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Abstract (Zusammenfassung)

Digital signatures were introduced to guarantee the atittignand integrity of the underlying
messages. A digital signature scheme comprises the keyagieme the signature, and the verifi-
cation algorithms. The key generation algorithm createssthning and the verifying keys, called
also the signer’s private and public keys respectively. Sigeature algorithm, which is run by the
signer, produces a signature on the input message. Fittalygerification algorithm, run by any-
one who knows the signer’s public key, checks whether a ptegsignature on some message is
valid or not. The last property, namely the universal veatiien of digital signatures is undesirable
in situations where the signed data is commercially or pekpsensitive. Therefore, mechanisms
which share most properties with digital signatures exéapthe universal verification were in-
vented to respond to the aforementioned need; we call suchanesms “opaque signatures”. In
this thesis, we study the signatures where the verificatomot be achieved without the cooper-
ation of a specific entity, namely the signer in caseiodeniable signature®r the confirmer in
case ofconfirmer signaturesve make three main contributions.

We first study the relationship between two security prapgfimportant for public key en-
cryption, namely data privacy and key privacy. Our study tivated by the fact that opaque
signatures involve always an encryption layer that enstiveis opacity. The properties required
for this encryption vary according to whether we want to gcbthe identity (i.e. the key) of the
signer or hide the validity of the signature. Therefore,dtid be convenient to use existing work
about the encryption scheme in order to derive one notian fiee other.

Next, we delve into the generic constructions of confirmgnatures from basic cryptographic
primitives, e.g. digital signatures, encryption, or cortiment schemes. In fact, generic con-
structions give easy-to-understand and easy-to-provenses, however, this convenience is of-
ten achieved at the expense of efficiency. In this controytivhich constitutes the core of this
thesis, we first analyze the already existing constructions study concludes that the popular
generic constructions of confirmer signatures necesstaiag security assumptions on the build-
ing blocks, which impacts negatively the efficiency of theuleing signatures. Next, we show that
a small change in these constructions makes these assasgtap drastically, allowing as a result
constructions with instantiations that compete with théicited realizations of these signatures.

Finally, we revisit two early undeniable signatures whicérevproposed with a conjectural
security. We disprove the claimed security of the first soleamd we provide a fix to it in order
to achieve strong security properties. Next, we upgradesdéicend scheme so that it supports a



desirable feature, and we provide a formal security treatrokthe new scheme: we prove that it
IS secure assuming new reasonable assumptions on theyingednstituents.
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Preface

This thesis presents the ensemble of my PhD results obtairtbd area of “opaque” signatures,
namely [El Aimani & Vergnaud, 2007; El Aimani, 2008, 200920610}

A digital signature is a mechanism that captures most ptiggesatisfied by a “traditional”
signature in the paper world. In fact, digital signatureargatee that the signed message has not
been altered in transit, and that it comes from the sourdectaens to be its provenance, namely
the signer. More formally, a digital signature consiststoge algorithms: 1) the key generation
algorithm which creates the signing and the verifying ké¥sthe signing algorithm which takes
on input the signing key and a message, and outputs a signatuthe input message3)(and
the verification algorithm which checks the validity of amegkd signature on a given message
using the verifying key. An important feature in digital sggures is the universal verification,
i.e. anyone who knows the verifying key, called also the sitgpublic key, can verify signatures
issued by this signer. However, such a property can be wadhsin some applications and needs
to be controlled or limited; we talk then about obscurepaquesignatures. In this document, we
will focus on confirmer and undeniable signatures. Let us #peecify the context.

Consider for example the case of inter-organizationaltedla messages; signatures on these
messages are indispensable to resolve disputes as theg entggrity and authenticity of the
underlying messages, however, self-authentication setggnatures will make the messages vul-
nerable to industrial spy or extortionist. Undeniable sigmes come to rescue in this situation
as they: () cannot be verified without cooperation with the signer Via tonfirmation/denial
protocols, ) are non-transferable since a verifier cannot transferdmsiction, to a third party,
about the validity/invalidity of a signature he has justified, (3) are binding in the sense that a
signer cannot deny a signature he has actually issued. tungdely, the very virtue of undeni-
able signatures (verification with only the signer’s helpg@me their major shortcoming for many
practical applications since absence of the signer olistthe entire verification process. There-
fore, the concept of undeniable signatures was upgradesekigrthted confirmer signatures where
the verification igdelegatedo a designated confirmer.

Building complicated systems upon simple and basic prvstis customary in cryptography
as it allows to re-use existing work about the primitivesj &nachieves easy-to-understand and

1The works [El Aimani & von zur Gathen, 2007; El Aimani & Raeko2009, 2010] are not reported in this
document as they do not accord with the general theme of gsisth
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easy-to-prove systems. However, monolithic or dedicatb@mmes better often, in terms of effi-
ciency, those obtained from instantiating generic comsivas with concrete primitives. This is

mainly due to the fact that generic constructions cannotemegal use the specific properties of
their underlying components in order to optimize the resglstructure. A tantalizing challenge

will be the design of generic constructions of undenialolefcmer signatures which find practical
instantiations with the popular cryptographic primitivésis is the main purpose of this thesis.

Contributions and organization of the document

Apart from the first chapter on the cryptographic tools théitlve used throughout the document,
we can group the contributions of this thesis in the folloyvotasses:

1. Public key encryption. In this contribution, detailed in Chapter 2, we study tHatrenship
between two security notions important for public key eptign, namelydata privacyor
indistinguishability which refers to the hardness of distinguishing ciphest&gtsed on the
underlyingdata, andkey privacyor anonymity which denotes the hardness of distinguishing
ciphertexts based on the underlyimublic) key We also define the anonymity notion for
two popular structures used to build public key encryptiohesnes, that are key and data
encapsulation mechanisms, and we study similarly the airmmebetween this new notion
and indistinguishability in these mechanisms. Our work iwapired from a similar work on
undeniable signatures, and it is motivated by the fact thatjae signatures involve always
an encryption layer to ensure their opacity. The propethiasthis encryption layer should
meet vary according to whether we want to hide the identitshefsigner or the validity of
the signature. Hence, the need for such a study which spee#i®y-to-check properties on
any encryption so that data privacy yields key privacy ame viersa, allowing consequently
to use existing results about the system instead of doingink from scratch.

2. Generic constructions of confirmer signatures This contribution constitutes the core of
this thesis, and it is described in Part II. More precisely:

¢ In Chapter 3, we define the model (syntax of confirmer sigeatand security proper-
ties) we adhere to in our work. Moreover, we survey the dgffegeneric constructions
of confirmer signatures found in the literature. Most suabppsals follow either the
sign-then-encrypt or the commit-then-sign paradigms. \&e ee-write some of the
security proofs of these constructions so that they stalyaesagainst some malicious
adversaries, and we provide other proofs which were due peapin forthcoming
papers of the corresponding authors but were not given so far

¢ In Chapter 4, we analyze and improve the confirmer signatb&sned from the sign-
then-encrypt technique. In a nutshell, this method cosisfirst producing a digital
signature on the message to be signed, then encrypting sbkimg signature. This

viii



method originally required the constituents, that are theeulying signature and en-
cryption schemes, to meet the highest notions of securiiythis chapter, we show
that the requirement on the signature scheme is also negdesahe security of the
construction, whilst the condition on the encryption colddweakened. However, we
prove also the necessity of this weakened condition, whighstates in excluding a
useful type of encryption. Next, we circumvent this problbynmodifying slightly
the paradigm so that it accepts a cheap and useful type ofmar, namely homo-
morphic encryption. We demonstrate the efficiency of theltegy construction by
explicitly describing the confirmation and denial protaga task which has not been
addressed in all generic constructions of confirmer sigeatwhich implement the
sign-then-encrypt principle.

e In Chapter 5, we analyze the second popular method used tsedesnfirmer sig-
natures, namely the commit-then-sign paradigm which st&sn first producing a
commitment on the message to be signed, encrypting the sised for the commit-
ment, and finally signing the latter. Similarly to the prexsochapter, we show that
the paradigm, when used in its basic form, necessitatesgsémcryption which ren-
ders the construction inefficient or accept very limitedansiations. However, a small
change of the basic paradigm makes the assumption on thgéonardrop drastically,
allowing as a result many practical instantiations. Finalle shed light on a sub-
case of the paradigm, that is the encrypt-then-sign pamad&uch a method provides
very efficient confirmer signatures provided there existedfit non-interactive vari-
ants of the underlying confirmation protocol; this is not algem nowadays due to the
progress made recently in this area.

3. Undeniable signatures This part comprises three chapters namely:

e Chapter 6, where we browse through the different realinataj undeniable signatures.
In fact, while the literature on confirmer signatures wasernfocused on how to ob-
tain them from basic cryptographic primitives, the litewrat on undeniable signatures
was very diverse. We chose to give this survey in order teebsttuate our work on
undeniable signatures that comes in the following two crapt

e Chapter 7, where we revisit the undeniable signatures ofddadrand Pedersen. These
signatures were proposed in 1996 with a conjectured sgctimdtt was reported a
decade later in a construction of undeniable signaturé&sidolg the same spirit. In this
chapter, we disprove the conjectured security of DamgaddRedersen’s undeniable
signatures, and we propose a repair to the scheme whichduttg be an instantiation
of the construction proposed earlier in Chapter 4.

e Chapter 8, where we revisit the undeniable signatures ofis; Petersen, and Horster
that were proposed in 1996, and had also a speculative seda first modify slightly
these signatures so that they support an additional featalledgradual conversion
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which informally means the possibility of converting a sétuadeniable signatures
pertained to a given event to publicly verifiable ones. Next formally prove that the
security of our recast rests on new reasonable assumphansve introduce for the
underlying hash function family.

Before ending this preamble, we wish to alert the readerdoarttportance of carefully check-
ing the security model in which the systems presented indbument are proclaimed to be
secure/insecure. In fact, security models can differ veghgy in their definitions, but the reper-
cussions of these smallish differences can be huge; a sgsteume in one model can be be totally
broken in another. Also, a security property which is imglaesto reach for a scheme in a model
can be easily metin another. This actually reflects one afthi@ challenges in nowadays cryptog-
raphy: proposing efficient schemes which achieve strongrggproperties based on the hardness
of well-studied problems .
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a~! modn multiplicative inverse ot: modulon
®(n) Euler’s totient function

Events, probabilities, and statistics

-F complement of eventt
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Pr[E] probability of eventty
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Acronyms

ANO anonymity

CCA chosen ciphertext attack

CDCS convertible designated confirmer signature

CDH computational Diffie-Hellman

CMA chosen message attack

CPA chosen plaintext attack

DDH decisional Diffie-Hellman

DEM data encapsulation mechanism

EUF existential unforgeability

FDH full domain hash

GDH gap Diffie-Hellman

HVZK honest verifier zero-knowledge

IND indistinguishability

INV invisibility

KEM key encapsulation mechanism

NIZK non-interactive zero-knowledge

NM non-malleability

ow one wayness

PCA plaintext checking attack

PoK proof of knowledge

PPTM probabilistic polynomial Turing machine

ROM random oracle model

SEUF strong existential unforgeability

SINV strong invisibility

SRSA Strong RSA

WHPOK witness hiding proof of knowledge
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ZK zero-knowledge
ZKIP zero-knowledge interactive proof

Computability

AP A has access to the oraale

D:ar—b the oracleD getsa as a query and responds with

a <+ A(x) A outputs the value on inputz

T state information

(P, V)(z) two-party protocol (pair of interactive Turing machinesjtwcom-
mon inputz
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Chapter 1

The Theory of Cryptography

Abstract. Cryptology evolved from a crossing where branches of maéties)
computer science, and electrical engineering deposit tositributions, to an au-
tonomic and mature science. In fact, cryptology inherigghhiques from various
sciences, successfully reshaped and merged them with nevepts to result in a
self-contained science, capable of constructing and amaj\systems meeting the
imperishable trilogy of requirements: confidentialitytt@nticity, and integrity.

In this chapter, we recall aspects of the theory of cryptplgyathat are necessary
for this thesis. We start by reminding some important resiutim complexity the-
ory, a branch of theoretical computer science where crypfity has scooped up
many concepts. Next, we recite the basic primitives uporcivare based more so-
phisticated cryptographic systems. Then, we proceed tdekeription of three of
the theoretical pillars that found modern cryptographynely reductionist security,
zero knowledge, and bilinear maps.

1.1 Reminders in complexity theory

Complexity theory is a branch of computer science concewittdthe study of fundamental prin-
ciples of computation. It is a vibrant area of research dugstabiquity in many different fields:
biologists studying models for neuron nets or evolutioactlcal engineers developing switching
theory to improve hardware design, mathematicians workmdoundations of logics and arith-
metics, linguists investigating grammars for natural laages, physicists studying the feasibility
of building quantum computers, and of course computer sistsrseeking efficient algorithms to
solve important problems.

In this section, we recall some basics of complexity thed¥e refer to the book [Papadim-
itriou, 1994] for a comprehensive study of this theory.
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1.1.1 Symbols, alphabets, languages and problems

A symbolis an atomic entity. Examples of frequently used symbolgedters or digits. Astringis

a finite sequence of juxtaposed symbols. The length of agstris often denoteds|, and consists
of the number of symbols composing the string. One speciabsis the string consisting of zero
symbols; it is denoted and is called the empty string. A string is said to be the ctamzion of
two stringss andt if it is formed by writing s followed by.

An alphabetis a finite set of symbols. Aanguageis a set of strings of symbols from some
alphabet. For instance, X is a given alphabet,* denotes the language consisting of all possible
strings composed of symbols M. One alphabet that will occur often in this document is the
alphabef0, 1}.

A problemis intrinsically associated to a certain question; for eglntomputing the greatest
common divisor of two integers. Once one specifies valueth®input, one obtains anstance
of the problem to which corresponds some values forming dh#isns to the input. Therefore,
if we formulate the possible inputs and outputs of a giverbjanm as strings over some alphabet
Y, a problem can be viewed as a subsebbfx >*. In fact, we assume that for every input
guestiong € X*, there exists an output answerc ¥*, for instance we consider “no solution”
also a possible answer. An important category of problentBas consisting of problems that
accept only two possible answefy/es”, “no”}, i.e. the so-callediecision problemsWe can
simplify the representation of decision problems by coasidy only the “language” consisting
of questions that have “yes”-answers. We say that a systgmn,cemputer, decides a decision
problem if it identifies successfully the positive instasidee. the questions having “yes”-answers.
Finally, decision problems arise very often in complexigary, and one is especially interested
in knowing whether a given decision problem can be decidesblnye computer or not. To answer
such a question, one needs to introduce a formal and univecskel of computer.

1.1.2 Computability & Turing machines

A computatioris informally speaking a process by which one obtains an antwa certain ques-
tion. A computation requires a system which performs themaation. This system or “com-
puter” will move from an initial state, which is independ@afthe question, to a final state where
it outputs the answer, if any. A fundamental problem has bkeemniversalization of the compu-
tation model. i.e. provide a model for every “computablefidtion that computes an answer (if it
exists) to any question from the set of possible questioh® rfon-trivial part of this task lies in
having to define a model of a “computer”, restricted by knowggical laws, to perform any kind
of computations. Nevertheless, all computational modss have been developed so far, were
shown to be equivalent to a very simple model, the so-call@th@ machine. This lead Church
and Turing to conjecture in 1936 that every computable fonctan be computed by a Turing
machine.

The basic Turing machine has an input tape comprised ofiefyninany cells, and a tape head
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which scans one cell of the tape at a time. Each cell contaggrdol from a finite alphabet
intrinsic to the machine. Initially, the tape contains otilg input of the problem (the question),
the rest of the tape being blank. Throughout the computsitithe configuration of the machine
ranges a finite set of states. Finally, if the machine hadtadines one of the final states), it writes
the output on its tape. The machine operates sequentialjorg as it does not reach the final
state, it performs one operation, at a time, which dependg/san the current state and the symbol
pointed to by its head. An operation of the machine can beedlchange of the current state, a
writing/overwriting of a symbol on the scanned cell or a m@ndboth directions) of the head. The
function that maps a pair consisting of a symbol and a stede tuperation is called the program of
the machine. Finally, a language accepted or decided byiagiorachine TM is the set of strings,
composed from symbols of the machine alphabet, which cdues€M to enter a final state.

1.1.3 Extended Turing machines
Multi-tape Turing machines

A multi-tape Turing machine is comprised/otape heads anttapes, each has an infinite number
of cells. A configuration of the machine at some time pointsisis of the current state and of
the positions of thé: tape heads. Similarly to single-tape Turing machines, geration of a
multi-tape Turing machine depends only on the current cardigon, and can be either a change
of the current state, a print of a new symbol on each of thes sethnned by the heads, or a move
of the heads independently in both directions. Initiallyitze tapes are blank except the first one
where the input is written. When the machine halts, one rexsothe output in the last tape.

Probabilistic Turing machines

A probabilistic (single or multi-tape) Turing machine hasextra tape consisting of symbols form-
ing a support for the uniform distribution. This induces algability distribution on the outcome
corresponding to a given input. In fact, oppositely tdeserministicTuring machine, to a given

input correspond several computation paths in a probébilisiring machine. Therefore, it may
well be that for some input, there are computations which halt and others which don't.

Non-deterministic Turing machines

A non-deterministic Turing machine is a probabilistic Turimachine which accepts strings if
at least one computation path, started on these stringss kwaone final state of the machine.
Similarly, a languag€. is accepted (decided) by a non-deterministic Turing maeffithe latter
accepts all strings € L.



Oracle Turing machines

An oracle Turing machine is a Turing machine with an extratealled the oracle tape, and two
additional states called the “oracle invocation” and theatte appeared” respectively. The con-
figuration of the machine at some time point with state ddféifrom the state “oracle invocation”
is defined as usual. If a configuration involves the statecleranvocation” and the string on
the oracle tape, then the next configuration of the machimgeistical to the previous one with
the exception of moving to the state “oracle appeared” anthgaon the oracle tape the strimg
instead. ¢ is called the oracle query andis the oracle reply. The introduction of such types of
machines is motivated by the need to capture the notion efcrbdity, which we will see later in
this section.

1.1.4 Complexity classes: P, PSPACE, NP, and co-NP

Let DTM be adeterministicTuring machine. If for every input word of length, the machine
halts after at most(n) moves, then TM is said to havetime complexity(n), and the language
accepted by DTM is said to be tifmne complexity(n). The family of languages of deterministic
time complexityO(t(n)) forms acomplexity classvhich we denot®TIME(¢(n)). One important
complexity class is the class

P = U DTIME(n*)

consisting of languages which can be decided efficiently lojet@rministic polynomial Turing
machine.

Similarly, if DTM is a deterministic Turing machine thatrfevery input string of length, vis-
its at mosts(n) cells before halting, then DTM is said to beggface complexity(n), and so is the
language accepted by DTM. The family of languages of (detestic) space complexit@ (s(n))
forms a complexity class denot&bPACE(s(n)). The class PSPACE consists of languages that
can be decided using a polynomial amount of space .

PSPACE = Uj,>;DSPACE(n*).

Let now NTM be anon-deterministicTuring machine. If for every:-length string, NTM
halts after at most(n) moves, regardless of the selected computational path Nfigdhis said to
have a time complexity(n). We define similarlyNTIME(¢(n)) to be the class of languages that
can be decided non-deterministically in ti@¢¢(n)). The most important non-deterministic time
complexity class is the class

NP = U NTIME(n")

consisting of languages that can be decided efficiently bgradeterministic polynomial Turing
machine.

Finally, to define the class co-NP, one needs to define the leonemt of a language. According
to Subsection 1.1.1, we defined a language L to be the set @giveasstances to its underlying
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decision problem P. The complement of L, which we derlgteonsists of the negative instances
of the problem P. In this way, co-NP is the class comprisedofliages whose complements are
in NP.

It is not hard to see that P is a subset of NP and co-NP, whichattesubsets of PSPACE.
The most important question in complexity, which is alsdezathe million dollar question, is to
prove/disprove that P is different from NP.

1.1.5 Reductions and completeness

A reductionis a transformation of a problem to another. Informally ¥ieg, we say that problem
A reduces to problen® if one can solveAd given an oracle that solveB. In this case, we say
that B is at least as hard a4, and we writeA < B or A < B. Such a reduction is known in
the literature as a Turing reduction, where multiple callthe oracle solving the harder problem
are allowed. In case of decision problems, we often use tiemof many-one reduction which
corresponds to a Turing reduction where one call to the eriaallowed. More precisely, a many-
one reduction maps an instancef problemA, to an instance?(x) of the harder problen® such
thatx is a positive instance of if and only if R(x) is a positive instance dB. Finally, reductions
must be efficient to compute in order to have coherent restitts appropriate notion of efficiency
depends on the problems we are studying, for instance, emafgzroblems/languages in NP, it is
convenient to talk about reductions computable in polyrabtime.

Let C be a complexity class andbe a given language. We say thais C'-completaf L € C,
and every language ifi is reducible to it. In casé ¢ C, but still every language i@ is reducible
to L, we say thatl. is Chard. Complete problems are important as they are considereé to b
representatives of the class. In fact, any solution to theptete problem can be used to solve
problems in the underlying class. This explains why redunstishould be efficient to compute; it
would be absurd to have a solution to a complete problemelartifficult to compute solution to
an easier problem.

1.1.6 One way functions and indistinguishability

The bright side of the conjectuie # NP consists in suggesting different levels of hardness. The
most notable ones are the hardness of computing some gikess\and the hardness of comparing
two different entities.

A one way functiofs map which is easy to compute but hard to invert. More pedgis one
way functionf is a map from>x* to itself, > being some alphabet, such that the following holds:
1. forallz € ¥*, f(z) is at most polynomially longer or shorter than

2. there exists a polynomial time Turing machine that, onnpetx, outputsf(x).
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3. given a uniformly chosen elementirom >*, there exists no polynomial time Turing ma-
chine that returns, with non-negligible probabilitysuch thatf(x) = y if such anz exists,
or “no” otherwise.

A trapdoor one way function is a one way function such that the knowlealfgan additional
information (the trapdoor) allows an efficient (polynontiaie) computation of its inverse.

Equivalence of two entities varies according to the sitraiand applications. For exam-
ple, in some applications, two objects are considered togoé/alent if there exists nefficient
procedure that differentiates them. This motivates thendefn of the different notions oindis-
tinguishability Letp andq be two probability distributions, over some countable atabty space
E C{0,1}", that are considered at the security parameterN.

1. p andq areperfectly indistinguishablé they are equal.

2. p andq arestatistically indistinguishablé their statistical difference is negligible im. We
define the statistical difference (or variation distande) andq as follows:

A(n) = " |p(e) — q(e)]

eck

3. p and ¢ are computationally indistinguishabli for every probabilistic polynomial time
Turing machineV/, the following holds:

n

Pr[M(xz) =1] — Pr[M(x) :1]‘ < —

TP T4—q — nk

where the expressian < p denotes that has been sampled according to the probability
distributionp.

1.1.7 Examples of one way functions

One way functions arise abundantly in cryptography as tlfiey the possibility of being easy to
compute in one way and hard in the other. In fact, this duektsiness/difficulty translates in cryp-
tography into efficiency/security that a cryptographictegsshould have, since we naturally want
the latter to be easy to implement for the honest playersitfidudt to obstruct by the opponents.
Public key cryptography rests heavily upon two one way fiomst related to two number the-
oretic hard problems, namely factoring integers and comguliscrete logarithms. Both decision
variants of those two problems happen to be in NP, but witbeutg proven to be NP-complete.
In fact, one of the main differences between complexity th@md cryptography is that the former
considers the worst-case complexity analysis whereasattex is interested in the average-case
analysis. The knapsack problem is one illustration of thiffeince since it is proven to be NP-
complete, however most instances that were used in cryggibgrhave been broken. The upshot
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is that one needs an efficient generation of difficult inségraf problems in order to be able to use
them in cryptography. In this sense, factoring integersamdputing discrete logarithms proved
to be good candidates for use, which explains the massivgrdescryptographic systems based
on those problems, or the important mathematic ingenugnsio solve them.

Factoring

Factoring an integer consists in finding its prime factorqridtne is naturally defined to have only
1 and itself as divisors. Factoring can be easily seen as a agduwmction since the operation
consisting in building an integer from its prime factorg, ithe multiplication, can be efficiently
performed whilst the reverse does not seem to have an effaigorithmic solution. We summa-
rize in the table below the most known methods to factondit integer. For a comprehensive
and exhaustive list, we refer for example to [Cohen, 1996].

method year time
trial division —00 O(2"/?)
Pollard’sp — 1 method | 1974 O(2"*4)
Pollard’sp method | 1975 O(2"4)
Dixon’s random squares 1981 | exp(O(n'/?))
Lenstra’s elliptic curveg 1987 | exp(O(n'/?))
Number Field Sieve | 1991 | exp(O(n'/?))

The biggest integer of general form that has been factoréar $©the768-bits RSA challenge
using the number field sieve method. An RSA challenge is proautwo primes of the same bit
size. We refer to [Kleinjungt al., 2010] for details about the factorization of this challeng

Discrete logarithm

Let (G, -) be a multiplicative cyclic group generated by some elemsty. The discrete loga-
rithm problem consists in, given an elemert G = (g), computingz such thaty = ¢°.

It can be easily proven that solving the discrete logaritmabljem in a group of orded, with
known factorization, can be efficiently reduced to solvimg$ame problem in groups whose orders
are the prime factors af (see for example [Stinson, 2006, Chapter 6]). This explaihg we
consider in the literature only groups of prime order.

The discrete logarithm problem is proven to be difficult fengric group algorithms. In fact,
in [Shoup, 1997], itis proven that algorithms that use nec&d@roperties of the considered group
need at leasD (1/d) group operations to solve the discrete logarithm problehgre is the group
order. A popular illustration of groups without special peties is given by the group of points
of an elliptic curve over a finite field. However, as soon as omesiders multiplicative groups
of a finite fieldZ; (for a primeg), the cost of solving the discrete logarithm drops dralijica
exp(O(n'/3)) using the number field sieve, whetes the bit-size of the considered group order.
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On that account, elliptic-curve-cryptography betterddiield or ring-cryptography as it achieves
the same level of security at shorter size parameters. Haywere should point that elliptic curves
still lose in efficiency when compared to finite fields as itmokn that group operations in elliptic
curves are much more expensive than their similars in firetddi

Finally, we note that both factoring and discrete logarithassess an efficient algorithmic
solution using a quantum computer [Shor, 1994]. However,ptogress in this area is still not
threatening as the largest integer that has been factoifad 8sing this algorithm is 15. Neverthe-
less, there is a recent trend in cryptography that encosragé&ing for hard problems that remain
hard even in the presence of quantum computers, e.g. lattmades-related problems.

1.2 Basic cryptographic primitives

Cryptography was historically associated with the desfgystems ensuring confidentiality, namely
encryption schemes. However and throughout the yearsogsgphy evolved to include more sys-
tems that serve further purposes. In fact, the digital eve gath to new applications that require
special mechanisms to protect against misuse. Thus, theappsopriate definition of cryptog-
raphy is, according to [Goldreich, 2001], a science “conedrwith construction of schemes that
should be able to withstand any abuse. Such schemes areump@dtas to maintain a desired
functionality, even under malicious attempts aimed at mgithem deviate from their prescribed
functionality”.

In this section, we first present the axioms assumed in amtagyaphic system, then pro-
ceed to a brief description of the most important cryptobreprimitives that we will encounter
throughout this thesis.

1.2.1 Kerckhoffs’ principles

In 1883, Auguste Kerckhoffs formulated in [Kerckhoffs, B3&e laws or axioms that one should
assume about any encryption scheme:

1. The system must be practically, if not mathematicallgeicipherable;

2. It must not be required to be secret, and it must be ablditmfa the hands of the enemy
without inconvenience;

3. Its key must be communicable and retainable without tihe dfenritten notes, and change-
able or modifiable at the will of the correspondents;

4. It must be applicable to telegraphic correspondence;

5. It must be portable, and its usage and function must natineeghe concourse of several
people;
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6. Finally, itis necessary, given the circumstances thairoand its application, that the system
be easy to use, requiring neither mental strain nor the keayd of a long series of rules to
observe.

The most famous law that cryptography owes to Kerckhoffg¢agesd in the second item, that is,
a system should remain secure even if everything excepéytsskpublicly known. This law was

reformulated by Claude Shannon by “the enemy knows thesystnd later universally adopted
in cryptography and in all the subsequent related disa@glifor instance steganography.

1.2.2 Encryption
An encryption scheme is given by the following three aldons:

Key generation (eygen). This is a probabilistic algorithm which returns pairs of gmtion and
decryption keysk., k;) depending on the security parameter

Encryption (encrypt). This is a probabilistic algorithm which takes as input anrgptton key
k. and a plaintextn, runs on a random tapeand returns a ciphertext

Decryption (decrypt).This is a deterministic algorithm which takes on input a giption keyk,,
a ciphertext and returns the corresponding plaintexor the symboll.. We require that if
(ke, kq) is a valid key pair, then

Vm: decrypt,, (encrypt, (m)) = m.

Since the antiquity, encryption schemes were conceiveld that the keys used for encryption
and decryption are the same, which forces the protagooisteet physically or discuss through a
secure channel in order to agree on the key. It is worth ndtiagsuch a type of encryption, called
symmetric or conventional encryption, was mostly practicesecret service or military chambers
in order to protect state and military communications.

In 1976, Whitfield Diffie and Martin Hellman [Diffie & Hellman 976] invented public key
encryption, called also asymmetric encryption, where @mnelsr and receiver do not have to agree
on the same key to exchange encrypted messages. In facgcdigar generates a pair of keys
k. andk, that will be used for encryption and decryption respecyivdlhe receiver will publish
the encryption key and store privately the decryption kejth\Whis mechanism, it is obvious that
anyone can encrypt a message usingvhilst only the receiver can decrypt a ciphertext (obtdine
usingk.) using the private kek,. The repercussions of inventing public key cryptograpley ar
huge. First it motivated the design of new mechanisms anththeduction of new analysis tools.
Then and most importantly, it gave cryptography a sciergli@pe by allowing more individuals or
institutions to participate; cryptography is no longerwwkings of some people locked in highly
secret military cells, but a production of a whole commuttigt is constantly designing/analyzing
systems and publishing the results in well establishedezentes or journals.
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Despite its attractive feature, namely flexibility of theykeanagement, public key encryption
did not overwrite symmetric encryption. In fact, the lattempares much better than the former in
terms of efficiency. Thus, in most practical applicationsthbdisciplines cohabit under the name
“hybrid encryption”: public key encryption is first used toramunicate a short key, that will be
later used to decrypt a huge document, e.g. movie.

Security notions for encryption schemes

Encryption schemes should satisfy a certain security lshéth clearly identifies theecurity goal
the scheme should attain, and Huokversarial powethe attacker against the scheme has. The pair
consisting of the security goal and the adversarial powinele what is called theecurity notion
for the encryption scheme.
The typicalsecurity goals public key encryption scheme should attain are:

1. Unbreakability (UBK):it is difficult to recover the private key from the public key the
encryption scheme.

2. One wayness (OWjvithout the private key, it is computationally impossibberecover the
plaintext.

3. Indistinguishability (IND):the ciphertext reveals no information about the plaintexat
polynomial adversary.

4. Non-Malleability (NM):no polynomial adversary can derive from a given ciphertagtlaer
ciphertext such that the underlying plaintexts are medultygyelated.

The typical scenario attacks for public key encryption scbe are:

1. Chosen Plaintext Attack (CPAfhe adversary can encrypt any message of his choice. This
is inevitable in public key settings.

2. Plaintext Checking Attack (PCAfhe adversary is allowed to query an oracle on pairscj
and gets answers whetheris really encrypted i or not. There is the natural restriction
of not querying the oracle on pairs which will help the aterckolving his challenge.

3. Chosen Ciphertext Attack (CCAthe adversary is allowed to query a decryption oracle for
ciphertexts of his choice. There is again the restrictionaifquerying the oracle on cipher-
texts that will help the attacker solving his challenge.

Remark 1.1. In the literature, the scenario attack CCA is referred to aSA2, and is called
adaptive chosen ciphertext attack. This is due to the poesefithenon-adaptive chosen ciphertext
attackor thelunch time attaclscenario, which is denoted CCA1 and where the adversaryteas t
liberty to request the decryption of any ciphertext of hisich up to the challenge phase.

12



It is obvious that the CCA attack model is stronger than tha Bttack model which is stronger
than the CPA one. We summarize in Figure 1.1 the relationsgrtiee different security notions
obtained from pairing a security goal GOAE {OW,IND,NM} and an attack model ATke
{CPA PCA CCA}. The notationNotion; — Notion, indicates that if an encryption scheme is
secure in the send¢éotiony, then it is also secure in the ser$ation,; we say thatNotion; implies
Notionsy. The notatiorNotion; <+ Notion, means that botNotion; andNotion, imply each other.
Details about the formal definitions of the notions or thegisaunderlying Figure 1.1 can be found
in [Bellareet al, 1998]. Actually, this work gives also some separation ltesuhich we do not
report in Figure 1.1 as they are either obtained under soroagassumptions, or they involve
notions we do not consider in the thesis (INDCCA1 or NM — CCAL1). Finally, we will provide
in Subsection 1.3.1 the formal definitions of the securitiiares (for public key encryption or for
signature schemes) that we will encounter throughout ki@sis.

NM o] o o
| | |
IND o o o
| | |
ow o} o o
| | |
UBK o o) o

CPA PCA CCA

Figure 1.1: Relations among security notions for PKE

Examples of encryption schemes

The most famous public key encryption scheme dates back8 [Rivestet al., 1978]. It is
named RSA, which refers to the initials of its inventors, @depicted in Figure 1.2. The RSA
encryption scheme is OW-CPA (one way against a chosen pkiattack) under thRSA assump-
tion, which posits the difficulty of extracting-th modular roots. However, it is not IND-CPA
(indistinguishable against a chosen plaintext attack)esihreveals information about the plain-
text, namelym® mod N. Less it is NM-CPA (non-malleable against a chosen platra&ack) as
one can compute, given a ciphertextanother ciphertext, say = 2°c mod N, whose plaintext
m' is meaningfully related to the plaintext underlyingc; m’ = 2m.
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Key generation Choose two equally-sized primgsg and compute the modulu$ = pq,

choose: < Z, vy, Whereg is the Euler totient function,

computed = ¢! mod ¢(N),

set the public keyk to (e, N) and the private keyk to (d, N).
Encryption For a message: € Zy,, compute its encryption as= m*® mod N.
Decryption given a ciphertext, compute the plaintext as = ¢ mod N.

Figure 1.2: The RSA encryption scheme

Setup Choose a grouf, -) generated by with prime orderd.

Key generation Chooser %l Z4 and computey < g%,
setpk < (d, g,y) andsk < (d, g, x).

Encryption For a message: € G, choose il Zg,
computec; + g andcy <+ my?,
set the ciphertext t@ci, c2).
Decryption Given a ciphertexfc;, c2), compute the corresponding plaintextras— cac; *.

Figure 1.3: The El Gamal encryption scheme

The second famous encryption is due to El Gamal [El Gamal5[188d is depicted in Figure
1.3. ltwas invented in 1985, and it uses the hardness of steede logarithm problem. El Gamal’s
encryption is OW-CPA if the problem, that consists in conmpyiy*® from ¢ and ¢!, is difficult.
Moreover, it is IND-CPA if the problem consisting in distimghing ¢®!, given ¢ and ¢¢, from
random elements ift, is difficult. We will give in Subsection 1.3.2 a precise dé&fon of these
problems.

Encryption with labels  Encryption with labels was first introduced in [Shoup & Germ&002].

In these schemes, the encryption algorithm takes as inpaddition to the public kepk and
the messagen intended to be encrypted, a labklwhich specifies information related to the
messagen and its encryption context. Similarly, the decryption altjon takes additionally to
the ciphertext and private key the label under which the enaxt was created. Security notions
are then defined as usual except that the adversary spegifiesssahallenger the label to be used in
the challenge ciphertext, and in case he (the adversarijpvsesl to query oracles, then he cannot
guery them on the pair formed by the challenge ciphertexthadabel used to form it.

1.2.3 Signatures

A signature scheme is given by the following three algorghm
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Key generation (keygen). This is a probabilistic algorithm which returns random paif private
and public keygsk, pk) according to the security parameter

Signature (sign). This is a probabilistic algorithm that takes on input a pevieysk and a
plaintextm and returns a signature

Verification (verify). This is a deterministic algorithm that takes on input a pukky pk, a
signatures and outputd if the signature is valid and otherwise. We require that fk, pk)
is a valid key pair derived from the algorithikaygen, then for allm, the following holds

verify, (signg (m), m) = 1.

Security notions for signature schemes

Similarly, a signature scheme must meet certain securiysgehich we list below:
1. Unbreakability (UBK):it is difficult to recover the signing key from the verificatigey.

2. Universal Unforgeability (UUF)it is difficult for a polynomial time attacker to obtain a \@li
signature, without necessarily recovering the private keyeverymessage in the message
space.

3. Selective Unforgeability (SUF)t is difficult for a polynomial time attacker to produce a
valid signature on a message he committed to prior to knottiagublic key.

4. Existential Unforgeability (EUF)no polynomial time adversary can come up with a valid
pair of message and corresponding signature.

It is obvious that existential unforgeability implies uargal unforgeability which implies unbreak-
ability.
Moreover, the typical scenario attacks in signature sclgeams

1. Key Only Attack (KOA)the adversary has only access to the public key of the scheineh
is unavoidable in the public key scenatrio.

2. Known Message Attack (KMA)he adversary has access to signatures for a set of known
messages that he committed to prior to knowing the publicdkélye scheme.

3. Chosen Message Attack (CMAhe adversary can use the signer as an oracle (full access),
and may request signatures on any message of his choice.

Remark 1.2. There exist two further attack scenarios which are weakantthe CMA attack,
namely théirected Chosen Message Attack (DCMa#)d theSingle Occurrence Chosen-Message
Attack (SOCMA) In the first attack, the adversary chooses non-adaptiveBtaf messagdsn; };
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and is given the corresponding signatukes };. Whereas in the second attack, the adversary has
full access to the signing oracle with the restriction of woterying more than once the same
message for signature.

Likewise, pairing the above security goals and the abovaeasae attacks results in twelve
security notions which we describe in Figure 1.4 along wité telations they satisfy. We will
provide in Subsection 1.3.1 the formal definitions of theusig notions that we will need in this
thesis.

EUF

SUF

UUF

O«<—O0O<«—0<—0
O«—O0O<«—0<—0
O«—O0O<«—0<—0

UBK

KOA KMA CMA

Figure 1.4: Relations among security notion for signatefeemes

The RSA signature scheme

One popular signature scheme is the analogous of the RSAiwr scheme which was also
described in [Riveset al,, 1978]; we depict it in Figure 1.5. It is obvious that the RSgnaiture
is not existentially unforgeable since one can first choosigm@atures € Zy, then compute its
corresponding messageas= s mod N.

1.2.4 Commitment schemes

A commitment scheme [Brassaetial., 1988] consists of the following algorithms:

Setup Getup). This is the algorithm that, on input a certain security pagtark, generates the
public parameters of the system.

Key generation keygen). This algorithm generates probabilistically a public cortmant key
pk.
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Key generation Choose two equally-sized primgsg and compute the modulu$ = pq,

choose: < Z, vy, Whereg is the Euler totient function,

computed = ¢! mod ¢(N),

set the public keyk to (e, N) and the private keyk to (d, N).
Signature The signature on a messagec Zy; is computed as = m? mod N.
Verification For an alleged signatureon m, check whethem < s°mod N.

Figure 1.5: The RSA signature

Commitment (commit). This is a probabilistic algorithm that, on input a public keyand a
messagen, produces a paifc, r): ¢ serves as the commitment value (locked box), aad
the opening value.

Opening (open). This is a deterministic algorithm that given a p@irr) along with a public key
pk and an alleged message checks whethe(c, ) < commitp, (m).

The algorithmopen must succeed if the commitment was correctly formed (ctmess). More-
over, we require the following security properties:

1. Hiding. It is hard for an adversary to generate two messaggsn; such that he can dis-
tinguish between their corresponding locked baxgs;. That is,c reveals no information
aboutm. Actually, this notion can be formally described througle following random

experiment, forb £ {0,1}, whereQ2 = (keygen, commit, open) denotes a commitment
scheme with security parameter some N, and.A denotes a PPTM.

ExperimentExpg’, *(x)
pk < Q.keygen(k),

(mg, my, ) < A(find, pk)
(c*, 1) <= Q.commitpyy (M)
d < A(guess,Z,c")
Returnd

We define thedvantageof A via:

Advg’dA(m) = |Pr [Expgi{b(/ﬁ) = b} — %
Givent € N ande € [0,1], A is called a(t, ¢)-hiding adversary againg if, running in
timet, A hasAdv{}% (k) > . The schemé is said to bgt, €)-hiding if no (¢, ¢)-hiding
adversary against it exists.
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Setup Choose a groufG, -) generated by with prime orderd.

Key generation Choosey & G of unknown discrete logarithm w.r.4,
The public commitment key ig.

Commitment  Compute the commitmerft, r) on a message: € 7, such that
r & Zgandc = g"y™.

Opening Given an alleged commitmeft, ) on a message::
check whether = g ym.

Figure 1.6: Pedersen’s commitment scheme

2. Binding. It is hard for an adversary to come up with a collisienr, r’) such that(c,r) =
commitp (m) and(c, ') = commity(m') wherepk is a public commitment key, and #

m'.

3. Injective.Given a message, for any two pairgc, ) and(c, ') produced using theommit
algorithm w.r.t. a public commitment kgyk onm such that- # »’, we have: # ¢'.

We call a commitment schensecureif it meets the previous properties.

It is not hard to note the similarity between public key eptign and commitment schemes.
In fact, one can check that indistinguishable encryptioplies a secure commitment scheme. The
main difference between encryption and commitment is thatformer requires the decryption
algorithm to be based on a “universal” secret key (independethe message) whilst the latter
allows to decrypt with a “message-dependent” secret keyehathe opening value of the mes-
sage in question. Another difference is that in encryptiba,message is always derived from the
ciphertext. This is not always the case in commitments aw/shioe example depicted in Figure
1.6; it is easy to check that this commitment is correct. Mueg it is statistically hiding because
r is random inZ,; and so isc = ¢"y™, regardless ofn. Besides, the biding property is achieved
under the discrete logarithm assumptiortin

1.2.5 Hash functions

A hash function is used to distill a small amount of informatiout of large messages. Such
an action can ensure integrity of the data in question. It fagpose that one maintains a data
base in North America and its mirror image in Europe. In otdecheck that both data bases are
identical after for instance an update of both bases, onecarpute a so-callethessage digest
or fingerprintof each data base using the hash function and compare tHesydsine data bases
are identical then the resulting fingerprints will agree.eonverse is not always true since we
are mapping a set of large messages to a smaller set of typl&dl-bit length strings. However,
the event corresponding to having two different data basggpimg to the same fingerprint is very
unlikely if the hash function is properly chosen as we wilbshater in this subsection.
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In the rest of this subsectioR, will denote the sef0, 1}, whereas: will denote a non-negative
integer and/(1) an integer such that(n) > n. We would like also to note that most material
presented in this subsection comes from a course on theltgBart Preneel during the summer
school “crypt@b-it 2009”.

Formal definition

In the discussion above, we considered a fixed hash funt¢tammever in more practical situations,
it is useful to consider families of hash functions paramegel by keys.

Definition 1.1. A family of hash functions is a 4-tupl®( R, K, H) such that:

1. D = 2™ is the set of possible messages, called also the domairedfash functions
family,

2. R = X" is the finite set of possible fingerprints, called also thegenf the hash functions
family,

3. K is the finite set of possible keys,

4. H is the set of hash functiortg € H, wherek € K andh; maps messages fromto R.

Security properties
The most important security properties required in a crggphic hash function are:

One waynessLet & be a function with domai® = %™ and rangek = £". h is one-way if it
meets the following conditions:

e Preimage resistancdet = be selected uniformly i and letM/ be an adversary that on
the inputh(z) outputs, in polynomial time)/ (h(x)) € D. For each such an adversary,
we require that:

Pr [h(M(h(x))) = h(z)] <e,

rERD
where the probability is taken over the inputitbas well as on his random tosses, and
e is a negligible function in the security parameter.

e Second preimage resistandet = be selected uniformly at random from and let\M
be an adversary that on the input D outputs, in polynomial time’ € D such that
2’ # x. For each such an adversary, we require that:

Pr [n(M(h(z))) = h(z)] <,

rERD

where the probability is taken over the inputitbas well as on his random tosses, and
e is a negligible function in the security parameter.
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Collision resistance.Let (D, R, K, H) be a function family with domai® = %™ and range
R = X", Let F be a collision string finder that on inplite K outputs in polynomial time
either? or a pairz, 2’ € D such thate # 2’ andhy(z) = hg(z’). We require for each such
an F the following:

77‘?77
Pr [F(H) £77) <«

where the probability is taken over the random choiceB ahd of its inputt € K.

The work [Rogaway & Shrimpton, 2004] studies the relatidngp{ications and separations) be-
tween these properties and further security notions knawhdsh functions.

Finally, we finish this list with a property required in manygtographic applications, that is
therandom oracle modeintroduced by Bellare and Rogaway in [Bellare & Rogaway9d]9 In
this model, a hash functiol : D — R is chosen uniformly at random from the set of functions
from D to R. Moreover,h is not given by a formula or algorithm to compute its outpisus, the
only way to compute the valugx) of somez € D is through acall to the function oracleThis
can be assimilated to looking up a huge codebook consisfingloes inD and corresponding
values inR such that for each possihlec D, there exists a completely random valug) € R.

