
public parameters of the system.

Key generation (keygen). This algorithm generates probabilistically a public commitment key
pk.
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Key generation Choose two equally-sized primesp, q and compute the modulusN = pq,

choosee
R←− Z×φ(N), whereφ is the Euler totient function,

computed = e−1 mod φ(N),
set the public keypk to (e,N) and the private keysk to (d,N).

Signature The signature on a messagem ∈ Z×N is computed ass = md mod N .

Verification For an alleged signatures onm, check whetherm
?
= se mod N .

Figure 1.5: The RSA signature

Commitment (commit). This is a probabilistic algorithm that, on input a public keypk and a
messagem, produces a pair(c, r): c serves as the commitment value (locked box), andr as
the opening value.

Opening (open). This is a deterministic algorithm that given a pair(c, r) along with a public key

pk and an alleged messagem, checks whether(c, r)
?
= commitpk(m).

The algorithmopen must succeed if the commitment was correctly formed (correctness). More-
over, we require the following security properties:

1. Hiding. It is hard for an adversary to generate two messagesm0, m1 such that he can dis-
tinguish between their corresponding locked boxesc0, c1. That is,c reveals no information
aboutm. Actually, this notion can be formally described through the following random

experiment, forb
R←− {0, 1}, whereΩ = (keygen, commit, open) denotes a commitment

scheme with security parameter someκ ∈ N, andA denotes a PPTM.

ExperimentExphid−b
Ω,A (κ)

pk← Ω.keygen(κ),
(m⋆

0, m
⋆
1, I)← A(find, pk)

(c⋆, r⋆)← Ω.commitpk(m
⋆
b)

d← A(guess, I, c⋆)
Returnd

We define theadvantageof A via:

Advhid
Ω,A(κ) =

∣∣∣∣Pr
[
Exphid−b

Ω,A (κ) = b
]
− 1

2

∣∣∣∣

Given t ∈ N andε ∈ [0, 1], A is called a(t, ε)-hiding adversary againstΩ if, running in
time t, A hasAdvhid

Ω,A(κ) ≥ ε. The schemeΩ is said to be(t, ε)-hiding if no (t, ε)-hiding
adversary against it exists.
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Setup Choose a group(G, ·) generated byg with prime orderd.

Key generation Choosey
R←− G of unknown discrete logarithm w.r.t.g,

The public commitment key isy.
Commitment Compute the commitment(c, r) on a messagem ∈ Zd such that

r
R←− Zd andc = grym.

Opening Given an alleged commitment(c, r) on a messagem:

check whetherc
?
= grym.

Figure 1.6: Pedersen’s commitment scheme

2. Binding. It is hard for an adversary to come up with a collision(c, r, r′) such that(c, r) =
commitpk(m) and(c, r′) = commitpk(m

′) wherepk is a public commitment key, andm 6=
m′.

3. Injective.Given a messagem, for any two pairs(c, r) and(c′, r′) produced using thecommit

algorithm w.r.t. a public commitment keypk onm such thatr 6= r′, we havec 6= c′.

We call a commitment schemesecureif it meets the previous properties.
It is not hard to note the similarity between public key encryption and commitment schemes.

In fact, one can check that indistinguishable encryption implies a secure commitment scheme. The
main difference between encryption and commitment is that the former requires the decryption
algorithm to be based on a “universal” secret key (independent of the message) whilst the latter
allows to decrypt with a “message-dependent” secret key, namely the opening valuer of the mes-
sage in question. Another difference is that in encryption,the message is always derived from the
ciphertext. This is not always the case in commitments as shows the example depicted in Figure
1.6; it is easy to check that this commitment is correct. Moreover it is statistically hiding because
r is random inZd and so isc = grym, regardless ofm. Besides, the biding property is achieved
under the discrete logarithm assumption inG.

1.2.5 Hash functions

A hash function is used to distill a small amount of information out of large messages. Such
an action can ensure integrity of the data in question. In fact, suppose that one maintains a data
base in North America and its mirror image in Europe. In orderto check that both data bases are
identical after for instance an update of both bases, one cancompute a so-calledmessage digest
or fingerprintof each data base using the hash function and compare the results; if the data bases
are identical then the resulting fingerprints will agree. The converse is not always true since we
are mapping a set of large messages to a smaller set of typically 160-bit length strings. However,
the event corresponding to having two different data bases mapping to the same fingerprint is very
unlikely if the hash function is properly chosen as we will show later in this subsection.
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In the rest of this subsection,Σ will denote the set{0, 1}, whereasn will denote a non-negative
integer andℓ(l) an integer such thatℓ(n) > n. We would like also to note that most material
presented in this subsection comes from a course on the topicby Bart Preneel during the summer
school “crypt@b-it 2009”.

Formal definition

In the discussion above, we considered a fixed hash function,however in more practical situations,
it is useful to consider families of hash functions parameterized by keys.

Definition 1.1. A family of hash functions is a 4-tuple (D,R,K,H) such that:

1. D = Σℓ(n), is the set of possible messages, called also the domain of the hash functions
family,

2. R = Σn is the finite set of possible fingerprints, called also the range of the hash functions
family,

3. K is the finite set of possible keys,

4. H is the set of hash functionshk ∈ H, wherek ∈ K andhk maps messages fromD toR.

Security properties

The most important security properties required in a cryptographic hash function are:

One wayness.Let h be a function with domainD = Σℓ(n) and rangeR = Σn. h is one-way if it
meets the following conditions:

• Preimage resistance: letx be selected uniformly inD and letM be an adversary that on
the inputh(x) outputs, in polynomial time,M(h(x)) ∈ D. For each such an adversary,
we require that:

Pr
x∈RD

[h(M(h(x))) = h(x)] < ǫ,

where the probability is taken over the input toM as well as on his random tosses, and
ǫ is a negligible function in the security parameter.

• Second preimage resistance: let x be selected uniformly at random fromD and letM
be an adversary that on the inputx ∈ D outputs, in polynomial timex′ ∈ D such that
x′ 6= x. For each such an adversary, we require that:

Pr
x∈RD

[h(M(h(x))) = h(x)] < ǫ,

where the probability is taken over the input toM as well as on his random tosses, and
ǫ is a negligible function in the security parameter.
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Collision resistance.Let (D,R,K,H) be a function family with domainD = Σℓ(n) and range
R = Σn. LetF be a collision string finder that on inputk ∈ K outputs in polynomial time
either? or a pairx, x′ ∈ D such thatx 6= x′ andhk(x) = hk(x

′). We require for each such
an F the following:

Pr
k∈RK

[F (H) 6= ”?”] < ǫ,

where the probability is taken over the random choices ofF and of its inputk ∈ K.

The work [Rogaway & Shrimpton, 2004] studies the relations (implications and separations) be-
tween these properties and further security notions known for hash functions.

Finally, we finish this list with a property required in many cryptographic applications, that is
the random oracle model, introduced by Bellare and Rogaway in [Bellare & Rogaway, 1996]. In
this model, a hash functionh : D → R is chosen uniformly at random from the set of functions
fromD toR. Moreover,h is not given by a formula or algorithm to compute its outputs.Thus, the
only way to compute the valueh(x) of somex ∈ D is through acall to the function oracle. This
can be assimilated to looking up a huge codebook consisting of values inD and corresponding
values inR such that for each possiblex ∈ D, there exists a completely random valueh(x) ∈ R.

Constructions and issues

The design of cryptographic hash functions started with theiterated structure proposed by Damgård
in [Damgård, 1989]. The basic idea of this structure consisted in splitting the message to be
hashed into blocks of fixed length, and hashing them block by block with a compression function.
The idea was efficient and elegant and has inspired a growing study of the relations between the
compression function and the resulting hash function. Moreover, this structure was the origin
of two series of celebrated hash functions which are massively used in cryptography that are:
MDx (x=4,5) and SHA-y (y=0,1). In fact, the first series of iterated hash functions was due to
Rivest and appeared under the name MD4 in 1990, and was later replaced by MD5 due to some
weaknesses in the previous version. The next series is called SHA-y (Secure Hash Algorithm)
and was conceived by NIST in 1992 (SHA-0) and 1994 (SHA-1). Other constructions of hash
functions are based on block ciphers or on algebraic structures, for instance elliptic curves. The
advantage of such constructions resides in benefiting from the comprehensive study furnished by
their underlying structures, for instance in case of algebraic constructions, one can even come up
with formal security proofs, however these constructions remain slow compared to dedicated hash
functions.

The current state-of-the-art in hash functions is that all the practical proposals have been bro-
ken. Starting from MD4, this algorithm was first shown to havecollisions in 1996 by Hans Dob-
bertin in [Dobbertin, 1996]. A more efficient collision attack was found by the Chinese team of
Wang in [Wanget al., 2005]. Generating collisions now in MD4 is as fast as verifying it. MD5
was similarly partially cryptanalyzed by Dobbertin in [Dobbertin, 1996] and later fully broken in
[Wang & Yu, 2005] by the same Chinese team. Besides, SHA-0 andSHA-1 had the same fate and
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were identified to have weaknesses which argue against keeping them in use. SHA-2 (a set of four
hash algorithms, namely SHA-224, SHA-256, SHA-384, and SHA-512)was intact so far however
it is algorithmically close to SHA-1 which means that efforts are underway to break it. This has
motivated seeking a new hash standard SHA-3 which will be selected via an open competition
running between falls 2008 and 2012.

1.2.6 Pseudo random number generators (PRNGs)

Random numbers are of central importance in cryptography. This need manifests for instance
when setting up key pairs for cryptographic systems or in probabilistic encryption. Although
there seem to be many techniques to obtain random numbers, e.g. system clocks, key strokes
or mouse movements etc, most such techniques remain expensive compared to the amount of
randomness that needs to be extracted. An illustrative example (from a course on cryptography by
Joachim von zur Gathen) is that a 1 GHZ computer running uninterrupted for a year moves through
365 · 24 · 60 · 60 · 109 or 254.8 cycles, and thus can only provide54 random bits (if we take these
cycles as random). These bits are certainly not enough for any reasonable protocol, for instance El
Gamal’s encryption which needs at least a thousand random bits.

To remediate to this problem, cryptographers invented the notion of pseudo random number
generators (PRNGs). A PRNG is a deterministic algorithm which inputs strings from a small set
X and outputs strings in a larger setY . The idea consists in starting from a truly random string in
X, which would serve as aseedfor the PRNG, and outputting a string inY which is indistinguish-
able from a truly random string inY . Note that a truly random string in a finite setS is a string
which has probability of occurrence1

#S
. In Subsection 1.1.6, we discussed many notions of indis-

tinguishability ranging from perfect indistinguishability to computational indistinguishability. In
cryptography, as the protagonists are polynomial time algorithms, PRNGs thrive on computational
indistinguishability.

PRNGs are proven to exist under the assumption that one way functions exist, and there are
many constructions based on any one way function or permutation. We refer to [Goldreich, 2001,
Chapter 3] for more details. Finally, PRNGs are massively used in practice and there exists a good
number of efficient PRNGs which enjoy a strong security, for instance the Blum Blum Shub PRNG
[Blum et al., 1986] based on factoring.

1.3 Reductionist security

We are now able to start a quick browse through a branch of cryptography concerned with gaining
confidence on cryptographic schemes, namely reductionist security. In fact, assertions that a sys-
tem is secure because no one has broken it so far are no longer valid, since experience proved that
these systems are broken sooner than later. This is explained by the fact that usually the malicious
adversary’s view transcends the designer’s one. Hence, a new formalism was needed to procure
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trust in cryptographic schemes. The following steps have been adopted by designers in the last
decade to prove security of their systems:

1. Define clearly the security notion the system needs to meet, by combining the security goal
the system should attain and the adversarial power the attacker has access to.

2. Describe a well studied problemP upon which the security of the system will rest.

3. Provide asecurity reductionfrom the studied problem to breaking the scheme in question.
That is, provide a polynomial time algorithmR that solves the problemP given access to
an algorithmA breaking the security of the system in the sense defined in Step 1. Such a
security proof will guarantee the security of the system if the problemP is believed to be
hard.

Hence, with such a formalism, a system is secure because it captures a high level of security
in a strong adversarial model under the reasonable assumption that some well studied problem is
hard.

In the rest of this section, we will expand in this topic by defining formally the standard secu-
rity notions for signature and encryption schemes that willbe used later in this thesis. Then, we
describe some celebrated assumed “hard” problems. We illustrate afterwards this notion with a
small example, and we finish by tackling some advanced topicslike idealized proof methodologies
or meta-reductions. We wish to note that most material provided in this section comes from two
courses on the topic by Pascal Paillier and Marc Joye during the summer schools “crypt@bit 2007”
and “crypt@bit 2009” resp.

1.3.1 Notions of security

The standard security notion for digital signatures is the existential unforgeability under a chosen
message attack (EUF-CMA), introduced in [Goldwasseret al., 1988]. It is defined through a game
between a challengerR and an adversaryA. During this game,A can obtain signatures on any
message of his choice, and at the end, he must output a valid pair message/signature where the
output message has not been queried before for signature. The signature scheme is said to be
existentially unforgeable if any such an adversaryA has a negligible probability of success in the
aforementioned game.

Definition 1.2 (Existential Unforgeability - EUF-CMA). LetΣ = (keygen, sign, verify) be a digital
signature scheme, and letA be a PPTM. We consider the following random experiment, where κ
is a security parameter:
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ExperimentExpeuf−cma
Σ,A (κ)

(pk, sk)← Σ.keygen(κ)

(m⋆, σ⋆)← AS(pk)
S : m 7−→ Σ.signsk(m)

return 1 if and only if the following properties are satisfied:
- Σ.verifypk[σ

⋆, m⋆] = {1}
- m was not queried toS

We define thesuccessofA via:

Succeuf-cma
Σ,A (κ) = Pr

[
Expeuf-cma

Σ,A (κ) = 1
]
.

Given(t, qs) ∈ N2 and ε ∈ [0, 1], A is said to be a(t, ε, qs)-EUF-CMA adversary against the
schemeΣ if, running in timet and issuingqs signing queries,A hasSucceuf-cma

Σ,A (κ) ≥ ε. The
schemeΣ is called(t, ε, qs)-EUF-CMA secure if no(t, ε, qs)-EUF-CMA adversary against it ex-
ists. Finally, we consider a digital signature schemeΣ with security parameterκ ∈ N; Σ(κ) is
said to beEUF-CMA secure if, for any polynomial functionst, qs : N→ N and any non-negligible
functionε : N→ [0, 1], it is (t(κ), ε(κ), qs(κ))-EUF-CMA secure.

Remark 1.3. (SEUF-CMA) In caseA is allowed to output a message already queried toS, yet
not with a signature obtained fromS, and still does not win the game, the scheme is called SEUF-
CMA secure (S stands for “strongly”).

In the rest of this subsection, we will define the notions for assymetric encryption that we will
encounter later in this thesis, namely NM-CPA, OW-CCA and IND-ATK, for ATK ∈ {CPA,PCA,-
CCA}.

The fist notion that we will present is called non-malleability under a chosen plaintext attack
(NM-CPA). It was introduced by Dolev, Dwork, and Naor in 1991[Dolev et al., 1991], and is
defined similarly through a game between a challenger and an adversaryA. During this game,A
can only encrypt messages of his choice (inevitable in public key cryptography), and at some point,
he outputs to his challenger a distributionD from which messages can be drawn. The challenger
picks a messagem from D, encrypts it inc and hands it toA. A continues encrypting messages
of his choice, and at the end of the game outputs a binary relation R and a ciphertextc′. A wins
the game if the decryption ofc′ is related tom via the relationR, and the encryption scheme is
proclaimed non-malleable if the success ofA in this game is negligible.

Definition 1.3 (Non-Malleability - NM-CPA). LetΓ = (keygen, encrypt, decrypt) be a public key
encryption scheme, and letA be a PPTM. We consider the following random experiment, whereκ
is a security parameter:
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ExperimentExpnm−cpa
Γ,A (κ)

(pk, sk)← Γ.keygen(κ)

D ← AE(pk)∣∣ E : m 7−→ Γ.encryptpk(m)

m
R←− D

c← Γ.encryptpk(m)
(c′, R)← AE(pk, c)
return (D,R, c, c′)

We define thesuccessofA via:

Succ
nm-cpa
Γ,A (κ) = Pr[R(m,m′)]− Pr[R(m⋆, m′)]

whereExpnm-cpa
Γ,A (κ) = (D,R, c, c′),m′ = Γ.decryptsk(c

′) , andm⋆ R←− D.

Givent ∈ N andε ∈ [0, 1],A is said to be a(t, ε)-NM-CPA adversary againstΓ if, running in time
t, A hasSuccnm-cpa

Γ,A (κ) ≥ ε. The schemeΓ is called(t, ε)-NM-CPA secure if no(t, ε)-NM-CPA
adversary against it exists. Finally, we consider an encryption schemeΓ with security parameter
κ ∈ N; Γ(κ) is said to beNM-CPA secure if, for any polynomial functiont : N → N and any
non-negligible functionε : N→ [0, 1], it is (t(κ), ε(κ))-NM-CPA secure.

The next notion that we consider is called one wayness under achosen ciphertext attack (OW-
CCA). One wayness is the oldest and most natural notion public key encryption should satisfy. It
was introduced in the seminal work of Diffie and Hellman in [Diffie & Hellman, 1976] to denote
the hardness of recovering plaintexts from their corresponding ciphertexts in a given encryption
scheme. One wayness under a chosen ciphertext attack refersto the hardness of inverting cipher-
texts even in presence of a decryption oracle the adversary can query for any ciphertext except of
course on the challenge.

Definition 1.4 (One Wayness - OW-CCA). Let Γ = (keygen, encrypt, decrypt) be a public key
encryption scheme with message spaceM, and letA be a PPTM. We consider the following
random experiment, whereκ is a security parameter:
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ExperimentExpow−cca
Γ,A (κ)

(pk, sk)← Γ.keygen(κ)
I ← AD(pk)∣∣ D : c 7−→ Γ.decryptsk(c)

m⋆ R←−M
c⋆ ← Γ.encryptpk(m

⋆)

m̃← AD(pk, c⋆)∣∣ D : c ( 6= c⋆) 7−→ Γ.decryptsk(c)
return 1 if m̃ = m⋆

We define thesuccessofA via:

Succow-cca
Γ,A (κ) = Pr

[
Expow-cca

Γ,A (κ) = 1
]
.

Given(t, qd) ∈ N2 andε ∈ [0, 1],A is called a(t, ε, qd)-OW-CCA adversary againstΓ if, running
in time t and issuingqd decryption queries,A hasSuccow-cca

Γ,A (κ) ≥ ε. The schemeΓ is said
to be(t, ε, qd)-OW-CCA secure if no(t, ε, qd)-OW-CCA adversary against it exists. Finally, we
consider an encryption schemeΓ with security parameterκ ∈ N; Γ(κ) is said to beOW-CCA
secure if, for any polynomial functionst, qd : N → N and any non-negligible functionε : N →
[0, 1], it is (t(κ), ε(κ), qd(κ))-OW-CCA secure.

The last security notion we consider for public key encryption is called indistinguishability or
sematic security. It was introduced by Goldwasser and Micali in [Goldwasser & Micali, 1984]
and informally denotes the hardness of distinguishing ciphertexts based on their underlying mes-
sages. The formal definition of this notion is again through agame between an adversaryA and a
challenger. The game runs in three phases; in the first phase,A has access to the oracles allowed
by the given attack model, and eventually outputs two messagesm⋆

0, m
⋆
1 from the message space

considered by the given encryption scheme. In the second or challenge phase, the challenger picks
uniformly at random one of the messages, encrypts it and gives the result toA. In the last phase,A
continues querying the oracles he had access to in the first phase, which now reject queries made
w.r.t. the challenge ciphertext. At the end of the last phase, A outputs his guess for the message
underlying the challenge, and is considered successful if the guess is correct.

Definition 1.5 (Indistinguishability - IND-ATK). Let Γ = (keygen, encrypt, decrypt) be a public
key encryption scheme with message spaceM, and letA be a PPTM. We consider the following

random experiment, forb
R←− {0, 1}, whereκ is a security parameter:
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ExperimentExpind-atk−b
Γ,A (κ)

(pk, sk)← Γ.keygen(κ),
(m⋆

0, m
⋆
1, I)← AO(find, pk)∣∣∣∣∣∣

if atk = cpa then O = empty

if atk = pca then O : (m, c) 7−→ m
?
= Γ.decryptsk(c)

if atk = cca then O : c 7−→ Γ.decryptsk(c)
c⋆ ← Γ.encryptpk(m

⋆
b)

d← AO(guess, I, c⋆)∣∣∣∣∣∣

if atk = cpa then O = empty

if atk = pca then O : (m, c)( 6= (m⋆
i , c

⋆), i = 0, 1) 7−→ m
?
= Γ.decryptsk(c)

if atk = cca then O : c( 6= c⋆) 7−→ Γ.decryptsk(c)

Returnd

We define theadvantageofA via:

Advind−atk
Γ,A (κ) =

∣∣∣∣Pr
[
Expind−atk−b

Γ,A (κ) = b
]
− 1

2

∣∣∣∣

Given (t, q) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, q)-IND-ATK adversary againstΓ if,
running in timet and issuingq queries (to the allowed oracle),A hasAdvind−atk

Γ,A (κ) ≥ ε. The
schemeΓ is said to be(t, ε, q)-IND-ATK secure if no(t, ε, q)-IND-ATK adversary against it exists.
Finally, we consider an encryption schemeΓ with security parameterκ ∈ N; Γ(κ) is said to be
IND-ATK secure if, for any polynomial functionst, q : N → N and any non-negligible function
ε : N→ [0, 1], it is (t(κ), ε(κ), q(κ))-IND-ATK secure.

1.3.2 More hard problems

In Subsection 1.2.2, we presented two encryption schemes, namely RSA [Rivestet al., 1978]
and El Gamal [El Gamal, 1985] that are OW-CPA secure if some problems, that are easier than
factoring and discrete logarithm respectively, are difficult. In this paragraph, we give a formal
description of both problems as well as some of their variants.

RSA-like problems

Definition 1.6. The RSA Problem [Rivestet al., 1978]. LetN be a product of two equally sized
primesp and q (p and q are κ-bit integers). Let furthery be an integer inZ×N and e > 1 be an
integer co-prime withφ(N). The task of an RSA adversaryA is to compute the unique integerx in
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Z×N such thatxe = y mod N . The advantage of such an adversary is defined by:

Adv(A) = Pr




(p, q, N, e)← keygen(1κ),

y
R←− Z×N ,

x
τ operations←−−−−−−− A(N, e, y),

xe = y mod N.




where the probability is taken over the random generation ofthe RSA instance as well as on all the
random choices of the RSA adversary.
Finally, we say thatthe RSA assumption holdsif we have the following implication:

τ = poly(κ)⇒ Adv(A) = negl(κ).

Definition 1.7. The Flexible RSA Problem [Baríc & Pfitzmann, 1997].LetN be a product of
two equally sized safe primes, i.e. primes of the form2p+ 1, wherep is itself a prime. Let further
y denote an integer inZ×N . The task of a Flexible RSA adversaryA is to output an integerx ∈ Z×N
and an integere > 1 such thatxe = y mod N . The advantage of such an adversary is defined by:

Adv(A) = Pr




(p′, q′, N)← keygen(1κ),

y
R←− Z×N ,

(x, e)
τ operations←−−−−−−− A(N, y),

xe = y mod N ∧ (x, e) 6= (y, 1).




where the probability is taken over the random generation ofthe Flexible RSA instance as well as
on all the random choices ofA.
Finally, we say thatthe Strong RSA (SRSA) assumption holdsif:

τ = poly(κ)⇒ Adv(A) = negl(κ).

It is easy to see that the RSA problem and its flexible variant are easier than factoring. The
reverse is still unclear. Actually, the only results we haveabout the relation between RSA and
factoring are the work [Boneh & Venkatesan, 1998] on the impossibility of reducingalgebraically
factoring to RSA, and the recent proof by Aggarwal and Maurerin [Aggarwal & Maurer, 2009] of
the equivalence between factoring and RSA with respect to general ring algorithms.

Diffie-Hellman-like problems

In Subsection 1.2.2, we briefly mentioned that the El Gamal encryption scheme meets different
levels of security under the hardness of different problems. We give in the present paragraph a
formal description of these problems.

Let (G = 〈g〉, ·) be a multiplicative group of orderd, generated byg.
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Definition 1.8. The Computational Diffie-Hellman Problem (CDH).The input to this problem
consists ofA = ga andB = gb, wherea, b are chosen uniformly at random fromZd. The adversary
A is then requested to compute aC such thatC = gab. The advantage of such an adversary is
given by:

Adv(A) = Pr




(G, d, g)← keygen(1κ),

(a, b)
R←− Z×d ,

gab
τ operations←−−−−−−− A(ga, gb).




where the probability is taken over the generation of the CDHinstance as well as on the random
choices ofA.
Similarly, we say thatthe Computational Diffie-Hellman (CDH) assumption holdsif:

τ = poly(κ)⇒ Adv(A) = negl(κ).

Definition 1.9. The Decisional Diffie-Hellman Problem (DDH).The input to this problem con-
sists ofA = ga, B = gb, andC = gc, wherea, b are chosen uniformly at random fromZd andc is
eitherab mod d or a random element inZd. The polynomial time adversaryA is then requested
to decide whetherc = ab mod d or not. Letb be the output of such an adversary, we define its
advantage as:

Adv(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr




(G, d, g)← keygen(1κ),

(a, b)
R←− Z×d ,

b
R←− {0, 1}

if b = 1 then c← ab mod d else c
R←− Z×d ,

d
τ operations←−−−−−−− A(ga, gb, gc),

b = d.




− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where the probability is taken over the generation of the DDHinstance and on the random choices
ofA.
Similarly, we say thatthe Decisional Diffie-Hellman (DDH) assumption holdsif:

τ = poly(κ)⇒ Adv(A) = negl(κ).

Definition 1.10. The Gap Diffie-Hellman Problem (GDH).The input and output of this problem
are similar to those of the CDH problem, with the exception ofsupporting the adversaryA with a
DDH oracle that he can query on any DDH instance of his choice.

Adv(A) = Pr




(G, d, g)← keygen(1κ),

(a, b)
R←− Z×d ,

gab
τ operations←−−−−−−− ADDH(ga, gb).



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Key generation Select two primesp = 2p′ + 1 andq = 2q′ + 1, wherep′ andq′ are primes,
compute the safe RSA modulusN = pq,
select a randoms ∈R Z×N ,
consider a collision-resistant hash functionΨ : {0, 1}ℓ → Primes ≥ 3 (ℓ ≈ 30),
set the public keypk to (N, s) and the private key to(p, q).

Signature A signature on a messagem ∈ {0, 1}ℓ is computed asσ = s1/Ψ(m) mod N .

Verification For an alleged signatureσ onm, check whetherσΨ(m) ?
= s mod N .

Figure 1.7: The GHR signature

whereDDH : (ga, gb, gc) 7−→ c
?
= ab mod d, and the probability is taken over the generation of

the GDH instance and on the random choices ofA.
Similarly, we say thatthe Gap Diffie-Hellman (GDH) assumption holdsif:

τ = poly(κ)⇒ Adv(A) = negl(κ).

Remark 1.4. The CDH, DDH, and GDH problems arerandom-self reducible, i.e. one can gen-
erate from a specific instance a random one. Thus, the averagecase and worst case of all these
problems are equivalent.

Remark 1.5. The CDH problem is obviously harder than the DDH and GDH problems. There is
actually a clear separation between the CDH and the DDH problems in some groups which we
will see in Section 1.5.

We are now able to state that the El Gamal encryption scheme is:

1. OW-CPA secure if the CDH problem is hard, i.e. the CDH assumption holds.

2. IND-CPA secure if the DDH problem is hard, i.e. the DDH assumption holds.

3. OW-PCA secure if the GDH problem is hard, i.e. the GDH assumption holds.

1.3.3 Example: The GHR [Gennaroet al., 1999] signature scheme

We illustrate the principle of reductionist or provable security by one of the simplest security
reductions known in the literature: the security proof of the GHR [Gennaroet al., 1999] signature
scheme.

Theorem 1.1. The GHR signature, depicted in Figure 1.7, is EUF-CMA secureif the SRSA as-
sumption holds.
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Proof. LetR be the Flexible RSA adversary.R is given the Flexible RSA instance, say(N, y),
in addition to an EUF-CMA attackerA, and is requested to come up with a pair(x, e) such that
e > 1 andxe = y mod N . R needs to generate properly the parameters of the GHR scheme forA
in order to be able to answer the signature queriesA may request. Thus,R should feedA with a
keypk = (N, s) such thats allowsR to easily extractΨ(mi)-th roots ofs, wheremi correspond to
the messages queried byA for signature. At the same time,s should be cleverly chosen such that
it allows exploitation of the existential forgery output byA to solve the Flexible RSA instance.
R will then behave as follows:

Key generation.

• Choose uniformly at randomi
R←− [[1, 2ℓ]].

• For eachmj ∈ {0, 1}ℓ, computeΨ(mj) and setE =
∏

j 6=iΨ(mj).

• Sets = yE mod N and set the GHR public key to(N, s).

Since the provenance of(N, y) is the Flexible RSA instance, thus external toA, and the function
f : y 7→ yE is one-to-one (E is coprime toΦ(N)), then(N, s = yE) is perfectly indistinguishable
from a random GHR public key.

Signatures simulation. We distinguish two types of messagesmj A can request for signature:

• eitherj 6= i, in this caseR answers withyE/Ψ(mj),

• or j = i in which caseR will abort the experiment.

The difference between the simulation provided above and the real execution of the GHR signing
algorithm is whenA requestsmi for a signature. Sincei is chosen uniformly at random from
[[1, 2ℓ]], then the probability thatmi does not belong to the set of queried messages{mi1 , . . . , miq}
is 2ℓ−q

2ℓ
= 1− q

2ℓ
.

Exploitation of A’s forgery. At some point,A outputs his forgeryσ onm /∈ {mi1 , . . . , miq},
where{mi1 , . . . , miq} is the set of messages queried byA. Assume thatm = mi, then the forgery
satisfies the following equation:

σΨ(mi) = s = yE mod N.

SinceE is a product of primes different from the primeΨ(mi), thenR can compute integersa
andb such thata ·Ψ(mi) + b · E = 1. Hence the following holds:

y = yaΨ(mi) · ybE = yaΨ(mi)σbΨ(mi) =
(
yaσb

)Ψ(mi)
.
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R will then output to his challenger the pair(x = yaσb, e = Ψ(mi)). R solves his RSA
challenge ifA produces a forgery on the messagemi. This event occurs with probability1/(2ℓ−q).

Now, if ǫA is the advantage of the attackerA, then the advantageǫR ofR can be computed as:

ǫR = ǫA ·
2ℓ − q
2ℓ
· 1

2ℓ − q =
ǫA
2ℓ
.

Remark 1.6. The factor2ℓ is called thereduction loss. A tight security reduction is characterized
by a small reduction loss. The importance of this factor manifests when we considerconcrete
security instead ofasymptoticsecurity. In fact, asymptotic security guarantees only that a scheme
is asymptotically secure, i.e. all attacks vanish asymptotically if the reduction loss is polynomial in
the security parameter and the underlying problem is believed to be asymptotically hard. Concrete
security helps to tune the security parameter so that the scheme has a desired concrete security.
For example, if the modulus needs to be at least of size1024 so that the advantage of the Flexible
RSA attacker is at mostǫ = 2−80, then with the above reduction, the advantage of the GHR attacker
is only smaller thanǫA = 2−80+ℓ = 2−50. To have a GHR security about2−80, one has to increase
the size of the modulus.

Remark 1.7. There exists a long-message variant of the GHR signature scheme which is proven
EUF-CMA secure under the SRSA assumption with a security loss aboutq, whereq is the number
of allowed queries. This proof, provided in [Coron, 2002], is shown to be optimal, i.e. there exists
no tighter reduction from the Flexible RSA problem to EUF-CMA breaking this variant of GHR.

1.3.4 Ideal proof models

In Subsection 1.3.3, we provided a security reduction from the Flexible RSA problem to EUF-
CMA breaking the GHR signature scheme without making any assumptions on the ingredients of
the scheme (groupZ×N , the hash functionΨ, etc...); we say that the provided security reduction
stands in thestandard model. Such proofs are usually difficult to obtain even when the design is
extremely simple, e.g. RSA-FDH [Bellare & Rogaway, 1996]. This explains why cryptographers
resort toidealizingsome components of the scheme in question and providing a security proof
from the presumed hard problem to breaking the scheme with respect to ageneric adversary, i.e.
an adversary accessing the idealized object through an oracle. Such proofs do not provide any
insights about the real security of the scheme in the standard model as there exist many designs
that are proven secure in idealized settings but insecure inthe standard model. However, they
provide strong evidence that the scheme in question is secure provided the underlying problem is
hard or the adversary does not exploit special properties ofthe idealized setting.

The popular idealized settings in cryptography are:
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The random oracle model (ROM).This is a mathematical abstraction used to model a random
hash function. It consists of a theoretical black box that responds to every query with a
uniformly chosen random string from the output domain, withthe exception of giving the
same answer to the same query. A way of simulating the random oracle can be achieved
by picking a random elementy from the given range for every queryx, and storing the pair
(x, y) in a history listHist so that if the same queryx is solicited, the reply would bey.
Random oracles proved useful in cryptography and they were first considered by Fiat and
Shamir in [Fiat & Shamir, 1986] to remove interaction from 3-round public-coin identifi-
cation schemes. Later, they were used by Bellare and Rogawayin [Bellare & Rogaway,
1993] to provide generic constructions of encryption and signature schemes. As previously
mentioned, there are schemes that are proven secure in the ROM but insecure in the stan-
dard model. We note for instance the result of Goldwasser andTauman Kalai [Goldwasser
& Tauman Kalai, 2003] that exhibit secure 3-round public-coin identification schemes for
which the transformation of Fiat and Shamir in [Fiat & Shamir, 1986] yields insecure digital
signature schemes foranyhash function used in the transformation. This contrasts the work
of Pointcheval and Stern [Pointcheval & Stern, 2000] which proved that the Fiat-Shamir
methodology always produces EUF-CMA secure digital signatures in the ROM. The result
in [Goldwasser & Tauman Kalai, 2003] is strengthened by the work of Paillier and Vergnaud
[Paillier & Vergnaud, 2005] which show that some signaturesfrom the Fiat-Shamir paradigm
cannot even be UUF-KOA secure in the standard model. Finally, we finish this paragraph by
citing a recent positive result about ROM, namely an implementation of a hash function into
elliptic curves which isindifferentiablefrom a random oracle. We refer to [Coron & Icart,
2009] for further details.

The generic group model.A generic model of a group was first introduced by Nechaev [Nechaev,
1994]. Shoup [Shoup, 1997] later improved these results andapplied this model to cryptog-
raphy. In this model, one assumes that operations in a group can be performed only by
means of an oracle. More specifically, suppose thatG is an (additive) group of prime order
q. ThenG is isomorphic to the additive groupZq and for any non-identity elementP ∈ G,
one can construct an efficient isomorphism sendingi ∈ Zq to iP , using some version of the
repeated squaring algorithm to perform the scalar multiplication in polynomial time. In a
generic group, one assumes that instead of having explicit formulas for the group element
iP , we rather have an “encoding”σ(i) ∈ S ⊂ {0, 1}∗ that represents the elementiP . A
generic algorithmA will then consult the oracle for two types of queries:

1. Given an integeri ∈ Zq, A requests the encoding ofiP : the oracle will then select
randomly a valueσ(i), to represent the elementiP , from the given set of bit strings.

2. Given two encodingsσ(i) andσ(j), A requests (without knowing necessarilyi andj)
the encoding ofσ(i± j). Again the oracle responds with a randomly chosen bit-string.

The only condition on the oracle responses is that if the samegroup element is queried a
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second time, the same corresponding encoding must be returned.

One of the important results of this model is the analysis of complexity assumptions in group-
based cryptography. For instance, Shoup gave in [Shoup, 1997] lower bounds for solving
the discrete logarithm problem and some other related problems. Finally, a security proof
in this model assures the absence of an adversary who behavesgenerically with respect to
the given group. However, it does not rule out the existence of a successful adversary for a
specific group [Dent, 2002; Sternet al., 2002].

The ideal cipher model. It consists in considering a block cipher as arandom permutation. A
random permutationE takes a pair(k, x) and returnsy = E(k, x) which is random in the
considered range. Of coursex = E−1(k, y). To simulate such a permutation, one proceeds
as follows. For any new pair(k, x), pick y at random from the output domain such that
(k, x, y) /∈ Hist[E], setE(k, x) = y and returny, and finally update the historyHist[E] with
the record(k, x, y). Such a simulation looks similar to the random oracle model simulation.
In fact, equivalence between the ROM and the ideal cipher wasleft as an open problem
until recently where Coron et al. [Coronet al., 2005] showed that security in the ROM
implies security in the ideal cipher model; namely they showed that a random oracle can
be replaced by a block cipher-based construction, and the resulting scheme remains secure
in the ideal cipher model. The other direction was solved three years later in [Coronet al.,
2008], however recent works regard the paper in question as incorrect.

1.3.5 Meta-reductions

Meta-reductions are probabilistic oracle (single or multi-oracle) Turing machines, where one or-
acle tape consists of an efficient reduction from some problem to another. Meta-reductions have
been successfully used in a number of important cryptographic results, e.g. the result in [Boneh
& Venkatesan, 1998] which proves the impossibility of reducing algebraically factoring to RSA,
or the results in [Paillier & Vergnaud, 2005; Paillier, 2007] which show that some well known
signatures, which are proven secure in the random oracle, cannot conserve the same security in the
standard model. Although most meta-reductions (used in cryptography) apply only to a category of
reductions, e.g. key preserving reductions [Paillier & Villar, 2006; Paillier, 2007] or algebraic re-
ductions [Boneh & Venkatesan, 1998; Paillier & Vergnaud, 2005], they constitute an efficient tool
to separate cryptographic problems ([Boneh & Venkatesan, 1998]) or to disprove that the security
of some cryptographic scheme rests on the hardness of some problem.

Figure 1.8 depicts the typical use of a meta-reduction in disproving that a given problemP
reduces to breaking a given signature schemeΣ. Actually, letR be an algorithm that solves an
instance of the problemP , using an attackerA against the signature scheme. Naturally,R needs
to simulate toA the key generation, the signature, and the verification algorithms ofΣ. If one can
build an efficient algorithmM that usesR to solve an instance of the same problemP (note that
such an algorithm needs to simulate toR the adversaryA), then one can conclude the impossibility
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Figure 1.8: Example of a Meta-Reduction

of the existence ofR. In fact, existence ofM indicates that under the hardness ofP , the algorithm
R does not exist; otherwise, ifP is easy, thenR might exist, however its work is useless (solving
a problem known to be easy).

1.3.6 Trends in reductionist security

Far from pretending to be exhaustive, this paragraph is confined to shed light on some of the
important trends in reductionist security.

Alleviation/removal of idealized models.As previously mentioned, separation results between
the standard model and idealized models become more and morepopular in cryptography.
An interpretation to this is that proofs in these idealized models leave unfair advantage to
proofs in the standard model as they modify the adversary’s computations in a way that
cannot be justified in practice. Thus the need for schemes provably secure in the standard
model. There is quite a good number of signature/encryptionschemes that are secure in the
standard model, however the underlying assumptions are either strong, e.g. [Gennaroet al.,
1999; Cramer & Shoup, 2000] or the security reduction is veryloose, e.g. [Waters, 2005;
Hofheinz & Kiltz, 2009] or the scheme is very inefficient [Hohenberger & Waters, 2009].

Convergence of complexity assumptions.Since the introduction of modern cryptography, many
complexity assumptions emerged, most of them were shoveledup from number theory. To
name but a few, factoring, RSA, SRSA, discrete logarithm, CDH, DDH, GDH, and many
more. A considerable effort in provable security was deployed to study the relation between
these assumptions [Maurer & Wolf, 1998; Shoup, 1997; Aggarwal & Maurer, 2009].
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Impossibility/optimality proofs. One important issue in security proofs is to spot weaknesses
in a design when it fails to exhibit a real attack. In this sense, impossibility proofs aim at
showing that a security level cannot be attained by a scheme which suffers some inherent
flaws, e.g. [Paillier & Vergnaud, 2005; Paillier & Villar, 2006; Paillier, 2007]. Additionally,
optimality proofs, i.e. proofs showing a security reduction to be optimal, gained a lot of
popularity in cryptography as the reduction tightness represents an important measure for
the concrete security met by a scheme, e.g. [Coron, 2002].

Automatic verification/generation of proofs. Motivated by the tools at the disposal of logicians
to verify proofs, e.g. pvs or coq, cryptographers started tocheck the possibility of auto-
matically verifying and even generating security proofs for their schemes. However, this
area remains still unexplored since the only work in this direction is due to Blanchet and
Pointcheval [Blanchet & Pointcheval, 2006].

Physical security. So far, the considered security notions defined for cryptographic schemes
assume only ablack boxaccess of the adversary against the scheme to the allowed oracles.
This is not very realistic since the adversary might observethe energy consumed by the
device while performing the computations, he might also inject faults in these computations.
This triggered the crypto community to take into consideration this potentialgray boxaccess
to the oracles in question, and define new security notions accordingly. The state-of-the art
in this area is still very modest (see for instance [Goldwasser, 2009] for a survey).

1.4 Zero knowledge (ZK)

A basic problem in cryptography consists of a two-party gamewhere one party tries to prove to
the distrustful other party that a statement holds true, without revealing more information other
than the validity of the statement in question. We illustrate this situation with the example from
[Goldreich, 2001]: suppose that all users in a system keep encrypted backups (using their public
keys) of their entire file system in a publicly accessible storage medium. Suppose that at some
point, a user Alice wishes to reveal to another user Bob the content of one of her files. One trivial
solution consists in decrypting the file in question (using her own private key) and sending it to
Bob. The problem with this solution lies in the inability of Bob to check whether the revealed
information is really the decryption of the public record. Alice can circumvent the problem by
disclosing her private key to Bob, however this will give thelatter the possibility of getting hold of
her entire file system, which is certainly not desired by Alice.

Such a problem has motivated cryptographers to invent a mechanism allowing Alice to conduct
a proof with Bob such that at the end of this proof:

1. Alice is ensured that Bob will not gain any information other than the validity of the state-
ment she tried to prove. Moreover, Bob cannot convince a third party with the validity of the
statement in question.
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2. Bob accepts the proof only if the statement holds true witha high probability, that is, Alice
cannot convince Bob with the validity of an invalid statement.

In this section, we will recall such a mechanism, called zeroknowledge proofs of knowledge
(ZKPoK). We will first establish the model of computation, namely the model of an interactive
proof system, then define the different notions related to this mechanism and that are relevant for
the thesis.

1.4.1 Interactive proofs

A model of computation of an interactive proof system was first introduced by Goldwasser, Micali
and Rackoff [Goldwasseret al., 1989]. It informally consists of a proverP trying to convince
a verifierV that an instancex belongs to a languageL. x refers to the common input whereas
(P, V )(x) denotes the proof instance carried betweenP andV at the end of whichV is (not)
convinced with the membership of the alleged instancex toL:

(P, V )(x) ∈ {Accept,Reject}
P is modeled by a probabilistic Turing machine whereasV is modeled by apolynomialproba-
bilistic Turing machine. During(P, V )(x), the parties exchange a sequence of messages called the
proof transcript. These messages sizes are polynomial in the size ofx. Moreover,(P, V )(x) must
terminate in time polynomial in the size ofx. The output value(P, V )(x) is a random variable of
the common inputx, the private input ofP and the random coins of bothP andV (bothP and
V are probabilistic Turing machines). We naturally want to have (P, V )(x) = Accept with high
probability for all positive instances (x ∈ L), and with small probability for all negative instances
(x /∈ L). This translates into the following definition (from [Mao,2008]):

Definition 1.11. LetL be a language over a given alphabet. We say that a protocol(P, V ) is an
interactive proof (IP) system forL if:

Pr [(P, V )(x) = Accept| x ∈ L] ≥ ǫ, (1.1)

and
Pr

[
(P̃ , V )(x) = Accept| x /∈ L

]
≤ δ (1.2)

for every probabilistic Turing machinẽP , whereǫ andδ are constants satisfying

ǫ ∈ (
1

2
, 1], δ ∈ [0,

1

2
),

where the probability is over all the common input values to(P, V ) and all random input values of
P , P̃ , andV .

Equation 1.1 characterizes thecompletenessnotion for an IP protocol, whereas Equation 1.2
characterizes thesoundnessnotion which captures the inability of a cheating proverP to convince
the verifierV with an invalid statement.
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1.4.2 Zero knowledge interactive proofs (ZKIPs)

In the previous subsection, we exhibited a proof mechanism capable of convincing the verifier
with the validity of a valid statement. However, we did not address the question of the additional
knowledge the verifier will gain aside from the validity of the statement in question. Ideally, we
would like this additional knowledge to bezero, thus the namezero knowledge. We define formally
this notion as follows (from [Mao, 2008]):

Definition 1.12. Let (P, V ) be an interactive proof system for some languageL. We say that
(P, V ) is zero knowledgeif for everyx ∈ L, the proof transcript(P, V )(x) can be produced
by a probabilistic polynomial-time algorithm (in the size of the input)S with indistinguishable
probability distributions:

• if the probability distributions of(P, V )(x) andS(x) are the same, then the protocol(P, V )
is said to be perfectly zero-knowledge.

• if the probability distributions of(P, V )(x) andS(x) are statistically indistinguishable, then
(P, V ) is called a statistical zero knowledge protocol,

• finally, if the distributions of(P, V )(x) andS(x) are computationally indistinguishable, then
(P, V ) provides only computational zero-knowledgeness.

Conventionally, the algorithmS is named a simulator for the ZK protocol since it provides a
simulation of the proof transcript. However, in case of perfect ZK protocols,S is called often the
equator as it provides a perfect simulation.

Remark 1.8 (Honest-verifier zero knowledge (HVZK)). A protocol(P, V ) is said to provide only
an honest-verifier zero knowledgeness if it is zero knowledge (perfect, statistical or computational)
only when the verifier follows honestly the protocol instructions. It may well leak knowledge in
the presence of a malicious verifier who does not behave as prescribed. However, it can be shown
that every honest-verifier statistical (computational) ZKcan be turned efficiently into a statistical
(computational) ZK protocol [Goldreichet al., 1998].

Remark 1.9 (Simulatability of ZKIP). According to the above definition, a ZKIP assumes the
existence of an efficient algorithm capable of producing transcripts indistinguishable from those
obtained from the interaction with the real prover. For instance, this simulator is not required to
interact with the verifier. However, most ZK (and not only HVZK) proofs in the literature have sim-
ulators which interact with the verifier; the idea consists in rewindingthe verifier until he produces
an output that agrees with what the simulator generated beforehand. The example provided later
in this section illustrates such a technique which works fineas long as the universe from which the
verifier chooses his outputs is polynomially bounded (in thesecurity parameter).

Finally, throughout this thesis, when we refer to the simulatability of a ZKIP, we mean the
existence of a simulator whichinteracts with the verifierand produces transcripts that are indis-
tinguishable from those obtained from the interaction withthe real prover.
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A complexity theoretic result: NP (co-NP)⊂ ZK

An important result in complexity theory shows that every language in NP accepts a zero knowl-
edge proof system. This result has been proven in a constructive manner by first constructing a
ZK proof system(P, V ) for an NP-complete problemL, e.g. Graph 3-colorability by Goldreich,
Micali and Wigderson in [Goldreichet al., 1991] or boolean satisfiability by Brassard, Chaum and
Crépeau [Brassardet al., 1988], then propagating this property to the other languagesL′ in NP as
follows:

1. each party computesx = f(x′), an instance of the NP-complete languageL. It is worth
noting thatf can by definition be computed and inverted efficiently.

2. P conducts a ZK proof withV to prove thatx ∈ L.

It is obvious that the above construction of a ZK proof systemfor any language in NP constitutes
only a theoretic result. In fact, a practical ZK protocol should have the number of interactions
betweenP andV bounded by a linear function in the security parameter. Thiscannot be achieved
by the above construction since we do not know any linear transformation (reduction) of an NP
language to an NP-complete one.