Constructions and issues

The design of cryptographic hash functions started witlitérated structure proposed by Damgard
in [Damgard, 1989]. The basic idea of this structure cdadisn splitting the message to be
hashed into blocks of fixed length, and hashing them blockdgkwith a compression function.
The idea was efficient and elegant and has inspired a growirdly ®f the relations between the
compression function and the resulting hash function. Mege this structure was the origin
of two series of celebrated hash functions which are madgsused in cryptography that are:
MDx (x=4,5) and SHA-y (y=0,1). In fact, the first series ofraéed hash functions was due to
Rivest and appeared under the name MD4 in 1990, and was égtleiced by MD5 due to some
weaknesses in the previous version. The next series iFlcaHA-y (Secure Hash Algorithm)
and was conceived by NIST in 1992 (SHA-0) and 1994 (SHA-1)heDtonstructions of hash
functions are based on block ciphers or on algebraic strestdor instance elliptic curves. The
advantage of such constructions resides in benefiting frencomprehensive study furnished by
their underlying structures, for instance in case of algebronstructions, one can even come up
with formal security proofs, however these constructi@main slow compared to dedicated hash
functions.

The current state-of-the-art in hash functions is thatredifractical proposals have been bro-
ken. Starting from MD4, this algorithm was first shown to haedisions in 1996 by Hans Dob-
bertin in [Dobbertin, 1996]. A more efficient collision attawas found by the Chinese team of
Wang in [Wanget al,, 2005]. Generating collisions now in MD4 is as fast as vénigyit. MD5
was similarly partially cryptanalyzed by Dobbertin in [Cidrtin, 1996] and later fully broken in
[Wang & Yu, 2005] by the same Chinese team. Besides, SHA-B&Al-1 had the same fate and
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were identified to have weaknesses which argue againstrige@m in use. SHA-2 (a set of four
hash algorithms, namely SHA-224, SHA-256, SHA-384, and S42&)was intact so far however
it is algorithmically close to SHA-1 which means that effodre underway to break it. This has
motivated seeking a new hash standard SHA-3 which will becsedl via an open competition
running between falls 2008 and 2012.

1.2.6 Pseudo random number generators (PRNGS)

Random numbers are of central importance in cryptographys ieed manifests for instance
when setting up key pairs for cryptographic systems or irbabdistic encryption. Although
there seem to be many techniques to obtain random numbgrssgstem clocks, key strokes
or mouse movements etc, most such techniques remain expamnpared to the amount of
randomness that needs to be extracted. An illustrative pbeaffrom a course on cryptography by
Joachim von zur Gathen) is that a 1 GHZ computer running amupted for a year moves through
365 - 24 - 60 - 60 - 10° or 2548 cycles, and thus can only provide random bits (if we take these
cycles as random). These bits are certainly not enough foreasonable protocol, for instance El
Gamal’s encryption which needs at least a thousand randism bi

To remediate to this problem, cryptographers invented tten of pseudo random number
generators (PRNGs). A PRNG is a deterministic algorithmcWwhinputs strings from a small set
X and outputs strings in a larger €t The idea consists in starting from a truly random string in
X, which would serve as seedfor the PRNG, and outputting a string Yawhich is indistinguish-
able from a truly random string iti. Note that a truly random string in a finite s€ts a string
which has probability of occurrencgs. In Subsection 1.1.6, we discussed many notions of indis-
tinguishability ranging from perfect indistinguishabjlto computational indistinguishability. In
cryptography, as the protagonists are polynomial timerélgns, PRNGs thrive on computational
indistinguishability.

PRNGs are proven to exist under the assumption that one weidns exist, and there are
many constructions based on any one way function or perrontaiVe refer to [Goldreich, 2001,
Chapter 3] for more details. Finally, PRNGs are massiveddus practice and there exists a good
number of efficient PRNGs which enjoy a strong security, fistance the Blum Blum Shub PRNG
[Blum et al,, 1986] based on factoring.

1.3 Reductionist security

We are now able to start a quick browse through a branch ot@gyaphy concerned with gaining
confidence on cryptographic schemes, namely reductioecstrgy. In fact, assertions that a sys-
tem is secure because no one has broken it so far are no lcagkrsince experience proved that
these systems are broken sooner than later. This is exglaynthe fact that usually the malicious
adversary’s view transcends the designer’'s one. Henceydammalism was needed to procure
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trust in cryptographic schemes. The following steps hawenlaopted by designers in the last
decade to prove security of their systems:

1. Define clearly the security notion the system needs to,rbgetombining the security goal
the system should attain and the adversarial power thekatthas access to.

2. Describe a well studied problemupon which the security of the system will rest.

3. Provide asecurity reductiorirom the studied problem to breaking the scheme in question.
That is, provide a polynomial time algorithi that solves the probler® given access to
an algorithmA breaking the security of the system in the sense defined g Bt&uch a
security proof will guarantee the security of the systenhd problemP is believed to be
hard.

Hence, with such a formalism, a system is secure becausptiirea a high level of security
in a strong adversarial model under the reasonable assumtptit some well studied problem is
hard.

In the rest of this section, we will expand in this topic by dafg formally the standard secu-
rity notions for signature and encryption schemes that béllused later in this thesis. Then, we
describe some celebrated assumed “hard” problems. Werdtasafterwards this notion with a
small example, and we finish by tackling some advanced ttigeeglealized proof methodologies
or meta-reductions. We wish to note that most material piediin this section comes from two
courses on the topic by Pascal Paillier and Marc Joye dunegammer schools “crypt@bit 2007”
and “crypt@bit 2009” resp.

1.3.1 Notions of security

The standard security notion for digital signatures is thistential unforgeability under a chosen
message attack (EUF-CMA), introduced in [Goldwasteal., 1988]. It is defined through a game
between a challengét and an adversaryl. During this game,A can obtain signatures on any
message of his choice, and at the end, he must output a vatidhpasage/signature where the
output message has not been queried before for signature.sighature scheme is said to be
existentially unforgeable if any such an adversdriras a negligible probability of success in the
aforementioned game.

Definition 1.2 (Existential Unforgeability - EUF-CMA)Let> = (keygen, sign, verify) be a digital
signature scheme, and lgt be a PPTM. We consider the following random experiment, evher
is a security parameter:
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ExperimentExp$’ ™ (k)
(pk, sk) < X.keygen(k)

(m*,0%) < AS(pk)
S : m — X.signg(m)
return 1if and only if the following properties are satisfied:
- Yoverify, [o*, m*] = {1}
- m was not queried t®

We define theucces®f A via:
Succ%‘ﬁcma(m) = Pr [Exp%‘fffma(/ﬁ) = 1} )

Given(t,q,) € N> ande € [0,1], A is said to be at, ¢, ¢,)-EUF-CMA adversary against the
schemeX if, running in timet and issuingg, signing queries,A hasSucc%fﬁ;fma(m) > e. The
scheme® is called(t, ¢, ¢;)-EUF-CMA secure if nq(t, ¢, ¢;)-EUF-CMA adversary against it ex-
ists. Finally, we consider a digital signature schemevith security parameter € N; (k) is
said to beEUF-CMA secure if, for any polynomial functionsyg, : N — N and any non-negligible
functione : N — [0, 1], itis (¢(k), e(k), ¢s(k))-EUF-CMA secure.

Remark 1.3. (SEUF-CMA) In caseA is allowed to output a message already queriedtoyet
not with a signature obtained fro, and still does not win the game, the scheme is called SEUF-
CMA secure § stands for “strongly”).

In the rest of this subsection, we will define the notions f&syanetric encryption that we will
encounter later in this thesis, namely NM-CPA, OW-CCA anBiNTK, for ATK € {CPA PCA -
CCA}.

The fist notion that we will present is called non-malledpilinder a chosen plaintext attack
(NM-CPA). It was introduced by Dolev, Dwork, and Naor in 19folev et al, 1991], and is
defined similarly through a game between a challenger andharsary.A. During this gameA
can only encrypt messages of his choice (inevitable in plialy cryptography), and at some point,
he outputs to his challenger a distributibnfrom which messages can be drawn. The challenger
picks a message: from D, encrypts it inc and hands it to4. A continues encrypting messages
of his choice, and at the end of the game outputs a binaryiael& and a ciphertext’. .4 wins
the game if the decryption af is related tom via the relationR, and the encryption scheme is
proclaimed non-malleable if the successbin this game is negligible.

Definition 1.3 (Non-Malleability - NM-CPA) LetT" = (keygen, encrypt, decrypt) be a public key

encryption scheme, and lgt be a PPTM. We consider the following random experiment, eher
IS a security parameter:
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ExperimentExpy ;™ ()

(pk, sk) < T".keygen(k)

D + A%(pk)
‘ € :m +— T.encrypt, (m)
R
m<— D
c < I".encrypt, (m)
(¢, R) = A%(pk, c)
return (D, R, ¢, )

We define theucces®f A via:

Sucey i (k) = Pr[R(m, m')] — Pr[R(m*,m’)]

nm-cpa

whereExpp (k) = (D, R, ¢, '), m’ = I".decrypty (c') , andm* & D.

Givent € Nande € |0, 1], A is said to be dt, €)-NM-CPA adversary againdt if, running in time
t, A hasSucc y*(x) > e. The schem& is called(t, «)-NM-CPA secure if ngt, £)-NM-CPA
adversary against it exists. Finally, we consider an entioypschemd’ with security parameter
rk € N; I'(k) is said to beNM-CPA secure if, for any polynomial function: N — N and any
non-negligible function : N — [0, 1], itis (¢(x), e(x))-NM-CPA secure.

The next notion that we consider is called one wayness undeosen ciphertext attack (OW-
CCA). One wayness is the oldest and most natural notion ibii encryption should satisfy. It
was introduced in the seminal work of Diffie and Hellman inffi@i & Hellman, 1976] to denote
the hardness of recovering plaintexts from their corredpanciphertexts in a given encryption
scheme. One wayness under a chosen ciphertext attack teefeeshardness of inverting cipher-
texts even in presence of a decryption oracle the adversarguaery for any ciphertext except of
course on the challenge.

Definition 1.4 (One Wayness - OW-CCA)LetI" = (keygen, encrypt, decrypt) be a public key
encryption scheme with message spade and let. A be a PPTM. We consider the following
random experiment, whereis a security parameter:
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ExperimentExpp”, ““ (k)
(pk, sk) < I".keygen(k)
T + A®(pk)

| © : ¢ — T.decrypty(c)
m* & M
c* < I.encrypt,, (m*)

m <+ A®(pk, c*)
| D : ¢ (5 ¢*) — T.decrypty(c)
return 1if m = m*

We define theucces®f A via:
Succp’ (k) = Pr [ExpP® (k) = 1].

Given(t, q;) € N*ande € [0,1], Ais called a(t, ¢, ¢;)-OW-CCA adversary againsk if, running
in time ¢ and issuingg; decryption queries,A has Succp’ (k) > . The schem& is said
to be(t, ¢, g;)-OW-CCA secure if no(t, ¢, ¢;)-OW-CCA adversary against it exists. Finally, we
consider an encryption schenhewith security parametex € N; I'(x) is said to beOW-CCA
secure if, for any polynomial functiortsq; : N — N and any non-negligible function: N —
0,1], itis (t(k),e(k), ga(r))-OW-CCA secure.

The last security notion we consider for public key encrypiis called indistinguishability or
sematic security. It was introduced by Goldwasser and MiodiGoldwasser & Micali, 1984]
and informally denotes the hardness of distinguishingemfgxts based on their underlying mes-
sages. The formal definition of this notion is again througjame between an adversadyand a
challenger. The game runs in three phases; in the first phakas access to the oracles allowed
by the given attack model, and eventually outputs two messag, mj from the message space
considered by the given encryption scheme. In the seconldadieage phase, the challenger picks
uniformly at random one of the messages, encrypts it ang dgineeresult tod. In the last phased
continues querying the oracles he had access to in the fiaseplwhich now reject queries made
w.r.t. the challenge ciphertext. At the end of the last phaseutputs his guess for the message
underlying the challenge, and is considered successfutiguess is correct.

Definition 1.5 (Indistinguishability - IND-ATK). LetI" = (keygen, encrypt, decrypt) be a public
key encryption scheme with message spatieand let.A be a PPTM. We consider the following
random experiment, far <& {0, 1}, wherex is a security parameter:
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ExperimenExp ™" * (k)

(pk, sk) < T".keygen(k),
(mg, my, I) + A°(find, pk)
if atk = cpa then © = empty

if atk = pcathen O : (m,c) — m < [".decrypty, ()
if atk = cca then O : ¢ —— ['.decrypty(c)
c* < D.encrypt,, (m;)
d < A°(guess,Z, ")
if atk = cpa then © = empty
if atk = pca then O : (m,¢)(# (m},¢*),i=0,1) — m < I[".decryptg(c)
if atk = cca then O : ¢(# ¢*) — I'.decrypt, (c)

Returnd

We define thadvantagef A via:

ind—a ind—atk— 1
AdVFi\ tk(/<o) = |Pr [Exprg4 b () = b} ~3

Given(t,q) € N? ande € [0,1], A is called a(t,¢,q)-IND-ATK adversary against’ if,
running in timet and issuingg queries (to the allowed oracled has Adv{%;**(x) > . The
schemd' is said to bgt, , ¢)-IND-ATK secure if ndt, , ¢)-IND-ATK adversary against it exists.
Finally, we consider an encryption schemievith security parametex € N; I'(x) is said to be
IND-ATK secure if, for any polynomial functiortssq : N — N and any non-negligible function

e:N—[0,1],itis (t(x),e(k), ¢(x))-IND-ATK secure.

1.3.2 More hard problems

In Subsection 1.2.2, we presented two encryption schenasely RSA [Rivestet al, 1978]
and El Gamal [El Gamal, 1985] that are OW-CPA secure if sonodlpms, that are easier than
factoring and discrete logarithm respectively, are difficun this paragraph, we give a formal
description of both problems as well as some of their vasiant

RSA-like problems

Definition 1.6. The RSA Problem [Rivestt al., 1978]. Let N be a product of two equally sized
primesp and ¢ (p andq are x-bit integers). Let furthey be an integer irZy ande > 1 be an
integer co-prime withp(NV). The task of an RSA adversafyis to compute the unique integetn

26



Z}, such that® = y mod N. The advantage of such an adversary is defined by:
(P, ¢, N, €) < keygen(1"),
y < LY,
. T operations A(N, . y)7
x¢ =y mod N.

Adv(A) = Pr

where the probability is taken over the random generatiamefRSA instance as well as on all the
random choices of the RSA adversary.
Finally, we say thathe RSA assumption holdswe have the following implication:

7 = poly(k) = Adv(A) = negl(k).

Definition 1.7. The Flexible RSA Problem [Bag & Pfitzmann, 1997].Let N be a product of
two equally sized safe primes, i.e. primes of the fopm- 1, wherep is itself a prime. Let further
y denote an integer ifZ,. The task of a Flexible RSA adversadyis to output an integet € Z3,
and an integee > 1 such thatz® = y mod N. The advantage of such an adversary is defined by:
(P, ¢, N) < keygen(1"),
y ¢ L,
(.CL', 6) T operations A(N, y)7
z¢ =y mod N A (z,e) # (y,1).

Adv(A) = Pr

where the probability is taken over the random generatiothefFlexible RSA instance as well as
on all the random choices of.
Finally, we say thathe Strong RSA (SRSA) assumption hoifis

7 = poly(k) = Adv(A) = negl(k).

It is easy to see that the RSA problem and its flexible variamteasier than factoring. The
reverse is still unclear. Actually, the only results we hab®ut the relation between RSA and
factoring are the work [Boneh & Venkatesan, 1998] on the iggality of reducingalgebraically
factoring to RSA, and the recent proof by Aggarwal and Maur¢Aggarwal & Maurer, 2009] of
the equivalence between factoring and RSA with respectriiergéring algorithms.

Diffie-Hellman-like problems

In Subsection 1.2.2, we briefly mentioned that the EI Gamahgiion scheme meets different
levels of security under the hardness of different probleive give in the present paragraph a
formal description of these problems.

Let (G = (g), -) be a multiplicative group of ordet, generated by.
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Definition 1.8. The Computational Diffie-Hellman Problem (CDH)The input to this problem
consists ofA = g* and B = ¢°, wherea, b are chosen uniformly at random fra#y. The adversary
A is then requested to computeCasuch thatC' = ¢*. The advantage of such an adversary is
given by:
(G,d, g) < keygen(1"),

Adv(A) = Pr (a,b) & 7%,
g“b T operations A(ga, gb).
where the probability is taken over the generation of the Gb$tance as well as on the random
choices ofA.
Similarly, we say thathe Computational Diffie-Hellman (CDH) assumption haiids

7 = poly(k) = Adv(A) = negl(k).

Definition 1.9. The Decisional Diffie-Hellman Problem (DDH)The input to this problem con-
sists ofA = ¢¢, B = ¢°, andC = ¢¢, wherea, b are chosen uniformly at random fro#y andc is
eitherab mod d or a random element iZ,;. The polynomial time adversary is then requested

to decide whethet = ab mod d or not. Letb be the output of such an adversary, we define its
advantage as:

i (G,d, g) < keygen(17),]
(a,b) & 7%,

R

b+ 10,1
Adv(A) = |Pr i 4.

if b =1then ¢ < abmod delse ¢« Z,

d T operations A(ga, gb, gc)’

L b=d.]
where the probability is taken over the generation of the DbB${ance and on the random choices
of A.
Similarly, we say thathe Decisional Diffie-Hellman (DDH) assumption hoifts

7 = poly(x) = Adv(A) = negl(x).

Definition 1.10. The Gap Diffie-Hellman Problem (GDH)The input and output of this problem
are similar to those of the CDH problem, with the exceptiosugiporting the adversaryl with a
DDH oracle that he can query on any DDH instance of his choice.

DO =

(G,d, g) < keygen(1¥),
Adv(A) = Pr (a,) <= Z},

T operations
ab AD DH (

g 9%, g").
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Key generation Select two primes = 2p’ + 1 andg = 2¢’ + 1, wherep’ andq’ are primes,
compute the safe RSA moduldé = pq,
selectarandom €y Zy;,
consider a collision-resistant hash functién {0, 1}* — Primes > 3 (¢ ~ 30),
set the public keyk to (N, s) and the private key t@, q).

Signature A signature on a message € {0, 1} is computed as = s/*™ mod N.

Verification For an alleged signatureon m, check whethes* (™) ~ smod N.

Figure 1.7: The GHR signature

whereDDH : (g%, ¢% ¢¢) — ¢ ~ abmod d, and the probability is taken over the generation of
the GDH instance and on the random choiceslof
Similarly, we say thathe Gap Diffie-Hellman (GDH) assumption holifts

7 = poly(k) = Adv(A) = negl(k).

Remark 1.4. The CDH, DDH, and GDH problems arandom-self reducibld.e. one can gen-
erate from a specific instance a random one. Thus, the averagge and worst case of all these
problems are equivalent.

Remark 1.5. The CDH problem is obviously harder than the DDH and GDH peols. There is
actually a clear separation between the CDH and the DDH pzofd in some groups which we
will see in Section 1.5.

We are now able to state that the EI Gamal encryption scheme is
1. OW-CPA secure if the CDH problem is hard, i.e. the CDH agstion holds.
2. IND-CPA secure if the DDH problem is hard, i.e. the DDH asption holds.

3. OW-PCA secure if the GDH problem is hard, i.e. the GDH agsiion holds.

1.3.3 Example: The GHR [Gennaroet al,, 1999] signature scheme

We illustrate the principle of reductionist or provable ety by one of the simplest security
reductions known in the literature: the security proof &f GHR [Gennar@t al., 1999] signature
scheme.

Theorem 1.1. The GHR signature, depicted in Figure 1.7, is EUF-CMA seclutke SRSA as-
sumption holds.
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Proof. Let R be the Flexible RSA adversarR is given the Flexible RSA instance, sa¥, y),
in addition to an EUF-CMA attacked, and is requested to come up with a p@ire) such that
e > 1 andz® = y mod N. R needs to generate properly the parameters of the GHR scloede f
in order to be able to answer the signature quedesay request. Thusy should feed4 with a
keypk = (N, s) such that allowsR to easily extractV(m;)-th roots ofs, wherem; correspond to
the messages queried Byfor signature. At the same time should be cleverly chosen such that
it allows exploitation of the existential forgery output layto solve the Flexible RSA instance.

R will then behave as follows:

Key generation.

e Choose uniformly at random< [1,2].

e For eachm; € {0,1}¢, compute¥(m;) and sett) = [, ¥(m;).

J#i
e Sets = y¥ mod N and set the GHR public key @V, s).

Since the provenance 01V, y) is the Flexible RSA instance, thus external4pand the function
[+ y— y¥is one-to-oneF is coprime to®(NV)), then(N, s = y¥) is perfectly indistinguishable
from a random GHR public key.

Signatures simulation. We distinguish two types of messages .4 can request for signature:
e eitherj # 4, in this caseR answers withyZ/¥ ("),
e orj =i in which caseR will abort the experiment.

The difference between the simulation provided above aeddhl execution of the GHR signing
algorithm is whenA requestsn; for a signature. Sincéis chosen uniformly at random from

[1,2], then the probability thai:; does not belong to the set of queried messdges, . .., m;, }
218

is 4 =1~ .
Exploitation of A’s forgery. At some point,A outputs his forgery onm ¢ {m;,,...,m;, },
where{m,,,...,m, } is the set of messages queried.btyAssume thatn = m;, then the forgery

satisfies the following equation:
o?m) — ¢ = y¥ mod N.

SinceF is a product of primes different from the prindégm;), thenR can compute integers
andb such that - ¥(m;) + b - E = 1. Hence the following holds:

a¥(m;)  ,bE __ a\Il(mi)O_b‘Il(mi)

WE =y )‘P(mz‘)'

y=y = (y*o’
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R will then output to his challenger the paie = yc®,e = ¥(m;)). R solves his RSA
challenge if4 produces a forgery on the message This event occurs with probability/ (2 —q).
Now, if € 4 is the advantage of the attackdy then the advantage of R can be computed as:

2og 1
2t 2€_q 2(5'

ER — €4

O

Remark 1.6. The factor2’ is called thereduction lossA tight security reduction is characterized
by a small reduction loss. The importance of this factor rfemts when we consideoncrete
security instead ohsymptoticsecurity. In fact, asymptotic security guarantees only thecheme

is asymptotically secure, i.e. all attacks vanish asynigadly if the reduction loss is polynomial in
the security parameter and the underlying problem is belieo be asymptotically hard. Concrete
security helps to tune the security parameter so that thersehhas a desired concrete security.
For example, if the modulus needs to be at least of Ki2¢ so that the advantage of the Flexible
RSA attacker is at most= 278, then with the above reduction, the advantage of the GHRledta

is only smaller thar 4 = 2789+ = 2759 To have a GHR security abo2it®’, one has to increase
the size of the modulus.

Remark 1.7. There exists a long-message variant of the GHR signaturensetwhich is proven
EUF-CMA secure under the SRSA assumption with a securgyalosuty, whereq is the number
of allowed queries. This proof, provided in [Coron, 2002 shown to be optimal, i.e. there exists
no tighter reduction from the Flexible RSA problem to EUFALMbteaking this variant of GHR.

1.3.4 Ideal proof models

In Subsection 1.3.3, we provided a security reduction from Elexible RSA problem to EUF-
CMA breaking the GHR signature scheme without making anyragsions on the ingredients of
the scheme (groufdy,, the hash function, etc...); we say that the provided security reduction
stands in thestandard model Such proofs are usually difficult to obtain even when thagies
extremely simple, e.g. RSA-FDH [Bellare & Rogaway, 1996fisTexplains why cryptographers
resort toidealizingsome components of the scheme in question and providinguaityeproof
from the presumed hard problem to breaking the scheme wsfient to ageneric adversanyi.e.
an adversary accessing the idealized object through arteor&ctich proofs do not provide any
insights about the real security of the scheme in the stanai@del as there exist many designs
that are proven secure in idealized settings but insecutberstandard model. However, they
provide strong evidence that the scheme in question is sgrowvided the underlying problem is
hard or the adversary does not exploit special propertiiseoiiealized setting.

The popular idealized settings in cryptography are:
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The random oracle model (ROM).This is a mathematical abstraction used to model a random
hash function. It consists of a theoretical black box thapomds to every query with a
uniformly chosen random string from the output domain, wité exception of giving the
same answer to the same query. A way of simulating the randawgieocan be achieved
by picking a random elemenptfrom the given range for every quesy and storing the pair
(xz,y) in a history listHist so that if the same query is solicited, the reply would be.
Random oracles proved useful in cryptography and they wesedonsidered by Fiat and
Shamir in [Fiat & Shamir, 1986] to remove interaction fromd@nd public-coin identifi-
cation schemes. Later, they were used by Bellare and Rogew@ellare & Rogaway,
1993] to provide generic constructions of encryption amgghaiure schemes. As previously
mentioned, there are schemes that are proven secure in thlebdROinsecure in the stan-
dard model. We note for instance the result of GoldwassefTandhan Kalai [Goldwasser
& Tauman Kalai, 2003] that exhibit secure 3-round publicacdentification schemes for
which the transformation of Fiat and Shamir in [Fiat & ShariB86] yields insecure digital
signature schemes fanyhash function used in the transformation. This contragtsvibrk
of Pointcheval and Stern [Pointcheval & Stern, 2000] whicbvpd that the Fiat-Shamir
methodology always produces EUF-CMA secure digital sigrestin the ROM. The result
in [Goldwasser & Tauman Kalai, 2003] is strengthened by thekwf Paillier and Vergnaud
[Paillier & Vergnaud, 2005] which show that some signatdres the Fiat-Shamir paradigm
cannot even be UUF-KOA secure in the standard model. Fina#yfinish this paragraph by
citing a recent positive result about ROM, namely an impletaigon of a hash function into
elliptic curves which igndifferentiablefrom a random oracle. We refer to [Coron & Icart,
2009] for further detalils.

The generic group model.A generic model of a group was firstintroduced by Nechaev [ideg,
1994]. Shoup [Shoup, 1997] later improved these resultsagptied this model to cryptog-
raphy. In this model, one assumes that operations in a grange performed only by
means of an oracle. More specifically, suppose that an (additive) group of prime order
q. ThenG is isomorphic to the additive groufy, and for any non-identity elemeiit € G,
one can construct an efficient isomorphism sendiagZ, to i P, using some version of the
repeated squaring algorithm to perform the scalar mut@pion in polynomial time. In a
generic group, one assumes that instead of having exphicitudlas for the group element
iP, we rather have an “encoding’(i) € S C {0,1}* that represents the elemetft. A
generic algorithm4 will then consult the oracle for two types of queries:

1. Given an integei € Z,, A requests the encoding oFf: the oracle will then select
randomly a value (i), to represent the elemeif®, from the given set of bit strings.

2. Given two encodings(i) ando (), A requests (without knowing necessarilgnd )
the encoding of (i + j). Again the oracle responds with a randomly chosen bit-gtrin

The only condition on the oracle responses is that if the sgwoep element is queried a
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second time, the same corresponding encoding must be eeturn

One of the important results of this model is the analysi®afglexity assumptions in group-
based cryptography. For instance, Shoup gave in [Shouf;] 1@®er bounds for solving
the discrete logarithm problem and some other related enadl Finally, a security proof
in this model assures the absence of an adversary who betpanescally with respect to
the given group. However, it does not rule out the existeri@esuccessful adversary for a
specific group [Dent, 2002; Steat al., 2002].

The ideal cipher model. It consists in considering a block cipher asaadom permutationA
random permutatio takes a paifk, x) and returng; = E(k, z) which is random in the
considered range. Of course= E~!(k,y). To simulate such a permutation, one proceeds
as follows. For any new paifk, z), pick y at random from the output domain such that
(k,z,y) ¢ Hist[E], setE(k,x) = y and returry, and finally update the histoiyist[ E] with
the record &, z, y). Such a simulation looks similar to the random oracle moitelikation.

In fact, equivalence between the ROM and the ideal cipherlefass an open problem
until recently where Coron et al. [Coraet al., 2005] showed that security in the ROM
implies security in the ideal cipher model; namely they sbdwhat a random oracle can
be replaced by a block cipher-based construction, and thatirey scheme remains secure
in the ideal cipher model. The other direction was solveddhyears later in [Coroet al,,
2008], however recent works regard the paper in questioncasrect.

1.3.5 Meta-reductions

Meta-reductions are probabilistic oracle (single or mafacle) Turing machines, where one or-
acle tape consists of an efficient reduction from some proltteanother. Meta-reductions have
been successfully used in a number of important cryptogeagisults, e.g. the result in [Boneh
& Venkatesan, 1998] which proves the impossibility of reidgcalgebraically factoring to RSA,
or the results in [Paillier & Vergnaud, 2005; Paillier, 2Q@vhich show that some well known
signatures, which are proven secure in the random oraclaptaonserve the same security in the
standard model. Although most meta-reductions (used pptogyaphy) apply only to a category of
reductions, e.g. key preserving reductions [Paillier &afil 2006; Paillier, 2007] or algebraic re-
ductions [Boneh & Venkatesan, 1998; Paillier & Vergnaud)2jQthey constitute an efficient tool
to separate cryptographic problems ([Boneh & Venkates@®3]) or to disprove that the security
of some cryptographic scheme rests on the hardness of satiepr.

Figure 1.8 depicts the typical use of a meta-reduction iprdsging that a given problen®
reduces to breaking a given signature schéinéActually, let R be an algorithm that solves an
instance of the probler®, using an attacked against the signature scheme. NatureRyneeds
to simulate ta4 the key generation, the signature, and the verificationrailgos of . If one can
build an efficient algorithmM\ that usesR to solve an instance of the same probléninote that
such an algorithm needs to simulatédidhe adversaryl), then one can conclude the impossibility
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Figure 1.8: Example of a Meta-Reduction

of the existence oR.. In fact, existence aM indicates that under the hardnesgythe algorithm
‘R does not exist; otherwise, / is easy, therk might exist, however its work is useless (solving
a problem known to be easy).

1.3.6 Trends in reductionist security

Far from pretending to be exhaustive, this paragraph is medfto shed light on some of the
important trends in reductionist security.

Alleviation/removal of idealized models.As previously mentioned, separation results between

the standard model and idealized models become more andpopuar in cryptography.
An interpretation to this is that proofs in these idealizeodels leave unfair advantage to
proofs in the standard model as they modify the adversagrsputations in a way that
cannot be justified in practice. Thus the need for schemegplp secure in the standard
model. There is quite a good number of signature/encrysitiemes that are secure in the
standard model, however the underlying assumptions drerestrong, e.g. [Gennast al.,
1999; Cramer & Shoup, 2000] or the security reduction is Veoge, e.g. [Waters, 2005;
Hofheinz & Kiltz, 2009] or the scheme is very inefficient [Hatberger & Waters, 2009].

Convergence of complexity assumptionsSince the introduction of modern cryptography, many
complexity assumptions emerged, most of them were showugdbm number theory. To
name but a few, factoring, RSA, SRSA, discrete logarithmHCDDH, GDH, and many
more. A considerable effort in provable security was deptbip study the relation between
these assumptions [Maurer & Wolf, 1998; Shoup, 1997; Aggh&waurer, 2009].
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Impossibility/optimality proofs. One important issue in security proofs is to spot weaknesses
in a design when it fails to exhibit a real attack. In this snmpossibility proofs aim at
showing that a security level cannot be attained by a schemehvsuffers some inherent
flaws, e.g. [Palllier & Vergnaud, 2005; Paillier & Villar, P8; Paillier, 2007]. Additionally,
optimality proofs, i.e. proofs showing a security reductio be optimal, gained a lot of
popularity in cryptography as the reduction tightnessesents an important measure for
the concrete security met by a scheme, e.g. [Coron, 2002].

Automatic verification/generation of proofs. Motivated by the tools at the disposal of logicians
to verify proofs, e.g. pvs or coq, cryptographers startedheck the possibility of auto-
matically verifying and even generating security proofs tleeir schemes. However, this
area remains still unexplored since the only work in thigchion is due to Blanchet and
Pointcheval [Blanchet & Pointcheval, 2006].

Physical security. So far, the considered security notions defined for cryptplgic schemes
assume only dlack boxaccess of the adversary against the scheme to the allowelésra
This is not very realistic since the adversary might obseémeeenergy consumed by the
device while performing the computations, he might alseahfaults in these computations.
This triggered the crypto community to take into considerathis potentiafray boxaccess
to the oracles in question, and define new security notioosrdmgly. The state-of-the art
in this area is still very modest (see for instance [Goldwgs&009] for a survey).

1.4 Zero knowledge (ZK)

A basic problem in cryptography consists of a two-party gavhere one party tries to prove to
the distrustful other party that a statement holds truehauit revealing more information other
than the validity of the statement in question. We illugrtis situation with the example from
[Goldreich, 2001]: suppose that all users in a system keegpypted backups (using their public
keys) of their entire file system in a publicly accessibleage medium. Suppose that at some
point, a user Alice wishes to reveal to another user Bob tinéetd of one of her files. One trivial
solution consists in decrypting the file in question (usimg bwn private key) and sending it to
Bob. The problem with this solution lies in the inability obB to check whether the revealed
information is really the decryption of the public recordlick can circumvent the problem by
disclosing her private key to Bob, however this will give tatger the possibility of getting hold of
her entire file system, which is certainly not desired by Alic

Such a problem has motivated cryptographers to invent aamesin allowing Alice to conduct
a proof with Bob such that at the end of this proof:

1. Alice is ensured that Bob will not gain any information @thhan the validity of the state-
ment she tried to prove. Moreover, Bob cannot convince d fharty with the validity of the
statement in question.
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2. Bob accepts the proof only if the statement holds true witigh probability, that is, Alice
cannot convince Bob with the validity of an invalid statemen

In this section, we will recall such a mechanism, called Zarowledge proofs of knowledge
(ZKPoK). We will first establish the model of computation,nmaly the model of an interactive
proof system, then define the different notions related i®rttechanism and that are relevant for
the thesis.

1.4.1 Interactive proofs

A model of computation of an interactive proof system wag imsoduced by Goldwasser, Micali
and Rackoff [Goldwassest al, 1989]. It informally consists of a prove? trying to convince

a verifierV that an instance belongs to a languagk. x refers to the common input whereas
(P,V)(z) denotes the proof instance carried betwéeland V' at the end of which/ is (not)
convinced with the membership of the alleged instante L:

(P,V)(x) € {Accept, Reject }

P is modeled by a probabilistic Turing machine wheréags modeled by golynomialproba-
bilistic Turing machine. DuringP, V')(z), the parties exchange a sequence of messages called the
proof transcript. These messages sizes are polynomiatisitle ofr. Moreover,(P, V')(z) must
terminate in time polynomial in the size of The output valu¢P, V')(z) is a random variable of

the common input, the private input of? and the random coins of both and V" (both P and

V' are probabilistic Turing machines). We naturally want teeh@P, V')(z) = Accept with high
probability for all positive instances:(¢ L), and with small probability for all negative instances

(x ¢ L). This translates into the following definition (from [Ma20Q08]):

Definition 1.11. Let L be a language over a given alphabet. We say that a prot@edl’) is an
interactive proof (IP) system fdr if:

Pr[(P,V)(z) = Accept| x € L] >, (1.1)
and )
Pr [(P,V)(z) = Accept| = ¢ L] <6 (1.2)
for every probabilistic Turing maching, wheree and s are constants satisfying
1 1
€€ (5,1], b€ [0,5),

where the probability is over all the common input value§Rol”) and all random input values of
P, P,andV.

Equation 1.1 characterizes thempletenesshotion for an IP protocol, whereas Equation 1.2
characterizes theoundnessotion which captures the inability of a cheating prof&to convince
the verifierV with an invalid statement.
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1.4.2 Zero knowledge interactive proofs (ZKIPs)

In the previous subsection, we exhibited a proof mechanapalgle of convincing the verifier
with the validity of a valid statement. However, we did notegks the question of the additional
knowledge the verifier will gain aside from the validity ofetlstatement in question. Ideally, we
would like this additional knowledge to lzerqg thus the nameero knowledgeWe define formally
this notion as follows (from [Mao, 2008]):

Definition 1.12. Let (P, V') be an interactive proof system for some langudgeWe say that
(P, V) is zero knowledgdf for everyx € L, the proof transcript(P, V')(x) can be produced
by a probabilistic polynomial-time algorithm (in the sizétbe input).S with indistinguishable
probability distributions:

o if the probability distributions of P, V)(z) and S(x) are the same, then the protoda?, V)
is said to be perfectly zero-knowledge.

o if the probability distributions of P, V') (z) and S(z) are statistically indistinguishable, then
(P, V) is called a statistical zero knowledge protocol,

e finally, if the distributions of P, V)(x) andS(x) are computationally indistinguishable, then
(P, V') provides only computational zero-knowledgeness.

Conventionally, the algorithn§' is named a simulator for the ZK protocol since it provides a
simulation of the proof transcript. However, in case of petiZK protocols,S is called often the
equator as it provides a perfect simulation.

Remark 1.8 (Honest-verifier zero knowledge (HVZK)A protocol(P, V') is said to provide only
an honest-verifier zero knowledgeness if it is zero knoveléderfect, statistical or computational)
only when the verifier follows honestly the protocol instimes. It may well leak knowledge in
the presence of a malicious verifier who does not behave ashibed. However, it can be shown
that every honest-verifier statistical (computational) @ be turned efficiently into a statistical
(computational) ZK protocol [Goldreickt al, 1998].

Remark 1.9 (Simulatability of ZKIP) According to the above definition, a ZKIP assumes the
existence of an efficient algorithm capable of producing$aipts indistinguishable from those
obtained from the interaction with the real prover. For iaste, this simulator is not required to
interact with the verifier. However, most ZK (and not only Y @roofs in the literature have sim-
ulators which interact with the verifier; the idea consistsewindingthe verifier until he produces
an output that agrees with what the simulator generatedreBind. The example provided later
in this section illustrates such a technique which works disiéong as the universe from which the
verifier chooses his outputs is polynomially bounded (irsdé®urity parameter).

Finally, throughout this thesis, when we refer to the siraldity of a ZKIP, we mean the
existence of a simulator whighteracts with the verifieand produces transcripts that are indis-
tinguishable from those obtained from the interaction wié real prover.
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A complexity theoretic result: NP (co-NP)C ZK

An important result in complexity theory shows that everygaage in NP accepts a zero knowl-
edge proof system. This result has been proven in a consgunanner by first constructing a
ZK proof system( P, V') for an NP-complete probler, e.g. Graph 3-colorability by Goldreich,
Micali and Wigderson in [Goldreicht al, 1991] or boolean satisfiability by Brassard, Chaum and
Crépeau [Brassaret al, 1988], then propagating this property to the other langeéagin NP as
follows:

1. each party computes = f(2’), an instance of the NP-complete langudgelt is worth
noting thatf can by definition be computed and inverted efficiently.

2. P conducts a ZK proof with to prove that: € L.

It is obvious that the above construction of a ZK proof systemany language in NP constitutes
only a theoretic result. In fact, a practical ZK protocol slibhave the number of interactions
betweenP andV bounded by a linear function in the security parameter. tamot be achieved
by the above construction since we do not know any lineaisteamation (reduction) of an NP
language to an NP-complete one.

Finally, proving that co-NP languages accept also ZK prgefeams is done in a more general
frame; the above result concerning NP is extended to the ofasteractive protocols, namely the
class IP, and it is known that this class equals the class EER¢hich contains the class co-NP.

1.4.3 Example of a ZKIP: Schnorr’s [Schnorr, 1991] identifiation protocol

The Schnorr identification protocol was proposed by Schimojgchnorr, 1991] for a real-world
(smart card-based) application. This protocol operates égclic group(G, -) of prime orderd
which is generated by some elemegntThe common input of the prove? and verifierl is an
elementy of unknown discrete logarithm in bageand the private input of the prover is this very
discrete logarithm, say. That is, P proves toV that he knowse. This protocol is depicted in
Figure 1.9. Note that is a parameter that will be tuned later in the analysis.

Completeness. The completeness of the protocol is trivially achieved vpitbbabilitye = 1.

Soundness. Suppose that the cheating provers able to successfully carry out the above proto-
col without knowingz. That is,P , after having committed to & is able to answer the challenge
¢ with a response satisfyingg” = ty°. Note that, for a fixed, the last equation corresponds
each challenge to a unique response Thus, provided the discrete logarithm problem is hard in
G, P needs to guesscorrectly beforehand in order to provide an accepting ansiewill first

chooser & Z4, then computes = g"y~° and sends it as a commitment in the first step of the
protocol. In this way, whe® receives the correctly guessede will simply answer withr. This
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ProverP Verifier V
Choosek & Zq
t

Computet = g* ;
C

Choose: <= {0, 1}(c € N)

r =k + cr mod d

Verify that g™ = ty°

Figure 1.9: Proof system fdry“: a € Z,} Common input: (y, g) andPrivate input: z: y = g°

results in a soundness error equa2td, which corresponds to the probability of correctly guess-
ing the challenge. As a consequence, the higher the paramg&tite better for the soundness of

the protocol. However, we will see in the next paragraph watannot increase this parameter
indefinitely since this would compromise the zero knowledss of the protocol.

Zero knowledge. For this property, we change sides. We want now to prohikitvérifier from
learning anything from the prover apart from the validitytoé membership oj to L. For this,
we provide the following simulator:

1. Generate uniformly a random challenge’ {0, 1}*. Choose a random & 7,4, compute
t = ¢"y~¢, then sends it to the verifier.

2. Getc from the verifier.
3. If ¢ = ¢, the simulator sends back Otherwise, it goes to Step B(vindsthe verifier).

Let us now analyze the adequacy of this simulator. The pi®fiest message in the protocol is a
random value in G, and so is the simulator’s. Moreover, the distributionshaf tesponses of the
prover and of the simulator resp. are again identical. inak observe that the simulator runs in
expected tim@’ since the probability of not rewinding the verifier is:

Prlc=¢] = Z Prlc = ¢;,d = ¢
Cie{o,l}e
= Z Prlc = ¢;] Pr[d = ¢]]

c;€{0,1}¢

= 27 Z Prlc = ¢

c;€{0,1}¢
= 2
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Adjusting/ to a factor logarithmic in the security parameter ensurasttie simulator will run
in expected polynomial time.

1.4.4 More on zero knowledge

Since zero knowledge was invented in the mid-eighties,itbature about it was so abundant that
it exceeded 400 publications. In this subsection, we witicantrate on the aspects of this notion
that are relevant for this thesis.

Further definitions (X protocols)

A public-coin protocols a protocol in which the verifier chooses all its messagedamly from
publicly known sets. Athree-move protocotan be written in a canonical form in which the
messages sent in the three moves are often called commijtoteaitenge, and response. The
protocol is said to have thkonest-verifier zero-knowledge property (HVZK}here exists an
algorithm that is able, provided the verifier behaves ascgpitesd by the protocol, to produce,
without the knowledge of the secret, transcripts that agestmguishable from those of the real
protocol. The protocol is said to have tepecial soundness property (SSp)here exists an
algorithm that is able to extract the secret from two acogptianscripts of the protocol with the
same commitment and different challenges. Finally, a thmege public-coin protocol with both
the HVZK and SSp properties is calledgrotocol

Round efficiency

As mentioned in the previous subsection, the soundnessier&chnorr’s identification protocol
amounts t@~*, where/ is a factor logarithmic in the security paramel&s d. In order to reduce
this error probability to a negligibly small quantity, i.@ quantity smaller than/log d° for all
constants:, we can repeat the protochlg d many times. Such a protocol is then calletbg-
round protocolwhich is characterized by a number of rounds linear in theirsigcparameter.
There exists also the category of protocols which need toepeated a polynomial factor (in
the security parameteéog d) of rounds. We talk then abowily-round protocols Examples of
these protocols are for instance those proving the valafitygeneral NP statement via a general
polynomial reduction to a NP-complete problem.

Sequential vs concurrent zero knowledge

We addressed in the previous paragraph the possibilitypefattng many times a proof of knowl-

edge in order to reduce its soundness error. This repetaonbe sequential or in parallel. The
natural question to ask is whether the zero knowledge feasuysreserved or not. The good news
is that zero knowledge is closed under sequential repetitiche protocol (see [Goldreich, 2001,
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Chapter 4, Paragraph 4.3.4] for the proof), which meansakatan indefinitely reduce the sound-
ness error of a protocol without compromising its zero kremgleness. Parallel composition is
not however guaranteed to preserve zero knowledge. Lebg isoncurrent composition which
generalizes both sequential and parallel compositiorhiBxdomposition, many instances of the
protocol are invoked at arbitrary times and proceed atramyitpace. This composition turns out
to be of significant importance in many real life applicatorfFortunately, there exists a result
[Damgard, 2000] that shows that a wide range of known zemwkadge protocols, e.g- pro-
tocols, can be modified with negligible loss of efficiency tegerve zero knowledgeness under
concurrent composition.

Non-interactive zero knowledge (NIZK)

This notion, introduced in [Blunet al., 1988], consists of a prover who tries to convince a verifier
of the validity of some assertion in one move, i.e. withoweraction with the verifier. The basic
zero knowledge requirement for such proofs consists inaihg an efficient simulator outputting
messages indistinguishable from the prover’s. It is wodting here that the definition of the zero
knowledge requirement for these proofs is simplified beelus verifier cannot affect the prover’s
actions.

The most famous technique to obtain NIZK from their inteikgctariants is known as the
Fiat-Shamir paradigm [Fiat & Shamir, 1986]. It consists @ttihg the prover compute the ver-
ifier's challenge himself as a hash of the statement to beggr@nd of the first message. The
security of this construction is provided only in the randoracle model, which constitutes its
major shortcoming. In fact, it is not in general possibleristantiate the random oracle with a
concrete function and have the security properties pregerv

A recent method is due to Damgard et al. [Damgérdl., 2006]. It transforms a 3-move
interactive ZK protocolP with linear answer to a non-interactive ZK one (NIZK) using@mo-
morphic encryption scheme in a registered key model, i.@ nmdel where the verifier registers
his key. More precisely, let be the first message computed by the provePjnc € N be the
challenge sent by the verifier, and finally let= u + cv be the answer computed by the prover
in the third step, where,v € N. Let further" denote a homomorphic encryption scheme such
that I".encrypt(m + m’) = TI'.encrypt(m) - I'.encrypt(m’), wherem andm’ are integer values
in a suitable range. If the verifier chooses a key pRipk, I".sk) and publishes an encryptien
of the challenge;, then the prover can compugeas usuall'.encrypt(z) asI'.encrypt(u)e’, and
sends these quantities to the verifier in one pass. The vetiigryptsl.encrypt(z) to obtainz
and checks whethgt, ¢, z) is an accepting transcript. The authors in [Damgétrdl., 2006] pro-
posed an efficient illustration using Paillier’s encryptiand the proof of equality of two discrete
logarithms.
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1.5 Bilinear maps

Bilinear maps are essential in today’s cryptography. Theyused in constructing many crypto-
graphic schemes ranging from short digital signaturesftoieft public key encryption schemes.
A bilinear map is nothing but an efficient computable functimapping pairs of group elements to
elements in a third group. This function has two properti@snely it is bilinear and it is different
from the constant function. More precisely, [ét,,+) and (G,, +) be two groups with order
d, generated byP and @ respectively. Le{Gs,-) be another group with the same group order.
A bilinear mape is an efficiently computable function frod; x G, — G3 with the following
properties:

e Bilinear:Va,b € Z;: e(aP,bQ) = e(P, Q).
e Non-degenerate:( P, Q) # 1g,.

So far, there seems nothing new since the concept of bilineations is already known in math-
ematics. However, the contribution of cryptographers is #rea consists in building efficiently
these maps from special and nice groups, i.e. the group nfgof an elliptic curve.

In this section, we give a short survey on one popular pauseg in cryptography, namely the
Weil pairing. The working of this pairing is not needed in enstanding the thesis since bilinear
maps are used as black boxes when designing cryptograpgtemes. However, we chose to give
this short panorama in order to help evaluate the efficiefsystems using such a map. We will
first give a short introduction to elliptic curves, then ddse how to construct such a pairing.

1.5.1 Introduction to elliptic curves

LetF, be a finite field of characteristijc> 5. A smooth (non-singular) elliptic curve is defined by
the Weierstrass equation:

y2+a1xy+a3y:x3+a2x2+a4x+a6, a; EFq
or
v’ =2+ Az + B, A,B€F,, 4A°+27B*#0.

We define the group of points of an elliptic curve given by ohé&e two above equations as
follows:
E(F,) = {(z,y) € F, x F,: y* = 2° + Az + B} U {o0}
The additional pointo is called the point at infinity on the elliptic curve. Simigrwe can define
E(F ), whereF . is an extension of the fieltl;, by taking the points with coordinates in this
extension.
The group operation, which we will denotein the groupE(F, ), is defined as follows:

e VP e E(F,): P+ oco=Pandoo+ oo = o0,
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e if P and( are the intersection of with a vertical line thenP + () = oo,

e otherwise, ifP = (z1,y1) and@Q = (x9,y2) then P + @ = (x3,y3) such thatz; =

m? — x1 — xo andyz = m(z; — x3) — y; With

vyl
{ B il r #
m=

3z24A .
21;; if ;1 =29 and y; =y # 0

It is easy to check that with the above definition of the operat-, E(F,, +) is a finite

Abelian group with neutral elemenb. Moreover, we define the order of an eleméht

E(F,, +) to be the least positive integer such thatnP = P+ P+ - + P = oc.
~—_—————

m times

Definition 1.13(m-torsion points) The group ofn-torsion points of E is
E[m]={P € E(F,): mP = co}.

Fact1.2. E[m] = Z,, X Z, if ptm.

1.5.2 The Well pairing

The Weil pairing is a map: E[m] x E[m] = p,, = {¢ € F,|¢™ =1} C F.. wherek is called
the embedding degree, which satisfies the following progeert

1. VP,Q,Re€ E[m]: e(P+Q,R) =e(P,R)-e(Q,R)ande(P,Q + R) = e(P,Q) - e(P, R)
(bilinearity).

2. e(P,Q) =1V Q € E[m| & P = oo (non-degeneracy)
3. VP € E[m]: e(P,P) = 1.

The last property of the Weil pairing can be avoided usingstodiion map¥ : E[m| — E[m]
such thatP and ¥ (P) belong to disjoint cyclic groups of ordet. With this map, we are able to
define a modified Weil pairing such thaé(P, P) = e(P, V(P)).

So far, we have presented the most popular pairing in cryapdty along with its properties.
We will show in the rest of this section how one can efficiemtiyistruct such a pairing. We need
to first recall the notion of rational functions and theiridirs, then proceed to the description of
the algorithm computing this pairing.
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Rational functions and divisors

A rational function is a ratio of polynomials, e.g.

o fl(‘I?y)
f(xvy) - fQ(I',y)

P = (z,y) is called azeroof the functionf if fl( ) = 0, and is called @oleof f if f,(P) = 0.
A rational functionf (z,y) = }”;Ex y) wheref, and f, denote the top degree parts fofand f,
respectively, can be evaluated at the special pgirats follows

1. if f; andf; have the same degree, thgfro) =

f10.1)

. if f1 has larger degree, thefitoo) =

3. if f, has larger degree, theftoo) = oD

Given an elliptic curver, we can define a rational function on it by simply mapping eatats
pointsP = (z,y) € Eto f(P) = f(z,y). It easy to see that we can write (using the Weierstrass
equation that defines the curgg:

f(z,y) = up(z,y) g9(z,y)

whereP is a zero of the rational functiofy » € Z and P is neither a zero nor a pole of
up is called auniformizerat P, whereas- is called theorder of f at P (r = ordp(f)) which
satisfies the following properties:

e if P is neither a zero nor a pole ¢f thenordp(f) = 0,
e if Pis zero off, thenordp(f) > 0,
e if Pisapole off, thenordp(f) < 0.

Finally, a divisordiv of a rational functionf is defined as follows:
div(f) = ordp(f)(P)
P

which means thadiv( f) evaluates tard(P) on the pointP. Actually, the notion of a divisor
is more general. In fact, a divisor is a map from the pointsamhe curve to the set of integers
which is equal to zero except on a finite set of points, caliedupport. To represent this map, it
is traditional to write it as a formal sutn’ D(P)(P), whereD(P) is the value of the divisor at the
point P. Thedegreeof a divisorD is simply the (finite) sum of its values at all points. Whereas
the sum of a divisor)_ D(P)(P) is simply the sum) . D(P)P. Moreover, a divisor is called
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principal if it can be written as the divisor of a rational function om #illiptic curve. Finally, iff
is an arbitrary function in the function field of an elliptiawe £, andD is an arbitrary divisor of
E whose support does not contain any of the zeros or polg¢stben, writingD = >~ D(P)(P),

we define:
f(D) =[] fp)P®

Fact 1.3. Any degree zero divisdp can be written ad) = (P) — (oc0) + div(f) for some point?
of the elliptic curve and some rational functign

Theorem 1.4(Weil's reciprocity) Let f andg be two functions in the function field of an elliptic
curve. If the zeros and poles ffand g do not intersect, then :

f(div(g)) = g(div(f))

A proof of this theorem can be found for instance in [Blatel., 2005, pages 212-213].

Computing the Weil pairing on m-torsion points

We are now able to show how one can compute the Weil pairing-torsion points. LetP be an
m-torsion point on an elliptic curv&, i.e. mP = co. To definee,,(P, Q), the Weil pairing forP
and(), we choose two arbitrary divisoiS» and D, with distinct support which sum t& and(@
respectively. Then we define the two functigfisand f,, such thatliv(fp) = m(P) —m(oco) and
div(fg) = m(Q) — m(c0). e, (P, Q) is defined as follows:

fr(Dq)
fo(Dp)

With this definition, it is easy to check, thanks to Weil'siggocity law that this map is well de-
fined, i.e. is independent of the choicelof andD. Moreover, it is bilinear and non-degenerate.
We refer for example to [Joux, 2009b, pages 430-431] for thefpof this claim.

Now, we would like to evaluate the computability of such a mBmm the discussion above,
it seems mandatory to have an algorithm that efficiently iatals a functiorfp at a pointQ.
Miller's algorithm [Miller, 2004] (Algorithm 1) does thisdirly well. This algorithm considers
intermediate function$1(§):

em(P, Q) =

div(fy)) = i(P) — (iP) — (i — 1)(c0)

with £ = f0) =1,
It is easy to check tha/tlgm) = fp and that

div(fo™) = div(f) + div(f)) + (iP) + (jP) — ((i + j)P) — (c0).
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It can be shown that there exists a linear polynordiat, ) such that:
L(z,y) = (iP) + (jP) + (= (i + j)P) — 2(c0).
Moreover, ifz, is thez coordinate ofi + j) P, we have:
div(zx — x9) = (i + J)P) + (—(i + 7)P) — 2(c0).
It follows that:
IS ) N L O] o £) ; —di _
div(fp ) =div(fp’) + div(f5’) + divL(x,y) — div(z — x0).

As consequence, we can choose:

i) _ 0 o) Llxy)
P

P P

Algorithm 1 Miller’s algorithm
Require: Anintegerm > 0, m-torsion pointsP and@.
Ensure: The value offp(Q).

Write m in binarym = ¥ m, 2/
R+ P
y<«1
for ¢ from k — 1 down to0 do
Let £ be the tangent line &k
LetR + 2R
Lety « y?- £(Q)/(xg — zr) InF,
if m; = 1then
L be the line througtP and R
LetR+~ R+ P
Lety <y - L(Q)/(zq — zr) InFy
end if
end for
outputy

It is easy to see that that Miller’'s algorithm resembles #q@eated squaring algorithm which
computes powers of group elements. Optimization of thisrilgn can be found in [Cohen &
Frey, 2005, pages 417, 424, 432].
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Chapter 2

Public Key Encryption Revisited

Abstract. The classical security notion an encryption scheme must fisl data
privacy or indistinguishability. This notion captures tin@bility of an attacker to
distinguish pairs of ciphertexts based on the messagesetaypt. In [Bellare
et al, 2001], the authors propose an additional notion, call@shgamity, which for-
malizes the property of key privacy. As a matter of fact, aveaslary, in possession
of two public keys and a ciphertext formed by encrypting satag under one of
the two keys, should not be able to tell under which key thaeaifext was created.
In this chapter, we show that anonymity and indistinguiditglare not as orthog-
onal to each other (i.e. independent) as previously balievefact, they are equiv-
alent under certain circumstances. Consequently, we ootfie results of [Bellare
etal, 2001] on the anonymity of El Gamal’s and of Cramer-Shougteses, based
on existing work about their indistinguishability. Finalwe define the notion of
anonymity for key and data encapsulation mechanisms (KEM$EMS), and we
provide a similar study to that of public key encryption oe #quivalence between
anonymity and indistinguishability for KEMs.

Parts of the results described in this chapter were puldishgEl Aimani, 2009a]
at Africacrypt 2009.

2.1 General framework

The formalization of a security notion capturing key priyaeas motivated by the numerous ap-
plications in which anonymity surfaced. A typical examehis real-life scenario: a mobile user
A is communicating with a base statiéh Assume that an eavesdropgeknows the set of users
communicating with3, and can also listen to the communications of the users Bitin these
circumstancesd still wants to keep his identity (or public key) private fraffin This is possible if
the ciphertexts do not reveal any information about theipiliely, namely if the encryption scheme
IS anonymous.
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The formal definition of anonymity for public key encryptiaras first given in [Bellaret al.,
2001]); itis described through a game between a challeRgard an adversarl. The game runs
in three phases. In phaseA js given two challenge public keys, andpk,, and has access to the
oracles, allowed by the attack model ATK, for both keys andpk,. OnceA decides that phase
1 is over, he outputs t® a challenge message*. In phase 2R selects uniformly at random
one of the challenge public keys, uses it to encrygptand hands the resulting ciphertext4o In
phase 3,4 continues querying the oracles he had access to in the fiasephvith the restriction
of not making queries w.r.t. to the challenge. At the end adggh3,.4 outputs his guess for the
public key underlying the challenge ciphertex.is considered successful when the output guess
is correct.

Definition 2.1 (Anonymity - ANO-ATK). LetI' = (keygen, encrypt, decrypt) be a public key
encryption scheme, and let be a PPTM. We consider the following random experiment, for

b& {0, 1}, wherex is a security parameter:

ExperimentExp"y™** (k)

(pkg, sko) < I'.keygen(k),
(pky, sky) < I'.keygen(k),
(m*,I) «+ A°(find, pky, pk;)
if atk = cpa then O = empty.
if atk = pcathen O =9;,i =0, 1;
if atk = ccathen O = 9;,i =0,1;
c* < I'.encrypt, (m*)
d + A°(guess, T, c*)
if atk = cpa then © = empty.
if atk = pcathen O =9,;,i=0,1;9;: (m,c)(# (m*,c*)) — m ~ I".decrypty (c).
if atk = ccathen O = 0;,i =0,1;9; : ¢(# ¢*) — [.decrypty (c).

i (myc)—m L I".decrypty (c).
i - ¢ — I'.decrypty (c).

Returnd
We define thadvantagef A via:

ano—a ano—atk— 1
Advi™y *(k) = |Pr [Exp™ %P (k) =] — 5|

Given(t,q) € N* ande € [0, 1], A is called a(t, ¢, ¢)-ANO-ATK adversary againsF if, running

in time¢ and issuingy queries to the allowed oracleg! hasAdv;‘jj‘atk(n) > ¢. I' is said to be
(t,e,q)-ANO-ATK secure if ndt, €, ¢)-ANO-ATK adversary against it exists. Finally, we consider
an encryption schemie with security parameter € N; I'(x) is said to beANO-ATK secure ff,
for any polynomial functions ¢ : N — N and any non-negligible function: N — [0, 1], it is
(t(k),e(k),q(k))-ANO-ATK secure.

48



Exploring the relationship between data privacy and keyaay in public key encryption
schemes came very natural to researchers. Indeed, in #mainal work [Bellareet al., 2001],
the authors observe that the new notion is totally diffefearh data privacy, as there exist encryp-
tion schemes that satisfy one notion but not the other. Theeyaaimed that “it is not hard to see
that the goals of data privacy and key privacy are orthogorRRécently, this claim was proven
in [Zhanget al,, 2007] by exhibiting a technique that upgrades the key pyi{a an encryption
scheme already enjoying this property) but destroys the pi@tacy, and vice versa. Such a result
can be considered as negative, since it only shows how td bugncryption scheme which has
one property but not the other. But what about the opposita?dde specify simple assumptions
to hold in an encryption scheme so that key privacy yielda gaivacy and vice versa? Such an
approach has been considered in the literature for a diffgyemitive, namely undeniable sig-
natures. In fact, invisibility and anonymity are two setyproperties that are closely related in
undeniable signatures. The first one requires an adversabyerable to distinguish a valid signa-
ture on a certain message from any uniformly chosen bitgfrom the signature space, whereas
the second notion refers to the hardness of, in possess@asighature and two public keys, telling
under which key the signature was created. Since the inttmduof undeniable signatures, these
two notions were treated separately and many schemes ainghgeh either meet the first notion
or the second, until 2003 where a comprehensive study [Gigos: Mao, 2003] led to the conclu-
sion that anonymity and invisibility are essentially thengaunder certain conditions. With such a
result, one can seek only one notion when designing undensamatures.

In the rest of this chapter, and in an attempt to bridge thebgé#peen anonymity and indistin-
guishability in encryption schemes, we specify simple ¢omaks to hold in the given encryption
scheme so that anonymity implies indistinguishability amck versa. This will allow a direct
use of existing results about data/key privacy of asymmetncryption schemes rather than “do-
ing the work” from scratch as claimed in [Bellaet al, 2001]. As a consequence, we confirm
the results in [Bellaret al,, 2001] that prove the anonymity under chosen plaintexthstaf El
Gamal’s encryption scheme and the anonymity under chopéeitext attacks of Cramer-Shoup’s
encryption, assuming the intractability of the DecisioDé#fie-Hellman problem (DDH). Finally,
we define the notion of anonymity for key and data encapsulatiechanisms (KEMs and DEMS)
and provide a similar study to that of public key encryptiortioe equivalence between anonymity
and indistinguishability for KEMs and DEMs.

2.2 Key privacy vs data privacy

In this section, we present conditions that suffice to catelan the anonymity of an encryp-
tion scheme given existing results about its indistingaislty and vice versa. Our result builds
from the work of [Galbraith & Mao, 2003] on undeniable sigmats and extends it to public key
encryption.

We stress that every choice of the security paramew@efines a key spadeK x SK (corre-
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sponding to the space of key paipk(sk) generated by thkeygen algorithm), a message spade
and a ciphertext spacé In particular, the ciphertext spa€edepends merely on and not on a
specific key.

2.2.1 The main result

Let ' be a public key encryption scheme given by its three algmsti " .keygen, I".encrypt, and
I'.decrypt. The following are the properties needed to prove the wahip between key privacy
and data privacy.

Property A: Let x be a security parameter and (gk, sk) be an output of .keygen. Consider the
uniform distribution oM. Then, the distribution of corresponding to the random variable

[.encrypt,, (m) (m & M) is computationally indistinguishable from uniform.

Property B: Let x be a security parameter and tet € M be an arbitrary message. Consider
the distribution induced by the probabilistic algorithitkeygen on the key spacBK — SK.
Then, from a key paifpk, sk) sampled according to this distribution, the distribution®©
corresponding to the random varialilencrypt, (m) is computationally indistinguishable
from uniform.

Intuitively, Property A means basically the following: farfixed key and varying messages, en-
cryptions look random. It is worth noting that the same prgpbkas been formulated differently
in [Halevi, 2005], where the author requires the distribng in questions to be statistically indis-
tinguishable. Property B suggests that, for a fixed messadevarying keys, encryptions look
random.

We get now to the relation between anonymity and indistisigaibility. Theorem 2.1 says
that if Property A holds in an encryption scheiiethen indistinguishability implies anonymity.
Theorem 2.2 requires Property B for anonymity to yield ifidiguishability in a given encryption
scheme. Both theorems stand in all attack mod&Id{( e {CPA, PCA, CCA}).

Theorem 2.1.LetT be a public key encryption scheme that has Property A. Gitzen € N? and
€ [0,1]; if I'is (t,e,q)-IND-ATK secure, then it igt, 5, ¢)-ANO-ATK secure, wherdTK ¢
{CPA,PCA,CCA}.

Proof. Given an anonymity adversapg2"°—2*, we will create an indistinguishability adversary
And=atk in the same attack model ATK. Lek, be the input tg4ind =2tk Aind=atk wjjl| run T .keygen
to generate a public keyk, together with its corresponding private keky.

Queries made byt®"°—2t are answered in the following way: if they are with respecthi®
key pk,, they are forwarded tgl™"d~2*’s own challenger. Otherwise, in case they are with respect
to pk,, they are answered byi"d—2t using the private keyk;.

When 42"°~2t% gutputs a message, and requests a challengé’™ 2t chooses a messagg
uniformly at random fronM that he will pass, together with, to his challenger.4™d-2t will
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get an encryptioi’.encrypt,, (my), of eithermg orm, (b il {0,1}), which he will forward to
A2re—atk Queries by42"°—2t continue to be handled as before.

If I".encrypt, (my) corresponds to the encryptionwf, (underpk,), then with overwhelming
probability it is not an encryption afi, underpk,. Otherwise, ifl".encrypt,, () is the encryp-
tion of m, (underpk,), then by virtue of Property Al".encrypt,, (1) is a random element i
and with overwhelming probability it is not an encryptioraf under either key.

At the end of the game42"°—2t* outputs a guesk on the key under whicli.encrypt,, ()
was createdA™ 2t will then output the same guet's

Sincee is defined to be the advantage4f°~2*, we have: = | Pr(b' = 0|b = 0) — 3|. In fact,
A2no~atk s expected to work only wheln= 0 (proper simulation), which explains the conditional
probability. In this cased° 2t is considered successful when he recognizes the challerime t
an encryption undesk, of the messagen,.

The advantage oft™~** is, according to Definition 1.§Pr(b’ = b) — 5| and we have:

ind—atk / 1
Adv(A ) = |Pr(b =0)— 5‘ =

1
Pr(b’zO,sz)+Pr(b’:1,b:1)—§‘

= [Pr(t) =0[b=0)Pr(b=0)+Pr(t) =1b=1)Pr(b=1) — %'

Q

(+3)3+32 737 3%

1.1 11 1‘ 1

The last inequality, due tBr(V/ = 1jb = 1) =~ % is explained by the fact that in case-= 1, there
is a negligible chance fdr.encrypt (m1) to be also an encryption of, underpk; . O

Theorem 2.2. LetT" be a public key encryption scheme that has Property B. Gjtgy) € N?
ande € [0,1];if T'is(¢,e,q)-ANO-ATK secure, then itigt, 5, ¢)-IND-ATK secure, where ATk
{CPA PCA CCA}.

Proof. From an indistinguishability adversapt™—2t« with advantage:, we will construct an
anonymity adversaryl®™—2t% as follows.

Let (pk,, pk;) be the input ta4are—atk gane=atk wijl| run Aind-atk on pk,. Queries made by
Aind—2tk will be simply passed ted2"°~2t*’s own challenger.

At some time, A"~ outputs two messages,, m;. A>"°~2% will forward m, to his chal-
lenger and obtain the challengeencrypt,, (mo) whereb & {0,1}. A=tk will then pass the
challenge ta4"d—2t% and continue to handle queries as previously.

In case) = 0, the challenge encryption is a valid encryptiomaf and an invalid encryption of
my underpk,. Inthe other case, singg, (together witrsk, ) is sampled fronPK—SK and Property
B holds, ther".encrypt,, (mo) is a random element i and with overwhelming probability it is

not an encryption ofn; underpk,. Therefore, whend"—2t outputs his guesk, A"t will
forward the same guess to his own challenger.
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The advantage oft™~2* in such an attack is defined by= |Pr(’ = 0|b = 0) — 1|. In fact,
Aird—atk js expected to work only whein= 0. In this case A4~ is considered successful when
he recognizes the challenge to be an encryptiongtinderpk,,.

The overall advantage of2"°~2* is according to Definition 2.1:

1 1
Adv (A2t — Pr(b/:b)—§’ = Pr(b’:O,b:O)+Pr(b/:1,b:1)—§'
1
= |Pr(t/ = 0)b=0)Pr(b=0)+Pr(t = 1|b= 1) Pr(b= 1) — 5'
- (+l)l+ll_l_l
~ TR TRy T e T "

In fact, Pr(b' = 1|b = 1) ~ 3, because in the case whére- 1, there is a negligible chance for
[.encrypt, (mo) to be also an encryption of, underpk. O

2.2.2 0On the orthogonality between key privacy and data priacy

In [Zhanget al., 2007], the authors propose a technique that turns an armrs/emcryption scheme
into a distinguishable anonymous encryption scheme, arelwersa. The idea consists in con-
sidering the augmented scheme which appends the messdgestwiyption (using the original
scheme). Since the new ciphertext does not reveal moremation about the public key than
the original scheme does, it is still anonymous. Concertiegother part, from an indistinguish-
able scheme one can consider the encryption scheme cogs$tppending the public key to the
encryption of the message. The new scheme does not revealiniormation about the message
than the original scheme does. Therefore, itis still indgtishable. However, it is not anonymous
since it discloses the public key.

Theorem 2.2 complies with this result since the first encoypgcheme (obtained by appending
the message to the ciphertext) does not have Property B;ffeech messagen, the distribution
considered in Property B is easily distinguished from umifo In fact, the probability that a ci-
phertext sampled according to this distribution equalgpaeitext whose suffix is different from
m is exactly zero. Similarly, Theorem 2.1 is in accordancehvwiiis result since the encryption
scheme obtained by appending the public key to the ciphettees not have Property A. Indeed,
for a fixed keypk, the probability that a ciphertext sampled from the disitidn considered in
Property A equals another ciphertext whose suffix diffessifpk is exactly zero.

Before concluding this paragraph, it is worth noting thadgarty A highlights a strength of
the discrete-log-based world in contrast to the RSA-basedidw Concretely, lef” be an RSA-
based encryption scheme where the public key comprises$erRodulusN to be used. If the
ciphertextc (seen as a set) contains an elemeatZ,, then the scheme will never have Property
A. In fact, for a fixed keypk (whereN € pk) and a message chosen uniformly at random from
M, the probability thaf".encrypt,, (m) equals an element < C with the component’ > N,
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is exactly zero. Therefore, it is easy to distinguish thdriistion on C, defined in Property
A, from the uniform distribution. This argument conformsaagto the result in [Bellaret al,
2001], namely the fact that RSA-OAEP is not anonymous thaughindistinguishable in the
most powerful attack model.

2.3 Application

In the previous paragraph, we showed that our results areistent with the negative results in
[Zhanget al,, 2007] concerning the independence of key privacy from gatacy. In fact, as
Properties B and A do not hold in the augmented encryptioersels respectively, one cannot
deduce one security notion from the other. In this sectioa,canfirm the positive results in
[Bellare et al, 2001] concerning the anonymity of El Gamal's [El Gamal, 398nd of Cramer-
Shoup’s [Cramer & Shoup, 2003] encryption schemes.

2.3.1 El Gamal’s encryption revisited

The ElGamal scheme, described in Figure 1.3 (Subsectiog)1i2 IND-CPA-secure under the
hardness of the Decisional Diffie-Hellman problem (DDH)idsadly, the following holds:

Adv(AEEP3) = Adv(RY).

To analyze the ANO-CPA property of EI Gamal, it suffices toadheshether Property A holds.
The ciphertext spacé consists of:

Cc = {(gt,myt)EGxG:tﬁZd,mEM, (y:gx,x)EPK—SK}:GxG.

We show now that the distribution @i corresponding to the random variaBl&amal.encrypt, (m),
wherey is a fixed public key and is a message sampled uniformly at random fidims exactly
the uniform distribution. Leta,, a;) € C be a fixed value frontz x G.

Prl(g', my") = (ar,a2)] = Prlg’ = ai] Pr[my’ = aslg’ = ai]
1 1 w 1
=~ Prlmy’ = aly’ = aj] = - Prfm = axa;"] = —.

The last equality is due to the fact thatwas sampled uniformly at random from = G. We
conclude with Theorem 2.1 that El Gamal’s encryption is ABBA secure under the DDH as-
sumption and we haveidv(R*") ~ IAdv(AZc, o), which complies with Theorem 1 in [Bellare
et al, 2001].
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2.3.2 Cramer-Shoup’s encryption revisited

Cramer-Shoup’s encryption scheme [Cramer & Shoup, 2008l0sCCA secure under the DDH
assumption. It uses a prime order grai@ -) with orderd, and given by two generators and
g2. Furthermore, it requires a family of collision resistaash functiong{ = (HG, HE), defined
by a probabilistic generator algorithG - which takes as input the security parameteand
returns a keyiX - and a deterministic algorithfiE - which takes as input the kedy and a string
m € {0, 1}* and returns an element &y:

setup(r) keygen encrypt,, (m) decrypty (u1, uz, €,v)
(d, g1) &g Z1,T2,Y1,Y2, % & L r & Lq a < EH(ur, ug,e)
g2 & Gy c gitgs? d <+ g gy Uy < gy < gh | if uftTM SRV =y
K «+— HG (k) h < g% e < mh’ then m < euj”
Return(d, g1, g2, K) | pk < (d, g1, g2, ¢, d, h, K) | o < HE K (uq, uz, €) else m <L
sk « (z1, 22, Y1, Y2, 2) v cde Return(m)
Return(pk, sk) Return(uy, ug, e, v)

To analyze the anonymity of the scheme, it suffices to checgdtty A. We have:
C= {(g{,gg,mh’",crda’"): r & Zq,(m,c,d,h) € M x PK,ae = 8Q(gf,g§,mh’")} )

It is then easy to see that the size®fs d°. Therefore, to show that Property A holds, it suf-

fices to show that for a fixed keyk = (c,d, h) ! and a message & M, the probability that
encrypt,, (m) = (g7, g5, mh", c"d*") equals a given valu@uy, as, as, as) € Cis exactlyd%:

Pl”[(gﬁ gg? mhra Crdar) = (&1? Qz, as, a4)]
= Prlg; = a1] Prlg; = az|g] = a1] -
Primh” = as| (g7, g3) = (a1, a2)] -
r[crdar = &4|(g11n> gga mhr) = (ab az, &3)]
- Pr[DLy, (a1) = DLy2] - Pr[m = aza; *] -
r[€Hk (ar, az, a3) = DL, 2 (asa; ™ ay ™))
1 1
d d d°
In fact, since(ay, as, as, ay) € C, thenDL,, (a;) = DL, (az) holds with probabilityl. More-

over, asm was chosen uniformly at random froM = G, then the probability that. equals
a given value inG is exactlyé. Finally, the relationship§H i is a deterministic algorithm)

QUl— T~

Note thatg, g» and K are fixed for all keys in the setup algorithm.
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EMk (a1, as,a3) = DLy 2 (asa; ™ ay ™) holds inZy, for arbitrary valuegas, as, as,a4) € C
with probabilityé. We conclude with Theorem 2.1 that Cramer-Shoup’s enaypd ANO-CCA-
secure under the DDH assumption.

2.4 Key and data encapsulation mechanisms (KEMs & DEMS)

Key and data encapsulation mechanisms arise very ofteryptagraphy. In fact, they are both
combined to build public key encryption schemes using thesdled “hybrid encryption paradigm”;
a KEM is first used to fix @ession keglong with itsencapsulationthen the DEM (which is noth-
ing but a secret key encryption algorithm) is used to enctlyptmessage in question using the
session key. Decryption is achieved by first recovering thefkom the encapsulation (part of the
ciphertext) then applying the DEM decryption algorithmngsthe recovered key.

In this section, we recall the formal definition of KEMs and 2§, then we define the anonymity
security notion for these mechanisms, and we provide a sttithe equivalence between this new
notion and the traditional indistinguishability notion.

2.4.1 Key encapsulation mechanisms (KEMSs)

A KEM is a tuple which comprises the following algorithms:
1. Setup etup). This algorithm generates the public parameters of the sehem

2. Key generation keygen). This algorithm probabilistically generates, on input awsgg
parameter, a key pair(pk, sk).

3. Encapsulation ncap). This algorithm inputs the public keyk, runs on a random tape
and generatessession kegenotedt and itsencapsulatiore.

4. Decapsulationdecap. Given the private kegk and the element, this algorithm computes
the decapsulatioh of ¢, or returnsL if ¢ is invalid.

The standard security goal for KEMs is indistinguishapillt informally means the hardness
of distinguishing the key corresponding to an arbitraryagrsulation from a uniformally chosen
bit-string from the (session) key space. We give below thenéd definition of this property.

Definition 2.2 (Indistinguishability (KEMs) - IND-ATK) Let = (keygen, encap,decap) be a
KEM with session key spa¢g and let.A be a PPTM. We consider the following random experi-

ment, forb <& {0, 1}, wherex is a security parameter:
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ExperimenEXpi’ggjtk-b (x)

(pk, sk) < K.keygen(x),

T « A®(find, pk)
if atk = cpa then © = empty
if atk = pcathen O : (¢, k) — k < K.decap ()
if atk = cca then O : k — K.decap,(c)

(c*, k*) = k.encap,()

if b=0then {k < K, k* < k}

d <+ A°(guess, T, c*, k*)
if atk = cpa then © = empty
if atk = pca then O : (¢, k) (# (¢*, k*)) — k = K.decapy, (k)
if atk = cca then O : ¢ (# ¢*) — K.decap,(c)

Returnd
We define thadvantagef A via:

Advi,gfj;atk(n) = |Pr [Exp:ﬁ_atk_b(n) = b} — % )

Given (t,q) € N> ande € [0,1], A is called a(t, ¢, q)-IND-ATK adversary againsk if,

running in timet and issuingy queries to the allowed oracles§ has Advi{?;**(x) > . The

scheme is said to be(t, ¢, q)-IND-ATK secure if no(t, €, q)-IND-ATK adversary.4 against it

exists. Finally, we consider a KEM with security parametet € N; (k) is said to bdND-ATK

secure if, for any polynomial functiorts ¢ : N — N and any non-negligible function: N —
0,1}, itis (t(k),e(k), q(x))-IND-ATK secure.

An example of a KEM is the mechanism underlying the El Gamatygstion (G, -) is a group
generated by where|G| = d):

Example 2.3. The most famous and probably oldest KEM known in the liteeatthe mechanism
underlying EI Gamal’s encryption [El Gamal, 1985]. We deplus KEM in Figure 2.1. The El
Gamal KEM is trivially IND-CPA secure under the DDH assuropti

Example 2.4. Another popular KEM was introduced in [Boneh al, 2004a], and is titled the
Linear Diffie-Hellman KEM. We depict this KEM in Figure 2.2hélLinear Diffie Hellman KEM
is IND-CPA secure under the hardnessdgcision linear problepwhich we describe in Definition
2.5.

Definition 2.5 (Decision Linear Problem (DLP))GivenU, V, H, aU, bV, cH € G, outputl if
a+ b= cmod (#G) and0 otherwise.
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Setup Consider a grougG, -), generated by where|G| = d.
. R
Key generation Chooser < Z; and compute + ¢*,
setpk + (d, g,y) andsk < (d, g, x).

Encapsulation Choosée & 7, and compute’ andy?,
set the session kdy+ y! and its encapsulation< g¢°.
Decapsulation  One recovers the key from ¢* as followsy’ + (g*)*.

Figure 2.1: The El Gamal KEM

Setup Consider a bilinear additive groufi», +), with prime orderd, generated byP.

Key generation Generate two secret values, z- £ Zj, and computeX; <+ z1 P and Xy < x5 P,

set the private keyk < (x1,x2) and the public kepk < (X3, X>).
Encapsulation  Choose a random nonge, b) il Z2,

generate the session kky— (a + b) P and its encapsulation«+ (aX1,bX5).
Decapsulation  Given the private kegk and the encapsulatian= (a X1, bX5),

compute the key ask < = aX; + 25 'bXo.

Figure 2.2: The Linear Diffie-Hellman KEM

Anonymity in KEMs

We define similarly anonymity for KEMs to be the hardness atidguishing pairs of encapsu-
lations/keys based on the underlying public key. Combirhig goal with the different attack
models{ CPA, PCA, CCA} results in three security notions which we formally presesntollows:

Definition 2.6 (Anonymity (KEMs) - ANO-ATK). Let K = (keygen, encap, decap) be a KEM,

and letA be a PPTM. We consider the following random experiment) 6 {0,1}, wherex is a
security parameter:
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ExperimentExp %™ " (k)

(pkg, sko) « K.keygen(k),

(pky,sky) < K.keygen(k),

T « A®(find, pk)
if atk = cpa then © = empty.
if atk = pcathen O =9,,1=0,1;90;: (¢, k) — k —ICdecapSk (c).
if atk = ccathen O = 9;,i =0,1;90; : k — K.decapgy_(c).

(c*, k*) < K.encapy, ()

d <+ A°(guess,Z, c*, k*)
if atk = cpa then © = empty.
if atk = pcathen O = 9;,i =0, 1; k
if atk = ccathen O =9;,i=0,1;0; :c(#¢

(¢, k*)) — k = K.decapy, ().
— K.decapg, (c).

g N

Returnd

We define thadvantagef A via:

Adv ano atk( ) Pr [Expano atk— b( ):b} _% )
Given(t,q) € N* ande € [0, 1], A is called a(t, ¢, ¢)-ANO-ATK adversary againsk if, running
in timet and issuing; queries to the allowed oracleg| hasAdvi™, (k) > . The schemg is
said to be(t, ¢, ¢)-ANO-ATK secure if na(t, €, ¢)-ANO-ATK adversary against it exists. Finally,
we consider a KEMC with security parameter € N; x(k) is said to beANO-ATK secure if,
for any polynomial functiong ¢ : N — N, and any non-negligible function: N — [0, 1], itis
(t(k),e(k),q(k))-ANO-ATK secure.

Similarly to the study provided in the previous section, efulate a further property which is
sufficient for anonymity to induce indistinguishabilitpformally speaking, this property suggests
that for a fixed encapsulatianand varying public keygk (with the corresponding private keys
sk), the resulting decapsulatiotscap, (c¢) look random.

Again, we stress that every choice of the security parametifines a key spadeK x SK
(corresponding to the space of key paip&,6k)), an encapsulation space(corresponding to
the encapsulations generated by the KEM encapsulationithlgy) and a session key spabe
(corresponding to the session keys generated by the KEMpdalzion algorithm).

Property C: Let x be a security parameter. Let furthebe an arbitrary encapsulation value
from C. Consider the distribution induced by the probabilistgosithmkeygen on the key space
PK x SK. Then, from a key(pk, sk) sampled according to this distribution, the distribution o
K, corresponding to the random variaklecap,, (c), is computationally indistinguishable from
uniform.
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Remark 2.1. The KEM underlying the EI Gamal encryption scheme satisfigalty this property,
and so does the linear Diffie-Hellman KEM.

Note that there exist evidently KEMs which do not fulfill fmsperty, for instance KEMs where
the decapsulation algorithm returns for some keys; for such KEMs, we cannot use Theorem 2.3
to derive indistinguishability from anonymity.

Theorem 2.3.Let K be a key encapsulation mechanism that has Property C. Giveh € N?
ande € [0, 1]; if K is (¢, ¢, q)-ANO-ATK secure, then it i$t, ¢, ¢)-IND-ATK secure, where ATk
{CPA,PCA,CCA}.

Proof. First assume that the distribution on the session keys spécensidered in Property C) is
exactlythe uniform distribution. From an indistinguishability\atsary. 4" -2tk with advantage,
we will construct an anonymity adversadi™—2t* as follows.

Let (pk,, pk;) be the input tadare—atk gane=atk wijl| run Aind-atk on pk,. Queries made by
Aird=atk will be simply passed to4>"—2%’s own challenger. Note thatk, is independent of the
view of Aind—atk,

At some time,A2"™~2% gets from his challenger a challenge k) and is asked to tell the
key (pk, or pk,) under which it was created42"°—2t* will forward this challenge tod™—2t*, In
case it was created undgk,, sincepk, (together with the corresponding private key) is sampled
from PK x SK, Property C implies that = K.decap,, (c) is a uniformly random element ¢f.
Therefore, the valug is either the decapsulation efinderpk,, or a uniformly random element in
K, and thus compatible with the ganié"—2t% is designed to play.

Further queries byd™"d—2t% continue to be handled as before. At the eddd—2t* will output
a bit representing his guess fbrbeing the decapsulation efunder the public keyk, or not.
A2re—atk wijll use this bit as his guess for the key under whiclvas created. It is clear that:

AdV(Aano—atk) — AdV(.Aind_atk).

Now assume that the distribution &nis only indistinguishablérom uniform. LetA"—2% pe
an indistinguishability distinguisher. If the advantade4y—2t in the reduction described above
is non-negligibly different from the advantage 4f"d—2t% in a real attack, thepd"d—2% can be
easily used as a distinguisher for the distribution considi®y Property C. As a consequence:

AdV(Aanofatk) ~ AdV(Aindfatk)’

wherea means “equal up to negligible terms”.
0]

Theorem 2.4.Let K be a key encapsulation mechanism. Giver) € N? ande € [0, 1]; if K is
(t,e,q)-IND-ATK secure, then it igt, £, ¢)-IND-ATK secure, wherdTK < {CPA, PCA, CCA}.
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Proof. Given an anonymity adversay?™—2% with advantage, we will create an indistinguisha-
bility adversaryA™"d—2t in the same attack model ATK. Lek, be the input ta4ind—atk, Aind—atk
will run keygen to generate a public kgy, together with its corresponding private keky.

Queries made byl"—2t% are answered in the following way: if they are with respecthi®
key pk,, they are forwarded tgl™"d~2*’s own challenger. Otherwise, in case they are with respect
to pk,, they are answered by"d—2t using the private keyk;.

Eventually,A™—2t% receiveqc, k) from his own challenger, whefeis either the decapsulation
of ¢ with respect to the kepk, or a uniformly chosen element frol A"d=2t will forward his
challenge t42"o—atk,

Queries byA2"—2 continue to be handled as before.

If k& corresponds to the decapsulatioreg¢finderpk,), then with overwhelming probability it is
not the decapsulation efunderpk, (pk, (along withsk;) was produced byl™"~2t and therefore
it is independent of the view of his challenger who genertiteshallengéc, k)). Otherwise, it is
a random element i, and with overwhelming probability it is not the decapswaatof ¢ under
either key.

At the end of the gamed®"°—2t outputs a guesE on the key used to decapsulatén k.
Aird=2tk will then output the same gues<to his challenger.

We haveAdv(A~2%) = |e = Pr(t/ = 0[b = 0) — 3|. In fact, .A2"~2* is expected to work
only whenk is the decapsulation efunderpk, (corresponds té = 0), which explains the con-
ditional probability. In this cased®"°~2t is considered successful when he recognizesithst
decapsulation of underpk,.

The advantage oft™ 2 is by definition|Pr(b’ = b) — ;| and we have:

: 1 1
Adv(AM2) = 1Pr(t =b) — 5’ =Pr(t/ =0,b=0)+Pr(t) =1,b=1) — 5’
1
= |Pr(t =0[b=0)Pr(b=0)+Pr(t/ =1jb=1)Pr(b=1) — 5'

v Jer Bl Y e

ST T T T 2

The last inequality, due tBr(' = 1|b = 1) ~ 3, is explained by the fact that in case- 1, there
is a negligible chance for to be the decapsulation eunderpk;, . O

2.4.2 Data encapsulation mechanisms (DEMS)

DEMs are secret key encryption algorithms. They are, sngila public key encryption, given
by the same three algorithmigygen, encrypt anddecrypt), with the exception of generating only
one key in thekeygen algorithm which will serve for encryption as well as for dgation.

The security notion for DEMs, that corresponds to the ANGk@Btion for public key en-
cryption, is theanonymity under a one time attgake define it as follows
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Definition 2.7 (Anonymity (DEMs) - ANO-OT) LetD = (keygen, encrypt, decrypt) be a DEM,

and letA be a PPTM. We consider the following random experiment) 6 {0,1}, wherex is a
security parameter:

ExperimenExp3 % (x)

ko < D.keygen(k),
ki < D.keygen(k),
(m*,T) < A(find)

e* < I'.encrypt,, (m*)
d + A(quess,Z,e*)
Returnd

We define thadvantagef A via:

Adv%‘j{"t(/ﬁ) = |Pr [Exp%’s;“*b(m) = b} — % )
Givent € Nande € [0, 1], A is called a(t, £)-ANO-OT adversary againsD if, running in timet,
AhasAdvy% (k) > e. The schem® is said to bg(t, £)-ANO-OT secure if nd, )-ANO-OT
adversary against it exists. Finally, we consider a DEMwith security parametet € N; D(kx)
is said to beANO-OT secure if, for any polynomial function: N — N and any non-negligible
functione : N — [0, 1], itis (¢(k), e(k))-ANO-OT secure.

Note that the above notion corresponds to the ANO-CPA natitime public key world because
the adversary does not have any oracle access. In fact, setiret key scenario, the adversary
cannot even encrypt messages of his choice (chosen plaattagk) since he does not have the
key at his disposal.

It is easy to see that the same analysis, provided in Sect®na? the relation between
anonymity and indistinguishability for public key encriypt applies also here for DEMs. More-
over, it can be shown that one can obtain an ANO-CPA-secumg/piion scheme from an ANO-
CPA-secure KEM combined with an ANO-OT-secure DEM. The pieimilar to that of the
indistinguishability notion, which is given in [Herram al., 2006]. Finally, we introduce the fol-
lowing security notion for DEMs which captures both the staiguishability and the anonymity
under a one-time attaék

Definition 2.8 (Invisibility (DEMSs) - INV-OT). Let D = (keygen, encrypt, decrypt) be a DEM
with ciphertext spac€, and let4 be a PPTM. We consider the following random experiment, for

b& {0, 1}, wherex is a security parameter:

2L ater in this thesis, we will show how to use INV-OT and ANO-&dcure DEMs, combined with secure KEMs
and secure digital signatures in order to build efficient sexclre opaque signatures.
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ExperimentExpp Y (k)
k < D.keygen(k),

(m*,I) < A(find, k)

e* < I'.encrypt, (m*)

if b =0 then {e<E C,e" e}
d < A(guess,Z,e*)

Returnd

We define thadvantagef A, via:

A Vi’?\:ZOt(K,) = (Pr [Expi{;‘,’;"t_b(n) = b} — % )
Givent € N ande € [0,1], A is called a(t, €)-INV-OT adversary againsD if, running in time
t, A hasAdv;ST(n) > ¢. The schem® is said to be(t, €)-INV-OT secure if na(t, ) INV-OT
adversary against it exists. Finally, we consider a DEMwith security parametek; D(x) is
said to belNV-OT secure if, for any any polynomial functien N — N and any non-negligible
functione : N — [0, 1], itis (¢(x), e(k))-INV-OT secure.