Finally, proving that co-NP languages accept also ZK proof systems is done in a more general
frame; the above result concerning NP is extended to the class of interactive protocols, namely the
class IP, and it is known that this class equals the class PSPACE which contains the class co-NP.

1.4.3 Example of a ZKIP: Schnorr’s [Schnorr, 1991] identification protocol

The Schnorr identification protocol was proposed by Schnorrin [Schnorr, 1991] for a real-world
(smart card-based) application. This protocol operates ina cyclic group(G, ·) of prime orderd
which is generated by some elementg. The common input of the proverP and verifierV is an
elementy of unknown discrete logarithm in baseg, and the private input of the prover is this very
discrete logarithm, sayx. That is,P proves toV that he knowsx. This protocol is depicted in
Figure 1.9. Note thatℓ is a parameter that will be tuned later in the analysis.

Completeness. The completeness of the protocol is trivially achieved withprobabilityǫ = 1.

Soundness. Suppose that the cheating proverP̃ is able to successfully carry out the above proto-
col without knowingx. That is,P̃ , after having committed to at, is able to answer the challenge
c with a responser satisfyinggr = tyc. Note that, for a fixedt, the last equation corresponds
each challengec to a unique responser. Thus, provided the discrete logarithm problem is hard in
G, P̃ needs to guessc correctly beforehand in order to provide an accepting answer; P̃ will first

chooser
R←− Zd, then computest = gry−c and sends it as a commitment in the first step of the

protocol. In this way, wheñP receives the correctly guessedc, he will simply answer withr. This
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ProverP Verifier V

Choosek
R←− Zd

Computet = gk
t−−−−−−−−−−→
c←−−−−−−−−−− Choosec

R←− {0, 1}ℓ(c ∈ N)
r = k + cx mod d−−−−−−−−−−→

Verify thatgr = tyc

Figure 1.9: Proof system for{ga : a ∈ Zd} Common input: (y, g) andPrivate input: x : y = gx

results in a soundness error equal to2−ℓ, which corresponds to the probability of correctly guess-
ing the challengec. As a consequence, the higher the parameterℓ, the better for the soundness of
the protocol. However, we will see in the next paragraph thatwe cannot increase this parameter
indefinitely since this would compromise the zero knowledgeness of the protocol.

Zero knowledge. For this property, we change sides. We want now to prohibit the verifier from
learning anything from the prover apart from the validity ofthe membership ofy to L. For this,
we provide the following simulator:

1. Generate uniformly a random challengec′
R←− {0, 1}ℓ. Choose a randomr

R←− Zd, compute
t = gry−c

′
, then sends it to the verifier.

2. Getc from the verifier.

3. If c = c′, the simulator sends backr. Otherwise, it goes to Step 2 (rewindsthe verifier).

Let us now analyze the adequacy of this simulator. The prover’s first message in the protocol is a
random valuet in G, and so is the simulator’s. Moreover, the distributions of the responses of the
prover and of the simulator resp. are again identical. Finally, we observe that the simulator runs in
expected time2ℓ since the probability of not rewinding the verifier is:

Pr[c = c′] =
∑

ci∈{0,1}ℓ

Pr[c = ci, c
′ = ci]

=
∑

ci∈{0,1}ℓ

Pr[c = ci] Pr[c
′ = ci]

= 2−ℓ
∑

ci∈{0,1}ℓ

Pr[c = ci]

= 2−ℓ
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Adjustingℓ to a factor logarithmic in the security parameter ensures that the simulator will run
in expected polynomial time.

1.4.4 More on zero knowledge

Since zero knowledge was invented in the mid-eighties, the literature about it was so abundant that
it exceeded 400 publications. In this subsection, we will concentrate on the aspects of this notion
that are relevant for this thesis.

Further definitions (Σ protocols)

A public-coin protocolis a protocol in which the verifier chooses all its messages randomly from
publicly known sets. Athree-move protocolcan be written in a canonical form in which the
messages sent in the three moves are often called commitment, challenge, and response. The
protocol is said to have thehonest-verifier zero-knowledge property (HVZK)if there exists an
algorithm that is able, provided the verifier behaves as prescribed by the protocol, to produce,
without the knowledge of the secret, transcripts that are indistinguishable from those of the real
protocol. The protocol is said to have thespecial soundness property (SSp)if there exists an
algorithm that is able to extract the secret from two accepting transcripts of the protocol with the
same commitment and different challenges. Finally, a three-move public-coin protocol with both
the HVZK and SSp properties is called aΣ protocol.

Round efficiency

As mentioned in the previous subsection, the soundness error in Schnorr’s identification protocol
amounts to2−ℓ, whereℓ is a factor logarithmic in the security parameterlog d. In order to reduce
this error probability to a negligibly small quantity, i.e.a quantity smaller than1/log dc for all
constantsc, we can repeat the protocollog d many times. Such a protocol is then called alog-
round protocolwhich is characterized by a number of rounds linear in the security parameter.
There exists also the category of protocols which need to be repeated a polynomial factor (in
the security parameterlog d) of rounds. We talk then aboutpoly-round protocols. Examples of
these protocols are for instance those proving the validityof a general NP statement via a general
polynomial reduction to a NP-complete problem.

Sequential vs concurrent zero knowledge

We addressed in the previous paragraph the possibility of repeating many times a proof of knowl-
edge in order to reduce its soundness error. This repetitioncan be sequential or in parallel. The
natural question to ask is whether the zero knowledge feature is preserved or not. The good news
is that zero knowledge is closed under sequential repetition of the protocol (see [Goldreich, 2001,
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Chapter 4, Paragraph 4.3.4] for the proof), which means thatwe can indefinitely reduce the sound-
ness error of a protocol without compromising its zero knowledgeness. Parallel composition is
not however guaranteed to preserve zero knowledge. Less is the concurrent composition which
generalizes both sequential and parallel composition; in this composition, many instances of the
protocol are invoked at arbitrary times and proceed at arbitrary pace. This composition turns out
to be of significant importance in many real life applications. Fortunately, there exists a result
[Damgård, 2000] that shows that a wide range of known zero knowledge protocols, e.g.Σ pro-
tocols, can be modified with negligible loss of efficiency to preserve zero knowledgeness under
concurrent composition.

Non-interactive zero knowledge (NIZK)

This notion, introduced in [Blumet al., 1988], consists of a prover who tries to convince a verifier
of the validity of some assertion in one move, i.e. without interaction with the verifier. The basic
zero knowledge requirement for such proofs consists in exhibiting an efficient simulator outputting
messages indistinguishable from the prover’s. It is worth noting here that the definition of the zero
knowledge requirement for these proofs is simplified because the verifier cannot affect the prover’s
actions.

The most famous technique to obtain NIZK from their interactive variants is known as the
Fiat-Shamir paradigm [Fiat & Shamir, 1986]. It consists of letting the prover compute the ver-
ifier’s challenge himself as a hash of the statement to be proved and of the first message. The
security of this construction is provided only in the randomoracle model, which constitutes its
major shortcoming. In fact, it is not in general possible to instantiate the random oracle with a
concrete function and have the security properties preserved.

A recent method is due to Damgård et al. [Damgårdet al., 2006]. It transforms a 3-move
interactive ZK protocolP with linear answer to a non-interactive ZK one (NIZK) using ahomo-
morphic encryption scheme in a registered key model, i.e. ina model where the verifier registers
his key. More precisely, leta be the first message computed by the prover inP , c ∈ N be the
challenge sent by the verifier, and finally letz = u + cv be the answer computed by the prover
in the third step, whereu, v ∈ N. Let furtherΓ denote a homomorphic encryption scheme such
that Γ.encrypt(m + m′) = Γ.encrypt(m) · Γ.encrypt(m′), wherem andm′ are integer values
in a suitable range. If the verifier chooses a key pair(Γ.pk,Γ.sk) and publishes an encryptione
of the challengec, then the prover can computea as usual,Γ.encrypt(z) asΓ.encrypt(u)ev, and
sends these quantities to the verifier in one pass. The verifier decryptsΓ.encrypt(z) to obtainz
and checks whether(a, c, z) is an accepting transcript. The authors in [Damgårdet al., 2006] pro-
posed an efficient illustration using Paillier’s encryption and the proof of equality of two discrete
logarithms.
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1.5 Bilinear maps

Bilinear maps are essential in today’s cryptography. They are used in constructing many crypto-
graphic schemes ranging from short digital signatures to efficient public key encryption schemes.
A bilinear map is nothing but an efficient computable function mapping pairs of group elements to
elements in a third group. This function has two properties,namely it is bilinear and it is different
from the constant function. More precisely, let(G1,+) and (G2,+) be two groups with order
d, generated byP andQ respectively. Let(G3, ·) be another group with the same group order.
A bilinear mape is an efficiently computable function fromG1 × G2 → G3 with the following
properties:

• Bilinear: ∀a, b ∈ Zd : e(aP, bQ) = e(P,Q)ab.

• Non-degenerate:e(P,Q) 6= 1G3.

So far, there seems nothing new since the concept of bilinearfunctions is already known in math-
ematics. However, the contribution of cryptographers in this area consists in building efficiently
these maps from special and nice groups, i.e. the group of points of an elliptic curve.

In this section, we give a short survey on one popular pairingused in cryptography, namely the
Weil pairing. The working of this pairing is not needed in understanding the thesis since bilinear
maps are used as black boxes when designing cryptographic schemes. However, we chose to give
this short panorama in order to help evaluate the efficiency of systems using such a map. We will
first give a short introduction to elliptic curves, then describe how to construct such a pairing.

1.5.1 Introduction to elliptic curves

Let Fq be a finite field of characteristicp ≥ 5. A smooth (non-singular) elliptic curve is defined by
the Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Fq

or
y2 = x3 + Ax+B, A,B ∈ Fq, 4A3 + 27B2 6= 0.

We define the group of points of an elliptic curve given by one of the two above equations as
follows:

E(Fq) = {(x, y) ∈ Fq × Fq : y
2 = x3 + Ax+B} ∪ {∞}

The additional point∞ is called the point at infinity on the elliptic curve. Similarly, we can define
E(Fqk), whereFqk is an extension of the fieldFq, by taking the points with coordinates in this
extension.

The group operation, which we will denote+ in the groupE(Fq), is defined as follows:

• ∀ P ∈ E(Fq) : P +∞ = P and∞+∞ =∞,
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• if P andQ are the intersection ofE with a vertical line thenP +Q =∞,

• otherwise, ifP = (x1, y1) andQ = (x2, y2) thenP + Q = (x3, y3) such thatx3 =
m2 − x1 − x2 andy3 = m(x1 − x3)− y1 with

m =

{
y2−y1
x2−x1

if x1 6= x2
3x21+A

2y1
if x1 = x2 and y1 = y2 6= 0

It is easy to check that with the above definition of the operation +, E(Fq,+) is a finite
Abelian group with neutral element∞. Moreover, we define the order of an elementP ∈
E(Fq,+) to be the least positive integerm such thatmP = P + P + ·+ P︸ ︷︷ ︸

m times

=∞.

Definition 1.13 (m-torsion points). The group ofm-torsion points of E is

E[m] = {P ∈ E(Fq) : mP =∞}.

Fact 1.2.E[m] ∼= Zm × Zm if p ∤ m.

1.5.2 The Weil pairing

The Weil pairing is a mape : E[m] × E[m] → µm = {ζ ∈ Fq|ζm = 1} ⊆ F×
qk

, wherek is called
the embedding degree, which satisfies the following properties:

1. ∀ P,Q,R ∈ E[m] : e(P +Q,R) = e(P,R) · e(Q,R) ande(P,Q +R) = e(P,Q) · e(P,R)
(bilinearity).

2. e(P,Q) = 1 ∀ Q ∈ E[m]⇔ P =∞ (non-degeneracy)

3. ∀P ∈ E[m] : e(P, P ) = 1.

The last property of the Weil pairing can be avoided using a distortion mapΨ : E[m] → E[m]
such thatP andΨ(P ) belong to disjoint cyclic groups of orderm. With this map, we are able to
define a modified Weil pairinĝe such that̂e(P, P ) = e(P,Ψ(P )).

So far, we have presented the most popular pairing in cryptography along with its properties.
We will show in the rest of this section how one can efficientlyconstruct such a pairing. We need
to first recall the notion of rational functions and their divisors, then proceed to the description of
the algorithm computing this pairing.
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Rational functions and divisors

A rational function is a ratio of polynomials, e.g.

f(x, y) =
f1(x, y)

f2(x, y)

P = (x, y) is called azeroof the functionf if f1(P ) = 0, and is called apoleof f if f2(P ) = 0.
A rational functionf(x, y) = f1(x,y)

f2(x,y)
, wheref̂1 andf̂2 denote the top degree parts off1 andf2

respectively, can be evaluated at the special point∞ as follows

1. if f1 andf2 have the same degree, thenf(∞) = f̂1(0,1)

f̂2(0,1)
,

2. if f1 has larger degree, thenf(∞) = f̂1(0,1)
0

,

3. if f2 has larger degree, thenf(∞) = 0

f̂2(0,1)
.

Given an elliptic curveE, we can define a rational function on it by simply mapping eachof its
pointsP = (x, y) ∈ E to f(P ) = f(x, y). It easy to see that we can write (using the Weierstrass
equation that defines the curveE):

f(x, y) = uP (x, y)
rg(x, y)

whereP is a zero of the rational functionf , r ∈ Z andP is neither a zero nor a pole ofg.
uP is called auniformizerat P , whereasr is called theorder of f at P (r = ordP (f)) which
satisfies the following properties:

• if P is neither a zero nor a pole off , thenordP (f) = 0,

• if P is zero off , thenordP (f) > 0,

• if P is a pole off , thenordP (f) < 0.

Finally, a divisordiv of a rational functionf is defined as follows:

div(f) =
∑

P

ordP (f)(P ),

which means thatdiv(f) evaluates toord(P ) on the pointP . Actually, the notion of a divisor
is more general. In fact, a divisor is a map from the points of some curve to the set of integers
which is equal to zero except on a finite set of points, called its support. To represent this map, it
is traditional to write it as a formal sum

∑
D(P )(P ), whereD(P ) is the value of the divisor at the

pointP . Thedegreeof a divisorD is simply the (finite) sum of its values at all points. Whereas
the sum of a divisor

∑
D(P )(P ) is simply the sum

∑
D(P )P . Moreover, a divisor is called
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principal if it can be written as the divisor of a rational function on the elliptic curve. Finally, iff
is an arbitrary function in the function field of an elliptic curveE, andD is an arbitrary divisor of
E whose support does not contain any of the zeros or poles off , then, writingD =

∑
D(P )(P ),

we define:
f(D) =

∏
f(P )D(P )

Fact 1.3. Any degree zero divisorD can be written asD = (P )− (∞) + div(f) for some pointP
of the elliptic curve and some rational functionf .

Theorem 1.4(Weil’s reciprocity). Let f andg be two functions in the function field of an elliptic
curve. If the zeros and poles off andg do not intersect, then :

f(div(g)) = g(div(f))

A proof of this theorem can be found for instance in [Blakeet al., 2005, pages 212-213].

Computing the Weil pairing on m-torsion points

We are now able to show how one can compute the Weil pairing onm-torsion points. LetP be an
m-torsion point on an elliptic curveE, i.e.mP = ∞. To defineem(P,Q), the Weil pairing forP
andQ, we choose two arbitrary divisorsDP andDQ with distinct support which sum toP andQ
respectively. Then we define the two functionsfP andfQ such thatdiv(fP ) = m(P )−m(∞) and
div(fQ) = m(Q)−m(∞). em(P,Q) is defined as follows:

em(P,Q) =
fP (DQ)

fQ(DP )

With this definition, it is easy to check, thanks to Weil’s reciprocity law that this map is well de-
fined, i.e. is independent of the choice ofDP andDQ. Moreover, it is bilinear and non-degenerate.
We refer for example to [Joux, 2009b, pages 430-431] for the proof of this claim.

Now, we would like to evaluate the computability of such a map. From the discussion above,
it seems mandatory to have an algorithm that efficiently evaluates a functionfP at a pointQ.
Miller’s algorithm [Miller, 2004] (Algorithm 1 ) does this fairly well. This algorithm considers
intermediate functionsf (i)

P :

div(f
(i)
P ) = i(P )− (iP )− (i− 1)(∞)

with f (0)
P = f

(1)
P = 1.

It is easy to check thatf (m)
P = fP and that

div(f
(i+j)
P ) = div(f

(i)
P ) + div(f

(j)
P ) + (iP ) + (jP )− ((i+ j)P )− (∞).
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It can be shown that there exists a linear polynomialL(x, y) such that:

L(x, y) = (iP ) + (jP ) + (−(i+ j)P )− 2(∞).

Moreover, ifx0 is thex coordinate of(i+ j)P , we have:

div(x− x0) = ((i+ j)P ) + (−(i+ j)P )− 2(∞).

It follows that:

div(f
(i+j)
P ) = div(f

(i)
P ) + div(f

(j)
P ) + divL(x, y)− div(x− x0).

As consequence, we can choose:

f
(i+j)
P = f

(i)
P · f

(j)
P ·
L(x, y)
x− x0

Algorithm 1 Miller’s algorithm
Require: An integerm ≥ 0, m-torsion pointsP andQ.
Ensure: The value offP (Q).

Write m in binarym =
∑k−1

i=0 mi2
i

R← P
y ← 1
for i from k − 1 down to0 do

LetL be the tangent line atR
LetR← 2R
Let y ← y2 · L(Q)/(xQ − xR) in Fq

if mi = 1 then
L be the line throughP andR
Let R← R+ P
Let y ← y · L(Q)/(xQ − xR) in Fq

end if
end for
outputy

It is easy to see that that Miller’s algorithm resembles the repeated squaring algorithm which
computes powers of group elements. Optimization of this algorithm can be found in [Cohen &
Frey, 2005, pages 417, 424, 432].
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Chapter 2

Public Key Encryption Revisited

Abstract. The classical security notion an encryption scheme must fulfill is data
privacy or indistinguishability. This notion captures theinability of an attacker to
distinguish pairs of ciphertexts based on the messages theyencrypt. In [Bellare
et al., 2001], the authors propose an additional notion, called anonymity, which for-
malizes the property of key privacy. As a matter of fact, an adversary, in possession
of two public keys and a ciphertext formed by encrypting somedata under one of
the two keys, should not be able to tell under which key the ciphertext was created.
In this chapter, we show that anonymity and indistinguishability are not as orthog-
onal to each other (i.e. independent) as previously believed. In fact, they are equiv-
alent under certain circumstances. Consequently, we confirm the results of [Bellare
et al., 2001] on the anonymity of El Gamal’s and of Cramer-Shoup’s schemes, based
on existing work about their indistinguishability. Finally, we define the notion of
anonymity for key and data encapsulation mechanisms (KEMs and DEMs), and we
provide a similar study to that of public key encryption on the equivalence between
anonymity and indistinguishability for KEMs.
Parts of the results described in this chapter were published in [El Aimani, 2009a]
at Africacrypt 2009.

2.1 General framework

The formalization of a security notion capturing key privacy was motivated by the numerous ap-
plications in which anonymity surfaced. A typical example is this real-life scenario: a mobile user
A is communicating with a base stationB. Assume that an eavesdropperE knows the set of users
communicating withB, and can also listen to the communications of the users withB. In these
circumstances,A still wants to keep his identity (or public key) private fromE . This is possible if
the ciphertexts do not reveal any information about the public key, namely if the encryption scheme
is anonymous.
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The formal definition of anonymity for public key encryptionwas first given in [Bellareet al.,
2001]); it is described through a game between a challengerR and an adversaryA. The game runs
in three phases. In phase 1,A is given two challenge public keyspk0 andpk1, and has access to the
oracles, allowed by the attack model ATK, for both keyspk0 andpk1. OnceA decides that phase
1 is over, he outputs toR a challenge messagem⋆. In phase 2,R selects uniformly at random
one of the challenge public keys, uses it to encryptm⋆, and hands the resulting ciphertext toA. In
phase 3,A continues querying the oracles he had access to in the first phase, with the restriction
of not making queries w.r.t. to the challenge. At the end of phase 3,A outputs his guess for the
public key underlying the challenge ciphertext.A is considered successful when the output guess
is correct.

Definition 2.1 (Anonymity - ANO-ATK). Let Γ = (keygen, encrypt, decrypt) be a public key
encryption scheme, and letA be a PPTM. We consider the following random experiment, for

b
R←− {0, 1}, whereκ is a security parameter:

ExperimentExpano-atk−b
Γ,A (κ)

(pk0, sk0)← Γ.keygen(κ),
(pk1, sk1)← Γ.keygen(κ),
(m⋆, I)← AO(find, pk0, pk1)∣∣∣∣∣∣

if atk = cpa then O = empty.

if atk = pca then O = Oi, i = 0, 1;Oi : (m, c) 7−→ m
?
= Γ.decryptski(c).

if atk = cca then O = Oi, i = 0, 1;Oi : c 7−→ Γ.decryptski(c).
c⋆ ← Γ.encryptpkb(m

⋆)

d← AO(guess, I, c⋆)∣∣∣∣∣∣

if atk = cpa then O = empty.

if atk = pca then O = Oi, i = 0, 1;Oi : (m, c)( 6= (m⋆, c⋆)) 7−→ m
?
= Γ.decryptski(c).

if atk = cca then O = Oi, i = 0, 1;Oi : c( 6= c⋆) 7−→ Γ.decryptski(c).

Returnd

We define theadvantageofA via:

Advano−atk
Γ,A (κ) =

∣∣∣∣Pr
[
Expano−atk−b

Γ,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given(t, q) ∈ N2 andε ∈ [0, 1],A is called a(t, ε, q)-ANO-ATK adversary againstΓ if, running
in time t and issuingq queries to the allowed oracles,A hasAdvano−atk

Γ,A (κ) ≥ ε. Γ is said to be
(t, ε, q)-ANO-ATK secure if no(t, ε, q)-ANO-ATK adversary against it exists. Finally, we consider
an encryption schemeΓ with security parameterκ ∈ N; Γ(κ) is said to beANO-ATK secure if,
for any polynomial functionst, q : N → N and any non-negligible functionε : N → [0, 1], it is
(t(κ), ε(κ), q(κ))-ANO-ATK secure.
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Exploring the relationship between data privacy and key privacy in public key encryption
schemes came very natural to researchers. Indeed, in their seminal work [Bellareet al., 2001],
the authors observe that the new notion is totally differentfrom data privacy, as there exist encryp-
tion schemes that satisfy one notion but not the other. They also claimed that “it is not hard to see
that the goals of data privacy and key privacy are orthogonal”. Recently, this claim was proven
in [Zhanget al., 2007] by exhibiting a technique that upgrades the key privacy (in an encryption
scheme already enjoying this property) but destroys the data privacy, and vice versa. Such a result
can be considered as negative, since it only shows how to build a encryption scheme which has
one property but not the other. But what about the opposite? Can one specify simple assumptions
to hold in an encryption scheme so that key privacy yields data privacy and vice versa? Such an
approach has been considered in the literature for a different primitive, namely undeniable sig-
natures. In fact, invisibility and anonymity are two security properties that are closely related in
undeniable signatures. The first one requires an adversary not be able to distinguish a valid signa-
ture on a certain message from any uniformly chosen bit-string from the signature space, whereas
the second notion refers to the hardness of, in possession ofa signature and two public keys, telling
under which key the signature was created. Since the introduction of undeniable signatures, these
two notions were treated separately and many schemes emerged which either meet the first notion
or the second, until 2003 where a comprehensive study [Galbraith & Mao, 2003] led to the conclu-
sion that anonymity and invisibility are essentially the same under certain conditions. With such a
result, one can seek only one notion when designing undeniable signatures.

In the rest of this chapter, and in an attempt to bridge the gapbetween anonymity and indistin-
guishability in encryption schemes, we specify simple conditions to hold in the given encryption
scheme so that anonymity implies indistinguishability andvice versa. This will allow a direct
use of existing results about data/key privacy of asymmetric encryption schemes rather than “do-
ing the work” from scratch as claimed in [Bellareet al., 2001]. As a consequence, we confirm
the results in [Bellareet al., 2001] that prove the anonymity under chosen plaintext attacks of El
Gamal’s encryption scheme and the anonymity under chosen ciphertext attacks of Cramer-Shoup’s
encryption, assuming the intractability of the DecisionalDiffie-Hellman problem (DDH). Finally,
we define the notion of anonymity for key and data encapsulation mechanisms (KEMs and DEMs)
and provide a similar study to that of public key encryption on the equivalence between anonymity
and indistinguishability for KEMs and DEMs.

2.2 Key privacy vs data privacy

In this section, we present conditions that suffice to conclude on the anonymity of an encryp-
tion scheme given existing results about its indistinguishability and vice versa. Our result builds
from the work of [Galbraith & Mao, 2003] on undeniable signatures and extends it to public key
encryption.

We stress that every choice of the security parameterκ defines a key spacePK × SK (corre-
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sponding to the space of key pairs (pk, sk) generated by thekeygen algorithm), a message spaceM
and a ciphertext spaceC. In particular, the ciphertext spaceC depends merely onκ and not on a
specific key.

2.2.1 The main result

Let Γ be a public key encryption scheme given by its three algorithms: Γ.keygen, Γ.encrypt, and
Γ.decrypt. The following are the properties needed to prove the relationship between key privacy
and data privacy.

Property A : Let κ be a security parameter and let(pk, sk) be an output ofΓ.keygen. Consider the
uniform distribution onM. Then, the distribution onC corresponding to the random variable

Γ.encryptpk(m) (m
R←− M) is computationally indistinguishable from uniform.

Property B: Let κ be a security parameter and letm ∈ M be an arbitrary message. Consider
the distribution induced by the probabilistic algorithmΓ.keygen on the key spacePK− SK.
Then, from a key pair(pk, sk) sampled according to this distribution, the distribution on C

corresponding to the random variableΓ.encryptpk(m) is computationally indistinguishable
from uniform.

Intuitively, Property A means basically the following: fora fixed key and varying messages, en-
cryptions look random. It is worth noting that the same property has been formulated differently
in [Halevi, 2005], where the author requires the distributions in questions to be statistically indis-
tinguishable. Property B suggests that, for a fixed message and varying keys, encryptions look
random.

We get now to the relation between anonymity and indistinguishability. Theorem 2.1 says
that if Property A holds in an encryption schemeΓ, then indistinguishability implies anonymity.
Theorem 2.2 requires Property B for anonymity to yield indistinguishability in a given encryption
scheme. Both theorems stand in all attack models (ATK ∈ {CPA,PCA,CCA}).
Theorem 2.1.LetΓ be a public key encryption scheme that has Property A. Given(t, q) ∈ N2 and
ε ∈ [0, 1]; if Γ is (t, ε, q)-IND-ATK secure, then it is(t, ε

2
, q)-ANO-ATK secure, whereATK ∈

{CPA,PCA,CCA}.
Proof. Given an anonymity adversaryAano−atk, we will create an indistinguishability adversary
Aind−atk in the same attack model ATK. Letpk0 be the input toAind−atk. Aind−atk will run Γ.keygen
to generate a public keypk1 together with its corresponding private keysk1.

Queries made byAano−atk are answered in the following way: if they are with respect tothe
keypk0, they are forwarded toAind−atk’s own challenger. Otherwise, in case they are with respect
to pk1, they are answered byAind−atk using the private keysk1.

WhenAano−atk outputs a messagem0 and requests a challenge,Aind−atk chooses a messagem1

uniformly at random fromM that he will pass, together withm0 to his challenger.Aind−atk will
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get an encryptionΓ.encryptpk0(mb), of eitherm0 or m1 (b
R←− {0, 1}), which he will forward to

Aano−atk. Queries byAano−atk continue to be handled as before.
If Γ.encryptpk0(mb) corresponds to the encryption ofm0 (underpk0), then with overwhelming

probability it is not an encryption ofm0 underpk1. Otherwise, ifΓ.encryptpk0(mb) is the encryp-
tion ofm1 (underpk0), then by virtue of Property A,Γ.encryptpk0(m1) is a random element inC
and with overwhelming probability it is not an encryption ofm0 under either key.

At the end of the game,Aano−atk outputs a guessb′ on the key under whichΓ.encryptpk0(mb)

was created.Aind−atk will then output the same guessb′.
Sinceǫ is defined to be the advantage ofAano−atk, we haveǫ = |Pr(b′ = 0|b = 0)− 1

2
|. In fact,

Aano−atk is expected to work only whenb = 0 (proper simulation), which explains the conditional
probability. In this case,Aano−atk is considered successful when he recognizes the challenge to be
an encryption underpk0 of the messagem0.

The advantage ofAind−atk is, according to Definition 1.5,
∣∣Pr(b′ = b)− 1

2

∣∣ and we have:

Adv(Aind−atk) =

∣∣∣∣Pr(b
′ = b)− 1

2

∣∣∣∣ =
∣∣∣∣Pr(b

′ = 0, b = 0) + Pr(b′ = 1, b = 1)− 1

2

∣∣∣∣

=

∣∣∣∣Pr(b
′ = 0|b = 0)Pr(b = 0) + Pr(b′ = 1|b = 1)Pr(b = 1)− 1

2

∣∣∣∣

≈
∣∣∣∣(ǫ+

1

2
)
1

2
+

1

2

1

2
− 1

2

∣∣∣∣ =
1

2
ǫ.

The last inequality, due toPr(b′ = 1|b = 1) ≈ 1
2
, is explained by the fact that in caseb = 1, there

is a negligible chance forΓ.encryptpk0(m1) to be also an encryption ofm0 underpk1.

Theorem 2.2. Let Γ be a public key encryption scheme that has Property B. Given(t, q) ∈ N2

andε ∈ [0, 1]; if Γ is (t, ε, q)-ANO-ATK secure, then it is(t, ε
2
, q)-IND-ATK secure, where ATK∈

{CPA,PCA,CCA}.

Proof. From an indistinguishability adversaryAind−atk with advantageǫ, we will construct an
anonymity adversaryAano−atk as follows.

Let (pk0, pk1) be the input toAano−atk. Aano−atk will run Aind−atk on pk0. Queries made by
Aind−atk will be simply passed toAano−atk’s own challenger.

At some time,Aind−atk outputs two messagesm0, m1. Aano−atk will forward m0 to his chal-

lenger and obtain the challengeΓ.encryptpkb(m0) whereb
R←− {0, 1}. Aano−atk will then pass the

challenge toAind−atk and continue to handle queries as previously.
In caseb = 0, the challenge encryption is a valid encryption ofm0 and an invalid encryption of

m1 underpk0. In the other case, sincepk1 (together withsk1) is sampled fromPK−SK and Property
B holds, thenΓ.encryptpk1(m0) is a random element inC and with overwhelming probability it is
not an encryption ofm1 underpk0. Therefore, whenAind−atk outputs his guessb′, Aano−atk will
forward the same guess to his own challenger.
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The advantage ofAind−atk in such an attack is defined by:ǫ =
∣∣Pr(b′ = 0|b = 0)− 1

2

∣∣. In fact,
Aind−atk is expected to work only whenb = 0. In this case,Aind−atk is considered successful when
he recognizes the challenge to be an encryption ofm0 underpk0.

The overall advantage ofAano−atk is according to Definition 2.1:

Adv(Aano−atk) =

∣∣∣∣Pr(b
′ = b)− 1

2

∣∣∣∣ =
∣∣∣∣Pr(b

′ = 0, b = 0) + Pr(b′ = 1, b = 1)− 1

2

∣∣∣∣

=

∣∣∣∣Pr(b
′ = 0′|b = 0)Pr(b = 0) + Pr(b′ = 1|b = 1)Pr(b = 1)− 1

2

∣∣∣∣

≈
∣∣∣∣(ǫ+

1

2
)
1

2
+

1

2

1

2
− 1

2

∣∣∣∣ =
1

2
ǫ.

In fact,Pr(b′ = 1|b = 1) ≈ 1
2
, because in the case whereb = 1, there is a negligible chance for

Γ.encryptpk1(m0) to be also an encryption ofm1 underpk0.

2.2.2 On the orthogonality between key privacy and data privacy

In [Zhanget al., 2007], the authors propose a technique that turns an anonymous encryption scheme
into a distinguishable anonymous encryption scheme, and vice versa. The idea consists in con-
sidering the augmented scheme which appends the message to its encryption (using the original
scheme). Since the new ciphertext does not reveal more information about the public key than
the original scheme does, it is still anonymous. Concerningthe other part, from an indistinguish-
able scheme one can consider the encryption scheme consisting of appending the public key to the
encryption of the message. The new scheme does not reveal more information about the message
than the original scheme does. Therefore, it is still indistinguishable. However, it is not anonymous
since it discloses the public key.

Theorem 2.2 complies with this result since the first encryption scheme (obtained by appending
the message to the ciphertext) does not have Property B; for afixed messagem, the distribution
considered in Property B is easily distinguished from uniform. In fact, the probability that a ci-
phertext sampled according to this distribution equals a ciphertext whose suffix is different from
m is exactly zero. Similarly, Theorem 2.1 is in accordance with this result since the encryption
scheme obtained by appending the public key to the ciphertext does not have Property A. Indeed,
for a fixed keypk, the probability that a ciphertext sampled from the distribution considered in
Property A equals another ciphertext whose suffix differs frompk is exactly zero.

Before concluding this paragraph, it is worth noting that Property A highlights a strength of
the discrete-log-based world in contrast to the RSA-based world. Concretely, letΓ be an RSA-
based encryption scheme where the public key comprises the RSA modulusN to be used. If the
ciphertextc (seen as a set) contains an elemente ∈ ZN , then the scheme will never have Property
A. In fact, for a fixed keypk (whereN ∈ pk) and a messagem chosen uniformly at random from
M, the probability thatΓ.encryptpk(m) equals an elementc′ ∈ C with the componente′ ≥ N ,
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is exactly zero. Therefore, it is easy to distinguish the distribution onC, defined in Property
A, from the uniform distribution. This argument conforms again to the result in [Bellareet al.,
2001], namely the fact that RSA-OAEP is not anonymous thoughit is indistinguishable in the
most powerful attack model.

2.3 Application

In the previous paragraph, we showed that our results are consistent with the negative results in
[Zhanget al., 2007] concerning the independence of key privacy from dataprivacy. In fact, as
Properties B and A do not hold in the augmented encryption schemes respectively, one cannot
deduce one security notion from the other. In this section, we confirm the positive results in
[Bellare et al., 2001] concerning the anonymity of El Gamal’s [El Gamal, 1985] and of Cramer-
Shoup’s [Cramer & Shoup, 2003] encryption schemes.

2.3.1 El Gamal’s encryption revisited

The ElGamal scheme, described in Figure 1.3 (Subsection 1.2.2), is IND-CPA-secure under the
hardness of the Decisional Diffie-Hellman problem (DDH). Actually, the following holds:

Adv(Aind−cpa
ElGamal) = Adv(Rddh).

To analyze the ANO-CPA property of El Gamal, it suffices to check whether Property A holds.
The ciphertext spaceC consists of:

C =
{
(gt, myt) ∈ G×G : t

R←− Zd, m ∈ M, (y = gx, x) ∈ PK− SK
}
= G×G.

We show now that the distribution onC, corresponding to the random variableElGamal.encrypty(m),
wherey is a fixed public key andm is a message sampled uniformly at random fromM, is exactly
the uniform distribution. Let(a1, a2) ∈ C be a fixed value fromG×G.

Pr[(gt, myt) = (a1, a2)] = Pr[gt = a1] Pr[my
t = a2|gt = a1]

=
1

d
Pr[myt = a2|yt = ax1 ] =

1

d
Pr[m = a2a

−x
1 ] =

1

d2
.

The last equality is due to the fact thatm was sampled uniformly at random fromM = G. We
conclude with Theorem 2.1 that El Gamal’s encryption is ANO-CPA secure under the DDH as-
sumption and we have:Adv(Rddh) ≈ 1

2
Adv(Aano−cpa

ElGamal ), which complies with Theorem 1 in [Bellare
et al., 2001].
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2.3.2 Cramer-Shoup’s encryption revisited

Cramer-Shoup’s encryption scheme [Cramer & Shoup, 2003] isIND-CCA secure under the DDH
assumption. It uses a prime order group(G, ·) with orderd, and given by two generatorsg1 and
g2. Furthermore, it requires a family of collision resistant hash functionsH = (HG,HE), defined
by a probabilistic generator algorithmHG - which takes as input the security parameterκ and
returns a keyK - and a deterministic algorithmHE - which takes as input the keyK and a string
m ∈ {0, 1}∗ and returns an element inZd:

setup(κ) keygen encryptpk(m) decryptsk(u1, u2, e, v)

(d, g1)
R←− Ḡ x1, x2, y1, y2, z

R←− Zd r
R←− Zd α← EH(u1, u2, e)

g2
R←− Gd c← gx11 g

x2
2 ; d← gy11 g

y2
2 u1 ← gr1; u2 ← gr2 if ux1+αy11 ux2+αy22 = v

K ← HG(κ) h← gz1 e← mhr then m← eu−z1

Return(d, g1, g2, K) pk← (d, g1, g2, c, d, h,K) α←HEK(u1, u2, e) else m←⊥
sk← (x1, x2, y1, y2, z) v ← crdrα Return(m)

Return(pk, sk) Return(u1, u2, e, v)

To analyze the anonymity of the scheme, it suffices to check Property A. We have:

C =
{
(gr1, g

r
2, mh

r, crdαr) : r
R←− Zd, (m, c, d, h) ∈ M× PK, α = EG(gr1, gr2, mhr)

}
.

It is then easy to see that the size ofC is d3. Therefore, to show that Property A holds, it suf-

fices to show that for a fixed keypk = (c, d, h) 1 and a messagem
R←− M, the probability that

encryptpk(m) = (gr1, g
r
2, mh

r, crdαr) equals a given value(a1, a2, a3, a4) ∈ C is exactly 1
d3

:

Pr[(gr1, g
r
2, mh

r, crdαr) = (a1, a2, a3, a4)]

= Pr[gr1 = a1] Pr[g
r
2 = a2|gr1 = a1] ·

Pr[mhr = a3|(gr1, gr2) = (a1, a2)] ·
Pr[crdαr = a4|(gr1, gr2, mhr) = (a1, a2, a3)]

=
1

d
· Pr[DLg1(a1) = DLa2g2 ] · Pr[m = a3a

−z
1 ] ·

Pr[EHK(a1, a2, a3) = DLay11 a
y2
2
(a4a

−x1
1 a−x22 )]

=
1

d
· 1 · 1

d
· 1
d
=

1

d3
.

In fact, since(a1, a2, a3, a4) ∈ C, thenDLg1(a1) = DLg2(a2) holds with probability1. More-
over, asm was chosen uniformly at random fromM = G, then the probability thatm equals
a given value inG is exactly 1

d
. Finally, the relationship (EHK is a deterministic algorithm)

1Note thatg1, g2 andK are fixed for all keys in the setup algorithm.
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EHK(a1, a2, a3) = DLay11 a
y2
2
(a4a

−x1
1 a−x22 ) holds inZd, for arbitrary values(a1, a2, a3, a4) ∈ C

with probability 1
d
. We conclude with Theorem 2.1 that Cramer-Shoup’s encryption is ANO-CCA-

secure under the DDH assumption.

2.4 Key and data encapsulation mechanisms (KEMs & DEMs)

Key and data encapsulation mechanisms arise very often in cryptography. In fact, they are both
combined to build public key encryption schemes using the so-called “hybrid encryption paradigm”;
a KEM is first used to fix asession keyalong with itsencapsulation, then the DEM (which is noth-
ing but a secret key encryption algorithm) is used to encryptthe message in question using the
session key. Decryption is achieved by first recovering the key from the encapsulation (part of the
ciphertext) then applying the DEM decryption algorithm using the recovered key.

In this section, we recall the formal definition of KEMs and DEMs, then we define the anonymity
security notion for these mechanisms, and we provide a studyof the equivalence between this new
notion and the traditional indistinguishability notion.

2.4.1 Key encapsulation mechanisms (KEMs)

A KEM is a tuple which comprises the following algorithms:

1. Setup (setup). This algorithm generates the public parameters of the scheme.

2. Key generation (keygen). This algorithm probabilistically generates, on input a security
parameterκ, a key pair(pk, sk).

3. Encapsulation (encap). This algorithm inputs the public keypk, runs on a random tapeu,
and generates asession keydenotedk and itsencapsulationc.

4. Decapsulationdecap. Given the private keysk and the elementc, this algorithm computes
the decapsulationk of c, or returns⊥ if c is invalid.

The standard security goal for KEMs is indistinguishability. It informally means the hardness
of distinguishing the key corresponding to an arbitrary encapsulation from a uniformally chosen
bit-string from the (session) key space. We give below the formal definition of this property.

Definition 2.2 (Indistinguishability (KEMs) - IND-ATK). LetK = (keygen, encap, decap) be a
KEM with session key spaceK, and letA be a PPTM. We consider the following random experi-

ment, forb
R←− {0, 1}, whereκ is a security parameter:

55



ExperimentExpind-atk-b
K,A (κ)

(pk, sk)← K.keygen(κ),
I ← AO(find, pk)∣∣∣∣∣∣

if atk = cpa then O = empty

if atk = pca then O : (c, k) 7−→ k
?
= K.decapsk(c)

if atk = cca then O : k 7−→ K.decapsk(c)
(c⋆, k⋆)← k.encappk()

if b = 0 then {k R←− K, k⋆ ← k}
d← AO(guess, I, c⋆, k⋆)∣∣∣∣∣∣

if atk = cpa then O = empty

if atk = pca then O : (c, k) ( 6= (c⋆, k⋆)) 7−→ k
?
= K.decapsk(k)

if atk = cca then O : c ( 6= c⋆) 7−→ K.decapsk(c)

Returnd

We define theadvantageofA via:

Advind−atk
K,A (κ) =

∣∣∣∣Pr
[
Expind−atk−b

k,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given (t, q) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, q)-IND-ATK adversary againstK if,
running in timet and issuingq queries to the allowed oracles,A hasAdvind−atk

K,A (κ) ≥ ε. The
schemeK is said to be(t, ε, q)-IND-ATK secure if no(t, ε, q)-IND-ATK adversaryA against it
exists. Finally, we consider a KEMK with security parameterκ ∈ N; K(κ) is said to beIND-ATK
secure if, for any polynomial functionst, q : N → N and any non-negligible functionε : N →
[0, 1], it is (t(κ), ε(κ), q(κ))-IND-ATK secure.

An example of a KEM is the mechanism underlying the El Gamal encryption ((G, ·) is a group
generated byg where|G| = d):

Example 2.3.The most famous and probably oldest KEM known in the literature is the mechanism
underlying El Gamal’s encryption [El Gamal, 1985]. We depict this KEM in Figure 2.1. The El
Gamal KEM is trivially IND-CPA secure under the DDH assumption.

Example 2.4. Another popular KEM was introduced in [Bonehet al., 2004a], and is titled the
Linear Diffie-Hellman KEM. We depict this KEM in Figure 2.2. The Linear Diffie Hellman KEM
is IND-CPA secure under the hardness ofdecision linear problem, which we describe in Definition
2.5.

Definition 2.5 (Decision Linear Problem (DLP)). GivenU, V, H, aU, bV, cH ∈ G, output1 if
a+ b = c mod (#G) and0 otherwise.
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Setup Consider a group(G, ·), generated byg where|G| = d.

Key generation Choosex
R←− Zd and computey ← gx,

setpk← (d, g, y) andsk← (d, g, x).

Encapsulation Chooset
R←− Zd and computegt andyt,

set the session keyk ← yt and its encapsulationc← gt.
Decapsulation One recovers the keyyt from gt as followsyt ← (gt)x.

Figure 2.1: The El Gamal KEM

Setup Consider a bilinear additive group(G,+), with prime orderd, generated byP .

Key generation Generate two secret valuesx1, x2
R←− Z×d , and computeX1 ← x1P andX2 ← x2P ,

set the private keysk← (x1, x2) and the public keypk← (X1,X2).

Encapsulation Choose a random nonce(a, b)
R←− Z2

d,
generate the session keyk ← (a+ b)P and its encapsulationc← (aX1, bX2).

Decapsulation Given the private keysk and the encapsulationc = (aX1, bX2),
compute the keyk ask ← x−11 aX1 + x−12 bX2.

Figure 2.2: The Linear Diffie-Hellman KEM

Anonymity in KEMs

We define similarly anonymity for KEMs to be the hardness of distinguishing pairs of encapsu-
lations/keys based on the underlying public key. Combiningthis goal with the different attack
models{CPA,PCA,CCA} results in three security notions which we formally presentas follows:

Definition 2.6 (Anonymity (KEMs) - ANO-ATK). Let K = (keygen, encap, decap) be a KEM,

and letA be a PPTM. We consider the following random experiment, forb
R←− {0, 1}, whereκ is a

security parameter:
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ExperimentExpano-atk−b
K,A (κ)

(pk0, sk0)← K.keygen(κ),
(pk1, sk1)← K.keygen(κ),
I ← AO(find, pk)∣∣∣∣∣∣

if atk = cpa then O = empty.

if atk = pca then O = Oi, i = 0, 1;Oi : (c, k) 7−→ k
?
= K.decapski(c).

if atk = cca then O = Oi, i = 0, 1;Oi : k 7−→ K.decapski(c).
(c⋆, k⋆)← K.encappkb()
d← AO(guess, I, c⋆, k⋆)∣∣∣∣∣∣

if atk = cpa then O = empty.

if atk = pca then O = Oi, i = 0, 1;Oi : (c, k) ( 6= (c⋆, k⋆)) 7−→ k
?
= K.decapski(c).

if atk = cca then O = Oi, i = 0, 1;Oi : c ( 6= c⋆) 7−→ K.decapski(c).

Returnd

We define theadvantageofA via:

Advano−atk
K,A (κ) =

∣∣∣∣Pr
[
Expano−atk−b

K,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given(t, q) ∈ N2 andε ∈ [0, 1],A is called a(t, ε, q)-ANO-ATK adversary againstK if, running
in timet and issuingq queries to the allowed oracles,A hasAdvano−atk

K,A (κ) ≥ ε. The schemeK is
said to be(t, ε, q)-ANO-ATK secure if no(t, ε, q)-ANO-ATK adversary against it exists. Finally,
we consider a KEMK with security parameterκ ∈ N; κ(κ) is said to beANO-ATK secure if,
for any polynomial functionst, q : N → N, and any non-negligible functionε : N → [0, 1], it is
(t(κ), ε(κ), q(κ))-ANO-ATK secure.

Similarly to the study provided in the previous section, we formulate a further property which is
sufficient for anonymity to induce indistinguishability. Informally speaking, this property suggests
that for a fixed encapsulationc and varying public keyspk (with the corresponding private keys
sk), the resulting decapsulationsdecapsk(c) look random.

Again, we stress that every choice of the security parameterκ defines a key spacePK × SK

(corresponding to the space of key pairs (pk, sk)), an encapsulation spaceC (corresponding to
the encapsulations generated by the KEM encapsulation algorithm) and a session key spaceK
(corresponding to the session keys generated by the KEM decapsulation algorithm).

Property C: Let κ be a security parameter. Let furtherc be an arbitrary encapsulation value
from C. Consider the distribution induced by the probabilistic algorithmkeygen on the key space
PK × SK. Then, from a key(pk, sk) sampled according to this distribution, the distribution on
K, corresponding to the random variabledecapsk(c), is computationally indistinguishable from
uniform.
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Remark 2.1. The KEM underlying the El Gamal encryption scheme satisfies trivially this property,
and so does the linear Diffie-Hellman KEM.

Note that there exist evidently KEMs which do not fulfill thisproperty, for instance KEMs where
the decapsulation algorithm returns⊥ for some keys; for such KEMs, we cannot use Theorem 2.3
to derive indistinguishability from anonymity.

Theorem 2.3. LetK be a key encapsulation mechanism that has Property C. Given(t, q) ∈ N2

andε ∈ [0, 1]; if K is (t, ε, q)-ANO-ATK secure, then it is(t, ε, q)-IND-ATK secure, where ATK∈
{CPA,PCA,CCA}.

Proof. First assume that the distribution on the session keys spaceK (considered in Property C) is
exactlythe uniform distribution. From an indistinguishability adversaryAind−atk with advantageǫ,
we will construct an anonymity adversaryAano−atk as follows.

Let (pk0, pk1) be the input toAano−atk. Aano−atk will run Aind−atk on pk0. Queries made by
Aind−atk will be simply passed toAano−atk’s own challenger. Note thatpk1 is independent of the
view ofAind−atk.

At some time,Aano−atk gets from his challenger a challenge(c, k) and is asked to tell the
key (pk0 or pk1) under which it was created.Aano−atk will forward this challenge toAind−atk. In
case it was created underpk1, sincepk1 (together with the corresponding private key) is sampled
from PK × SK, Property C implies thatk = K.decapsk1(c) is a uniformly random element ofK.
Therefore, the valuek is either the decapsulation ofc underpk0, or a uniformly random element in
K, and thus compatible with the gameAind−atk is designed to play.

Further queries byAind−atk continue to be handled as before. At the end,Aind−atk will output
a bit representing his guess fork being the decapsulation ofc under the public keypk0 or not.
Aano−atk will use this bit as his guess for the key under whichk was created. It is clear that:

Adv(Aano−atk) = Adv(Aind−atk).

Now assume that the distribution onK is only indistinguishablefrom uniform. LetAind−atk be
an indistinguishability distinguisher. If the advantage of Aind−atk in the reduction described above
is non-negligibly different from the advantage ofAind−atk in a real attack, thenAind−atk can be
easily used as a distinguisher for the distribution considered by Property C. As a consequence:

Adv(Aano−atk) ≈ Adv(Aind−atk),

where≈ means “equal up to negligible terms”.

Theorem 2.4. LetK be a key encapsulation mechanism. Given(t, q) ∈ N2 andε ∈ [0, 1]; if K is
(t, ε, q)-IND-ATK secure, then it is(t, ε

2
, q)-IND-ATK secure, whereATK ∈ {CPA,PCA,CCA}.
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Proof. Given an anonymity adversaryAano−atk with advantageǫ, we will create an indistinguisha-
bility adversaryAind−atk in the same attack model ATK. Letpk0 be the input toAind−atk. Aind−atk

will run keygen to generate a public keypk1 together with its corresponding private keysk1.
Queries made byAano−atk are answered in the following way: if they are with respect tothe

keypk0, they are forwarded toAind−atk’s own challenger. Otherwise, in case they are with respect
to pk1, they are answered byAind−atk using the private keysk1.

Eventually,Aind−atk receives(c, k) from his own challenger, wherek is either the decapsulation
of c with respect to the keypk0 or a uniformly chosen element fromK. Aind−atk will forward his
challenge toAano−atk.

Queries byAano−atk continue to be handled as before.
If k corresponds to the decapsulation ofc (underpk0), then with overwhelming probability it is

not the decapsulation ofc underpk1 (pk1 (along withsk1) was produced byAind−atk and therefore
it is independent of the view of his challenger who generatesthe challenge(c, k)). Otherwise, it is
a random element inK, and with overwhelming probability it is not the decapsulation of c under
either key.

At the end of the game,Aano−atk outputs a guessb′ on the key used to decapsulatec in k.
Aind−atk will then output the same guessb′ to his challenger.

We haveAdv(Aano−atk) =
∣∣ǫ = Pr(b′ = 0|b = 0)− 1

2

∣∣. In fact,Aano−atk is expected to work
only whenk is the decapsulation ofc underpk0 (corresponds tob = 0), which explains the con-
ditional probability. In this case,Aano−atk is considered successful when he recognizes thatk is
decapsulation ofc underpk0.

The advantage ofAind−atk is by definition
∣∣Pr(b′ = b)− 1

2

∣∣ and we have:

Adv(Aind−atk) =

∣∣∣∣Pr(b
′ = b)− 1

2

∣∣∣∣ =
∣∣∣∣Pr(b

′ = 0, b = 0) + Pr(b′ = 1, b = 1)− 1

2

∣∣∣∣

=

∣∣∣∣Pr(b
′ = 0|b = 0)Pr(b = 0) + Pr(b′ = 1|b = 1)Pr(b = 1)− 1

2

∣∣∣∣

≈
∣∣∣∣(ǫ+

1

2
)
1

2
+

1

2

1

2
− 1

2

∣∣∣∣ =
ǫ

2

The last inequality, due toPr(b′ = 1|b = 1) ≈ 1
2
, is explained by the fact that in caseb = 1, there

is a negligible chance fork to be the decapsulation ofc underpk1.

2.4.2 Data encapsulation mechanisms (DEMs)

DEMs are secret key encryption algorithms. They are, similarly to public key encryption, given
by the same three algorithms (keygen, encrypt anddecrypt), with the exception of generating only
one key in thekeygen algorithm which will serve for encryption as well as for decryption.

The security notion for DEMs, that corresponds to the ANO-CPA notion for public key en-
cryption, is theanonymity under a one time attack; we define it as follows
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Definition 2.7 (Anonymity (DEMs) - ANO-OT). LetD = (keygen, encrypt, decrypt) be a DEM,

and letA be a PPTM. We consider the following random experiment, forb
R←− {0, 1}, whereκ is a

security parameter:

ExperimentExpano-ot−b
D,A (κ)

k0 ← D.keygen(κ),
k1 ← D.keygen(κ),
(m⋆, I)← A(find)
e⋆ ← Γ.encryptkb(m

⋆)
d← A(guess, I, e⋆)
Returnd

We define theadvantageofA via:

Advano−ot
D,A (κ) =

∣∣∣∣Pr
[
Expano−ot−b

D,A (κ) = b
]
− 1

2

∣∣∣∣ .

Givent ∈ N andε ∈ [0, 1],A is called a(t, ε)-ANO-OT adversary againstD if, running in timet,
A hasAdvano−ot

D,A (κ) ≥ ε. The schemeD is said to be(t, ε)-ANO-OT secure if no(t, ε)-ANO-OT
adversary against it exists. Finally, we consider a DEMD with security parameterκ ∈ N; D(κ)
is said to beANO-OT secure if, for any polynomial functiont : N → N and any non-negligible
functionε : N→ [0, 1], it is (t(κ), ε(κ))-ANO-OT secure.

Note that the above notion corresponds to the ANO-CPA notionin the public key world because
the adversary does not have any oracle access. In fact, in thesecret key scenario, the adversary
cannot even encrypt messages of his choice (chosen plaintext attack) since he does not have the
key at his disposal.

It is easy to see that the same analysis, provided in Section 2.2, of the relation between
anonymity and indistinguishability for public key encryption applies also here for DEMs. More-
over, it can be shown that one can obtain an ANO-CPA-secure encryption scheme from an ANO-
CPA-secure KEM combined with an ANO-OT-secure DEM. The proof is similar to that of the
indistinguishability notion, which is given in [Herranzet al., 2006]. Finally, we introduce the fol-
lowing security notion for DEMs which captures both the indistinguishability and the anonymity
under a one-time attack2:

Definition 2.8 (Invisibility (DEMs) - INV-OT). Let D = (keygen, encrypt, decrypt) be a DEM
with ciphertext spaceC, and letA be a PPTM. We consider the following random experiment, for

b
R←− {0, 1}, whereκ is a security parameter:

2Later in this thesis, we will show how to use INV-OT and ANO-OTsecure DEMs, combined with secure KEMs
and secure digital signatures in order to build efficient andsecure opaque signatures.
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ExperimentExpinv-ot−b
D,A (κ)

k ← D.keygen(κ),
(m⋆, I)← A(find, k)
e⋆ ← Γ.encryptk(m

⋆)

if b = 0 then {e R←− C, e⋆ ← e}
d← A(guess, I, e⋆)
Returnd

We define theadvantageofA, via:

Advinv−ot
D,A (κ) =

∣∣∣∣Pr
[
Expinv−ot−b

D,A (κ) = b
]
− 1

2

∣∣∣∣ .

Givent ∈ N andε ∈ [0, 1], A is called a(t, ε)-INV-OT adversary againstD if, running in time
t, A hasAdvinv−ot

D,A (κ) ≥ ε. The schemeD is said to be(t, ε)-INV-OT secure if no(t, ε)INV-OT
adversary against it exists. Finally, we consider a DEMD with security parameterκ; D(κ) is
said to beINV-OT secure if, for any any polynomial functiont : N → N and any non-negligible
functionε : N→ [0, 1], it is (t(κ), ε(κ))-INV-OT secure.

2.5 Conclusion

In this chapter, we proved that key privacy and data privacy in encryption schemes are related to
a certain extent. In fact, under some conditions, we showed that one notion yields the other. This
allows to use existing work on the data privacy of some schemes in order to derive their anonymity.
Moreover, we defined the anonymity notion for key and data encapsulation mechanisms and pro-
vided a study on the equivalence between this notion and the indistinguishability notion in these
mechanisms.
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Part II

Generic Constructions of Confirmer
Signatures
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Chapter 3

Overview of Confirmer Signatures

Abstract. Designated Confirmer signatures were introduced to limit the verification
property inherent to digital signatures. In fact, the verification in these signatures
is replaced by a confirmation/denial protocol between thedesignated confirmerand
the signature recipient.
In this chapter, we give a short overview of designated confirmer signatures; we will
start with the motivation behind such signatures, then provide the formal definition
of these signatures as well as of their security properties,and finally, we will browse
through the different realizations of these signatures from basic cryptographic prim-
itives.

3.1 Motivation and definition

Digital signatures capture most of the properties met by signatures in the paper world, for instance
the universal verification. However, in some applications,this property is not desired or at least
needs to be controlled. The typical applications where we wish to restrain the holder of a signature
from convincing other parties of the validity of the signature in question are:

Licensing software [Chaum & van Antwerpen, 1990]A software vendor is willing to embed
signatures in his products such that only the paying customers are entitled to check the au-
thenticity of these products. Moreover, he does not wish these paying customers to convince
other parties of the genuineness of his goods.

Contract signing [Goldwasser & Waisbard, 2004]An employer issues a job offer to a certain can-
didate. Naturally, the employer needs to compete with the other job offers in order to attract
the good candidate. Therefore, he does not wish the offer to be revealed to his competitors.
At the same time, the candidate needs more than a verbal or unsigned agreement in order
to protect himself from the employer not keeping his promise. Finally, when the candidate
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accepts the offer, the employer wishes toconvertthe job offer he has issued to a publicly
verifiable one, instead of having to issue a new contact.

Undeniable signatures were introduced in [Chaum & van Antwerpen, 1990] for this purpose;
they proved critical in situations where privacy or anonymity is a big concern, e.g. licensing soft-
ware [Chaum & van Antwerpen, 1990], electronic cash [Chaum &Pedersen, 1993; Boyd & Foo,
1998; Pointcheval, 2001] and electronic voting and auctions. In these signatures, the verification
can be only attained by means of a cooperation with the signer, called the confirmation/denial
protocols. Unfortunately, this very virtue (verification with only the signer’s help) became their
major shortcoming for many practical applications. The flawwas later repaired in [Chaum, 1995]
by introducing the concept ofdesignated confirmer signatures. In fact, this concept involves three
entities, namely the signer who produces the signature, thedesignated confirmer who confirms
or denies the alleged signature, and finally the recipient ofthe signature. Actually, in the litera-
ture, there is a clear separation between designated confirmer signatures or confirmer signatures
for brevity, anddirected signatures[Lim & Lee, 1993] which share the same concept as confirmer
signatures with the exception of allowing both the signer and the confirmer to confirm/deny signa-
tures. Finally, a desirable property in confirmer signatures is the convertibility of the signatures to
ordinary ones. Indeed, such a property turned out to play a central role in fair payment protocols
[Boyd & Foo, 1998].

Syntax

A convertible designated confirmer signature (CDCS) schemeconsists of the following procedures:

Key generation (keygen). This algorithm inputs a security parameterκ and generates prob-
abilistically two key pairs(skS, pkS) and (skC , pkC) for the signer and for the confirmer
respectively.

ConfirmedSign (confirmedSign). On input skS, pkC , and a messagem, the signer outputs a
confirmer signature signatureµ, then interacts with the signature recipient (via an interactive
protocol) to convince him of the validity of the just generated signature.

Verification (verify). This is an algorithm, run by the signer on ajust generatedsignature or by
the confirmer onanysignature, to verify the validity of the alleged signature.The input to
the algorithm is, in addition to the public keyspkS andpkC , the message, and the alleged
signature, the random noncesrS used to produce the signature in case the algorithm is run
by the signer, or the private keyskC in case the algorithm is run by the confirmer. The output
of this algorithm is either1 if the purported signature if valid on the message, or0 otherwise.

Confirmation/denial protocols (confirm/deny). These are interactive protocols between the con-
firmer and a signature recipient (the verifier). Their commoninput consists of, in addition
to pkS andpkC , the alleged signatureµ, and the messagem in question. The confirmer uses
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his private keyskC to convince the verifier of the validity (invalidity) of the signatureµ on
m. At the end, the verifier either accepts or rejects the proof.

Selective conversion (convert). This is an algorithm run by the confirmer, on a messagem and
its corresponding signatureµ, usingskC , in addition topkC andpkS. The result is either⊥
in caseµ is invalid w.r.tm, or a string which can be universally verified as a valid digital
signature on the messagem w.r.t. pkS.

Selective verification (verifyConverted). This is an algorithm for verifying converted signatures.
It inputs the converted signature, the message,pkS, andpkC , and outputs either0 or 1.

Remark 3.1. In [Gentry et al., 2005; Wanget al., 2007], the authors give the possibility of ob-
tainingdirectlydigital signatures on a given message. We find this unnecessary since it is already
enough that a CDCS scheme supports the convertibility feature. Moreover, in [Wikstr̈om, 2007],
the author considers a further protocol used by the confirmerto prove the correctness of the con-
version. Throughout this thesis, we will mention the constructions that extend to this augmented
model.

Remark 3.2 (Security parameter). In the rest of this part, the security parameter of a construc-
tion consists of a tuple that comprises the security parameters used for the construction’s build-
ing blocks. Thus, when we invoke the key generation or the setup algorithms of a construction’s
building block on input a given security parameter, sayκ, we mean that we call the mentioned al-
gorithms on input the field inκ which corresponds to the security parameter of the buildingblock
in question. The same remark applies for security; when we say that a construction’s component
is secure for the security parameterκ, we mean that it is secure w.r.t. the field inκ corresponding
to the security parameter of this component.

3.2 Security model

Since their introduction, many definitions and security models for CDCS have emerged. We
present in this section the security properties we adhere toin this thesis. A security property
is, as commonly agreed on, an attribute allowing a cryptographic scheme to withstand malicious
attempts aiming at make it deviate from its prescribed task.These malicious attempts can be clas-
sified into two categories:

1. Attempts conducted by adversariesinside the system. This is for instance the case where
the scheme operators are dishonest, coerced, or where they simply have their private keys
compromised or stolen.

2. Attempts conducted by adversariesoutsidethe system. These are the default attacks any
cryptographic scheme should take into consideration.
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A cryptographic scheme resilient against the first type of attacks is said to procure security
in an insider model, whereas a scheme resilient against the second type of attacks is said to be
secure in anoutsider model. Consideration of the appropriate security model depends upon the
functionality of the scheme; for some schemes it is enough toconsider outsider security, for others
it is imperative to consider insider security at least for some scheme properties.

The rest of this section will be devoted to the definition of the security properties we opt for, as
well as to the comparison of these properties with the popular ones found in the literature.

Let CS be a CDCS scheme given by the algorithms/protocolskeygen, confirmedSign, verify,
confirm/deny, convert, andverifyConverted.
We assume thatkeygen inputs a security parameterκ and generates the key pairs(skS, pkS) and
(skC , pkC) for the signer and for the confirmer respectively.
LetM andS be the message and signature spaces considered byCS respectively. Let further the
confirmedSign (probabilistic) procedure produce a signatureµ ∈ S and a protocol(S, V ) between
the signerS and the verifierV (the signature recipient). Finally, we denote byrS the randomness
used in theconfirmedSign procedure to generate the signatureµ.

3.2.1 Completeness

The CDCS schemeCS is complete when it satisfies the following properties:

1. Every signature produced following theCS.confirmedSign procedure should be validated by
theCS.verify algorithm. Moreover, if the signer and the signature holderare honest, then the
signer must be able to confirm every valid signature he has just generated.

∀m ∈M, if CS.confirmedSign{skS ,pkS ,pkC}(m) = {µ, (S, V )} then :
CS.verify{pkS ,pkC ,rS}(m,µ) = 1, and

Pr[(S, V )(m,µ, pkC , pkS) = Reject] = negl(κ),

where the probability is taken over the random tosses of boththe prover and the verifier, and
negl is a negligible function.

2. The conversion of every signature produced following theCS.confirmedSign procedure should
be a string which can be universally verified as a valid digital signature on the message in
question.

∀m ∈M, if CS.confirmedSign{skS ,pkS ,pkC}(m) = {µ, (S, V )} then :
σ = CS.convertskC(m,µ)⇒ CS.verifyConverted{pkS ,pkC}(m, σ) = 1.

3. If the confirmer and the signature holder are honest, then the confirmer must be able to
confirm every valid signature, i.e. every signature validated by the algorithmCS.verify, and
disavow every invalid signature.
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∀m ∈M, ∀µ ∈ S :
CS.verify{pkS ,pkC ,skC}(m,µ) = 1⇒ Pr[CS.confirm(m,µ, pkC , pkS) = Reject] = negl(κ),
CS.verify{pkS ,pkC ,skC}(m,µ) = 0⇒ Pr[CS.deny(m,µ, pkC , pkS) = Reject] = negl(κ),

where the probability is taken over the random tosses of boththe prover and the verifier, and
negl is a negligible function.

3.2.2 Security for the verifier

This property informally means that an adversary who compromises the private keys of both the
signer and the confirmer cannot convince the verifier of the validity (invalidity) of an invalid (a
valid) confirmer signature. That is, the protocols confirmedSign, confirmation and denial are
sound. It is obvious that we consider security in the insider modelfor this property. In fact, we
require the genuiness of the signatures despite their opacity. The formal definition of this property
is as follows.

Definition 3.1. LetA be an adversary against the confirmer signature schemeCS. We consider
the following experiment:

1. A is given(skS, pkS) and(skC , pkC), output of the algorithmCS.keygen.

2. A produces a messagem. He also runsCS.confirmedSign onm and produces a signature
µ usingskS, pkS and pkC . Finally, A produces a stringµ′, from the confirmer signatures
space, such thatCS.verify{pkS ,pkC ,skC}(m,µ

′) = 0.

3. A interacts with a verifierV on the common input(m,µ′) and executes the protocol(A, V ),
as a part of theCS.confirmedSign algorithm, in addition to the protocolCS.confirm. More-
over,A interacts withV on the common input(m,µ) and runs the protocolCS.deny.

CS is said to provide security for the verifier if the following equations hold:

Pr[(A, V )(m,µ′, pkC , pkS) = Accept] = negl(κ), (3.1)

Pr[CS.confirm(m,µ′, pkC , pkS) = Accept] = negl(κ), (3.2)

Pr[CS.deny(m,µ, pkC , pkS) = Accept] = negl(κ), (3.3)

where the probability is over all the random tosses ofA andV , andnegl is a negligible function.

3.2.3 Security for the signer

Security for the signer informally means that no one (including the confirmer) except the signer
can issue valid confirmer signatures; it is then clear that this security property considers insider
adversaries (the confirmer).

The formal definition of this requirement is as follows.
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Definition 3.2 (Security for the signer). We consider the CDCS schemeCS described earlier in
this section. LetA be a PPTM. We consider the following random experiment:

ExperimentExpeuf−cma
CS,A (κ)

(pkS, skS)← CS.keygen(κ)
(pkC , skC)← A(pkS)

(m⋆, µ⋆)← AS(pkS, pkC , skC)
S : m 7−→ CS.confirmedSign{skS ,pkS ,pkC}(m)

return 1 if and only if the following properties are satisfied:
- CS.verify{pkS ,pkC ,skC}[m

⋆, µ⋆] = 1

- m⋆ was not queried toS

We define thesuccessofA via:

Succeuf-cma
CS,A (κ) = Pr

[
Expeuf-cma

CS,A (κ) = 1
]
.

Given (t, qs) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, qs)-EUF-CMA adversary againstCS if,
running in timet and issuingqs queries to theCS.confirmedSign oracle,A hasSucceuf-cma

CS,A (κ) ≥
ε. The schemeCS is said to be(t, ε, qs)-EUF-CMA secure if no(t, ε, qs)-EUF-CMA adversary
against it exists. Finally, we consider a CDCS schemeCS with security parameterκ ∈ N; CS(κ) is
said to beEUF-CMA secure if, for any polynomial functionst, qs : N→ N and any non-negligible
functionε : N→ [0, 1], it is (t(κ), ε(κ), qs(κ))-EUF-CMA secure.

Remark 3.3. Note that the adversaryA in the above definition is not given the oraclesCS.verify,
CS.confirm/CS.deny, andCS.convert. In fact, these oracles are useless for him as he has the
confirmer private keyskC at his disposal.

3.2.4 Security for the confirmer

This is the crucial property for confirmer signatures as it quantifies their opacity. We can divide it
into two sub-properties: non-transferability which refers to the inability of the verifier to transfer
his conviction about the validity/invalidity of a signature to a third party, and opacity which refers
to the inability of a verifier to decide on the validity/invalidity of a signature w.r.t. a given message.

The first property can be ensured if the protocolsCS.confirmedSign, CS.confirm andCS.deny
are zero knowledge, that is if the transcript resulting fromthe interaction of the verifier with the
signer or the confirmer during these protocols can be efficiently simulated.

The second property is a bit intricate. First, there is the question of whether to consider insider
or only outsider adversaries. Insider security means that the signer’s private key can be compro-
mised in which case the entire system is broken. However, it (insider security) might be needed in
situations where we want to protect the invisibility of signatures issued by the genuine signer from

70



an adversary who has stolen this signer’s private key. The second issue concerning the opacity
of the signatures is whether one should hide the validity of the signatures w.r.t. the message in
question or hide the identity of the signer. In the rest of this subsection, we will describe formally
the non-transferability of confirmer signatures as well as the different notions of their opacity.

Non-transferability

Let CS be the CDCS scheme described above. Non-transferability ofCS.confirmedSign and of
CS.confirm/CS.deny is defined through the following two games involving the adversary, the
signer, the confirmer, and a simulator:

Game 1: the adversary is given the public keys of the signer and of theconfirmer, namelypkS
andpkC resp. He can then make arbitrary queries of typeCS.confirmedSign to the signer
and of typeCS.confirm/CS.deny andCS.convert to the confirmer. Note that the adversary
is allowed at any time to create his own key pairs(skS′, pkS′) and query the confirmer for
verification/conversion of signatures w.r.t. these key pairs. Eventually, the adversary presents
two stringsm andµ for which he wishes to carry out, on the common input(m,µ, pkS, pkC),
the protocolCS.confirmedSign with the signer, or the protocolsCS.confirm/CS.deny with the
confirmer. The private input of the signer is the randomness used to generate the signature
µ (in caseµ is a signature just generated by the signer), whereas the private input of the
confirmer is his private keyskC . The adversary continues issuing queries to both the signer
and the confirmer until he decides that this phase is over and produces an output.

Game 2: this game is similar to the previous one with the difference of playing a simulator
instead of running the real signer or the real confirmer when it comes to the interaction
of the adversary with the signer inCS.confirmedSign or with the confirmer inCS.confirm/
CS.deny on the common input(m,µ, pkS, pkC). The simulator is not given the private input
of neither the signer nor the confirmer. It is however allowedto issue a single oracle call
that tells whetherµ is a valid confirmer signature onm w.r.t. pkS andpkC . Note that the
simulator in this game refers to a probabilistic polynomialTuring machine with rewind.

The signatures issued byCS are said to be non-transferable if there exists an efficient simulator such
that for all(pkS, pkC), the outputs of the adversary in Game 1 and Game 2 are indistinguishable.

Remark 3.4. The notion of non-transferability is very close to the notion of zero knowledge in
the sense that both notions assume the existence of an efficient algorithm (the simulator) capable
of producing transcripts of the proof/protocol in questionthat are indistinguishable from those
obtained from the interaction with the real prover. The onlydifference is that in non-transferability,
we require that the simulator interacts with the adversary,whereas in zero knowledge transcripts
are enough. However, according to Remark 1.9, the ZK property of theCS.confirmedSign or
the CS.confirm/CS.deny protocols is enough to ensure the non-transferability of the confirmer
signatures.
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Invisibility

Invisibility against a chosen message attack (INV-CMA) forthe confirmer signature schemeCS is
defined through the following game between an attackerA and his challengerR:

Phase 1:afterA gets the public parameters ofCS, namelypkS andpkC , fromR, he starts issuing
queries of typeCS.confirmedSign, CS.confirm/CS.deny, andCS.convert in an adaptive way.

Challenge:onceA decides thatPhase 1is over, he outputs two messagesm⋆
0, m

⋆
1 and requests a

challenge signatureµ⋆. R picks uniformly at random a bitb ∈ {0, 1}. Thenµ⋆ is generated
using theCS.confirmedSign algorithm on the messagem⋆

b .

Phase 2:A resumes adaptively making the previous types of queries, with the exception of not
querying(m⋆

i , µ
⋆), i = 0, 1, to theCS.{confirm, deny} andCS.convert oracles. At the end,

A outputs a bitb′. He wins the game ifb = b′.

Definition 3.3 (Invisibility (INV-CMA)) . Let CS be the CDCS scheme described earlier, and let

A be a PPTM. We consider the following random experiment forb
R←− {0, 1}:

ExperimentExpinv-cma−b
CS,A (κ)

(pkS , skS , pkC , skC)← CS.keygen(κ)
(m⋆

0,m
⋆
1,I)← AS,Cv,V(find, pkS , pkC)∣∣∣∣∣∣

S : m 7−→ CS.confirmedSign{skS ,pkS ,pkC}(m)

Cv : (m,µ) 7−→ CS.convertskC (m,µ)
V : (m,µ) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

µ⋆ ← CS.confirmedSign{skS ,pkS ,pkC}(m
⋆
b)

d← AS,Cv,V(guess,I, µ⋆, pkS, pkC)∣∣∣∣∣∣

S : m 7−→ CS.confirmedSign{skS ,pkS ,pkC}(m)

Cv : (m,µ)(6= (m⋆
i , µ

⋆), i = 0, 1) 7−→ CS.convertskC (m,µ)
V : (m,µ)(6= (m⋆

i , µ
⋆), i = 0, 1) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

Returnd

We define theadvantageofA via:

Advinv−cma
CS,A (κ) =

∣∣∣∣Pr
[
Expinv−cma−b

CS,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given(t, qs, qv, qsc) ∈ N4 andε ∈ [0, 1],A is called a(t, ε, qs, qv, qsc)-INV-CMA adversary against
CS if, running in timet and issuingqs queries to theCS.confirmedSign oracle,qv queries to the
CS.confirm/CS.deny oracles, andqsc queries to theCS.convert oracle,A hasAdvinv−cma

CS,A (κ) ≥ ε.
The schemeCS is said to be(t, ε, qs, qv, qsc)-INV-CMA secure if no(t, ε, qs, qv, qsc)-INV-CMA
adversary against it exists. Finally, we consider a CDCS schemeCS with security parameter
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κ ∈ N; CS(κ) is said to beINV-CMA secure if, for any polynomial functionst, qs, qv, qsc : N→ N
and any non-negligible functionε : N → [0, 1], it is (t(κ), ε(κ), qs(κ), qv(κ), qsc(κ))-INV-CMA
secure.

Anonymity

Anonymity against a chosen message attack (ANO-CMA) for theconfirmer signature schemeCS
is defined through the following game between an attackerA and his challengerR.

Phase 1:A gets two public keys forCS, namely two key pairs(skS0 , pkS0
) and(skS1 , pkS1

) for
the signer, and two key pairs(skC0 , pkC0

) and(skC1 , pkC1
) for the confirmer. He then issues

queries to theCS.confirmedSign, CS.confirm/CS.deny, andCS.convert oracles, w.r.t. both
keys, in an adaptive way.

Challenge:onceA decides thatPhase 1is over, he outputs a messagesm⋆ and requests a chal-
lenge signatureµ⋆. R picks uniformly at random a bitb ∈ {0, 1}, thenµ⋆ is generated using
theCS.confirmedSign algorithm on the messagem⋆ w.r.t. (pkSb

, pkCb
) .

Phase 2:A resumes adaptively making the previous types of queries, with the exception of not
querying(m⋆, µ⋆) to theCS.{confirm, deny} andCS.convert oracles of both keys(pkSb

, pkCb
),

b = 0, 1 . At the end,A outputs a bitb′. He wins the game ifb = b′.

Definition 3.4 (Anonymity (ANO-CMA)). LetCS be the CDCS scheme defined earlier, and letA
be a PPTM. We consider the following random experiment forb

R←− {0, 1}:

ExperimentExpano-cma−b
CS,A (κ)

(pkS0
, skS0 , pkC0

, skC0)← CS.keygen(κ)
(pkS1

, skS1 , pkC1
, skC1)← CS.keygen(κ)

(m⋆,I)← AS,Cv,V(find, pkS0
, pkS1

, pkC0
, pkC1

)∣∣∣∣∣∣∣

S = Si, i = 0, 1;Si : m 7−→ CS.confirmedSign{skSi
,pkSi

,pkCi
}(m).

Cv = Cvi, i = 0, 1;Cvi : (m,µ) 7−→ CS.convertskCi
(m,µ).

V = Vi, i = 0, 1;Vi : (m,µ) 7−→ CS.{confirm, deny}(m,µ, pkCi
, pkSi

).

µ⋆ ← CS.confirmedSign{skSb
,pkSb

,pkCb
}(m

⋆)

d← AS,Cv,V(guess,I, µ⋆)∣∣∣∣∣∣∣

S = Si, i = 0, 1;Si : m 7−→ CS.confirmedSign{skSi
,pkSi

,pkCi
}(m).

Cv = Cvi, i = 0, 1;Cvi : (m,µ)(6= (m⋆, µ⋆)) 7−→ CS.convertskCi
(m,µ).

V = Vi, i = 0, 1;Vi : (m,µ)(6= (m⋆, µ⋆)) 7−→ CS.{confirm, deny}(m,µ, pkSi
, pkCi

).

Returnd

We define theadvantageofA via:
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Advano−cma
CS,A (κ) =

∣∣∣∣Pr
[
Expano−cma−b

CS,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given (t, qs, qv, qsc) ∈ N4 and ε ∈ [0, 1], A is called a(t, ε, qs, qv, qsc)-ANO-CMA adver-
sary againstCS if, running in time t and issuingqs queries to theCS.confirmedSign oracle,
qv queries to theCS.confirm/CS.deny oracles, andqsc queries to theCS.convert oracle,A has
Advano−cma

CS,A (κ) ≥ ε. The schemeCS is said to be(t, ε, qs, qv, qsc)-ANO-CMA secure if no
(t, ε, qs, qv, qsc)-ANO-CMA adversary against it exists. Finally, we consider a CDCS scheme
CS with security parameterκ ∈ N; CS(κ) is said to beANO-CMA secure if, for any poly-
nomial functionst, qs, qv, qsc : N → N and any non-negligible functionε : N → [0, 1], it is
(t(κ), ε(κ), qs(κ), qv(κ), qsc(κ))-ANO-CMA secure.

Strong invisibility

To capture both anonymity and invisibility, Galbraith and Mao introduced in [Galbraith & Mao,
2003] a notion, which we denote SINV-CMA, that requires the confirmer signatures to be indistin-
guishable from random elements in the signature space. Thisnew notion is proven to imply both
INV-CMA and ANO-CMA (Theorem 1 and Theorem 4 respectively of[Galbraith & Mao, 2003]).
This notion is defined exactly as the INV-CMA notion with the difference that when it comes to
the challenge phase, the adversary produces a messagem and the challenge signature is either a
valid confirmer signature onm, issued according toconfirmedSign, or a random string from the
confirmer signatures space.

Definition 3.5 (Strong Invisibility (SINV-CMA)). LetCS be the CDCS scheme, described earlier,
with confirmer signatures spaceS, and letA be a PPTM. We consider the following random

experiment forb
R←− {0, 1}:

ExperimentExpsinv-cma−b
CS,A (κ)

(pkS , skS , pkC , skC)← CS.keygen(κ)
(m⋆,I)← AS,Cv,V(find, pkS , pkC)∣∣∣∣∣∣

S : m 7−→ CS.confirmedSign{skS ,pkS ,pkC}(m)

Cv : (m,µ) 7−→ CS.convertskC (m,µ)
V : (m,µ) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

µ⋆ ← CS.confirmedSign{skS ,pkS ,pkC}(m
⋆)

if b = 0 then {µ R←− S, µ⋆ ← µ}
d← AS,Cv,V(guess,I, µ⋆, pkS , pkC)∣∣∣∣∣∣

S : m 7−→ CS.confirmedSign{skS ,pkS ,pkC}(m)

Cv : (m,µ)(6= (m⋆, µ⋆)) 7−→ CS.convertskC (m,µ)
V : (m,µ)(6= (m⋆, µ⋆)) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

Returnd
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We define theadvantageofA via:

Advsinv−cma
CS,A (κ) =

∣∣∣∣Pr
[
Expsinv−cma−b

CS,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given (t, qs, qv, qsc) ∈ N4 and ε ∈ [0, 1], A is called a(t, ε, qs, qv, qsc)-SINV-CMA adver-
sary againstCS if, running in time t and issuingqs queries to theCS.confirmedSign oracle,
qv queries to theCS.confirm/CS.deny oracles, andqsc queries to theCS.convert oracle,A has
Advsinv−cma

CS,A (κ) ≥ ε. The schemeCS is said to be(t, ε, qs, qv, qsc)-SINV-CMA secure if no
(t, ε, qs, qv, qsc)-SINV-CMA adversary against it exists. Finally, we consider a CDCS scheme
CS with security parameterκ ∈ N; CS(κ) is said to beSINV-CMA secure if, for any poly-
nomial functionst, qs, qv, qsc : N → N and any non-negligible functionε : N → [0, 1], it is
(t(κ), ε(κ), qs(κ), qv(κ), qsc(κ))-SINV-CMA secure.

3.2.5 Comparison with other security models

In this paragraph, we compare our security model with the popular ones found in the literature:

• Our definitions of completeness, security for the verifier and non-transferability of the con-
firmedSign, confirmation, and denial protocols are the same provided as in [Camenisch &
Michels, 2000; Gentryet al., 2005; Wanget al., 2007].

• We consider theinsider security model against malicious confirmersin our definition for
unforgeability. I.e. the adversary isallowed to choose his key pair(skC , pkC). This is
justified by the need of preventing the confirmer from impersonating the signer by issuing
valid signatures on his behalf. Hence, our definition of unforgeability, which is the same
as the one considered by [Wikström, 2007], implies its similars in [Camenisch & Michels,
2000; Gentryet al., 2005; Wanget al., 2007].

• Our definition of invisibility (INV-CMA), oppositely to thedefinitions in [Camenisch &
Michels, 2000; Gentryet al., 2005; Wanget al., 2007], is considered in theoutsider security
model. I.e. the adversary does not know the private key of the signer. We justify this
by considering the CDCS scheme broken if the signer is corrupted or coerced. Actually,
“outsider security might be all one needs” for invisibilityas phrased by the authors in [An
et al., 2002].

• Our definition of invisibility (INV-CMA), oppositely to thedefinitions in [Gentryet al.,
2005; Wanget al., 2007], allows the signer to sign the same message many timeswithout
loss of invisibility, which is needed in licensing software.

• Finally our definition of invisibility (INV-CMA), like the definitions in [Camenisch & Michels,
2000; Gentryet al., 2005; Wanget al., 2007] and unlike the definition in [Galbraith & Mao,
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2003], does not guarantee the non-transferability of the signatures. I.e. the confirmer sig-
nature might convince the recipient that the signer was involved in the signature of some
message. We refer to the discussion in [Gentryet al., 2005] (Section 3) for techniques that
can be used by the signer to camouflage the presence of valid signatures, e.g. the signer can
for instance publish a few “dummy” signatures during each time period.

3.3 Constructions

Since the introduction of confirmer signatures, a number of attempts have been made to produce
them from basic primitives. The first construction is due to Okamoto [Okamoto, 1994], and was
used to prove equivalence between confirmer signatures and public key encryption with respect to
existence. Thus, efficiency was not taken into account in theframework. The subsequent proposals
follow one of the following two strategies; either produce adigital signature on the message to be
signed, then encrypt the resulting signature, or produce a commitment on the message, encrypt the
string used to generate the commitment, and finally sign the latter. We recall in this section the
constructions realizing those two approaches along with their security analyses.

3.3.1 The “encryption of a signature” paradigm

This approach consists in first producing a digital signature on the message to be signed, then
encrypting the produced signature using a suitable public key encryption scheme. The construction
was first formally1 described in [Camenisch & Michels, 2000], and required the components to
meet the highest security notions (EUF-CMA signatures and IND-CCA encryption). The main
weakness of the construction lies in the resort to zero knowledge (ZK) protocols of general NP
statements in the confirmation/denial protocol.

The construction

Let Σ be a digital signature scheme given byΣ.keygen which generates a key pair (private key =
Σ.sk, public key=Σ.pk), Σ.sign, andΣ.verify. Let furthermoreΓ denote a public key encryption
scheme described byΓ.keygen that generates the key pair (private key =Γ.sk, public key=Γ.pk),
Γ.encrypt, andΓ.decrypt.

Finally, letm ∈ {0, 1}⋆ be a message. The construction is as follows:

Setup (setup). On input the security parameterκ, output the public parameters ofΓ andΣ.

Key generation (keygen). Invoke the algorithmsΣ.keygen andΓ.keygen to generate the keys
Σ.sk, Σ.pk, Γ.sk, andΓ.pk. Set the signer’s key pair to(Σ.sk,Σ.pk) and the confirmer’s key
pair to(Γ.sk,Γ.pk).

1The idea without proof was already known, for instance, it was mentioned in [Damgård & Pedersen, 1996].
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ConfirmedSign (confirmedSign). On a messagem, the signer first computes a (digital) signature
σ = ΣΣ.sk.sign(m) onm, then encrypts the result usingΓ.encrypt. The resulting ciphertext
µ = Γ.encryptΓ.pk(σ) forms the output confirmer signature. Moreover, the signer interacts
with the signature recipient in a zero knowledge protocol where he (the signer) proves that
the output is a valid confirmer signature on the message in question. The prover’s private
input is the randomness used to generate the encryptionµ of σ.

Verification (verify). To check whether an alleged confirmer signatureµ, issued on a certain
messagem, is valid, the confirmer first decrypts it to recoverσ, then calls the algorithm
Σ.verify on the result usingΣ.pk. The signature is valid if and only if the output of the latter
item is 1. We stress again that this algorithm is run by the confirmer. It can also be run
by the signer on ajust generated signatureµ; using the randomness used to generateµ (as
encryption of someσ), the signer checks whetherµ is well formed, i.e. whetherµ is indeed
an encryption ofσ, then he checks, usingΣ.pk, whetherσ is a valid digital signature onm.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatureµ on a
certain messagem, the confirmer first checks its validity using the verification algorithm.
According to the result, the signer issues a zero knowledge proof of knowledge of the de-
cryption ofµ, that passes (does not pass)Σ.verify.

Selective conversion (convert). Given a signatureµ onm, the confirmer first checks whether it
is valid. If it is the case, then he outputsΓ.decryptΓ.sk(µ), otherwise he outputs⊥.

Selective verification (verifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithmΣ.verify usingΣ.pk.

Remark 3.5. It is possible to issue the confirmation/denial protocols aswell as the one under-
lying theconfirmedSign algorithm because the underlying assertions define either NP (in case of
confirmedSign or confirm) or co-NP (in case ofdeny) languages which accept zero knowledge
proof systems according to Subsection 1.4.2.

Security analysis

The completeness of the construction above is ensured by thecorrectness of the algorithmsΣ.sign,
Σ.verify, Γ.encrypt andΓ.decrypt, and by the completeness of the proofs underlying the protocols
confirmedSign, confirm anddeny. As for the security for the verifier and the non-transferability of
the signatures, they are established thanks to the soundness and zero knowledgeness of the proofs
underlying the protocolsconfirmedSign, confirm, anddeny. Moreover, the resulting signatures are
existentially unforgeable against malicious confirmers, and they are invisible in the insider model.

Theorem 3.1.Given(t, qs) ∈ N2 andε ∈ [0, 1], the construction depicted above is(t, ǫ, qs)-EUF-
CMA secureagainst malicious confirmersif the underlying signature scheme is also(t, ǫ, qs)-EUF-
CMA secure.
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The proof is similar to that provided in [Camenisch & Michels, 2000] although the latter one
does not explicitly prove the construction to be unforgeable againstmalicious confirmers.

Proof. Let A be a(t, ǫ, qs)-EUF-CMA adversary against the construction. We will construct a
(t, ǫ, qs)-EUF-CMA adversaryR against the underlying digital signature scheme as follows.
R gets the public key of the signature schemeΣ from his challenger. Then he chooses a suitable

encryption schemeΓ and gets fromA the generated confirmer key pair(Γ.pk,Γ.sk).
Signature queries made byA on a messagemi can be answered as follows. First,R requests

his challenger for a digital signatureσi onmi, then he encryptsσi in µi and outputs the result toA.
Finally, he interacts withA in a protocol where he proves that the generated signature isindeed a
valid confirmer signature onmi. The private input ofR in this protocol is the randomness used to
encryptσi in µi, orΓ.sk. Note thatA can check the validity of this signature himself usingΓ.sk.

Eventually,A outputs a pair(m,µ) consisting of a messagem that was never queried for
signature and a valid confirmer signatureµ on it.R will simply outputσ = Γ.decryptΓ.sk(µ) to his
own challenger. In fact,σ is a valid digital signature on the messagem which was never queried
byR to his own challenger, and thus forms a valid existential forgery onΣ.

Theorem 3.2. Given(t, qs, qv, qsc) ∈ N4 andε ∈ [0, 1], the construction above is(t, ǫ, qs, qv, qsc)-
INV-CMA securein the insider modelif the underlying encryption scheme is(t, ǫ, qv + qsc)-IND-
CCA secure.

We give a sketch of the proof below and we refer to the full version in [Camenisch & Michels,
2000].

Sketch.LetR be an IND-CCA adversary against an encryption schemeΓ. R gets the public key
Γ.pk of the encryption scheme from his challenger and is further given an INV-CMA adversaryA
against the construction depicted above.
R will choose a digital signature schemeΣ along with a key pair(Σ.sk,Σ.pk) and will provide

A with the public parameters of the confirmer signature resulting from combining the encryption
schemeΓ and the signatureΣ. A will get also hold of the private signing key, namelyΣ.sk.

Simulation of theconfirmedSign queries made byA is done as the ordinary algorithm would
perform, namely by first producing a digital signature, using Σ.sk, on the message in question,
then encrypting the resulting signature usingΓ.pk. The resulting ciphertext forms the confirmer
signature output toA. R will then interact withA to prove the validity of the just generated
signature. The private input ofR in such a protocol is the randomness used to encrypt the digital
signature.

Simulation of theconfirm/deny queries(m,µ) is done by first invoking the decryption oracle
of Γ onµ to obtainσ = Γ.decryptΓ.sk(µ), then checking the validity ofσ w.r.t.m. According to the
result,R issues a simulation of theconfirm/deny protocols. In fact, since the confirmer signatures
are non-transferable, then there exists a simulation of theconfirmation/denial protocols which is
indistinguishable from the real execution of these protocols. Simulation of theconvert queries is
done by simply decrypting (using the decryption oracle) theconfirmer signature in question.
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Eventually,A outputs two messagesm0, m1 and requests a challenge confirmer signature. At
that point,R produces a digital signatureσi = Σ.signΣ.sk(mi) on each messagemi, i = 0, 1. With
overwhelming probability,σ0 6= σ1 asm0 6= m1. Then,R gives these two signatures to his own
challenger. He gets as a challenge ciphertextµ⋆, which is either the encryption ofσ0 or σi, that he
will forward toA.
A continues issuingconfirmedSign, confirm/deny andconvert queries as before . Note that

at that point, andaccording to the invisibility notion considered by the authors in [Camenisch &
Michels, 2000], A is not allowed to issueconfirm/deny andconvert queries which involveµ⋆. R
can answer as previously, for instance he is able to invoke his decryption oracle without problems
as the confirmer signatures in play are different from the challenge ciphertextµ⋆.

Finally, whenA outputs his guess (either0 or 1) on the message underlying the signatureµ⋆,
A will forward the same guess to his own challenger.

Other variants

The Goldwasser-Waisbard [Goldwasser & Waisbard, 2004] construction. This construction
was the first to circumvent, although partially, the main problem in the basic paradigm,
namely the recourse to proofs of general NP statements in theconfirmation/denial protocols.
The idea consists in considering a classS of digital signatures which accept efficientwitness
hiding proofs of knowledge (WHPOK). A WHPOK (see for instance [Goldreich, 2001, Sec-
tion 4.6] for more details) is informally a proof where the prover does not reveal the witness
but may leak some knowledge during his interaction with the verifier; it is then a weaker
notion than zero knowledge. Let(t, b, sb) be an accepting transcript resulting from the in-
teraction, between a prover and a verifier, in which the prover convinces the verifier that he
holds a digital signatureσ on the common input messagem. t forms the first message, or

the commitment, sent by the prover.b
R←− {0, 1} denotes the public coin, or the challenge

sent by the verifier. Finally,sb denotes the response of the prover to the challengeb. It is
assumed that given two different accepting transcripts(t, b, sb) and(t, 1− b, s1−b), there ex-
ists a knowledge extractor which can extract the witness, namely the signatureσ. With such
a class of signatures in addition to an IND-CCA secure encryption schemeΓ, the authors in
[Goldwasser & Waisbard, 2004] provide confirmer signatureson a messagem as follows:

1. The signer first produces a digital signatureσ onm. Then, he computes the commit-
mentt he would send to the verifier if he wishes to provide a WHPOK forσ. Next he
computess0 ands1, the responses to the challengesb = 0 andb = 1 resp., along with
their encryptionse0 ande1 using random coinsr0 andr1 resp. Finally the signer sends
(t, e0, e1) to the signature recipient.

2. The signature recipient selectsb
R←− {0, 1} and sends it to the signer.

3. The signer revealssb to the verifier along with the random coin used to produce its
encryptioneb, namelyrb.
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4. The signature recipient accepts ifeb is indeed the encryption ofsb using rb, and if
(t, b, sb) is indeed an accepting transcript for the WHPOK.

The triplet(t, e0, e1) forms the confirmer signature the verifier needs to present before the
confirmer for verification or conversion. In fact, the confirmer can decrypt bothe0 ande1
in s0 ands1 resp., then extract the witnessσ in case of a valid signature and finally interact
(in case of a confirmation query) with the verifier in a protocol similar to the one above.
Conversion is done by revealingσ. And finally, the denial of an invalid signature consists of
a ZK proof that the conversion returns an invalid signature.

The construction successfully gets rid of proofs of generalNP statements in the confirma-
tion protocol. However, it still resorts to them in the denial protocol. Moreover, the length
of the signatures as well as their generation cost grow linearly with the number of rounds
in the WHPOK. Finally, the security guarantees satisfied by the construction are much more
relaxed compared to the ones met by the construction realizing the basic “encryption of a
signature” paradigm. For instance, the non-transferability of the signatures may not be guar-
anteed with the use of WHPOK, as the adversary might get sufficient knowledge (from the
confirmation protocol) to convince other parties with the validity of the signature he is hold-
ing. Also, the adversary is not given access to a conversion oracle in the non-transferability
definition which means that one can say nothing about his ability in transferring knowledge
of the validity of signatures when he sees some converted signatures.

The Wikstr öm [Wikstr öm, 2007] construction. This construction does not differ much from
the basic “encryption of a signature” paradigm in that it consists in first producing a digital
signature on the message to be signed then encrypting the resulting signature. The difference
is that the used encryption scheme needs to support labels. Actually, the encryption of the
digital signatures is done under the labelΣ.pk, which denotes the public key of the signer.
An instantiation of the construction is further provided and is proved secure under the strong
RSA assumption, the decision composite residuosity assumption, and the decision Diffie-
Hellman problem. The basic novelty of the work [Wikström, 2007] lies in the new security
model proposed for confirmer signatures, and in which the construction is analyzed. We
summarize below the basic new security definitions proposedin [Wikström, 2007]:

1. Security for the signer. This property is a reformulation of the unforgeability prop-
erty for confirmer signatures, which takes into condition malicious confirmers. I.e. the
adversary is allowed to choose the confirmer key(skC , pkC). Almost all previous con-
structions , e.g. [Camenisch & Michels, 2000; Goldwasser & Waisbard, 2004; Gentry
et al., 2005; Wanget al., 2007] extend to this model.