2.5 Conclusion

In this chapter, we proved that key privacy and data privaagricryption schemes are related to
a certain extent. In fact, under some conditions, we shoWaidane notion yields the other. This
allows to use existing work on the data privacy of some sclsamerder to derive their anonymity.
Moreover, we defined the anonymity notion for key and datapsglation mechanisms and pro-
vided a study on the equivalence between this notion andhtistinguishability notion in these
mechanisms.
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Generic Constructions of Confirmer
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Chapter 3

Overview of Confirmer Signatures

Abstract. Designated Confirmer signatures were introduced to lireivérification
property inherent to digital signatures. In fact, the vesifion in these signatures
is replaced by a confirmation/denial protocol betweerdgmsignated confirmeand
the signature recipient.

In this chapter, we give a short overview of designated cowirsignatures; we will
start with the motivation behind such signatures, thenigethe formal definition
of these signatures as well as of their security propewigd finally, we will browse
through the different realizations of these signaturesifb@asic cryptographic prim-
itives.

3.1 Motivation and definition

Digital signatures capture most of the properties met byaigres in the paper world, for instance
the universal verification. However, in some applicatidhgs property is not desired or at least
needs to be controlled. The typical applications where vahwo restrain the holder of a signature
from convincing other parties of the validity of the sign@&in question are:

Licensing software [Chaum & van Antwerpen, 1990]software vendor is willing to embed
signatures in his products such that only the paying custoare entitled to check the au-
thenticity of these products. Moreover, he does not wiskdlpaying customers to convince
other parties of the genuineness of his goods.

Contract signing [Goldwasser & Waisbard, 2004ih employer issues a job offer to a certain can-
didate. Naturally, the employer needs to compete with thergbb offers in order to attract
the good candidate. Therefore, he does not wish the offeg tevealed to his competitors.
At the same time, the candidate needs more than a verbal @nealsagreement in order
to protect himself from the employer not keeping his promis@ally, when the candidate
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accepts the offer, the employer wishesctmvertthe job offer he has issued to a publicly
verifiable one, instead of having to issue a new contact.

Undeniable signatures were introduced in [Chaum & van Anper, 1990] for this purpose;
they proved critical in situations where privacy or anontyns a big concern, e.g. licensing soft-
ware [Chaum & van Antwerpen, 1990], electronic cash [Chaueflersen, 1993; Boyd & Foo,
1998; Pointcheval, 2001] and electronic voting and austidn these signatures, the verification
can be only attained by means of a cooperation with the sigradled the confirmation/denial
protocols. Unfortunately, this very virtue (verificationtiwonly the signer’s help) became their
major shortcoming for many practical applications. The fl@as later repaired in [Chaum, 1995]
by introducing the concept afesignated confirmer signaturds fact, this concept involves three
entities, namely the signer who produces the signaturedéisegnated confirmer who confirms
or denies the alleged signature, and finally the recipienhefsignature. Actually, in the litera-
ture, there is a clear separation between designated cenfgignatures or confirmer signatures
for brevity, anddirected signaturefLim & Lee, 1993] which share the same concept as confirmer
signatures with the exception of allowing both the signet the confirmer to confirm/deny signa-
tures. Finally, a desirable property in confirmer signagusehe convertibility of the signatures to
ordinary ones. Indeed, such a property turned out to playhaaeole in fair payment protocols
[Boyd & Foo, 1998].

Syntax

A convertible designated confirmer signature (CDCS) scheansists of the following procedures:

Key generation (keygen). This algorithm inputs a security parameterand generates prob-
abilistically two key pairs(skg, pkg) and (skc, pk) for the signer and for the confirmer
respectively.

ConfirmedSign (confirmedSign). On inputskg, pk-, and a message:, the signer outputs a
confirmer signature signature then interacts with the signature recipient (via an irdeve
protocol) to convince him of the validity of the just genedsignature.

Verification (verify). This is an algorithm, run by the signer onust generategignature or by
the confirmer orany signature, to verify the validity of the alleged signatuféie input to
the algorithm is, in addition to the public key&, andpk., the message, and the alleged
signature, the random noncesused to produce the signature in case the algorithm is run
by the signer, or the private kel in case the algorithm is run by the confirmer. The output
of this algorithm is eithet if the purported signature if valid on the message) otherwise.

Confirmation/denial protocols (confirm/deny). These are interactive protocols between the con-
firmer and a signature recipient (the verifier). Their comnmput consists of, in addition
to pkg andpk, the alleged signatune, and the message in question. The confirmer uses
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his private keysk to convince the verifier of the validity (invalidity) of thegnaturey on
m. At the end, the verifier either accepts or rejects the proof.

Selective conversiondonvert). This is an algorithm run by the confirmer, on a messagand
its corresponding signatuge usingsk., in addition topk. andpkg. The result is either
in casey is invalid w.r.tm, or a string which can be universally verified as a valid dilgit
signature on the messagew.r.t. pkg.

Selective verification (erifyConverted). This is an algorithm for verifying converted signatures.
It inputs the converted signature, the messagg, andpk., and outputs eithdr or 1.

Remark 3.1. In [Gentry et al, 2005; Wanget al, 2007], the authors give the possibility of ob-
taining directly digital signatures on a given message. We find this unnegessee it is already
enough that a CDCS scheme supports the convertibility featdoreover, in [Wikstdm, 2007],
the author considers a further protocol used by the confirtagrrove the correctness of the con-
version. Throughout this thesis, we will mention the cargtons that extend to this augmented
model.

Remark 3.2 (Security parameter)in the rest of this part, the security parameter of a construc
tion consists of a tuple that comprises the security paramsaised for the construction’s build-
ing blocks. Thus, when we invoke the key generation or thg sg#gorithms of a construction’s
building block on input a given security parameter, sayve mean that we call the mentioned al-
gorithms on input the field ir which corresponds to the security parameter of the buildilogk

in question. The same remark applies for security; when welsst a construction’s component
is secure for the security parameterwe mean that it is secure w.r.t. the field«ircorresponding
to the security parameter of this component.

3.2 Security model

Since their introduction, many definitions and security elsdor CDCS have emerged. We
present in this section the security properties we adhera this thesis. A security property
is, as commonly agreed on, an attribute allowing a crypigigascheme to withstand malicious
attempts aiming at make it deviate from its prescribed tablese malicious attempts can be clas-
sified into two categories:

1. Attempts conducted by adversariasidethe system. This is for instance the case where
the scheme operators are dishonest, coerced, or whereithgly fiave their private keys
compromised or stolen.

2. Attempts conducted by adversarmstsidethe system. These are the default attacks any
cryptographic scheme should take into consideration.
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A cryptographic scheme resilient against the first type tdciis is said to procure security
in aninsider model whereas a scheme resilient against the second type oksttasaid to be
secure in aroutsider model Consideration of the appropriate security model depepds the
functionality of the scheme; for some schemes it is enouglotsider outsider security, for others
it is imperative to consider insider security at least fangosscheme properties.

The rest of this section will be devoted to the definition & fecurity properties we opt for, as
well as to the comparison of these properties with the pomrias found in the literature.

Let CS be a CDCS scheme given by the algorithms/protokejgen, confirmedSign, verify,
confirm/deny, convert, andverifyConverted.

We assume thateygen inputs a security parameterand generates the key pairkg, pkg) and
(ske, pke) for the signer and for the confirmer respectively.

Let M andS be the message and signature spaces consider€fl tspectively. Let further the
confirmedSign (probabilistic) procedure produce a signature S and a protoco(S, V') between
the signerS and the verified” (the signature recipient). Finally, we denote/daythe randomness
used in theconfirmedSign procedure to generate the signature

3.2.1 Completeness
The CDCS scheméS is complete when it satisfies the following properties:

1. Every signature produced following tk&.confirmedSign procedure should be validated by
the CS.verify algorithm. Moreover, if the signer and the signature ho&derhonest, then the
signer must be able to confirm every valid signature he haggrserated.

Vm € M, if CS.confirmedSign g oi. okot (M) = {4, (S, V) } then :
CS.verify i pkers} (M, 1) = 1, and
Pr((S,V)(m, p, ke, pkg) = Reject] = negl(x),

where the probability is taken over the random tosses of thatiprover and the verifier, and
negl is a negligible function.

2. The conversion of every signature produced followingdseonfirmedSign procedure should
be a string which can be universally verified as a valid digitgnature on the message in
guestion.

Vm € M, if CS.confirmedSign g ok oko1 (M) = {4, (S, V) } then :
o = CS.converty (m, u) = CS.verifyConverted, . o .3 (m,0) = 1.

3. If the confirmer and the signature holder are honest, therconfirmer must be able to

confirm every valid signature, i.e. every signature vaédaty the algorithnCS.verify, and
disavow every invalid signature.
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Yme M, VueS:
CS.verify o pkes sk 3 (M 1) = 1 = Pr[CS.confirm(m, u, pke, pkg) = Reject] = negl(x),
CS.verify (o pkgy.ske } (M 1) = 0 = Pr[CS.deny(m, p, pke, pkg) = Reject] = negl(x),

where the probability is taken over the random tosses of thatiprover and the verifier, and
negl is a negligible function.

3.2.2 Security for the verifier

This property informally means that an adversary who commgses the private keys of both the
signer and the confirmer cannot convince the verifier of tHiglitya (invalidity) of an invalid (a
valid) confirmer signature. That is, the protocols confir®@igt, confirmation and denial are
sound It is obvious that we consider security in the insider mddelthis property. In fact, we
require the genuiness of the signatures despite their ypdtie formal definition of this property
is as follows.

Definition 3.1. Let .4 be an adversary against the confirmer signature sch€meWe consider
the following experiment:

1. Ais given(skg, pkg) and(ske, pko), output of the algorithn€S.keygen.

2. A produces a message. He also runsCS.confirmedSign onm and produces a signature
u usingskg, pkg and pk.. Finally, A produces a string.’, from the confirmer signatures
space, such thaS.verify o gy (m, 1) = 0.

3. Ainteracts with a verifiel” on the common inpuin, i/) and executes the protoc#, V),
as a part of theCS.confirmedSign algorithm, in addition to the protocdlS.confirm. More-
over, A interacts withV on the common inputn, 1) and runs the protocalS.deny.

CS is said to provide security for the verifier if the followingueations hold:

Pr{(A, V)(m, ', pke, pks) = Accept] = negl(x), (3.1)
Pr[CS.confirm(m, 1, pke, pkg) = Accept] = negl(k), (3.2)
Pr[CS.deny(m, u, pke, pkg) = Accept] = negl(kx), (3.3)

where the probability is over all the random tosseslaindV’, andnegl is a negligible function.

3.2.3 Security for the signer

Security for the signer informally means that no one (inclgdhe confirmer) except the signer
can issue valid confirmer signatures; it is then clear thiagtgacurity property considers insider
adversaries (the confirmer).

The formal definition of this requirement is as follows.
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Definition 3.2 (Security for the signer)We consider the CDCS scher@g described earlier in
this section. Le4 be a PPTM. We consider the following random experiment:

ExperimentExpt ™ (k)

(pkg, sks) < CS.keygen(k)
(Pke, ske) = A(pks)

(m*> :u*) A AG(ka’ ka> Skc)
& : m — CS.confirmedSign (g, ok pke} (717)
return 1if and only if the following properties are satisfied:
- CS.verify o . pke sk (V5 1] =1
- m* was not queried t®

We define theucces®f A via:
Succgd 9™ (k) = Pr [Expge ™ (k) = 1] .

Given (t,q;) € N* ande € [0,1], A is called a(t,¢, ¢;)-EUF-CMA adversary againsts if,
running in timet and issuingy, queries to theCS.confirmedSign oracle, A hasSuccid 4™ (k) >
e. The schemé€S is said to be(t, ¢, ¢;)-EUF-CMA secure if no(t, ¢, ¢s)-EUF-CMA adversary
against it exists. Finally, we consider a CDCS schéifievith security parametet € N; CS(k) is
said to beEUF-CMA secure if, for any polynomial functionsq, : N — N and any non-negligible
functione : N — [0, 1], itis (¢(x), e(k), gs(k))-EUF-CMA secure.

Remark 3.3. Note that the adversary in the above definition is not given the oracl&S verify,
CS.confirm/CS.deny, and CS.convert. In fact, these oracles are useless for him as he has the
confirmer private keyk. at his disposal.

3.2.4 Security for the confirmer

This is the crucial property for confirmer signatures as amtfies their opacity. We can divide it
into two sub-properties: non-transferability which reféo the inability of the verifier to transfer
his conviction about the validity/invalidity of a signa&uto a third party, and opacity which refers
to the inability of a verifier to decide on the validity/inidity of a signature w.r.t. a given message.

The first property can be ensured if the protoddsconfirmedSign, CS.confirm andCS.deny
are zero knowledge, that is if the transcript resulting fribva interaction of the verifier with the
signer or the confirmer during these protocols can be effigisimulated.

The second property is a bit intricate. First, there is thestjon of whether to consider insider
or only outsider adversaries. Insider security means tiesigner’s private key can be compro-
mised in which case the entire system is broken. Howevensider security) might be needed in
situations where we want to protect the invisibility of sigures issued by the genuine signer from
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an adversary who has stolen this signer’s private key. Thergkissue concerning the opacity
of the signatures is whether one should hide the validityhefgignatures w.r.t. the message in
guestion or hide the identity of the signer. In the rest of gubsection, we will describe formally

the non-transferability of confirmer signatures as wellesdifferent notions of their opacity.

Non-transferability

Let CS be the CDCS scheme described above. Non-transferabili§saonfirmedSign and of
CS.confirm/CS.deny is defined through the following two games involving the adeaey, the
signer, the confirmer, and a simulator:

Game 1: the adversary is given the public keys of the signer and otdmirmer, namelykg
andpk. resp. He can then make arbitrary queries of t¢econfirmedSign to the signer
and of typeCS.confirm/CS.deny and CS.convert to the confirmer. Note that the adversary
is allowed at any time to create his own key pd#iss/, pky,) and query the confirmer for
verification/conversion of signatures w.r.t. these keypdtventually, the adversary presents
two stringsm andy for which he wishes to carry out, on the common infput ., pkg, pko),
the protocolCS.confirmedSign with the signer, or the protocolS.confirm /CS.deny with the
confirmer. The private input of the signer is the randomnegsl io generate the signature
4 (in casep is a signature just generated by the signer), whereas that@rnput of the
confirmer is his private keyk.. The adversary continues issuing queries to both the signer
and the confirmer until he decides that this phase is over eodtlipes an output.

Game 2: this game is similar to the previous one with the differenE@laying a simulator
instead of running the real signer or the real confirmer wheimes to the interaction
of the adversary with the signer {I5.confirmedSign or with the confirmer inCS.confirm/
CS.deny on the common inputm, i, pkg, pk). The simulator is not given the private input
of neither the signer nor the confirmer. It is however allow@dssue a single oracle call
that tells whethey is a valid confirmer signature om w.r.t. pkg andpk.. Note that the
simulator in this game refers to a probabilistic polynonfiating machine with rewind.

The signatures issued K are said to be non-transferable if there exists an efficientlator such
that for all (pkg, pk.,), the outputs of the adversary in Game 1 and Game 2 are irgligsimable.

Remark 3.4. The notion of non-transferability is very close to the notaf zero knowledge in
the sense that both notions assume the existence of anrgféitgerithm (the simulator) capable
of producing transcripts of the proof/protocol in questitirat are indistinguishable from those
obtained from the interaction with the real prover. The adijerence is that in non-transferability,
we require that the simulator interacts with the adversaviiereas in zero knowledge transcripts
are enough. However, according to Remark 1.9, the ZK prgpefrtthe CS.confirmedSign or
the CS.confirm/CS.deny protocols is enough to ensure the non-transferability @& tonfirmer
signatures.
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Invisibility
Invisibility against a chosen message attack (INV-CMA)tfoe confirmer signature scher@s is
defined through the following game between an attagkand his challengeR:

Phase l:after.A gets the public parameters©$, namelypkg andpk., from R, he starts issuing
queries of typeCS.confirmedSign, CS.confirm /CS.deny, andCS.convert in an adaptive way.

Challenge:once.A decides thaPhase 1is over, he outputs two messageg, mj and requests a
challenge signaturg*. R picks uniformly at random a bit € {0, 1}. Thenu* is generated
using theCS.confirmedSign algorithm on the message;.

Phase 2:4 resumes adaptively making the previous types of queridh, twe exception of not
querying(m?, u*), i = 0, 1, to theCS.{confirm, deny} andCS.convert oracles. At the end,
A outputs a bit/. He wins the game i§ = 1/’

Definition 3.3 (Invisibility (INV-CMA)) . Let CS be the CDCS scheme described earlier, and let
A be a PPTM. We consider the following random experimenbfé%r {0,1}:

ExperimenExpgy " (k)

(pkg, sks, pkc, skc) < CS.keygen (k)

(m§, m%, T) < AS®T(find, pkg, pke)

S : m — CS.confirmedSign g ok pke} (M)

Co : (m, u) — CS.convertgy, (m, 1)

G : (m, u) — CS.{confirm,deny}(m, u, pkc, pkg)

p* <= CS.confirmedSign qq pks k) (7125)

d + AS®U(guess, T, u*, pkg, pke)

S : m — CS.confirmedSign g ok pk} (1)

Co : (m, pu)(# (m, pw*),i =0,1) — CS.convertgy, ., (m, 1)

G : (m, p)(# (mr,p*),i=0,1) — CS.{confirm, deny}(m, i, pkc, pkg)

Returnd

We define thadvantagef A via:

Advis ™ (k) = |Pr [Exp'(':‘g’;fma*b(m) = b} — 5|
Given(t, qs, ¢v, gsc) € N*ande € [0, 1], Ais called a(t, , ¢,, ¢, gsc)-INV-CMA adversary against
CS if, running in timet and issuinggs queries to theCS.confirmedSign oracle, ¢, queries to the
CS.confirm/CS.deny oracles, andy,. queries to theCS.convert oracle, A hasAdvic"g;fma(n) > €.
The schem&sS is said to be(t, e, g, ¢, ¢s.)-INV-CMA secure if no(t, e, gs, ¢y, gsc)-INV-CMA
adversary against it exists. Finally, we consider a CDCSesathCS with security parameter
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k € N; CS(k) is said to bdNV-CMA secure if, for any polynomial functiomsg;, g, gsc : N — N
and any non-negligible function : N — [0, 1], itis (¢(k),e(k), ¢s(K), @u(K), ¢sc(k))-INV-CMA

secure.

Anonymity
Anonymity against a chosen message attack (ANO-CMA) forctrdirmer signature schent&s
is defined through the following game between an attagkand his challengeR.

Phase 1:A4 gets two public keys fo€S, namely two key pairésks,, pkg,) and(sks, , pkg, ) for
the signer, and two key paitskc,, pk¢, ) and(ske, , pke, ) for the confirmer. He then issues
queries to theCS.confirmedSign, CS.confirm/CS.deny, andCS.convert oracles, w.r.t. both

keys, in an adaptive way.
Challenge:once.A decides thaPhase 1lis over, he outputs a messages and requests a chal-

lenge signatur@g*. R picks uniformly at random a bit € {0, 1}, thenu* is generated using
the CS.confirmedSign algorithm on the message* w.r.t. (pkg, , pk, ) -

Phase 2:.4 resumes adaptively making the previous types of queridh, twe exception of not
querying(m*, u*) to theCS.{confirm, deny } andCS.convert oracles of both key&kg, , pke, ),

b=0,1. Atthe end,A outputs a bit’. He wins the game i = V.

Definition 3.4 (Anonymity (ANO-CMA)). LetCS be the CDCS scheme defined earlier, and4et
be a PPTM. We consider the following random experimen&fgr {0,1}:

ExperimenExpd® s (k)

(Pks,,Sksy, Pkey s skey ) <= CS.keygen(x)
(pks, > sksy, Pke, ,ske, ) <= CS.keygen(r)
(m*,I) — AG’%m(find, pkso, pksl, pkco, ka1)
S =6;,i=0,1;8; : m— CS.confirmedSign g, pis pke (M)
Co=Cv;,i=0,1;C0; : (m,pu) — CS.convertskCZ_ (m, ).
U =P;,i =0,1;0; : (m, p) — CS.{confirm,deny}(m, i1, pkc., pksg,).
W CS.confirmedSign{skaypksbypkcb}(m*)
d + AS®%(guess, T, u*)
S =6;,i=0,1;8; : m— CS.confirmedSign g, piy pke (M)
Co = Co;,i = 0,1;Cv; : (m, p)(# (m*, u*)) — CS.convertey, (m, ).
U =0;,i=0,1;0; : (m, u)(# (m*, u*)) — CS.{confirm, deny}(m, i, pkg, , pke, )-

Returnd
We define thadvantagef A via:
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AdvEe ™ (k) = |Pr [Expac'g‘fjcma*b(/ﬁ) = b} — % )
Given (t,qs, ¢, qsc) € Nt ande € [0,1], A is called a(t, s, gs, g, ¢s.)-ANO-CMA adver-
sary againstCS if, running in timet and issuinggs queries to theCS.confirmedSign oracle,
¢» queries to theCS.confirm /CS.deny oracles, andy,. queries to theCS.convert oracle, A has
Adves ™ (k) > . The schem&sS is said to be(t, ¢, ¢, ¢, gsc)-ANO-CMA secure if no
(t,€, s, qv, qsc)-ANO-CMA adversary against it exists. Finally, we consider a CDCSesoh
CS with security parameter € N; CS(k) is said to beANO-CMA secure if, for any poly-
nomial functions, ¢s, ¢,, ¢« : N — N and any non-negligible function : N — [0, 1], it is
(t(k),e(k), qs(K), gu(K), gsc(k))-ANO-CMA secure.

Strong invisibility

To capture both anonymity and invisibility, Galbraith anédlintroduced in [Galbraith & Mao,
2003] a notion, which we denote SINV-CMA, that requires tbhafaomer signatures to be indistin-
guishable from random elements in the signature space.nBwsotion is proven to imply both
INV-CMA and ANO-CMA (Theorem 1 and Theorem 4 respectively@éalbraith & Mao, 2003]).
This notion is defined exactly as the INV-CMA notion with thé&etence that when it comes to
the challenge phase, the adversary produces a message the challenge signature is either a
valid confirmer signature om, issued according toonfirmedSign, or a random string from the
confirmer signatures space.

Definition 3.5 (Strong Invisibility (SINV-CMA)). Let CS be the CDCS scheme, described earlier,
with confirmer signatures spacg and let.A be a PPTM. We consider the following random

experiment fob < {0,1}:

ExperimenBxpga” M0 (k)

(pkg, sks, pkc, skc) < CS.keygen (k)

(m*,T) + AS®3(find, pkg, pke)

S : m — CS.confirmedSign g ok pk} (M)

Co : (m, u) — CS.convertgy ., (m, 1)

G : (m, u) — CS.{confirm, deny}(m, i, pkc, pkg)
p* < CS.confirmedSign (s ok sk} (M)

if b =0 then {,u<ﬁ S, u* < p}

d <+ AS®¥(guess, T, u*, pkg, pko)

S : m — CS.confirmedSign g ok ok} (1)

Co : (m, pu)(# (m*, p*)) — CS.convertgy,, (m, 1)

G : (m, 1) (# (m*, u*)) — CS.{confirm, deny}(m, u, pkc, pkg)

Returnd
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We define thadvantagef A via:

Adveg' ™ (k) = |Pr [Expsé'g‘gcma_b(n) = b} — % .
Given (t,qs, ¢, qsc) € N* ande € [0,1], A is called a(t, e, ¢s, ¢, gsc)-SINV-CMA adver-
sary againstCS if, running in timet and issuinggs queries to theCS.confirmedSign oracle,
¢» queries to theCS.confirm /CS.deny oracles, andy,. queries to theCS.convert oracle, A has
Advsciggcma(n) > e. The schemé&sS is said to be(t, ¢, qs, ¢, ¢sc)-SINV-CMA secure if no
(t,€, s, qv, qsc)-SINV-CMA adversary against it exists. Finally, we consider a CDCSesoh
CS with security parameter € N; CS(k) is said to beSINV-CMA secure if, for any poly-
nomial functions, ¢s, ¢,, ¢« : N — N and any non-negligible function : N — [0, 1], it is
(t(k),e(k),qs(K), ¢ (K), gsc(k))-SINV-CMA secure.

3.2.5 Comparison with other security models

In this paragraph, we compare our security model with theuf@smnes found in the literature:

e Our definitions of completeness, security for the verifiedt ann-transferability of the con-
firmedSign, confirmation, and denial protocols are the saroeiged as in [Camenisch &
Michels, 2000; Gentret al, 2005; Wanget al.,, 2007].

e We consider thensider security model against malicious confirmersour definition for
unforgeability. l.e. the adversary adlowedto choose his key paifskc, pk). This is
justified by the need of preventing the confirmer from impeetimg the signer by issuing
valid signatures on his behalf. Hence, our definition of ugéability, which is the same
as the one considered by [Wikstrom, 2007], implies its Ersiin [Camenisch & Michels,
2000; Gentnyet al,, 2005; Wanget al.,, 2007].

e Our definition of invisibility (INV-CMA), oppositely to thedefinitions in [Camenisch &
Michels, 2000; Gentret al., 2005; Wanget al., 2007], is considered in thmutsider security
model l.e. the adversary does not know the private key of the sigihfée justify this
by considering the CDCS scheme broken if the signer is ctecupr coerced. Actually,
“outsider security might be all one needs” for invisibilig phrased by the authors in [An
et al, 2002].

e Our definition of invisibility (INV-CMA), oppositely to thedefinitions in [Gentryet al.,
2005; Wanget al., 2007], allows the signer to sign the same message many vViitiesut
loss of invisibility, which is needed in licensing software

¢ Finally our definition of invisibility (INV-CMA), like the efinitions in [Camenisch & Michels,
2000; Gentryet al,, 2005; Wanget al,, 2007] and unlike the definition in [Galbraith & Mao,
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2003], does not guarantee the non-transferability of thgpagures. l.e. the confirmer sig-
nature might convince the recipient that the signer waslvagbin the signature of some
message. We refer to the discussion in [Geetrgl,, 2005] (Section 3) for techniques that
can be used by the signer to camouflage the presence of \gtigtsres, e.g. the signer can
for instance publish a few “dummy” signatures during eaotetperiod.

3.3 Constructions

Since the introduction of confirmer signatures, a numbettehapts have been made to produce
them from basic primitives. The first construction is due tafoto [Okamoto, 1994], and was
used to prove equivalence between confirmer signaturesuiit gey encryption with respect to
existence. Thus, efficiency was not taken into account ifrmeework. The subsequent proposals
follow one of the following two strategies; either producdigital signature on the message to be
signed, then encrypt the resulting signature, or produ@grardtment on the message, encrypt the
string used to generate the commitment, and finally signatterl We recall in this section the
constructions realizing those two approaches along welr gecurity analyses.

3.3.1 The “encryption of a signature” paradigm

This approach consists in first producing a digital sigreom the message to be signed, then
encrypting the produced signature using a suitable publiekicryption scheme. The construction
was first formally described in [Camenisch & Michels, 2000], and required th@pgonents to
meet the highest security notions (EUF-CMA signatures &fd-CCA encryption). The main
weakness of the construction lies in the resort to zero kadge (ZK) protocols of general NP
statements in the confirmation/denial protocol.

The construction

Let X be a digital signature scheme given Hykeygen which generates a key pair (private key =
Y..sk, public key=X.pk), X.sign, andX.verify. Let furthermore’ denote a public key encryption
scheme described dykeygen that generates the key pair (private key sk, public key=I".pk),
I".encrypt, andI".decrypt.

Finally, letm € {0,1}* be a message. The construction is as follows:

Setup Getup). On input the security parametey output the public parameters Bfand>_.

Key generation (eygen). Invoke the algorithms:..keygen andI'.keygen to generate the keys
Y..sk, X.pk, I'sk, andI'.pk. Set the signer’s key pair t@.sk, >.pk) and the confirmer’s key
pair to (I".sk, I'.pk).

1The idea without proof was already known, for instance, i weentioned in [Damgard & Pedersen, 1996].

76



ConfirmedSign (confirmedSign). On a message:, the signer first computes a (digital) signature
o = Yy «-sign(m) onm, then encrypts the result usiigencrypt. The resulting ciphertext
p = T.encrypty (o) forms the output confirmer signature. Moreover, the signtaracts
with the signature recipient in a zero knowledge protocoékehhe (the signer) proves that
the output is a valid confirmer signature on the message istiqure The prover’s private
input is the randomness used to generate the encryptodi.

Verification (verify). To check whether an alleged confirmer signaturessued on a certain
messagen, is valid, the confirmer first decrypts it to recower then calls the algorithm
Y.verify on the result using.pk. The signature is valid if and only if the output of the latter
item is 1. We stress again that this algorithm is run by the confirmecah also be run
by the signer on gust generated signature; using the randomness used to generafas
encryption of some), the signer checks whethgris well formed, i.e. whethet is indeed
an encryption ofr, then he checks, using.pk, whethers is a valid digital signature om.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatyieon a
certain message:, the confirmer first checks its validity using the verificatialgorithm.
According to the result, the signer issues a zero knowledgeff knowledge of the de-
cryption of i, that passes (does not passyerify.

Selective conversiondonvert). Given a signature onm, the confirmer first checks whether it
is valid. If it is the case, then he outpuisiecrypt ., (1), otherwise he outputs.

Selective verification erifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithhwerify using>:.pk.

Remark 3.5. It is possible to issue the confirmation/denial protocolsasdl as the one under-
lying theconfirmedSign algorithm because the underlying assertions define eitlie(iN case of
confirmedSign or confirm) or co-NP (in case otieny) languages which accept zero knowledge
proof systems according to Subsection 1.4.2.

Security analysis

The completeness of the construction above is ensured lmpthectness of the algorithmssign,
Y.verify, I'.encrypt andI".decrypt, and by the completeness of the proofs underlying the potgoc
confirmedSign, confirm anddeny. As for the security for the verifier and the non-transfegbof

the signatures, they are established thanks to the sousdndszero knowledgeness of the proofs
underlying the protocolsonfirmedSign, confirm, anddeny. Moreover, the resulting signatures are
existentially unforgeable against malicious confirmeng] they are invisible in the insider model.

Theorem 3.1.Given(t, ¢;) € N* ande € [0, 1], the construction depicted above(ise, ¢,)-EUF-
CMA secureagainst malicious confirmeifsthe underlying signature scheme is al$ce, ¢,)-EUF-
CMA secure.
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The proof is similar to that provided in [Camenisch & Miche2900] although the latter one
does not explicitly prove the construction to be unforgeagainsmalicious confirmers

Proof. Let A be a(t, ¢, ¢;)-EUF-CMA adversary against the construction. We will conct a
(t, €, q5)-EUF-CMA adversaryR against the underlying digital signature scheme as follows

‘R gets the public key of the signature schexeom his challenger. Then he chooses a suitable
encryption schemeg and gets fromA the generated confirmer key péir.pk, I".sk).

Signature queries made by on a message:; can be answered as follows. Fir&,requests
his challenger for a digital signatuse onm;, then he encrypts; in i; and outputs the result td.
Finally, he interacts with4 in a protocol where he proves that the generated signatimdesd a
valid confirmer signature om;. The private input ofR in this protocol is the randomness used to
encrypto; in u;, orI'.sk. Note that4 can check the validity of this signature himself usingk.

Eventually, A outputs a pair{m, ;1) consisting of a message that was never queried for
signature and a valid confirmer signatwren it. R will simply outputo = I".decrypt (1) to his
own challenger. In facty is a valid digital signature on the messagevhich was never queried
by R to his own challenger, and thus forms a valid existentiajéoy onX.. O

Theorem 3.2. Given(t, qs, ¢,, ¢s.) € N* ande € [0, 1], the construction above i3, ¢, ¢, Gu, ¢sc)-
INV-CMA securen the insider modeif the underlying encryption scheme(ise, g, + ¢s.)-IND-
CCA secure.

We give a sketch of the proof below and we refer to the full mereén [Camenisch & Michels,
2000].

Sketch.Let R be an IND-CCA adversary against an encryption schEmRg gets the public key
I".pk of the encryption scheme from his challenger and is furtivesrgan INV-CMA adversary4
against the construction depicted above.

R will choose a digital signature scheriealong with a key paitX.sk, ¥.pk) and will provide
A with the public parameters of the confirmer signature resyifrom combining the encryption
schemd™ and the signaturg. .4 will get also hold of the private signing key, namélysk.

Simulation of theconfirmedSign queries made byl is done as the ordinary algorithm would
perform, namely by first producing a digital signature, gsihsk, on the message in question,
then encrypting the resulting signature usingk. The resulting ciphertext forms the confirmer
signature output tod. R will then interact with.A to prove the validity of the just generated
signature. The private input & in such a protocol is the randomness used to encrypt thetligit
signature.

Simulation of theconfirm /deny queries(m, 1) is done by first invoking the decryption oracle
of I" onp to obtaine = I'.decrypt (1), then checking the validity af w.r.t. m. According to the
result,R issues a simulation of th@nfirm /deny protocols. In fact, since the confirmer signatures
are non-transferable, then there exists a simulation o€tméirmation/denial protocols which is
indistinguishable from the real execution of these praoc8imulation of theconvert queries is
done by simply decrypting (using the decryption oracle)dbefirmer signature in question.
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Eventually, A outputs two messages,, m, and requests a challenge confirmer signature. At
that point,R produces a digital signature = X.signy, o (m;) on each message;, i = 0, 1. With
overwhelming probabilityg, # o, asmy # m4. Then,R gives these two signatures to his own
challenger. He gets as a challenge ciphertéxivhich is either the encryption ef, or o;, that he
will forward to A.

A continues issuingonfirmedSign, confirm/deny andconvert queries as before . Note that
at that point, ancccording to the invisibility notion considered by the authin [Camenisch &
Michels, 2000] A is not allowed to issueonfirm/deny andconvert queries which involve:*. R
can answer as previously, for instance he is able to invakeécryption oracle without problems
as the confirmer signatures in play are different from thélehge ciphertexi.*.

Finally, whenA outputs his guess (eithéror 1) on the message underlying the signature
A will forward the same guess to his own challenger. O

Other variants

The Goldwasser-Waisbard [Goldwasser & Waisbard, 2004] costruction. This construction
was the first to circumvent, although partially, the mainkpem in the basic paradigm,
namely the recourse to proofs of general NP statements wotiii@mation/denial protocols.
The idea consists in considering a cl&ssf digital signatures which accept efficiamitness
hiding proofs of knowledge (WHPOKA) WHPOK (see for instance [Goldreich, 2001, Sec-
tion 4.6] for more details) is informally a proof where the@per does not reveal the witness
but may leak some knowledge during his interaction with tegfier; it is then a weaker
notion than zero knowledge. Lét, b, s,) be an accepting transcript resulting from the in-
teraction, between a prover and a verifier, in which the prowavinces the verifier that he
holds a digital signature on the common input message ¢ forms the first message, or

the commitment, sent by the provér.ﬁ {0,1} denotes the public coin, or the challenge
sent by the verifier. Finallys, denotes the response of the prover to the challéngdeis
assumed that given two different accepting transcfipts s,) and(¢,1 — b, s;_), there ex-
ists a knowledge extractor which can extract the witnessiatyathe signature. With such

a class of signatures in addition to an IND-CCA secure erimgschemd’, the authors in
[Goldwasser & Waisbard, 2004] provide confirmer signataresa message: as follows:

1. The signer first produces a digital signaturen m. Then, he computes the commit-
mentt he would send to the verifier if he wishes to provide a WHPOKsfoNext he
computess;, ands;, the responses to the challenges 0 andb = 1 resp., along with
their encryptiong, ande; using random coinsg, andr; resp. Finally the signer sends
(t, e0, e1) to the signature recipient.

2. The signature recipient seleote™ {0,1} and sends it to the signer.

3. The signer reveals, to the verifier along with the random coin used to produce its
encryptione;,, namelyr,.
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4. The signature recipient acceptseifis indeed the encryption of, usingr,, and if
(t,b, sp) is indeed an accepting transcript for the WHPOK.

The triplet(¢, eo, e;) forms the confirmer signature the verifier needs to presefordéhe
confirmer for verification or conversion. In fact, the confaintan decrypt both, ande;

in so ands; resp., then extract the witnessn case of a valid signature and finally interact
(in case of a confirmation query) with the verifier in a protosionilar to the one above.
Conversion is done by revealimg And finally, the denial of an invalid signature consists of
a ZK proof that the conversion returns an invalid signature.

The construction successfully gets rid of proofs of genBiRlstatements in the confirma-
tion protocol. However, it still resorts to them in the ddmpeotocol. Moreover, the length
of the signatures as well as their generation cost grow fipeeth the number of rounds
in the WHPOK. Finally, the security guarantees satisfiechigyconstruction are much more
relaxed compared to the ones met by the construction reglibie basic “encryption of a
signature” paradigm. For instance, the non-transfetglafithe signatures may not be guar-
anteed with the use of WHPOK, as the adversary might get mrifiknowledge (from the
confirmation protocol) to convince other parties with thédity of the signature he is hold-
ing. Also, the adversary is not given access to a conversiaci®in the non-transferability
definition which means that one can say nothing about higwbiltransferring knowledge
of the validity of signatures when he sees some converte@dsiges.

The Wikstr om [Wikstr dm, 2007] construction. This construction does not differ much from
the basic “encryption of a signature” paradigm in that itgiets in first producing a digital
signature on the message to be signed then encrypting tgngsignature. The difference
is that the used encryption scheme needs to support labetsally, the encryption of the
digital signatures is done under the labepk, which denotes the public key of the signer.
An instantiation of the construction is further providedlasmproved secure under the strong
RSA assumption, the decision composite residuosity assom@nd the decision Diffie-
Hellman problem. The basic novelty of the work [Wikstror00Z] lies in the new security
model proposed for confirmer signatures, and in which thesttoation is analyzed. We
summarize below the basic new security definitions propos@dlikstrom, 2007]:

1. Security for the signer This property is a reformulation of the unforgeability pfo
erty for confirmer signatures, which takes into conditiodiamaus confirmers. Il.e. the
adversary is allowed to choose the confirmer k&y-, pk.). Almost all previous con-
structions , e.g. [Camenisch & Michels, 2000; Goldwasser &3lard, 2004; Gentry
et al, 2005; Wanget al, 2007] extend to this model.

2. Security for the confirmerThis property, called in [Wikstrom, 2007] impersonation
resistance, requires that no one should play the role of¢heige confirmer, namely
prove that the confirmer key is well formed, that a signatsneaiid/invalid and finally
that a conversion is correct. The formalization of such ipprty is done as usual
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through a game where the adversary has access to a genufireneororacle that he
can consult up to the challenge phase. Consequently, osengttt this definition
only a “lunch-time” security for the confirmer unlike the defions proposed earlier in
Subsection 3.2.4. The non-transferability of signatureppsed in [Wikstrom, 2007]
is the same proposed earlier in this chapter.

The Security for the verifieproperty in [Wikstrom, 2007] is the same proposed in Subsec
tion 3.2.2, which agrees with the definitions in [CamenisciM&hels, 2000; Goldwasser
& Waisbard, 2004; Gentret al, 2005; Wanget al, 2007]. Finally, it is worth mention-
ing that the model in [Wikstrom, 2007] requires the confirteeprove the correctness of a
conversion. Again, all the previous constructions,e.cani€nisch & Michels, 2000; Gold-
wasser & Waisbard, 2004; Gentey al,, 2005; Wanget al,, 2007], as well as the ones we
will encounter in this thesis extend to this model.

3.3.2 The “signature of a commitment” paradigm

This paradigm was first considered in [Michels & Stadler,8]36 build confirmer signatures from
signatures obtained using the Fiat-Shamir paradigm. Thee enidicism to such a construction lies
in the resort to the ROM (resulting from the use of the Fiagt8 Paradigm) and the non-support
of the convertibility feature. In [Aret al, 2002], the authors upgraded this technique to the “en-
crypt then commit then sign” method, which consists in fiestgrating a random string, saynd
encrypting it ine, then using- to generate a commitmenbn the message to be signed, and finally
produce a digital signature on the commitment his approach was used in the context of sign-
cryption in [Anet al,, 2002] and was analyzed in the insider security model. Lintgsentryet al.,,
2005], the authors used it to build confirmer signatures aodiged an efficient instantiation us-
ing Camenisch-Shoup [Camenisch & Shoup, 2003]'s encrg@icd and Pedersen’s commitment.
The resulting construction was shown to be invisible in tieder security model if the underlying
commitment is hiding and the underlying encryption is INGA secure. However, the authors
in [Wang et al,, 2007] disproved this claim by exhibiting an attack agathstinvisibility of the
construction regardless of the underlying encryptionegithe challenge signatuge, ¢, o) on the
messagen,, whereb € {0, 1} andmg, m; are the challenge messages output by the invisibility
adversaryA, the latter computes a commitmentsuch that the underlying messagéis mean-
ingfully related tomg, my (m’ = k+m;, —mg, wherek is known to.4) and the underlying random
string is the same used to createSuch a construction is possible using Pedersen’s commitme
Next, A produces a digital signatue€ on ¢ (this is possible in the insider security model) and
queries the conversion oracle on ¢, o’) and the messade if the oracle answers # 1, then A
outputsb = 0, otherwise if the oracle answets .4 outputsb = 1. The authors in [Wanegt al,
2007] proposed a fix to this construction which consists ingiencryption schemes with labels

In the rest of this section, we describe the constructioriget al, 2007] and we recall its
security analysis.
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The construction in [Wang et al.,, 2007]

Setup Getup). Consider a digital signature schemean encryption schemewith labels, and a
commitment schemg.

Key generation (keygen). The signer key pair consists OF.pk, ¥.sk), corresponding to the key
pair of the signature schemg whereas the confirmer key pair consistglogk, I'.sk) which
corresponds to the key pair related’to

ConfirmedSign (confirmedSign). To sign a message:, the signer first computes a commit-
ment ¢ on the message, then encryptseinunder the labein||X.pk, the random string
used for the commitment, say and finally, signs the commitmentusing>.sk. The con-
firmer signature consists of the triple, ¢, X.signy. o (¢)). Next, the signer interacts with
the verifier in a protocol where he (the signer) proves in Z& khowledge of- such that
1 = T.decryptr g js:.pk (€) @Ndc = Q.commit(m, r). Such a proof is possible to issue using
the randomness used to encry e. In fact, the encryption and commitment algorithms in
an encryption scheme and a commitment scheme resp. definé Emfluage that accepts a
zero knowledge proof system.

Confirmation/Denial protocol (confirm/deny). To confirm/deny a signature = (u, 2, it3)
on a given message, the confirmer first checks whethgg is a valid digital signature
on us W.r.t. X.pk, if so, he provides a ZK proof (using his private kByk) of the equal-
ity/inequality of the decryption ofi; (w.r.t. the labeln|X.pk) and the opening value of the
commitmentu, w.r.t. m. Again this proof is plausible since every NP (co-NP in cae o
inequality) language accepts a zero knowledge proof system

Verification (verify). The verification of a purported signatuyre= (4, p2, 113) On a given mes-
sagem is achieved by first checking the validity pf w.r.t. tom as a digital signature, then
checking the equality of the decryptionef (w.r.t. the labeln||X.pk) and the opening value
of u3, as a commitment om. This equality check can be achieved by the signer, who has
just generated, given the randomness used to create the ciphemexir by the confirmer
who can decrypfi; usingI.sk.

Selective conversiondonvert). Selective conversion of a signatyre= (u1, pe, 113) is achieved
by releasing the decryption @f;, in caseu is valid, or the symboll otherwise.

Selective verification gerifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithfhspen andX.verify.

Security analysis

Completeness, soundness and non-transferability of thigeedSign and the confirmation/denial
protocols follow directly from using zero knowledge proofisknowledge. Concerning unforge-
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ability of the resulting confirmer signatures, it rests oa BUF-CMA security and on the binding
property of the underlying digital signature scheme andctimamitment scheme respectively. Fi-
nally, invisibility is attained by using an IND-CCA securacagyption scheme with labels and a
secure commitment scheme. Details about the proofs wergivest so far, but are due to appear
in a forthcoming paper (full version of [Wareg al,, 2007]). Since the paper is not available yet,
we flesh out what we suspect to be the proofs in this paragraph.

Theorem 3.3.Given (t,q;) € N? ande € [0,1], the construction depicted above (5 ¢, gs)-
EUF-CMA secure if uses a binding commitment scheme angeay,)-EUF-CMA secure digital
signature scheme.

Proof. Let .4 be an attacker against the construction. We will constrociteackerR against the
underlying signature scheme as follows.

R gets the parameters of the signature sch&nfimm his challenger, namely the public key
Y.pk. Then, R will choose an appropriate encryption schemwith labels and a commitment
scheme). R gets from.A the generated confirmer key pélr.pk, I'.sk) and finally sets the men-
tioned entities as components of the constructois trying to attack.

For a signature query on a messagg R will first create a commitment; using a random
stringr;, then he will query his own challenger for a digital signatonc;. Let o; be the output
digital signature om;. The output confirmer signature consists of the triple= (e;, ¢;, 0;), where
e; is an encryption of; under the labetn; ||>.pk.

A will have at his disposdrl'.sk and thus he won't need to ask confirm/deny or selective con-
version queries. And, even in case he requests tfems, able to answer such queries with the
knowledge ofl".sk.