2. Security for the confirmer. This property, called in [Wikström, 2007] impersonation
resistance, requires that no one should play the role of the genuine confirmer, namely
prove that the confirmer key is well formed, that a signature is valid/invalid and finally
that a conversion is correct. The formalization of such is property is done as usual
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through a game where the adversary has access to a genuine confirmer oracle that he
can consult up to the challenge phase. Consequently, one gets with this definition
only a “lunch-time” security for the confirmer unlike the definitions proposed earlier in
Subsection 3.2.4. The non-transferability of signatures proposed in [Wikström, 2007]
is the same proposed earlier in this chapter.

TheSecurity for the verifierproperty in [Wikström, 2007] is the same proposed in Subsec-
tion 3.2.2, which agrees with the definitions in [Camenisch &Michels, 2000; Goldwasser
& Waisbard, 2004; Gentryet al., 2005; Wanget al., 2007]. Finally, it is worth mention-
ing that the model in [Wikström, 2007] requires the confirmer to prove the correctness of a
conversion. Again, all the previous constructions,e.g. [Camenisch & Michels, 2000; Gold-
wasser & Waisbard, 2004; Gentryet al., 2005; Wanget al., 2007], as well as the ones we
will encounter in this thesis extend to this model.

3.3.2 The “signature of a commitment” paradigm

This paradigm was first considered in [Michels & Stadler, 1998] to build confirmer signatures from
signatures obtained using the Fiat-Shamir paradigm. The main criticism to such a construction lies
in the resort to the ROM (resulting from the use of the Fiat-Shamir Paradigm) and the non-support
of the convertibility feature. In [Anet al., 2002], the authors upgraded this technique to the “en-
crypt then commit then sign” method, which consists in first generating a random string, sayr and
encrypting it ine, then usingr to generate a commitmentc on the message to be signed, and finally
produce a digital signature on the commitmentc. This approach was used in the context of sign-
cryption in [Anet al., 2002] and was analyzed in the insider security model. Laterin [Gentryet al.,
2005], the authors used it to build confirmer signatures and provided an efficient instantiation us-
ing Camenisch-Shoup [Camenisch & Shoup, 2003]’s encryption and and Pedersen’s commitment.
The resulting construction was shown to be invisible in the insider security model if the underlying
commitment is hiding and the underlying encryption is IND-CCA secure. However, the authors
in [Wang et al., 2007] disproved this claim by exhibiting an attack againstthe invisibility of the
construction regardless of the underlying encryption: given the challenge signature(e, c, σ) on the
messagemb, whereb ∈ {0, 1} andm0, m1 are the challenge messages output by the invisibility
adversaryA, the latter computes a commitmentc′ such that the underlying messagem′ is mean-
ingfully related tom0, m1 (m′ = k+mb−m0, wherek is known toA) and the underlying random
string is the same used to createc. Such a construction is possible using Pedersen’s commitment.
Next,A produces a digital signatureσ′ on c′ (this is possible in the insider security model) and
queries the conversion oracle on(e, c′, σ′) and the messagek; if the oracle answersr 6=⊥, thenA
outputsb = 0, otherwise if the oracle answers⊥, A outputsb = 1. The authors in [Wanget al.,
2007] proposed a fix to this construction which consists in using encryption schemes with labels.

In the rest of this section, we describe the construction of [Wanget al., 2007] and we recall its
security analysis.

81



The construction in [Wang et al., 2007]

Setup (setup). Consider a digital signature schemeΣ, an encryption schemeΓ with labels, and a
commitment schemeΩ.

Key generation (keygen). The signer key pair consists of(Σ.pk,Σ.sk), corresponding to the key
pair of the signature schemeΣ, whereas the confirmer key pair consists of(Γ.sk,Γ.sk) which
corresponds to the key pair related toΓ.

ConfirmedSign (confirmedSign). To sign a messagem, the signer first computes a commit-
ment c on the message, then encrypts ine, under the labelm‖Σ.pk, the random string
used for the commitment, sayr, and finally, signs the commitmentc usingΣ.sk. The con-
firmer signature consists of the triple(e, c,Σ.signΣ.sk(c)). Next, the signer interacts with
the verifier in a protocol where he (the signer) proves in ZK the knowledge ofr such that
r = Γ.decryptΓ.sk,m‖Σ.pk(e) andc = Ω.commit(m, r). Such a proof is possible to issue using
the randomness used to encryptr in e. In fact, the encryption and commitment algorithms in
an encryption scheme and a commitment scheme resp. define an NP language that accepts a
zero knowledge proof system.

Confirmation/Denial protocol (confirm/deny). To confirm/deny a signatureµ = (µ1, µ2, µ3)
on a given messagem, the confirmer first checks whetherµ3 is a valid digital signature
on µ2 w.r.t. Σ.pk, if so, he provides a ZK proof (using his private keyΓ.sk) of the equal-
ity/inequality of the decryption ofµ1 (w.r.t. the labelm‖Σ.pk) and the opening value of the
commitmentµ2 w.r.t. m. Again this proof is plausible since every NP (co-NP in case of
inequality) language accepts a zero knowledge proof system.

Verification (verify). The verification of a purported signatureµ = (µ1, µ2, µ3) on a given mes-
sagem is achieved by first checking the validity ofµ3 w.r.t. tom as a digital signature, then
checking the equality of the decryption ofµ1 (w.r.t. the labelm‖Σ.pk) and the opening value
of µ3, as a commitment onm. This equality check can be achieved by the signer, who has
just generatedµ, given the randomness used to create the ciphertextµ1, or by the confirmer
who can decryptµ1 usingΓ.sk.

Selective conversion (convert). Selective conversion of a signatureµ = (µ1, µ2, µ3) is achieved
by releasing the decryption ofµ1, in caseµ is valid, or the symbol⊥ otherwise.

Selective verification (verifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithmsΩ.open andΣ.verify.

Security analysis

Completeness, soundness and non-transferability of the confirmedSign and the confirmation/denial
protocols follow directly from using zero knowledge proofsof knowledge. Concerning unforge-

82



ability of the resulting confirmer signatures, it rests on the EUF-CMA security and on the binding
property of the underlying digital signature scheme and thecommitment scheme respectively. Fi-
nally, invisibility is attained by using an IND-CCA secure encryption scheme with labels and a
secure commitment scheme. Details about the proofs were notgiven so far, but are due to appear
in a forthcoming paper (full version of [Wanget al., 2007]). Since the paper is not available yet,
we flesh out what we suspect to be the proofs in this paragraph.

Theorem 3.3. Given (t, qs) ∈ N2 and ε ∈ [0, 1], the construction depicted above is(t, ǫ, qs)-
EUF-CMA secure if uses a binding commitment scheme and a(t, ǫ, qs)-EUF-CMA secure digital
signature scheme.

Proof. LetA be an attacker against the construction. We will construct an attackerR against the
underlying signature scheme as follows.
R gets the parameters of the signature schemeΣ from his challenger, namely the public key

Σ.pk. Then,R will choose an appropriate encryption schemeΓ with labels and a commitment
schemeΩ. R gets fromA the generated confirmer key pair(Γ.pk,Γ.sk) and finally sets the men-
tioned entities as components of the constructionA is trying to attack.

For a signature query on a messagemi, R will first create a commitmentci using a random
stringri, then he will query his own challenger for a digital signature onci. Let σi be the output
digital signature onci. The output confirmer signature consists of the tripleµi = (ei, ci, σi), where
ei is an encryption ofri under the labelmi‖Σ.pk.
A will have at his disposalΓ.sk and thus he won’t need to ask confirm/deny or selective con-

version queries. And, even in case he requests them,R is able to answer such queries with the
knowledge ofΓ.sk.

At some point,A will output a forgeryµ⋆ = (e⋆, c⋆, σ⋆) on some messagem⋆ that has never
been queried. If there exists an1 ≤ i ≤ qs such thatc⋆ = ci, whereµi = (ei, ci, σi) is an
output confirmer signature on a querymi, then sincemi 6= m⋆, R will output a collision for the
commitment schemeΩ. As the latter is by assumption binding,c⋆ never occurred in signatures
output toA. Therefore(c⋆, σ⋆) corresponds to a valid existential forgery onΣ.

The invisibility of the construction is considered in [Wanget al., 2007] in a slightly different
model and it rests on the security of the underlying encryption and commitment schemes. The main
difference between the model in [Wanget al., 2007] and our definition of invisibility, provided
earlier, lies in giving the adversary the signer’s private key, however disallowing him to make
verification/conversion queries w.r.t. the challenge message and valid signatures on it.

Definition 3.6 (Invisibility [Wang et al., 2007] (INV2-CMA)). LetCS = (keygen, confirmedSign,-
verify, confirm/deny, convert, verifyConverted) be a CDCS scheme, and letA be a PPTM. We de-
fine the relationR between two stringsµ andµ′ w.r.t. a messagem to be1 if both µ andµ′ are
valid confirmer signatures onm (w.r.t. the same signer’s key) and we writeR(m,µ, µ′) = 1. We

consider the following random experiment, whereκ is a security parameter, andb
R←− {0, 1}:
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ExperimentExp
inv2-cma−b
CS,A (κ)

(pkS , skS , pkC , skC)← CS.keygen(κ)
(m⋆

0,m
⋆
1, I)← ACv,V(find, pkS , skS , pkC)∣∣∣∣

Cv : (m,µ) 7−→ CS.convertskC (m,µ)
V : (m,µ) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

µ⋆ ← CS.confirmedSign{skS ,pkS ,pkC}(m
⋆
b )

d← ACv,V(guess, I, µ⋆, pkS , skS , pkC)∣∣∣∣
Cv : (m,µ)(6= (m⋆

i , µ̃) : R(mi, µ
⋆, µ̃) = 1, i = 0, 1) 7−→ CS.convertskC (m,µ)

V : (m,µ)(6= (m⋆
i , µ̃) : R(mi, µ

⋆, µ̃) = 1, i = 0, 1) 7−→ CS.{confirm, deny}(m,µ, pkC , pkS)

Returnd

We define theadvantageofA via:

Advinv2−cma
CS,A (κ) =

∣∣∣∣Pr
[
Expinv2−cma−b

CS,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given(t, qv, qsc) ∈ N3 andε ∈ [0, 1],A is called a(t, ε, qv, qsc)-INV2-CMA adversary against
CS if, running in timet and issuingqv queries to theCS.confirm/CS.deny oracles andqsc queries
to theCS.convert oracle,A hasAdvinv2−cma

CS,A (κ) ≥ ε. The schemeCS is said to be(t, ε, qv, qsc)-
INV2-CMA secure if no(t, ε, qv, qsc)-INV2-CMA adversary against it exists. Finally, we consider
a CDCS schemeCS with security parameterκ ∈ N; CS(κ) is said to beINV2-CMA secure if, for
any polynomial functionst, qv, qsc : N → N and any non-negligible functionε : N → [0, 1], it is
(t(κ), ε(κ), qv(κ), qsc(κ))-INV2-CMA secure.

Remark 3.6. Note that the adversary in the above definition does not need aCS.confirmedSign

oracle since he has the signing private keyskS.

We present in the sequel the invisibility analysis in the model considered by the authors in
[Wanget al., 2007].

Theorem 3.4. Given(t, qs, qv, qsc) ∈ N4 andε ∈ [0, 1], the construction depicted earlier in this
subsection is(t, ǫ, qv, qsc)-INV2-CMA if it uses an injective, binding, and(t, ǫh)-hiding commit-
ment, and a(t, ǫ+ǫh

2
, qv + qsc)-IND-CCA secure encryption with labels.

Before proving this theorem, we need the following lemma:

Lemma 3.5. LetΩ andΓ be a commitment and a public key encryption schemes respectively. We
consider the following game between an adversaryA and his challengerR:

1. R invokes the algorithmsΓ.keygen(κ) to generate(pk, sk), whereκ is a security parameter.

2. A outputs two messagesm0 andm1 such thatm0 6= m1 to his challenger.

3. R generates two noncesr0 and r1 such thatr0 6= r1. Next, he chooses two bitsb, b′
R←−

{0, 1} uniformly at random. Finally, he outputs toA cb = Ω.commit(mb, r1−b′) andeb′ =
Γ.encryptpk(rb′).
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4. A outputs a bitba representing his guess ofcb not being the commitment ofmb using the
nonceΓ.decrypt(eb′). A wins the game ifba 6= b, and we define his advantage to be

Adv(A) =
∣∣∣∣Pr[b 6= ba]−

1

2

∣∣∣∣ ,

where the probability is taken over the random tosses of bothA andR.

If Ω is injective, binding, and(th, ǫh)-hiding, thenAdv(A) in the above game is equal toǫh.

Proof. Let ǫ be the advantage ofA in game above. We will construct an adversaryR which breaks
the hiding property of the used commitment with advantageǫ.

• R gets fromA the messagem0, m1, and forwards them to his own challenger.

• R receives from his challenger the commitmentcb = Ω.commit(mb, r) for someb
R←− {0, 1}

and some noncer.

• R generates a noncer′ and outputs toA cb ande = Γ.encryptpk(r
′).

• WhenA outputs a bitba,R outputs to his challenger1− ba.

If A can by some means get hold ofr′, then he can computeci = Ω.commit(mi, r
′), i = 0, 1. Since

Ω is injective and binding thencb 6= Ω.commit(mb, r
′) andcb 6= Ω.commit(m1−b, r

′) respectively,
i.e. cb /∈ {c0, c1}.

We have by definition:

ǫh = Adv(R) =

∣∣∣∣Pr[1− ba = b]− 1

2

∣∣∣∣

=

∣∣∣∣Pr[ba 6= b]− 1

2

∣∣∣∣
= Adv(A)

Remark 3.7. Note that the above lemma holds true regardless of the used encryption Γ. For
instance, it can be used with encryption schemes which support labels and which do not require
any kind of security.

Let us now prove Theorem 3.4.

Proof. We assume the existence of a(t, ǫ, qv, qsc) invisibility adversaryA against the construction,
where the underlying commitment is injective, binding, and(t, ǫh)-hiding. We will construct a
reductionR which (t, ǫ+ǫh

2
, qv + qsc)-IND-CCA breaks the underlying encryption scheme.
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[Parameter generation]R gets the parameters of the encryption schemeΓ from his challenger.
Then he will choose a signature schemeΣ (along with a key pair (Σ.pk,Σ.sk)) and a secure
commitment schemeΩ. R will set the above entities as components of the constructionA is
trying to attack.

[confirm/deny and convert queries] To confirm/deny an alleged signatureµi = (µ1
i , µ

2
i , µ

3
i ) on a

messagemi, R will proceed as follows. First he checks the validity of the digital signature
µ3
i on µ2

i , in case it is invalid, he will output⊥, otherwise he will obtain the decryption
of µ1

i (from the decryption oracle thanks to the CCA attack model),ri; if ri is (is not) the
same string used to compute the commitmentµ2

i , R will issue a zero knowledge proof of
the equality (inequality) of the decryption ofµ1

i and the string used for the commitment
µ2
i . R can issue these proofs without the knowledge ofΓ.sk using the rewinding technique

which consists in rewinding the verifier (the adversaryA) until his output agrees with what
the simulator (R) has generated (the proofs are ZK and thus simulatable, see Remark 1.9).
Selective conversion is similarly carried out with the exception of issuing the decryption of
µ1
i in case the confirmer signature is valid and⊥ otherwise.

[Challenge phase]At some point,A will output two messagesm0, m1. R will then choose

uniformly at random a bitb
R←− {0, 1}, and generate two different noncesr0 and r1. R

will output to his challenger the labelmb‖Σ.pk and the stringsr0, r1. He receives then a

ciphertexteb′ , encryption ofrb′, for someb′
R←− {0, 1}. To answer his challenger,R will

compute a commitmentcb on the messagemb using the stringrb′′ whereb′′
R←− {0, 1}. Then,

R will output µ = (eb′, cb,Σ.signΣ.sk(cb)) as a challenge signature toA.

In caseeb′ is an encryption ofrb′′ (that is if b′ = b′′), thenµ corresponds to a valid confirmer
signature onmb. Otherwise, it is not a valid signature on neithermb nor m1−b. In fact,
Ω is injective andcb is a commitment onmb using a string different from the decryption
of eb′ under the labelmb‖Σ.pk. If the advantage ofA is non-negligibly different from the
advantage ofA in the attack described in Definition 3.6, then and accordingto Lemma 3.5,A
can be easily used to break the hiding property of the underlying commitment.

[Post challenge Phase]Rwill continue to handleA’s queries as before. Note that in this phase,R
cannot query his challenger for the decryption ofeb′ under the labelmb‖Σ.pk. R needs such
a decryption query ifA requests the verification (conversion) of(eb′ , c, σ) on the message
mb, whereσ is a valid digital signature onc, andc is a valid commitment onmb using either
r0 or r1. If such a query occurs,R will issue the denial protocol (output⊥). This differs
from the real algorithm when(eb′ , c, σ) is a valid confirmer signature onmb; two cases man-
ifest: eitherc = cb in which case such a signature is not allowed for verification/conversion
according to Definition 3.6, orc = Ω.commit(mb, r1−b”) which is very unlikely to occur
sincer1−b” is external toA.
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[Final output] Let ba be the bit output byA. R will output b′′ to his challenger in caseb = ba
and1− b′′ otherwise.

The advantage ofA in such an attack is defined by

ǫ = Adv(A) =
∣∣∣∣Pr[ba = b|b′ = b′′]− 1

2

∣∣∣∣

= max(Pr[ba = b|b′ = b′′]− 1

2
,Pr[ba 6= b|b′ = b′′]− 1

2
)

Moreover, and according to Lemma 3.5, we have in caseb′ 6= b”:

ǫh =

∣∣∣∣Pr[ba 6= b|b′ 6= b′′]− 1

2

∣∣∣∣

= max(Pr[ba 6= b|b′ 6= b′′]− 1

2
,Pr[ba = b|b′ 6= b′′]− 1

2
)

Let us assume without loss of generality thatǫ = Pr[ba = b|b′ = b′′] − 1
2

andeh = Pr[ba 6=
b|b′ 6= b′′]− 1

2
. The advantage ofR is the given by:

Adv(R) = Pr[b = ba, b
′ = b′′] + Pr[b 6= ba, b

′ 6= b′′]− 1

2

= Pr[b = ba|b′ = b′′] Pr[b′ = b′′] + Pr[b 6= ba|b′ 6= b′′] Pr[b′ 6= b′′]− 1

2

=
1

2
(ǫ+

1

2
) +

1

2
(
1

2
+ ǫh)−

1

2

=
ǫ+ ǫh
2

The last but one equation is due to the factPr[b′ 6= b′′] = Pr[b′ = b′′] = 1
2

asb′′
R←− {0, 1}.

3.4 Conclusion

In this section, we presented the two basic approaches adhered to when building convertible con-
firmer signatures from basic primitives. The invisibility of both constructions was investigated in
the insider security model, which requires the underlying encryption scheme to meet the highest
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level of security, namely IND-CCA security. This impacts negatively the efficiency of the confir-
mation/denial protocols as they resort to proofs of generalNP statements, e.g. proving knowledge
of the plaintext underlying an IND-CCA encryption. Since insider security might be too strong
than what is actually needed in most real life applications,it would be interesting to examine the
invisibility of these constructions in theoutsidersecurity model with the hope of weakening the
security assumptions on the underlying building blocks andconsequently improving the efficiency
of the construction in general, and of its confirmation/denial protocols in particular.
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Chapter 4

The “Encryption of a Signature” Paradigm

Abstract. The “encryption of a signature” paradigm is the most intuitive way to ob-
tain designated confirmer signatures; it consists in first generating a digital signature
on the message to be signed, then encrypting the result usinga suitable encryption
scheme. This approach requires the constituents (encryption and signature schemes)
to meet the highest security notions in order to achieve secure constructions in the
insider security model.
In this chapter, we revisit this method and establish the necessary/minimal and suf-
ficient assumptions on the building blocks in order to attainsecure confirmer sig-
natures in the outsider model. Our study concludes that the paradigm, used in its
basic form, cannot allow a class of encryption schemes whichis vital for the effi-
ciency of the confirmation/denial protocols. Next, we propose a slight variation of
the paradigm and we demonstrate its efficiency by explicitlydescribing its confir-
mation/denial protocols when instantiated with building blocks from a large class
of signature/encryption schemes. Interestingly, the class of signatures we consider
is very popular and has been for instance used to build efficient designated verifier
signatures.
Parts of the results described in this chapter were published in [El Aimani, 2008]
and [El Aimani, 2009b] at IndoCrypt 2008 and IndoCrypt 2009 resp.

4.1 Analysis of the plain paradigm

We consider the construction of the plain ”encryption of a signature” paradigm depicted in Subsec-
tion 3.3.1. More precisely, letΣ be a digital signature scheme given byΣ.keygen which generates
a key pair (private key =Σ.sk, public key=Σ.pk), Σ.sign, andΣ.verify. Let furthermoreΓ denote
an encryption scheme described byΓ.keygen that generates the key pair (private key =Γ.sk, public
key=Γ.pk), Γ.encrypt andΓ.decrypt. The construction is as follows:

Setup (setup). On input the security parameterκ, output the public parameters ofΓ andΣ.
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Key generation (keygen). Invoke the algorithmsΣ.keygen andΓ.keygen to generate the keys
Σ.sk, Σ.pk, Γ.sk andΓ.pk. Set the signer’s key pair to(Σ.sk,Σ.pk) and the confirmer’s key
pair to(Γ.sk,Γ.pk).

ConfirmedSign (confirmedSign). Letm be the message to be signed. The signer first computes
a (digital) signatureσ = ΣΣ.sk.sign(m) onm, then encrypts it usingΓ.encrypt. The resulting
ciphertextµ = Γ.encryptΓ.pk(σ) forms the output confirmer signature. Moreover, the signer
interacts with the signature recipient in a zero knowledge protocol where he (the signer)
proves that the output is a valid confirmer signature on the message in question. The prover’s
private input is the randomness used to generate the encryption µ of σ.

Verification (verify). To check whether an alleged confirmer signatureµ, issued on a certain
messagem, is valid, the confirmer first decrypts it inσ, then calls the algorithmΣ.verify on
the result usingΣ.pk. The signature is valid if and only if the output of the latteritem is1.
We stress again that this algorithm is run by the confirmer. Itcan also be run by the signer
on ajust generated signatureµ; using the randomness used to generateµ (as encryption of
someσ), the signer checks whetherµ is well formed, i.e.whetherµ is indeed an encryption
of σ, then he checks, usingΣ.pk, whetherσ is a valid digital signature onm.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatureµ on a
certain messagem, the confirmer first checks its validity using the verification algorithm.
According to the result, the signer issues a zero knowledge proof of knowledge of the de-
cryption ofµ, that passes (does not pass)Σ.verify.

Selective conversion (convert). Given a signatureµ onm, the confirmer first checks whether it
is valid. If it is the case, then he outputsΓ.decryptΓ.sk(µ), otherwise he outputs⊥.

Selective verification (verifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithmΣ.verify usingΣ.pk.

In this section, we prove that the condition on the underlying signature scheme (EUF-CMA
secure) is also necessary to achieve EUF-CMA secure confirmer signatures. Furthermore, we prove
that IND-PCA secure encryption schemes are already enough,though a minimal requirement, to
achieve INV-CMA signatures.

4.1.1 The exact unforgeability of the construction

Theorem 4.1. Given(t, qs) ∈ N2 andε ∈ [0, 1], the above generic construction is (t, ǫ, qs)-EUF-
CMA secure if and only if the underlying digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

Proof. The If direction has been already proven (see Subsection 3.3.1). We prove now the other di-
rection. Let(m⋆, σ⋆) be an existential forgery against the digital signature scheme. One can derive
a forgery against the confirmer signature by simply encrypting the signatureσ⋆ using the public
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key of the confirmer. Simulation of the attacker’s environment is easy; the reductionR (EUF-CMA
attacker against the confirmer signature) will forward the appropriate parameters (those concern-
ing the underlying digital signature) to the EUF-CMA attackerA against the underlying signature
scheme. For a signature query on a messagem,R will first request his challenger for a confirmer
signatureµ that he decrypts using the private key of the confirmer (R has access toskC according
to the EUF-CMA security game described in 3.2.3) inσ, which he (R) will output toA.

At the end,A outputs a valid digital signatureσ⋆ on a messagem⋆ that he has never queried
for signature.R encrypts this signature inµ⋆ using the public key of the confirmer and outputs the
result as a valid existential forgery onm⋆ (R never queriedm⋆ for a confirmer signature).

4.1.2 The exact invisibility of the construction

In this paragraph, we prove that IND-PCA secure encryption schemes are a minimal and sufficient
requirement to achieve INV-CMA secure confirmer signatures. To prove this assertion, we proceed
as follows. We first show that the INV-CMA security of the resulting signatures cannot rest on the
NM-CPA security of the underlying encryption scheme. We do this by means of an efficientmeta-
reductionthat uses such a reduction (the algorithm reducing NM-CPA breaking the underlying
encryption scheme to INV-CMA breaking the construction) tobreak the NM-CPA security of the
encryption scheme. Thus, under the assumption that the encryption scheme is NM-CPA secure,
the meta reduction forbids the existence of such a reduction. In case the encryption scheme is
not NM-CPA secure, such a reduction will be useless. This result will rule out automatically all
the other notions that are weaker than NM-CPA, namely OW-CPAand IND-CPA. Next, we use
a similar technique to exclude the OW-CCA notion. The next security notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient to obtain INV-CMA secure signatures.

Note that meta-reductions have been successfully used in a number of important cryptographic
results, e.g. the result in [Boneh & Venkatesan, 1998] whichproves the impossibility of reducing
factoring to the RSA problem, or the results in [Paillier & Vergnaud, 2005; Paillier, 2007] which
show that some well known signatures which are proven securein the random oracle cannot con-
serve the same security in the standard model. All those impossibility results are partial as they
apply only for certain reductions. Our result is in a first stage also partial since it requires the
reductionR, trying to attack a certain property of an encryption schemegiven by the public key
Γ.pk, to provide the adversary against the confirmer signature with the confirmer public keyΓ.pk.
We will denote such reductions bykey-preservingreductions, inheriting the name from a wide and
popular class of reductions which supply the adversary withthe same public key as its challenge.
Such reductions were for instance used in [Paillier & Villar, 2006] to prove a separation between
factoring and IND-CCA-breaking some factoring-based encryption schemes in the standard model.
Our restriction to such a class of reductions is not unnatural since, to our best knowledge, all the
reductions basing the security of the generic constructions of confirmer signatures on the security
of their underlying components, feed the adversary with thepublic keys of these components (sig-
nature schemes, encryption schemes, and commitment schemes). Next, we use similar techniques
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to [Paillier & Villar, 2006] to extend our impossibility results to arbitrary reductions.

Impossibility results for key-preserving reductions

Lemma 4.2. Assume there exists a key-preserving reductionR that converts an INV-CMA adver-
saryA against the above construction to an NM-CPA adversary against the underlying encryption
scheme. Then, there exists a meta-reductionM that NM-CPA breaks the encryption scheme in
question.

Let us first interpret this result. The lemma claims that under the assumption of the underlying
encryption scheme being NM-CPA secure, there exists no key-preserving reductionR that reduces
NM-CPA breaking the encryption scheme in question to INV-CMA breaking the construction, or
if there exists such an algorithm, then the underlying encryption scheme is not NM-CPA secure,
thus rendering such a reduction useless.

Proof. LetR be a key-preserving reduction that reduces NM-CPA breakingthe encryption scheme
underlying the construction to INV-CMA breaking the construction itself. We will construct an al-
gorithmM that usesR to NM-CPA break the same encryption scheme by simulating an execution
of the INV-CMA adversaryA against the construction.

Let Γ be the encryption schemeM is trying to attack.M launchesR overΓ with the same
public key, sayΓ.pk. M, acting as the INV-CMA adversaryA against the construction, queries

R onm0, m1
R←− {0, 1}⋆ for confirmer signatures. Then, he queries the resulting stringsµ0, µ1

(corresponding to the confirmer signatures onm0 andm1 respectively) for a selective conversion.
Let σ0 andσ1 be the output (digital) signatures onm0 andm1 respectively. At that point,M
inputsD = {σ0, σ1} to his own challenger as a distribution probability from which the plaintexts
will be drawn. He gets in response a challenge encryptionµ⋆, of eitherσ0 or σ1 underΓ.pk, and
is asked to produce a ciphertextµ′ whose corresponding plaintext is meaningfully related to the

decryption ofµ⋆. To do this,M chooses uniformly at random a bitb
R←− {0, 1}. Then, he queries

the presumed confirmer signatureµ⋆ on mb for a selective conversion. If the result is different
from ⊥, i.e. µ⋆ is the encryption ofσb, thenM will output Γ.encryptΓ.pk(σb) (σb refers to the
bit-complement of the elementσb) and the relationR: R(m,m′) = (m′ = m). Otherwise, he will
outputΓ.encryptΓ.pk(σ1−b) and the same relationR. FinallyM aborts the game (stops simulating
an INV-CMA attacker against the generic construction).

Remark 4.1. In the above proof,R may not behave as a standard INV-CMA challenger. For
instance, he may produce inconsistent answers whenA asks the signature ofm0 andm1, the
conversion ofµ0 andµ1 w.r.t. m0 andm1 respectively, or the conversion ofµ⋆ w.r.t. m0 or m1. In
this case,M cannot answer his NM-CPA challenge, howeverA is not either expected to answer
his INV-CMA challenge, and thereforeR will be compelled to solve his challenge without the help
of A; that isR will be useless as it is solving a challenge without the help of A, i.e. aneasy
challenge.
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Actually, such an argument applies for all the impossibility results that will be used throughout
this thesis; if the reduction provides an incorrect simulation causing the meta-reduction a failure
in answering his challenge, then the adversary, played/simulated by this meta-reduction, is not
neither expected to answer his challenge. In this case, the reduction will be useless as it is solving
a challenge in polynomial time without the help of the adversary.

Lemma 4.3. Assume there exists a key-preserving reductionR that converts an INV-CMA adver-
saryA against the above construction to a OW-CCA adversary against the underlying encryption
scheme. Then, there exists a meta-reductionM that OW-CCA breaks the encryption scheme in
question.

As mentioned previously, this lemma claims that under the assumption of the underlying en-
cryption scheme being OW-CCA secure, there exists no key-preserving reductionR that reduces
OW-CCA breaking the encryption scheme in question to INV-CMA breaking the construction, or
if there exists such an algorithm, then the underlying encryption scheme is not OW-CCA secure,
thus rendering such a reduction useless.

Proof. The proof technique is similar to the one above. LetR be the key-preserving reduction
that reduces OW-CCA breaking the encryption scheme underlying the construction to INV-CMA
breaking the construction itself. We will construct an algorithmM that usesR to OW-CCA break
the same encryption scheme by simulating an execution of theINV-CMA adversaryA against the
construction.

Let Γ be the encryption schemeM is trying to attack.M gets his challengec and is equipped
with a decryption oracle that he can query on all ciphertextsof his choice except of course on
the challenge.M launchesR overΓ with the same public keyΓ.pk and the same challengec.
Obviously, all decryption queries made byR, which are by definition different from the challenge
ciphertextc, can be forwarded toM’s own challenger. At some point,M, acting as an INV-CMA
attacker against the construction, will output two messagesm0, m1 and gets as response a challenge
signatureµ⋆ which he is required to tell to which message it corresponds.With overwhelming
probability,µ⋆ 6= c, in fact, the challengec is not the encryption of a certainσ such thatσ is
a valid digital signature on the messagem0 or the messagem1. Therefore,M queries his own
challenger for the decryption ofµ⋆ (he can issue such a query since it is different from the challenge
ciphertext). He checks whether the result, sayσ, is a valid digital signature onm0 orm1. Then, he
will simply output the result of this verification. Finally,whenR outputs his answer, decryption
of the ciphertextc,M will simply forward this result to his challenger.

Remark 4.2. In the above proof, ifR givesc as a challenge confirmer signature toA (simulated
byM), thenA cannot solve the INV-CMA challenge asM cannot invoke his decryption oracle
on c. Since it is very unlikely thatc corresponds to a valid confirmer signature on the challenge
messagesm0 or m1, then whatever is the answer ofA (actually in this case,A, simulated byM
who launchedR over c, can abort the invisibility game) to the challengec, this answer will not
helpR solving his OW-CCA challenge since he already knows thatc cannot be (with overwhelming
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probability) a valid confirmer signature on either messagesm0 orm1. In other words, in this case,
whateverR learns fromA, he can also learn it withoutA, which corresponds to a reductionR
solving a OW-CCA challenge in polynomial time without the help of A, i.e. the reductionR is
useless as it is solving an easy problem.

Remark 4.3. Note that the success of the meta-reductionM, in the above proofs, is identical to
the success of the reductionR. Moreover, the above results apply to any key-preserving reduction
(from NM-CPA or OW-CCA breaking the encryption scheme to INV-CMA breaking the construc-
tion), for instance, they apply to the (key-preserving) reduction making the best possible use of
INV-CMA adversaries against the construction.

Theorem 4.4. The encryption scheme underlying the above construction must be at least IND-
PCA secure, in case the considered reduction is key-preserving, in order to achieve INV-CMA
secure signatures.

Proof. We proceed in this proof with elimination. Lemma 4.2 rules out the notion NM-CPA and
thus the notions IND-CPA and OW-CPA. Moreover, Lemma 4.3 rules out OW-CCA and thus OW-
PCA (and also OW-CPA). Thus, the next notion to be consideredis IND-PCA.

Remark 4.4. The above theorem is only valid when the considered notions are those obtained from
pairing a security goal GOAL∈ {OW, IND,NM} and an attack model ATK∈ {CPA,PCA,CCA}.
Presence of other notions will require an additional study.However, Lemmas 4.2 and 4.3 will be
always of use when there exists a relation between these new notions and the notions OW-CCA and
NM-CPA.

Generalization to arbitrary reductions

To extend the results in the previous paragraph to arbitraryreductions, we first define the notion of
non-malleability of an encryption scheme key generatorthrough the following two games:
In Game 0, we consider an algorithmR trying to break an encryption schemeΓ , w.r.t. a public
key Γ.pk, in the sense of NM-CPA (or OW-CCA) using an adversaryA which solves a problem
A, perfectly reducible to OW-CPA breaking the encryption schemeΓ. In this game,R launchesA
over his own challenge keyΓ.pk and some other parameters chosen freely byR. We will denote
by Adv0(RA) the success probability ofR in such a game, where the probability is taken over
the random tapes of bothR andA. We further defineSuccGame0

Γ (A) = maxR Adv0(RA) to be
the success inGame 0of the best reductionR making the best possible use of the adversaryA.
Note that the goal ofGame 0 is to include all key-preserving reductionsR from NM-CPA (or
OW-CCA) breaking the encryption scheme in question to solving a problem A, which is reducible
to OW-CPA breaking the same encryption scheme.
In Game 1, we consider the same entities as inGame 0, with the exception of providingR with,
in addition toA, a OW-CPA oracle (i.e. a decryption oracle corresponding toΓ) that he can query
w.r.t. any public keyΓ.pk′ 6= Γ.pk, whereΓ.pk is the challenge public key ofR. Similarly, we
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defineAdv1(RA) to be the success ofR in such a game, andSuccGame1
Γ (A) = maxR Adv0(RA)

the success inGame 1of the reductionR making the best possible use of the adversaryA and of
the decryption (OW-CPA) oracle.

Definition 4.1. An encryption schemeΓ is said to have a non-malleable key generator if
∆ = maxA|SuccGame1

Γ (A)− SuccGame0
Γ (A)| is negligible in the security parameter.

This definition informally means that an encryption scheme has a non-malleable key generator
if NM-CPA (or OW-CCA) breaking it w.r.t. a keypk is no easier when given access to a decryption
(OW-CPA) oracle w.r.t. any public keypk′ 6= pk.

We generalize now our impossibility results to arbitrary reductions as follows.

Theorem 4.5. If the encryption scheme underlying the above constructionhas a non-malleable
key generator, then it must be at least IND-PCA secure in order to achieve INV1-CMA secure
confirmer signatures.

To prove this theorem, we first need the following lemma (similar to Lemma 6 of [Paillier &
Villar, 2006])

Lemma 4.6. LetA be an adversary solving a problem A, reducible to OW-CPA breaking an en-
cryption schemeΓ, and letR be an arbitrary reductionR that NM-CPA (OW-CCA) breaks an
encryption schemeΓ given access toA. We have

Adv(R) ≤ SuccGame1
Γ (A).

Proof. We will construct an algorithmM that playsGame 1with respect to a perfect oracle forA
and succeeds in breaking the NM-CPA (OW-CCA) security ofΓ with the same success probability
ofR. AlgorithmM gets a challenge w.r.t. a public keypk and launchesR over the same challenge
and the same public key. IfR callsA onpk, thenMwill call his own oracle forA. Otherwise, ifR
callsA onpk′ 6= pk,M will invoke his own decryption oracle forpk′ (OW-CPA oracle) to answer
the queries. In fact, by assumption, the problem A is reducible to OW-CPA breakingΓ. Finally,
whenR outputs the result toM, the latter will output the same result to his own challenger.

The proof of Theorem 4.5 is similar to that of Theorem 5 in [Paillier & Villar, 2006]:

Proof. We first remark that the invisibility of the construction depicted above is perfectly reducible
to OW-CPA breaking the encryption scheme underlying the construction. In fact, an invisibility
adversaryA, given a challenge confirmer signature, can first decrypt it,then check, using the algo-
rithmΣ.verify andΣ.pk, whether the result is a valid digital signature on the message in question.
Next, we note that the advantage of the meta-reductionM in the proof of Lemma 4.2 (Lemma 4.3)
is the same as the advantage of any key-preserving reductionR reducing the invisibility of a given
confirmer signature to the NM-CPA (OW-CCA) security of its underlying encryption schemeΓ.
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For instance, this applies to the reduction making the best use of an invisibility adversaryA against
the construction. Therefore we have:

SuccGame0
Γ (A) ≤ Succ(NM − CPA[Γ]),

whereSucc(NM − CPA[Γ]) is the success of breakingΓ in the NP-CPA sense. We also have

SuccGame0
Γ (A) ≤ Succ(OW − CCA[Γ]).

Now, LetR be an arbitrary reduction from NM-CPA (OW-CCA) breaking an encryption scheme
Γ, with a non-malleable key generator, to INV-CMA breaking the construction (using the same
encryption schemeΓ). We have

Adv(R) ≤ SuccGame1
Γ (A)

≤ SuccGame0
Γ (A) + ∆

≤ Succ(NM − CPA[Γ])(Succ(OW − CCA[Γ])) + ∆

since∆ is negligible, then under the assumption ofΓ being NM-CPA (OW-CCA) secure, the
advantage ofR is also negligible.

Positive results

One can give an informal explanation to the result above as follows. It is well known that construc-
tions obtained from the signthenencrypt paradigm are notstrongly unforgeable. I.e. a polynomial
adversary is able to produce, given a valid confirmer signature on a certain message, another valid
confirmer signature on the same message without the help of the signer. Indeed, given a valid
confirmer signature on a message, an attacker can request itscorresponding digital signature from
the selective conversion oracle, then he encrypts it under the confirmer public key and obtains a
new confirmer signature on the same message. Therefore, any reductionR from the invisibility
of the construction to the security of the underlying encryption scheme will need more than a list
of records maintaining the queried messages along with the corresponding confirmer and digital
signatures. Thus the insufficiency of notions like IND-CPA.In [Camenisch & Michels, 2000],
the authors stipulate that the given reduction would need a decryption oracle (of the encryption
scheme) in order to handle the queries made by the INV-CMA attackerA, which makes the invis-
ibility of the construction rest on the IND-CCA security of the encryption scheme. In our work,
we remark that the queries made byA are not completely uncontrolled byR. In fact, they are
encryptions of some data already released byR, provided the digital signature scheme is strongly
unforgeable, and thus known to him. Therefore, a plaintext checking oracle suffices to handle those
queries.
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Theorem 4.7. Given (t, qs, qv, qsc) ∈ N4 and (ε, ǫ′) ∈ [0, 1]2, the construction given above is
(t, ǫ, qs, qv, qsc)-INV-CMA secure if the underlying digital signature is(t, ǫ′, qs)-SEUF-CMA secure
and the underlying encryption scheme is (t+ qsqsc(qsc+ qv), ǫ · (1− ǫ′)(qsc+qv), qsc(qsc+ qv))-IND-
PCA secure.

Proof. Let A be an attacker that (t, ǫ, qs, qv, qsc)-INV-CMA breaks the invisibility of the above
confirmer signature, believed to use a(t, ǫ′, qs)-SEUF-CMA secure signature scheme. We will
construct an algorithmR that IND-PCA breaks the underlying encryption scheme as follows:

[Key generation] R will get the public parameters of the target encryption scheme from his
challenger, that areΓ.pk , Γ.encrypt, andΓ.decrypt. Then, he will choose an appropriate
signature schemeΣ with parametersΣ.pk, Σ.sk, Σ.sign, andΣ.verify.

[confirmedSign queries] For a signature query on a messagem. R first computes a (digital)
signatureσ on m using his secret keyΣ.sk. Then, he encryptsσ and outputs the result
to A. Besides,R issues a ZK proof of knowledge ofσ that satisfies the equation defined
by Σ.verify. Finally,R will maintain a listL of the queries (messages), the corresponding
digital signatures and finally the signatures he issued.R will proceed in this way foreach
queryand not onlyeach new query.

[convert queries] For a putative confirmer signatureµ on m, R will look up the listL. We
note that each record ofL comprises three components : (1) the queried messagemi (2) σi
corresponding to a digital signature onmi (3) Γ.encryptΓ.pk(σi) = µi, which corresponds to
the confirmer signature issued onmi. If no record having as first component the messagem
appears inL, thenR will output⊥. Otherwise, lett be the number of records having as first
component the messagem. R will invoke the plaintext checking oracle (PCA) furnished by
his own challenger on(σi, µ), for 1 ≤ i ≤ t, whereσi corresponds to the second component
of such records. If the PCA oracle identifiesµ as a valid encryption of someσi, 1 ≤ i ≤ t,
thenR will return σi, otherwise he will return⊥. This simulation differs from the real one
when the signatureµ is valid and was not obtained from the signing oracle. We notethat
the only ways to create a valid confirmer signature without the help ofR consist in either
encrypting a digital signature obtained from the conversion oracle or coming up with a new
fresh pair of message and corresponding signature(m,µ). R can handle the first case using
his PCA oracle and list of recordsL. In the second case, we can distinguish two sub-cases:
eitherm has not been queried to the signing oracle in which case the pair (m,µ) corresponds
to an existential forgery on the confirmer signature scheme and thus to an existential forgery
on the underlying digital scheme according to Theorem 4.1, or m has been queried to the
signing oracle butΓ.decrypt(µ) is not an output of the selective conversion oracle, which
corresponds to a strong existential forgery on the underlying digital signature. Therefore, the
probability that this scenario does not happen is at least(1 − ǫ′)qsc because the underlying
digital signature scheme is(t, ǫ′, qs)-SEUF-CMA secure by assumption.
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[confirm/deny queries]R will proceed exactly as in the selective conversion with theexception
of simulating the denial protocol instead of returning⊥, or the confirmation protocol instead
of returning the converted digital signature.R can issue such proofs without knowing the
private key of the encryption scheme using the rewinding technique (see Remark 1.9) be-
cause the protocols are zero knowledge and thus simulatable, or using designated verifier
proofs [Jakobssonet al., 1996] in a registered key model. Analogously, the probability that
A does not query a valid signature he has not obtained from the signing oracle is at least
(1− ǫ′)qv .

[Challenge phase]Eventually,A will output two challenging messagesm0 andm1. R will then
compute two signaturesσ0 andσ1 onm0 andm1 respectively, which he gives to his own
challenger.R will receive then the challengeµ⋆, as the encryption of eitherσ0 or σ1, which
he will forward toA.

[Post challenge phase]A will continue issuing queries to the signing, confirmation/denial and
selective conversion oracles andR can answer as previously. Note that in this phase,A is
not allowed to query the selective conversion or the confirmation/denial oracles on(mi, µ

⋆),
i = 0, 1. Also,R is not allowed to query his PCA oracle on(µ⋆, σi), i = 0, 1. If during the
selective conversion or confirmation/denial queries made by A,R is compelled to query his
PCA oracle on(µ⋆, σi), i = 0, 1, he will simply output⊥ in case of a selective conversion
query or simulate the denial protocol in case of a verification query. This differs from the
real scenario whenµ⋆ is a valid confirmer signature on some messagem /∈ {m0, m1}, which
corresponds to an existential forgery on the underlying signature scheme (σi will be a valid
digital signature onm0 orm1 and on a messagem /∈ {m0, m1}). Again, this does not happen
with probability at least(1− ǫ′)qsc+qv .

[Final output] WhenA outputs his answerb ∈ {0, 1}, R will forward this answer to his own
challenger. ThereforeR will IND-PCA break the underlying encryption scheme with ad-
vantage at leastǫ · (1−ǫ′)(qv+qsc), in time at mostt+qsqsc(qv+qsc) after at mostqsc(qsc+qv)
queries to the PCA oracle.

Unfortunately, requiring the encryption scheme to be at least IND-PCA secure seems to impact
negatively the efficiency of the construction as it excludeshomomorphic schemes from use (a
homomorphic encryption scheme cannot be IND-PCA secure). In fact, such schemes can be (as
we will show later in this document) efficient decryption verifiable, i.e. they accept efficient ZK
proofs of knowledge of the decryption of a given ciphertext.In the next section, we discuss an
attempt to circumvent this problem.

Remark 4.5. There exists a simpler way to exclude homomorphic encryption from the design which
consists in proceeding as follows:
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First rule out the notions OW-CPA, IND-CPA and OW-PCA by remarking that ElGamal’s encryp-
tion meets all those notions (under the CDH, DDH and GDH assumption resp. ) but still cannot
be used as an ingredient in the construction. In fact, ElGamal offers the possibility of, given a
ciphertext, creating another ciphertext for the same message (multiply the first component bygr,
for somer, and the second one byyr, where(sk = x, pk = y = gx) is the key pair of the scheme).
Now, let(µ,m0, m1) be a challenge of an INV-CMA adversaryA. By construction,µ is an ElGa-
mal encryption of someσ, which is a digital signature on eitherm0 orm1. By the argument above,
A can create another confirmer signatureµ′, that is another encryption ofσ, and that he can query
(w.r.t.m0 for example) to the selective conversion oracle and then answer his own challenge.
Next, deduce that the encryption scheme in constructions derived from the “encryption of a sig-
nature” paradigm must be at least OW-CCA or NM-CPA or IND-PCAsecure in order to lead to
secure constructions. Finally, conclude by the fact that a homomorphic scheme cannot be NM-CPA
secure nor OW-CCA nor IND-PCA secure1.
However, in order to determine the exact security needed to achieve secure constructions from the
mentioned paradigm, there seems no known simpler way to exist than the study provided in this
section.

4.2 An efficient construction from a variant of the paradigm

One attempt to circumvent the problem ofstrong forgeabilityof constructions obtained from the
plain “encryption of a signature” paradigm can be achieved by binding the digital signature to its
encryption. In this way, from a digital signatureσ and a messagem, an adversary cannot create
a new confirmer signature onm by just re-encryptingσ. In fact,σ forms a digital signature onm
and some data, sayc, which uniquely defines the confirmer signature onm. Moreover, this datac
has to be public in order to issue the confirmedSign/confirmation/denial protocols.

In this section, we propose a realization of this idea using hybrid encryption (the KEM/DEM
paradigm). We also allow more flexibility without compromising the overall security by encrypting
only one part of the signature and leaving out the other part,provided it does not reveal information
about the key nor about the message.

1Let E be an encryption scheme such that∀m,m′ ∈ M : E.encrypt(m ⋆ m′) = E.encrypt(m) ◦ E.encrypt(m′),
whereM is the message space,encrypt is the encryption algorithm and finally⋆ and◦ are some group laws defined
by E on the message and ciphertext spaces resp. Letc be the NM-CPA challenge. An adversary can simply choose

a random messagem′ R←− M, encrypt it inc′ and finally outputc ◦ c′ and the relationR = ⋆m′. Now, let c be a

OW-CCA challenge, an adversary can choose again a random messagem′ R←−M, encrypt it inc′ and then queryc⋆ c′

to the decryption oracle. Letm” be the result, the adversary can simply outputm” ⋆ m′−1 as the decryption ofc (we
assume that computing inverses inM is done efficiently). Similarly, a homomorphic scheme cannot be IND-PCA
secure.
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4.2.1 The construction

Let Σ be a digital signature scheme given byΣ.keygen, which generates a key pair (Σ.sk, Σ.pk),
Σ.sign, andΣ.verify. Let furthermoreK be a KEM given byK.keygen, which generates a key
pair (K.pk, K.sk), K.encap, andK.decap. Finally, we consider a DEMD given byD.encrypt and
D.decrypt.

We assume that any digital signatureσ, generated usingΣ on an arbitrary messagem, can be
efficiently transformed in a reversible way to a pair(s, r) wherer reveals no information about
m nor about(Σ.sk,Σ.pk). I.e. there exists an algorithm that inputs a messagem and a key pair
(Σ.sk,Σ.pk) and outputs a string statistically indistinguishable fromr, where the probability is
taken over the messages and the key pairs considered byΣ. This technical detail will improve the
efficiency of the construction as it will not necessitate encrypting the entire signatureσ, but only
the message-key-dependent part, namelys. Finally, we assume thats belongs to the message space
of D.

In the rest of this section, we consider that the encapsulations generated by the KEMK are
exactlyκ-bit long, whereκ is a security parameter. This can be for example realized by padding
with zeros, on the left of the most significant bit of the givenencapsulation, until the resulting
string has lengthκ. Moreover, the operator‖ denotes the usual concatenation operation between
two bit-strings. As a result, the first bit ofm will always be at the(κ+1)-st position inc‖m, where
c is a given encapsulation. Such a technical detail will play an important role in the unforgeability
and invisibility of the construction.

The construction of confirmer signatures fromΣ,K, andD is given as follows.

Key generation (keygen). CallΣ.keygen andK.keygen to generate, on input a security parameter
κ, Σ.sk, Σ.pk, K.pk, andK.sk respectively. Set the signer’s key pair to(Σ.sk,Σ.pk) and the
confirmer’s key pair to(K.sk,K.pk).

ConfirmedSign (confirmedSign). Fix a keyk together with its encapsulationc. Then, com-
pute a (digital) signatureσ = Σ.signΣ.sk(c‖m) = (s, r) on c‖m. Finally, outputµ =
(c,D.encryptk(s), r) and prove the knowledge ofs, decryption of(c,D.encryptk(s)), which
together withr forms a valid digital signature onc‖m w.r.t. Σ.pk. This proof is possible
because the signer knowsk and(s, r), and the last assertion defines an NP language which
accepts a ZK proof system.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatureµ =
(µ1, µ2, µ3), issued on a certain messagem, the confirmer first computesk = K.decapK.sk(µ1)
then callsΣ.verify on (D.decryptk(µ2), µ3) andµ1‖m usingΣ.pk. According to the result,
the signer issues a ZK proof of knowledge of the decryption of(µ1, µ2) that, together with
µ3, passes (does not pass) the verification algorithmΣ.verify. Again this proof is possible
because the given assertions are either NP or co-NP statements and therefore accept a ZK
proof system.
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Selective conversion (convert). To convert a given signatureµ = (µ1, µ2, µ3) issued on a certain
messagem, the confirmer first checks its validity. In case it is valid, the signer computes
k = K.decapK.sk(µ1), outputs(D.decryptk(µ2), µ3), and proves thatk is the decapsulation
of µ1, otherwise he outputs⊥.

Theorem 4.8. Given (t, qs) ∈ N2 and ε ∈ [0, 1], the above construction is (t, ǫ, qs)-EUF-CMA
secure if the underlying digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

Proof. Let A be an attacker that (t, ǫ, qs)-EUF-CMA breaks the existential unforgeability of the
above construction. We will construct an adversaryR that (t, ǫ, qs)-EUF-CMA breaks the under-
lying digital signature scheme:

[Key generation]R gets the parameters of the signature scheme in question fromhis challenger.
Then he chooses an appropriate KEMK and DEMD and asksA to provide him with the
confirmer key pair(K.sk,K.pk). Finally,R fixes the above parameters as a setting for the
confirmer signature schemeA is trying to attack.

[confirmedSign queries]For a signature query on a messagem,R will first compute an encapsu-
lation c together with its decapsulationk (usingΓ.pk). Then, he will request his challenger
for a digital signatureσ = (s, r) on c‖m. Finally, he encryptss in D.encryptk(s), then
outputs the confirmer signature(c,D.encryptk(s), r) and proves in ZK its validity toA.

[Final Output] OnceA outputs his forgeryµ⋆ = (µ⋆1, µ
⋆
2, µ

⋆
3) onm⋆. R will compute the decap-

sulation ofµ⋆1, sayk. If µ⋆ is valid then by definition(D.decryptk(µ⋆2), µ⋆3) is a valid digital
signature onµ⋆1‖m⋆. Thus,R outputs(D.decryptk(µ⋆2), µ⋆3) andµ⋆1‖m⋆ as a valid existential
forgery onΣ. In fact, if, during a query made byA on a messagemi , R is compelled to
query his own challenger for a digital signature onµ⋆1‖m⋆ = µi1‖mi, thenm⋆ = mi (by
construction), which contradicts the fact that(µ⋆, m⋆) is an existential forgery output byA.

Note that there will be no need to simulate the confirmation/denial and selective conversion oracles
sinceA knowsK.sk which allows the verification of the confirmer signatures.

The following remark is vital for the invisibility of the resulting undeniable signatures.

Remark 4.6. The previous theorem shows that existential unforgeability of the underlying digital
signature scheme suffices to ensure existential unforgeability of the resulting construction. Actu-
ally, one can also show that this requirement on the digital signature (EUF-CMA security) guar-
antees that no adversary, against the construction, can come up with a valid confirmer signature
µ = (µ1, µ2, µ3) (µ1 is the encapsulation used to generate the confirmer signatureµ) on a message
m that has been queried before to the signing oracle but whereµ1 was never used to generate
answers (confirmer signatures) to the signature queries.

To prove this claim, we construct from such an adversary, sayA, an EUF-CMA adversaryR
against the underlying digital signature scheme, which runs in the same time and has the same
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advantage asA. In fact,R will simulateA’s environment in the same way described in the proof
of Theorem 4.8. WhenA outputs his forgeryµ⋆ = (µ⋆1, µ

⋆
2, µ

⋆
3) on a messagemi that has been

previously queried to the signing oracle,R decrypts(µ⋆1, µ
⋆
2) in s⋆, which by definition forms,

together withµ⋆3, a valid digital signature onµ⋆1‖mi. Since by assumptionµ⋆1 was never used
to generate confirmer signatures on the queried messages,R never invoked his own challenger
for a digital signature onµ⋆1‖mi. Therefore,(s⋆, µ⋆3) will form a valid existential forgery on the
underlying digital signature scheme.

Theorem 4.9. Given (t, qs, qv, qsc) ∈ N4 and (ε, ǫ′) ∈ [0, 1]2, the construction proposed above
is (t, ǫ, qs, qv, qsc)-SINV-CMA secure if it uses a(t, ǫ′, qs)-EUF-CMA secure digital signature, an
INV-OT secure DEM and an (t + qs(qv + qsc), ǫ · (1− ǫ′)qv+qsc)-IND-CPA secure KEM.

Proof. LetA be an attacker that (t, ǫ, qs, qv, qsc)-SINV-CMA breaks our construction, assumed to
use a(t, ǫ′, qs)-EUF-CMA secure digital signature and an INV-OT secure DEM.We will construct
an algorithmR that (t + qs(qv + qsc), ǫ · (1− ǫ′)qv+qsc)-IND-CPA breaks the underlying KEM.

[Key generation]R gets the parameters of the KEMK from his challenger. Then, he chooses an
appropriate INV-OT secure DEMD together with an(t, ǫ′, qs)-EUF-CMA secure signature
schemeΣ.

[confirmedSign queries] For a signature query onm. R first fixes a session keyk together with
its decapsulationc usingK.pk. Then he computes a (digital) signatureσ = (s, r) on c‖m
usingΣ.sk. Next, he encryptss (usingk) in D.encryptk(s) and outputs toA the confirmer
signature(c,D.encryptk(s), r). Finally, he interacts withA in a ZK protocol where he proves
that(c,D.encryptk(s)) is the encryption of someswhich together withr forms a valid digital
signature onc‖m w.r.t. Σ.pk. R will maintain a listL of the encapsulationsc and keysk
used to generate the confirmer signatures.

[confirm/deny queries] For a signatureµ = (µ1, µ2, µ3) on a messagem, R will look up the list
L. If a record having as first component the encapsulationµ1,R will use the corresponding
decapsulation, sayk, to decrypt(µ1, µ2) in s. If (s, µ3) is a valid digital signature onc‖m,
R will run the confirmation protocol, otherwise, he will run the denial protocol.R can
issue such proofs of knowledge, without knowing the privatekey ofK, using the rewinding
technique because the protocols are zero knowledge, thus simulatable. In caseµ1 does not
appear in any record ofL,R will issue the denial protocol.

This simulation differs from the real one when the signatureµ = (µ1, µ2, µ3) onm is valid
andµ1 does not appear in any record ofL. We distinguish two cases: eitherm was never
queried to the signing oracle, then(m,µ) would correspond to an existential forgery on the
confirmer signature scheme, which would lead to an existential forgery on the underlying
signature scheme by virtue of Theorem 4.8. The second case iswhenm has been previously
queried to the signing oracle in which case(m,µ) would correspond to an existential forgery
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on the underlying digital scheme thanks to Remark 4.6. Hence, the probability that both
scenarios do not happen is at least(1− ǫ′)qv because the underlying digital signature scheme
is (t, ǫ′, qs)-EUF-CMA secure by assumption.

[convert queries] For a selective conversion query onµ = (µ1, µ2, µ3) andm, R will proceed
as he would do in a verification (confirmation/denial) query with the exception of outputting
the decryption of(µ1, µ2, ) together withµ3 instead of simulating the confirmation protocol,
or the symbol⊥ instead of the denial protocol. Again the probability that this simulation
does not differ from the real execution of the algorithm is atleast(1− ǫ′)qsc.

[Challenge] Eventually,A outputs a challenging messagem⋆. R will use his challenge(c⋆, k⋆)
to compute a digital signature(s⋆, r⋆) on c⋆‖m⋆. Then, he encryptss⋆ usingk⋆ and outputs
µ⋆ = (c⋆,D.encryptk⋆(s⋆), r⋆) toA. Therefore,µ⋆ is either a valid confirmer signature on
m⋆ or an element indistinguishable from a random element in the(confirmer) signatures
space (k⋆ is random according to Subsection 2.4.1 and the DEM is INV-OTsecure). Ifµ⋆,
in the latter case, is a random element in the confirmer signatures space, then this complies
with the scenario of a real attack. Otherwise, ifµ⋆ is only indistinguishable from random,
then if the advantage ofA is non-negligibly different from the advantage of an invisibility
adversary in a real attack, thenA can be easily turned into an attacker against the INV-OT
security property of the DEM underlying the construction. To sum up, under the INV-OT
assumption of the DEM underlying the construction, the challenge confirmer signatureµ⋆

is either a valid confirmer signature onm⋆ or a random element in the confirmer signature
space.

[Post challenge phase]A will continue issuing queries to the signing, confirmation/denial and
selective conversion oracles, andR can answer as previously. Note that in this phase,A
might request the verification or selective conversion of a confirmer signature(c⋆,−,−) on
a messagemi. In this case,R will simply issue the denial protocol in case of a verification
query, or the symbol⊥ in case of a selective conversion query. Following the same analysis
as above, the probability that the simulation does not differ from the real execution is at least
(1− ǫ′)qsc+qv .

[Final output] WhenA outputs his answerb ∈ {0, 1}, R will forward this answer to his own
challenger. ThereforeR will (t + qs(qv + qsc), ǫ · (1 − ǫ′)qv+qsc)-IND-CPA break the KEM
used in the construction.

Note that the strong unforgeability of the underlying signature scheme is not needed here to
achieve invisibility. In fact, if the adversary can come up with another digital signature(s′, r′) on
a givenc‖m, then there is just one way to create the corresponding confirmer signature, namely
encrypts usingk = K.decap(c). Therefore, the reduction is able to handle a query requesting
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the confirmation/denial or selective conversion of such a signature by just maintaining a list of the
used encapsulationsc and the corresponding decapsulationsk.

4.3 Efficient instantiations

In this subsection, we define the classes of signatures/encryption schemes that yield efficient in-
stantiations of the construction defined in the previous section (Section 4.2). The class of digital
signatures we consider is very similar to the one defined by [Shahandashti & Safavi-Naini, 2008] in
the context of designated verifier signatures, whereas the class of considered encryption schemes
spotlights the importance of homomorphic encryption in theframework.

4.3.1 The classS of signatures

Definition 4.2. S is the set of all digital signatures for which there exists a pair of efficient al-
gorithms,convert and retrieve, whereconvert inputs a public keypk, a messagem, and a valid
signatureσ onm (according topk) and outputs the pair(s, r) such that:

1. r reveals no information aboutm nor aboutpk, i.e. there exists an algorithmsimulate such
that for every public keypk from the key space and for every messagem from the message
space, the outputsimulate(pk, m) is statistically indistinguishable fromr.

2. there exists an algorithmcompute that on the inputpk, the messagem and r, computes a
description of an injectiveone-way functionf : (G, ∗)→ (H, ◦s):

• where(G, ∗) is a group andH is a set equipped with the binary operation◦s ,

• ∀S, S ′ ∈ G: f(S ∗ S ′) = f(S) ◦s f(S ′).

and anI ∈ H, such thatf(s) = I.

andretrieve is an algorithm that inputspk,m and the correctly converted pair(s, r) and retrieves
the signatureσ onm.

The classS differs from the classC, introduced in [Shahandashti & Safavi-Naini, 2008], in
the condition required for the one way functionf . In fact, in our description ofS, the functionf
should satisfy a homomorphic property, whereas in the classC, f should only possess an efficient
protocol for proving knowledge of a preimage of a value in itsrange. We show in Theorem 4.10
that signatures inS accept also efficient proofs for proving knowledge of preimages, and thus
belong to the classC. Conversely, one can claim that signatures inC are also inS, at least from
a practical point of view, since it is not known in general howto achieve efficient protocols for
proving knowledge of preimages off without having the latter item satisfy some homomorphic
properties. It is worth noting that similar to the classesS andC is the class of signatures introduced
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in [Goldwasser & Waisbard, 2004], where the condition of having an efficient protocol for proving
knowledge of preimages is weakened to having only awitness hidingproof of knowledge. Again,
although this is a weaker assumption onf , all illustrations of signatures in this wider class happen
to be also inC andS. Our resort to specify the homomorphic property onf will be justified
later when describing the confirmation/denial protocols ofthe resulting construction. In fact, these
protocols are concurrent composition of proofs of knowledge and therefore need a careful study as
it is known that zero knowledge is not closed under concurrent composition. Finally, the classS
encompasses most proposals that were suggested so far, e.g.

RSA-FDH [BELLARE & R OGAWAY , 1996]. TheFull Domain Hash RSAis given by the key
pair(pk = (N, e), sk = d), whereN is an RSA modulus anded = 1 mod Φ(N). A valid signature
σ on a messagem satisfiesσe = H(m) mod N , whereH is public hash function. It is easy to see
that:

(σ, ǫ)← convert(pk, m, σ) and σ ← retrieve(pk, m, (σ, ǫ)),

whereǫ is the empty string. The verification equation suggests the following one-way function and
image:

f(x) = xe mod N and I = H(m).

Obviouslyf is homomorphic as∀x, y ∈ Z×N : f(xy) = f(x)f(y).

SCHNORR [SCHNORR , 1991]. Schnorr’s signature operates in a group(G, ·) of orderq and
generated byg. The key pair is given by(sk = x, pk = y = gx). A signature on a messagem is of
the formσ = (c, s) such thatc = H(gs · y−c, m) for some randomc ∈ Zq. We have:

(s, r = gsy−c)← convert(pk, m, σ) and σ = (H(r,m), s)← retrieve(pk, m, (s, r)).

In fact, sincec ∈ Zq is random, thenr = gsy−c is also random inG. The one-way function
and image are given by:

f(x) = gx and I = r · yh(r,m).

Obviously∀x, y ∈ Z×N : f(x+ y) = f(x)f(y).

GHR [G ENNARO et al., 1999]. The GHR signature scheme is given by the private keysk =
(p, q) and the public keypk = (p · q = N, s) for somes ∈ Z×N . A signatureσ on a messagem
satisfies the equationσψ(m) = s, whereψ is a public hash function which maps arbitrary messages
to prime numbers. We have:

(σ, ǫ)← convert(pk, m, σ) and σ ← retrieve(pk, m, (σ, ǫ)),
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and

f(x) = xψ(m) mod N and I = s.

BLS [BONEH et al., 2004B]. The BLS signature operates in a bilinear group (denoted addi-
tively) G = 〈P 〉 of orderq and is given by the key pair(sk = x, pk = xP = Y ). A signatureσ
on a messagem satisfiese(σ, P ) = e(H(m), Y ) wheree is the bilinear pairing (with values in a
groupH denoted multiplicatively) underlyingG, andH is a public hash function with values inG.
We have:

(σ, ǫ)← convert(pk, m, σ) and σ ← retrieve(pk, m, (σ, ǫ)),

and

f(Q) = e(Q,P ) and I = e(H(m), Y ).

It is obvious thatf is one-way, otherwise the CDH problem is easy inG (e(xP, yP ) =
e(xyP, P )). Moreover∀P,Q ∈ G : f(Q+R) = f(Q)f(R) (bilinearity property ofe).

Other examples in the classS areModified ElGamal [Pointcheval & Stern, 2000], Cramer-
Shoup [Cramer & Shoup, 2000], Camenisch-Lysyanskaya-02 [Camenisch & Lysyanskaya, 2002] ,
and most pairing-based signatures that have been proposed so far [Camenisch & Lysyanskaya,
2004; Boneh & Boyen, 2004; Zhanget al., 2004; Waters, 2005] etc. The reason whyS encom-
passes most digital signature schemes lies in the fact that asignature verification consists in ap-
plying a functionf to the “vital” part of the signature in question, then comparing the result to an
expression computed from the message underlying the signature, the “auxiliary” or “simulatable”
part of the signature, and finally the public parameters of the signature scheme. The functionf
must be one-way, otherwise the signature scheme is trivially forgeable. Moreover, it (f ) consists
most of the time of an arithmetic operation (exponentiation, raising to a power, pairing computa-
tion, ...) which satisfies an easy homomorphic property.

Theorem 4.10.The protocol depicted in Figure 4.1 is an efficient zero knowledge protocol for
proving knowledge of preimages of the functionf described in Definition 4.2.

We first remark that the functionf used in the definition of the classS induces a group law in
f(G) for the operation◦s. Moreover, we have1f(G) = f(1G) and∀S ∈ G: f(s)−1 = f(s−1).

Proof. For completeness, it is clear that if both parties follow theprotocol, the prover will always
be able to provide a proof that the verifier will accept.
For soundness, let us assume that the cheating proverP̃ is able to successfully carry out the above
protocol without knowings. That is, P̃ , after having committed to at1, is able to answer the
challengeb with a responsez satisfyingf(z) = t1 ◦s f(s)b. Note that, for a fixedt, the last
equation corresponds each challengeb to a unique responsez (f is injective, and we assume that
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ProverP Verifier V

Chooses′
R←− G

Computet1 = f(s′)
t1−−−−−−−−−−→
b←−−−−−−−−−− Chooseb

R←− {0, 1}ℓ (b ∈ N)

z = s′ ∗ sb−−−−−−−−−−→
Verify thatf(z) = t1 ◦s Ib

Figure 4.1: Proof system for membership to the language{s : f(s) = I} Common input: I and
Private input : s

2ℓ is smaller than the order of the groupf(G), which is equal to the order ofG). Thus, sincef
is one-way,P̃ needs to guessb correctly beforehand in order to provide an accepting answer; P̃

will first choosez
R←− G, then computest1 = f(z) ◦s (f(s)−1)b and sends it as a commitment in

the first step of the protocol, when he receives the correctlyguessedb, he will simply answer with
z. This results in a soundness error equal to2−ℓ, which corresponds to the probability of correctly
guessing the challengeb.

To prove that the protocol is ZK, we provide the following simulator:

1. Generate uniformly a random challengeb′
R←− {0, 1}ℓ. Choose a randomz

R←− G, compute
t1 = f(z) ◦s (f(s)−1)b and sends it to the verifier.

2. Getb from the verifier.

3. If b = b′, the simulator sends backz. Otherwise, it goes to Step 2 (rewindsthe verifier).

The prover’s first message in the protocol is a random valuet1 in f(G), and so is the simulator’s.
Moreover, the distributions of the responses of the prover and of the simulator are again identi-
cal. Finally, we observe that the simulator runs in expectedtime 2ℓ since the probability of not
rewinding the verifier is:

Pr[b = b′] =
∑

bi∈{0,1}ℓ

Pr[b = bi, b
′ = bi]

=
∑

bi∈{0,1}ℓ

Pr[b = bi] Pr[b
′ = bi]

= 2−ℓ
∑

bi∈{0,1}ℓ

Pr[b = bi]

= 2−ℓ
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Adjustingℓ to a factor logarithmic in the security parameter ensures that the simulator will run
in expected polynomial time.

4.3.2 The classE of encryption schemes

Definition 4.3. E is the set of encryption schemesΓ, obtained from the KEM/DEM paradigm, that
have the following properties:

1. The message space is a groupM = (G, ∗) and the ciphertext spaceC is a set equipped with
a binary operation◦e.

2. Letm ∈ M be a message andc its encryption with respect to a keypk. On the common input
m, c, andpk, there exists an efficient zero knowledge proof ofm being the decryption ofc
with respect topk. The private input of the prover is either the private keysk, corresponding
to pk, or the randomness used to encryptm in c (the randomness which is input to the KEM
encapsulation algorithm).

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m′). Moreover,
given the randomness used to encryptm in Γ.encryptpk(m) andm′ in Γ.encryptpk(m

′), one
can deduce (using only the public parameters) the randomness used to encryptm ∗ m′ in
Γ.encryptpk(m) ◦e Γ.encryptpk(m′).

Examples of encryption schemes in the above class are :

EL GAMAL [El Gamal, 1985] : ElGamal’s encryption is a KEM/DEM-based encryption scheme.
It operates in a group(G, ·) = 〈g〉, and is given by the KEM key pair(sk = x, pk = y = gx). To
encrypt a messagem ∈ G, one first fixes a keyyr together with its encapsulationgr, then encrypts
m by simply computing the productm · yr. The ciphertext consists of the pair(gr, myr). To de-
crypt a ciphertext(c, e), one first decapsulatesc to obtain the keyk = cx, then retrievesm = ek−1.
Let ◦e, the binary operation defined onG×G, be the term-wise product:

∀a, b, c, d ∈ G : (a, b) ◦e (c, d) = (ac, bd).

ElGamal’s encryption is clearly homomorphic since

encrypt(m) ◦e encrypt(m′) = (gr, myr) ◦e (gs, m′ys) = (gr+s, mm′yr+s) = encrypt(mm′)

Moreover, one can compute the randomness used to encryptm ·m′ in encrypt(m) ◦e encrypt(m′)
as the sum of the randomnesses used to generateencrypt(m) andencrypt(m′) resp.
Finally, given a ciphertext and its corresponding plaintext, one can efficiently prove the correctness
of this assertion. The private input of the prover is either the randomness used to produce the
ciphertext, or the private key of the scheme. This proof is often called in the literature the proof of
equality of two discrete logarithms. It was first provided in[Chaum & Pedersen, 1993]. Figure 4.2
depicts such a proof.
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Prover Verifier

Chooset
R←− Z

Computeh1 = gt

Computeh2 = yt

(h1, h2)−−−−−−−−−−→
b←−−−−−−−−−− Chooseb

R←− {0, 1}ℓ(b ∈ N)
s = t + xb−−−−−−−−−−→

Verify thatgs = h1e
b
1 andes1 = h2e

b
2

Figure 4.2: Proof system for{(e1, e2) : e1 = gx ∧ e2 = yx} Common input: (e1, e2, y, g) and
Private input: x

BBS [Bonehet al., 2004a] : It consists of the following algorithms:

• setup. We consider a bilinear group(G,+), with prime orderd, generated byP .

• keygen. Probabilistically generate two secret valuesx1, x2 ∈ Z×d and computeX1 = x1P
andX2 = x2P . Set the private key tosk = (x1, x2) and the public key topk = (X1, X2).

• encrypt. Letm ∈ G be a message. Generate a random nonce(a, b) ∈ Z2
d and compute the

session keyk = (a+ b)P and itsencapsulationc = (aX1, bX2). The ciphertext correspond-
ing tom is (c, k +m).

• decrypt. Given the private keysk and the element(c, k+m), wherec = (aX1, bX2), compute
k ask = x−11 aX1 + x−12 bX2. Then recoverm from k +m.

The BBS scheme is IND-CPA secure under the decision linear assumption (Definition 2.5).
Moreover, it is evident that this scheme satisfies the homomorphic properties announced in Defi-
nition 4.3. Finally, the proof that a given BBS ciphertextc decrypts to some messagem is simply
the proof of equality of two discrete logarithms: the discrete logarithm ofe(aX1, bX2) in base
e(kP,X2), and the discrete logarithm ofX1 in baseP , wheree is the pairing underlying the group
G.

Finally, the Paillier [Paillier, 1999] encryption scheme cannot be viewed as an instance of this
class as it is not based on the KEM/DEM paradigm.

Theorem 4.11.Let Γ be a OW-CPA secure encryption scheme from the above classE. Let fur-
thermorec be an encryption of some message under some public keypk. The protocol depicted in
Figure 4.3 is a zero knowledge proof of knowledge of the decryption ofc.

The proof is similar to that of Theorem 4.10.
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ProverP Verifier V

Chooses′
R←− G

Computet2 = Γ.encrypt(s′)
t2−−−−−−−−−−−−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R←− {0, 1}ℓ (b ∈ N)

z = s′ ∗ sb−−−−−−−−−−−−−−−−−−−−−−−−−→
PoK{z = Γ.decryptΓ.sk(t2 ◦e (e, sk)b)}←−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if the proofPoK is valid

Figure 4.3: Proof system for membership to the language{(e, sk) : ∃m : m = Γ.decryptΓ.sk(e, sk)}
Common input: (e, sk,Γ.pk) andPrivate input: Γ.sk or randomness encryptingm in (e, sk)

Proof. To prove this theorem, we first remark that the encryption algorithm, with respect to a given
public keypk, induces a group law in the ciphertext spaceC.

Completeness is straightforward. Soundness is again easy.In fact, we note that for a fixed
commitmentt2, to each challengeb, corresponds a unique responsez (we always assume that2ℓ is
smaller than the order of the ciphertext space), namely the plaintext of the ciphertextt2 ◦e (e, sk)b.
Thus, provided the encryption schemeΓ is one way, a cheating prover̃P must guess correctly the

challengeb in order to be able to carry out the protocol; i.e. he must choosez
R←− G, then computes

the commitmentt2 = Γ.encryptΓ.pk(z) ◦e (e, sk)−b and sends it as the first message. OnceP̃
receives the correctly guessed challenge, he will respond with z. We conclude that, providedPoK
is sound, the soundness error probability of the protocol isat most2−ℓ.

For the zero-knowledgeness, we describe the following simulator:

1. Generate uniformly a random challengeb′
R←− {0, 1}ℓ. Choose a randomz

R←− G, compute
t2 = Γ.encryptΓ.pk(z) ◦e (e, sk)−b and send it to the verifier.

2. Getb from the verifier.

3. If b = b′, the simulator sends backz and simulates the proofPoK for z being the decryp-
tion of t2 ◦e (e, sk)b (this proof is simulatable since it is zero knowledge by assumption).
Otherwise, it goes to Step 2 (rewindsthe verifier).

The prover’s first message is always an encryption of a randomvalue, and so is the first message
of the simulator. Sinceb′ is chosen uniformly at random from{0, 1}ℓ, then, the probability that the
simulator does not rewind the verifier is2−ℓ, and thus the simulator runs in expected polynomial
time if ℓ is logarithmic in the security parameter. Finally, the distribution of the answers of the
prover and of the simulator is again the same. We conclude that above proof is perfectly zero
knowledge.

110



ProverP Verifier V
ComputeI as defined in Definition 4.2 ComputeI as defined in Definition 4.2

Chooses′
R
←− G

Computet1 = f(s′)

Computet2 = Γ.encryptΓ.pk(s
′)

t1, t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R
←− {0, 1}ℓ (b ∈ N)

z = s′ ∗ sb
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{z = Γ.decryptΓ.sk(t2 ◦e (e, sk)
b)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Accept if the proofPoK is valid and,
f(z) = t1 ◦s Ic in case of confirmation,
f(z) 6= t1 ◦s Ic in case of denial.

Figure 4.4: Proof system for membership to the language{(e, sk, r) : ∃s : s =
Γ.decrypt(e, sk) ∧ Σ.verify(retrieve(s, r), m‖e) = ( 6=)1} Common input: (e, sk, r,Σ.pk,Γ.pk)
andPrivate input: Γ.sk or randomness encryptings in (e, sk)

4.3.3 The confirmation/denial protocols

We combine an EUF-CMA secure signature schemeΣ ∈ S and a encryption schemeΓ ∈ E,
where the underlying KEMK and DEMD are IND-CPA and INV-OT secure respectively, in the
way described in Subsection 4.2.1. Namely we first compute anencapsulatione together with its
corresponding keyk. Then compute a signatureσ one concatenated with the message to be signed.
Finally convertσ to (s, r) using theconvert algorithm described in Definition 4.2 and encrypts in
sk = D.encryptk(s) usingk. The resulting confirmer signature is(e, sk, r). We describe in Figure
4.4 the confirmation/denial protocols corresponding to theresulting construction. Note that the
confirmation protocol can be also run by the signer who wishesto confirm the validity of a just
generated signature.

Remark 4.7. The prover in Figure 4.4 is either the confirmer of the signature (e, sk, r) who can
run the above protocols with the knowledge of his private key, or the signer who wishes to con-
firm the validity of a just generated signature (during theconfirmedSign protocol). In fact, with
the knowledge of the randomness used to encrypts in (e, sk), where(s, r) is the converted pair
obtained fromσ = Σ.sign(m‖e), the signer can issue the above confirmation protocol thanksto
the properties satisfied byΓ.

Theorem 4.12.The confirmation protocol (run by either the signer on a just generated signature
or by the confirmer on any signature) described in Figure 4.4 is a proof of knowledge with perfect
zero knowledge.

Proof. The confirmation protocol depicted in Figure 4.4 is a parallel composition of the proofs
depicted in Figures 4.1 and 4.3. Therefore completeness andsoundness follow as a direct conse-
quence from the completeness and soundness of the underlying proofs (see [Goldreich, 2001]).

To prove that the protocol is ZK, we provide the following simulator (for one execution):
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1. Generateb′ ∈R {0, 1}ℓ. Choosez ∈R G and sendt1 = f(z)◦sI−b andt2 = Γ.encryptΓ.pk(z)◦e
(e, sk)

−b to the verifier.

2. Getb from the verifier. Ifb = b′, it sendsz and simulates the proofPoK of z being the
decryption oft2 ◦e (e, sk)b (this proof is simulatable since it is by assumption ZK). Ifb 6= b′,
it goes to Step 1.

The prover’s first message is an encryption of a random values′ ∈R G, in addition tof(s′),
and so is the simulator’s first message (encryption ofz ∗ s−b andf(z ∗ s−b) wherez is random).
Therefore the distributions of the prover’s and of the simulator’s messages are the same in the first
round of the proof. Moreover, the simulator runs in an expected polynomial time (we assumeℓ
is logarithmic in the security parameter). Finally, the distribution of the prover’s message in the
third round is also similar to that of the simulator’s. We conclude that the confirmation protocol is
ZK.

Theorem 4.13.The denial protocol described in Figure 4.4 is a proof of knowledge with compu-
tational zero knowledge if the underlying encryption scheme is IND-CPA-secure.

Proof. With the standard techniques, we prove that the denial protocol depicted in Figure 4.4 is
complete and sound. Similarly, we provide the following simulator to prove the ZK property.

1. Generateb′ ∈R {0, 1}. Choosez ∈R G and a randomt1 ∈R f(G) andt2 = Γ.encryptΓ.pk(z)◦e
(e, sk)

−b.

2. Getb from the verifier. Ifb = b′, it sendsz and simulates the proofPoK of z being the
decryption oft2 ◦e (e, sk)b. If b 6= b′, it goes to Step 1.

The prover’s first message is an encryption of a random values′ ∈R G, in addition tof(s′). The
simulator’s first message is an encryption of a random valuez ∗ s and the elementt1 ∈R f(G)
(independent ofz). Distinguishing these two cases is at least as hard as breaking the IND-CPA
security of the underlying encryption scheme. In fact, if the verifier is able to distinguish these
two cases, it can be easily used to break the encryption scheme in the IND-CPA sense. Therefore,
under the assumption of the IND-CPA security of the encryption scheme, the simulator’s and
prover’s first message distributions are indistinguishable. Moreover, the simulator runs in expected
polynomial time, since the number of rewinds is2ℓ. Finally, the distributions of the prover’s and
the simulator’s messages in the last round are again, by the same argument, indistinguishable under
the IND-CPA security of the encryption scheme.

Remark 4.8. In case of confirmer signatures, ZK closedness under concurrent composition might
be a desired property as it is natural to assume a confirmer (ora signer) involved in the confirma-
tion/denial (or confirmedSign) of several signatures with several verifiers. Fortunately, there exists
a result [Damg̊ard, 2000] that shows a wide range of known zero knowledge protocols, for instance
those provided in this chapter, to be modifiable with negligible loss of efficiency to preserve zero
knowledgeness under concurrent composition.
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4.3.4 Comparisons and possible extentions

Sign then encrypt variants. The construction presented in Section 4.2 improves the plain
paradigm [Camenisch & Michels, 2000] as it weakens the assumption on the underlying encryp-
tion scheme from being IND-CCA secure to only being IND-CPA secure. This impacts positively
the efficiency of the construction from many sides. In fact, the resulting signature is shorter and
its generation cost is smaller, since IND-CPA encryption schemes are simpler and allow faster
encryption and shorter ciphertexts than IND-CCA ones. An illustration is given by ElGamal’s en-
cryption and its IND-CCA variant, namely Cramer-Shoup’s encryption where the ciphertexts are at
least twice longer than ElGamal’s ciphertexts. Also, thereis a multiplicative factor of at least two
in favor of ElGamal’s encryption/decryption cost. Moreover, the confirmation/denial protocols are
rendered more efficient by the allowance of homomorphic encryption schemes as shown in Section
4.3.3. Such encryption schemes were not possible to use before since a homomorphic scheme can
never attain the IND-CCA security. Besides, even when the IND-CCA encryption scheme is de-
cryption verifiable, e.g. Cramer-Shoup, the involved protocols are much more expensive than those
corresponding to their IND-CPA variant: in case of ElGamal,this protocol amounts to a proof of
equality of two discrete logarithms. The construction achieves also better performances than the
proposal of [Goldwasser & Waisbard, 2004], where the confirmer signature comprisesk commit-
ments and2k IND-CCA encryptions, wherek is the number of rounds used in the confirmation
protocol. Moreover, the denial protocol presented in [Goldwasser & Waisbard, 2004] suffers the
resort to proofs of general NP statements (where the considered encryption is IND-CCA). The
same remark applies to the construction of [Wikström, 2007] where both the confirmation and
denial protocols rely on proofs of general NP statements.

Commitment-based constructions. Our construction does not use the ROM, unlike the con-
structions in [Michels & Stadler, 1998; Wanget al., 2007]. Moreover, it enjoys the strongest notion
of invisibility (SINV-CMA) which captures both invisibility as defined in [Camenisch & Michels,
2000], and anonymity as defined in [Galbraith & Mao, 2003] andwhich can be an important re-
quirement for confirmer signatures in some settings. Unfortunately, many of the efficient generic
constructions are not anonymous. In fact, constructions like [Michels & Stadler, 1998; Gentry
et al., 2005; Wanget al., 2007] have a confirmer signature containing a commitment onthe mes-
sage to be signed and a valid digital signature on this commitment. Therefore, such constructions
leak always a part of the signing key, namely the public key ofthe underlying digital signature.
More precisely, an anonymity attackerA, will get two public keys and a confirmer signature on a
given message and has to tell the key under which the confirmersignature was created. To answer
such a challenge,Awill simply check the validity of the digital signature on the commitment (both
are part of the confirmer signature) with regard to one publickey (the confirmer signature public
key includes the public key of the underlying digital signature). The result of such a verification
is sufficient forA to conclude in case the two confirmer public keys do not share the same public
key for the digital signature scheme.
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The upshot is, our construction achieves both maximal security (strong invisibility) without
random oracles, and efficiency in terms of the signature length, generation, confirmation/denial,
and conversion cost. Moreover, the construction readily extends todirected signatures[Lim &
Lee, 1993] orundeniable confirmer signatures[Nguyenet al., 1999] by simply having the con-
firmer share his private key with the signer. Furthermore, one can extend the analysis provided in
this chapter to the other constructions instantiating the “encryption of a signature” paradigm, e.g.
[Goldwasser & Waisbard, 2004; Wikström, 2007]. In fact, both constructions are not strongly un-
forgeable, thus the necessity of CCA or∆-CCA security. To circumvent this problem, one can use
similarly a encryption scheme derived from the hybrid encryption paradigm, and produce a signa-
ture on the message concatenated with the encapsulation. Hence, the resulting constructions will
thrive on CPA or∆-CPA security while conserving the same security, and thus will achieve better
performances as we described above (short signature, smallcost and many practical instantiations).

4.4 Conclusion

We provided a thorough analysis of the “encryption of a signature” paradigm. In fact, we set
the necessary/minimal and sufficient assumptions on the building blocks in order to achieve un-
forgeable and invisible designated confirmer signatures under a chosen message attack. Next, we
proposed a construction of confirmer signatures from a variant of the signthenencrypt paradigm
whose invisibility rests on IND-CPA secure encryption schemes. Finally, we demonstrated the
efficiency of our construction by explicitly giving the confirmation/denial protocols of the result-
ing signatures when instantiated with building blocks froma large class of signatures/encryption
schemes. The next direction of research might be to check thenecessity of the assumptions, in
light of the previous study, required for the security of thenew proposed framework or of the
constructions that use commitment schemes.
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Chapter 5

The “Signature of a Commitment”
Paradigm

Abstract. Generic constructions of designated confirmer signatures follow one of
the following two strategies; either produce a digital signature on the message to
be signed, then encrypt the resulting signature, or producea commitment on the
message, encrypt the string used to generate the commitment, and finally sign the
latter.
In this chapter, we revisit the second approach. In fact, efficient as the first approach
is, it still applies only to a restricted class of signatures. This is clearly manifested in
the constructions in the previous chapter which do not seem to be plausible with the
PSS signature scheme [Bellare & Rogaway, 1996]. Our goal is to further improve
the “commit then sign” method in terms of efficiency and security by allowing more
efficient instantiations of the encryption and commitment schemes used as building
blocks. Therefore, we first try to determine the exact security property needed in
the encryption to achieve secure constructions. Our study infers the exclusion of
a useful type of encryption from the design due to an intrinsic weakness in the
paradigm. Next, we propose a simple method to remediate to this weakness and we
get efficient constructions which can be used withanydigital signature.
Parts of the results in this chapter will appear in the proceedings of ProvSec 2010
[El Aimani, 2010].

5.1 Analysis of the plain paradigm

We consider the construction of the plain “signature of a commitment” paradigm depicted in Sub-
section 3.3.2:

Setup (setup). Consider a digital signature schemeΣ, an encryption schemeΓ with labels, and a
commitment schemeΩ.
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Key generation (keygen). The signer key pair consists of(Σ.pk,Σ.sk), corresponding to the key
pair generated byΣ.keygen, whereas the confirmer key pair consists of(Γ.pk,Γ.sk) which
corresponds to the key pair generated byΓ.keygen.

ConfirmedSign (confirmedSign). To sign a messagem, the signer first computes a commitment
c on the message, then encrypts ine, under the labelm‖Σ.pk, the random string used for the
commitment, sayr, and finally, signs the commitmentc usingΣ.sk. The confirmer signature
consists of the triple(e, c,Σ.signΣ.sk(c)). Next, the signer interacts with the verifier in a
protocol where he proves in ZK the knowledge ofr such thatr = Γ.decryptΓ.sk,m‖Σ.pk(e)
andc = Ω.commit(m, r).

Confirmation/Denial protocol (confirm/deny). To confirm/deny a signatureµ = (µ1, µ2, µ3)
on a given messagem, the confirmer first checks whetherµ3 is a valid digital signature on
µ2 w.r.t. Σ.pk, if so, he provides a concurrent ZK proof (using his private keyΓ.sk) of the
equality/inequality of the decryption ofµ1 (w.r.t. the labelm‖Σ.pk) and the opening value
of the commitmentµ2 w.r.t.m.

Verification (verify). The verification of a purported signatureµ = (µ1, µ2, µ3) on a given mes-
sagem is achieved by first checking the validity ofµ3 w.r.t. tom as a digital signature, then
checking the equality of the decryption ofµ1 (w.r.t. the labelm‖Σ.pk) and the opening value
of the commitmentµ2 onm. This equality check can be performed by the signer, who has
just generatedµ, given the randomness used to create the ciphertextµ1, or by the confirmer
who can decryptµ1 usingΓ.sk.

Selective conversion (convert). Selective conversion of a signatureµ = (µ1, µ2, µ3) is achieved
by releasing the decryption ofµ1, in caseµ is valid (the triple (Γ.decryptΓ.sk(µ1), µ2, µ3)
forms the converted signature), or the symbol⊥ otherwise.

Selective verification (verifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithmsΩ.open andΣ.verify.

The construction was shown, in Subsection 3.3.2, to be unforgeable and invisible inthe insider
security modelif it uses a SEUF-CMA secure digital signature, an IND-CCA secure encryption
and a secure commitment.

In the rest of this section, we prove that IND-PCA encryptionschemes with labels are a min-
imal and sufficient requirement to obtain security for the confirmer, in the outsider model, if the
underlying commitment scheme is secure, and the underlyingsignature is SEUF-CMA secure.
Our study is similar to the one provided in the previous chapter (Subsection 4.1.2) which ana-
lyzes the plain “encryption of a signature” paradigm. Thus,we will first exclude OW-CCA secure
encryption schemes with labels from use, which will rule outautomatically OW-CPA and OW-
PCA encryption schemes. We do this by using an efficient algorithm (a meta-reduction) which
transforms the algorithm (reduction), reducing the invisibility of the confirmer signatures to the
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OW-CCA security of the underlying encryption scheme, to an algorithm breaking the OW-CCA
security of the same encryption scheme. Hence, such a resultsuggests that under the assumption
of the underlying encryption scheme being OW-CCA secure, there exists no such a reduction, or
if it (the encryption scheme) is not OW-CCA secure, such a reduction will be useless. Next, we
exclude similarly NM-CPA encryption schemes from the design, which will rule out IND-CPA
encryption. The next security notion that has to be considered is IND-PCA, which turns out to be
sufficient to achieve invisibility. Likewise, our impossibility results are in a first stage partial in the
sense that they apply only tokey-preservingreductions, i.e. reductions which, trying to attack a
certain property of an encryption scheme given by the publickeypk, feed the invisibility adversary
with the confirmer public keypk. Next, we extend the result to arbitrary reductions under some
complexity assumptions on the encryption scheme in question.

5.1.1 Impossibility results

Lemma 5.1. Assume there exists a key-preserving reductionR that converts an INV-CMA adver-
saryA against the above construction into a OW-CCA adversary against the underlying encryp-
tion scheme. Then, there exists a meta-reductionM that OW-CCA breaks the encryption scheme
in question.

As mentioned in the discussion above, the lemma claims that under the assumption of the
underlying encryption scheme being OW-CCA secure, there exists no key-preserving reduction
R that reduces OW-CCA breaking the encryption scheme in question to INV-CMA breaking the
construction, or if there exists such an algorithm, the underlying encryption scheme is not OW-
CCA secure, thus rendering such a reduction useless.

Proof. LetR be the key-preserving reduction that reduces the invisibility of the construction to the
OW-CCA security of the underlying encryption scheme. We construct an algorithmM that uses
R to OW-CCA break the same encryption scheme by simulating an execution of the INV-CMA
adversaryA against the construction.

Let Γ be the encryption schemeM is trying to attack w.r.t. a public keyΓ.pk. M launches
R overΓ with the same public keyΓ.pk. After M gets the labelL on whichR wishes to be
challenged, he (M) forwards it to his own challenger. Finally,M gets a challenge ciphertextc,
that he forwards toR. Note thatM is allowed to query the decryption oracle on any pair (ci-
phertext,label) except on the pair(c, L). Thus, all decryption queries made byR, which are by
definition different from the challenge(c, L), can be forwarded toM’s own challenger. At some
point,M, acting as an INV-CMA attacker against the construction, will output two messages
m0, m1 such thatL /∈ {m0‖Σ.pk, m1‖Σ.pk}, whereΣ.pk is the public key of the digital signature
underlying the construction.M gets as response a challenge signatureµ⋆ = (µ⋆1, µ

⋆
2, µ

⋆
3) which he

is required to tell to which message it corresponds. Since the messagesm0 andm1 were chosen
such that the label under which the encryptionµ⋆1 is created (eitherm0‖Σ.pk orm1‖Σ.pk) is differ-
ent from the challenge labelL,M can query his decryption oracle on both pairs(µ⋆1, m0‖Σ.pk) or
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(µ⋆1, m1‖Σ.pk). Results of such queries will enableM to open the commitmentµ⋆2, and thus check
the validity of the signatureµ⋆ w.r.t. one of the messagesm0 orm1. Finally, whenR outputs his
answer, decryption of the challenge(c, L),Mwill simply forward this result to his challenger.

Lemma 5.2. Assume there exists a key-preserving reductionR that converts an INV-CMA adver-
saryA against the above construction to an NM-CPA adversary against the underlying encryption
scheme. Then, there exists a meta-reductionM that NM-CPA breaks the encryption scheme in
question.

Proof. LetR be a key-preserving reduction that reduces the invisibility of the construction to the
NM-CPA security of its underlying encryption scheme. We will construct an algorithmM that
usesR to NM-CPA break the same encryption scheme by simulating an execution of the INV-
CMA adversaryA against the construction.

Let Γ be the encryption scheme with labelsM is trying to attack.M launchesR overΓ with
the same public key, sayΓ.pk. M, acting as the INV-CMA adversary against the construction,

queriesR onm0, m1
R←− {0, 1}⋆ for confirmer signatures. Then, he queries the resulting strings

µ0 = (µ1
0, µ

2
0, µ

3
0) andµ1 = (µ1

1, µ
2
1, µ

3
1) (corresponding to the confirmer signatures onm0 and

m1 respectively) for a selective conversion. Letr0 andr1 be the output decryption ofµ1
0 andµ1

1

resp. (i.e. the randomnesses used generate the commitmentsµ2
0 andµ2

1 onm0 andm1 resp.). With
overwhelming probability, we haver0 6= r1

1, and if it is not the case,Mwill repeat the experiment
until he obtains two differentr0 andr1. Then,M inputsD = {r0, r1} to his own challenger as a
distribution probability from which the plaintexts will bedrawn. Moreover, he chooses uniformly

at random a bitb
R←− {0, 1} and outputs to his challenger the challenge labelmb‖Σ.pk, whereΣ.pk

is the public key of the digital signature underlying the construction.M will receive as a challenge
encryptionµ⋆b . At that point,M will queryR on the string(µ⋆b , µ

2
b , µ

3
b) and the messagemb for a

selective conversion. If the result of such a query is different from⊥, then,µ⋆b is a valid encryption
of the random string used to generate the commitmentµ2

b , namelyrb. M will then output to his
challenger an encryptionµ of rb under the same challenge labelmb‖Σ.pk, whererb refers to the
bit-complement of the elementrb, and the relationR: R(r, r′) = (r′ = r). Otherwise, he will
output an encryption ofr1−b (under the same challenge label) and the same relationR. FinallyM
aborts the game (stops simulating an INV-CMA attacker against the generic construction).