At some point,4 will output a forgeryu* = (e*, ¢*,0*) on some message* that has never
been queried. If there exists an< i < ¢, such thate* = ¢;, wherey; = (e;, ¢, 0;) is an
output confirmer signature on a query, then sincen; # m*, R will output a collision for the
commitment schem@. As the latter is by assumption binding;, never occurred in signatures
output to.A. Therefore(c*, 0*) corresponds to a valid existential forgery Bn O

The invisibility of the construction is considered in [Waagal,, 2007] in a slightly different
model and it rests on the security of the underlying encoypdind commitment schemes. The main
difference between the model in [Wamg al, 2007] and our definition of invisibility, provided
earlier, lies in giving the adversary the signer’s privagy,khowever disallowing him to make
verification/conversion queries w.r.t. the challenge ragesand valid signatures on it.

Definition 3.6 (Invisibility [Wang et al., 2007] (INV2-CMA)). LetCS = (keygen, confirmedSign,-
verify, confirm/deny, convert, verifyConverted) be a CDCS scheme, and ldtbe a PPTM. We de-
fine the relationz between two strings and i/ w.r.t. a message: to be1l if both ;, and /.’ are
valid confirmer signatures om (w.r.t. the same signer’s key) and we writém, i, 1//) = 1. We

consider the following random experiment, wherns a security parameter, angd {0,1}:
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ExperimenExp e’ ™" (k)

(pkg, sks, pke, ske) «— CS.keygen(k)
(mg, m3,T) + A®F(find, pkg, sks, pke)
Co : (m, pn) —> CS.convertg, (m, 1)
U : (m, u) — CS.{confirm,deny}(m, u, pke, pkg)
p* <= CS.confirmedSign g, ok pke.} (M%)
d + A®>T(guess, T, u*, pkg, sks, pke)
Co: (m, w)(# (mF, i) : R(my, pw*, i) = 1,4 =0,1) — CS.convertg, (m, )
G (m,w)(# (mk, @)« Rimg, u*, @) = 1,4 =0,1) — CS.{confirm, deny}(m, u, pke, pkg)

Returnd

We define thadvantagef A via:

Advg’?jcma(n) = (Pr [Expicng’?gcma_b(/i) = b} — % .

Given(t, ¢,, ¢s.) € N*> ande € [0, 1], Ais called a(t, ¢, ¢,, ¢s.)-INV2-CMA adversary against
CS if, running in timet and issuingy, queries to theCS.confirm /CS.deny oracles andy,. queries
to the CS.convert oracle, A hasAdv{{y’,“™ (k) > e. The schem€S is said to be(t, e, ¢,, s.)-
INV2-CMA secure if nQt, ¢, ¢, gs.)-INV2-CMA adversary against it exists. Finally, we consider
a CDCS schemé€S with security parameter € N; CS(k) is said to bdNV2-CMA secure if, for
any polynomial functions g¢,, ¢;. : N — N and any non-negligible function: N — [0, 1], it is
(t(k), e(K), qu(K), gsc(k))-INV2-CMA secure.

Remark 3.6. Note that the adversary in the above definition does not ne€8l.@nfirmedSign
oracle since he has the signing private kky.

We present in the sequel the invisibility analysis in the glabnsidered by the authors in
[Wanget al.,, 2007].

Theorem 3.4. Given(t, qs, ¢,, ¢s.) € N* ande € [0, 1], the construction depicted earlier in this
subsection ist, €, ¢,, ¢sc)-INV2-CMA if it uses an injective, binding, arid ¢,)-hiding commit-
ment, and &¢, 5%, g, + ¢s.)-IND-CCA secure encryption with labels.

Before proving this theorem, we need the following lemma:

Lemma 3.5. LetQ2 andI" be a commitment and a public key encryption schemes regplgctiVe
consider the following game between an adversdmgnd his challengeik.:

1. R invokes the algorithmB.keygen(x) to generatepk, sk), wherex is a security parameter.

2. A outputs two messages, andm, such thatn, # m, to his challenger.

3. R generates two noncegs and r; such thatry # r;. Next, he chooses two bitst/ il
{0, 1} uniformly at random. Finally, he outputs td ¢, = Q.commit(my, 1) andey =
[.encrypt 7y ).
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4. A outputs a bith, representing his guess of not being the commitment ef, using the
noncel .decrypt(ey ). A wins the game i, # b, and we define his advantage to be

Adv(A) = [Pr[b # b —% ,

where the probability is taken over the random tosses of Botimd k.
If Q2 is injective, binding, andt,, ¢;,)-hiding, thenAdv(.A) in the above game is equal tp.

Proof. Let e be the advantage of in game above. We will construct an advers&which breaks
the hiding property of the used commitment with advantage

e R gets fromA the messagey, m1, and forwards them to his own challenger.

e R receives from his challenger the commitment Q.commit(my, r) for someb & {0,1}
and some nonce.

e R generates a noneéand outputs tod ¢, ande = I".encrypt, (1').
e WhenA outputs a bib,, R outputs to his challengér— b,.

If A can by some means get holdréfthen he can compute = Q.commit(m;, '), i = 0, 1. Since
Q) is injective and binding then, # ).commit(my, r") andc, # Q.commit(m;_,, r’) respectively,
i.e. Cp ¢ {Co, Cl}.

We have by definition:

en =Adv(R) = |Pr[l —b, =0b] — %)
- H@#M—H
= Adv(A)

O

Remark 3.7. Note that the above lemma holds true regardless of the useymionI'. For
instance, it can be used with encryption schemes which sufgtels and which do not require
any kind of security.

Let us now prove Theorem 3.4.

Proof. We assume the existence oftae, ¢,, g,.) invisibility adversary4 against the construction,
where the underlying commitment is injective, binding, dnd;)-hiding. We will construct a
reductionR which (¢, <% g, + ¢,.)-IND-CCA breaks the underlying encryption scheme.
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[Parameter generation] R gets the parameters of the encryption schénfrom his challenger.
Then he will choose a signature scheméalong with a key pairX.pk, >.sk)) and a secure
commitment schem@. R will set the above entities as components of the constnuctics
trying to attack.

[confirm /deny and convert queries] To confirm/deny an alleged signatyre= (.}, 2, i) on a
messagen;, R will proceed as follows. First he checks the validity of thgitl signature
w? on p?, in case it is invalid, he will outputl, otherwise he will obtain the decryption
of i} (from the decryption oracle thanks to the CCA attack modg))if r; is (is not) the
same string used to compute the commitmentR will issue a zero knowledge proof of
the equality (inequality) of the decryption @f and the string used for the commitment
p?. R can issue these proofs without the knowledgé& ek using the rewinding technique
which consists in rewinding the verifier (the adversayuntil his output agrees with what
the simulator R) has generated (the proofs are ZK and thus simulatable, seaR 1.9).
Selective conversion is similarly carried out with the gxoen of issuing the decryption of
u! in case the confirmer signature is valid ahdtherwise.

[Challenge phase]At some point,.A will output two messages:y, m;. R will then choose

uniformly at random a bib il {0,1}, and generate two different noncgsandr,. R
will output to his challenger the labeh,||>.pk and the strings,, ;. He receives then a

ciphertexte,, encryption ofry, for somet’ & {0,1}. To answer his challengeR will

compute a commitmeit on the message,, using the string,» wherebt” il {0,1}. Then,
R will output iu = (ey, ¢, X.signy, . (¢p)) as a challenge signature tb

In caseey is an encryption of,. (that is if b’ = b”), thenu corresponds to a valid confirmer
signature onm,. Otherwise, it is not a valid signature on neithey nor m;_,. In fact,

Q2 is injective andc, is a commitment onn,, using a string different from the decryption
of ey under the label,||X.pk. If the advantage ofd is non-negligibly different from the
advantage ofd in the attack described in Definition 3.6, then and accortbrigemma 3.5.4
can be easily used to break the hiding property of the unhgylygommitment.

[Post challenge PhaseR will continue to handled’s queries as before. Note that in this phage,
cannot query his challenger for the decryptiorgfunder the labet, ||>.pk. R needs such
a decryption query if4 requests the verification (conversion) (@}, ¢, o) on the message
my, Whereo is a valid digital signature on, andc is a valid commitment om,, using either
ro or r1. If such a query occursR will issue the denial protocol (output). This differs
from the real algorithm whefey, ¢, o) is a valid confirmer signature on,; two cases man-
ifest: eitherc = ¢, in which case such a signature is not allowed for verificationversion
according to Definition 3.6, ot = Q.commit(my, 71> ) Which is very unlikely to occur
sincer;_y is external taA.
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[Final output] Let b, be the bit output byd. R will output b” to his challenger in case= b,
andl — b” otherwise.

The advantage ofl in such an attack is defined by

1
= Adv(A) = |Prlb, = b’ = V'] —

1 1
= max(Prlb, = 0¥ =] - 3. Prib, £ 0¥ =] - 3)

Moreover, and according to Lemma 3.5, we have in éaseb”:

€h

= max(Pr[b, # bt #b"] —

1
= [Prlba £l £ - 3

1 1
—, Pr[b, = 0|V #0b"] — =
o Prlb, = Y £V - )

Let us assume without loss of generality that Pr[b, = b|b' = V"] — 1 ande;, = Pr[b, #

b‘b/ 7& b”] _

Adv(R) =

5. The advantage R is the given by:

1
Pr[b = by, ' = "] + Pr[b # by, b’ # b"] — 3

1
Prlb = bo[b = b Prlb/ = ") + Prlb # balt/ # V') Prly # 1] - 5

1 1 11 1
ety alg el =y
€+ €

2

The last but one equation is due to the ey’ # "] = Pr[t = "] = 1 ast” & {0,1}.

O

3.4 Conclusion

In this section, we presented the two basic approacheseaibewhen building convertible con-
firmer signatures from basic primitives. The invisibilitylaoth constructions was investigated in
theinsider security model, which requires the underlying encryptiohesne to meet the highest
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level of security, namely IND-CCA security. This impactgagvely the efficiency of the confir-
mation/denial protocols as they resort to proofs of gengRaktatements, e.g. proving knowledge
of the plaintext underlying an IND-CCA encryption. Sinceigter security might be too strong
than what is actually needed in most real life applicatidnspuld be interesting to examine the
invisibility of these constructions in theutsidersecurity model with the hope of weakening the
security assumptions on the underlying building blocks @nsequently improving the efficiency
of the construction in general, and of its confirmation/déprotocols in particular.
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Chapter 4

The “Encryption of a Signhature” Paradigm

Abstract. The “encryption of a signature” paradigm is the most inigitivay to ob-
tain designated confirmer signatures; it consists in finsegating a digital signature
on the message to be signed, then encrypting the result asogable encryption
scheme. This approach requires the constituents (enorygaiid signature schemes)
to meet the highest security notions in order to achieversemnstructions in the
insider security model.

In this chapter, we revisit this method and establish thessary/minimal and suf-
ficient assumptions on the building blocks in order to atsgoure confirmer sig-
natures in the outsider model. Our study concludes that dnadggm, used in its
basic form, cannot allow a class of encryption schemes wisiefital for the effi-
ciency of the confirmation/denial protocols. Next, we prepa slight variation of
the paradigm and we demonstrate its efficiency by expliciégcribing its confir-
mation/denial protocols when instantiated with buildirigdks from a large class
of signature/encryption schemes. Interestingly, thesotdsignatures we consider
is very popular and has been for instance used to build eftidesignated verifier
signatures.

Parts of the results described in this chapter were puldigh¢El Aimani, 2008]
and [El Aimani, 2009b] at IndoCrypt 2008 and IndoCrypt 2089p.

4.1 Analysis of the plain paradigm

We consider the construction of the plain "encryption ofgnsiture” paradigm depicted in Subsec-
tion 3.3.1. More precisely, let be a digital signature scheme givenYykeygen which generates
a key pair (private key =.sk, public key=X.pk), ¥X.sign, andX.verify. Let furthermord” denote
an encryption scheme describedlhyeygen that generates the key pair (private kel sk, public
key=T".pk), I".encrypt andI".decrypt. The construction is as follows:

Setup cetup). On input the security parametey output the public parameters Bfand>:.
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Key generation (eygen). Invoke the algorithms:.keygen andI'.keygen to generate the keys
Y..sk, X.pk, I'.sk andT".pk. Set the signer’s key pair t@.sk, ¥..pk) and the confirmer’s key
pair to(T".sk, I".pk).

ConfirmedSign (confirmedSign). Letm be the message to be signed. The signer first computes
a (digital) signature = X5 i.sign(m) onm, then encrypts it using.encrypt. The resulting
ciphertextu = I'.encryptr (o) forms the output confirmer signature. Moreover, the signer
interacts with the signature recipient in a zero knowledg#qeol where he (the signer)
proves that the output is a valid confirmer signature on thesauge in question. The prover’s
private input is the randomness used to generate the erarypof o.

Verification (verify). To check whether an alleged confirmer signaturessued on a certain
messagen, is valid, the confirmer first decrypts it tn, then calls the algorithrix.verify on
the result using_.pk. The signature is valid if and only if the output of the latitem is1.
We stress again that this algorithm is run by the confirmecait also be run by the signer
on ajust generated signature; using the randomness used to generafas encryption of
someo), the signer checks whethgris well formed, i.e.whether is indeed an encryption
of o, then he checks, usirig.pk, whethers is a valid digital signature om.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatyreon a
certain message:, the confirmer first checks its validity using the verificatialgorithm.
According to the result, the signer issues a zero knowledgeff knowledge of the de-
cryption of i, that passes (does not passyerify.

Selective conversiondonvert). Given a signature onm, the confirmer first checks whether it
is valid. If it is the case, then he outputsiecrypt ., (1), otherwise he outputs.

Selective verification gerifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithiwerify using>:.pk.

In this section, we prove that the condition on the undegysignature scheme (EUF-CMA
secure) is also necessary to achieve EUF-CMA secure comfigretures. Furthermore, we prove
that IND-PCA secure encryption schemes are already endlagbgh a minimal requirement, to
achieve INV-CMA signatures.

4.1.1 The exact unforgeability of the construction

Theorem 4.1.Given(t, q,) € N*> ande € [0, 1], the above generic construction is ¢, ¢,)-EUF-
CMA secure if and only if the underlying digital signaturdeme is{, ¢, ¢;)-EUF-CMA secure.

Proof. The If direction has been already proven (see Subsectioh)3\&e prove now the other di-
rection. Let(m*, c*) be an existential forgery against the digital signaturessh One can derive
a forgery against the confirmer signature by simply encngpthe signature™* using the public
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key of the confirmer. Simulation of the attacker’s enviromtris easy; the reductioR (EUF-CMA
attacker against the confirmer signature) will forward thprapriate parameters (those concern-
ing the underlying digital signature) to the EUF-CMA attacld against the underlying signature
scheme. For a signature query on a messagR will first request his challenger for a confirmer
signatureu that he decrypts using the private key of the confirniéih@s access tek. according
to the EUF-CMA security game described in 3.2.3)irwhich he ®) will output to A.

At the end, A outputs a valid digital signature* on a message:* that he has never queried
for signatureR encrypts this signature im* using the public key of the confirmer and outputs the
result as a valid existential forgery am* (R never queriedn* for a confirmer signature). [

4.1.2 The exact invisibility of the construction

In this paragraph, we prove that IND-PCA secure encryptabresies are a minimal and sufficient
requirement to achieve INV-CMA secure confirmer signatufesrove this assertion, we proceed
as follows. We first show that the INV-CMA security of the réswg signatures cannot rest on the
NM-CPA security of the underlying encryption scheme. Welds by means of an efficiemeta-
reductionthat uses such a reduction (the algorithm reducing NM-CR#faking the underlying
encryption scheme to INV-CMA breaking the constructionpteak the NM-CPA security of the
encryption scheme. Thus, under the assumption that thgpar scheme is NM-CPA secure,
the meta reduction forbids the existence of such a reductiorcase the encryption scheme is
not NM-CPA secure, such a reduction will be useless. Thiglr&all rule out automatically all
the other notions that are weaker than NM-CPA, namely OW-@Ré& IND-CPA. Next, we use
a similar technique to exclude the OW-CCA notion. The neguséy notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient totaln INV-CMA secure signatures.
Note that meta-reductions have been successfully useduméaer of important cryptographic
results, e.g. the result in [Boneh & Venkatesan, 1998] whiaves the impossibility of reducing
factoring to the RSA problem, or the results in [Paillier &ryraud, 2005; Paillier, 2007] which
show that some well known signatures which are proven secuh® random oracle cannot con-
serve the same security in the standard model. All those $sipiity results are partial as they
apply only for certain reductions. Our result is in a firstggtaalso partial since it requires the
reductionR, trying to attack a certain property of an encryption sch@men by the public key
I'.pk, to provide the adversary against the confirmer signatutte tive confirmer public key'.pk.
We will denote such reductions lxgy-preservingeductions, inheriting the name from a wide and
popular class of reductions which supply the adversary thighsame public key as its challenge.
Such reductions were for instance used in [Paillier & Vjll2006] to prove a separation between
factoring and IND-CCA-breaking some factoring-based wgpiton schemes in the standard model.
Our restriction to such a class of reductions is not unnasimae, to our best knowledge, all the
reductions basing the security of the generic construstafrconfirmer signatures on the security
of their underlying components, feed the adversary wittptligic keys of these components (sig-
nature schemes, encryption schemes, and commitment sshedsxt, we use similar techniques
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to [Paillier & Villar, 2006] to extend our impossibility refts to arbitrary reductions.

Impossibility results for key-preserving reductions

Lemma 4.2. Assume there exists a key-preserving reducRahat converts an INV-CMA adver-
sary A against the above construction to an NM-CPA adversary agjdire underlying encryption
scheme. Then, there exists a meta-reducfidrthat NM-CPA breaks the encryption scheme in
guestion.

Let us first interpret this result. The lemma claims that urtde assumption of the underlying
encryption scheme being NM-CPA secure, there exists ngkeserving reductio® that reduces
NM-CPA breaking the encryption scheme in question to INVANreaking the construction, or
if there exists such an algorithm, then the underlying goiboyp scheme is not NM-CPA secure,
thus rendering such a reduction useless.

Proof. Let R be a key-preserving reduction that reduces NM-CPA breakiegncryption scheme
underlying the construction to INV-CMA breaking the comstion itself. We will construct an al-
gorithm M that usesk to NM-CPA break the same encryption scheme by simulatingcaowion
of the INV-CMA adversary4 against the construction.

Let I" be the encryption schemft is trying to attack. M launchesR overI’ with the same
public key, sayi'.pk. M, acting as the INV-CMA adversaryl against the construction, queries

R on mg, my £ {0, 1}* for confirmer signatures. Then, he queries the resultinggsty.,
(corresponding to the confirmer signaturesmanandm; respectively) for a selective conversion.
Let oy ando; be the output (digital) signatures en, andm; respectively. At that pointM
inputsD = {0y, 01} to his own challenger as a distribution probability from ethihe plaintexts
will be drawn. He gets in response a challenge encryptigrof eithero, or o; underI'.pk, and

is asked to produce a ciphertextwhose corresponding plaintext is meaningfully relatechi t

decryption ofu*. To do this, M chooses uniformly at random a it {0,1}. Then, he queries
the presumed confirmer signatyi& on m, for a selective conversion. If the result is different
from L, i.e. p* is the encryption of,, then M will output I".encryptr . (73) (7% refers to the
bit-complement of the element) and the relation?: R(m,m’) = (m’ = m). Otherwise, he will
outputI.encryptr . (61-5) and the same relatioR. Finally M aborts the game (stops simulating
an INV-CMA attacker against the generic construction). O

Remark 4.1. In the above proofR may not behave as a standard INV-CMA challenger. For
instance, he may produce inconsistent answers whesks the signature of, and m, the
conversion ofiy and iy W.r.t. my andm, respectively, or the conversion pf w.r.t. mg or m;. In
this case,M cannot answer his NM-CPA challenge, howexers not either expected to answer
his INV-CMA challenge, and therefofe will be compelled to solve his challenge without the help
of A; that is R will be useless as it is solving a challenge without the hélpipi.e. aneasy
challenge.
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Actually, such an argument applies for all the impossipii@sults that will be used throughout
this thesis; if the reduction provides an incorrect simidatcausing the meta-reduction a failure
in answering his challenge, then the adversary, playedfsitad by this meta-reduction, is not
neither expected to answer his challenge. In this case gtheation will be useless as it is solving
a challenge in polynomial time without the help of the adasrs

Lemma 4.3. Assume there exists a key-preserving reducRathat converts an INV-CMA adver-
sary A against the above construction to a OW-CCA adversary agénesunderlying encryption
scheme. Then, there exists a meta-reduciidrthat OW-CCA breaks the encryption scheme in
guestion.

As mentioned previously, this lemma claims that under tisei@ption of the underlying en-
cryption scheme being OW-CCA secure, there exists no keggoving reductiofR that reduces
OW-CCA breaking the encryption scheme in question to INVAbteaking the construction, or
if there exists such an algorithm, then the underlying gpotooy scheme is not OW-CCA secure,
thus rendering such a reduction useless.

Proof. The proof technique is similar to the one above. ebe the key-preserving reduction
that reduces OW-CCA breaking the encryption scheme undgrtire construction to INV-CMA
breaking the construction itself. We will construct an aition M that usesk to OW-CCA break
the same encryption scheme by simulating an execution dNW€CMA adversary.A against the
construction.

LetI" be the encryption schemet is trying to attack.M gets his challengeand is equipped
with a decryption oracle that he can query on all ciphertextkis choice except of course on
the challenge.M launchesR overI" with the same public key'.pk and the same challenge
Obviously, all decryption queries made By which are by definition different from the challenge
ciphertexic, can be forwarded td1’s own challenger. At some poini/1, acting as an INV-CMA
attacker against the construction, will output two messaggm,; and gets as response a challenge
signatureu* which he is required to tell to which message it correspontfgh overwhelming
probability, u* # ¢, in fact, the challenge is not the encryption of a certain such thats is
a valid digital signature on the messagg or the message:;. Therefore, M queries his own
challenger for the decryption @f (he canissue such a query since itis different from the ehgt
ciphertext). He checks whether the result, sais a valid digital signature om, or m;. Then, he
will simply output the result of this verification. FinallwhenR outputs his answer, decryption
of the ciphertext, M will simply forward this result to his challenger. O

Remark 4.2. In the above proof, iR givesc as a challenge confirmer signature b (simulated

by M), then. A cannot solve the INV-CMA challenge A4 cannot invoke his decryption oracle
onc. Since it is very unlikely that corresponds to a valid confirmer signature on the challenge
messagesu, or m,, then whatever is the answer df (actually in this caseA, simulated byM
who launchedR over ¢, can abort the invisibility game) to the challengethis answer will not
helpR solving his OW-CCA challenge since he already knowsdbathnot be (with overwhelming
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probability) a valid confirmer signature on either messaggr m;. In other words, in this case,
whateverR learns fromA, he can also learn it without, which corresponds to a reductidR
solving a OW-CCA challenge in polynomial time without thiphe A, i.e. the reductiorR is
useless as it is solving an easy problem.

Remark 4.3. Note that the success of the meta-reductldn in the above proofs, is identical to
the success of the reducti@h Moreover, the above results apply to any key-preservidgaegon
(from NM-CPA or OW-CCA breaking the encryption scheme toc@WA breaking the construc-
tion), for instance, they apply to the (key-preserving)uetn making the best possible use of
INV-CMA adversaries against the construction.

Theorem 4.4. The encryption scheme underlying the above constructiost briat least IND-
PCA secure, in case the considered reduction is key-preggrin order to achieve INV-CMA
secure signatures.

Proof. We proceed in this proof with elimination. Lemma 4.2 rule$ the notion NM-CPA and
thus the notions IND-CPA and OW-CPA. Moreover, Lemma 4.8swut OW-CCA and thus OW-
PCA (and also OW-CPA). Thus, the next notion to be considerdD-PCA. O

Remark 4.4. The above theorem is only valid when the considered noti@ihase obtained from
pairing a security goal GOAle {OW, IND, NM} and an attack model ATk {CPA PCA CCA}.
Presence of other notions will require an additional studpwever, Lemmas 4.2 and 4.3 will be
always of use when there exists a relation between theseotems and the notions OW-CCA and
NM-CPA.

Generalization to arbitrary reductions

To extend the results in the previous paragraph to arbitedyctions, we first define the notion of
non-malleability of an encryption scheme key generttoough the following two games:

In Game Q we consider an algorithiR trying to break an encryption scherhg w.r.t. a public
key I".pk, in the sense of NM-CPA (or OW-CCA) using an adversdryvhich solves a problem
A, perfectly reducible to OW-CPA breaking the encryptiohemel . In this gameR launches4
over his own challenge kely.pk and some other parameters chosen freelfRbywWe will denote
by Advy(R*) the success probability d® in such a game, where the probability is taken over
the random tapes of botR and.A. We further definéSucc®®™(A) = maxz Advo(R4) to be
the success ibame 0of the best reductio® making the best possible use of the adversary
Note that the goal oGame Ois to include all key-preserving reductio®s from NM-CPA (or
OW-CCA) breaking the encryption scheme in question to sgla problem A, which is reducible
to OW-CPA breaking the same encryption scheme.

In Game 1, we consider the same entities asdame Q with the exception of providing with,

in addition to.4, a OW-CPA oracle (i.e. a decryption oracle corresponding)tihat he can query
w.r.t. any public keyl".pk’ # I'.pk, whereI'.pk is the challenge public key d®. Similarly, we
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defineAdv, (R*) to be the success @& in such a game, anBucci®™ (A) = maxg Adv(RA)
the success iGame 1of the reductioriR making the best possible use of the adversdmnd of
the decryption (OW-CPA) oracle.

Definition 4.1. An encryption schenmleis said to have a non-malleable key generator if
A = maz4|Succ®™ e (A) — Succt®™°(A)| is negligible in the security parameter.

This definition informally means that an encryption schemag & non-malleable key generator
if NM-CPA (or OW-CCA) breaking it w.r.t. a kepk is no easier when given access to a decryption
(OW-CPA) oracle w.r.t. any public key’ # pk.

We generalize now our impossibility results to arbitrarguetions as follows.

Theorem 4.5. If the encryption scheme underlying the above construdiesa non-malleable
key generator, then it must be at least IND-PCA secure inrotdeachieve INV1-CMA secure
confirmer signatures.

To prove this theorem, we first need the following lemma (Emio Lemma 6 of [Paillier &
Villar, 2006])

Lemma 4.6. Let A be an adversary solving a problem A, reducible to OW-CPA lrepan en-
cryption schemaé’, and letR be an arbitrary reductioriR that NM-CPA (OW-CCA) breaks an
encryption schemE given access tol. We have

Adv(R) < Succ™el(A).

Proof. We will construct an algorithm\ 1 that playsGame 1with respect to a perfect oracle far
and succeeds in breaking the NM-CPA (OW-CCA) securitly @fith the same success probability
of R. Algorithm M gets a challenge w.r.t. a public kel and launche® over the same challenge
and the same public key. R calls.4 on pk, thenM will call his own oracle for4. Otherwise, ifR
calls.A onpk’ # pk, M will invoke his own decryption oracle fgik’ (OW-CPA oracle) to answer
the queries. In fact, by assumption, the problem A is redadio OW-CPA breaking’. Finally,
whenR outputs the result td1, the latter will output the same result to his own challengei]

The proof of Theorem 4.5 is similar to that of Theorem 5 in [lRai& Villar, 2006]:

Proof. We first remark that the invisibility of the construction depd above is perfectly reducible
to OW-CPA breaking the encryption scheme underlying thestantion. In fact, an invisibility
adversaryA, given a challenge confirmer signature, can first decryghét check, using the algo-
rithm X.verify andX.pk, whether the result is a valid digital signature on the mgss$a question.
Next, we note that the advantage of the meta-reductibim the proof of Lemma 4.2 (Lemma 4.3)
is the same as the advantage of any key-preserving redd@treducing the invisibility of a given
confirmer signature to the NM-CPA (OW-CCA) security of itsdenlying encryption schemg.
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For instance, this applies to the reduction making the ssbb@ian invisibility adversaryl against
the construction. Therefore we have:

Succ®™0(A) < Succ(NM — CPA[T)),

whereSucc(NM — C'PA[I) is the success of breakirigin the NP-CPA sense. We also have
Succ®™0(A) < Succ(OW — CCA[TY).

Now, LetR be an arbitrary reduction from NM-CPA (OW-CCA) breaking anteyption scheme

I', with a non-malleable key generator, to INV-CMA breaking ttonstruction (using the same
encryption schemg). We have

Adv(R) Succi®™ (A)
SuccS™0(A) + A

Succ(NM — CPA[T])(Succ(OW — CCA[T])) + A

IA A IA

since A is negligible, then under the assumptionlobeing NM-CPA (OW-CCA) secure, the
advantage oR is also negligible. O

Positive results

One can give an informal explanation to the result abovelasifs. It is well known that construc-
tions obtained from the sigthenencrypt paradigm are nsetrongly unforgeablel.e. a polynomial
adversary is able to produce, given a valid confirmer sigeatn a certain message, another valid
confirmer signature on the same message without the helpeddigimer. Indeed, given a valid
confirmer signature on a message, an attacker can requestrigsponding digital signature from
the selective conversion oracle, then he encrypts it udeconfirmer public key and obtains a
new confirmer signature on the same message. ThereforeedugtionR from the invisibility

of the construction to the security of the underlying entiggpscheme will need more than a list
of records maintaining the queried messages along withdhesponding confirmer and digital
signatures. Thus the insufficiency of notions like IND-CPA.[Camenisch & Michels, 2000],
the authors stipulate that the given reduction would needcaygtion oracle (of the encryption
scheme) in order to handle the queries made by the INV-CMd#ckér.A, which makes the invis-
ibility of the construction rest on the IND-CCA security d¢fet encryption scheme. In our work,
we remark that the queries made Hdyare not completely uncontrolled 3%. In fact, they are
encryptions of some data already release®bhyrovided the digital signature scheme is strongly
unforgeable, and thus known to him. Therefore, a plaintegtking oracle suffices to handle those
queries.
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Theorem 4.7. Given (t,qs, q,,¢.) € N* and (,€') € [0,1]? the construction given above is
(t, €, qs, 4u, g5c)-INV-CMA secure if the underlying digital signaturg(ise’, ¢;)-SEUF-CMA secure
and the underlying encryption schemetis-(gsqs(qse + qv), € - (1 — €)@t %) g (qee + q,))-IND-
PCA secure.

Proof. Let A be an attacker that (e, ¢, ., ¢sc)-INV-CMA breaks the invisibility of the above
confirmer signature, believed to us€tac’, ¢,)-SEUF-CMA secure signature scheme. We will
construct an algorithi® that IND-PCA breaks the underlying encryption scheme devid:

[Key generation] R will get the public parameters of the target encryption sohdrom his
challenger, that ar€.pk , I'.encrypt, andI'.decrypt. Then, he will choose an appropriate
signature scheme with parameters.pk, X.sk, X.sign, andX.verify.

[confirmedSign queries] For a signature query on a message R first computes a (digital)
signatures on m using his secret keY..sk. Then, he encrypts and outputs the result
to A. Besides;R issues a ZK proof of knowledge of that satisfies the equation defined
by X.verify. Finally, R will maintain a listL of the queries (messages), the corresponding
digital signatures and finally the signatures he issueawvill proceed in this way foreach
gueryand not onlyeach new query

[convert queries] For a putative confirmer signatugeon m, R will look up the list£. We
note that each record df comprises three components : (1) the queried message) o;
corresponding to a digital signature on (3) I".encrypty (o) = p1;, which corresponds to
the confirmer signature issued on. If no record having as first component the message
appears irC, thenR will output L. Otherwise, let be the number of records having as first
component the message R will invoke the plaintext checking oracle (PCA) furnishegl b
his own challenger ofv;, 1), for 1 < i < ¢, whereo; corresponds to the second component
of such records. If the PCA oracle identifiess a valid encryption of some, 1 < < t,
thenR will return o;, otherwise he will returnL. This simulation differs from the real one
when the signaturg is valid and was not obtained from the signing oracle. We rioat
the only ways to create a valid confirmer signature withoathblp of R consist in either
encrypting a digital signature obtained from the conversitacle or coming up with a new
fresh pair of message and corresponding signdture:). R can handle the first case using
his PCA oracle and list of records In the second case, we can distinguish two sub-cases:
eitherm has not been queried to the signing oracle in which case ithépau) corresponds
to an existential forgery on the confirmer signature schemdlaus to an existential forgery
on the underlying digital scheme according to Theorem 4.1p dhas been queried to the
signing oracle buf".decrypt(y) is not an output of the selective conversion oracle, which
corresponds to a strong existential forgery on the undeglgligital signature. Therefore, the
probability that this scenario does not happen is at Ieast ¢')% because the underlying
digital signature scheme (8, ¢, ¢;)-SEUF-CMA secure by assumption.
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[confirm /deny queries] R will proceed exactly as in the selective conversion withekeeption
of simulating the denial protocol instead of returnihgor the confirmation protocol instead
of returning the converted digital signatur®. can issue such proofs without knowing the
private key of the encryption scheme using the rewindingrepe (see Remark 1.9) be-
cause the protocols are zero knowledge and thus simulat@blesing designated verifier
proofs [Jakobssoat al,, 1996] in a registered key model. Analogously, the proligttihat
A does not query a valid signature he has not obtained fromigimeng oracle is at least
(1—¢)w,

[Challenge phaselEventually,A will output two challenging messages, andm;. R will then
compute two signatures, ando; on my andm; respectively, which he gives to his own
challengerR will receive then the challenge®, as the encryption of eithet, or o1, which
he will forward toA.

[Post challenge phaseA will continue issuing queries to the signing, confirmataerial and
selective conversion oracles aftlcan answer as previously. Note that in this phaseés
not allowed to query the selective conversion or the confitmé&enial oracles ofwn;, 1*),

i =0, 1. Also, R is not allowed to query his PCA oracle ¢n*, 0;), i = 0, 1. If during the
selective conversion or confirmation/denial queries madd bR is compelled to query his
PCA oracle onp*, 0;), i = 0,1, he will simply outputl in case of a selective conversion
query or simulate the denial protocol in case of a verificatjoery. This differs from the
real scenario whep* is a valid confirmer signature on some messagg {m, m; }, which
corresponds to an existential forgery on the underlyingaigre schemes{ will be a valid
digital signature om, or m; and on amessage ¢ {mg, m;}). Again, this does not happen
with probability at least1 — ¢')%*.

[Final output] When A outputs his answer € {0,1}, R will forward this answer to his own
challenger. Therefor®& will IND-PCA break the underlying encryption scheme with ad
vantage at least (1 —¢')(@*%¢) in time at Most + ¢,q..(q, + gs.) after at mosty..(gs. + q.)
gueries to the PCA oracle.

O

Unfortunately, requiring the encryption scheme to be atlD-PCA secure seems to impact
negatively the efficiency of the construction as it excludesnomorphic schemes from use (a
homomorphic encryption scheme cannot be IND-PCA securejadt, such schemes can be (as
we will show later in this document) efficient decryption Wi@ble, i.e. they accept efficient ZK
proofs of knowledge of the decryption of a given cipherteixt.the next section, we discuss an
attempt to circumvent this problem.

Remark 4.5. There exists a simpler way to exclude homomorphic encnyfrioon the design which
consists in proceeding as follows:
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First rule out the notions OW-CPA, IND-CPA and OW-PCA by rdamg that EIGamal’s encryp-
tion meets all those notions (under the CDH, DDH and GDH agdion resp. ) but still cannot
be used as an ingredient in the construction. In fact, EIGlaofi@rs the possibility of, given a
ciphertext, creating another ciphertext for the same mgsgenultiply the first component lgy,

for somer, and the second one Iy, where(sk = z, pk = y = ¢”) is the key pair of the scheme).
Now, let(u, mg, m;) be a challenge of an INV-CMA adversady By constructiony. is an ElGa-
mal encryption of some, which is a digital signature on eithen, or m;. By the argument above,
A can create another confirmer signatyrg that is another encryption ef, and that he can query
(w.r.t. mq for example) to the selective conversion oracle and thewankis own challenge.

Next, deduce that the encryption scheme in constructiongedefrom the “encryption of a sig-
nature” paradigm must be at least OW-CCA or NM-CPA or IND-P€&k&ure in order to lead to
secure constructions. Finally, conclude by the fact thabembmorphic scheme cannot be NM-CPA
secure nor OW-CCA nor IND-PCA sectire

However, in order to determine the exact security neededlicese secure constructions from the
mentioned paradigm, there seems no known simpler way tbthais the study provided in this
section.

4.2 An efficient construction from a variant of the paradigm

One attempt to circumvent the problemstfong forgeabilityof constructions obtained from the
plain “encryption of a signature” paradigm can be achiewetibding the digital signature to its
encryption. In this way, from a digital signatuseand a message, an adversary cannot create
a new confirmer signature on by just re-encrypting. In fact,o forms a digital signature om
and some data, say which uniquely defines the confirmer signaturerenMoreover, this data
has to be public in order to issue the confirmedSign/confionatenial protocols.

In this section, we propose a realization of this idea usiigid encryption (the KEM/DEM
paradigm). We also allow more flexibility without compromig the overall security by encrypting
only one part of the signature and leaving out the other pestjided it does not reveal information
about the key nor about the message.

1Let E be an encryption scheme such thiat, m’ € M: E.encrypt(m x m’) = E.encrypt(m) o E.encrypt(m’),
whereM is the message spaamcrypt is the encryption algorithm and finallyando are some group laws defined
by E on the message and ciphertext spaces respc hetthe NM-CPA challenge. An adversary can simply choose

a random message’ &M, encrypt it in¢’ and finally outputc o ¢’ and the relatiorR = *m’. Now, letc be a

OW-CCA challenge, an adversary can choose again a randosagees’ il M, encryptitinc’ and then queryx ¢’
to the decryption oracle. Let” be the result, the adversary can simply outptitx m/~! as the decryption of (we
assume that computing inverses is done efficiently). Similarly, a homomorphic scheme carreIND-PCA
secure.
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4.2.1 The construction

Let X be a digital signature scheme given Biykeygen, which generates a key pait 6k, >.pk),
Y.sign, and X.verify. Let furthermoreXC be a KEM given bykC.keygen, which generates a key
pair (IC.pk, K.sk), K.encap, andK.decap. Finally, we consider a DEND given byD.encrypt and
D.decrypt.

We assume that any digital signaturegenerated using on an arbitrary message, can be
efficiently transformed in a reversible way to a pé&irr) wherer reveals no information about
m nor about(X.sk, X.pk). l.e. there exists an algorithm that inputs a messagend a key pair
(3.sk, X.pk) and outputs a string statistically indistinguishable frepwhere the probability is
taken over the messages and the key pairs considergd Dhis technical detail will improve the
efficiency of the construction as it will not necessitatergpting the entire signature, but only
the message-key-dependent part, nameBinally, we assume thatbelongs to the message space
of D.

In the rest of this section, we consider that the encapsulatyenerated by the KEM are
exactly x-bit long, wherex is a security parameter. This can be for example realizedabgipg
with zeros, on the left of the most significant bit of the giveamcapsulation, until the resulting
string has length. Moreover, the operatdf denotes the usual concatenation operation between
two bit-strings. As a result, the first bit of will always be at théx + 1)-st position inc||m, where
c is a given encapsulation. Such a technical detail will playnaportant role in the unforgeability
and invisibility of the construction.

The construction of confirmer signatures frain/C, andD is given as follows.

Key generation eygen). Call >.keygen andK.keygen to generate, on input a security parameter
Kk, 2.5k, X.pk, K.pk, and/C.sk respectively. Set the signer’s key pair(0.sk, ¥.pk) and the
confirmer’s key pair tq/C.sk, KC.pk).

ConfirmedSign (confirmedSign). Fix a key k together with its encapsulatian Then, com-
pute a (digital) signature = X.signy . (c[|m) = (s,r) onc|m. Finally, outputy =
(¢, D.encrypt,(s), ) and prove the knowledge of decryption of(c, D.encrypt,(s)), which
together withr forms a valid digital signature oel|m w.r.t. X.pk. This proof is possible
because the signer knowsand (s, r), and the last assertion defines an NP language which
accepts a ZK proof system.

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatute=
(u1, pa2, 113), issued on a certain messagethe confirmer first computés= K.decap o (141)
then callsX.verify on (D.decrypt, (u2), p3) andp ||m usingX.pk. According to the result,
the signer issues a ZK proof of knowledge of the decryptiofy®f 1») that, together with
113, passes (does not pass) the verification algorithaerify. Again this proof is possible
because the given assertions are either NP or co-NP statearah therefore accept a ZK
proof system.
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Selective conversiondonvert). To convert a given signatuge= (1, u9, 43) issued on a certain
messagen, the confirmer first checks its validity. In case it is validetsigner computes
k = K.decapy g (p1), outputs(D.decrypt, (112), p3), and proves that is the decapsulation
of 11, otherwise he outputs.

Theorem 4.8.Given (t,q;) € N? ande € [0, 1], the above construction ig,, ¢;)-EUF-CMA
secure if the underlying digital signature schemetis,(¢;)-EUF-CMA secure.

Proof. Let A be an attacker that (e, ¢;)-EUF-CMA breaks the existential unforgeability of the
above construction. We will construct an adversRryhat , ¢, ¢;)-EUF-CMA breaks the under-
lying digital signature scheme:

[Key generation] R gets the parameters of the signature scheme in questiorhigoohallenger.
Then he chooses an appropriate KEMand DEMD and asksA to provide him with the
confirmer key pai(KC.sk, K.pk). Finally, R fixes the above parameters as a setting for the
confirmer signature scher#is trying to attack.

[confirmedSign queries] For a signature query on a messageR will first compute an encapsu-
lation ¢ together with its decapsulatign(usingI'.pk). Then, he will request his challenger
for a digital signaturer = (s,7) on¢||m. Finally, he encrypts in D.encrypt,(s), then
outputs the confirmer signatufe D.encrypt,(s),r) and proves in ZK its validity to4.

[Final Output] OnceA outputs his forgery:* = (u7, 15, 15) onm*. R will compute the decap-
sulation ofu}, sayk. If p* is valid then by definition(D.decrypt, (13), 15) is a valid digital
signature onu||m*. Thus,R outputs(D.decrypt, (u3), ) andpy||m* as a valid existential
forgery onX. In fact, if, during a query made hyl on a message:’ , R is compelled to
query his own challenger for a digital signature @f|m* = ut||m’, thenm* = m’ (by
construction), which contradicts the fact ttiat, m*) is an existential forgery output by.

Note that there will be no need to simulate the confirmatienial and selective conversion oracles
since.4 knowsK.sk which allows the verification of the confirmer signatures. O

The following remark is vital for the invisibility of the re#ting undeniable signatures.

Remark 4.6. The previous theorem shows that existential unforgeglmfithe underlying digital
signature scheme suffices to ensure existential unfortiggadii the resulting construction. Actu-
ally, one can also show that this requirement on the digitghature (EUF-CMA security) guar-
antees that no adversary, against the construction, canecgpwith a valid confirmer signature
= (p1, 12, 3) (p1 is the encapsulation used to generate the confirmer sigeajusn a message
m that has been queried before to the signing oracle but wherevas never used to generate
answers (confirmer signatures) to the signature queries.

To prove this claim, we construct from such an adversary,4agn EUF-CMA adversarjR
against the underlying digital signature scheme, whichsrimthe same time and has the same
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advantage asA. In fact, R will simulate.A’s environment in the same way described in the proof
of Theorem 4.8. Whed outputs his forgery:* = (ui, 5, 13) on a messagey; that has been
previously queried to the signing oracl® decrypts(u;, u%) in s*, which by definition forms,
together withyj, a valid digital signature ornuy||m;. Since by assumptiom; was never used
to generate confirmer signatures on the queried messagegver invoked his own challenger
for a digital signature onuj||m;. Therefore,(s*, u3) will form a valid existential forgery on the
underlying digital signature scheme.

Theorem 4.9. Given (¢, g5, ¢», ¢s.) € N* and (g,€¢') € [0,1]?, the construction proposed above
iS (¢, €, qs, ¢u, 5c)-SINV-CMA secure if it uses @, ¢, ¢;)-EUF-CMA secure digital signature, an
INV-OT secure DEM and art ¢ ¢,(q, + qse), € - (1 — €')%T9<)-IND-CPA secure KEM.

Proof. Let A be an attacker that (e, ¢s, g., ¢;c)-SINV-CMA breaks our construction, assumed to
use at, €, g;)-EUF-CMA secure digital signature and an INV-OT secure DBEWM. will construct
an algorithmR that ¢ + ¢s(q, + gsc), € - (1 — €)% 19<)-IND-CPA breaks the underlying KEM.

[Key generation] R gets the parameters of the KENIfrom his challenger. Then, he chooses an
appropriate INV-OT secure DENP together with ar(t, €, ¢;)-EUF-CMA secure signature
scheme:.

[confirmedSign queries] For a signature query om. R first fixes a session kel together with
its decapsulatior usingC.pk. Then he computes a (digital) signature= (s, ) onc||m
usingX.sk. Next, he encrypts (usingk) in D.encrypt,(s) and outputs tod the confirmer
signaturec, D.encrypt,(s), r). Finally, he interacts wittd in a ZK protocol where he proves
that(c, D.encrypt,(s)) is the encryption of somewhich together with- forms a valid digital
signature ore||m w.r.t. 3.pk. R will maintain a list£ of the encapsulationsand keysk
used to generate the confirmer signatures.

[confirm /deny queries] For a signature: = (u1, 110, i13) ON @ message:, R will look up the list
L. If a record having as first component the encapsulatigrk will use the corresponding
decapsulation, say, to decrypt(uy, o) in s. If (s, u3) is a valid digital signature on||m,
R will run the confirmation protocol, otherwise, he will runetlidenial protocol. R can
issue such proofs of knowledge, without knowing the prikag of /IC, using the rewinding
technique because the protocols are zero knowledge, thugadable. In cas@, does not
appear in any record af, R will issue the denial protocol.