Thus, when the considered notions are obtained from pairinga goal GOAL∈ {OW, IND,NM}
and an attack model ATK∈ {CPA,PCA,CCA}, we have

Theorem 5.3. The encryption scheme underlying the above construction must be at least IND-
PCA secure, in case the considered reduction is key-preserving, in order to achieve INV-CMA
secure signatures.

1Actually, if R uses always the same string to produce the commitments, thenthe construction is clearly not
invisible.
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Similarly to the study in the previous chapter (Subsection 4.1.2), we generalize the above
theorem to arbitrary reductions if the encryption scheme underlying the construction has anon-
malleable key generator.

Theorem 5.4.If the encryption scheme underlying the above constructionhas a non-malleable key
generator, then it must be at least IND-PCA secure in order toachieve INV-CMA secure confirmer
signatures.

The proof is similar to that of Theorem 4.5.

Remark 5.1. Note that the above impossibility result holds true only when the considered notions
are those obtained from pairing a security goal GOAL∈ {OW, IND,NM} and an attack model
ATK ∈ {CPA,PCA,CCA}. Presence of other notions requires an additional analysis, however
Lemmas 5.1 and 5.2 will still serve when there is a relation between the new notion and the notions
NM-CPA and OW-CCA.

5.1.2 Positive results

One way to explain the above result is to remark that the construction in question is notstrongly
unforgeable. In fact, an adversaryA, given a valid signatureµ = (µ1, µ2, µ3) on a messagem,
can create another valid signatureµ′ onm without the help of the signer as follows:A will first
request the selective conversion ofµ to obtain the decryption ofµ1, sayr, which he will re-encrypt
in µ′1 under the same labelm‖Σ.pk (Σ.pk is the public key of the digital signature underlying the
construction). Obviously,µ′ = (µ′1, µ2, µ3) is also a valid confirmer signature onm that the signer
did not produce, and thus cannot confirm/deny or convert without having access to a decryption
oracle of the encryption scheme underlying the construction. This explains the insufficiency of
notions like IND-CPA. However, we observe that an IND-CCA secure encryption is more than
needed in this framework since a query of the typeµ′ is not completely uncontrolled by the signer.
In fact, its first componentµ′1 is an encryption of some data already disclosed by the signer, namely
r, and thus a plaintext checking oracle is sufficient to deal with such a query if the used digital
signature is SEUF-CMA secure.

Theorem 5.5. Given (t, qs, qv, qsc) ∈ N4 and (ε, ǫ′) ∈ [0, 1]2, the construction given above is
(t, ǫ, qs, qv, qsc)-INV-CMA secure if it uses a(t, ǫ′, qs)-SEUF-CMA secure digital signature, an
injective, binding and (t, ǫh)-hiding commitment, and a (t + qsqsc(qsc + qv),

1
2
(ǫ + ǫh) · (1 −

ǫ′)(qsc+qv), qsc(qsc + qv))-IND-PCA secure encryption scheme with labels.

Proof. LetA be an attacker against the construction. We will construct an attackerR against the
underlying encryption scheme as follows.

[Parameter generation]R gets the parameters of the encryption schemeΓ from his challenger.
Then he chooses a signature schemeΣ (along with a key pair (Σ.pk,Σ.sk)) and a suitable
commitment schemeΩ. R sets the above entities as components of the constructionA is
trying to attack.
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[confirmedSign queries] For a signature query on a messagemi, R computes a commitment
ci onmi using a random stringri, which he encrypts inei under the labelmi‖Σ.pk, then
he produces a digital signatureσi on ci usingΣ.sk. Next, he outputsµi = (ei, ci, σi) as a
confirmer signature onmi and a ZK proof of knowledge of the equality of the decryption of
ei and the string used in the commitmentci. Such a proof is possible using the randomness
ti used to encryptri in ei. Finally,R adds the recordRi = (mi, ti, ri, ei, ci, σi) to a history
list L.

[confirm/deny and convert queries] To confirm/deny an alleged signatureµi = (µ1
i , µ

2
i , µ

3
i ) on a

messagemi, R will proceed as follows. First he checks the validity of the digital signature
µ3
i on µ2

i , in case it is invalid, he outputs⊥, otherwise he checks the listL, if he finds a
recordRi having as first field the messagemi, he will proceed to the next step, namely
check whether the fourth field ofRi is equal toµ1

i , if it is the case,R will issue a ZK proof
of the equality/inequality of the decryption ofµ1

i and the string used for the commitmentµ2
i .

R can issue these proofs without the knowledge ofΓ.sk using the rewinding technique (the
proofs are ZK and thus simulatable) or by using the second field ofRi (randomness used to
produce the encryptionµ1

i ). Now, if Ri containsmi in its first field, but its fourth field is
different fromµ1

i , thenR will check the next recordRj (j > i) havingmi in its first field
and proceed in a similar fashion. Actually, if the messagemi is queried more than once, then
it will occur in many records inL. If R browses through all the records but none of them
containsmi andµ1

i in their first and fourth field resp., then for all the recordsRi containing
mi in their first field,A will invoke his PCA oracle on the ciphertextµ1

i and the third fields
of these records. If one of the queries yields “yes” as an answer, e.g. there exists a record
Rj = (mi, tj , rj, ej, cj , σj) such that its third fieldrj is a decryption ofµ1

i , then according to
whetherrj is (is not) the opening value of the commitmentµ2

i onmi,R will issue a ZK proof
of the equality (inequality) of the decryption ofµ1

i and the string used for the commitment
µ2
i . Again such a proof is possible to issue using the rewinding technique (the valuetj cannot

be used here because it was not used to encryptrj in µ1
i ). Finally, if no query to the PCA

oracle yields the answer “yes”, thenR will issue the denial protocol, namely simulate a ZK
proof, using the rewinding technique, of the inequality of the decryption ofµ1

i and of the
string used for the commitmentµ2

i .

Selective conversion is similarly carried out with the exception of issuing the decryption of
µ1
i instead of the confirmation protocol and⊥ instead of the denial protocol.

The difference between the above simulation and the real execution of the algorithm is when
the signatureµi = (µ1

i , µ
2
i , µ

3
i ) is valid, however,µ1

i is not an encryption of a stringri already
issued toA during a selective conversion query regarding the messagemi and a presumed
signature on it. We distinguish two cases, eithermi was never queried for signature, in
which case such a signature would correspond to an existential forgery on the construction
and thus to an existential forgery on the underlying digitalsignature. Or,mi was queried
before for signature. Letµj = (µ1

j , µ
2
j , µ

3
j) be the output confirmer signature to such a query.
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Sinceµ1
i is encryption of someri which was never used to generate signatures onmi, then

µ2
i 6= µ2

j (both are commitment onmi with different random strings andΩ is injective).
Thus, in this case(µ2

i , µ
3
i ) will correspond to an existential forgery on the underlyingdigital

signature scheme. We conclude that the above simulation is indistinguishable from the real
execution with probability at least(1 − ǫ′)qv+qsc, as the digital signature scheme underlying
the construction is(t, ǫ′, qs)-SEUF-CMA secure by assumption.

[Challenge phase]At some point,A will output two messagesm0, m1 toR. The latter will then

choose uniformly at random a bitb
R←− {0, 1}, and two different random stringsr0 andr1

from the corresponding space.R will output to his challenger the labelmb‖Σ.pk and the

stringsr0, r1. He receives then a ciphertexteb′ , encryption ofrb′ , for someb′
R←− {0, 1}. To

answer his challenger,R will compute a commitmentcb on the messagemb using the string

rb′′ whereb′′
R←− {0, 1}. Then,R will output µ = (eb′ , cb,Σ.signΣ.sk(cb)) as a challenge

signature toA. Two cases: eitherµ is valid confirmer signature onmb (if b′ = b′′), or it is
not a valid signature on neitherm0 norm1. If the advantage ofA is non-negligibly different
from the advantage of an INV-CMA attacker in a real attack, then , according to Lemma 3.5,
A can be used to break the hiding property ofΩ.

[Post challenge phase]A continues to issue queries andR continues to handle them as before.
Note that at this stage,R cannot request his PCA oracle on(eb′ , ri), i ∈ {0, 1} under the label
mb‖Σ.pk. R would need to query his PCA oracle on such a quantity if he getsa verification
(conversion) query on a signature(e′b, cb,−) 6= µ and the messagemb. R will respond to
such a query by simulating the denial protocol (output⊥). This simulation differs from the
real algorithm when(e′b, cb,−) is valid onmb. Again, such a scenario won’t happen with
probability at least(1 − ǫ′)qv+qsc, because the query would form a strong existential forgery
on the digital signature scheme underlying the construction.

[Final output] The rest of the proof follows in a straightforward way. Now, let µ = (eb′ , cb,-
Σ.signΣ.sk(cb)) be the challenge signature. Letba be the bit output byA. R will output b′′ to
his challenger in caseb = ba and1− b′′ otherwise.

The advantage ofA in such an attack is defined by

ǫ = Adv(A) =
∣∣∣∣Pr[ba = b|b′ = b′′]− 1

2

∣∣∣∣

We also have

ǫh =

∣∣∣∣Pr[ba 6= b|b′ 6= b′′]− 1

2

∣∣∣∣

We assume again without loss of generality thatǫ = Pr[ba = b|b′ = b′′]− 1
2

andeh = Pr[ba 6=
b|b′ 6= b′′]− 1

2
. The advantage ofR is then given by
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Adv(R) = (1− ǫ′)qv+qsc
[
Pr[b = ba, b

′ = b′′] + Pr[b 6= ba, b
′ 6= b′′]− 1

2

]

= (1− ǫ′)qv+qsc
[
Pr[b = ba|b′ = b′′] Pr[b′ = b′′] + Pr[b 6= ba|b′ 6= b′′] Pr[b′ 6= b′′]− 1

2

]

= (1− ǫ′)qv+qsc
[
1

2
(ǫ+

1

2
) +

1

2
(ǫh +

1

2
)− 1

2

]

=
1

2
(ǫ+ ǫh)(1− ǫ′)qv+qsc

The last but one equation is due to the factsPr[b′ 6= b′′] = Pr[b′ = b′′] = 1
2

asb′′
R←− {0, 1},

and to the fact that, in caseb′ 6= b′′, the probability thatA answers1− b is 1
2

greater than the
advantage of the adversary in the game defined in Lemma 3.5, which is equal toǫh.

5.2 An efficient construction from a variant of the paradigm

One simple way to eliminate the already mentioned weakness (strong forgeability) in signatures
from the plain “signature of a commitment” technique consists in producing a digital signature on
both the commitment and the encryption of the random string used in it. In this way, the attack
discussed before Theorem 5.5 no longer applies, since an adversary will need to produce a digital
signature on the commitment and the re-encryption of the random string used in it. Note that such
a fix already appears in the construction of [Gentryet al., 2005], however, it was not exploitable as
the invisibility was considered in the insider model.

5.2.1 Construction

Let Σ be a signature scheme given byΣ.keygen, that generates(Σ.pk,Σ.sk), Σ.sign, andΣ.verify.
Let furtherΓ denote an encryption scheme given byΓ.keygen, that generates(Γ.pk,Γ.sk),Γ.encrypt,
andΓ.decrypt. We note thatΓ does need to support labels in our construction. Finally letΩ denote
a commitment scheme given byΩ.commit andΩ.open. We assume thatΓ produces ciphertexts of
length exactly a certainκ. As a result, the first bit ofc will always be at the(κ + 1)-st position in
e‖c, wheree is an encryption produced byΓ . Such a technical detail will play an important role
in the unforgeability and invisibility of the construction.

The construction of confirmer signatures fromΣ, Γ, andΩ is given as follows.

Key generation.The signer key pair is(Σ.pk,Σ.sk) and the confirmer key pair is(Γ.pk,Γ.sk).
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ConfirmedSign. On input a messagem, the signer produces a commitmentc on m using
a random stringr, encrypts this string ine, and then produces a digital signatureσ =
Σ.signΣ.sk(e‖c). Finally, the signer outputsµ = (e, c, σ) as a confirmer signature onm,
and interacts with the verifier to prove in ZK the equality of the decryption ofe and of
the string used for the commitmentc. This proof is possible using the randomness used to
encryptr in e.

Confirmation/Denial protocol. On a messagem and an alleged signatureµ = (µ1, µ2, µ3), the
confirmer checks the validity ofµ3 onµ1‖µ2. In case it is not valid, he produces⊥. Other-

wise, he computes the decryptionr of µ1 and checksµ2
?
= Ω.commit(m, r), according to the

result he interacts with the verifier to prove in ZK the equality/inequality of the decryption
of µ1 and of the string used to createµ2.

Selective conversion. The confirmer proceeds as in the confirmation/denial protocol with the
exception of issuing the decryption ofµ1 in case the signature is valid or the symbol⊥
otherwise.

5.2.2 Security analysis

First, we note that the security for the verifier and the non transferability of the confirmedSign,
confirmation, and denial protocols are ensured by using zeroknowledge proofs of knowledge.
Furthermore, the construction is EUF-CMA secure and INV-CMA secure if the underlying com-
ponents are secure.

Theorem 5.6. Given (t, qs) ∈ N2 and ε ∈ [0, 1]2, the construction depicted above is(t, ǫ, qs)-
EUF-CMA secure if it uses a statistically binding commitment scheme and a(t, ǫ, qs)-EUF-CMA
secure digital signature scheme.

Proof. (Sketch)
LetA be an EUF-CMA attacker against the construction. We construct an EUF-CMA attacker

R against the underlying digital signature scheme as follows.
R gets the parameters of the digital signature from his attacker, and chooses a suitable en-

cryption and commitment scheme. Simulation of the confirmedSign queries (on messagesmi) is
done by first computing a commitmentci onmi using some random stringri, then encrypting the
stringri in ei and finally requesting the challenger for a digital signature σi on ei‖ci. The string
(ei, ci, σi) is output toA along with a proof of equality of the decryption ofei and of the opening
value ofci. Such a proof can be issued using the encryption scheme private key thatR knows or
the randomness used to encryptri in ei. Confirmation/denial and selective conversion queries can
be perfectly simulated with the knowledge of the encryptionscheme private key.

At some point,Awill output a forgeryµ⋆ = (e⋆, c⋆, σ⋆) on some messagem⋆, which was never
queried before for signature. By definition,σ⋆ is a valid digital signature one⋆‖c⋆. It will form
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an existential forgery on the digital signature scheme ife⋆‖c⋆ was never queried before byR for a
digital signature. Suppose there exists1 ≤ i ≤ qs such thate⋆‖c⋆ = ei‖ci whereµi = (ei, ci, σi)
was the output confirmer signature on the querymi. Due to the special way the stringsei‖ci are
created, equality of the stringse⋆‖c⋆ andei‖ci implies equality of their suffixes (that start at the
(κ + 1)-st position), namelyc⋆ and ci. This equality implies the equality ofmi andm⋆ since
the used commitment is binding by assumption. Thus,R returns(σ⋆, e⋆‖c⋆) as a valid existential
forgery against the digital signature in question.

Theorem 5.7. Given(t, qs, qv, qsc) ∈ N4 and (ε, ǫ′) ∈ [0, 1]2, the construction depicted above is
(t, ǫ, qs, qv, qsc)-INV-CMA secure if it uses an(t, ǫ′, qs)-SEUF-CMA secure digital signature, an
injective, statistically binding, and (t, ǫh)-hiding commitment, and a(t+qs(qv+qsc),

1
2
(ǫ+ ǫh)(1−

ǫ′)qv+qsc)-IND-CPA secure encryption scheme.

Proof. [Parameter generation]Simulation of the key generation is similar to the key generation
in the proof of Theorem 5.5.

[confirmedSign queries] To sign a messagemi, R (the attacker against the encryption scheme)
will proceed exactly as a real signer would do, with the exception of maintaining a list
L of records that contains the strings used to form the commitments, their corresponding
encryptions along with the random nonces used to produce these encryptions.

[confirm/deny and convert queries] For a verification query on(ei, ci, σi) andmi (whereσi is a
valid digital signature onci),R will simulate the confirmation protocol (using the rewinding
technique or the randomness used to encrypt the opening value of ci in ei) if the encryption
ei appears in at least one record ofL, or simulate the denial protocol otherwise. Selective
conversion of a confirmer signature whose first field appears in the list is done by revealing
the opening value of the commitment, otherwise such a confirmer signature is converted to
⊥.

The difference between this simulation and the real execution of the algorithm manifest
when a queried signature, say(ei, ci, σi), is valid butei was never used to generate confirmer
signatures. We distinguish two cases, either the underlying messagemi has been queried
previously on not. In the latter case, such a signature wouldcorrespond to an existential
forgery on the construction, thus, to an existential forgery on the underlying digital signature.
In the former case, let(ej, cj, σj) be the output signature toA on the messagemi. We have
ei‖ci 6= ej‖cj sinceei 6= ej , and bothei andej are then-bit prefixes ofei‖ci andej‖cj
resp. We conclude that the adversary would have to compute a digital signature on a string
for which he never had obtained a signature. Thus, the query would lead to an existential
forgery on the underlying signature scheme. Since the latter is by assumption(t, ǫ′, qs)-
SEUF-CMA secure, the probability that the simulation differs from the real execution is at
least(1− ǫ′)qv+qsc.
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[Challenge phase]Eventually, the adversary outputs two challenging messagesm0, m1. R will
then produce two different stringsr0, r1 and hands them to his challenger. He gets as re-
sponse a challenge ciphertexteb′ on rb′ for someb′ ∈ {0, 1}. R will choose two bits

b, b′′
R←− {0, 1} and produce a commitmentcb on the messagemb using the stringrb′′ . Fi-

nally, he will produce a digital signatureσ on eb′‖cb. The challenge confirmer signature is
µ = (eb′ , cb, σ). Note, that ifb′ = b′′, the signature is valid on the messagemb, otherwise, it is
invalid on both messagesm0 andm1. Note also that if the advantage ofA is non-negligibly
different from the advantage of an INV-CMA attacker in a realattack, then, according to
Lemma 3.5,A can be used to break the hiding property ofΩ.

[Post challenge phase]The adversary will continue issuing his queries toR who will handle
them as previously. Note that from now on and during the verification/conversion queries,
the adversary may ask a query(eb′ , cb,−) 6= µ onmb. The probability that such a query is
invalid is at least(1 − ǫ′)qv+qsc since the digital signature scheme is(t, ǫ′, qs)-SEUF-CMA
secure (if the underlying digital signature is not stronglyunforgeable, then the adversary
may come up with a new digital signature oneb′‖cb, sayσ′ which is different fromσ, and
then queries(eb′, cb, σ′) for verification or conversion; the result of such a query will enable
him answer his challenge).

[Final output] At the end, the adversary outputs a bitba. Clearly the advantage of the adversary
is ǫ = Pr[b′′ = ba|b = b′]− 1

2
. R will output b′′ in caseb = ba and1− b′′ otherwise.

Similarly, the advantage ofR is:

Adv(R) = (1− ǫ′)qv+qsc
[
Pr[b = ba, b

′ = b′′] + Pr[b 6= ba, b
′ 6= b′′]− 1

2

]

= (1− ǫ′)qv+qsc
[
Pr[b = ba|b′ = b′′] Pr[b′ = b′′] + Pr[b 6= ba|b′ 6= b′′] Pr[b′ 6= b′′]− 1

2

]

= (1− ǫ′)qv+qsc
[
1

2
(ǫ+

1

2
) +

1

2
(ǫh +

1

2
)− 1

2

]

=
1

2
(ǫ+ ǫh)(1− ǫ′)qv+qsc

Remark 5.2. Both Theorem 5.5 and Theorem 5.7 can be used with computationally binding com-
mitments. The only issue is to have the formulation of both theorems complicated by further terms,
e.g.ǫb, if we use a (t, ǫb)-binding commitment.
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5.2.3 Efficiency analysis

We show in this paragraph that requesting the encryption scheme to be only IND-CPA secure im-
proves the efficiency of constructions from the “signature of a commitment” paradigm from many
sides. First, it enhances the signature generation, verification, and conversion cost, as encryption
and decryption are usually faster in IND-CPA secure encryption than in IND-CCA secure encryp-
tion (e.g. ElGamal vs Cramer-Shoup or Paillier vs Camenisch-Shoup). Next, we achieve also a
shorter signature since ciphertexts produced using IND-CPA schemes are shorter than ciphertexts
produced using IND-CCA secure encryption schemes. Finally, we allow homomorphic encryption
in the design, which will render the confirmedSign/confirmation/denial protocols more efficient. In
fact, in [Gentryet al., 2005; Wanget al., 2007], the signer/confirmer has to prove in ZK the equal-
ity/inequality of the decryption of an IND-CCA encryption and an opening value of a commitment
scheme. Thus, the only efficient instantiation, that was provided, used Camenisch-Shoup’s en-
cryption and Pedersen’s commitment. In the rest of this subsection, we enlarge the category of
encryption/commitment schemes that yield efficient instantiations thanks to the allowance of ho-
momorphic encryption in the design.

Definition 5.1. (The classC of commitments) C is the set of all commitment schemes for which
there exists an algorithmcompute that on the input: the commitment public keypk, the messagem
and the commitmentc onm, computes a description of an injectiveone-way functionf : (G, ∗)→
(H, ◦s) where:

• (G, ∗) is a group andH is a set equipped with the binary operation◦s ,

• ∀r, r′ ∈ G: f(r ∗ r′) = f(r) ◦s f(r′).
and anI ∈ H, such thatf(r) = I, wherer is the opening value ofc w.r.t.m.

It is easy to check that Pedersen’s commitment scheme is in this class. Actually, most commit-
ment schemes have this built-in property because it is oftenthe case that the committer wants to
prove efficiently that a commitment is produced on some message. This is possible if the function
f is homomorphic as shown in Figure 5.1.

Theorem 5.8. The protocol depicted in Figure 5.1 is an efficient zero knowledge protocol for
proving knowledge of preimages of the functionf described in Definition 5.1.

The proof is similar to that of Theorem 4.10.
For encryption, we use the same classE considered in Definition 5.2, with the exception of not

requiring the encryption schemes to be derived from the hybrid encryption paradigm.

Definition 5.2. (The classE2 of encryption schemes) E2 is the set of encryption schemesΓ that
have the following properties:

1. The message space is a groupM = (G, ∗) and the ciphertext spaceC is a set equipped with
a binary operation◦e.
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ProverP Verifier V

Chooser′
R←− G

Computet1 = f(r′)
t1−−−−−−−−−−→
b←−−−−−−−−−− Chooseb

R←− {0, 1}ℓ (b ∈ N)

z = r′ ∗ rb−−−−−−−−−−→
Verify thatf(z) = t1 ◦s Ib

Figure 5.1: Proof system for membership to the language{r : f(r) = I} Common input: I and
Private input : r.

2. Letm ∈ M be a message andc its encryption with respect to a keypk. On the common input
pk, m, andc, there exists an efficient zero knowledge proof ofm being the decryption ofc
with respect topk. The private input of the prover is either the private keysk, corresponding
to pk, or the randomness used to encryptm in c.

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m′). Moreover,
given the randomness used to encryptm in Γ.encryptpk(m) andm′ in Γ.encryptpk(m

′), one
can deduce (using only the public parameters) the randomness used to encryptm ∗ m′ in
Γ.encryptpk(m) ◦e Γ.encryptpk(m′).

Examples of encryption schemes in the above class are ElGamal’s encryption [El Gamal, 1985],
the encryption scheme defined in [Bonehet al., 2004a] which uses the linear Diffie-Hellman KEM,
or Paillier’s [Paillier, 1999] encryption scheme. In fact,these encryption schemes are homomor-
phic and possess an efficient protocol for proving that a ciphertext decrypts to a given plaintext:
the proof of equality of two discrete logarithms [Chaum & Pedersen, 1993], in case of ElGamal or
the encryption scheme in [Bonehet al., 2004a], or the proof of knowledge of anN-th root in case
of Paillier’s encryption.

Theorem 5.9. Let Γ be a OW-CPA secure encryption scheme from the above classE2. Let fur-
thermoree be an encryption of some message under some public keypk. The protocol depicted in
Figure 5.2 is a zero knowledge proof of knowledge of the decryption ofe.

The proof is similar to that of Theorem 4.11.

The confirmation/denial protocol

The confirmedSign, confirmation and denial protocols of the construction in Subsection 5.2.1 are
depicted in Figure 5.3.
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ProverP Verifier V

Chooser′
R←− G

Computet2 = Γ.encryptΓ.pk(r
′)

t2−−−−−−−−−−−−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R←− {0, 1}ℓ (b ∈ N)

z = r′ ∗ rb−−−−−−−−−−−−−−−−−−−−−−−−−→
PoK{z = Γ.decryptΓ.sk(t2 ◦e eb)}←−−−−−−−−−−−−−−−−−−−−−−−−→

Accept ifPoK is valid

Figure 5.2: Proof system for membership to the language{r : r = Γ.decrypt(e)}
Common input: (e,Γ.pk) andPrivate input: r and Γ.sk or randomness encryptingr in e.

ProverP Verifier V
ComputeI as defined in Definition 5.1 ComputeI as defined in Definition 5.1

Chooser′
R
←− G

Computet1 = f(r′)

Computet2 = Γ.encryptΓ.pk(r
′)

t1, t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R
←− {0, 1}ℓ (b ∈ N)

z = r′ ∗ rb
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{z = Γ.decryptΓ.sk(t2 ◦e e
b)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Accept if the proofPoK is valid and,
f(z) = t1 ◦s Ib in case of confirmation,
f(z) 6= t1 ◦s Ib in case of denial.

Figure 5.3: Proof system for membership to the language{(e, c) : ∃r : r = Γ.decrypt(e) ∧ c = ( 6=
)Ω.commit(m, r)} Common input: (e, c,m,Γ.pk,Ω.pk) andPrivate input: Γ.sk or randomness
encryptingr in e.
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Remark 5.3. The prover in Figure 5.3 is either the confirmer who can run theabove protocols
with the knowledge of his private key, or the signer who wishes to confirm the validity of a just
generated signature. In fact, with the knowledge of the randomness used to encrypts in e, the
signer can issue the above confirmation protocol thanks to the properties satisfied byΓ.

Theorem 5.10.The confirmation protocol (run by either the signer on a just generated signature
or by the confirmer on any signature) described in Figure 5.3 is a proof of knowledge with perfect
zero knowledge.

Theorem 5.11.The denial protocol described in Figure 5.3 is a a proof of knowledge with com-
putational zero knowledge if the underlying encryption scheme is IND-CPA-secure.

The proofs of both Theorem 5.10 and Theorem 5.11 are similar to those of Theorem 4.12 and
Theorem 4.13 respectively

Remark 5.4. The protocols depicted in Figure 5.3 can be, by virtue of the result of [Damg̊ard,
2000], efficiently turned into protocols that are ZK closed under concurrent composition in the
auxiliary string model ifPoK is aΣ protocol.

5.3 The “signature of an encryption” paradigm

We have seen that convertible confirmer signatures realizing the “signature of a commitment”
paradigm are comprised of a commitment on the message to be signed, an encryption of the ran-
dom string used to produce the commitment, and a digital signature on the commitment. Since
IND-CPA encryption can be easily used to get statistically binding and computationally hiding
commitments, one can use instead of the commitment in the previous constructions an IND-CPA
secure encryption scheme. With this choice, there will be noneed to encrypt the string used to
produce the encryption of the message, since the private keyof the encryption scheme is sufficient
to check the validity of a ciphertext w.r.t. a given message.Note that this construction already
appeared in [Anet al., 2002] in the context of signcryption. We give below the fulldescription of
the construction.

Key generation. The signer key pair is(Σ.pk,Σ.sk) and the confirmer key pair is(Γ.pk,Γ.sk)
whereΣ andΓ are the digital signature and the encryption scheme underlying the construc-
tion resp.

ConfirmedSign. On inputm, the signer computes an encryptionc = Γ.encryptΓ.pk(m) ofm, then
a digital signatureσ = Σ.signΣ.sk(c). Finally he outputs(c, σ) and interacts with the verifier
to prove in ZK thatc decrypts to obtainm. Such a proof is possible given the randomness
used to encryptm in c.
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Confirmation/Denial protocol. On a messagem and an alleged signatureµ = (µ1, µ2), the
confirmer checks the validity ofµ2 on µ1. In case it not valid, he produces⊥. Otherwise,

he computes the decryptioñm of µ1 and checks whether̃m
?
= m, according to the result, he

gives a ZK interactive (with the verifier) proof, usingΓ.sk, of the equality/inequality of the
decryption ofµ1 andm.

Selective conversion. The confirmer proceeds as in the confirmation/denial protocol with the
exception of issuing⊥ is case the signature is invalid, and anon-interactive proof thatm is
the decryption of the first field of the signature otherwise.

We notice that the construction depicted above achieves better performance than all previ-
ously cited constructions in terms of signature length, generation/verification and conversion cost.
In fact, the signature contains only one encryption and a signature on it. Moreover, verification or
conversion of the signature are simpler as they do not involve anymore checking whether a commit-
ment is correctly computed. Besides, the proofs underlyingthe confirmedSign/confirmation/denial
protocols are reduced in case of discrete-logarithm-basedencryption schemes to proofs of equal-
ity/inequality of discrete logarithms for which there exists efficient protocols [Chaum & Pedersen,
1993; Camenisch & Shoup, 2003]. The only problem with this technique is the resort to non-
interactive ZK (NIZK) proofs of knowledge. In fact, we know how to produce such proofs from
their interactive variants using the Fiat-Shamir paradigm, which is known to provide security only
in the ROM. However, the recent results in [Damgårdet al., 2006; Groth & Sahai, 2008; Camenisch
et al., 2009] exhibit efficient NIZK proofs of knowledge in some settings.

5.3.1 Security analysis

Concerning the security analysis, we first note that completeness, soundness, and the ZK property
of the confirmedSign/confirmation/denial protocols are ensured by the use of ZK proofs. Next,
we prove that the construction resists existential forgeries and is invisible if the underlying digital
signature and encryption are SEUF-CMA and IND-CPA secure resp.

Theorem 5.12.Given(t, qs) ∈ N2 andε ∈ [0, 1], the above construction is(t, ǫ, qs)-EUF-CMA
secure if the underlying digital signature is also(t, ǫ, qs)-EUF-CMA secure.

Proof. The adversaryR against the signature underlying the construction will getthe parameters
of the digital signature he is trying to attack from his challenger. Then, he will choose a suitable
encryption. Simulation of signatures is simple; on a querymi, R computes an encryptionci of
mi, then requests his challenger for a signature onci. Let σi be the answer of such a query.R
will then output(ci, σi) and produce a ZK proof thatci decrypts inmi. Such a proof, in addition
to all the proofs involved in the verification/conversion queries, are possible forR to give with the
knowledge of the encryption private key.

At some time, the adversaryA against the construction will output a forgery(c⋆, σ⋆) on a
messagem⋆, that was never queried before.σ⋆ is by definition a digital signature onc⋆. The last
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item was never queried byR for digital signature, since otherwisem⋆ would have been queried
before. We conclude that(c⋆, σ⋆) is a valid forgery on the digital signature scheme.

Theorem 5.13.Given (t, qs, qv, qsc) ∈ N4 and (ε, ǫ′) ∈ [0, 1]2, the construction given above is
(t, ǫ, qs, qv, qsc)-INV-CMA secure if it uses a(t, ǫ′, qs)-SEUF-CMA secure digital signature and a
(t+ qs(qv + qsc), ǫ(1− ǫ′)qv+qsc)-IND-CPA secure encryption scheme.

Proof. Let A be the invisibility adversary against the construction, weconstruct an IND-CPA
adversaryR against the underlying encryption scheme as follows.
R gets the parameters of the target encryption scheme from hischallenger, and chooses a

suitable digital signature scheme. For a confirmedSign query on mi, R will proceed as in the
real algorithm, with the exception of maintaining a listL of records that consists of the query, its
encryption, the randomness used to produce the encryption,and finally the digital signature on
the encryption.R can produce digital signatures on any encryption with the knowledge of the
signature scheme private key. Moreover, he can confirm any signature he has just generated with
the knowledge of the randomness used in the encryption.

For a verification query(ci, σi) onmi,R will checkL (after checking of course the validity of
σi onmi), if the recordRi = (mi, ci,−,−) appears in the list, then he will issue a proof thatci
decrypts inmi using the third component of the record. Otherwise, he will simulate a proof of the
inequality of the decryption ofci andmi using the rewinding technique.
For a conversion query,Rwill proceed as in a verification query with the exception of providing the
non-interactive variant of the proof he would issue if the signature is valid (using the randomness
encrypting the message in the first field of the queried confirmer signature), and the symbol⊥
otherwise.
This simulation differs from the real one when the queried signature(ci, σi) is valid onmi however
ci does not appear in the list (as first field of the output confirmer signatures). We distinguish two
cases, either the message in questionmi was not queried before for signature, in which case such a
query would correspond to a valid existential forgery on theconstruction, and thus on the underling
signature scheme. Or, the queried signature is on a message that has been queried before, which
corresponds to an existential forgery on the underlying signature scheme. Since the signature
scheme underlying the construction is(t, ǫ′, qs)-SEUF-CMA secure, this scenario does not happen
with probability at least(1− ǫ′)qv+qsc.

At some point,A produces two messagesm0, m1. R will forward the same messages to his

challenger and obtain a ciphertextc, encryption ofmb for someb
R←− {0, 1}. R will produce a

digital signatureσ on c and give the result in addition toc toA as a challenge confirmer signature.
It easy to see thatA’s answer is sufficient forR to conclude. Note that after the challenge phase,
A is allowed to issue confirmedSign, verification and conversion queries andR can handle them
as previously. There is however the possibility forA of issuing a verification (conversion) query
of the type(c,−) 6= (c, σ) onmb. R will respond to such a query by issuing the denial protocol
(symbol⊥). The probability that this answer does not differ from the output of the real algorithm is

131



at least(1− ǫ′)qv+qsc as the signature scheme underlying the construction is(t, ǫ′, qs)-SEUF-CMA
secure by assumption.

Remark 5.5. Note that the IND-CPA requirement on the encryption scheme is also necessary.
In fact, an invisibility adversary against the construction can easily use an IND-CPA adversary
against the underlying encryption scheme in order to solve his invisibility challenge.

5.3.2 Efficiency analysis

Confirmation/denial protocols

We showed that the confirmation (and also the confirmedSign) protocol, in confirmer signatures
from the “signature of an encryption” paradigm, amounts to proving that a ciphertext encrypts a
given plaintext. This is in general easy since in most encryption schemes, one can define, given
a ciphertextc and its underlying plaintextm, two homomorphic one way functionsf andg, and
two quantitiesI andJ such thatf(r) = I andg(sk) = J , wherer is the randomness used to
encryptm in c, andsk is the private key of the encryption scheme in question. Examples of such
encryptions are [El Gamal, 1985], the encryption scheme defined in [Bonehet al., 2004a] which
uses the linear Diffie-Hellman KEM, Paillier [Paillier, 1999], and also Cramer-Shoup [Cramer &
Shoup, 2003] and [Camenisch & Shoup, 2003]. The confirmation(confirmedSign) protocol in this
case will be reduced to a proof of knowledge of a preimage ofJ (I) by the functiong (f ), for
which we provided an efficient proof in Figure 5.1.

Concerning the denial protocol, it is not always straightforward. In most discrete-logarithm-
based encryptions, this protocol amounts to a proof of inequality of discrete logarithms as in
[El Gamal, 1985; Bonehet al., 2004a; Cramer & Shoup, 2003]. In case the encryption scheme
belongs to the classE2 defined in Definition 5.1, Figure 5.4 provides an efficient proof thatc en-
crypts somẽm 6= m. In the protocol provided in this figure,f denotes an arbitraryhomomorphic
injective one way function:

f(m ⋆m′) = f(m) ◦s f(m′)

With the standard tools, the above denial protocol can be shown to be a proof of knowledge
with computational ZK, if the encryption schemeΓ is IND-CPA secure, and ZK closed under
concurrent composition ifPoK is aΣ protocol.

Selective Conversion

The selective conversion in confirmer signatures from the “signature of an encryption” paradigm
consists of a non-interactive proof of the confirmation protocol. As mentioned earlier in this doc-
ument, there has been recently an important progress in thisarea. We note in this paragraph three
solutions.
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ProverP Verifier V

Choosem′ R
←− G

Computet1 = f(m′)

Computet2 = Γ.encryptΓ.pk(m
′)

t1, t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R
←− {0, 1}ℓ (b ∈ N)

z = m′ ∗ m̃b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{z = Γ.decryptΓ.sk(t2 ◦e c
b)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Accept ifPoK is valid andf(z) 6= t1 ◦s f(m)b .

Figure 5.4: Proof system for membership to the language{(m, c) : ∃m̃ : m̃ = Γ.decrypt(c)∧ m̃ 6=
m} Common input: (m, c,Γ.pk) andPrivate input: Γ.sk or randomness encrypting̃m in c

The case of Paillier [Paillier, 1999]’s encryption scheme.The Paillier encryption [Paillier, 1999]
operates on messages inZN , whereN = pq is a safe RSA modulus. Encryption of a
messagem is done by picking a randomr ∈R Z×N and then computing the ciphertext
c = rN(1 + mN) mod N2. Decryption of a ciphertextc is first done by raising it to
λ = lcm(p − 1, q − 1) to find r, then recoveringm by computing(r−Nc − 1)/N . It is
easy to see that Paillier’s encryption belongs to what we call the class offully decryptable
encryption schemes, i.e. encryption schemes where decryption leads to the randomness used
to produce the ciphertext. Thus, selective conversion can simply be achieved by releasing
the randomness used to generate the ciphertext.

Damg̊ard et al. [Damg̊ard et al., 2006]’s solution.This solution transforms a 3-move interactive
ZK protocolP with linear answer to a non-interactive ZK one (NIZK) using ahomomorphic
encryption scheme in a registered key model, i.e. in a model where the verifier registers his
key. This technique has been already discussed in 1.4.4 (Paragraph: non-interactive zero
knowledge (NIZK)). The authors in [Damgårdet al., 2006] proposed an efficient illustration
using Paillier’s encryption and the proof of equality of twodiscrete logarithms. We conclude
that with such a technique, the “signature of an encryption”approach accepts an efficient
instantiation if the considered encryption scheme allows proving the correctness of a de-
cryption using a proof of equality of two discrete logarithms, e.g. [El Gamal, 1985; Boneh
et al., 2004a; Cramer & Shoup, 2003].

Groth and Sahai [Groth & Sahai, 2008]’s solution.The authors in this work provide an efficient
NIZK for the language:

PoK = {(a, b) : c1 = ua ∧ c2 = vb ∧ c3 = ga+b}

The common input isg, c1, c2, u, v ∈ (G, ·)where(G, ·) is a bilinear group. The private input
is either(a, b) or (DLg(u),DLg(v)), whereDLg(u) denotes the discrete logarithm ofu in
baseg. We conclude then that the “signature of an encryption” approach accepts an efficient
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instantiation if the considered encryption scheme is the one defined in [Bonehet al., 2004a],
since a proof of the above language can be used to prove that a given ciphertext decrypts to
a given message.

5.4 Conclusion

We analyzed the security of confirmer signatures from the “signature of commitment” paradigm
in the outsider security model. The plain paradigm was shownto necessitate strong encryption
which makes it quite impractical, or at least allow very limited instantiations. However, a small
variation results in a tremendous improvement in the efficiency. We also shed light on a particular
construction which can be seen as a special sub-case of the paradigm, namely the “signature of an
encryption” technique. The advantage of this technique consists in achieving better performance
than the original technique (short signature, small generation, verification, and conversion cost), yet
applying to any signature scheme. Its sole limitation resides in requiring efficient non-interactive
proofs of knowledge. This motivates research to further tackle this problem as was started recently
in [Damgårdet al., 2006; Groth & Sahai, 2008; Camenischet al., 2009].
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Part III

Undeniable Signatures
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Chapter 6

Overview of Undeniable Signatures

Abstract. Undeniable signatures, as previously mentioned in Chapter3, were intro-
duced in [Chaum & van Antwerpen, 1990] to limit the verification property inher-
ent to digital signatures. In fact, the verification of undeniable signatures cannot be
achieved without the cooperation with the signer. Later, this concept was upgraded
to designated confirmer signatures, where the verification of signatures is delegated
to adesignated confirmer. Although undeniable signatures have preceded confirmer
signatures by only five years, the literature on the former was so abundant that it ex-
ceeded triple the literature on the latter. In this chapter,we give a short overview of
the research carried out in respect of undeniable signatures.

6.1 The genesis

Controlling the proliferation of certified copies of documents was the main motivation behind in-
troducing undeniable signatures. In fact, it is well known that digital entities, e.g. authenticated
documents, can be easily copied exactly, and as a consequence they can be subject to improper
use (blackmail or industrial espionage) in case the underlying content is personally or commer-
cially sensitive. For these reasons, Chaum and van Antwerpen introduced undeniable signatures
in [Chaum & van Antwerpen, 1990] as a cryptographic primitive having all properties of digi-
tal signatures except the universal verification. In fact, the verification procedure is replaced by
confirmation/denial protocols the signer issues interactively with the signature recipient.

Later in [Chaum, 1991b], Chaum polished the properties required in an undeniable signature
by introducing the concept of zero-knowledgeness of the confirmation/denial protocols. In fact,
after the interaction with the signer in the mentioned protocols, the signature recipient might get
additional knowledge (than the signature validity/invalidity) and uses it to leak the signature status
to other parties. Another attempt at refining the confirmation/denial protocols was proposed in
[Fujiokaet al., 1991]; the authors in this work introduced the notion of interactive bi-proof systems
which aim at proving concurrently which ofx ∈ L1 or x ∈ L2 is a true theorem whereL1 andL2
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are disjoint languages. Such a notion can be employed in undeniable signatures to assure signature
confirmation and disavowal with the same protocol. Chaum continued to address in [Chaum,
1991a] the potential shortcomings/misreadings (reportedfor instance in [Desmedt & Yung, 1991])
of his new primitive.

An important advance of undeniable signatures was suggested in [Boyaret al., 1991], namely
the convertibility of the undeniable signatures into publicly verifiable ones. The conversion can
either beselective, i.e. concerns aselectedundeniable signature, oruniversal, where the signer
releases a single bit string allowing the conversion of all undeniable signatures. The authors in
[Boyar et al., 1991] proved the existence of convertible undeniable signatures assuming the exis-
tence of digital signatures and provided an efficient solution based on ElGamal’s signature. This
construction was broken and repaired in [Michelset al., 1996], however the proposed scheme had
only a conjectural security. Another construction of convertible undeniable signatures was given
in [Damgård & Pedersen, 1996] and likewise, the security analysis was only speculative.

We finish this section by citing the works [Pedersen, 1991] and [Chaumet al., 1991] which
support the signer in undeniable signatures with additional features. The former allows the signer to
distribute a part of his secret key ton agents such that anyk of these can verify a signature, whereas
the latter proposes the first undeniable signatures with unconditional security for the signer.

6.2 Combination with other primitives

The concept of undeniable signatures was so attractive thatit was adopted in many other crypto-
graphic frameworks, e.g.:

Group undeniable signatures [Lyuu & Wu, 2002]. A group signature is a cryptographic prim-
itive which allows a member of a group to anonymously sign messages on behalf of the group.
A group undeniable signature shares the same principle withgroup signatures with the exception
of necessitating the intervention of the group manager to verify the issued signatures. This new
mechanism can be for instance used to validate price lists, press releases, or digital contracts when
the signatures are commercially sensitive or valuable to a competitor.

Threshold undeniable signatures [Harn & Yang, 1993; Linet al., 1996; Lee & Hwang, 1999;
Wang et al., 2001, 2002; Kim & Won, 2004; Guo & Tang, 2005; Chenet al., 2005; Lu et al.,
2005]. This concept was initiated in 1992 under the name: group-oriented undeniable signatures.
A group-oriented(t, n) undeniable signature scheme has the following four properties: (1) the
group signature is mutually generated by at leastt group members; (2) the signature verification
process is simplified because there is only one group public key required; (3) the signature can
only be verified with the consent of all signers; (4) the signers hold the responsibility for the signed
messages. Group-oriented or threshold undeniable signatures can be for instance used in software
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business where the company which vends the software is funded by a numbern of investors and
where the released products must be signed mutually by at least t investors.

Identity-based undeniable signatures [Libert & Quisquater, 2004; Guo & Tang, 2005; Zhang
et al., 2005; Wu et al., 2007b; Li et al., 2007]. Identity-based cryptography is a paradigm pro-
posed by Shamir in [Shamir, 1985] to remove the necessity forpublic key certificates. This is
achieved by letting the user’s public key be an information identifying him in a non-ambiguous
way (e-mail address, immatriculation number,...), and deriving the corresponding private key us-
ing the master key of a trusted authority called the private key generator (PKG). This concept was
first extended to undeniable signatures in 2004 by Libert andQuisquater, and later it was applied
to different primitives derived from undeniable signatures.

Undeniable multi-signatures [Yun & Lee, 2004, 2005]. An undeniable multi-signature is a
signature produced by a number of signers whose cooperationis mandatory for the verification of
the issued signature. Such a framework is suitable for jointcopyright protection on digital contents.
In fact, digital watermarks have been proposed as the means for copyright protection of multimedia
data, and it is often the case that the confirmer of a watermarkwants only the intended verifier to
be convinced with the validity of the watermark. In case the digital multimedia content is made
by co-workers, a joint copyright protection scheme is needed to provide equal right to them. Thus,
undeniable multi-signatures provide a good solution in this situation.

Blind undeniable signatures [Sakurai & Yamane, 1996; Huanget al., 2005; Hanet al., 2006;
Koide et al., 2008]. A blind signature enables a user to obtain a signature on a message without
revealing the content of the message to the signer. Sometimes, the signer might control some
attributes of the message in question such as “date of issue”or “valid until”, in which case we
talk about a partially blind signature. (Partially) blind signatures proved very useful in many real-
life applications such as online-shopping as they protect the privacy of the user (customer) by
hiding the message (purchased item) from the signer (bank).Unfortunately, the self-authenticating
property of blind signatures jeopardizes completely the privacy of the signer. Thus, merging the
properties of blind and undeniable signatures results in a primitive which guarantees both the
privacy of the signer and of the user.

Proxy undeniable signatures [Wuet al., 2007a]. A proxy signature scheme allows an entity
to delegate his/her signing capability to another entity ina way that the latter can sign messages
on behalf of the former when the former is not available. Proxy signatures have found numerous
practical applications in ubiquitous computing, distributed systems, mobile agent applications, etc.
In some situations, it is required to protect the privacy of the (proxy) signer which entails the
presence of the primitive proxy undeniable signatures. In [Wu et al., 2007a], the authors propose
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the first convertible undeniable proxy signature scheme with rigorously proven security in the
random oracle model, based on some natural complexity assumptions.

Undeniable confirmer signatures [Nguyenet al., 1999]. In undeniable signatures, a signature
can only be verified with the cooperation of the signer. Thus,absence of the signer obstructs the
entire verification process. This problem is eliminated in confirmer signature schemes where the
verification procedure is delegated to a confirmer rather than the signer. In [Nguyenet al., 1999],
the authors present a variation of confirmer signature, called undeniable confirmer signature in
which both the signer and the confirmer can verify the validity of the signatures. Note, that such a
primitive is often referred to asdirected signatures [Lim & Lee, 1993].

Non-interactive designated verifier undeniable signatures [Jakobssonet al., 1996; Kudla &
Paterson, 2005]. The seminal work of Chaum and van Antwerpen [Chaum & van Antwerpen,
1990] on undeniable signatures has been subject to many attacks. The most notable one is due
to Jakobsson [Jakobsson, 1994] where he describes how the signer can be vulnerable to a black-
mailing attack, i.e. a dishonest verifier can threaten the signer to broadcast the validity of a given
signature if the latter does not consent to do what the formerasks. Later, Jakobsson et al. [Jakobs-
sonet al., 1996] proposed a solution to this problem, called designated verifier proofs. Informally
speaking, a designated verifier proof is a proof of correctness of some “statement” that either the
prover or some designated verifier could have produced. If the prover created the proof, then the
“statement” is correct, however a designated verifier couldsimulate a valid proof without a cor-
rect statement. As a result, a secure designated verifier proof will convince the designated verifier
of the validity of the given statement, as he did not create the proof, but will convince no other
party as the designated verifier could have generated it. Finally, it was shown in [Jakobssonet al.,
1996] that designated verifier proofs could be made non-interactive, however, a formal definition
of non-interactive proofs of knowledge along with their applications to undeniable signatures was
provided almost a decade later in [Kudla & Paterson, 2005].

6.3 RSA-based constructions

Since the introduction of undeniable signatures in 1989, a significant amount of work has been de-
voted to the investigation of practical schemes implementing this primitive. Up to 1997, this work
was focused on discrete-log-based systems. The scheme in [Gennaroet al., 2000] is the first to use
regular RSA signatures to generate undeniable signatures.In this new setting, both the signature
and verification exponents of RSA are kept secret by the signer, while the public key consists of a
safe RSA modulus and a sample RSA signature on a single publicmessage. The scheme possesses
several attractive properties. First of all, provable security, as forging the undeniable signatures
is as hard as forging regular RSA signatures. Second, both the confirmation and denial protocols
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are zero-knowledge. In addition, these protocols are efficient (particularly, the confirmation proto-
col involves only two rounds of communication and a small number of exponentiations). Finally,
the scheme in [Gennaroet al., 2000] can be efficiently extended to support more advanced prop-
erties of undeniable signatures found in the literature, including convertibility of the undeniable
signatures (into publicly verifiable ones), the possibility to delegate the ability to confirm and deny
signatures to a third party without giving up the power to sign, and the existence of distributed
(threshold) versions of the signing and confirmation operations.

Later in [Miyazaki, 2000], an improved variant of [Gennaroet al., 2000], which supports the
convertibility and the resilience against the hidden verifier attack (described in [Jakobssonet al.,
1996]), is proposed. Improvements of [Gennaroet al., 2000] continued to emerge, for instance the
work in [Galbraithet al., 2002] proposes techniques which allow RSA-based undeniable signatures
for general moduli (in contrast to the work [Gennaroet al., 2000] which rests on safe RSA moduli).
Additionally, the result in [Galbraith & Mao, 2003] develops an RSA-based scheme which has
invisibility. Quite recently, a new approach for constructing selectively convertible RSA-based
undeniable signatures without random oracles has been proposed in [Kurosawa & Takagi, 2006;
Le Trieuet al., 2009].

6.4 Analysis and refinement of the model

New (security) properties. The first security notions that were required in undeniable signatures
were: (1) security for the verifier, which refers to the soundness of the confirmation/denial proto-
cols, (2) unforgeability of the signatures, which refers tothe hardness of producing a valid unde-
niable signature on an arbitrary message, (3) non-transferability and invisibility of the signatures,
where non-transferability means the inability of the signature verifier to transfer his knowledge
about the signature status to a third party, and invisibility connotes the difficulty of telling whether
a signature is valid or not. The invisibility property had many variants; the first one requires that
any polynomial adversary is incapable of distinguishing a signature based on the underlying mes-
sage (the adversary outputs two messagesm0 andm1 and receives a signature on one of those two
messages; he is then required to tell the message underlyingthe challenge signature). There exists
also the stronger notion [Galbraith & Mao, 2003] which requires the difficulty of distinguishing
the signature on a message, chosen by the adversary, from a random signature in the signature
space. In the same paper [Galbraith & Mao, 2003], Galbraith and Mao suggested to consider a
further security property, that is anonymity, which informally means the infeasibility of determin-
ing whether a user is or is not the signer of a given message. Such a property can be the source of
abuse by the signer in some situations, thus the introduction of the notion ofrevocable anonymity
in [Yeung & Han, 2003; Hanet al., 2004] to denote the possibility of revoking the anonymity,by
some trusted authority, of some signer who has done illegal actions.
Another security property that needs to be satisfied byconvertibleundeniable signatures was in-
troduced in [Huang & Wong, 2009] and named resilience toclaimability attacks, where a dis-
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honest/malicious signer both disavows a signature via the disavowal protocol and confirms it via
selective conversion. Always in the case of convertible undeniable signatures, it is desirable in
some situations to delegate the ability to prove the validity and convert signatures to a semi-trusted
third party by providing a verification key [Schuldt & Matsuura, 2010].
Finally, Kurosawa and Furukawa introduced in [Kurosawa & Furukawa, 2008] the notion of uni-
versal composability which informally captures the maintenance of the undeniable signature of its
security properties under a general protocol composition.This notion is motivated by the fact that
undeniable signatures are often used as a building block in amore complicated protocol.

Relations among security notions. The first work that addresses the relations among the differ-
ent security notions of undeniable signatures is [Galbraith & Mao, 2003], where the authors prove
that their notion of invisibility implies their notion of anonymity and the invisibility notion con-
sidered in [Camenisch & Michels, 2000]. They also specify some properties to be satisfied by the
undeniable signature scheme in order to have invisibility in the sense of [Camenisch & Michels,
2000] and anonymity in the sense of [Galbraith & Mao, 2003] imply the strong invisibility in the
sense of [Galbraith & Mao, 2003].
Besides, Kurosawa and Heng conduct in [Kurosawa & Heng, 2006] a thorough study on the un-
forgeability and invisibility notions of undeniable signatures in the two attack models, namely
chosen message attack and full attack. In particular, they show that unforgeability against a chosen
message attack (where the adversary is allowed to query adaptively the signing oracle) is equiva-
lent to unforgeability against a full attack (where the adversary is allowed to query adaptively both
the signing and the confirmation/denial oracles), and invisibility against a chosen message attack
is equivalent to invisibility against a full attack.

Different types of conversion. Traditionally, the convertibility property in undeniablesigna-
tures refers to the possibility of converting an individualundeniable signature into an ordinary one
(selective conversion), or publish a universal receipt that turns all undeniable signatures into pub-
licly verifiable ones (universal conversion). Recently, convertibility in undeniable signatures has
been widened to cover further features. The first example is thetime-selective conversionproperty
which was introduced in [Laguillaumie & Vergnaud, 2005] to circumvent the problem caused by
the universal conversion of undeniable signatures. In fact, after the signer has revealed the uni-
versal trapdoor, all (past and future) undeniable signatures will be publicly verifiable and thushe
cannot issue further undeniable signatures with his present key. As a consequence, he needs to
(in case he wants to issue new undeniable signatures) generate a new key pair which has to be
certified by an authority (PKI) and where the corresponding certificate needs to be generated by
all the verifiers. Time-selective conversion is a notion which supports the signer to universally
convertchronologicallysignatures pertaining only to a specific time period: given atime-selective
convertible undeniable signatureσ for a time periodp, it is computationally infeasible to determine
which signing secret key was used to generateσ; but with the knowledge of a matching universal
receipt for some time periodp′ ≥ p, it is easy to determine whetherσ is a valid time-selective con-
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vertible undeniable signature or not. Next, thegradual conversionwas introduced in [El Aimani
& Vergnaud, 2007] to generalize the concept of time-selective convertible undeniable signatures to
event-selectiveconvertible undeniable signatures where a signature becomes universally verifiable
if a specific event happens and makes the signer publish the corresponding receipt information.
In other words, gradual conversion enables the signer to gradually convert signaturesachronously
(i.e. with time periods made completely independent of each other).

6.5 Applications

The first real life application that motivated the research on undeniable signatures is the limitation
of the proliferation of certified copies of a document issuedby a given company. Later, Jakobsson
[Jakobsson, 1994] exhibited a situation where one can use undeniable signatures for blackmailing;
a malicious verifier can threaten the signer of leaking the validity of a given signature if the latter
does not consent to what the former asks. This situation can be avoided if the undeniable signature
scheme is well designed, namely if signatures are non-transferable.

Next, and almost a decade later, Yun and Lee provided two further applications of undeniable
multi-signatures, namely the joint copyright protection on digital content [Yun & Lee, 2004] and
the large scale electronic voting [Yun & Lee, 2005]. In fact,Digital watermarks have been proposed
as the means for copyright protection of multimedia data. Naturally, the confirmer of a watermark
wants to make sure that only the intended verifier can be convinced of the validity of the watermark
and thus the need for undeniable signatures. However, existing copyright protection schemes are
mainly focused on protection of single owners’ copyright. In case the digital multimedia contents is
made by co-workers, a joint copyright protection scheme is needed to provide equal right to them,
which explains the necessity of undeniable multi-signatures. Besides, existing voting schemes
assume that the voting center is trustful and untraceable channels exist between voters and the
voting center. To minimize the role of the voting center, theauthors in [Yun & Lee, 2005] propose
a voting scheme where multiple administrators manage the voting protocol. Moreover, in the
voting and counting stages, ballots cannot be opened without the help of all administrators. Also,
before counting the ballot, the administrators must all verify the undeniable multi-signature on it.
Finally and due to the properties of undeniable signatures,voters can change their mind to whom
they vote in the registration stage. They can restart the voting process by simply rejecting the
signature confirmation protocol launched by the voting manager.

The last application of undeniable signatures that has beenaddressed in the literature is in the
area of Internet applications, or more precisely XML [Sun & Li, 2005]. XML or extensible markup
language has become an important universal language for theInternet-based business world. An
XML document can be generated from various resources with varying security requirements. In
order to ensure the integrity of the contents in the transactions, and at the same time maintain
privacy and confidentiality, security is increasingly important. The XML undeniable signatures,
proposed in [Yun & Lee, 2005], are designed for the security of XML document transactions. They
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guarantee the authentication, data integrity, and non-repudiation of the data they sign. Moreover,
they ensure that signatures cannot be verified without interaction with the signer. The goal of a such
work is to bridge the gap existing between XML technologies and data security theories in order
to provide a framework for the integration of security technologies to improve XML applications.

6.6 Constructions over special algebraic structures

Popular undeniable signatures present in the literature have the disadvantage of either having long
signatures, typically 1024 bits, or having operations for the signer that take cubic running time.
These advantages become more tangible for some real world applications, e.g. on a chip card or
a web server. Therefore, many attempts have been made to address the mentioned problems; we
sketch in this section the most important such contributions.

Signatures based on ideal arithmetic in quadratic order [Biehl et al., 2004]. These are signa-
tures constructed using imaginary quadratic fields. A quadratic field is an algebraic number field
of degree two overQ. It is easy to show that the mapd 7→ Q(

√
d) is a bijection from the set

of all square-free integersd 6= 0, 1 to the set of all quadratic fields. Ifd > 0, the corresponding
quadratic field is called a real quadratic field, and ford < 0, it is called an imaginary quadratic field
or complex quadratic field. There has been a number of cryptographic primitives (e.g. the NICE
encryption scheme [Paulus & Takagi, 2000]) using such an algebraic structure; the technique used
in these systems is based on “switching” between ideals whose arithmetic is quadratic in the bit
length of the public key. As a consequence, the operations onthe signer’s side in [Biehlet al., 2004]
are of quadratic complexity. The comparisons with the popular RSA-based undeniable signatures
show a major advantage of [Biehlet al., 2004] in terms of signature cost and length. However,
the major drawback lies in the conjectural security analysis of the scheme, which becomes more
improbable after the cryptanalysis of the NICE encryption scheme [Castagnos & Laguillaumie,
2009; Castagnoset al., 2009].

MOVA signatures [Monnerat & Vaudenay, 2004b,a; Monneratet al., 2005]. These proposals
develop a general framework based on the notion of interpolation of group homomorphisms. In
this way, they define decisional and computational problemswhich generalize several fundamental
problems found in public key cryptography, e.g. (Bilinear)Diffie-Hellman, Quadratic Residuosity,
...
These group homomorphisms allow to express well known signatures, e.g. [Chaum & van Antwer-
pen, 1990; Gennaroet al., 2000] in a unified framework. Moreover, they allow to develop very
short signatures in a quite natural way, namely by instantiating the scheme with group homomor-
phisms with a range group of small size. The main criticism ofthese signatures is the resort to the
random oracle model.
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Signatures using Non-Abelian groups [Thomas & Lal, 2008]. Non-Abelian groups have been
considered as an alternative for doing public key cryptography. In fact, they provide a rich collec-
tion of hard problems like theconjugacyproblem: givenx, y ∈ (G, ·), decide whetherx andy are
conjugates, i.e. whether∃a ∈ G : x = aya−1. There are many illustrations of non-Abelian groups,
e.g. Braid groups, Thompson’s group, Polycyclic groups. The signature presented in [Thomas &
Lal, 2008] is based on the intractability of the conjugacy problem. The scheme therein does not
only suffer from the conjectural security, but also from theunreasonableness of the underlying as-
sumption; it is well known that there exists an efficient problem that solves the conjugacy problem
in Braid groups.

6.7 Recent trends

We summarize in the following section the main directions ofresearch on undeniable signatures.

Revisiting previous constructions. There have been a number of works devoted to the analy-
sis of previous constructions of undeniable signatures. The first of such projects dates back to
2001 [Okamoto & Pointcheval, 2001] where the authors introduce a novel class of computational
problems, namely the gap problems. They further show how a particular instance based on the
Diffie-Hellman problems, namely the GDH problem, can serve to solve a more than 10-year old
open security problem: Chaum’s undeniable signature. Later, in [Ogataet al., 2005], the authors
improved the analysis in [Okamoto & Pointcheval, 2001], andshowed that the security of the
FDH variant of Chaum’s scheme with NIZK confirmation and disavowal protocols is equivalent to
the CDH problem. They achieve this by introducing a new kind of adversarial goal called forge-
and-impersonate in undeniable signature schemes, classifying the security of the FDH variant of
Chaum’s undeniable signature scheme according to three dimensions, i.e. the goal of adversaries,
the attacks and the ZK level of confirmation and disavowal protocols, and finally relating each
security to some well-known computational problem.
The next two schemes that were revisited are those by Damgård and Pederesen [Damgård & Ped-
ersen, 1996] and by Michels et al. [Michelset al., 1996], which were addressed in [El Aimani,
2008] and [El Aimani & Vergnaud, 2007] and will be subjects ofthe two upcoming chapters resp.
Finally, we mention the claimed attack [Liet al., 2007] on Libert and Quisquater [Libert &
Quisquater, 2004]’s ID-based undeniable signature; the authors show that if a valid message-
signature pair has been revealed, an adversary can forge thesigner’s signature on any arbitrary
message for which the signer has no way to deny it. This attackturns out to be flawed as the
authors confuse points on an elliptic curve with elements inZ×q , whereq is the order of the group
formed by the elliptic curve points.

Generic constructions. The next direction of research was dedicated to the design ofgeneric
constructions of undeniable signatures. The first result inthis line is the MOVA construction [Mon-
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nerat & Vaudenay, 2004b,a; Monneratet al., 2005] described earlier in Section 6.6. Next, there is
the result due to Galindo et al. [Galindoet al., 2006] where the authors propose a technique for
building identity based schemes with further properties. For instance, they provide a generic con-
struction for ID-based undeniable signatures from a digital and an undeniable signature schemes.
Later, the result in [Huanget al., 2007a] proposes a generic construction for universally-convertible
undeniable signatures; the construction is based on three building blocks: a strongly unforgeable
classic signature scheme, a selectively-convertible undeniable signature scheme and a collision-
resistant hash function. Finally, in [El Aimani, 2008, 2009a], we propose a generic construction
of convertible undeniable signatures (both selectively and universally) from any digital signature
scheme and any encryption scheme obtained from the hybrid encryption paradigm. We must also
cite the construction [Zhu, 2004] which realizes the “signature of an encryption” paradigm.

Efficient signatures with strong security properties. Alleviation or removal of the idealized
models and basing the security on popular and reasonable security properties was a tangible pur-
pose in the recent proposals of undeniable signatures. We note as examples [Huanget al., 2007b;
El Aimani, 2008, 2009a; Le Trieuet al., 2009, 2010; Schuldt & Matsuura, 2010; Huang & Wong,
2009]. It is worth noting that most of these proposals are based on the sign-then-encrypt paradigm.
Moreover, efficiency, which translates in having short signatures with small generation, verification
and conversion cost, was also a main intent in the recent proposals of undeniable signatures. All the
previously mentioned schemes achieve also these properties as their underlying encryption layer
relies on an IND-CPA secure encryption scheme. Finally, we note that it is was also desirable
recently to reach a minimal number of moves between the signer and the verifier of an undeniable
signature. The already mentioned signatures have constantnay four round confirmation/denial
protocols. Fewer moves have been achieved by [Kurosawa & Heng, 2005; Monnerat & Vaudenay,
2005] but at the expense of security; both constructions have recourse to the random oracle model
for the security analysis.

6.8 Conclusion

In this chapter, we browsed quickly through the different realizations in the area of undeniable
signatures. We will continue in the next two chapters by having a closer look at two proposals,
namely [Damgård & Pedersen, 1996] and [Michelset al., 1996]; we will disprove the conjecture
on the invisibility of the former and provide a recast of the underlying construction which achieves
strong security features. Moreover, we redefine the security model of the latter so that it captures
a new property, namely thegradual conversion, and we provide a formal security analysis of the
scheme in this new model.

146



Chapter 7

Damgård-Pedersen’s Undeniable Signatures
Revisited

Abstract. Damgård-Pedersen’s [Damgård & Pedersen, 1996] undeniable signa-
tures were proposed in 1996, and consist in first generating aprovably secure variant
of ElGamal’s signature, e.g. the Modified ElGamal signaturescheme [Pointcheval
& Stern, 2000], on the given message, then encrypting the message-key-dependent
part using either Rabin’s or ElGamal’s encryption. These signatures were proven
to have their unforgeability resting on the discrete logarithm problem. Concerning
invisibility, it is conjectured to rest on the factorization problem in case the Rabin
encryption is used, and on the DDH problem otherwise. This conjectural security
was reported recently in [Kurosawa & Takagi, 2006] as the authors used a similar
approach to devise their undeniable signatures.
In this chapter, we focus on the variant using ElGamal’s encryption; we disprove the
speculative invisibility in the model defined in [Damgård &Pedersen, 1996], and
we provide a complete attack on the scheme in a very popular model. Besides, we
propose a fix to the scheme which allows to achieve very strongsecurity features;
the security analysis is done in a more general framework where the refined scheme
is seen as a special instantiation of this framework.
Parts of the results in this chapter appeared in the publication [El Aimani, 2009a] in
the proceedings of Africacrypt 2009.

7.1 Damg̊ard-Pedersen’s undeniable signatures

7.1.1 The scheme

Letm ∈ {0, 1}⋆ be an arbitrary message, the scheme consists of the following procedures:

Setup (setup). On input the security parameterκ, generate ak-bit prime t and a primep ≡
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1. The prover computess the decryption of(E1, E2) usingν.

Next, he choosess′
R←− Z×

t , computes and sendst1 =
(
gh(m)h−r

)s′
and

t2 = (E1α
ρ′

, s′E2β
ρ′

) to the verifier

3. The verifier choosesb
R←− {0, 1} and sends it to the prover.

4. If b = 0, the prover sendss′ andρ′.
Otherwise, he sendsss′ and proves thatt2 is an encryption ofss′.

5. If b = 0, the verifier checks thatt1 andt2 are computed as in Step 1.
Otherwise, he checks the proof of decryption oft2:

It it fails, he rejects the proof.
Otherwise:

If the prover is confirming the signature, the verifier accepts if rss
′

= t1.
If the prover is denying the given signature, the verifier accepts the proof ifrss

′ 6= t1.

Figure 7.1: Proof system for membership to the language{(E1, E2, r) ∈ Z×t × Z×t × Z×p |
∃ s ∈ Zt : DLα(β) = DLE1(E2 · s−1) ∧ gh(m)h−r = ( 6=)rs} Common input: (E1, E2, r, pk) and
Private input: ν

1 mod t. Furthermore, select a collision-resistant hash functionH that maps arbitrary-length
messages toZt.

Key generation (keygen). Generateg of ordert, x ∈ Z×t , andh = gx mod p. Furthermore,
select a generatorα of Z×t andν ∈ {0, 1, . . . , t−1}, and computeβ = αν mod t. The public
key ispk = (p, t, g, h, α, β) and the private key is(x, ν).

Signature (sign). The signer first computes an ElGamal signature(s, r) on m, i.e. compute

r = gb mod p for someb
R←− Z×t , then computes ash(m) = rx + bs mod t. Next, he

computes an ElGamal encryption(E1 = αρ, E2 = sβρ) mod t, for ρ
R←− Zt−1, of s. The

undeniable signature onm is the triple(E1, E2, r).

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signature(E1, E2, r)
on a certain messagem, the signer issues a ZKPoK of the language: (see Figure 7.1 )
{
(E1, E2, r) ∈ Z×t × Z×t × Z×t | ∃ s ∈ Zt : DLα(β) = DLE1(E2 · s−1) ∧ gh(m)h−r = ( 6=)rs

}

7.1.2 Security analysis

The above algorithms/protocols are obviously complete. Moreover, the confirmation/denial pro-
tocols are proven to be sound and zero knowledge. Finally, the signatures are proven to be un-
forgeable if the underlying ElGamal signature is also unforgeable, and they are conjectured (by the
authors in [Damgård & Pedersen, 1996]) to meet the following security notion if the DDH problem
is hard.
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Definition 7.1 (Signature indistinguishability). It is defined through the following game between
an attackerA (a distinguisher) and his challengerR.

Phase 1afterA gets the public parameters of the undeniable signature scheme, namelypk, from
R, he starts issuingstatus requestsandsignature requests. In a status request,A produces
a pair (m, z), and receives a1-bit answer which is1 iff z is a valid undeniable signature on
m w.r.t. pk. In a signature request,A produces a messagem and receives an undeniable
signaturez on it w.r.t. pk.

ChallengeOnceA decides thatPhase 1is over, he outputs a messagem and receives a stringz
which is either a valid undeniable signature onm (w.r.t pk) or a simulated signature, i.e. a
string randomly chosen from the signature space.

Phase 2A resumes adaptively making the previous types of queries, provided thatm does not
occur in any request, and thatz does not occur in any status request. Eventually,A will
output a bit.

Let pr, resp. ps be the probability thatA answers1 in the real, resp. the simulated case. Both
probabilities are taken over the random coins of bothA andR. We say that the signatures are
indistinguishable if|pr − ps| is a negligible function in the security parameter.

7.2 Negative Results

In this section, we provide evidence that the Damgård-Pedersen signatures are unlikely to be in-
distinguishable under the DDH assumption. We prove in a firststage that if there exists akey-
preservingreduction, i.e. an algorithm launching the adversary over its own public key and other
freely chosen parameters, from the DDH problem to the distinguishability of the signatures (in
the sense of Definition 7.1), then there exists an efficient algorithm that solves the DDH problem.
Next, we provide an actual attack on this indistinguishability in a reasonable (and popular) security
model. Both attacks are based on the malleability of ElGamal’s encryption; given a ciphertext, one
can create another ciphertext for the same underlying message.

7.2.1 Impossibility results for key-preserving reductions

Lemma 7.1. Assume there exists a key-preserving reductionR that uses an indistinguishability
adversaryA against the above scheme to solve the DDH problem. Then, there exists an efficient
meta-reductionM that solves the DDH problem.

As previously mentioned (Chapters 4 and 5), this lemma suggests that under the DDH assump-
tion, there exists no key-preserving reduction from the DDHproblem to the distinguishability of
the signatures, and in case such an algorithm exists, then the DDH problem is easy thus rendering
the reduction useless.
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Proof. LetR be the key-preserving reduction that reduces the DDH problem to distinguishing the
Damgård-Pedersen signatures in the sense of Definition 7.1. We will construct an algorithmM
that usesR to solve the DDH problem by simulating a distinguisher against the signatures.

Let (c1 = αa, c2 = βb) ∈ Z×t × Z×t be the DDH instanceM is asked to solve.M acting
as a distinguisher of the signature will make a signature request on an arbitrary messagem. Let
(E1, E2, r) be the answer to such a query.M will make now a status query on(c1 · E1, c2 · E2, r)
and the messagem. (c1, c2) is a yes-Diffie-Hellman instance iff the result of the last query is the
confirmation that(c1 · E1, c2 ·E2, r) is a signature onm.

In this case, it does not seem obvious how to extend the above result to arbitrary reductions. For
instance, we cannot employ the technique of non-malleability of the key generator used previously
in Chapters 4 and 5. In fact, this would correspond in the current case to assume that the DDH
problem, w.r.t. a given public keypk, is difficult even when given access to a CDH oracle w.r.t.
anypk′ 6= pk, which is untrue.

7.2.2 An attack in another security model

In Definition 7.1, the adversary or distinguisher cannot issue status signatures on the challenge
message and an arbitrary signature which is different from the challenge signature. This model is
very frail because it prevents the signer from issuing many signatures on the same message; once
the status of a signature is known, then the status of all other signatures on the same message is also
known. Thus, a more realistic model will allow the adversaryto issue status queries which involve
the challenge message. However, the scheme in question can be totally broken in the new setting
due to the fact that, given an ElGamal ciphertext, one can create another ElGamal encryption for
the same plaintext.

Lemma 7.2. The above undeniable signatures are not indistinguishablein the presence of an
adversary making status queries which comprise the challenge message.

Proof. LetA be an distinguisher against the above signatures, and let(E1, E2, r) be the challenge

signature on the challenge messagem. A will simply chooser
R←− Zt−1 and make the status query

on (αrE1, β
rE2, r) andm. The response to such a query is sufficient forA to conclude as the new

signature is valid onm iff the original one is also valid onm.

7.3 Positive Results

In the previous section, we provided evidence that the Damg˚ard-Pedersen undeniable signatures
are very unlikely to be indistinguishable under the DDH assumption. This can be explained by the
fact that they are not strongly unforgeable, i.e. given a signature on an arbitrary message, one can
create another signature on the same message without the help of the signer. Thus, the reduction
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R needs more than a list, maintaining the queries and their replys, in order to answer the status
queries made by the distinguisher. To repair these signatures, one can first compute the ElGamal
keyβρ along with its encapsulationαr, then produce an ElGamal signature(s, r) on the message
in question concatenated withαρ, and finally encrypts usingβρ. The output undeniable signature
is (αρ, sβρ, r). It is easy to see that the provided repair is a special instance of the construction in
Section 4.2, and thus can be proven in a stronger security model (the resulting confirmer signatures
are proven to be SINV-CMA secure) than that provided in [Damgård & Pedersen, 1996].

In the sequel, we exhibit another reduction from the anonymity of the construction to the
anonymity of its underlying building blocks. In fact, although SINV-CMA security implies ANO-
CMA security, however, the former rests on rather strong assumptions on the underlying building
blocks, namely the IND-CPA and INV-OT security of the used KEM and DEM resp.

Theorem 7.3. Given(t, qs, qv, qsc) ∈ N4 and(ε, ǫ′) ∈ [0, 1]2, the construction depicted in Section
4.2 is (t, ǫ, qs, qv, qsc)-ANO-CMA secure if it uses a(t, ǫ′, qs)-EUF-CMA secure, an ANO-OT secure
DEM, and a (t+ qs(qv + qsc),

ǫ
2
· (1− ǫ′)qv+qsc)-ANO-CPA secure KEM.

Proof. Let A be an attacker that (t, ǫ, qs, qv, qsc)-ANO-CMA breaks the construction in Section
4.2, assumed to use a(t, ǫ′, qs)-EUF-CMA secure digital signature and an ANO-OT secure DEM.
We will construct an algorithmR that (t + qs(qv + qsc),

ǫ
2
· (1 − ǫ′)qv+qsc)-ANO-CPA breaks the

underlying KEM:

[Key generation] R gets the parameters of the KEMK from his challenger, namely the two
public keysK.pk0 andK.pk1 and the encapsulation/decapsulation algorithms. Then, he
chooses an appropriate ANO-OT secure DEM together with an EUF-CMA secure signature
schemeΣ. He will runΣ.keygen twice to obtain(Σ.pk0,Σ.sk0) and(Σ.pk1,Σ.sk1). Finally
he will setpk0 = (K.pk0,Σ.pk0) andpk1 = (K.pk1,Σ.pk1) as the challenge public keys for
A.

[confirmedSign queries] For a signature query onm regarding a public keypkb, b ∈ {0, 1}. R
first fixes a session keyk together with its encapsulationc usingK.pkb. Then he computes
a (digital) signatureσ = (s, r) on c‖m usingΣ.skb. Finally, he encryptss (usingk) and
outputs the result, together withr, toA. R will maintain a listLb of the encapsulationsc
and keysk used to generate the confirmer signatures with respect to thekeypkb, b = 0, 1.

[confirm/deny queries] For a signatureµ = (µ1, µ2, µ3) onm with respect to a given keypkb,
b ∈ {0, 1},R will look up the listLb. If a record having as first component the encapsulation
µ1, thenRwill use the corresponding decapsulation, sayk, to decrypt(µ1, µ2) in s. If (s, µ3)
is a valid digital signature onc‖m, R will run the confirmation protocol, otherwise, he will
run the denial protocol.R can issue such proofs of knowledge, without knowing the private
key of K, using the rewinding technique because the protocols are zero knowledge, thus
simulatable. In caseµ1 does not appear in any record ofLb,R will issue the denial protocol.
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This simulation differs from the real one when the signatureµ is valid and has not been
obtained from a signature query. Two cases: eithermwas never queried to the signing oracle,
then(m,µ) would correspond to an existential forgery on the confirmer signature scheme,
which would lead to an existential forgery on the underlyingsignature scheme, by virtue of
Theorem 4.8. The second case is whenm has been previously queried to the signing oracle
in which case(m,µ) would correspond to an existential forgery on the underlying digital
scheme thanks to Remark 4.6. Hence, the probability that both scenarios do not happen is
at least(1 − ǫ′)qv because the underlying digital signature scheme is(t, ǫ′, qs)-EUF-CMA
secure by assumption.

[convert queries] R proceeds as above with the exception of issuing the converted signature
instead of the confirmation protocol, or the symbol⊥ instead of the denial protocol. Here,
the probability thatA does not query a valid signature that has not been obtained from a sign
query is at least(1− ǫ′)qsc.

[Challenge] Eventually,A outputs a challenging messagem⋆. R will pick a b′
R←− {0, 1} and

use his challenge(c⋆b , k
⋆
b ) (created w.r.t.K.pkb for someb ∈ {0, 1}) to compute a digital

signatureσ⋆b′ = (s⋆b′ , r
⋆
b′), usingΣ.skb′ , on c⋆b‖m⋆. Then, he encrypts the useful part of the

resulting signature (s⋆b′) usingk⋆b and outputs the result, together withr⋆b′ , as a confirmer
signatureµ⋆ onm⋆. Therefore, ifb = b′, thenµ⋆ is a signature onm⋆ with respect topkb,
otherwise it is not a valid signature with respect to either key. If A has an advantage non-
negligibly different from that of an adversary in a real attack (as described in Definition 3.4),
thenA can be used to used to break the ANO-OT security of the DEM; actually r⋆b′ reveals
by assumption no information aboutΣ.pkb′ .

[Post challenge phase]A will continue issuing queries to the signing, confirmation/denial, and
selective conversion oracles, with respect to the two keyspk0 or pk1, andR can answer as
previously. Note that in this phase,A might request the verification or selective conversion
of a confirmer signature(c⋆b ,−,−) on a messagemi with respect topkb, b = 0, 1. In this
case,R will simply issue the denial protocol in case of a verification query, or the symbol⊥
in case of a selective conversion query. Following the same analysis above, the probability
that the simulation does not differ from the real execution is at least(1− ǫ′)qsc+qv .

[Final output] WhenA outputs his answerba ∈ {0, 1}, R will output b′′ = b′ to his challenger
in caseba = b′, andb′′ = 1 − b′ otherwise. We clearly haveǫ = |Pr[ba = b′|b = b′] − 1

2
|.

The advantage ofR is defined by:

152



Adv(R) = (1− ǫ′)qv+qsc
∣∣∣∣Pr[b = b′′]− 1

2

∣∣∣∣

= (1− ǫ′)qv+qsc
∣∣∣∣Pr[ba = b′, b = b′′] + Pr[ba 6= b′, b = b′′]− 1

2

∣∣∣∣

= (1− ǫ′)qv+qsc
∣∣∣∣Pr[ba = b′, b = b′] + Pr[ba 6= b′, b 6= b′]− 1

2

∣∣∣∣

= (1− ǫ′)qv+qsc
∣∣∣∣Pr[ba = b′|b = b′] Pr[b = b′] + Pr[ba 6= b′|b 6= b′] Pr[b 6= b′]− 1

2

∣∣∣∣

=
(1− ǫ′)qv+qsc

2

∣∣∣∣Pr[ba = b′|b = b′]− 1

2

∣∣∣∣

=
ǫ(1− ǫ′)qv+qsc

2

The last but one equation is due to the fact thatPr[b = b′] = 1
2

asb′
R←− {0, 1}, and to that

fact thatPr[ba 6= b′|b 6= b′] = 1
2

since the used DEM is ANO-OT secure.

7.4 Conclusion

In this chapter, we revisited the Damgård-Pedersen [Damg˚ard & Pedersen, 1996] undeniable sig-
natures which had a conjectural security left open for over adecade. We disproved the invisibility
of these signatures in the model given in [Damgård & Pedersen, 1996], and provided a complete
attack in a stronger model which is quite reasonable. Next, we proposed a fix to these signatures
so that they become invisible; interestingly, this repair turns out to be a special instantiation of the
construction provided in Section 4.2. Actually, even the confirmation/denial protocols provided
in [Damgård & Pedersen, 1996] happen to be a special case of the confirmation/denial protocols
provided for the construction in Section 4.2. Moreover, we provided another analysis of the con-
struction in question which establishes its anonymity based on the anonymity of its components.
We conclude that the construction in Section 4.2 does not only capture the efficient realizations
of confirmer/undeniable signatures proposed recently, e.g. [Le Trieuet al., 2010; Schuldt & Mat-
suura, 2010], but also serves for analyzing the early schemes that have a speculative security.
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Chapter 8

Gradually Convertible Undeniable
Signatures

Abstract. In 1990, Boyar, Chaum, Damgård, and Pedersen introduced in[Boyar
et al., 1991]convertible undeniable signatureswhich limit the self-authenticating
property of digital signatures but can be converted by the signer to ordinary signa-
tures. Six years later, Michels, Petersen, and Horster presented in [Michelset al.,
1996] an attack on the El Gamal-based seminal scheme of Boyaret al., and pro-
posed a repaired version without formal security analysis.In this chapter, we mod-
ify their scheme so that it becomes a generic one, and it provides an advanced
feature which permits the signer to universally convertachronouslyall signatures
pertaining to a specific time period. We supply a formal security treatment of the
modified scheme: we prove, in the generic group model, that the scheme is existen-
tially unforgeable and invisible under chosen message attacks, assuming reasonable
assumptions on the underlying constituents.
Parts of the results in this chapter appeared in the joint work [El Aimani &
Vergnaud, 2007] with Damien Vergnaud in the proceedings of ACNS 2007.

8.1 Gradually convertible undeniable signatures

8.1.1 Syntax

Let π ∈ N. A gradually convertible undeniable signature schemeUS with π time periods consists
of the following procedures:

Setup (US.setup). This is an algorithm which takes an integerk as input, and outputs thepublic
parametersParameters. κ is called thesecurity parameter.

Signer key generation (US.skeygen). This algorithm takes the public parameters as input and
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outputs a pair(sks,pks), wheresks is called thesigning private keyandpks the signing
public key.

Verifier key generation (US.vkeygen). This algorithm inputs the public parameters and outputs
a pair(skv,pkv), whereskv is called theverifying private keyandpkv theverifying public
key.

Signature (US.sign). This algorithm takes the public parameters, a message, an integer in[[1, π]],
and a signing private key as inputs and outputs a bit string.

Verification (US.verify). This algorithm, run by the signer, inputs the public parameters, a mes-
sagem, a bit stringµ, an integerp ∈ [[1, π]], and a signing key pair(sks,pks) and outputs a
bit which is equal to 1 iff the bit stringµ is a valid undeniable signature onm for the time
periodp w.r.t. pks.

Confirmation/Denial protocols (US.{confirm, deny}). These are two-party protocols(P,V) be-
tween the signerP and a signature recipientV such that:

• P andV take as common input a messagem, an integerp ∈ [[1, π]], a bit-stringµ, a
signing public keypks, a verifying public keypkv, and the public parameters;

• P takes as private inputsks the signing secret key corresponding topks;

• V takes as private inputskv the verifying secret key corresponding topkv;

• (P,V) is a proof of the validity/invalidity of the purported signatureµ on the message
m for the time periodp w.r.t. the public keypks.

At the end of the protocols, the verifierV either accepts or rejects the proof.

Selective conversion (US.convert). This is an algorithm which takes as input the public parame-
ters, an integer in[[1, π]], a signing key pair and a bit stringΥ (either a pair message/signature
or the empty string) and outputs a bit string.

Selective verification (verifyConverted). This is an algorithm that takes as input the public pa-
rameters, a messagem, a bit stringµ, an integerp ∈ [[1, π]], a signing public keypks, and a
bit stringΛ and outputs a bit. If the bit output is1 then the bit stringΛ is said to be areceipt
of the validity ofµ.

8.1.2 Security model

Standard properties

Let π be an integer. For allκ ∈ N, for all Parameters ∈ US.setup[κ], for all (pks, sks) ∈
US.skeygen[Parameters], for allm ∈ {0, 1}∗ and for allp ∈ [[1, π]]:
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1. The protocolsUS.confirm andUS.deny are designated verifier proofs of membership for the
languages (respectively):

{(Parameters, m, µ, p,pks)
∣∣US.verify[Parameters, m, µ, p, (sks,pks)] = {1}}

{(Parameters, m, µ, p,pks)
∣∣US.verify[Parameters, m, µ, p, (sks,pks)] = {0}}

where(Parameters, m, µ, p,pks) ∈ US.setup[k]×{0, 1}∗2×[[1, π]]×US.skeygen[Parameters].

2. ∀µ ∈ US.sign[Parameters, m, p, sks] :

US.verify[Parameters, m, µ, p, (sks,pks)] = {1}.

3. ∀µ ∈ US.sign[Parameters, m, p, sks], ∀Λ ∈ US.convert[Parameters, p, (sks,pks), (m,µ)] :

US.verifyConverted[Parameters, m, µ, p,pks,Λ] = {1}

4. ∀µ,Λ ∈ {0, 1}∗ :
US.verifyConverted[Parameters,m, µ, p,pks,Λ] = {1} ⇒ US.verify[Parameters,m, µ, p, (sks,pks)] = {1}.

The first property captures the validity and the non-transferable property of the protocols
confirm anddeny (i.e. the use of designated verifier proofs insures that a verifier will gain no
information in an execution of one of these protocols [Kudla& Paterson, 2005]). The last three
properties are the properties ofcorrectness:

• a well-formed signature is always accepted by the algorithmverify;

• a receipt correctly constructed is always accepted by the algorithmverifyConverted;

• and if there exists a bit-stringΛ which makes accepted a bit-stringµ by the algorithm
verifyConverted, thenµ is a valid signature.

Existential unforgeability

As previously mentioned, the standard notion of security for digital signatures was defined in
[Goldwasseret al., 1988] asexistential unforgeability against adaptive chosen message attacks
(EUF-CMA). In [Laguillaumie & Vergnaud, 2005], the corresponding notion for time-selective
convertible undeniable signatures is defined along the samelines. The definition ofresistance
to forgeryfor gradually convertible undeniable signatures that we propose is similar. In fact, we
suppose that the adversary has access to the universal receipts for every time periodp ∈ [[1, π]] and
is allowed to query a signing oracleS for any message of its choice. As usual, in the adversary’s
answer, there is the natural restriction that the returned message/signature has not been obtained
from the signing oracle.
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Definition 8.1(Unforgeability - EUF-CMA). Letπ be a positive integer, letUS = (setup, skeygen,-
vkeygen, sign, verify, confirm, deny, convert, verifyConverted) be a gradually convertible undeni-
able signature scheme withπ time periods and letA be a PPTM. We consider the following random
experiment, whereκ is a security parameter:

ExperimentExp
euf−cma
US,A (κ)

Parameters
R
←− US.setup(κ),

(pks, sks)
R
←− US.skeygen(Parameters)

(pkv , skv)
R
←− US.vkeygen(Parameters)

for j from 1 to π do
Λj ← US.convert(Parameters, j,pks, sks, ε)

(m⋆, µ⋆, p⋆)← AS(Parameters,pks,pkv, skv, {Λj}j∈[[1,π]])
∣

∣ S : (m, p) 7−→ US.sign(Parameters,m, p, sks)
return 1 if and only if the following properties are satisfied:

- US.verify[Parameters,m⋆, µ⋆, p⋆, (sks,pks)] = {1}
- m was not queried toS

We define thesuccessofA via:

Succeuf-cma
US,A (k) = Pr

[
Expeuf-cma

US,A (k) = 1
]
.

Given (t, qs) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, qs)-EUF-CMA adversary againstUS if,
running in timet and issuingqs signing queries,A hasSucceuf-cma

US,A (κ) ≥ ε. The schemeUS is said
to be(t, ε, qs)-EUF-CMA secure if no(t, ε, qs)-EUF-CMA adversary against it exists. Finally, we
consider an undeniable signature schemeUS with security parameterκ ∈ N, US(κ) is said to be
EUF-CMA secure if, for any polynomial functionst, qs : N → N and any non-negligible function
ε : N→ [0, 1], it is (t(κ), ε(κ), qs(κ))-EUF-CMA secure.

Remark 8.1. Note that the adversary in the above definition is not given the confirmation/denial
and selective conversion oracles. In fact, these oracles are useless for him as he has the universal
receipts{Λj}j∈[[1,π]] at his disposal.

Invisibility

We state the precise definition ofinvisibility under a chosen message attack (INV-CMA) which
captures the notion that an attacker cannot distinguish signatures based on their underlying mes-
sages. We consider anINV-CMA-adversaryA that runs in two stages. In thefind stage, it takes
as input a signing public keypks and outputs two different messagesm⋆

0 andm⋆
1, and a time pe-

riod p⋆ together with some state informationI. In theguess stage,A gets a challenge gradually
convertible undeniable signatureµ⋆ formed by signing at random one of the challenge messages
for the time periodp⋆ underpks, and it must say which message was signed. In both stages, the
adversary has access to a signing oracleS for pks. The attacker is also given the universal receipts
of the signer for all1 time periodp ∈ [[1, π]] \ {p⋆}. The only restriction onA is thatp⋆ should not
arise, as a time period, in any signature request.

1This is the main difference with time-selective convertible undeniable signatures from [Laguillaumie & Vergnaud,
2005] where these universal receipts were given only forp ∈ [[1, p⋆ − 1]].
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Definition 8.2 (Invisibility - INV-CMA) . Let π be a positive integer, letUS = (setup, skeygen,-
vkeygen, sign, control, confirm, deny, convert, verify) be a gradually convertible undeniable signa-
ture scheme withπ time periods and letA be a PPTM. We consider the following random experi-

ment, forb ∈ {0, 1}, wherek is a security parameter andb
R←− {0, 1}:

ExperimentExp
inv-cma−b
US,A (κ)

Parameters
R
←− US.Setup(κ)

(pks, sks)
R
←− US.sKeyGen(Parameters),

(pkv, skv)
R
←− US.vkeygen(Parameters)

(m⋆
0 ,m

⋆
1, p

⋆, I)
R
←− AS(find,Parameters,pks0,pks1)

∣

∣ S : (m, p ∈ [[1, π]] \ {p⋆}) 7−→ US.sign(Parameters,m, p, sks)
µ⋆ ← US.sign(Parameters,m⋆

b
, p⋆, sks)

for j from 1 to π do
Λj ← US.convert(Parameters, j,pks, sks, ε)
d← AS,Cv,V(guess,I, {Λj}j∈[[1,π]]\{p⋆})
Returnd

We define theadvantageAdvinv−cma
US,A (κ) ofA via:
∣∣∣∣Pr

[
Expinv−cma−b

US,A (κ) = b
]
− 1

2

∣∣∣∣ .

Given (t, qs) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, qs)-INV-CMA adversary againstUS if,
running in timet and issuingqs signing queries,A hasAdvinv−cma

US,A (κ) ≥ ε. The schemeUS is
said to be(t, ε, qs)-INV-CMA secure if no(t, ε, qs)-INV-CMA adversary against it exists. Finally,
we consider an undeniable signature schemeUS with security parameterκ ∈ N; US(κ) is said to
be INV-CMA secure if, for any any polynomial functionst, qs : N → N, and any non-negligible
functionε : N→ [0, 1], it is (t(κ), ε(κ), qs(κ))-INV-CMA secure.

Remark 8.2. Note that the adversary in the above definition is not given the confirmation/denial
and selective conversion oracles. In fact, these oracles are useless for him as he has the universal
receipts{Λj}j∈[[1,π]] \ {p⋆} at his disposal.

8.2 Hash functions and new security properties

Hash functions, as previously mentioned in this document, take messages of arbitrary length and
output a fixed length string. In cryptographic uses of a hash functionH : {0, 1}∗ −→ H, these
properties are considered prerequisite:

• Preimage resistance: givenh ∈ H, it should be computationally intractable to find a message
m such thatH(m) = h.

• Collision-resistant:it should be computationally intractable to find two different messages
m1 andm2 such thatH(m1) = H(m2).

In this section, we formulate the generalization of these security notions and study their properties.
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8.2.1 Definitions

The security proof of our variant of Michels-Petersen-Horster’s signatures makes use of new non-
standard variations of the preimage resistance and the collision resistance assumptions for hash
functions. These assumptions are of independent interest as they have interesting relations with
the classical ones. We call themrandom affine preimage resistanceandrandom linear collision
resistance. Although stronger than the standard assumptions, they arequite realistic.

According to [Rogaway & Shrimpton, 2004], a hash function family is a family of functions
(Hk : Kk ×{0, 1}∗ −→ {0, 1}k)k∈N, whereKk is a finite non-empty set. We will write the first ar-
gument ofHk as a subscript, so thatHK,k(m) = Hk(K,m). In the following, we denote elements
from {0, 1}k as the correspondingk-bits integers in binary representation and we will denote for

every integerN ∈ Z,HN
K,k the map defined by:HN

K,k :

{
{0, 1}∗ −→ ZN

m 7−→ HK,k(m) mod N.

The new security definitions can be quantified as follows:

Definition 8.3 (Random affine preimage resistance). Letn be an integer, let(Hk : Kk×{0, 1}∗ −→
{0, 1}k)k∈N be a hash function family, and letA be a PPTM. The successSuccraPre(n)H,A (k) of A
against then-random affine preimage resistance ofH = (Hk)k∈N is defined by:

max
K∈Kk

2k−1≤N<2k

α1,...,αn∈Z
∗

N

β1,...,βn∈Z
∗

N















Pr









K
R
←− Kk

(m, i, j)← A(K,α1, . . . , αn, β1, . . . , βn)
m ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, i 6= j
αi + βjH

N
K,k

(m) = 0 mod N























.

An adversaryA against then-random affine preimage resistance of a hash function family
(Hk)k∈N can be transformed easily into an adversary against the classical preimage resistance
of (Hk)k∈N with success probability greater thanSuccraPre(n)H,A (k)/n2 and time-complexity ofA
increased by the time necessary to computen modular multiplications moduloN . In particular,
the1-random affine preimage resistance is equivalent to the classical preimage resistance.

Definition 8.4 (Random linear collision resistance). Letn be an integer, let(Hk : Kk×{0, 1}∗ −→
{0, 1}k)k∈N be a hash function family and letA be a PPTM. The successSuccrlColl(n)H,A (k) of A
against then-random affine preimage resistance ofH = (Hk)k∈N is defined by:

max
K∈Kk

2k−1≤N<2k

λ1,...,λn∈Z
∗

N







Pr





K
R
←− Kk; (m,m

′, i, j)← A(K, λ1, . . . , λn)
m,m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, m 6= m′

λi · HK,N (m) = λj · HK,N (m′) mod N











.

As for random affine preimage resistance, the1-random linear collision resistance is equivalent
to the classical collision resistance. Unfortunately, then-random linear collision resistance cannot
be reduced generically to the collision resistance forn ≥ 2.