This simulation differs from the real one when the signagure (i1, p2, 113) on'm is valid
andy, does not appear in any record 6f We distinguish two cases: either was never
queried to the signing oracle, thém, ;) would correspond to an existential forgery on the
confirmer signature scheme, which would lead to an existefutrgery on the underlying
signature scheme by virtue of Theorem 4.8. The second cadeeism has been previously
queried to the signing oracle in which case, 1) would correspond to an existential forgery
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on the underlying digital scheme thanks to Remark 4.6. Hetieeprobability that both
scenarios do not happen is at legst ¢')?* because the underlying digital signature scheme
is (¢, €, q;)-EUF-CMA secure by assumption.

[convert queries] For a selective conversion query pn= (1, i, p3) andm, R will proceed
as he would do in a verification (confirmation/denial) querghwhe exception of outputting
the decryption of i, 2, ) together withu; instead of simulating the confirmation protocol,
or the symboll instead of the denial protocol. Again the probability tHastsimulation
does not differ from the real execution of the algorithm igeatt(1 — ¢')%-.

[Challenge] Eventually,.A outputs a challenging message. R will use his challengéc*, £*)
to compute a digital signatufe*, »*) on ¢*||m*. Then, he encrypts® usingk* and outputs
w* = (c*, D.encrypt,.(s*), ") to A. Thereforeu* is either a valid confirmer signature on
m* or an element indistinguishable from a random element in(¢bafirmer) signatures
space k* is random according to Subsection 2.4.1 and the DEM is INVs@&dure). Ifu*,
in the latter case, is a random element in the confirmer sigesispace, then this complies
with the scenario of a real attack. Otherwiseyifis only indistinguishable from random
then if the advantage ofl is non-negligibly different from the advantage of an inkibty
adversary in a real attack, thehcan be easily turned into an attacker against the INV-OT
security property of the DEM underlying the constructiorm Sum up, under the INV-OT
assumption of the DEM underlying the construction, the leimgle confirmer signature*
is either a valid confirmer signature em* or a random element in the confirmer signature
space.

[Post challenge phaseA will continue issuing queries to the signing, confirmataerial and
selective conversion oracles, atican answer as previously. Note that in this phase,
might request the verification or selective conversion ob@ficmer signaturé¢c*, —, —) on
a message;. In this caseR will simply issue the denial protocol in case of a verificatio
guery, or the symbal in case of a selective conversion query. Following the samaéyais
as above, the probability that the simulation does not diffan the real execution is at least
(1 — E’)QSc+qy.

[Final output] When A outputs his answer € {0,1}, R will forward this answer to his own
challenger. Therefor® will (¢ + ¢s(qy + gsc), € - (1 — €')%T%<)-IND-CPA break the KEM
used in the construction.

O

Note that the strong unforgeability of the underlying sigma scheme is not needed here to
achieve invisibility. In fact, if the adversary can come uphvanother digital signaturgs’, ') on
a givenc||m, then there is just one way to create the corresponding coafisignature, namely
encrypts usingk = K.decap(c). Therefore, the reduction is able to handle a query requegsti
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the confirmation/denial or selective conversion of suclgaaiure by just maintaining a list of the
used encapsulatiorsand the corresponding decapsulatiéns

4.3 Efficient instantiations

In this subsection, we define the classes of signaturegjfatimn schemes that yield efficient in-
stantiations of the construction defined in the previousige¢Section 4.2). The class of digital
signatures we consider is very similar to the one defined bgi@ndashti & Safavi-Naini, 2008] in
the context of designated verifier signatures, whereasl#ss of considered encryption schemes
spotlights the importance of homomorphic encryption inftaenework.

4.3.1 The clas$ of signatures

Definition 4.2. S is the set of all digital signatures for which there existsarmf efficient al-
gorithms,convert and retrieve, whereconvert inputs a public keyk, a messagen, and a valid
signatures onm (according topk) and outputs the paifs, r) such that:

1. r reveals no information about nor aboutpk, i.e. there exists an algoritheimulate such
that for every public kepk from the key space and for every messagiom the message
space, the outpuimulate(pk, m) is statistically indistinguishable from

2. there exists an algorithmompute that on the inpupk, the message: andr, computes a
description of an injectivene-way functiorf : (G, x) — (H, o,):

e where(G, %) is a group andH is a set equipped with the binary operation,
e VS, S €G: f(S*xS") = f(5) o, f(S).

and an/ € H, such thatf(s) = 1.

andretrieve is an algorithm that inputgk, m and the correctly converted pa(s, ) and retrieves
the signaturer onm.

The classS differs from the clas<, introduced in [Shahandashti & Safavi-Naini, 2008], in
the condition required for the one way functign In fact, in our description of, the functionf
should satisfy a homomorphic property, whereas in the diagsshould only possess an efficient
protocol for proving knowledge of a preimage of a value inrésge. We show in Theorem 4.10
that signatures irp accept also efficient proofs for proving knowledge of preges and thus
belong to the clas€. Conversely, one can claim that signature€iiare also irfS, at least from
a practical point of view, since it is not known in general htmnachieve efficient protocols for
proving knowledge of preimages gfwithout having the latter item satisfy some homomorphic
properties. Itis worth noting that similar to the clasSesdC is the class of signatures introduced
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in [Goldwasser & Waisbard, 2004], where the condition ofihg\an efficient protocol for proving
knowledge of preimages is weakened to having onljtaess hidingproof of knowledge. Again,
although this is a weaker assumption rall illustrations of signatures in this wider class happen
to be also inC andS. Our resort to specify the homomorphic property pnvill be justified
later when describing the confirmation/denial protocolghefresulting construction. In fact, these
protocols are concurrent composition of proofs of knowkedgd therefore need a careful study as
it is known that zero knowledge is not closed under conctitemposition. Finally, the clas$
encompasses most proposals that were suggested so far, e.g.

RSA-FDH [BELLARE & ROGAWAY, 1996]. TheFull Domain Hash RSAs given by the key
pair (pk = (N, e), sk = d), whereN is an RSA modulus anell = 1 mod ®(N). A valid signature
o on a message: satisfiess® = H(m) mod N, whereH is public hash function. It is easy to see
that:

(0,€) < convert(pk, m, o) and o < retrieve(pk, m, (o, ¢€)),
wheree is the empty string. The verification equation suggestsaheing one-way function and
image:

f(z) =2°mod N and I = H(m).

Obviously f is homomorphic asz,y € Zj,: f(zy) = f(z)f(y).
SCHNORR [SCHNORR, 1991]. Schnorr’s signature operates in a graip -) of orderq and

generated by. The key pair is given bysk = x, pk = y = ¢%). A signature on a messageis of
the formo = (¢, s) such that = H(g® - y~¢, m) for some randona € Z,. We have:

(s, = g°y~ ) < convert(pk, m, o) and o = (H(r,m), s) < retrieve(pk, m, (s,7)).

In fact, sincec € Z, is random, them = ¢°y~° is also random irz. The one-way function
and image are given by:
f(z)=g%and I =1 - o™,

ObviouslyVz,y € Zy: f(x +vy) = f(z)f(y).

GHR [GENNARO et al, 1999]. The GHR signature scheme is given by the private dkey-

(p, q) and the public keyk = (p- ¢ = N, s) for somes € Zy. A signaturesc on a message:
satisfies the equatiar? (™ = s, wherey is a public hash function which maps arbitrary messages
to prime numbers. We have:

(0,€) < convert(pk, m, o) and o < retrieve(pk, m, (o, ¢€)),
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and

f(z) = 2% mod N and I = s.

BLS [BONEH et al, 2004]. The BLS signature operates in a bilinear group (denoted-addi
tively) G = (P) of ordergq and is given by the key paisk = z,pk = xP = Y’). A signatures

on a message: satisfiese(o, P) = e(H(m),Y’) wheree is the bilinear pairing (with values in a
groupH denoted multiplicatively) underlyinG, andH is a public hash function with values (&.

We have:

(0,€) < convert(pk, m, o) and o < retrieve(pk, m, (o, ¢€)),

and

f(@Q)=e(Q,P)and I =e(H(m),Y).

It is obvious thatf is one-way, otherwise the CDH problem is easyGn(e(zP,yP) =
e(zyP, P)). MoreovervP, @ € G: f(Q + R) = f(Q)f(R) (bilinearity property of).

Other examples in the claSsare Modified EIGamal [Pointcheval & Stern, 2000Cramer-
Shoup [Cramer & Shoup, 2000Camenisch-Lysyanskaya-02 [Camenisch & Lysyanskaya,| 2002
and most pairing-based signatures that have been proposkd gCamenisch & Lysyanskaya,
2004; Boneh & Boyen, 2004; Zhargg al., 2004; Waters, 2005] etc. The reason whgncom-
passes most digital signature schemes lies in the fact thigihature verification consists in ap-
plying a functionf to the “vital” part of the signature in question, then compgthe result to an
expression computed from the message underlying the signahe “auxiliary” or “simulatable”
part of the signature, and finally the public parameters efdignature scheme. The functign
must be one-way, otherwise the signature scheme is tgviageable. Moreover, itf() consists
most of the time of an arithmetic operation (exponentigtrarsing to a power, pairing computa-
tion, ...) which satisfies an easy homomorphic property.

Theorem 4.10. The protocol depicted in Figure 4.1 is an efficient zero kmalgk protocol for
proving knowledge of preimages of the functjodescribed in Definition 4.2.

We first remark that the functiofiused in the definition of the claSsinduces a group law in
f(G) for the operatior,. Moreover, we havé ) = f(1g) andvS € G: f(s)™! = f(s7).

Proof. For completeness, it is clear that if both parties follow pihetocol, the prover will always
be able to provide a proof that the verifier will accept.

For soundness, let us assume that the cheating pfoisable to successfully carry out the above
protocol without knowings. That is, P, after having committed to &, is able to answer the
challengeb with a response satisfying f(z) = t; o, f(s)’. Note that, for a fixed, the last
equation corresponds each challehde a unique response(f is injective, and we assume that
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ProverP Verifier V
Chooses’ & G

Computet; = f(s') >

Choose < {0,1}* (b€ N)

Verify that f(z) = t, o, I?

Figure 4.1: Proof system for membership to the languagef(s) = 1} Common input: I and
Private input : s

2¢ is smaller than the order of the groyG), which is equal to the order @). Thus, sincef
is one-way,P needs to guesscorrectly beforehand in order to provide an accepting ansie

will first choosez <% G, then computes;, = f(z) o, (f(s)~!)? and sends it as a commitment in
the first step of the protocol, when he receives the corregtgssed, he will simply answer with
2. This results in a soundness error equaltg which corresponds to the probability of correctly
guessing the challenge

To prove that the protocol is ZK, we provide the following silator:

1. Generate uniformly a random challerir‘i)eE {0,1}*. Choose a random & G, compute
t; = f(2) o, (f(s)71)? and sends it to the verifier.

2. Getb from the verifier.

3. If b =¥/, the simulator sends back Otherwise, it goes to Step &indsthe verifier).

The prover’s first message in the protocol is a random valire f(G), and so is the simulator’s.
Moreover, the distributions of the responses of the prower @ the simulator are again identi-
cal. Finally, we observe that the simulator runs in expetiae 2¢ since the probability of not

rewinding the verifier is:

Prip=0] = Y  Prib=b,b =bj]
bie{o,l}@

= > Prlb=1b]Prt) =b]

b;€{0,1}¢

= 27 Y Pr[p=1b]

b;e{0,1}¢
= 27
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Adjusting/ to a factor logarithmic in the security parameter ensurasttie simulator will run

in expected polynomial time.
O

4.3.2 The clas¥ of encryption schemes

Definition 4.3. E is the set of encryption schemeésobtained from the KEM/DEM paradignthat
have the following properties:

1. The message space is a group= (G, x) and the ciphertext spacgis a set equipped with
a binary operatior..

2. Letm € M be amessage andts encryption with respect to a kek. On the common input
m, ¢, andpk, there exists an efficient zero knowledge proofdbeing the decryption of
with respect tpk. The private input of the prover is either the private kieycorresponding
to pk, or the randomness used to encrypin ¢ (the randomness which is input to the KEM
encapsulation algorithm).

3. Vm,m’ € M, Vpk: I".encrypt,, (m x m’) = I".encrypt,, (m) o, I".encrypt , (m’). Moreover,
given the randomness used to encrypin I".encrypt,, (m) andm’ in I.encrypt ;. (m’), one
can deduce (using only the public parameters) the randosmased to encrypt: * m’ in
[.encrypt,, (m) o, I'.encrypt , (m’).

Examples of encryption schemes in the above class are :

EL GamAL [ElGamal, 1985] : ElGamal’s encryption is a KEM/DEM-based encryption sckem
It operates in a groufG, -) = (g), and is given by the KEM key paisk = z,pk = y = ¢*). To
encrypt a message € G, one first fixes a key” together with its encapsulatiesi, then encrypts
m by simply computing the produet - y". The ciphertext consists of the paiyf’, my"). To de-
crypt a ciphertextc, ¢), one first decapsulatego obtain the key: = ¢*, then retrievesn = ek .
Let o, the binary operation defined @h x G, be the term-wise product:

Va,b,c,d € G: (a,b) o, (¢,d) = (ac, bd).

ElGamal’s encryption is clearly homomorphic since

encrypt(m) o, encrypt(m’) = (¢, my") o. (¢°,m'y®) = (¢" %, mm’y"**) = encrypt(mm’)

Moreover, one can compute the randomness used to enearypt’ in encrypt(m) o, encrypt(m’)

as the sum of the randomnesses used to generatgt(m) andencrypt(m’) resp.

Finally, given a ciphertext and its corresponding plaifitere can efficiently prove the correctness
of this assertion. The private input of the prover is eithex tandomness used to produce the
ciphertext, or the private key of the scheme. This proofisrotalled in the literature the proof of
equality of two discrete logarithms. It was first provided@haum & Pedersen, 1993]. Figure 4.2
depicts such a proof.
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Prover Verifier
Choose & 7

Computeh; = g¢

Computeh, = y¢

(hh h?)
b R ¢
- Choosé «+ {0,1}*(b € N)
s=t+axb

~

Verify thatg® = hieb andes = hye

Figure 4.2: Proof system fdf(ej,es): e1 = ¢g* A ey = y*} Common input: (ey, es,y, g) and
Private input: x

BBS [Bonehet al, 2004a] : It consists of the following algorithms:

e setup. We consider a bilinear grouys, +), with prime orderd, generated by’.

e keygen. Probabilistically generate two secret valugsz, € Z; and computeX; = x P
and X, = z, P. Set the private key tsk = (z1, z5) and the public key tpk = (X7, X5).

e encrypt. Letm € G be a message. Generate a random ndade € Z2 and compute the
session key = (a + b) P and itsencapsulation: = (a.X1, bX5,). The ciphertext correspond-
ingtom is (¢, k + m).

e decrypt. Given the private keyk and the elemerit, k+m), wherec = (a X4, bX3), compute
k ask = 7 aX, + x,'bX,. Then recovern from k + m.

The BBS scheme is IND-CPA secure under the decision lineamagtion (Definition 2.5).
Moreover, it is evident that this scheme satisfies the hommphio properties announced in Defi-
nition 4.3. Finally, the proof that a given BBS ciphertextecrypts to some messageis simply
the proof of equality of two discrete logarithms: the disertvgarithm ofe(a X, bX5) in base
e(kP, X,), and the discrete logarithm of, in baseP, wheree is the pairing underlying the group
G.

Finally, the Paillier [Paillier, 1999] encryption schemenaot be viewed as an instance of this
class as it is not based on the KEM/DEM paradigm.

Theorem 4.11.LetI" be a OW-CPA secure encryption scheme from the above Elaggt fur-
thermorec be an encryption of some message under some publigkkéyhe protocol depicted in
Figure 4.3 is a zero knowledge proof of knowledge of the qeizny ofc.

The proof is similar to that of Theorem 4.10.
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ProverP Verifier V
Chooses’ <& G

to
b

Computets = T'.encrypt(s’)

Chooseb <& {0,1}¢ (b € N)

=g xg°

PoK{z = T.decrypty  (t2 o (e, s1)%)}

Accept if the proofPoK is valid

Figure 4.3: Proof system for membership to the langyages; ) : 3m : m = I'.decrypty g (e, sx) }
Common input: (e, sg, I'.pk) andPrivate input: T".sk or randomness encrypting in (e, s)

Proof. To prove this theorem, we first remark that the encryptioomtigm, with respect to a given
public keypk, induces a group law in the ciphertext spdce

Completeness is straightforward. Soundness is again éadgct, we note that for a fixed
commitmentt,, to each challengg corresponds a unique respons@gve always assume that is
smaller than the order of the ciphertext space), namelytistpxt of the ciphertext, o, (e, s;)°.
Thus, provided the encryption scheiiés one way, a cheating provét must guess correctly the

challenge in order to be able to carry out the protocol; i.e. he must shoo G, then computes
the commitment, = T'.encrypty , (2) o. (e,s;)”" and sends it as the first message. Offce
receives the correctly guessed challenge, he will respotid2wWe conclude that, providgebK
is sound, the soundness error probability of the protocal imost2—*.

For the zero-knowledgeness, we describe the following sitau

1. Generate uniformly a random challerb;)eE {0,1}*. Choose a random & G, compute
ty = T.encrypty . (2) oc (e, 5,) " and send it to the verifier.

2. Getb from the verifier.

3. If b = ¥/, the simulator sends backand simulates the prodfoK for = being the decryp-
tion of 5 o, (e, s;,)° (this proof is simulatable since it is zero knowledge by agstion).
Otherwise, it goes to Step Bevindsthe verifier).

The prover’s first message is always an encryption of a rangdune, and so is the first message
of the simulator. Sinc# is chosen uniformly at random froft, 1}¢, then, the probability that the
simulator does not rewind the verifierds?, and thus the simulator runs in expected polynomial
time if ¢ is logarithmic in the security parameter. Finally, the dittion of the answers of the
prover and of the simulator is again the same. We concludeathave proof is perfectly zero
knowledge.

O
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ProverP Verifier V
Compute! as defined in Definition 4.2 Compute! as defined in Definition 4.2

Chooses’ <& G
Computet; = f(s')
t1,t2

b

Computets = T.encryptr ,(s')

Chooseb <= {0, 1} (b € N)

z=s"%sb

PoK{z = I'.decryptp 4 (t2 oe (e, 5%)?)}

Accept if the proofPoK is valid and,
f(z) = t1 os I€¢in case of confirmation,
f(z) # t1 os I¢in case of denial.

Figure 4.4: Proof system for membership to the langudge, si,7): 3s : s =
[".decrypt(e, si) A X.verify(retrieve(s,r),m|le) = (#)1} Common input: (e, s, , 3.pk, I".pk)
andPrivate input: I'.sk or randomness encryptingn (e, si)

4.3.3 The confirmation/denial protocols

We combine an EUF-CMA secure signature scheéine S and a encryption schenié € E,
where the underlying KEMC and DEMD are IND-CPA and INV-OT secure respectively, in the
way described in Subsection 4.2.1. Namely we first computenaapsulatior together with its
corresponding key. Then compute a signatuseon e concatenated with the message to be signed.
Finally converts to (s, r) using theconvert algorithm described in Definition 4.2 and encryph

s; = D.encrypt,(s) usingk. The resulting confirmer signature(is s, 7). We describe in Figure
4.4 the confirmation/denial protocols corresponding tordeilting construction. Note that the
confirmation protocol can be also run by the signer who wisbesonfirm the validity of a just
generated signature.

Remark 4.7. The prover in Figure 4.4 is either the confirmer of the sigmati, s, ) who can
run the above protocols with the knowledge of his private &eyhe signer who wishes to con-
firm the validity of a just generated signature (during tvafirmedSign protocol). In fact, with
the knowledge of the randomness used to encrypt(e, s;), where(s, r) is the converted pair
obtained fromr = X.sign(m||e), the signer can issue the above confirmation protocol thamks
the properties satisfied dy.

Theorem 4.12.The confirmation protocol (run by either the signer on a jusherated signature
or by the confirmer on any signature) described in Figure 4.4 proof of knowledge with perfect
zero knowledge.

Proof. The confirmation protocol depicted in Figure 4.4 is a paratemposition of the proofs
depicted in Figures 4.1 and 4.3. Therefore completeness@nainess follow as a direct conse-
guence from the completeness and soundness of the undgplygofs (see [Goldreich, 2001]).

To prove that the protocol is ZK, we provide the following silator (for one execution):
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1. Generaté' € {0,1}". Choose: €z G and send; = f(z)o,I " andt, = I'.encrypty , (z)o.
(e, sx)~° to the verifier.

2. Getb from the verifier. Ifb = ¥/, it sendsz and simulates the prodfoK of = being the
decryption oft, o, (e, s)° (this proof is simulatable since it is by assumption ZK) ¥ v/,
it goes to Step 1.

The prover’s first message is an encryption of a random valuer G, in addition to f(s),
and so is the simulator’s first message (encryption of~° and f(z * s~°) wherez is random).
Therefore the distributions of the prover’s and of the sema’'s messages are the same in the first
round of the proof. Moreover, the simulator runs in an expegolynomial time (we assunte

is logarithmic in the security parameter). Finally, thetdisition of the prover's message in the
third round is also similar to that of the simulator’s. We clutle that the confirmation protocol is
ZK. O

Theorem 4.13.The denial protocol described in Figure 4.4 is a proof of kfexlge with compu-
tational zero knowledge if the underlying encryption sceésriND-CPA-secure.

Proof. With the standard techniques, we prove that the denial pobtdepicted in Figure 4.4 is
complete and sound. Similarly, we provide the following siator to prove the ZK property.

1. Generaté' ci {0,1}. Choose: €z G and arandomy; €y f(G) andt, = I'.encrypty ;. (2)oc
b

(e,8)".
2. Getb from the verifier. Ifb = ¥/, it sendsz and simulates the prodfoK of = being the
decryption oft, o, (e, s;)>. If b # V, it goes to Step 1.

The prover’s first message is an encryption of a random vélgg; G, in addition tof(s’). The
simulator’s first message is an encryption of a random valée and the element; € f(G)
(independent ot). Distinguishing these two cases is at least as hard asibhgetile IND-CPA
security of the underlying encryption scheme. In fact, & trerifier is able to distinguish these
two cases, it can be easily used to break the encryption sehrethe IND-CPA sense. Therefore,
under the assumption of the IND-CPA security of the encopscheme, the simulator’'s and
prover’s first message distributions are indistinguiseabloreover, the simulator runs in expected
polynomial time, since the number of rewindfs Finally, the distributions of the prover's and
the simulator's messages in the last round are again, byathe argument, indistinguishable under
the IND-CPA security of the encryption scheme. O

Remark 4.8. In case of confirmer signatures, ZK closedness under coasticomposition might
be a desired property as it is natural to assume a confirmegn(signer) involved in the confirma-
tion/denial (or confirmedSign) of several signatures wetesal verifiers. Fortunately, there exists
aresult [Damgrd, 2000] that shows a wide range of known zero knowledg®pats, for instance
those provided in this chapter, to be modifiable with neglgioss of efficiency to preserve zero
knowledgeness under concurrent composition.
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4.3.4 Comparisons and possible extentions

Sign_then_encrypt variants.  The construction presented in Section 4.2 improves theplai
paradigm [Camenisch & Michels, 2000] as it weakens the apsomon the underlying encryp-
tion scheme from being IND-CCA secure to only being IND-CR&wwe. This impacts positively
the efficiency of the construction from many sides. In faog tesulting signature is shorter and
its generation cost is smaller, since IND-CPA encryptioneseges are simpler and allow faster
encryption and shorter ciphertexts than IND-CCA ones. Arsitation is given by ElIGamal’s en-
cryption and its IND-CCA variant, namely Cramer-Shoup’srgption where the ciphertexts are at
least twice longer than ElGamal’s ciphertexts. Also, ther@ multiplicative factor of at least two
in favor of EIGamal’s encryption/decryption cost. Moreguie confirmation/denial protocols are
rendered more efficient by the allowance of homomorphicygimn schemes as shown in Section
4.3.3. Such encryption schemes were not possible to usestg@fice a homomorphic scheme can
never attain the IND-CCA security. Besides, even when tHa-(DCA encryption scheme is de-
cryption verifiable, e.g. Cramer-Shoup, the involved pcote are much more expensive than those
corresponding to their IND-CPA variant: in case of EIGantfails protocol amounts to a proof of
equality of two discrete logarithms. The construction aghs also better performances than the
proposal of [Goldwasser & Waisbard, 2004], where the comiraignature comprisgscommit-
ments andk IND-CCA encryptions, wheré is the number of rounds used in the confirmation
protocol. Moreover, the denial protocol presented in [@@dser & Waisbard, 2004] suffers the
resort to proofs of general NP statements (where the camsidencryption is IND-CCA). The
same remark applies to the construction of [Wikstrom, 20@7ere both the confirmation and
denial protocols rely on proofs of general NP statements.

Commitment-based constructions. Our construction does not use the ROM, unlike the con-
structions in [Michels & Stadler, 1998; Wamrgal., 2007]. Moreover, it enjoys the strongest notion
of invisibility (SINV-CMA) which captures both invisibity as defined in [Camenisch & Michels,
2000], and anonymity as defined in [Galbraith & Mao, 2003] ardch can be an important re-
qguirement for confirmer signatures in some settings. Uafately, many of the efficient generic
constructions are not anonymous. In fact, constructidees [Michels & Stadler, 1998; Gentry
et al, 2005; Wanget al., 2007] have a confirmer signature containing a commitmerihermes-
sage to be signed and a valid digital signature on this comemt. Therefore, such constructions
leak always a part of the signing key, namely the public kethefunderlying digital signature.
More precisely, an anonymity attackdr will get two public keys and a confirmer signature on a
given message and has to tell the key under which the confsigeature was created. To answer
such a challenge4 will simply check the validity of the digital signature orgtlkommitment (both
are part of the confirmer signature) with regard to one putdic (the confirmer signature public
key includes the public key of the underlying digital sigmaf). The result of such a verification
is sufficient for.A to conclude in case the two confirmer public keys do not siheesame public
key for the digital signature scheme.
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The upshot is, our construction achieves both maximal ggoistrong invisibility) without
random oracles, and efficiency in terms of the signaturetkerggeneration, confirmation/denial,
and conversion cost. Moreover, the construction readitgreds todirected signaturegLim &
Lee, 1993] orundeniable confirmer signatur¢siguyenet al., 1999] by simply having the con-
firmer share his private key with the signer. Furthermore, @anm extend the analysis provided in
this chapter to the other constructions instantiating gectyption of a signature” paradigm, e.g.
[Goldwasser & Waisbard, 2004; Wikstrom, 2007]. In facttiboonstructions are not strongly un-
forgeable, thus the necessity of CCAN+¥CCA security. To circumvent this problem, one can use
similarly a encryption scheme derived from the hybrid eption paradigm, and produce a signa-
ture on the message concatenated with the encapsulatiorceHe resulting constructions will
thrive on CPA orA-CPA security while conserving the same security, and thilewhieve better
performances as we described above (short signature, gmsalind many practical instantiations).

4.4 Conclusion

We provided a thorough analysis of the “encryption of a sigred paradigm. In fact, we set
the necessary/minimal and sufficient assumptions on thdibgiblocks in order to achieve un-
forgeable and invisible designated confirmer signatureleua chosen message attack. Next, we
proposed a construction of confirmer signatures from a naghthe signthenencrypt paradigm
whose invisibility rests on IND-CPA secure encryption soles. Finally, we demonstrated the
efficiency of our construction by explicitly giving the comfiation/denial protocols of the result-
ing signatures when instantiated with building blocks frartarge class of signatures/encryption
schemes. The next direction of research might be to checkebessity of the assumptions, in
light of the previous study, required for the security of thew proposed framework or of the
constructions that use commitment schemes.
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Chapter 5

The “Signature of a Commitment”
Paradigm

Abstract. Generic constructions of designated confirmer signatwiésa one of
the following two strategies; either produce a digital sigme on the message to
be signed, then encrypt the resulting signature, or producemmitment on the
message, encrypt the string used to generate the commjtamehfinally sign the
latter.

In this chapter, we revisit the second approach. In factiefit as the first approach
is, it still applies only to a restricted class of signaturBsis is clearly manifested in
the constructions in the previous chapter which do not sedre plausible with the
PSS signature scheme [Bellare & Rogaway, 1996]. Our goalfigrther improve
the “commit then sign” method in terms of efficiency and séaguny allowing more
efficient instantiations of the encryption and commitmehiesnes used as building
blocks. Therefore, we first try to determine the exact ségcyroperty needed in
the encryption to achieve secure constructions. Our stofdyd the exclusion of
a useful type of encryption from the design due to an intcarvgeakness in the
paradigm. Next, we propose a simple method to remediatedavbakness and we
get efficient constructions which can be used vaitty digital signature.

Parts of the results in this chapter will appear in the prdoegs of ProvSec 2010
[El Aimani, 2010].

5.1 Analysis of the plain paradigm

We consider the construction of the plain “signature of awstment” paradigm depicted in Sub-
section 3.3.2:

Setup Getup). Consider a digital signature schemean encryption schemewith labels, and a
commitment schem@.
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Key generation (keygen). The signer key pair consists Of.pk, X.sk), corresponding to the key
pair generated by..keygen, whereas the confirmer key pair consistg bBfpk, I".sk) which
corresponds to the key pair generated keygen.

ConfirmedSign (confirmedSign). To sign a message, the signer first computes a commitment
c on the message, then encryptg jmunder the labet:||>.pk, the random string used for the
commitment, say, and finally, signs the commitmentsing>..sk. The confirmer signature
consists of the triplde, ¢, ¥.signy, . (¢)). Next, the signer interacts with the verifier in a
protocol where he proves in ZK the knowledgero$uch thatr = I'.decrypty g 5 pk(€)
andc = Q.commit(m, ).

Confirmation/Denial protocol (confirm/deny). To confirm/deny a signature = (u, 2, ii3)
on a given message, the confirmer first checks whethgs is a valid digital signature on
1o W.I.t. X.pk, if so, he provides a concurrent ZK proof (using his privatg K.sk) of the
equality/inequality of the decryption of; (w.r.t. the labeln||X.pk) and the opening value
of the commitmenji, w.r.t. m.

Verification (verify). The verification of a purported signatuyre= (1, p2, 113) On a given mes-
sagem is achieved by first checking the validity pf w.r.t. tom as a digital signature, then
checking the equality of the decryptionof (w.r.t. the labeln||X.pk) and the opening value
of the commitmenj; onm. This equality check can be performed by the signer, who has
just generated, given the randomness used to create the ciphemexir by the confirmer
who can decrypfi; usingI.sk.

Selective conversiondonvert). Selective conversion of a signatyre= (u1, pe, 113) is achieved
by releasing the decryption qf;, in caseyu is valid (the triple (.decrypty o (11), po, 113)
forms the converted signature), or the symhabtherwise.

Selective verification gerifyConverted). It is easy to see that the verification of converted signa-
tures can be achieved by the algorithimspen andX.verify.

The construction was shown, in Subsection 3.3.2, to be geédale and invisible ithe insider
security modelf it uses a SEUF-CMA secure digital signature, an IND-CCAwe encryption
and a secure commitment.

In the rest of this section, we prove that IND-PCA encryptschemes with labels are a min-
imal and sufficient requirement to obtain security for thafamer, in the outsider modelf the
underlying commitment scheme is secure, and the underligngature is SEUF-CMA secure.
Our study is similar to the one provided in the previous chapBubsection 4.1.2) which ana-
lyzes the plain “encryption of a signature” paradigm. Thwes,will first exclude OW-CCA secure
encryption schemes with labels from use, which will rule automatically OW-CPA and OW-
PCA encryption schemes. We do this by using an efficient algar(a meta-reductiopwhich
transforms the algorithnréductior), reducing the invisibility of the confirmer signatures teet
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OW-CCA security of the underlying encryption scheme, to lgodthm breaking the OW-CCA
security of the same encryption scheme. Hence, such a segygdests that under the assumption
of the underlying encryption scheme being OW-CCA secumgtlexists no such a reduction, or
if it (the encryption scheme) is not OW-CCA secure, such aicgdn will be useless. Next, we
exclude similarly NM-CPA encryption schemes from the desighich will rule out IND-CPA
encryption. The next security notion that has to be consdles IND-PCA, which turns out to be
sufficient to achieve invisibility. Likewise, our imposdity results are in a first stage partial in the
sense that they apply only tey-preservingeductions, i.e. reductions which, trying to attack a
certain property of an encryption scheme given by the pldelypk, feed the invisibility adversary
with the confirmer public keypk. Next, we extend the result to arbitrary reductions undemneso
complexity assumptions on the encryption scheme in questio

5.1.1 Impossibility results

Lemma 5.1. Assume there exists a key-preserving reducRathat converts an INV-CMA adver-
sary A against the above construction into a OW-CCA adversaryregjdhe underlying encryp-
tion scheme. Then, there exists a meta-reductdthat OW-CCA breaks the encryption scheme
in question.

As mentioned in the discussion above, the lemma claims thdéruthe assumption of the
underlying encryption scheme being OW-CCA secure, theigtsro key-preserving reduction
R that reduces OW-CCA breaking the encryption scheme in gurett INV-CMA breaking the
construction, or if there exists such an algorithm, the dyadey encryption scheme is not OW-
CCA secure, thus rendering such a reduction useless.

Proof. Let R be the key-preserving reduction that reduces the invisitof the construction to the
OW-CCA security of the underlying encryption scheme. Westarct an algorithm\ that uses
R to OW-CCA break the same encryption scheme by simulatingcaoution of the INV-CMA
adversaryA against the construction.

Let I" be the encryption scheme! is trying to attack w.r.t. a public key/.pk. M launches
‘R overI" with the same public key'.pk. After M gets the label. on which’R wishes to be
challenged, heX1) forwards it to his own challenger. Finallyj gets a challenge ciphertext
that he forwards toR. Note thatM is allowed to query the decryption oracle on any pair (ci-
phertext,label) except on the pair, L). Thus, all decryption queries made #; which are by
definition different from the challenge, L), can be forwarded td1’s own challenger. At some
point, M, acting as an INV-CMA attacker against the constructiorl| @atput two messages
mg, my such thatl ¢ {my||X.pk, m||2.pk}, whereX.pk is the public key of the digital signature
underlying the construction\M gets as response a challenge signattire (u, 13, 125) which he
is required to tell to which message it corresponds. Sineartessages:, andm; were chosen
such that the label under which the encryptidris created (eithemn, || 3.pk or m,||X.pk) is differ-
ent from the challenge labél, M can query his decryption oracle on both pdji$, m||X.pk) or
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(w7, m1||2.pk). Results of such queries will enable to open the commitment;, and thus check
the validity of the signaturg* w.r.t. one of the messages, or m,. Finally, whenR outputs his
answer, decryption of the challenge L), M will simply forward this result to his challenger.]

Lemma 5.2. Assume there exists a key-preserving reducRathat converts an INV-CMA adver-
sary A against the above construction to an NM-CPA adversary agjaire underlying encryption
scheme. Then, there exists a meta-reducfidrthat NM-CPA breaks the encryption scheme in
guestion.

Proof. Let R be a key-preserving reduction that reduces the invisytilitthe construction to the
NM-CPA security of its underlying encryption scheme. Welwdnstruct an algorithraV that
usesR to NM-CPA break the same encryption scheme by simulatingxacwion of the INV-
CMA adversaryA4 against the construction.

LetI" be the encryption scheme with labeld is trying to attack.M launchesR overI” with
the same public key, say.pk. M, acting as the INV-CMA adversary against the construction,

queriesR onmg, my & {0, 1}* for confirmer signatures. Then, he queries the resultinggsr
po = (ug, pd, ) and g = (ui, i, 1) (corresponding to the confirmer signaturesmp and
m, respectively) for a selective conversion. kgtandr; be the output decryption of} and ]
resp. (i.e. the randomnesses used generate the commitnjemd .2 onm, andm, resp.). With
overwhelming probability, we hawg # r; 1, and if it is not the case\ will repeat the experiment
until he obtains two different, andr;. Then, M inputsD = {ry, r;} to his own challenger as a
distribution probability from which the plaintexts will ldrawn. Moreover, he chooses uniformly

at random a bib <% {0, 1} and outputs to his challenger the challenge labg]>.pk, whereX.pk
is the public key of the digital signature underlying the stoaction. M will receive as a challenge
encryptionu;. At that point, M will query R on the string i}, 112, 123) and the message, for a
selective conversion. If the result of such a query is deifefrom_L, then,y; is a valid encryption
of the random string used to generate the commitrpgénnamelyr,. M will then output to his
challenger an encryption of 7, under the same challenge labe}||>.pk, wherer, refers to the
bit-complement of the elemen, and the relatiom?: R(r,r") = (' = 7). Otherwise, he will
output an encryption af,—, (under the same challenge label) and the same rel&tidfinally M
aborts the game (stops simulating an INV-CMA attacker agjdive generic construction). [

Thus, when the considered notions are obtained from pargapl GOAL< {OW, IND,NM}
and an attack model ATk {CPA PCA, CCA}, we have

Theorem 5.3. The encryption scheme underlying the above constructicst briat least IND-
PCA secure, in case the considered reduction is key-prigggrin order to achieve INV-CMA
secure signatures. O

IActually, if R uses always the same string to produce the commitmentsthieeconstruction is clearly not
invisible.
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Similarly to the study in the previous chapter (Subsectidh?j, we generalize the above
theorem to arbitrary reductions if the encryption schemeeulying the construction hasreon-
malleable key generator

Theorem 5.4.1f the encryption scheme underlying the above construttasa non-malleable key
generator, then it must be at least IND-PCA secure in ordexdaieve INV-CMA secure confirmer
signatures.

The proof is similar to that of Theorem 4.5. O

Remark 5.1. Note that the above impossibility result holds true only mthee considered notions
are those obtained from pairing a security goal GOAL{OW, IND, NM} and an attack model
ATK € {CPA PCA CCA}. Presence of other notions requires an additional analylsevever
Lemmas 5.1 and 5.2 will still serve when there is a relatiomieen the new notion and the notions
NM-CPA and OW-CCA.

5.1.2 Positive results

One way to explain the above result is to remark that the coctsbn in question is nastrongly
unforgeable In fact, an adversaryl, given a valid signatur@ = (1, j0, 13) ON @ Message,
can create another valid signatureon m without the help of the signer as followst will first
request the selective conversion.afo obtain the decryption qf;, sayr, which he will re-encrypt
in 14 under the same labet|X.pk (X.pk is the public key of the digital signature underlying the
construction). Obviouslyy’ = (u}, 1o, 13) is also a valid confirmer signature anthat the signer
did not produce, and thus cannot confirm/deny or convertouitfhaving access to a decryption
oracle of the encryption scheme underlying the constractibhis explains the insufficiency of
notions like IND-CPA. However, we observe that an IND-CCAw® encryption is more than
needed in this framework since a query of the types not completely uncontrolled by the signer.
In fact, its first component] is an encryption of some data already disclosed by the sigaarely

r, and thus a plaintext checking oracle is sufficient to ded wuch a query if the used digital
signature is SEUF-CMA secure.

Theorem 5.5. Given (¢, ¢s, q,, ¢s.) € N* and (¢,€') € [0,1]?, the construction given above is
(t, €, 45, @, gsc)-INV-CMA secure if it uses &, ¢, ¢;)-SEUF-CMA secure digital signature, an
injective, binding and ¢( e,)-hiding commitment, and & ¢+ ¢sqsc(gse + o). 3(€ + €) - (1 —
¢)aseta) g (qe + q,))-IND-PCA secure encryption scheme with labels.

Proof. Let .4 be an attacker against the construction. We will constrociteackerR against the
underlying encryption scheme as follows.

[Parameter generation] R gets the parameters of the encryption schénfrom his challenger.
Then he chooses a signature schein@long with a key pairX.pk, >.sk)) and a suitable
commitment schem@. R sets the above entities as components of the construgtisn
trying to attack.
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[confirmedSign queries] For a signature query on a messagg R computes a commitment
¢; onm; using a random string;, which he encrypts ir; under the labeh;||X.pk, then
he produces a digital signatuse on ¢; usingX.sk. Next, he outputg,; = (e;,c;,0;) as a
confirmer signature om,; and a ZK proof of knowledge of the equality of the decryptién o
e; and the string used in the commitment Such a proof is possible using the randomness
t; used to encrypt; in e;. Finally, R adds the record; = (m;, t;, r;, €;, ¢;, 0;) to a history
list L.

[confirm /deny and convert queries] To confirm/deny an alleged signatyre= (.}, 2, i) on a
messagen;, R will proceed as follows. First he checks the validity of thgitl signature
w? on u?, in case it is invalid, he outputs, otherwise he checks the lig, if he finds a
record R; having as first field the message, he will proceed to the next step, namely
check whether the fourth field dt; is equal tou}, if it is the caseR will issue a ZK proof
of the equality/inequality of the decryption pf and the string used for the commitmeuit
‘R can issue these proofs without the knowledgé& ek using the rewinding technique (the
proofs are ZK and thus simulatable) or by using the second éieR; (randomness used to
produce the encryptiop}). Now, if R; containsm; in its first field, but its fourth field is
different fromy;, thenR will check the next record?; (j > ) havingm; in its first field
and proceed in a similar fashion. Actually, if the messagés queried more than once, then
it will occur in many records irC. If R browses through all the records but none of them
containsm; andy; in their first and fourth field resp., then for all the recofgiscontaining
m; in their first field,.4 will invoke his PCA oracle on the ciphertedt and the third fields
of these records. If one of the queries yields “yes” as an anssvg. there exists a record
R; = (m,t;,7;,¢e;, ¢4, 0;) such that its third field; is a decryption of;;, then according to
whetherr; is (is not) the opening value of the commitmefitonm;, R will issue a ZK proof
of the equality (inequality) of the decryption pf and the string used for the commitment
©Z. Again such a proof is possible to issue using the rewindionique (the valug cannot
be used here because it was not used to enetyjot ii;). Finally, if no query to the PCA
oracle yields the answer “yes”, th@awill issue the denial protocol, namely simulate a ZK
proof, using the rewinding technique, of the inequality lvé decryption ofu! and of the
string used for the commitment.

Selective conversion is similarly carried out with the gxoen of issuing the decryption of
u} instead of the confirmation protocol andinstead of the denial protocol.

The difference between the above simulation and the realgios of the algorithm is when
the signature; = (i}, 2, 1) is valid, however! is not an encryption of a string already
issued taA during a selective conversion query regarding the messagnd a presumed
signature on it. We distinguish two cases, eitherwas never queried for signature, in
which case such a signature would correspond to an exigtéotgery on the construction
and thus to an existential forgery on the underlying digsighature. Ormn; was queried
before for signature. Let; = (u;, 17, 13) be the output confirmer signature to such a query.
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Sincey} is encryption of some; which was never used to generate signatures:grthen

ui £ M? (both are commitment om,; with different random strings ang@ is injective).
Thus, in this cas€u?, 1) will correspond to an existential forgery on the underlyitigital
signature scheme. We conclude that the above simulatiowlistinguishable from the real
execution with probability at least — ¢')% %< as the digital signature scheme underlying
the construction ist, ¢/, ¢, )-SEUF-CMA secure by assumption.

[Challenge phase]At some point,4 will output two messagesi, m; to R. The latter will then

choose uniformly at random a it £ {0,1}, and two different random strings andr;
from the corresponding spac& will output to his challenger the labeb,||>.pk and the

stringsry, 1. He receives then a ciphertext, encryption ofr,,, for somel/’ & {0,1}. To
answer his challengeR will compute a commitment, on the message,, using the string

ry Where” & {0,1}. Then,R will output 1 = (ey, ¢, X.signy, o (cp)) @s a challenge
signature tad. Two cases: eithew is valid confirmer signature om,, (if &’ = b"), or itis
not a valid signature on neither, norm,. If the advantage afl is non-negligibly different
from the advantage of an INV-CMA attacker in a real attacknthaccording to Lemma 3.5,
A can be used to break the hiding property of

[Post challenge phase} continues to issue queries aRdcontinues to handle them as before.
Note that at this stag& cannot request his PCA oracle @y, 7;), ¢ € {0, 1} under the label
my||X.pk. R would need to query his PCA oracle on such a quantity if he getsification
(conversion) query on a signatufe€, ¢,, —) # p and the message,. R will respond to
such a query by simulating the denial protocol (outpiit This simulation differs from the
real algorithm wher{e;, ¢,, —) is valid onm,,. Again, such a scenario won’t happen with
probability at least1 — ¢')% %<, because the query would form a strong existential forgery
on the digital signature scheme underlying the constractio

[Final output] The rest of the proof follows in a straightforward way. Noet & = (ey, ¢,
Y.signy, o (¢p)) be the challenge signature. Ligtbe the bit output byd. R will output t” to
his challenger in case= b, and1 — " otherwise.

The advantage ofl in such an attack is defined by

e =Adv(A) =

Prfb, — bl = 0] — %’

We also have
Pr(b, # b|b" # V"

€Ep =

1
2

We assume again without loss of generality that Pr(b, = bt = b"]— 1 ande;, = Pr(b, #
by # V'] — 5. The advantage R is then given by
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i 1
Adv(R) = (1— )t |Pr[b = by, b = b"] + Pr[b # ba, b # V"] — 5]

i 1
= (1= €)7o \Prb = b|t) = V"] Prt) = b"] + Pr[b # ba|V/ # "] Prly # 8] — 5

1 1 1 1 1
— 1_ NQv+Qqsc | — _ _ ) — —
(1= e | Jet )+ Hen+ )~ ]

1
= 5(6 +ep)(1 — )t

The last but one equation is due to the faetd’ # b”] = Pr[t/ = V'] = 5 asb” & {0,1},
and to the fact that, in cage+# 0, the probability thai4 answerd — b is % greater than the
advantage of the adversary in the game defined in Lemma 3iéhvghequal tce,.