160



Remark 8.3. This security requirement is however reasonable since if the hash function fam-
ily underlying the protocol RSA-FDH [Bellare & Rogaway, 1993] does not satisfy it, then it
is existential forgeable against aone chosen-message attack: given an RSA public key(N, e),
the adversary can simply pick at randomr1, . . . , rn ∈ ZN , computeλi = rei mod N for all
i ∈ [[1, n]], and try to find a random linear collision with parametersN, λ1, . . . , λn. If a collision
m,m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2 (such thatλi ·HK,N(m) = λj ·HK,N(m

′) mod N) is found, then
the adversary queries the signatureσ onm to the signing oracle and can compute the signature of
m′ asσ′ = ri · σ · r−1j mod N .

8.2.2 Generic security

The best known general collision-finding attack against a hash function family is the so-called
birthday-attack. If we assume that the values of the hash-function family (Hk)k∈N are uniformly
distributed over{0, 1}k and that the generalization of the birthday attack2 against the random affine
preimage resistance and the random linear collision resistance of(Hk)k∈N is the best possible attack
(which is true in the random oracle model), then it is possible to give exponential lower bounds on
the minimum ofn and of the number of hash function evaluations required to have non-negligible
probability of success. Indeed, for any integerN ≥ 2, and for(i, k) ∈ ZN , it is straightforward
[Stadje, 2002] that:

#{j ∈ ZN |i · j rem N ≤ k} = gcd(i, N)×
(⌊

k

gcd(i, N)

⌋
+ 1

)
.

Therefore ifD denotes the product of two independent random variables uniformly distributed
overZN , we have∀k ∈ ZN

Pr(D ≤ k) =
1

N2

N−1∑

i=0

gcd(i, N)

(⌊
k

gcd(i, N)

⌋
+ 1

)
,

and consequently,D is close to the uniform distribution overZN . The results from [Bellare &
Kohno, 2004] are sufficient to conclude.

2These attacks consist in picking messagesm1, . . . , mr, computinghi = Hk(mi) mod N for i ∈ [[1, r]] and
γi,j = −hiβj mod N (resp.γi,j = hiλj mod N ) for j ∈ [[1, n]]. They are successful if there is a triple(i, j, ℓ) ∈
[[1, r]]× [[1, n]]2 (resp.a 4-tuple(i, i′, j, j′) ∈ [[1, r]]2 × [[1, n]]2) s. t.γi,j = αℓ (resp.γi,j = γi′,j′ andj 6= j′).
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8.3 Michels-Petersen-Horster’s convertible undeniable signa-
tures revisited

8.3.1 Description of the scheme

Let π be an integer. We describe in this section our variant of Michels-Petersen-Horster’s scheme.
It is parameterized by a prime order group generator [Bellare et al., 2001], a hash function family,
and two pseudo-random function families [Rogaway & Shrimpton, 2004].

Let G be a group of prime orderq. A reduction functionis a map that sends an element of
the groupG [Brown, 2005; Sternet al., 2002] to an integer inZq. In our security analysis, the
reduction function must satisfy the so calledalmost-invertibility: given an arbitrary integer inZq,
then, with non-negligible probability, one can efficientlyfind one preimage.

Definition 8.5. Let F be a reduction functionF : G → Zq. An almost-inverse ofF is a proba-
bilistic algorithmG, possibly outputting⊥, such that:

Pr
b

R←−Zq

[G(b) ∈ G ∧ F (G(b)) = b] ≥ 1

3
.

A reduction functionF is (δ, t)-almost-invertible with almost-inverseG if furthermore no distin-

guisher, running in timet, betweenD = {G(b) | b R←− Zq ∧G(b) ∈ G} andU = {a | a R←− G} can
get an advantage greater thanδ.

The schemeUS

Setup (US.setup): on input a security parameterκ, output a groupG of prime orderq generated by
an elementP , a reduction functionF : G→ Zq, a hash functionh : {0, 1}∗ → Zq, and two
pseudo-random functionsH1 : Zq× [[1, π]]→ {0, 1}κ andH2 : {0, 1}κ×{0, 1}∗×G→ Zq.
The public parameters are(q,G, P, h,H1, H2).

Signer key generation (US.skeygen): the signer picks at random its secret keyu, v
R←− [[1, q−1]],

computesU ← uP andV ← vP , and sets(U, V ) as its public key.

Verifier key generation (US.vkeygen): the verifier picks at random its secret keyw
R←− [[1, q−1]],

computesW ← wP , and sets it as its public key.

Signature (US.sign): on messagem and periodp, the signer does the following:

• r R←− [[1, q − 1]], R← rP .

• ep ← H1
v (p), d← H2

ep(m,R), T ← dP . If F (T ) = 0, it tries with another valuer.

• s← (F (T ) · d · h(m) · v − u · F (R)− 1)r−1 mod q.
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The signature is the tuple(R, T, s).

Verification (US.verify): to check the validity of a signature(R, T, s), the signer checks, using
his private keyv, that:

(v · F (T ) · h(m))T = F (R)U + sR + P. (8.1)

Confirmation/Denial protocols (US.{confirm, deny}): the signer provides a designated verifier
proof of the equality/inequality of two discrete logarithms, namelyF (R)U + sR+ P to the
base(F (T ).h(m))T andV to the baseP (see Section 8.3.2).

Selective conversion (US.convert): there exist two types of conversions, namely:

• The gradual conversion of signatures corresponding to the time periodp could be done
by releasing the valueep.

• The individual conversion can be achieved by releasing the value ofd.

Selective verification (verifyConverted): the signature corresponding to the periodp, onceep or
d is revealed, could be checked by any verifier using the equations: (d · F (T ) · h(m))V =
F (R)U + sR + P andT = dP .

8.3.2 Proofs of equality/inequality of discrete logarithms

Let G be a group with prime orderq. To confirm or deny that a bit string is a signature in our
undeniable signature scheme, it is necessary to prove that agiven quadruple(U1, V1, U2, V2) ∈ G4

is a Diffie-Hellman quadruple (or not),i.e. belongs to the setEDL(G) = {(x, U1, V1, U2, V2) ∈
Z×q ×G4, x = DLU1(V1) = DLU2(V2)} (or to the setIDL(G) = G4 \ EDL(G)). In our case,x, U1,
U2, V1, V2 correspond tod, P , F (T ) · h(m)V , T , andF (R)U + sR + P respectively.

To faceblackmailingor mafia attacks against our undeniable signatures, we use interactive
designated verifier proofs, as introduced in [Jakobssonet al., 1996] by Jakobsson, Sako, and Im-
pagliazzo, in Chaum’s proofs of equality (cf. Fig. 8.1) and inequality (cf. Fig. 8.2) of discrete
logarithm of [Camenisch & Shoup, 2003]. The idea is to replace the generic commitment scheme
by a trapdoor commitment[Jakobssonet al., 1996] and using classical techniques, the proofs are
readily seen to be complete, sound, and above all non-transferable. The protocols involve a point
Y = yU1, wherey is the secret key of the verifier, and the prover must be convinced thatY is
well-formed (in the registered public key model, the registration procedure is used to force the
users to know the secret-key corresponding to their public key).
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Protocol EDL.Prove
Common input:(U1, U2, V1, V2), Y
P ’s input: x
V ’s output:δ

① P C1, C2, C3−−−−−−−−−−−−−−−→ V
(a, b, k)

R←− [[1, q − 1]]3

C1 ← kU1 ; C2 ← kU2

C3 ← aU1 + bY

❶ V r−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c−−−−−−−−−−−−−−−→ V
c← k − x(r + b) mod q

• V ’s execution ending
C̃1 ← cU1 + (r + b)V1

C̃2 ← cU2 + (r + b)V2

C̃3 ← aU1 + bY

if (C1, C2, C3) = (C̃1, C̃2, C̃3)
then δ ← Accept elseδ ← ⊥

Protocol EDL.Fake
Common input:(U1, U2, V1, V2), Y
P ’s input: y
V ’s output:δ

① P C1, C2, C3−−−−−−−−−−−−−−−→ V
(c, d, k)

R←− [[1, q − 1]]3

C1 ← cU1 + dV1 ; C2 ← cU2 + dV2

C3 ← kU1

❶ V r−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c−−−−−−−−−−−−−−−→ V
b← d− r mod q ; a← k − by mod q

• V ’s execution ending
C̃1 ← cU1 + (r + b)V1

C̃2 ← cU2 + (r + b)V2

C̃3 ← aU1 + bY

if (C1, C2, C3) = (C̃1, C̃2, C̃3)
then δ ← Accept elseδ ← ⊥

Figure 8.1: Interactive designated verifier proof of membership of the languageEDL(G)
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Protocol IDL.Prove
Common input:(U1, U2, V1, V2), Y
P ’s input : x
V ’s output :δ

① P C0, C1, C2, C3−−−−−−−−−−−−−−−→ V
(a, b, k0, k1, k2)

R←− [[1, q − 1]]5

C0 ← k0(V2 − xU2)
C1 ← k1U1 − k2V1

C2 ← k1U2 − k2V2

C3 ← aU1 + bY

❶ V r−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c, d−−−−−−−−−−−−−−−→ V
c← k1 − xk0(r + b) mod q
d← k2 − k0(r + b) mod q

• V ’s execution ending
C̃1 ← cU1 − dV1

C̃2 ← C0 + cU2 − (r + b)V2

C̃3 ← aU1 + bY

if (C1, C2, C3) = (C̃1, C̃2, C̃3) ∧C0 6= OG2

then δ ← Accept elseδ ← ⊥

Protocol IDL.Fake
Common input:(U1, U2, V1, V2), Y
P ’s input: y
V ’s output:δ

① P C0, C1, C2, C3−−−−−−−−−−−−−−−→ V
(c, d, k1, k2)

R←− [[1, q − 1]]4

C0
R←− G \ {OG} ; C1 ← cU1 − dV1

C2 ← C0 + cU2 − k1V2

C3 ← k2U1

❶ V r−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c, d−−−−−−−−−−−−−−−→ V
b← k1 − r mod q ; a← b− k2y mod q

• V ’s execution ending
C̃1 ← cU1 − dV1

C̃2 ← C0 + cU2 − (r + b)V2

C̃3 ← aU1 + ybY

if (C1, C2, C3) = (C̃1, C̃2, C̃3) ∧ C0 6= OG2

then δ ← Accept elseδ ← ⊥

Figure 8.2: Interactive designated verifier proof of membership to the languageIDL(G)

8.4 Security analysis

We first note that the property of non-transferability is fulfilled by our scheme as a direct conse-
quence of the use of designated-verifier proofs in the confirm/deny protocols. Further, we state that
our scheme resists existential forgeries and that signatures are invisible. Both security reductions
stand in the generic group model [Shoup, 1997].

8.4.1 The generic group model

As mentioned in Subsection 1.3.4, a generic group infers thepresence of “encodings” of the group
elements instead of explicit formulas. More specifically, given an additive groupG with prime
orderq and non-identity elementP , one can define a mapσ : Zq → S ⊂ {0, 1}⋆ such that the
bit-stringσ(i), i ∈ Zq, represents the group elementiP .

A generic algorithmA will then consult the groupG’s oracle for queries of type(
−→
i ,−→α ),

where
−→
i refers to the set of considered group elements given by theirencodingsσ(i), i ∈ −→i (A

does not know necessarily thei’s), whereas−→α denotes the set of exponents. The oracle will re-
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spond to such a query with a randomly selected bit-string representing the encoding of the element
(
∑

αi∈
−→α ,i∈

−→
i
(iαi))P .

We can give an interpretation of the oracle’s behavior regarding such a type of queries using
polynomials overFq. In fact, letL = [z0, z1, z2, z3, . . . , zn+3] be the sequence of queries’ answers
wheren denotes the total number of queries to the group oracle. We use an interpretation similar
to that in [Sternet al., 2002]; the oracle will maintain, in addition to the outputslist L, a further
list of polynomialsFi(X, Y ) overFq, which we denote byF . The lists are updated as follows:

• PolynomialsF0,F1,F2,F3 are set toF0 = 0,F1 = 1,F2 = X andF3 = Y which correspond
to the neutral elementOG, the generatorP , and the public keysU andV respectively. The
corresponding bit-strings arez0, z1, z2, z3 respectively.

• At the ℓ-th query(
−→
i ,−→α ), the polynomialFℓ is defined as

∑|−→α |
j=1
−→α jF−→i j

. If Fℓ is already
listed asFh, thenFℓ is markedand the corresponding answer toFh is returned. Otherwise,
zℓ is selected at random fromS, recorded together with its corresponding polynomialFℓ in
L andF respectively and then returned toA.

It is easy to see that the simulation driven by this interpretation is similar to that of the regular
algorithm provided that all answers corresponding to the new polynomials are distinct and that no
non-zero polynomialFi − Fj, wherei andj range then + 4 polynomials indices inF , vanishes
at (X, Y ) = (u, v). In these conditions, we call the sequence of encodingsL a safe sequence. We
measure the probability of such a sequence using the following lemmas [Sternet al., 2002]:

Lemma 8.1(Schwartz-Zippel). LetP be a non-zero affine bivariate polynomial inFq[X, Y ], then:

Pr
x,y∈Fq

[P (x, y) = 0] ≤ 1/q.

Lemma 8.2. If n2 ≤ q then the probability of unsafe sequences is upper-bounded by (n+ 4)2/q.

Proof. The proof is similar to [Sternet al., 2002], however, we exhibit it since our generic model
is slightly different.
We first note that the probability that the sequence of encodingsL is constituted by distinct bit-
stringszi’s (corresponding to new queried polynomialsFi) is exactly

∏n+3
i=1 (1 − i

q
). Thus the

probability that thezi’s are not all distinct is:

1−
n+3∏

i=1

(1− i

q
) ≤ 1− (1−

n+3∑

i=1

i

q
) ≤ (n+ 3)(n+ 4)

2q
.

Now, once the listL is set, we use Lemma 8.1 to bound the probability that, among the queried
polynomialsFi, there exist non-identical polynomialsFi andFj evaluating to the same value at
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the point(u, v), or equivalently, there exists a non-zero polynomialFi − Fj vanishing at(u, v).

Since there are at most

(
n+ 4

2

)
possible polynomials, such a probability is upper-boundedby

(
n + 4

2

)
/q = (n+ 3)(n+ 4)/2q.

Summing up the two probabilities, we get the announced result.

Remark 8.4. All the polynomialsFℓ are affine bivariate, i.e. of the formaX + bY + c. Moreover,
in case one of the private keysu or v is revealed, for instancev in the universal conversion, the
polynomialsFℓ in play become affine univariate (of the formaX + b where the indeterminateX
refers to the public keyU).

Finally, a security proof in this model assures the absence of an adversary who behaves generi-
cally with respect to the given group. However, a security proof in the generic model does not rule
out the existence of a successful adversary for a specific group [Dent, 2002; Sternet al., 2002].

8.4.2 Resistance to forgery

The theorem below states that our variant of Michels-Petersen-Horster’s scheme isEUF-CMA-
secure in the generic group model assuming the preimage resistance, the random affine preimage
resistance and the random linear collision resistance of the underlying hash function family.

Theorem 8.3. LetA be anEUF-CMA-adversary in the generic group model, operating in time
t, after n group queries andm signing queries, such thatm ≪ n2 and n ≫ 1, with success
probabilitySucceuf-cma

US,A .
There exist adversariesB, C, andD operating in timet′ against then-random affine preimage

resistance, then-random linear collision resistance, and the preimage resistance of the underlying
hash function (respectively) such that:

t′ ≤ t+ 5nτG lnn+m(τH1 + τh + 5 lnn(τG + τH2) + τF )

and

5 · SuccraPre(n)h,B + Succ
rlColl(n)
h,C + 6 · n2Succ

Pre(n)
h,D ≥

Succeuf-cma
US,A

9
− 12n4/q − 6mn2δG − 12mn3/q

whereδG is the advantage of an adversary playing a distinguisher forG, andτG, τF , τH1 , τH2 and
τh are the running times forG, F ,H1,H2, andh respectively.

TheEUF-CMA-adversaryA will output a valid signatureσ⋆ = (R⋆, T ⋆, s⋆) on a messagem⋆

for the time periodp⋆ with success probabilitySucceuf-cma
US,A . In our security analysis, this event is

divided into sub-events according to whetherR⋆ or T ⋆ were created during the simulation by a
signature query or by a group query.
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In the lists used to maintain the group oracle, a group element created during a group query
will have a “group” tag, while the tags “signR” and “signT” will correspond to elements created in
a signature query. In fact, a signature query on a messagem for the time periodp will be answered
by a triple(R, T, s), whereR, T ∈ G, hence the need to specify whether the element was created
as anR or aT .

Remark 8.5. The procedure that adds a new elementzℓ to the list will be denotedRecord(zℓ‖Fℓ‖tl),
whereFℓ andtℓ are the corresponding polynomial and tag respectively.

The different forgeries output byA will be classified as follows:

• Type 0: Tag(R⋆) = group, Tag(T ⋆) = group,

• Type 1: Tag(R⋆) = group, Tag(T ⋆) = signR,

• Type 2: Tag(R⋆) = group, Tag(T ⋆) = signT,

• Type 3: Tag(R⋆) = signR, Tag(T ⋆) = group,

• Type 4: Tag(R⋆) = signR, Tag(T ⋆) = signR,

• Type 5: Tag(R⋆) = signR, Tag(T ⋆) = signT,

• Type 6: Tag(R⋆) = signT, Tag(T ⋆) = group,

• Type 7: Tag(R⋆) = signT, Tag(T ⋆) = signR,

• Type 8: Tag(R⋆) = signT, Tag(T ⋆) = signT.

We denoteεθ the probability that the forgeryσ⋆ = (R⋆, T ⋆, s⋆) output byA is of typeType θ (for
θ ∈ {0, . . . , 8}). We have:

8∑

θ=0

εθ = Succeuf-cma
US,A

The adversariesB, C, andD against then-random affine preimage resistance, then-random
linear collision resistance, and the preimage resistance of the underlying hash function respectively
will simulate the group and signing oracles according to thealleged kind of forgery returned by
A. More precisely, adversaryC will use the forgery to find a random linear collision if it is of type
Type 5, D will exploit a forgery of typeType 0 to break the preimage resistance and finally, the
adversaryB will utilize all the remaining cases to find a random affine preimage.
Finally, in our unforgeability proof, we assume thatB, C andD have revealed the private keyv
(universal conversion) so thatA is able to check the validity of the answers to his signature queries.
It follows that the confirmation/denial oracles are uselessfor him. Also, the adversariesB, C, and
D will manipulate affine univariate polynomials during the group oracle simulation, i.e. they will
receive queries of type(a, b) corresponding to the polynomialaX + b.
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Remark 8.6. The reductionR (anyone of the adversariesB, C orD) will forceA to return a tuple
(R⋆, T ⋆, s⋆) such thatR⋆ = 0G when the forgery is ofType 4andF (T ⋆) = 0 when it is ofType 8.
Therefore, the reduction must guess correctly when the forgery is of the given type, then simulate
the group and signing oracles accordingly. In these cases, The adversaryA will fail to return a
valid forgery, thusǫ4 = ǫ8 = 0, granted that the reduction doesn’t abort, i.e. provides a perfect
simulation of the group/signing oracles. We will denote theprobability that the reduction fails in
the above cases byPr[R aborts]. Theses latter quantities will be deduced from the overall success
ofR according to the following elementary lemma:

Pr[A ∧ ¬B] ≥ Pr[A|¬B]− Pr[B]

Proof. Let (R⋆, T ⋆, s⋆) be the forgery output byA on the messagem⋆ for the time periodp⋆. Due
to the similarities in the reduction’s behavior, we will detail only the case where the forgery is of
typeType 2 and give a sketch of the other cases.

Description of B. B picks uniformly at random an integerθ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} which is
his guess for the type of the forgery output byA. In the following simulation, we suppose thatA
returns a forgery of typeType 2 and thatθ = 2 (B has correctly guessed the forgery’s type).

The forgery produced byA satisfies the following equation3 :

a− b · F (R⋆) = (ad− bc) · v · F (T ⋆) · h(m),

whereR⋆ = aU + bP andT ⋆ = cU + dP . SinceT ⋆ was generated during a signature query as a
“T ” (Tag(T ) = signT ), we havec = 0 (the verification of the signature involves the verificationof
equation 8.1 and ofT = dP ). Hence, the equation turns out to bea−b·F (R) = a·d·v ·F (T )·h(m)
or

1− b

a
· F (R) = d · v · F (T ) · h(m).

Thus, in order to find a random affine preimage,B must plug the valuesα andβ in answers to the
group and to the signature queries (respectively). More precisely, he must answer group queries
(a, b) byR such that1− b

a
·F (R) = α. Similarly, signature queries must be answered by(R, T, s),

such that−d · v · F (T ) = β:

Game 0. We consider anEUF-CMA-adversaryA in the generic group model. In any game
Game i, we denoteSi the event “(R⋆, T ⋆, s⋆) is a valid forgery of typeType 2 andθ = 2”.
By definition, we havePr[S0] = ε2/9.

3this follows from the verification equation 8.1.
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Game 1.We use the interpretation described above for the generic oracle which considers a safe
sequenceL. This game differs from the previous one only on unsafe sequences. Using the
Lemma 8.2 we get:

|Pr[S1]− Pr[S0]| ≤ (n+ 4)2/q.

Game 2. In this game we modify the simulation of the group oracle. On query(ai, bi) such that
the corresponding polynomialFi(X) = aiX + bi is new,B does the following:

• ctr← 04

• Repeat
Pick the nextαi in the instance of the random affine preimage problem raPre(n);
Compute ri ← (1− αi)aib−1i ;
Compute R̃i ← G(ri) ;
ctr← ctr + 1;

Until (R̃i 6= Fail) ∪ (ctr = 5 lnn);

• Pick Ri
R←− S;

• Return Ri;

The eventS2 differs from the previous one if̃Ri remains undefined. Since the experiments
are mutually independent (ai andbi are uniformly distributed), we may use a lemma from
elementary probability theory [Sternet al., 2002, Lemma 5] to bound the corresponding
probability by1/n2. The overall probability wheni ranges the set of queries indices is then
1/n. Hence, we have:

Pr[S2] ≥ (1− 1/n) Pr[S1].

Game 3. In this simulation, the group oracle replacesRi from the previous game bỹRi. It
executes -Record(Ri‖aiX + bi‖group) and returns the new value ofRi as a response to
the oracle query. Since the inputs toG are uniformly distributed (αi is picked at random),
we can usen times the almost-invertibility ofF (the so-calledhybrid technique) to bound
the probability ofS3:

|Pr[S3]− Pr[S2]| ≤ nδG.

Game 4.In this game,B simulates the signing oracle. On query(mj , pj) it does the following:

• Compute ep ← H1
v (pj) ;

• Pick Rj
R←− S;

• Compute dj ← H2
ep(mj , Rj);

• ctr← 0;

4In the remaining of the chapter,ctr denotes a counter ranging from0 to 5 lnn.
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• Repeat
Pick the nextβj in the instance of raPre(n);
Compute tj ← −d−1j v−1βj;
ctr← ctr + 1;

Until (G(tj) 6= Fail) ∪ (ctr = 5 lnn);

• Tj ← G(tj);

• Pick aj R←− Z∗q ;

• Compute sj ← −F (Rj) · a−1j ;

• Return (Rj , Tj, sj);

This game differs from the previous one ifG(tj) remains undefined, which occurs with
probability less thatm/n2, or if Tj is distinguished from a uniformly random string inS,
in which case the probability is upper-bounded bymδG (using the same hybrid technique).
Thus:

Pr[S4] ≥ (1−m/n2) Pr[S3]−mδG.

Game 5. In this game,B adds the elementT to the list, maintained by the group oracle, using
the commandRecord(Tj‖dj‖signT). This game differs from the previous one if leads to
inconsistencies in the simulation of the group oracle, namely when dj (as a polynomial)
collides with another polynomial inF . SinceRj was drawn uniformly at random fromS,
anddj is value ofH2

ep at(mj , Rj), the probability of having such a collision is upper-bounded
by n/q:

|Pr[S5]− Pr[S4]| ≤ mn/q.

Game 6. In this gameB computesbj ← aj(βjh(mj) − 1)F (Rj)
−1 and addsRj, together with

its corresponding polynomialFj(X) = ajX + bj to the lists maintained by the group oracle
by executing the commandRecord(Rj‖ajX+ bj‖signR). Again, due to the randomness of
aj , the difference between the previous game is:

|Pr[S6]− Pr[S5]| ≤ mn/q.

Game 7.In this game,B exploits the forgery(R⋆, T ⋆, s⋆) returned byA. We have supposed that
Tag(R⋆, T ⋆) = (group, signT) andB generated the correctθ, thus, there existi, j such that
R⋆ = Ri, T

⋆ = Tj and1 − ai
bi
F (Ri) = αi and−dj · v · F (Tj) = βj . The equation satisfied

by the forgery turns out to beαi+βjh(m) = 0. B would then find a random affine preimage
with success probability:

Succ
raPre(n)
h,B ≥ (1−m/n2)(1− 1/n)(ǫ2/9− (n+ 4)2/q)− (n−m/n+m)δG − 2mn/q
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Procedure:

① In signature queries (mj , pj): createRj such thatbj = 0.
② Reject the forgery sinceR⋆ = OG (see 8.3.1)
Group queries (ai, bi): Do as in 8.4.1.

Signature queries(mj , pj):

• Compute ep ← H1
v(pj) • ctr← 0

• Repeat:

pick Rj
R
←− S

compute dj ← H2
ep

(mj , Rj)

compute tj ← d−1
j v−1h(mj)

−1

ctr← ctr + 1
Until (G(tj ) 6=⊥) ∪ (ctr = 5 lnn)

• Pick aj
R
←− Zq

•Record(Rj‖ajX‖signR) •Record(Tj‖dj‖signT)
• Compute sj ← F (Rj)a

−1
j mod q

• Return (Rj , Tj , sj)
Final output:

a1j − b
1
jF (R1

j ) = (a1j b
2
j − a

2
j b

1
j )F (R2

j ) · v · h(m
⋆).

or a1j = b1j = 0 thusR1
j = 0G. The forgery is then rejected.

Advantage and time (ǫ′ and t′) of B:

Pr[R aborts] ≤ n2/q +mδG + 2mn/q
and
t4 ≤ t+ n+m(τH1 + 5 lnn(τG + τH2) + τh + τF )

(a) Type 4: Tag(R⋆, T ⋆) = (signR, signR)

Procedure:

① Reject the forgery sinceF (Tj) = 0 (see 8.3.1)
Group queries (ai, bi): Do as in 8.4.1.

Signature queries(mj , pj):

• Pick Rj
R
←− S

• Compute ep ← H1
v(pj)

• Compute dj ← H2
ep

(mj , Rj)

• ctr← 0

• Repeat: pick aj , bj
R
←− Zq

compute tj ← (aj − bj · F (Rj))a
−1
j d−1

j v−1h(mj)−1

ctr← ctr + 1
Until (G(tj ) 6=⊥) ∪ (ctr = 5 lnn)
•Record(Rj‖ajX + bj‖signR)
•Record(Tj‖dj‖signT)
• Compute sj ← F (Rj)a

−1
j

mod q

• Return (Rj , Tj , sj)
Final output:

−djF (Tj) = 0 thusF (Tj) = 0, so reject the forgery.
Advantage and time ofB:

Pr[R aborts] ≤ n2/q +mδG + 2mn/q
and
t8 ≤ t+ n+m(τH1 + τH2 + τh + 5τG lnn+ τF )

(b) Type 8: Tag(R⋆, T ⋆) = (signT, signT)

or5

Succ
raPre(n)
h,B ≥ ǫ2/9− n2/q − (n +m)δG − 2mn/q

and time
t2 ≤ t+ 5n lnn+m(τH1 + τH2 + 5τG lnn+ τh + τF ).

We refer to Appendix for the treatment of forgeries of ofType 1, 3, 4, 6, 7, 8. We provide in Figures
8.3(a), 8.3(b),8.3(c),8.3(d),8.3(e), and 8.3(f) the behavior of B when processing the forgeries of
Type 4, 8, 1, 3, 6, 7resp. We will consider that to the group query(ai, bi), B will respond with
Ri, and to the signature query on(mj , pj), he will answer(Rj, Tj , sj), whereRj = ajU + bj and
Tj = cjU + dj.

Description of C. C will provide a simulation which exploits a forgery(R⋆, T ⋆, s⋆) of the type
Type 5. HenceC will simulate the group oracle in the standard way describedin 8.4.1. Further-
more, it will plug theλj ’s (instance of the random linear collision problem) in answers to signature
queries such that the returned signature(Rj , Tj, sj) satisfiesdj · v · F (Tj) = λj. In this way, the
returned forgery(R⋆, T ⋆, s⋆) = (Ri, Tj, s

⋆) will satisfy the following:

5In the proofs that follow, we consider thatm≪ n2 andn≫ 1, in order to simplify the expressions.
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Procedure:

① In group queries (ai, bi):
• plugαi in ai

bi
− F (Ri).

② In signature queries (mj , pj):
• createRj such thatbj = 0,
• plugβj in aj · v · F (Rj).

Group queries (ai, bi):

• ctr← 0
• Repeat

pick the nextαi in theraPre(n) instance
compute ri ← (ai

bi
− αi)

ctr← ctr + 1
Until (G(ri) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Ri = G(ri)‖aiX + bi‖group)
• Return(Ri)
Signature queries(mj , pj):

• Compute ep ← H1
v (pj)

• ctr← 0
• Repeat

pick Rj
R
←− S

compute dj ← H2
ep

(mj , Rj)

compute tj ← d−1 · v−1 · h(m)−1

e ctr← ctr + 1
Until (G(tj ) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Tj = G(tj)‖dj‖signT)
• Pick the nextβj in theraPre(n) instance
• Compute aj ← βj · v

−1 · F (Rj)
−1

• Record(Rj‖ajX‖signR)
• Compute sj ← −F (Rj) · a

−1
j

• Return(Rj , Tj , sj)
Final output:

ai − biF (Ri) = −ajbi · v · F (Rj) · h(m)
or
αi = ai

bi
− F (Ri)

= −aj · v · F (Rj) · h(m
⋆)

= −βjh(m⋆)
Advantage and time ofB:

Succ
raPre(n)
h,B ≥ ǫ1/9− n2/q − (m+ n)δG − 2mn/q. and

t1 ≤ 5n lnn+m(τH1 + τh + 5 lnn(τH2 + τG) + τF ).

(c) Type 1: Tag(R⋆, T ⋆) = (group, signR)

Procedure:

① In group queries (ai, bi):

• plug
βj

αi
in −bi · v · F (Ri).

② In signature queries (mj , pj):
• createRj such thatbj = 0.

Group queries (ai, bi):

• ctr← 0
• Repeat

pick the next (αi, βj) in theraPre(n) instance

compute ri ← −bi−1 · v−1 ·
βj

αi

ctr← ctr + 1
Until (G(ri) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Ri = G(ri)‖aiX + bi‖group)
• Return(Ri)
Signature queries(mj , pj):

• Compute ep ← H1
v(pj)

• ctr← 0
• Repeat

pick Rj
R
←− S

compute dj ← H2
ep

(mj , Rj)

compute tj ← d−1 · v−1 · h(m)−1

ctr← ctr + 1
Until (G(tj ) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Tj = G(tj)‖dj‖signT)

• Pick aj
R
←− S

• Record(Rj‖ajX‖signR)
• Compute sj ← −F (Rj) · a

−1
j

• Return(Rj , Tj , sj)
Final output:

aj = ajbi · v · F (Ri) · h(m⋆)
or
1 = bi · v · F (Ri) · h(m⋆)

= −
βj

αi
· h(m⋆)

Advantage and time ofB:

Succ
raPre(n)
h,B ≥ ǫ3/9− n2/q − (m + n)δG − 2mn/q

and
t3 ≤ τ + 5nτG lnn+m(τH1 + 5 lnn(τG + τH2) + τh + τF ).

(d) Type 3: Tag(R⋆, T ⋆) = (signR, group)

1− bi
ai
F (Ri) = dj · v · F (Tj)h(m⋆) = λj · h(m⋆)

= di · v · F (Ti)h(mi)

= λi · h(mi)

The second equation follows from1 − bi
ai
F (Ri) = di · v · F (Ti) · h(mi) corresponding to the
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Procedure:

① In group queries (ai, bi):
• plug−βi in ai · F (Ri) · v.

② In signature queries (mj , pj):
• plugαj in F (Tj).

Group queries (ai, bi):

• ctr← 0
• Repeat

pick the nextβi in theraPre(n) instance
compute ri ← −βia

−1
i v−1

ctr← ctr + 1
Until (G(ri) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Ri = G(ri)‖aiX + bi‖group)
• Return(Ri)
Signature queries(mj , pj):

• Compute ep ← H1
v (pj)

• ctr← 0

• Pick Rj
R
←− S

• compute dj ← H2
ep

(mj , Rj)

• Repeat
pick the nextαj in theRaPre(n) instance
compute Tj ← G(αj)
ctr← ctr + 1

Until (G(αj) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Tj = G(αj)‖dj‖signT)

• Pick aj
R
←− Zq

• Compute bj ← ajF (Rj)
−1(1 + dj · v · F (Tj) · h(mj))

• Record(Rj‖ajX + bj‖signR)
• Compute sj ← −F (Rj) · a

−1
j

• Return(Rj , Tj , sj)
Final output:

−djF (Tj) = −djai · v · F (Ri) · h(m⋆)
or
F (Tj) = ai · v · F (Ri) · h(m

⋆)
αj = −βi · h(m

⋆)
Advantage and time ofB:

Succ
raPre(n)
h,B ≥ ǫ6/9− n2/q − (m+ n)δG − 2mn/q

and
t6 ≤ τ + 5τG lnn+m(τH1 + τH2 + τh + τF + 5τG lnn)

(e) Type 6: Tag(R⋆, T ⋆) = (signT, group)

Procedure:

① In signature queries (mj , pj):
• plugαj in F (Tj),
• plug−βj in ajF (Rj)v.

Group queries (ai, bi): Do as in 8.4.1.

Signature queries(mj , pj):

• Compute ep ← H1
v (pj)

• Pick Rj
R
←− S

• Compute dj ← H2
ep

(mj , Rj)

• ctr← 0
• Repeat

pick the nextαj in theRaPre(n) instance
compute Tj ← G(αj)
ctr← ctr + 1

Until (G(αj ) 6= Fail) ∪ (ctr = 5 lnn)
• Record(Tj = G(αj)‖dj‖signT)
• Pick the nextβj in theRaPre(n) instance.
• Compute aj ← −βj · v · F (R)−1

• Compute bj ← ajF (Rj)
−1(1 + dj · v · F (Tj) · h(mj))

• Record(Rj‖ajX + bj‖signR)
• Compute sj ← −F (Rj) · a

−1
j

• Return(Rj , Tj , sj)
Final output:

−djF (Tj) = −djai · v · F (Ri) · h(m⋆)
or
F (Tj) = ai · v · F (Ri) · h(m

⋆)
αj = −βi · h(m

⋆)
Advantage and time ofB:

Succ
raPre(n)
h,B ≥ ǫ7/9− n2/q −mδG − 2mn/q

and
t7 ≤ τ + n+m(τH1 + τH2 + τh + 5τG lnn+ τF )

(f) Type 7: Tag(R⋆, T ⋆) = (signT, signR)

equality fulfilled by the signature(Ri, Ti, si) on the query(mi, pi). It is worth noting thatmi 6= m⋆

since the attackerA is not allowed to return a forgery on a message he has previously queried.
More precisely, on the signature query(mj , pj), C does the following:

• Compute ep = H1
v (pj);

• Pick Rj
R←− S;

• Compute dj = H2
ep(mj, Rj);
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• ctr← 0;

• Repeat
pick the nextλj in the instance of the random linear collision problem rlColl(n);
compute tj ← λj · d−1j · v−1;
ctr← ctr + 1;

Until (G(tj) 6= Fail) ∪ (ctr = 5 lnn);

• Compute αj = (1− λjh(mj))F (Rj)
−1;

• Pick aj R←− Z×q ;

• Compute bj = aj · αj ;
• Compute sj = (dj · v · h(mj) · F (Tj)− 1) · b−1j ;

• Record (Rj ||ajX + bj ||signR) ;

• Record (Tj ||dj||signT) ;

• Return (Rj , Tj , sj);

It is easy to conclude that this simulation, together with the above forgery returned by the attacker
will lead C to a random linear collision in timet5:

t5 ≤ t + n+m(τH1 + τH2 + τh + τF + 5τG lnn)

with success probability

Succ
rlColl(n)
h,C ≥ ǫ5/9− n2/q −mδG − 2mn/q

Description ofD. D exploits a forgery(R⋆, T ⋆, s⋆) whereTag(R⋆, T ⋆) = (group, group) (i.e. a
Type 0 forgery) to find a preimage of a certain value, saya. The equation satisfied by the forgery
is:

ai − biF (Ri) = (aibj − ajbi)F (Rj) · v · h(m).

To simulate the group oracle,D selects in advancei, j ∈R [[1, n]]. If i < j, then on thei-th query
(ai, bi), D will selectRi ∈R S and record it usingRecord(Ri‖aiX + bi‖group). On thej−th
query (aj, bj), compute Rj ← G(a · (ai − biF (Ri))(aibj − ajbi)

−1v−1). With probability at
least1/n2, D would have chosen the correcti, j and the success of havingRj 6=⊥ is at least1/3
(almost invertibility ofF and randomness ofa). If 6 j < i, D will proceed in a similar manner.
The remaining queries(aℓ, bℓ), ℓ 6= i, j, will be answered exactly as in 8.4.1.
To answer the signature queries(mj , pj),D does the following:

6In casei = j, we will haveai − biF (Ri) = 0, from whichD won’t learn anything. In order to prevent such a
case,D must insure thatF (Ri) 6= ai

bi
for the i-th query(ai, bi), which is satisfied with probability at least1− 1/q.
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• Compute ep ← H1
v (pj);

• Pick Rj , Tj
R←− S;

• Compute dj ← H2
ep(mj , Rj);

• Compute αj = F (Rj)
−1(1− dj · v · F (Tj) · h(mj));

• Pick aj R←− Z×q ;

• Compute bj = ajαj ;

• Compute sj ← (dj · v · tj · h(mj)− 1)b−1j ;

• Record(Rj‖ajX + bj‖signR);

• Record(Tj‖dj‖signT);

• Return (Rj , Tj , sj);

• Compute ep ← H1
v (pj);

• Pick Rj
R←− S;

• Compute dj ← H2
ep(mj , Rj);

• ctr← 0;

• Repeat
pick aj , bj

R←− Zq ;
computetj ← (aj − bj · F (Rj))a

−1
j d−1j v−1h(mj)

−1;
ctr← ctr + 1;

Until (G(tj) 6=⊥) ∪ (ctr = 5 lnn);

• Compute sj ← (dj · v · tj · h(mj)− 1)b−1j ;

• Record(Rj‖ajX + bj‖signR);

• Record(Tj = G(tj)‖dj‖signT);

• Return (Rj , Tj , sj);

We have:
Succ

Pre(n)
h,D ≥ ǫ0

54n2
− 2n2/q −mδG − 2mn/q.

and
t0 ≤ t+ n+m(τH1 + τH2 + τh + τF + 5τG lnn).
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8.4.3 Invisibility

Theorem 8.4.LetA be anINV-CMA-adversary operating in timet, aftern group queries andm
signing queries, with advantageǫ = Succinv-cma

US,A , such thatn≫ 2.
There exists an adversaryB, operating in timet′ and attempting to break the pseudo-randomness

property ofH1, afterm queries (toH1), with success probabilitySuccprfH1,B such that:

t′ ≤ t + n+m(τH2 + τh + 2τF )

and

Succ
prf
H1,B1

≥ Succinv-cma
US,A

2
− n2

2q
−mn/q

whereτF , τH2 andτh are the running time forF ,H2 andh respectively.

Proof. Let B be the adversary attempting to break the pseudo-randomnessof H1 using anINV-
CMA-adversaryA against the above undeniable signatures.A operates as previously in the generic
group model, and the polynomialsFℓ manipulated byB are also affine univariate, i.e. of the form
aX+b, however the indeterminate refers to the public keyV . In fact,B does not knowv (otherwise
his task would be easy), but is allowed to choose the private keyu.

Let m⋆
0, m

⋆
1, andp⋆ be the challenge messages and the challenge time period resp. B will

forwardp⋆ to his own challenger as a challenge seed and will receive a string e⋆ which is either
the result of applyingH1

v to p⋆ or a uniformly chosen random string from the corresponding space.
B will then form the challenge signatureµ⋆ = (R⋆, T ⋆, s⋆), usinge⋆, on the messagem⋆

b for

b
R←− {0, 1}. If e⋆ = H1

v (p
⋆), thenµ⋆ is valid signature onm⋆

b , otherwise it is an invalid signature
on bothm⋆

0 andm⋆
1. Thus, the answer ofA will sufficeB to conclude.

More precisely,B will proceed as follows:

Game 0.Letm⋆
0, m

⋆
1 andp⋆ be the challenge messages and the challenge time period resp. B will

form an undeniable signatureµ⋆, following the standard signing algorithm, onm⋆
b for some

b
R←− {0, 1}. We denote byS0 be the event “A returns the bitb” and we use a similar notation

Si in anyGamei. By definition, we havePr[S0] = ǫ+ 1
2
.

Game 1.B uses the interpretation described above which considers a safe sequence in order to
simulate the group oracle. We get:

|Pr[S1]− Pr[S0]| ≤ (n+ 4)2/q

Game 2. In this game,B simulates the signing oracle. Let(m, p) be the signing query wherem
denotes the message to be signed andp 6= p⋆ denotes the time period. A signature(R, T, s)
onm for the time periodp should satisfy:

(d · F (T ) · h(m))V = F (R)U + sR + P

177



whereT = dP andd = H2
ep(m,R) andep = H1

v (p).

Thus if we writeR = aV + bP , we get:

d · F (T ) · h(m) = s · a,
0 = uF (R) + s · b+ 1.

Thus,(R, T, s) should satisfy:

ab−1(uF (R) + 1) = −d · F (T ) · h(m).

As a consequence,B will do the following:

• request his challenger forep = H1
v (p),

• pickR, T
R←− S and computed = H2

ep(m,R),

• pick b
R←− Z×q and computea = −b · d · F (T ) · h(m) · (uF (R) + 1)−1,

• executeRecord(T‖d‖signT) andRecord(R‖aX + b‖signR).

The difference between the previous game is when the introduction ofR andT along with
their polynomials leads to inconsistencies in simulating the group oracle, i.e. collisions with
polynomials inF . The probability that these collisions occur is upper-bounded by2n/q,
thus:

|Pr[S2]− Pr[S1]| ≤ 2mn/q

Game 3. In this game,B simulates the challenge signature generation; he proceedsexactly as in
Game 2. The difference is when the createdR⋆ andT ⋆ (elements of the challenge signature)
lead to inconsistencies with the group oracle:

|Pr[S3]− Pr[S2]| ≤ 2n/q

Game 4. In this game,B simulates the verification and conversion oracles. Since verification
and conversion queries can occur only with respect to time periodsp 6= p⋆, B can request
his challenger for the conversion receiptep = H1

v (p) for the time periodp, and simulate
perfectly the verification/conversion oracles. We clearlyhavePr[S4] = Pr[S3].

Game 5. In this game, we modify the challenge signature generation.In fact, afterA outputs
m⋆

0, m
⋆
1, andp⋆ , B outputsp⋆ to his own challenger as a challenge seed, and gets a challenge

bit-stringe⋆, which is eitherH1
v (p

⋆), if someb′
R←− {0, 1} is 1, or a random string from the

given space otherwise.B produces then the challenge signatureµ⋆ = (R⋆, T ⋆, s⋆) onm⋆
b
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usinge⋆, i.e. proceeds exactly as the standard algorithm with the exception of computingd⋆

asH2
e⋆(m

⋆
b , R

⋆). Note that whene⋆ is a random string, thenµ⋆ is not a valid signature on
neitherm⋆

0 norm⋆
1. Clearly:

Pr[S5] = Pr[ba = b|b′ = 1]

and

Pr[ba 6= b|b′ = 0] =
1

2

At the end of the simulation, ifA outputsba = b, thenB will respondb” = 1, i.e. e⋆ is indeed
H1
v (p

⋆), otherwise he respondsb” = 0. We have:

Succ
prf
H1,B =

∣∣∣∣Pr[b” = b′]− 1

2

∣∣∣∣

=

∣∣∣∣Pr[b” = 1, b′ = 1] + Pr[b” = 0, b′ = 0]− 1

2

∣∣∣∣

=

∣∣∣∣Pr[b” = 1|b′ = 1] Pr[b′ = 1] + Pr[b” = 0|b′ = 0] Pr[b′ = 0]− 1

2

∣∣∣∣

=
1

2
|Pr[b” = 1|b′ = 1] + Pr[b” = 0|b′ = 0]− 1|

=
1

2
|Pr[ba = b|b′ = 1] + Pr[ba 6= b|b′ = 0]− 1|

=
1

2

∣∣∣∣Pr[S5]−
1

2

∣∣∣∣

≥ ǫ

2
− n2

2q
−mn/q

Moreover,

t′ ≤ t + n+m(τH2 + τh + 2τF )

8.5 Conclusion

We properly defined security notions for convertible undeniable signatures that support the addi-
tional property ofachronousgradual conversion. Adapting the scheme proposed by Michels, Pe-
tersen, and Horster in 1996, we realized the first scheme featuring this useful notion of conversion.
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In addition, we gave the first security analysis of the Michels-Petersen-Horster protocol, thereby
addressing a problem left open since 1996. We have modified this scheme such that it becomes a
generic one, which allows to use it for instance in the setting of elliptic curves (and therefore of-
fers attractive practical advantages in terms of signaturelength and performances). In this context
and in comparison with the time-selective convertible undeniable signatures from [Laguillaumie
& Vergnaud, 2005], the computational costs for the confirmation/disavowal protocols and the con-
version algorithms are much smaller.
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Conclusion

In this thesis, we were interested in signatures with controlled verification, more specifically un-
deniable and confirmer signatures. We actually focused on how to produce these signatures from
basic cryptographic primitives such as digital signatures, encryption, and commitment schemes.
In fact, we noticed that even the monolithic realizations ofthese signatures are built upon popu-
lar primitives, which results in security and efficiency analyses similar to those of the underlying
components, but still indispensable to carry out. Our main purpose was to understand then bridge
the gap between these realizations and the known generic constructions of such opaque signatures.

To analyze the generic constructions of confirmer signatures, we used the famousmeta-reduction
tool; such a tool was mainly applied to achieve impossibility results, e.g. disproving equivalence
between complexity assumptions or separating results between idealized and standard models. In
our study, we used meta-reductions to show that the popular generic constructions cannot achieve
secure confirmer signatures without using strong encryption as a building block, which engen-
ders expensive confirmer signatures with limited efficient instantiations. This is actually due to
an inherent weakness in these constructions that consists in the possibility of creating confirmer
signatures without the help of the signer. After identifying the weaknesses in the popular generic
constructions, comes the task of annihilating these weaknesses at cheap costs and without com-
promising the security. Fortunately, this was doable by simply binding the digital signature - these
generic constructions require always the computation of a digital signature - to the resulting con-
firmer signature. The outcome of this tweak was tremendous asit made the constructions rest on
very cheap encryption, and consequently led to short confirmer signatures with small generation,
verification, and conversion costs. Another important consequence of this slight change consists
in allowing homomorphic encryptionin the design, which translates in efficient confirmation and
denial protocols.

The immediate prospect of such an analysis is its extension to other opaque or privacy-preserving
mechanisms/signatures, e.g. group signatures, designated verifier signatures, or anonymous cre-
dentials. In fact, most such mechanisms involve a digital signature on some message and an en-
cryption layer that ensures the privacy. Hence the possibility of applying the same techniques
in order to allow cheap and useful encryption in the design, and thus achieve constructions with
many efficient instantiations. The long-run prospect consists in systematically applying the meta-
reduction tool in other cryptographic realizations in order to spot the potential flaws in the design,
and later repair these flaws and improve the resulting constructions.
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DAMGÅRD, I. B. & PEDERSEN, T. P. (1996). New Convertible Undeniable Signature Schemes.
In: Maurer [1996], pp. 372–386.
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