5.2 An efficient construction from a variant of the paradigm

One simple way to eliminate the already mentioned weakrstssng forgeability) in signatures

from the plain “signature of a commitment” technique cotssis producing a digital signature on
both the commitment and the encryption of the random stregglun it. In this way, the attack

discussed before Theorem 5.5 no longer applies, since arsaty will need to produce a digital

signature on the commitment and the re-encryption of théoanstring used in it. Note that such
a fix already appears in the construction of [Gemdtrgl., 2005], however, it was not exploitable as
the invisibility was considered in the insider model.

5.2.1 Construction

Let 3 be a signature scheme given Hiykeygen, that generateg-.pk, 3.sk), X.sign, andX.verify.
Let furtherl" denote an encryption scheme giveribkeygen, that generated.pk, I'.sk), I".encrypt,
andI".decrypt. We note that’ does need to support labels in our construction. Finall§2léenote
a commitment scheme given bycommit and2.open. We assume thdt produces ciphertexts of
length exactly a certain. As a result, the first bit of will always be at théx + 1)-st position in
el|e, wheree is an encryption produced Hy. Such a technical detail will play an important role
in the unforgeability and invisibility of the construction

The construction of confirmer signatures frainl’, and(? is given as follows.

Key generation. The signer key pair is¥.pk, >.sk) and the confirmer key pair (§".pk, I".sk).
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ConfirmedSign. On input a message:, the signer produces a commitmenbn m using
a random string-, encrypts this string ire, and then produces a digital signature=
Y.signy, i (e|lc). Finally, the signer outputs = (e, c,0) as a confirmer signature on,
and interacts with the verifier to prove in ZK the equality bétdecryption ofe and of
the string used for the commitment This proof is possible using the randomness used to
encryptr in e.

Confirmation/Denial protocol. On a message: and an alleged signature= (p1, po, 113), the
confirmer checks the validity gf; on 1 ||p2. In case it is not valid, he produces Other-

wise, he computes the decryptionf 1, and check$i, - Q).commit(m, r), according to the
result he interacts with the verifier to prove in ZK the eqtydihequality of the decryption
of 1 and of the string used to cregie.

Selective conversion. The confirmer proceeds as in the confirmation/denial prétadb the
exception of issuing the decryption gf in case the signature is valid or the symhol
otherwise.

5.2.2 Security analysis

First, we note that the security for the verifier and the namgferability of the confirmedSign,
confirmation, and denial protocols are ensured by using keowledge proofs of knowledge.
Furthermore, the construction is EUF-CMA secure and INVACS&cure if the underlying com-
ponents are secure.

Theorem 5.6. Given(t,q,) € N? ande € [0, 1]?, the construction depicted above(ise, q;)-
EUF-CMA secure if it uses a statistically binding committr&echeme and &, ¢, ¢;)-EUF-CMA
secure digital signature scheme.

Proof. (Sketch)

Let A be an EUF-CMA attacker against the construction. We coosém EUF-CMA attacker
‘R against the underlying digital signature scheme as follows

R gets the parameters of the digital signature from his at¢tacknd chooses a suitable en-
cryption and commitment scheme. Simulation of the confir&igd queries (on messages) is
done by first computing a commitmenton m; using some random string, then encrypting the
stringr; in ¢; and finally requesting the challenger for a digital signatgron e;||c;. The string
(e;, ¢i, 0;) is output to.A along with a proof of equality of the decryption efand of the opening
value ofc;. Such a proof can be issued using the encryption schemeekieg thatk knows or
the randomness used to encrypin e;. Confirmation/denial and selective conversion queries can
be perfectly simulated with the knowledge of the encrypsoheme private key.

At some point,A will output a forgeryu* = (e*, ¢*, o*) on some message*, which was never
queried before for signature. By definitios; is a valid digital signature on*||c*. It will form
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an existential forgery on the digital signature schemé|jt* was never queried before IR for a
digital signature. Suppose there exists. i < ¢, such that*||c* = ¢;|c; whereu; = (e;, ¢;, ;)
was the output confirmer signature on the query Due to the special way the stringg|c; are
created, equality of the strings||c* ande;||c; implies equality of their suffixes (that start at the
(k + 1)-st position), namely* and¢;. This equality implies the equality of.; and m* since
the used commitment is binding by assumption. THRiseturns(c*, ¢*||c*) as a valid existential
forgery against the digital signature in question. O

Theorem 5.7. Given(t, qs, ¢, ¢s.) € N* and (g,¢€) € [0, 1]2, the construction depicted above is
(t, €, 95, 4u, gsc)-INV-CMA secure if it uses aft, ¢, ¢;)-SEUF-CMA secure digital signature, an
injective, statistically binding, and (e;,)-hiding commitment, and @+ ¢s (¢, + ¢s¢), %(6+ en)(1—
¢')*a:<)-IND-CPA secure encryption scheme.

Proof. [Parameter generation]Simulation of the key generation is similar to the key getiera
in the proof of Theorem 5.5.

[confirmedSign queries] To sign a message,;, R (the attacker against the encryption scheme)
will proceed exactly as a real signer would do, with the exogpof maintaining a list
L of records that contains the strings used to form the comaerits) their corresponding
encryptions along with the random nonces used to produse #cryptions.

[confirm /deny and convert queries] For a verification query ofe;, ¢;, ;) andm,; (whereo; is a
valid digital signature or;), R will simulate the confirmation protocol (using the rewinglin
technique or the randomness used to encrypt the opening gédulin ¢;) if the encryption
e; appears in at least one record@f or simulate the denial protocol otherwise. Selective
conversion of a confirmer signature whose first field appeatisd list is done by revealing
the opening value of the commitment, otherwise such a coefisignature is converted to
1.

The difference between this simulation and the real exeoudf the algorithm manifest
when a queried signature, s@y, ¢;, 0;), is valid bute; was never used to generate confirmer
signatures. We distinguish two cases, either the undeylynessagen; has been queried
previously on not. In the latter case, such a signature woakdespond to an existential
forgery on the construction, thus, to an existential foyger the underlying digital signature.
In the former case, Idk;, ¢;, 0;) be the output signature td on the message:;. We have
eillci # ej||c; sincee; # e;, and bothe; ande; are then-bit prefixes ofe;||c; ande;||c;
resp. We conclude that the adversary would have to computgtalgignature on a string
for which he never had obtained a signature. Thus, the quenjdiead to an existential
forgery on the underlying signature scheme. Since therlatby assumptiorit, ¢, ¢)-
SEUF-CMA secure, the probability that the simulation dgfécom the real execution is at
least(1 — ¢')atase,
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[Challenge phase]Eventually, the adversary outputs two challenging messagem,. R will
then produce two different strings, ~; and hands them to his challenger. He gets as re-
sponse a challenge ciphertext on r,, for somed’ € {0,1}. R will choose two bits

by L& {0,1} and produce a commitment on the message, using the string.. Fi-
nally, he will produce a digital signatureon ey ||c,. The challenge confirmer signature is
w= (ey,cp, o). Note, thatift! = b”, the signature is valid on the messagg otherwise, itis
invalid on both messages, andm;. Note also that if the advantage dfis non-negligibly
different from the advantage of an INV-CMA attacker in a ratihck, then, according to
Lemma 3.5,4 can be used to break the hiding propertyof

[Post challenge phaselrhe adversary will continue issuing his queriesRowho will handle
them as previously. Note that from now on and during the \e&tion/conversion queries,
the adversary may ask a qudey, ¢,, —) # 1 onm,. The probability that such a query is
invalid is at leas{1 — ¢')*%- since the digital signature scheme(ise’, ¢;)-SEUF-CMA
secure (if the underlying digital signature is not strongtyforgeable, then the adversary
may come up with a new digital signature ey||c;, says’ which is different fromo, and
then queriesey, ¢, o’) for verification or conversion; the result of such a queny esilable
him answer his challenge).

[Final output] At the end, the adversary outputs afit Clearly the advantage of the adversary
ise = Pr[b” = b,|b =] — 5. R will outputb” in caseb = b, and1 — b” otherwise.

Similarly, the advantage &% is:

' 1
AdV(R) = (1 — €)@t [Prb = by, b = b"] + Prlb # by, b/ # b"] — 5]

i 1
= (1= €)@t [Pr[b = by|t = V| Pr[b) = "] + Prlb # ba|t/ # V') Pr[t) £ b"] — =

2
[1 1 1 1 1
= (1 —¢)mtase 5(e + 5) + 5(eh + 5) - 5}
. L
— 5(6 + Eh)(l _ Gl)qv+QSc
0]

Remark 5.2. Both Theorem 5.5 and Theorem 5.7 can be used with compudlyicainding com-
mitments. The only issue is to have the formulation of babrdbms complicated by further terms,
e.g.&, if we use af, ¢)-binding commitment.
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5.2.3 Efficiency analysis

We show in this paragraph that requesting the encryptioarsetto be only IND-CPA secure im-
proves the efficiency of constructions from the “signatuira ocommitment” paradigm from many
sides. First, it enhances the signature generation, \aridit, and conversion cost, as encryption
and decryption are usually faster in IND-CPA secure enaoyghan in IND-CCA secure encryp-
tion (e.g. EIGamal vs Cramer-Shoup or Paillier vs Camenisiecbup). Next, we achieve also a
shorter signature since ciphertexts produced using INB-&Pemes are shorter than ciphertexts
produced using IND-CCA secure encryption schemes. Finafyallow homomorphic encryption
in the design, which will render the confirmedSign/confinmaidenial protocols more efficient. In
fact, in [Gentryet al,, 2005; Wanget al., 2007], the signer/confirmer has to prove in ZK the equal-
ity/inequality of the decryption of an IND-CCA encryptionéan opening value of a commitment
scheme. Thus, the only efficient instantiation, that wavipexl, used Camenisch-Shoup’s en-
cryption and Pedersen’s commitment. In the rest of this ecttizn, we enlarge the category of
encryption/commitment schemes that yield efficient ins&ions thanks to the allowance of ho-
momorphic encryption in the design.

Definition 5.1. (The classC of commitment$ C is the set of all commitment schemes for which
there exists an algorithrompute that on the input: the commitment public ka&y the message:
and the commitmemton m, computes a description of an injectiore-way functiory : (G, x) —

(H, o) where:

e (G,x)is agroup andH is a set equipped with the binary operation,
o Vrir' € G: f(rxr")= f(r)o, f(r').
and an/ € H, such thatf(r) = I, wherer is the opening value afw.r.t. m.

It is easy to check that Pedersen’s commitment scheme issioless. Actually, most commit-
ment schemes have this built-in property because it is dftercase that the committer wants to
prove efficiently that a commitment is produced on some ngessEhis is possible if the function
f is homomorphic as shown in Figure 5.1.

Theorem 5.8. The protocol depicted in Figure 5.1 is an efficient zero kmalge protocol for
proving knowledge of preimages of the functjodescribed in Definition 5.1.

The proof is similar to that of Theorem 4.10. O
For encryption, we use the same cl&ssonsidered in Definition 5.2, with the exception of not
requiring the encryption schemes to be derived from theitydcryption paradigm.

Definition 5.2. (The classE, of encryption schem@sE, is the set of encryption schemeshat
have the following properties:

1. The message space is a group= (G, %) and the ciphertext spacgis a set equipped with
a binary operatior..
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ProverP Verifier V
Choose’ <& G
Computet; = f(r') >
¢ Chooseh &£ {0,1}¢ (b € N)

Verify that f(z) = t; o, I?

Figure 5.1: Proof system for membership to the languagef () = 1} Common input: I and
Private input : 7.

2. Letm € M be amessage andts encryption with respect to a kek. On the common input
pk, m, andc, there exists an efficient zero knowledge proof:dbeing the decryption aof
with respect tpk. The private input of the prover is either the private kieycorresponding
to pk, or the randomness used to encrypin c.

3. Vm,m" € M, Vpk: I".encrypt,, (m x m’) = I'.encrypt,, (m) o, I".encrypt , (m’). Moreover,
given the randomness used to encrypin I'.encrypt,, (m) andm’ in I".encrypt ;. (m'), one
can deduce (using only the public parameters) the randosused to encrypt: « m’ in
[.encrypt,, (m) o, I'.encrypt,, (m’).

Examples of encryption schemes in the above class are ElGaneryption [El Gamal, 1985],
the encryption scheme defined in [Boredtal, 2004a] which uses the linear Diffie-Hellman KEM,
or Paillier’s [Paillier, 1999] encryption scheme. In fattiese encryption schemes are homomor-
phic and possess an efficient protocol for proving that aeigixt decrypts to a given plaintext:
the proof of equality of two discrete logarithms [Chaum & Besen, 1993], in case of EIGamal or
the encryption scheme in [Boneh al,, 2004a], or the proof of knowledge of a@-th root in case
of Paillier’s encryption.

Theorem 5.9. LetI" be a OW-CPA secure encryption scheme from the above Elasket fur-
thermoree be an encryption of some message under some publigkkéyhe protocol depicted in
Figure 5.2 is a zero knowledge proof of knowledge of the gy ofe.

The proof is similar to that of Theorem 4.11. O

The confirmation/denial protocol

The confirmedSign, confirmation and denial protocols of ihestruction in Subsection 5.2.1 are
depicted in Figure 5.3.
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ProverP Verifier V
Choose’ & G

to
b

Computety = T'.encrypty o, ()

Choose <% {0,1}¢ (b € N)

z=1"xrb

PoK{z = I'.decrypty 4 (t2 0. €?)}

Accept if PoK is valid

Figure 5.2: Proof system for membership to the langudge : r = T.decrypt(e)}
Common input: (e, I".pk) andPrivate input: r and I".sk or randomness encryptingn e.

ProverP Verifier V
Computel as defined in Definition 5.1 Compute! as defined in Definition 5.1

Chooser’ <& G
Computet; = f(r’)

t1,t2
b

Computety = I.encryptr (1)
Chooseb <% {0,1}¢ (b € N)

z=r" %70

PoK{z = T'.decryptp  (t2 oc €®)}

Accept if the proofPoK is valid and,
f(2) = t1 os I? in case of confirmation,
f(2) # t1 05 IY in case of denial.

Figure 5.3: Proof system for membership to the langydge:): 3r : = I".decrypt(e) A ¢ = (#
)Q2.commit(m,r)} Common input: (e, ¢, m, I'.pk, Q.pk) andPrivate input: I".sk or randomness
encryptingr in e.
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Remark 5.3. The prover in Figure 5.3 is either the confirmer who can run dbeve protocols
with the knowledge of his private key, or the signer who vedbeconfirm the validity of a just
generated signature. In fact, with the knowledge of the camdess used to encryptin ¢, the
signer can issue the above confirmation protocol thanksegtbperties satisfied hy.

Theorem 5.10.The confirmation protocol (run by either the signer on a justgrated signature
or by the confirmer on any signature) described in Figure 5.8 proof of knowledge with perfect
zero knowledge.

Theorem 5.11. The denial protocol described in Figure 5.3 is a a proof of Wiexige with com-
putational zero knowledge if the underlying encryptionesok is IND-CPA-secure.

The proofs of both Theorem 5.10 and Theorem 5.11 are sinoildrdse of Theorem 4.12 and
Theorem 4.13 respectively O

Remark 5.4. The protocols depicted in Figure 5.3 can be, by virtue of #mult of [Damgurd,
2000], efficiently turned into protocols that are ZK closaadar concurrent composition in the
auxiliary string model ifPoK is a¥ protocol.

5.3 The “signature of an encryption” paradigm

We have seen that convertible confirmer signatures reglithe “signature of a commitment”
paradigm are comprised of a commitment on the message t@ibedsian encryption of the ran-
dom string used to produce the commitment, and a digitalasiga on the commitment. Since
IND-CPA encryption can be easily used to get statisticaihdimg and computationally hiding
commitments, one can use instead of the commitment in thegu® constructions an IND-CPA
secure encryption scheme. With this choice, there will b&@ed to encrypt the string used to
produce the encryption of the message, since the privatefiie encryption scheme is sufficient
to check the validity of a ciphertext w.r.t. a given messajete that this construction already
appeared in [Aret al,, 2002] in the context of signcryption. We give below the fidiscription of
the construction.

Key generation. The signer key pair i$>.pk, >.sk) and the confirmer key pair id".pk, I".sk)
whereX andI” are the digital signature and the encryption scheme undgrthie construc-
tion resp.

ConfirmedSign. On inputm, the signer computes an encryptios: I'.encryptr. ;, (m) of m, then
a digital signaturer = X.signy. . (¢). Finally he outputgc, o) and interacts with the verifier
to prove in ZK thatc decrypts to obtaimn. Such a proof is possible given the randomness
used to encrypi in c.
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Confirmation/Denial protocol. On a message: and an alleged signatuge = (u, u2), the
confirmer checks the validity gi; on i;. In case it not valid, he produces. Otherwise,

he computes the decryption of 111 and checks whethen - m, according to the result, he
gives a ZK interactive (with the verifier) proof, usihgsk, of the equality/inequality of the
decryption ofu; andm.

Selective conversion. The confirmer proceeds as in the confirmation/denial prétadd the
exception of issuing_ is case the signature is invalid, and@n-interactive proof thatm is
the decryption of the first field of the signature otherwise.

We notice that the construction depicted above achievasrbg¢rformance than all previ-
ously cited constructions in terms of signature length egaton/verification and conversion cost.
In fact, the signature contains only one encryption and magige on it. Moreover, verification or
conversion of the signature are simpler as they do not irvahymore checking whether a commit-
ment is correctly computed. Besides, the proofs underifhegonfirmedSign/confirmation/denial
protocols are reduced in case of discrete-logarithm-based/ption schemes to proofs of equal-
ity/inequality of discrete logarithms for which there esigfficient protocols [Chaum & Pedersen,
1993; Camenisch & Shoup, 2003]. The only problem with thihteque is the resort to non-
interactive ZK (NIZK) proofs of knowledge. In fact, we knovew to produce such proofs from
their interactive variants using the Fiat-Shamir paradigimich is known to provide security only
in the ROM. However, the recent results in [Damgérdl., 2006; Groth & Sahai, 2008; Camenisch
et al, 2009] exhibit efficient NIZK proofs of knowledge in sometsags.

5.3.1 Security analysis

Concerning the security analysis, we first note that corepkess, soundness, and the ZK property
of the confirmedSign/confirmation/denial protocols areuead by the use of ZK proofs. Next,
we prove that the construction resists existential foegeand is invisible if the underlying digital
signature and encryption are SEUF-CMA and IND-CPA secwsp.re

Theorem 5.12.Given(t,qs) € N? ande € [0, 1], the above construction ig, ¢, ¢;)-EUF-CMA
secure if the underlying digital signature is al§9e, ¢;)-EUF-CMA secure.

Proof. The adversaryR against the signature underlying the construction willthetparameters
of the digital signature he is trying to attack from his chatier. Then, he will choose a suitable
encryption. Simulation of signatures is simple; on a quefy R computes an encryptiot) of
m;, then requests his challenger for a signature;,ori_et o; be the answer of such a querk
will then output(c;, ;) and produce a ZK proof that decrypts inm,. Such a proof, in addition
to all the proofs involved in the verification/conversioreges, are possible fog to give with the
knowledge of the encryption private key.

At some time, the adversapt against the construction will output a forgefy", o*) on a
messagen*, that was never queried before is by definition a digital signature arf. The last
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item was never queried b for digital signature, since otherwise* would have been queried
before. We conclude thét*, o*) is a valid forgery on the digital signature scheme. O

Theorem 5.13.Given (t, qs, ¢, ¢s.) € N* and (e,¢') € [0, 1]?, the construction given above is
(t, €, qs, ¢u, gsc)-INV-CMA secure if it uses &, €, ¢;)-SEUF-CMA secure digital signature and a
(t + qs(qu + gse), €(1 — € ) T2)-IND-CPA secure encryption scheme.

Proof. Let A be the invisibility adversary against the construction, eeastruct an IND-CPA
adversaryR against the underlying encryption scheme as follows.

R gets the parameters of the target encryption scheme fromhaikenger, and chooses a
suitable digital signature scheme. For a confirmedSignygaerm;, R will proceed as in the
real algorithm, with the exception of maintaining a li3bf records that consists of the query, its
encryption, the randomness used to produce the encry@mhfinally the digital signature on
the encryption.R can produce digital signatures on any encryption with thewkadge of the
signature scheme private key. Moreover, he can confirm @magire he has just generated with
the knowledge of the randomness used in the encryption.

For a verification queryc;, o;) onm;, R will check L (after checking of course the validity of
o; onm,), if the recordR; = (m;, ¢;, —, —) appears in the list, then he will issue a proof that
decrypts inm; using the third component of the record. Otherwise, he willate a proof of the
inequality of the decryption af; andm; using the rewinding technique.
For a conversion querfR will proceed as in a verification query with the exceptionahpding the
non-interactive variant of the proof he would issue if thgnsiture is valid (using the randomness
encrypting the message in the first field of the queried cosefiraignature), and the symbal
otherwise.
This simulation differs from the real one when the querigghature(c;, o;) is valid onm; however
¢; does not appear in the list (as first field of the output confirsngnatures). We distinguish two
cases, either the message in questignvas not queried before for signature, in which case such a
guery would correspond to a valid existential forgery ondbestruction, and thus on the underling
signature scheme. Or, the queried signature is on a medsageas been queried before, which
corresponds to an existential forgery on the underlyingatigre scheme. Since the signature
scheme underlying the constructior(ise’, ¢;)-SEUF-CMA secure, this scenario does not happen
with probability at least1 — ¢’)7 4,

At some point, 4 produces two messages), m;. R will forward the same messages to his

challenger and obtain a ciphertextencryption ofm,; for someb & {0,1}. R will produce a
digital signaturer on c and give the result in addition toto .4 as a challenge confirmer signature.
It easy to see thatl’s answer is sufficient foR to conclude. Note that after the challenge phase,
A is allowed to issue confirmedSign, verification and conegrsjueries and can handle them
as previously. There is however the possibility férof issuing a verification (conversion) query
of the type(c, —) # (¢,0) onm,. R will respond to such a query by issuing the denial protocol
(symbol L). The probability that this answer does not differ from tiugpmt of the real algorithm is
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at least(1 — ¢')% % as the signature scheme underlying the constructignds ¢,)-SEUF-CMA
secure by assumption. O

Remark 5.5. Note that the IND-CPA requirement on the encryption schesredso necessary.
In fact, an invisibility adversary against the constructioan easily use an IND-CPA adversary
against the underlying encryption scheme in order to soisénvisibility challenge.

5.3.2 Efficiency analysis
Confirmation/denial protocols

We showed that the confirmation (and also the confirmedSigtpeol, in confirmer signatures
from the “signature of an encryption” paradigm, amountsravng that a ciphertext encrypts a
given plaintext. This is in general easy since in most ert@ypschemes, one can define, given
a ciphertexic and its underlying plaintext:, two homomorphic one way functionsandg, and
two quantities/ andJ such thatf(r) = [ andg(sk) = J, wherer is the randomness used to
encryptm in ¢, andsk is the private key of the encryption scheme in question. Eptasnof such
encryptions are [El Gamal, 1985], the encryption schemendeéfin [Bonehet al., 2004a] which
uses the linear Diffie-Hellman KEM, Paillier [Paillier, 199 and also Cramer-Shoup [Cramer &
Shoup, 2003] and [Camenisch & Shoup, 2003]. The confirmdtonfirmedSign) protocol in this
case will be reduced to a proof of knowledge of a preimagée ¢f) by the functiong (f), for
which we provided an efficient proof in Figure 5.1.

Concerning the denial protocol, it is not always straigiiard. In most discrete-logarithm-
based encryptions, this protocol amounts to a proof of iaktyuof discrete logarithms as in
[El Gamal, 1985; Bonelet al, 2004a; Cramer & Shoup, 2003]. In case the encryption scheme
belongs to the clagg,; defined in Definition 5.1, Figure 5.4 provides an efficientgdrihat c en-
crypts somen # m. In the protocol provided in this figurg, denotes an arbitraryomomorphic
injective one way functian

f(mxm’) = f(m) o, f(m')

With the standard tools, the above denial protocol can besho be a proof of knowledge
with computational ZK, if the encryption schenbeis IND-CPA secure, and ZK closed under
concurrent composition iPoK is aX: protocol.

Selective Conversion

The selective conversion in confirmer signatures from thgn'aure of an encryption” paradigm
consists of a non-interactive proof of the confirmation pcol. As mentioned earlier in this doc-
ument, there has been recently an important progress iand#s We note in this paragraph three
solutions.
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ProverP Verifier V

Choosen’ <& G
Computet; = f(m')
t1,t2

b

Computety = I.encryptp y (m’)
Chooseb <% {0,1}¢ (b € N)

z=m' xmb

PoK{z = T.decryptr . (t2 oc c?)}

Accept if PoK is valid andf(z) # t1 o5 f(m)P.

Figure 5.4: Proof system for membership to the langydge c): 3m : m = T'.decrypt(c) Am #
m} Common input: (m, ¢, I".pk) andPrivate input: I".sk or randomness encrypting in c

The case of Paillier [Paillier, 1999]'s encryption schenihe Paillier encryption [Paillier, 1999]
operates on messagesin;,, where N = pq is a safe RSA modulus. Encryption of a
messagen is done by picking a random €x Zj and then computing the ciphertext
¢ = (1 + mN) mod N2. Decryption of a ciphertext is first done by raising it to
A = lem(p — 1,q — 1) to find r, then recoveringn by computing(r~"c¢ — 1)/N. ltis
easy to see that Paillier’s encryption belongs to what wktlalclass offully decryptable
encryption schemes, i.e. encryption schemes where demnypaids to the randomness used
to produce the ciphertext. Thus, selective conversion gaplg be achieved by releasing
the randomness used to generate the ciphertext.

Damcrd et al. [Damgard et al, 2006]'s solution.This solution transforms a 3-move interactive
ZK protocol P with linear answer to a non-interactive ZK one (NIZK) usinga@nomorphic
encryption scheme in a registered key model, i.e. in a motelevthe verifier registers his
key. This technique has been already discussed in 1.4.4dRgxh: non-interactive zero
knowledge (NI1ZK)). The authors in [Damgaed al,, 2006] proposed an efficient illustration
using Paillier’s encryption and the proof of equality of tdiscrete logarithms. We conclude
that with such a technique, the “signature of an encryptapproach accepts an efficient
instantiation if the considered encryption scheme alloveipg the correctness of a de-
cryption using a proof of equality of two discrete logarithre.g. [El Gamal, 1985; Boneh
et al, 2004a; Cramer & Shoup, 2003].

Groth and Sahai [Groth & Sahai, 2008]'s solutiofthe authors in this work provide an efficient
NIZK for the language:

PoK = {(a,b): c1 = u* Acy = v° A ey = g°*°}
The commoninputig, ¢, co, u, v € (G, -) where(G, ) is a bilinear group. The private input

is either(a, b) or (DL,(u), DL,(v)), whereDL,(u) denotes the discrete logarithm fin
basey. We conclude then that the “signature of an encryption” agaph accepts an efficient
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instantiation if the considered encryption scheme is treedwfined in [Bonelet al., 2004a],
since a proof of the above language can be used to prove thataaphertext decrypts to
a given message.

5.4 Conclusion

We analyzed the security of confirmer signatures from thgraiure of commitment” paradigm

in the outsider security model. The plain paradigm was shtmumecessitate strong encryption
which makes it quite impractical, or at least allow very lied instantiations. However, a small

variation results in a tremendous improvement in the efimye We also shed light on a particular
construction which can be seen as a special sub-case ofrdigra, namely the “signature of an

encryption” technique. The advantage of this techniquesist®in achieving better performance
than the original technique (short signature, small geimraverification, and conversion cost), yet
applying to any signature scheme. Its sole limitation resigh requiring efficient non-interactive

proofs of knowledge. This motivates research to furthekleathis problem as was started recently
in [Damgardet al., 2006; Groth & Sahai, 2008; Camenisetal., 2009].
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Chapter 6

Overview of Undeniable Signatures

Abstract. Undeniable signatures, as previously mentioned in Ch@pteere intro-
duced in [Chaum & van Antwerpen, 1990] to limit the verificatiproperty inher-

ent to digital signatures. In fact, the verification of uniddte signatures cannot be
achieved without the cooperation with the signer. Latas, tbncept was upgraded

to designated confirmer signatureshere the verification of signatures is delegated
to adesignated confirmeAlthough undeniable signatures have preceded confirmer
signatures by only five years, the literature on the formes seaabundant that it ex-
ceeded triple the literature on the latter. In this chaptergive a short overview of
the research carried out in respect of undeniable sigrature

6.1 The genesis

Controlling the proliferation of certified copies of docunte was the main motivation behind in-
troducing undeniable signatures. In fact, it is well knowattdigital entities, e.g. authenticated
documents, can be easily copied exactly, and as a consexjtleccan be subject to improper
use (blackmail or industrial espionage) in case the unotgylgontent is personally or commer-
cially sensitive. For these reasons, Chaum and van Antwdmieduced undeniable signatures
in [Chaum & van Antwerpen, 1990] as a cryptographic pringthvaving all properties of digi-
tal signatures except the universal verification. In fdog terification procedure is replaced by
confirmation/denial protocols the signer issues intevabtiwith the signature recipient.

Later in [Chaum, 1991b], Chaum polished the propertiesiredqun an undeniable signature
by introducing the concept of zero-knowledgeness of thdignation/denial protocols. In fact,
after the interaction with the signer in the mentioned prots, the signature recipient might get
additional knowledge (than the signature validity/indélr) and uses it to leak the signature status
to other parties. Another attempt at refining the confirmetenial protocols was proposed in
[Fujiokaet al., 1991]; the authors in this work introduced the notion oérattive bi-proof systems
which aim at proving concurrently which aef€ L, orz € L, is a true theorem wherk; and L,
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are disjoint languages. Such a notion can be employed imiglgle signatures to assure signature
confirmation and disavowal with the same protocol. Chaunticoad to address in [Chaum,
19914a] the potential shortcomings/misreadings (repddeshstance in [Desmedt & Yung, 1991])
of his new primitive.

An important advance of undeniable signatures was sugtasiBoyaret al,, 1991], namely
the convertibility of the undeniable signatures into palyliverifiable ones. The conversion can
either beselectivei.e. concerns aelectedundeniable signature, amiversal where the signer
releases a single bit string allowing the conversion of atieniable signatures. The authors in
[Boyar et al., 1991] proved the existence of convertible undeniableaiges assuming the exis-
tence of digital signatures and provided an efficient sotubased on ElGamal’s signature. This
construction was broken and repaired in [Micheisl., 1996], however the proposed scheme had
only a conjectural security. Another construction of catilée undeniable signatures was given
in [Damgard & Pedersen, 1996] and likewise, the securighgis was only speculative.

We finish this section by citing the works [Pedersen, 1994 ghaumet al., 1991] which
support the signer in undeniable signatures with additi@adures. The former allows the signer to
distribute a part of his secret keyitaagents such that artyof these can verify a signature, whereas
the latter proposes the first undeniable signatures witbnhitional security for the signer.

6.2 Combination with other primitives

The concept of undeniable signatures was so attractivettivatls adopted in many other crypto-
graphic frameworks, e.g.:

Group undeniable signatures [Lyuu & Wu, 2002]. A group signature is a cryptographic prim-
itive which allows a member of a group to anonymously signsagss on behalf of the group.
A group undeniable signature shares the same principlegrtthp signatures with the exception
of necessitating the intervention of the group manager tythe issued signatures. This new
mechanism can be for instance used to validate price listssspeleases, or digital contracts when
the signatures are commercially sensitive or valuable napetitor.

Threshold undeniable signatures [Harn & Yang, 1993; Linet al,, 1996; Lee & Hwang, 1999;
Wang et al,, 2001, 2002; Kim & Won, 2004; Guo & Tang, 2005; Cheret al,, 2005; Lu et al,
2005]. This concept was initiated in 1992 under the name: grougrted undeniable signatures.
A group-oriented(t, n) undeniable signature scheme has the following four pragseri(1) the
group signature is mutually generated by at leagtoup members; (2) the signature verification
process is simplified because there is only one group publicr&quired; (3) the signature can
only be verified with the consent of all signers; (4) the sigri®ld the responsibility for the signed
messages. Group-oriented or threshold undeniable sigrsatan be for instance used in software
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business where the company which vends the software is duiogl@ number. of investors and
where the released products must be signed mutually by st lewestors.

Identity-based undeniable signatures [Libert & Quisquatea, 2004; Guo & Tang, 2005; Zhang

et al, 2005; Wuet al,, 2007b; Li et al, 2007]. Identity-based cryptography is a paradigm pro-
posed by Shamir in [Shamir, 1985] to remove the necessityddalic key certificates. This is
achieved by letting the user’s public key be an informatideniifying him in a non-ambiguous
way (e-mail address, immatriculation number,...), andvidey the corresponding private key us-
ing the master key of a trusted authority called the privatedenerator (PKG). This concept was
first extended to undeniable signatures in 2004 by Libert@udquater, and later it was applied
to different primitives derived from undeniable signasire

Undeniable multi-signatures [Yun & Lee, 2004, 2005]. An undeniable multi-signature is a
signature produced by a number of signers whose coopeilatioandatory for the verification of
the issued signature. Such a framework is suitable for gmpyright protection on digital contents.
In fact, digital watermarks have been proposed as the meansyright protection of multimedia
data, and it is often the case that the confirmer of a watermarks only the intended verifier to
be convinced with the validity of the watermark. In case tiggtal multimedia content is made
by co-workers, a joint copyright protection scheme is néddgrovide equal right to them. Thus,
undeniable multi-signatures provide a good solution is #iiuation.

Blind undeniable signatures [Sakurai & Yamane, 1996; Huanget al., 2005; Hanet al., 2006;
Koide et al, 2008]. A blind signature enables a user to obtain a signature on aagewithout
revealing the content of the message to the signer. Songtithe signer might control some
attributes of the message in question such as “date of issu®/alid until”, in which case we
talk about a partially blind signature. (Partially) blindsatures proved very useful in many real-
life applications such as online-shopping as they proteetgrivacy of the user (customer) by
hiding the message (purchased item) from the signer (bahkprtunately, the self-authenticating
property of blind signatures jeopardizes completely theagy of the signer. Thus, merging the
properties of blind and undeniable signatures results imiraifive which guarantees both the
privacy of the signer and of the user.

Proxy undeniable signatures [Wuet al,, 2007a]. A proxy signature scheme allows an entity
to delegate his/her signing capability to another entitg nway that the latter can sign messages
on behalf of the former when the former is not available. preignatures have found numerous
practical applications in ubiquitous computing, disttdalisystems, mobile agent applications, etc.
In some situations, it is required to protect the privacyhs {proxy) signer which entails the
presence of the primitive proxy undeniable signaturesWau gt al., 2007a], the authors propose
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the first convertible undeniable proxy signature schemé wgorously proven security in the
random oracle model, based on some natural complexity gegum.

Undeniable confirmer signatures [Nguyeret al,, 1999]. In undeniable signatures, a signature
can only be verified with the cooperation of the signer. Tlalbsence of the signer obstructs the
entire verification process. This problem is eliminatedonfomer signature schemes where the
verification procedure is delegated to a confirmer rather tha signer. In [Nguyest al., 1999],
the authors present a variation of confirmer signatureedalindeniable confirmer signature in
which both the signer and the confirmer can verify the validitthe signatures. Note, that such a
primitive is often referred to adirected signatures [Lim & Lee, 1993]

Non-interactive designated verifier undeniable signature [Jakobssonet al., 1996; Kudla &
Paterson, 2005]. The seminal work of Chaum and van Antwerpen [Chaum & van Anpeme,
1990] on undeniable signatures has been subject to marmgksaittdhe most notable one is due
to Jakobsson [Jakobsson, 1994] where he describes howgtier €ian be vulnerable to a black-
mailing attack, i.e. a dishonest verifier can threaten theesito broadcast the validity of a given
signature if the latter does not consent to do what the foamks. Later, Jakobsson et al. [Jakobs-
sonet al,, 1996] proposed a solution to this problem, called desgphaeérifier proofs. Informally
speaking, a designated verifier proof is a proof of corresgred some “statement” that either the
prover or some designated verifier could have produced.elptbver created the proof, then the
“statement” is correct, however a designated verifier cairaulate a valid proof without a cor-
rect statement. As a result, a secure designated verifief piith convince the designated verifier
of the validity of the given statement, as he did not creagepioof, but will convince no other
party as the designated verifier could have generated ialliint was shown in [Jakobssast al,
1996] that designated verifier proofs could be made nonantee, however, a formal definition
of non-interactive proofs of knowledge along with their Bggtions to undeniable signatures was
provided almost a decade later in [Kudla & Paterson, 2005].

6.3 RSA-based constructions

Since the introduction of undeniable signatures in 1988yr@ifecant amount of work has been de-
voted to the investigation of practical schemes implenmgritnis primitive. Up to 1997, this work
was focused on discrete-log-based systems. The schememn§@et al,, 2000] is the first to use
regular RSA signatures to generate undeniable signatlirékis new setting, both the signature
and verification exponents of RSA are kept secret by the sigriele the public key consists of a
safe RSA modulus and a sample RSA signature on a single pubsage. The scheme possesses
several attractive properties. First of all, provable siéguas forging the undeniable signatures
is as hard as forging regular RSA signatures. Second, betbdhfirmation and denial protocols
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are zero-knowledge. In addition, these protocols are efftqjparticularly, the confirmation proto-
col involves only two rounds of communication and a small benof exponentiations). Finally,
the scheme in [Gennakt al., 2000] can be efficiently extended to support more advanoeg- p
erties of undeniable signatures found in the literaturelutiing convertibility of the undeniable
signatures (into publicly verifiable ones), the possipiid delegate the ability to confirm and deny
signatures to a third party without giving up the power tonsignd the existence of distributed
(threshold) versions of the signing and confirmation openat

Later in [Miyazaki, 2000], an improved variant of [Gennatal,, 2000], which supports the
convertibility and the resilience against the hidden verifittack (described in [Jakobssenal.,
1996]), is proposed. Improvements of [Gennatal., 2000] continued to emerge, for instance the
work in [Galbraithet al., 2002] proposes techniques which allow RSA-based undersaimatures
for general moduli (in contrast to the work [Gennatal., 2000] which rests on safe RSA moduli).
Additionally, the result in [Galbraith & Mao, 2003] devel®@an RSA-based scheme which has
invisibility. Quite recently, a new approach for constiangtselectively convertible RSA-based
undeniable signatures without random oracles has beemgedpn [Kurosawa & Takagi, 2006;
Le Trieuet al,, 2009].

6.4 Analysis and refinement of the model

New (security) properties. The first security notions that were required in undeniaigieatures
were: (1) security for the verifier, which refers to the sooest of the confirmation/denial proto-
cols, (2) unforgeability of the signatures, which refershe hardness of producing a valid unde-
niable signature on an arbitrary message, (3) non-traadsiféy and invisibility of the signatures,
where non-transferability means the inability of the sigina verifier to transfer his knowledge
about the signature status to a third party, and invisjbilitnnotes the difficulty of telling whether
a signature is valid or not. The invisibility property had mpavariants; the first one requires that
any polynomial adversary is incapable of distinguishinggaature based on the underlying mes-
sage (the adversary outputs two messaggandm, and receives a signature on one of those two
messages; he is then required to tell the message undetigrapallenge signature). There exists
also the stronger notion [Galbraith & Mao, 2003] which regaithe difficulty of distinguishing
the signature on a message, chosen by the adversary, frond@amasignature in the signature
space. In the same paper [Galbraith & Mao, 2003], Galbraith Mao suggested to consider a
further security property, that is anonymity, which infaity means the infeasibility of determin-
ing whether a user is or is not the signer of a given message &property can be the source of
abuse by the signer in some situations, thus the introducfithe notion ofrevocable anonymity
in [Yeung & Han, 2003; Haret al., 2004] to denote the possibility of revoking the anonynity,
some trusted authority, of some signer who has done illegelres.

Another security property that needs to be satisfieddayertibleundeniable signatures was in-
troduced in [Huang & Wong, 2009] and named resiliencelmability attacks where a dis-
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honest/malicious signer both disavows a signature via ige/dwal protocol and confirms it via
selective conversion. Always in the case of convertibleamiable signatures, it is desirable in
some situations to delegate the ability to prove the valigitd convert signatures to a semi-trusted
third party by providing a verification key [Schuldt & Matsa 2010].

Finally, Kurosawa and Furukawa introduced in [Kurosawa &Ukawa, 2008] the notion of uni-
versal composability which informally captures the manatece of the undeniable signature of its
security properties under a general protocol composifitwis notion is motivated by the fact that
undeniable signatures are often used as a building blockriara complicated protocol.

Relations among security notions. The first work that addresses the relations among the differ-
ent security notions of undeniable signatures is [Galb&iMao, 2003], where the authors prove
that their notion of invisibility implies their notion of amymity and the invisibility notion con-
sidered in [Camenisch & Michels, 2000]. They also specifynsgroperties to be satisfied by the
undeniable signature scheme in order to have invisibifitthe sense of [Camenisch & Michels,
2000] and anonymity in the sense of [Galbraith & Mao, 2003}lyrthe strong invisibility in the
sense of [Galbraith & Mao, 2003].

Besides, Kurosawa and Heng conduct in [Kurosawa & Heng, P@@Borough study on the un-
forgeability and invisibility notions of undeniable sigonees in the two attack models, namely
chosen message attack and full attack. In particular, thew shat unforgeability against a chosen
message attack (where the adversary is allowed to queryieglgghe signing oracle) is equiva-
lent to unforgeability against a full attack (where the adwaey is allowed to query adaptively both
the signing and the confirmation/denial oracles), and ibiity against a chosen message attack
is equivalent to invisibility against a full attack.

Different types of conversion. Traditionally, the convertibility property in undeniab$ggna-
tures refers to the possibility of converting an individuatieniable signature into an ordinary one
(selective conversion), or publish a universal receipt tinans all undeniable signatures into pub-
licly verifiable ones (universal conversion). Recentlynwertibility in undeniable signatures has
been widened to cover further features. The first examplesisrhe-selective conversigroperty
which was introduced in [Laguillaumie & Vergnaud, 2005] iccamvent the problem caused by
the universal conversion of undeniable signatures. In &ter the signer has revealed the uni-
versal trapdoor, allgast and futureundeniable signatures will be publicly verifiable and thes
cannot issue further undeniable signatures with his ptdsgn As a consequence, he needs to
(in case he wants to issue new undeniable signatures) gerseersew key pair which has to be
certified by an authority (PKI) and where the correspondiadificate needs to be generated by
all the verifiers. Time-selective conversion is a notion eabhsupports the signer to universally
convertchronologicallysignatures pertaining only to a specific time period: givéima-selective
convertible undeniable signaturdor a time period, itis computationally infeasible to determine
which signing secret key was used to genesgtbut with the knowledge of a matching universal
receipt for some time perigd > p, it is easy to determine whetheiis a valid time-selective con-
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vertible undeniable signature or not. Next, tr@adual conversiomwas introduced in [El Aimani
& Vergnaud, 2007] to generalize the concept of time-saleaonvertible undeniable signatures to
event-selectiveonvertible undeniable signatures where a signature besomiversally verifiable

if a specific event happens and makes the signer publish tinesponding receipt information.
In other words, gradual conversion enables the signer wugitly convert signatureschronously
(i.e. with time periods made completely independent of each hther

6.5 Applications

The first real life application that motivated the reseanslundeniable signatures is the limitation
of the proliferation of certified copies of a document issbgéd given company. Later, Jakobsson
[Jakobsson, 1994] exhibited a situation where one can usenigble signatures for blackmailing;
a malicious verifier can threaten the signer of leaking tHiglig of a given signature if the latter
does not consent to what the former asks. This situation eavdided if the undeniable signature
scheme is well designed, namely if signatures are nonfeeaisde.

Next, and almost a decade later, Yun and Lee provided twhdugpplications of undeniable
multi-signatures, namely the joint copyright protectiandigital content [Yun & Lee, 2004] and
the large scale electronic voting [Yun & Lee, 2005]. In fd2igital watermarks have been proposed
as the means for copyright protection of multimedia dataunNdly, the confirmer of a watermark
wants to make sure that only the intended verifier can be ooadiof the validity of the watermark
and thus the need for undeniable signatures. Howeverjrexisbpyright protection schemes are
mainly focused on protection of single owners’ copyrightcase the digital multimedia contents is
made by co-workers, a joint copyright protection schemeseded to provide equal right to them,
which explains the necessity of undeniable multi-sigregurBesides, existing voting schemes
assume that the voting center is trustful and untracealderakls exist between voters and the
voting center. To minimize the role of the voting center, élghors in [Yun & Lee, 2005] propose
a voting scheme where multiple administrators manage thi@g/@rotocol. Moreover, in the
voting and counting stages, ballots cannot be opened withethelp of all administrators. Also,
before counting the ballot, the administrators must alifyehe undeniable multi-signature on it.
Finally and due to the properties of undeniable signatwagrs can change their mind to whom
they vote in the registration stage. They can restart thmngqirocess by simply rejecting the
signature confirmation protocol launched by the voting ngana

The last application of undeniable signatures that has hddressed in the literature is in the
area of Internet applications, or more precisely XML [Suni&2005]. XML or extensible markup
language has become an important universal language fontgrmet-based business world. An
XML document can be generated from various resources witying security requirements. In
order to ensure the integrity of the contents in the tramsast and at the same time maintain
privacy and confidentiality, security is increasingly inmamt. The XML undeniable signatures,
proposed in [Yun & Lee, 2005], are designed for the secufiyML document transactions. They
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guarantee the authentication, data integrity, and nooei@gion of the data they sign. Moreover,
they ensure that signatures cannot be verified withoutantem with the signer. The goal of a such
work is to bridge the gap existing between XML technologied data security theories in order
to provide a framework for the integration of security teclogies to improve XML applications.

6.6 Constructions over special algebraic structures

Popular undeniable signatures present in the literature tee disadvantage of either having long
signatures, typically 1024 bits, or having operations fa signer that take cubic running time.
These advantages become more tangible for some real wgldapons, e.g. on a chip card or
a web server. Therefore, many attempts have been made tesadtie mentioned problems; we
sketch in this section the most important such contribtion

Signatures based on ideal arithmetic in quadratic order [Behl et al, 2004]. These are signa-
tures constructed using imaginary quadratic fields. A caiaclfield is an algebraic number field
of degree two ovef). It is easy to show that the map+— Q(+/d) is a bijection from the set
of all square-free integer$ # 0, 1 to the set of all quadratic fields. #f > 0, the corresponding
quadratic field is called a real quadratic field, andder 0, itis called an imaginary quadratic field
or complex quadratic field. There has been a number of cryppdgc primitives (e.g. the NICE
encryption scheme [Paulus & Takagi, 2000]) using such agbaéc structure; the technique used
in these systems is based on “switching” between ideals &/hathmetic is quadratic in the bit
length of the public key. As a consequence, the operatiotiseosigner’s side in [Bietdt al., 2004]
are of quadratic complexity. The comparisons with the papRISA-based undeniable signatures
show a major advantage of [Bieht al, 2004] in terms of signature cost and length. However,
the major drawback lies in the conjectural security analg$ithe scheme, which becomes more
improbable after the cryptanalysis of the NICE encryptichesne [Castagnos & Laguillaumie,
2009; Castagnost al,, 2009].

MOVA signatures [Monnerat & Vaudenay, 2004b,a; Monneratet al., 2005]. These proposals
develop a general framework based on the notion of intetipol@f group homomorphisms. In
this way, they define decisional and computational probMirish generalize several fundamental
problems found in public key cryptography, e.g. (Biline@rffie-Hellman, Quadratic Residuosity,

These group homomorphisms allow to express well known siges, e.g. [Chaum & van Antwer-
pen, 1990; Gennaret al,, 2000] in a unified framework. Moreover, they allow to deyelery
short signatures in a quite natural way, namely by instingahe scheme with group homomor-
phisms with a range group of small size. The main criticisrthete signatures is the resort to the
random oracle model.
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Signatures using Non-Abelian groups [Thomas & Lal, 2008]. Non-Abelian groups have been
considered as an alternative for doing public key cryptplyyaln fact, they provide a rich collec-
tion of hard problems like theonjugacyproblem: givenr, y € (G, -), decide whether andy are
conjugatesi.e. whethetla € G : x = aya~!. There are many illustrations of non-Abelian groups,
e.g. Braid groups, Thompson’s group, Polycyclic groupse Signature presented in [Thomas &
Lal, 2008] is based on the intractability of the conjugacgljpem. The scheme therein does not
only suffer from the conjectural security, but also from tilreasonableness of the underlying as-
sumption; it is well known that there exists an efficient peob that solves the conjugacy problem
in Braid groups.

6.7 Recenttrends

We summarize in the following section the main directionsssiearch on undeniable signatures.

Revisiting previous constructions. There have been a number of works devoted to the analy-
sis of previous constructions of undeniable signaturese fifst of such projects dates back to
2001 [Okamoto & Pointcheval, 2001] where the authors intoada novel class of computational
problems, namely the gap problems. They further show howcpkar instance based on the
Diffie-Hellman problems, namely the GDH problem, can seovedlve a more than 10-year old
open security problem: Chaum’s undeniable signature.rLet¢Ogataet al., 2005], the authors
improved the analysis in [Okamoto & Pointcheval, 2001], shdwed that the security of the
FDH variant of Chaum’s scheme with NIZK confirmation and d@&al protocols is equivalent to
the CDH problem. They achieve this by introducing a new kihddversarial goal called forge-
and-impersonate in undeniable signature schemes, glagsthe security of the FDH variant of
Chaum’s undeniable signature scheme according to threengdilons, i.e. the goal of adversaries,
the attacks and the ZK level of confirmation and disavowatquols, and finally relating each
security to some well-known computational problem.

The next two schemes that were revisited are those by Dahagdr Pederesen [Damgard & Ped-
ersen, 1996] and by Michels et al. [Michadsal, 1996], which were addressed in [El Aimani,
2008] and [El Aimani & Vergnaud, 2007] and will be subjectdiué two upcoming chapters resp.
Finally, we mention the claimed attack [lat al, 2007] on Libert and Quisquater [Libert &
Quisquater, 2004]’s ID-based undeniable signature; thboasi show that if a valid message-
signature pair has been revealed, an adversary can forgagiher's signature on any arbitrary
message for which the signer has no way to deny it. This atiatis out to be flawed as the
authors confuse points on an elliptic curve with elementéjinwhereg is the order of the group
formed by the elliptic curve points.

Generic constructions. The next direction of research was dedicated to the desigeioéric
constructions of undeniable signatures. The first restitigline is the MOVA construction [Mon-
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nerat & Vaudenay, 2004b,a; Monnesgdtal,, 2005] described earlier in Section 6.6. Next, there is
the result due to Galindo et al. [Galinéd al., 2006] where the authors propose a technique for
building identity based schemes with further properties. ikstance, they provide a generic con-
struction for ID-based undeniable signatures from a digita an undeniable signature schemes.
Later, the result in [Huangt al,, 2007a] proposes a generic construction for universaityertible
undeniable signatures; the construction is based on thnéding blocks: a strongly unforgeable
classic signature scheme, a selectively-convertible miaée signature scheme and a collision-
resistant hash function. Finally, in [El Aimani, 2008, 2@)9we propose a generic construction
of convertible undeniable signatures (both selectively aniversally) from any digital signature
scheme and any encryption scheme obtained from the hybeig@ion paradigm. We must also
cite the construction [Zhu, 2004] which realizes the “sigme of an encryption” paradigm.

Efficient signatures with strong security properties. Alleviation or removal of the idealized
models and basing the security on popular and reasonahldtggmoperties was a tangible pur-
pose in the recent proposals of undeniable signatures. Yéeasexamples [Huares al., 2007b;

El Aimani, 2008, 2009a; Le Trieat al,, 2009, 2010; Schuldt & Matsuura, 2010; Huang & Wong,
2009]. It is worth noting that most of these proposals aretbas the sign-then-encrypt paradigm.
Moreover, efficiency, which translates in having short aigmes with small generation, verification
and conversion cost, was also a main intent in the recenbgadp of undeniable signatures. All the
previously mentioned schemes achieve also these prapeditheir underlying encryption layer
relies on an IND-CPA secure encryption scheme. Finally, o that it is was also desirable
recently to reach a minimal number of moves between the smmthe verifier of an undeniable
signature. The already mentioned signatures have conséggntour round confirmation/denial
protocols. Fewer moves have been achieved by [Kurosawa &H¥05; Monnerat & Vaudenay,
2005] but at the expense of security; both constructions nasourse to the random oracle model
for the security analysis.

6.8 Conclusion

In this chapter, we browsed quickly through the differerdlimtions in the area of undeniable
signatures. We will continue in the next two chapters by hg\a closer look at two proposals,
namely [Damgard & Pedersen, 1996] and [Micheisl., 1996]; we will disprove the conjecture
on the invisibility of the former and provide a recast of timelarlying construction which achieves
strong security features. Moreover, we redefine the sgamddel of the latter so that it captures
a new property, namely thgradual conversionand we provide a formal security analysis of the
scheme in this new model.
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Chapter 7

Damgard-Pedersen’s Undeniable Signatures
Revisited

Abstract. Damgard-Pedersen’s [Damgard & Pedersen, 1996] undensigna-
tures were proposed in 1996, and consist in first generajngwably secure variant
of EIGamal’s signature, e.g. the Modified EIGamal signatateeme [Pointcheval
& Stern, 2000], on the given message, then encrypting thesageskey-dependent
part using either Rabin’s or EIGamal’s encryption. Thegmaiures were proven
to have their unforgeability resting on the discrete |aiani problem. Concerning
invisibility, it is conjectured to rest on the factorizatiproblem in case the Rabin
encryption is used, and on the DDH problem otherwise. Thigemural security
was reported recently in [Kurosawa & Takagi, 2006] as théenstused a similar
approach to devise their undeniable signatures.

In this chapter, we focus on the variant using EIGamal’sgstaon; we disprove the
speculative invisibility in the model defined in [DamgardR&dersen, 1996], and
we provide a complete attack on the scheme in a very populdem8esides, we
propose a fix to the scheme which allows to achieve very stseagrity features;
the security analysis is done in a more general frameworkevie refined scheme
is seen as a special instantiation of this framework.

Parts of the results in this chapter appeared in the puldicfEl Aimani, 2009a] in
the proceedings of Africacrypt 2009.

7.1 Damdrd-Pedersen’s undeniable signatures

7.1.1 The scheme

Letm € {0,1}* be an arbitrary message, the scheme consists of the fotjgevotedures:

Setup Getup). On input the security parameter generate &-bit prime ¢ and a primep =
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1. The prover computesthe decryption of 1, E») usingv.

Next, he chooses <% 7, computes and sends = (¢"™h=7)" and
ty = (Era”’, s'Eo37") to the verifier
3. The verifier choosels < {0,1} and sends it to the prover.
4. 1f b = 0, the prover sends andp’.
Otherwise, he sends’ and proves that, is an encryption ofs’.
5. If b = 0, the verifier checks thai and¢, are computed as in Step 1.
Otherwise, he checks the proof of decryptiontof
Itit fails, he rejects the proof.
Otherwise:
If the prover is confirming the signature, the verifier acedpt*s’ = ¢;.
If the prover is denying the given signature, the verifieregts the proof if-ss" # ;.

Figure 7.1: Proof system for membership to the langufde, £y, 7) € Z, x Z; x Z |
s € Zy: DLy(B) = DLg, (Ey - s71) A g"™h=" = (#)r*} Common input: (E;, E,,r, pk) and
Private input: v

1 mod t. Furthermore, select a collision-resistant hash funclidhat maps arbitrary-length
messages (@, .

Key generation eygen). Generatey of ordert, x € Z;, andh = ¢g* mod p. Furthermore,
select a generaterof Z; andv € {0,1,...,t—1}, and comput® = o mod ¢. The public
key ispk = (p, t, g, h, , ) and the private key iér, v).

Signature (sign). The signer first computes an ElGamal signatUre:) on m, i.e. compute

r = ¢®mod p for someb <& ZX, then computes ash(m) = rz + bs mod t. Next, he

computes an ElGamal encryption; = o, £y = s°) mod ¢, for p & 7, ., ofs. The
undeniable signature on is the triple( £y, Es, r).

Confirmation/Denial protocol (confirm/deny). To confirm (deny) a purported signatute, , £, )
on a certain message, the signer issues a ZKPoK of the language: (see Figure 7.1)

{(E1,Ba,r) € Z) x ZF X Z) | 35 € Zy: DLo(B) = DL, (By - s ) A g"™h™" = (#£)r°}

7.1.2 Security analysis

The above algorithms/protocols are obviously completerddeer, the confirmation/denial pro-
tocols are proven to be sound and zero knowledge. Finakysitinatures are proven to be un-
forgeable if the underlying ElIGamal signature is also ugdable, and they are conjectured (by the
authors in [Damgard & Pedersen, 1996]) to meet the follgvgiecurity notion if the DDH problem
is hard.
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Definition 7.1 (Signature indistinguishability)it is defined through the following game between
an attackerA (a distinguisherand his challengeik.

Phase lafter A gets the public parameters of the undeniable signatureraeha@amelyk, from
R, he starts issuingtatus requestnd signature requestdn a status requestd4 produces
a pair (m, z), and receives a-bit answer which ig iff 2 is a valid undeniable signature on
m W.r.t. pk. In a signature request4 produces a message and receives an undeniable
signaturez on it w.r.t. pk.

ChallengeOnceA decides thaPhase 1is over, he outputs a messageand receives a string
which is either a valid undeniable signature en(w.r.t pk) or a simulated signature.e. a
string randomly chosen from the signature space.

Phase 24 resumes adaptively making the previous types of queriesjdad thatn does not
occur in any request, and thatdoes not occur in any status request. Eventuadlywill
output a bit.

Let p,, resp. ps be the probability that4 answersl in the real, resp. the simulated case. Both
probabilities are taken over the random coins of bothand R. We say that the signatures are
indistinguishable ifp, — p;| is a negligible function in the security parameter.

7.2 Negative Results

In this section, we provide evidence that the Damgard-Redesignatures are unlikely to be in-
distinguishable under the DDH assumption. We prove in a $tage that if there exists leey-
preservingreduction, i.e. an algorithm launching the adversary ageown public key and other
freely chosen parameters, from the DDH problem to the djsishability of the signatures (in
the sense of Definition 7.1), then there exists an efficiegdrghm that solves the DDH problem.
Next, we provide an actual attack on this indistinguishghih a reasonable (and popular) security
model. Both attacks are based on the malleability of EIGameakryption; given a ciphertext, one
can create another ciphertext for the same underlying rgessa

7.2.1 Impossibility results for key-preserving reductiors

Lemma 7.1. Assume there exists a key-preserving reducfothat uses an indistinguishability
adversaryA against the above scheme to solve the DDH problem. There #xests an efficient
meta-reductiornM that solves the DDH problem.

As previously mentioned (Chapters 4 and 5), this lemma sstggleat under the DDH assump-
tion, there exists no key-preserving reduction from the Dbblem to the distinguishability of
the signatures, and in case such an algorithm exists, tleeD@H problem is easy thus rendering
the reduction useless.
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Proof. Let 'R be the key-preserving reduction that reduces the DDH proldedistinguishing the
Damgard-Pedersen signatures in the sense of DefinitionWWelwill construct an algorithrivt
that usesR to solve the DDH problem by simulating a distinguisher aggihe signatures.

Let (c; = a% ¢, = (%) € Z; x Z; be the DDH instanceM is asked to solve.M acting
as a distinguisher of the signature will make a signatureeston an arbitrary message Let
(E1, Eo,r) be the answer to such a quesyt will make now a status query dia, - E, ¢y - Eo, 1)
and the message. (¢, ¢2) is a yes-Diffie-Hellman instance iff the result of the laseqguis the
confirmation thatc; - E1, ¢, - Ey, 1) IS @ signature om. O

In this case, it does not seem obvious how to extend the alesud to arbitrary reductions. For
instance, we cannot employ the technique of non-mallégloitithe key generator used previously
in Chapters 4 and 5. In fact, this would correspond in theemircase to assume that the DDH
problem, w.r.t. a given public kepk, is difficult even when given access to a CDH oracle w.r.t.
anypk’ # pk, which is untrue.

7.2.2 An attack in another security model

In Definition 7.1, the adversary or distinguisher cannotiésstatus signatures on the challenge
message and an arbitrary signature which is different fioechallenge signature. This model is
very frail because it prevents the signer from issuing magiyagures on the same message; once
the status of a signature is known, then the status of alf stpratures on the same message is also
known. Thus, a more realistic model will allow the adverdarissue status queries which involve
the challenge message. However, the scheme in questioredatally broken in the new setting
due to the fact that, given an EIGamal ciphertext, one caateranother EIGamal encryption for
the same plaintext.

Lemma 7.2. The above undeniable signatures are not indistinguishabline presence of an
adversary making status queries which comprise the chgdlenessage.

Proof. Let .4 be an distinguisher against the above signatures, aid{ef’,, r) be the challenge

signature on the challenge messageA will simply chooser & Z;_1 and make the status query
on (a"Ey, " Ey, r) andm. The response to such a query is sufficientAoto conclude as the new
signature is valid om. iff the original one is also valid om. O

7.3 Positive Results

In the previous section, we provided evidence that the Dath§edersen undeniable signatures
are very unlikely to be indistinguishable under the DDH asggtion. This can be explained by the
fact that they are not strongly unforgeable, i.e. given aatgre on an arbitrary message, one can
create another signature on the same message without fhefitble signer. Thus, the reduction
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‘R needs more than a list, maintaining the queries and thelygeim order to answer the status
gueries made by the distinguisher. To repair these sigesitone can first compute the EIGamal
key 37 along with its encapsulation”, then produce an EIGamal signatyser) on the message
in question concatenated wittf, and finally encryps using5”. The output undeniable signature
is (o, spB”,r). Itis easy to see that the provided repair is a special iostahthe construction in
Section 4.2, and thus can be proven in a stronger securitgh(he resulting confirmer signatures
are proven to be SINV-CMA secure) than that provided in [Dandgk Pedersen, 1996].

In the sequel, we exhibit another reduction from the anohymi the construction to the
anonymity of its underlying building blocks. In fact, altigh SINV-CMA security implies ANO-
CMA security, however, the former rests on rather strongraggions on the underlying building
blocks, namely the IND-CPA and INV-OT security of the used\KBnd DEM resp.

Theorem 7.3. Given(t, q, ¢,, ¢s.) € N* and (g, €) € [0, 1]?, the construction depicted in Section
4.2ist, ¢, qs, v, qs.)-ANO-CMA secure if it uses(@, €, ¢;)-EUF-CMA secure, an ANO-OT secure
DEM, and a ¢ + ¢(qy + Gsc), 5 - (1 — €)% +%)-ANO-CPA secure KEM.

Proof. Let A be an attacker that (e, ¢, ¢., ¢s.)-ANO-CMA breaks the construction in Section
4.2, assumed to use(a ¢, q;)-EUF-CMA secure digital signature and an ANO-OT secure DEM.
We will construct an algorithnR that ¢ + ¢;(q, + ¢sc), 5 - (1 — €/)?1%<)-ANO-CPA breaks the
underlying KEM:

<
72

[Key generation] R gets the parameters of the KEM from his challenger, namely the two
public keysK.pk, and K.pk, and the encapsulation/decapsulation algorithms. Then, he
chooses an appropriate ANO-OT secure DEM together with af-EMA secure signature
schemex. He will run X.keygen twice to obtain(X.pk,, X.sko) and(X.pk,, X.sky ). Finally
he will setpk, = (K.pk,, X.pk,y) andpk, = (K.pk,, X.pk,) as the challenge public keys for
A.

[confirmedSign queries] For a signature query om regarding a public keypk,, b € {0,1}. R
first fixes a session kel together with its encapsulatieanusing .pk,. Then he computes
a (digital) signaturer = (s,7) on ¢|jm usingX.sk,. Finally, he encrypts (usingk) and
outputs the result, together with to .A. R will maintain a list£, of the encapsulations
and keyst used to generate the confirmer signatures with respect tethek,, b = 0, 1.

[confirm /deny queries] For a signature: = (u1, pe, 113) ON m with respect to a given kepk,,
b € {0, 1}, R willlook up the listZ,. If a record having as first component the encapsulation
w1, thenR will use the corresponding decapsulation, saio decrypt(iq, p2) in s. If (s, us3)
is a valid digital signature oa||m, R will run the confirmation protocol, otherwise, he will
run the denial protocolR can issue such proofs of knowledge, without knowing thegtev
key of I, using the rewinding technique because the protocols arekrewledge, thus
simulatable. In casg; does not appear in any record©f, R will issue the denial protocol.
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This simulation differs from the real one when the signatuns valid and has not been
obtained from a signature query. Two cases: eith@ras never queried to the signing oracle,
then (m, 1) would correspond to an existential forgery on the confirnignature scheme,
which would lead to an existential forgery on the underlysngnature scheme, by virtue of
Theorem 4.8. The second case is whehas been previously queried to the signing oracle
in which case(m, 1) would correspond to an existential forgery on the undedydigital
scheme thanks to Remark 4.6. Hence, the probability th&t ¥a#narios do not happen is
at least(1 — ¢')% because the underlying digital signature schemg,is, ¢,)-EUF-CMA
secure by assumption.

[convert queries] R proceeds as above with the exception of issuing the com/asignature
instead of the confirmation protocol, or the symboinstead of the denial protocol. Here,
the probability thai4d does not query a valid signature that has not been obtaiogtdrsign
query is at leastl — €)%,

[Challenge] Eventually,.A outputs a challenging message. R will pick a ¢’ &£ {0,1} and
use his challengéc;, k) (created w.r.t.K.pk, for someb € {0,1}) to compute a digital
signatures;, = (s}, 17), usingX.sky, onc;||m*. Then, he encrypts the useful part of the
resulting signaturesf,) using k; and outputs the result, together with, as a confirmer
signatureu* onm*. Therefore, ift = ¥/, thenp* is a signature om* with respect tok,,
otherwise it is not a valid signature with respect to eithey.Kf .A has an advantage non-
negligibly different from that of an adversary in a real ekigas described in Definition 3.4),
then.4 can be used to used to break the ANO-OT security of the DEMiadigtr;, reveals
by assumption no information abotitpk,, .

[Post challenge phase]d will continue issuing queries to the signing, confirmataeial, and
selective conversion oracles, with respect to the two l&yor pk,, andR can answer as
previously. Note that in this phasd, might request the verification or selective conversion
of a confirmer signaturéc}, —, —) on a messager; with respect topk,, b = 0, 1. In this
case,;R will simply issue the denial protocol in case of a verificatouery, or the symbal
in case of a selective conversion query. Following the samagyais above, the probability
that the simulation does not differ from the real execut®atileastl — €)%+,

[Final output] When A outputs his answér, € {0, 1}, R will outputb” = ¥’ to his challenger
in caseb, = ¥/, and)” = 1 — b’ otherwise. We clearly have= | Pr[b, = b'|b = V'] — 1|.
The advantage dR is defined by:
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1
Adv(R) = (1= )t [Prlb =] -

1
_ (1 . 6/)Qv+‘180 Pr[ba — b/7 b — b”] —|— Pr[ba 7é b,, b - b”] - 5’

1
= (1= )t |Prlb, = b, b =] + Pr[b, £, b# V] — =

2
1
= (1 — e’)qﬁq“ Pr[ba = b’|b = b’] Pr[b = b’] + Pr[ba #* b’|b #* b/] Pr[b #* b’] 3
1 — A\avt+3qse 1
_ A — =] — L
2 2
B 6(1 — E’)Qv‘f“]sc
N 2

The last but one equation is due to the fact thelp = o] = 1 ast’ & {0,1}, and to that
fact thatPr[b, # V/'|b # V'] = 5 since the used DEM is ANO-OT secure.

O

7.4 Conclusion

In this chapter, we revisited the Damgard-Pedersen [2ach§ Pedersen, 1996] undeniable sig-
natures which had a conjectural security left open for owde@ade. We disproved the invisibility
of these signatures in the model given in [Damgard & Peaers@96], and provided a complete
attack in a stronger model which is quite reasonable. Neatprposed a fix to these signatures
so that they become invisible; interestingly, this repains out to be a special instantiation of the
construction provided in Section 4.2. Actually, even thaefemation/denial protocols provided
in [Damgard & Pedersen, 1996] happen to be a special case afonfirmation/denial protocols
provided for the construction in Section 4.2. Moreover, wavied another analysis of the con-
struction in question which establishes its anonymity dasethe anonymity of its components.
We conclude that the construction in Section 4.2 does nat cagbture the efficient realizations
of confirmer/undeniable signatures proposed recently,[egTrieuet al,, 2010; Schuldt & Mat-
suura, 2010], but also serves for analyzing the early schéna have a speculative security.
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Chapter 8

Gradually Convertible Undeniable
Signatures

Abstract. In 1990, Boyar, Chaum, Damgard, and Pedersen introducfbiyar
et al, 1991]convertible undeniable signaturggich limit the self-authenticating
property of digital signatures but can be converted by theesito ordinary signa-
tures. Six years later, Michels, Petersen, and Horsteepted in [Michelset al,
1996] an attack on the El Gamal-based seminal scheme of EBxyar, and pro-
posed a repaired version without formal security analysighis chapter, we mod-
ify their scheme so that it becomes a generic one, and it gesvan advanced
feature which permits the signer to universally conaatironouslyall signatures
pertaining to a specific time period. We supply a formal sigareatment of the
modified scheme: we prove, in the generic group model, teegs¢heme is existen-
tially unforgeable and invisible under chosen messagelksf@assuming reasonable
assumptions on the underlying constituents.

Parts of the results in this chapter appeared in the joinkkwWBt Aimani &
Vergnaud, 2007] with Damien Vergnaud in the proceedings@R& 2007.

8.1 Gradually convertible undeniable signatures

8.1.1 Syntax

Let7 € N. A gradually convertible undeniable signature schetiewith 7 time periods consists
of the following procedures:

Setup US.setup). This is an algorithm which takes an intedgeas input, and outputs thmublic
parameterdarameters. « is called thesecurity parameter

Signer key generation [US.skeygen). This algorithm takes the public parameters as input and
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outputs a paifsks, pks), wheresk; is called thesigning private keyand pks the signing
public key

Verifier key generation (US.vkeygen). This algorithm inputs the public parameters and outputs
a pair(sky, pky), wWheresk, is called theverifying private keyandpk, theverifying public
key.

Signature (US.sign). This algorithm takes the public parameters, a messagefegeinin|1, 7],
and a signing private key as inputs and outputs a bit string.

Verification (US.verify). This algorithm, run by the signer, inputs the public pararseta mes-
sagem, a bit stringy, an integep € [1, 7], and a signing key paiisks, pks) and outputs a
bit which is equal to 1 iff the bit string is a valid undeniable signature am for the time
periodp w.r.t. pks.

Confirmation/Denial protocols (US.{confirm, deny}). These are two-party protocalB, V) be-
tween the signeP and a signature recipieft such that:

e P andV take as common input a messagean integep € [1, ], a bit-stringu, a
signing public keypks, a verifying public keypk,, and the public parameters;
e P takes as private inpuk, the signing secret key correspondingoiie;
e V takes as private inpuk, the verifying secret key correspondingpi&, ;
e (P,V) is a proof of the validity/invalidity of the purported siguoiae 1« on the message
m for the time period w.r.t. the public keypks.
At the end of the protocols, the verifigreither accepts or rejects the proof.

Selective conversionl{S.convert). This is an algorithm which takes as input the public parame-
ters, an integer ifil, 7], a signing key pair and a bit strirf (either a pair message/signature
or the empty string) and outputs a bit string.

Selective verification (erifyConverted). This is an algorithm that takes as input the public pa-
rameters, a message a bit stringu, an integep € [1, 7], a signing public keyks, and a
bit string A and outputs a bit. If the bit output isthen the bit string\ is said to be aeceipt
of the validity of ;1.

8.1.2 Security model
Standard properties

Let 7 be an integer. For alk € N, for all Parameters € US.setup[x], for all (pks,sks) €
US .skeygen[Parameters], for allm € {0, 1}* and for allp € [1, 7]:
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1. The protocold)S.confirm andUS.deny are designated verifier proofs of membership for the
languages (respectively):

{(Parameters, m, i, p, pks)‘US.verify[Parameters, m, i, p, (sks, pks)] = {1}}
{(Parameters, m, 1, p, pks) } US.verify[Parameters, m, u, p, (sks, pks)] = {0} }

where(Parameters, m, 11, p, pks) € US.setup[k]x {0, 1}**x [1, 7] x US .skeygen[Parameters].

2. Vu € US.sign[Parameters, m, p, skq] :
US.verify[Parameters, m, u, p, (sks, pks)|] = {1}.

3. Vu € US.sign[Parameters, m, p, skg|, VA € US.convert[Parameters, p, (sks, pks), (m, p)] :
US.verifyConverted[Parameters, m, i, p, pks, A] = {1}

4. Vu, A\ € {O7 1}* :
US.verifyConverted[Parameters, m, u, p, pks, A] = {1} = US.verify[Parameters, m, p1, p, (sks, pks)] = {1}.

The first property captures the validity and the non-tramadfie property of the protocols
confirm anddeny (i.e. the use of designated verifier proofs insures that a verifidrgain no
information in an execution of one of these protocols [KugllRaterson, 2005]). The last three
properties are the propertiesadrrectness

¢ a well-formed signature is always accepted by the algoritéifiy;
e areceipt correctly constructed is always accepted by taigéhmverifyConverted;

e and if there exists a bit-string which makes accepted a bit-stripgby the algorithm
verifyConverted, theny is a valid signature.

Existential unforgeability

As previously mentioned, the standard notion of securitydigital signatures was defined in
[Goldwasseret al., 1988] asexistential unforgeability against adaptive chosen mgssattacks
(EUF-CMA). In [Laguillaumie & Vergnaud, 2005], the correspondingiao for time-selective
convertible undeniable signatures is defined along the dam@ge. The definition ofesistance

to forgeryfor gradually convertible undeniable signatures that wappse is similar. In fact, we
suppose that the adversary has access to the universaltsfogievery time periog € [1, 7] and

is allowed to query a signing oract for any message of its choice. As usual, in the adversary’s
answer, there is the natural restriction that the returnedsage/signature has not been obtained
from the signing oracle.
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Definition 8.1 (Unforgeability - EUF-CMA) Letr be a positive integer, 1&1S = (setup, skeygen -
vkeygen, sign, verify, confirm, deny, convert, verifyConverted) be a gradually convertible undeni-
able signature scheme withtime periods and letl be a PPTM. We consider the following random
experiment, wherg is a security parameter:

Experimentl*]xpfj”s“jfma (k)

Parameters < US.setup(k),
(pks, sks) id US.skeygen(Parameters)

(pkv, skv) Hid US.vkeygen(Parameters)
for j from 1 to = do
Aj < US.convert(Parameters, j, pks, sks, €)
(m*, u*,p*) + A® (Parameters, pks, pky, sky, {Aj}jen=p)
G : (m,p) — US.sign(Parameters, m, p, sks)
return 1if and only if the following properties are satisfied:
- US.verify[Parameters, m*, u*, p*, (sks, pks)] = {1}
- m was not queried t@®

We define theucces®f A via:
Succﬁ‘g:;ma(k) =Pr [Expﬁf&ma(l{) = 1} )

Given(t,q,) € N> ande € [0,1], A is called a(t,¢, ¢q,)-EUF-CMA adversary againsts fif,
running in timet and issuingg, signing queriesA hasSucc’f}gjma(ﬂ) > ¢. The schem#bS is said
to be(t, ¢, ¢;)-EUF-CMA secure if ndt, ¢, ¢;)-EUF-CMA adversary against it exists. Finally, we
consider an undeniable signature scheldfewith security parameter € N, US(k) is said to be
EUF-CMA secure if, for any polynomial functionsy, : N — N and any non-negligible function

e:N—=[0,1],itis (t(k),e(k), ¢gs(r))-EUF-CMA secure.

Remark 8.1. Note that the adversary in the above definition is not givenciinfirmation/denial
and selective conversion oracles. In fact, these oraclesiaeless for him as he has the universal
receipts{A;};cp .~ at his disposal.

Invisibility

We state the precise definition oivisibility under a chosen message attad¥\M-CMA) which
captures the notion that an attacker cannot distinguisiasiges based on their underlying mes-
sages. We consider dNV-CMA-adversaryA that runs in two stages. In thiand stage, it takes

as input a signing public keyks and outputs two different messageg andmj, and a time pe-

riod p* together with some state informatidn In theguess stage,A gets a challenge gradually
convertible undeniable signature formed by signing at random one of the challenge messages
for the time periogh* underpksg, and it must say which message was signed. In both stages, the
adversary has access to a signing or&tler pk,. The attacker is also given the universal receipts
of the signer for alitime periodp € [1, 7] \ {p*}. The only restriction o4 is thatp* should not
arise, as a time period, in any signature request.

1This is the main difference with time-selective convegibhdeniable signatures from [Laguillaumie & Vergnaud,
2005] where these universal receipts were given onlyfer[1, p* — 1].
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Definition 8.2 (Invisibility - INV-CMA) . Let 7 be a positive integer, 16lS = (setup, skeygen -
vkeygen, sign, control, confirm, deny, convert, verify) be a gradually convertible undeniable signa-
ture scheme withr time periods and letd be a PPTM. We consider the following random experi-

ment, forb € {0, 1}, wherek is a security parameter and <& {0,1}:

ExperimentExpyje 7 ° (k)

Parameters < US.Setup(k)

(pks, sks) Rid US.sKeyGen(Parameters),

(pkv, skv) il US.vkeygen(Parameters)
(m&,my,p*, 1) dogs (find, Parameters, pks(, pks)

| S : (m,p € [1,7] \ {p*}) — US.sign(Parameters, m, p, sks)
p* < US.sign(Parameters, m}, p*, sks)
for j from 1 to = do
Aj < US.convert(Parameters, j, pks, sks, €)
d + AS:(guess, T, {A;}je[1,]\ {p*})
Returnd

We define thadvantage&dv[j‘g;fma(n) of A via:

Pr [Exp'lj‘;;fma_b(n) = b} — % .
Given(t,q;) € N> ande € [0,1], A is called a(t, ¢, ¢;)-INV-CMA adversary against)S fif,
running in timet and issuingg, signing queries,A hasAdv‘l’jg;fma(n) > e. The schemé®S is
said to be(t, ¢, ¢;)-INV-CMA secure if ndt, €, ¢;)-INV-CMA adversary against it exists. Finally,
we consider an undeniable signature schéyBewith security parametet € N; US(k) is said to
be INV-CMA secure if, for any any polynomial functions;; : N — N, and any non-negligible
functione : N — [0, 1], itis (t(k), e(k), gs(k))-INV-CMA secure.

Remark 8.2. Note that the adversary in the above definition is not givenctbnfirmation/denial
and selective conversion oracles. In fact, these oraclesiaeless for him as he has the universal
receipts{A;};cp.-) \ {p*} at his disposal.

8.2 Hash functions and new security properties

Hash functions, as previously mentioned in this documakg messages of arbitrary length and
output a fixed length string. In cryptographic uses of a hasictfon?# : {0,1}* — H, these
properties are considered prerequisite:

e Preimage resistancgivenh € H, it should be computationally intractable to find a message
m such that(m) = h.

e Collision-resistant:it should be computationally intractable to find two diffierenessages
my andms such that{ (m,) = H(ms).

In this section, we formulate the generalization of theseisty notions and study their properties.
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8.2.1 Definitions

The security proof of our variant of Michels-Petersen-Hear's signatures makes use of new non-
standard variations of the preimage resistance and thisioallresistance assumptions for hash
functions. These assumptions are of independent intesebtey have interesting relations with
the classical ones. We call thermandom affine preimage resistanaadrandom linear collision
resistance Although stronger than the standard assumptions, theyuate realistic.

According to [Rogaway & Shrimpton, 2004], a hash functiomily is a family of functions
(Hy. : K x {0,1}* — {0, 1}¥)en, whereky, is a finite non-empty set. We will write the first ar-
gument oft, as a subscript, so thaéx ,(m) = H; (K, m). In the following, we denote elements
from {0, 1}* as the correspondingbits integers in binary representation and we will denote f

every integetN € Z, HY , the map defined by ¥ , : { {0 1; : ,iN (m) mod N

The new security definitions can be quantified as follows:

Definition 8.3 (Random affine preimage resistandegtn be an integer, letH;, : K, x{0,1}* —
{0,1}*)1en be a hash function family, and let be a PPTM. The succesmcc’;{‘fi’"e(")(k) of A
against then-random affine preimage resistance?f= (H;)xen is defined by:

K & Ky,
max Pr (mvivj)<_-'4(K>O"1'7---7an>ﬂlv'---7'677.) .
kIfEKk b mE{O,l}*,(z,j)E[[1,n]]2,27é]
2PN <2Y aiJrBjH%’k(m) =0 mod N

QY yeeny Qan GZ}‘V
B1,--Bn€LY

An adversaryA against then-random affine preimage resistance of a hash function family
(Hi)ren can be transformed easily into an adversary against theicggreimage resistance
of (H;)ren With success probability greater thSMchziTe(”)(k) /n? and time-complexity of4
increased by the time necessary to computaodular multiplications modul@v. In particular,
the 1-random affine preimage resistance is equivalent to theickgpreimage resistance.

Definition 8.4 (Random linear collision resistancé)etn be an integer, letH,, : 1, x{0,1}* —
{0,1}*)1en be a hash function family and let be a PPTM. The succe&;ccxﬁ’”(”)(k) of A
against then-random affine preimage resistanceff= (H,.)ren is defined by:

K < Ky (mym i, 5) = A(K, A1, An)
ax Pri m,m’ € {0,1}*,(5,5) € [1,n]? m # m’
2k—1<Nk<2k: Xi - Hi,n(m) =X - Hig, n(m') mod N
Ay An €L

As for random affine preimage resistance, thrandom linear collision resistance is equivalent
to the classical collision resistance. Unfortunately,th@ndom linear collision resistance cannot
be reduced generically to the collision resistanceifor 2.
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Remark 8.3. This security requirement is however reasonable sincedfhthsh function fam-
ily underlying the protocol RSA-FDH [Bellare & Rogaway, B)3oes not satisfy it, then it
is existential forgeable against @ane chosen-message attack: given an RSA public(Réy),

the adversary can simply pick at random ..., r, € Zy, compute); = r{ mod N for all

i € [1,n], and try to find a random linear collision with paramete¥s A, ..., \,. If a collision
m,m’ € {0,1}*, (4,7) € [1,n]? (such that\; - Hx n(m) = \; - Hx n(m') mod N)is found, then
the adversary queries the signaturen m to the signing oracle and can compute the signature of
m’ aso’ :ri-a~7‘j_1 mod N.

8.2.2 (Generic security

The best known general collision-finding attack against shifanction family is the so-called
birthday-attack. If we assume that the values of the hasbtion family (. ),en are uniformly
distributed over 0, 1}* and that the generalization of the birthday attemgainst the random affine
preimage resistance and the random linear collision ezsistof H. ) xcn iS the best possible attack
(which is true in the random oracle model), then it is possiblgive exponential lower bounds on
the minimum ofn and of the number of hash function evaluations required ve han-negligible
probability of success. Indeed, for any integér> 2, and for(i, k) € Zy, it is straightforward
[Stadje, 2002] that:

40 € Znli - j rem N < k} = ged(i, N) x QmJ +1) |

Therefore ifD denotes the product of two independent random variablésramly distributed
overZy, we havevk € Zy

Pr(D < k) — % NZ_lgcd(i, ) Q%J + 1) |

=0

and consequently) is close to the uniform distribution oveéty. The results from [Bellare &
Kohno, 2004] are sufficient to conclude.

2These attacks consist in picking messagas ..., m,, computingh; = Hj,(m;) mod N fori € [1,r] and
vi; = —hi8; mod N (resp.~; ; = h;\; mod N)forj € [1,n]. They are successful if there is a trigle j, ¢) €
[1,7] x [1,n]? (resp.a 4-tuple(i, i, j,5") € [1,7]* x [1,n]?) s. t.7;; = o (resp.vy;,; = vir;» andj # 5').
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8.3 Michels-Petersen-Horster’'s convertible undeniableigna-
tures revisited

8.3.1 Description of the scheme

Let 7 be an integer. We describe in this section our variant of kEl&tiPetersen-Horster’'s scheme.
It is parameterized by a prime order group generator [Be#aal., 2001], a hash function family,
and two pseudo-random function families [Rogaway & Shrionp2004].

Let G be a group of prime ordey. A reduction functions a map that sends an element of
the groupG [Brown, 2005; Sterret al,, 2002] to an integer iZ,. In our security analysis, the
reduction function must satisfy the so calle@ldhost-invertibility given an arbitrary integer i,
then, with non-negligible probability, one can efficienfilyd one preimage.

Definition 8.5. Let I’ be a reduction functiod” : G — Z,. An almost-inverse of' is a proba-
bilistic algorithm G, possibly outputting., such that:

Er [G(b) € G A F(G(b)) =b] >
b7,

Wl =

A reduction function¥” is (0, t)-almost-invertible with almost-invers@ if furthermore no distin-
guisher, running in time, betweerD = {G(b) | b & ZyNG(b) € GandU ={a|a & G} can
get an advantage greater than

The schemeUS

Setup (US.setup): on input a security parameteyoutput a grougd- of prime ordek; generated by
an elemenf, a reduction functiorf’ : G — Z,, a hash functiort : {0, 1}* — Z,, and two
pseudo-random functiorf$' : Z, x [1, 7] — {0,1}*andH?: {0,1}* x {0,1}* x G — Z,.
The public parameters ate, G, P, h, H', H?).

Signer key generation (JS.skeygen): the signer picks at random its secret key & [1,q—1],
computed/ + uP andV <+ vP, and setgU, V) as its public key.

Verifier key generation (US.vkeygen): the verifier picks at random its secret I@yﬁ [1,q—1],
computedV «+ wP, and sets it as its public key.

Signature (US.sign): on message: and periody, the signer does the following:

o r & [1,g —1], R < rP.
o ¢, Hj(p),d + HZ (m,R), T < dP.If F(T) =0, it tries with another value.
e s« (F(T)-d-h(m)-v—u-F(R)—1)r"! mod g.
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The signature is the tuple?, 7, s).

Verification (US.verify): to check the validity of a signatur&?, 7', s), the signer checks, using
his private key, that:

(v- F(T) - h(m))T = F(R)U + sR + P. (8.1)

Confirmation/Denial protocols (US.{confirm, deny}): the signer provides a designated verifier
proof of the equality/inequality of two discrete logaritapmamely?’ (R)U + sR + P to the
base(F'(T).h(m))T andV to the base” (see Section 8.3.2).

Selective conversion{S.convert): there exist two types of conversions, namely:

e The gradual conversion of signatures corresponding tareperiodp could be done
by releasing the value,.

e The individual conversion can be achieved by releasing dheavofd.

Selective verification erifyConverted): the signature corresponding to the perig@ncee, or
d is revealed, could be checked by any verifier using the egusit{d - F/(T) - h(m))V =
F(R)U + sR+ P andT = dP.

8.3.2 Proofs of equality/inequality of discrete logarithns

Let G be a group with prime order. To confirm or deny that a bit string is a signature in our
undeniable signature scheme, it is necessary to prove tia¢a quadruplél,, Vi, Us, V) € G*

is a Diffie-Hellman quadruple (or not).e. belongs to the se&EDL(G) = {(z, Uy, Vi, Us, V3) €

2} x G*,x = DLy, (V1) = DLy, (V2)} (or to the setDL(G) = G* \ EDL(G)). In our casey, Uy,

Uy, Vi, V correspond tal, P, F(T') - h(m)V, T, andF(R)U + sR + P respectively.

To faceblackmailingor mafia attacks against our undeniable signatures, we use interact
designated verifier proofs, as introduced in [Jakobstal., 1996] by Jakobsson, Sako, and Im-
pagliazzo, in Chaum'’s proofs of equalitgf( Fig. 8.1) and inequalitycf. Fig. 8.2) of discrete
logarithm of [Camenisch & Shoup, 2003]. The idea is to repldi® generic commitment scheme
by atrapdoor commitmenitlakobssoret al., 1996] and using classical techniques, the proofs are
readily seen to be complete, sound, and above all non-gwaigé. The protocols involve a point
Y = yU;, wherey is the secret key of the verifier, and the prover must be caedrihaty” is
well-formed (in the registered public key model, the ragibn procedure is used to force the
users to know the secret-key corresponding to their pulelyg.k
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Protocol EDL.Prove

Common input(Uy, Us, Vi, Va), Y

P’s input: =

V’s output:§

0P C1,05,C3 v
(a,b,k) <= [1,q — 1J°

C1 «— kU ;Cg — kU,

C3 < aU; +bY

oy " P
r& [1,9—1]

0op a,b,c Y

c+k—z(r+b) modgq

e V’s execution ending

Cy < cUy + (r+ bV

Co  cUs + (r+b)Va

Cs < alh +bY

if (Cy,Cs,C3) = (Cy,Ca,C3)
then ¢ < Acceptelsed <+ |

Protocol EDL.Fake

Common input(Us, U, Vi, Va), Y
P’sinput: y
V’s output:§

0p C1,C,C3

(cd, k) < [1,q— 1]
C1 < cU; +dVy ; Cy < cUsy + dVs
03 — kUl

1%

r

gy P
r& [1,9 —1]
0P a,b,c Y

b<d—r modgq;a+ k—>by modq

e )’s execution ending

Cy + cUy + (r+b)W

Co  cUs + (r+b)Va

Cs « aly +bY -

if (C1,Cy,C3) = (Cy,Ca,Cs)
then d < Acceptelsed + L

Figure 8.1: Interactive designated verifier proof of mershgr of the languagéDL (G)
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Protocol IDL.Prove

Common input(Uy, Uz, V1, V), Y
P’sinput: x
V's output :§

Protocol IDL.Fake

0p Co,C1,C5,C3 Vv

(a,b, ko, k1, ka) <= [1,q — 1]°
CO — ko(‘/g — {LUQ)
C1 + kU — ki
CQ — k‘lUQ — ]CQVQ

C3 < aU; +bY
r

avy P
& 1,q-1]
0P a,b,c,d Vv

¢ k1 —zko(r +b) mod ¢
d < ko —ko(r+0) modgq

e V's execution ending

Cy < cUy —dVi

Cy 4 Co +cUs — (r +b)Va

Cy < alh +bY

if (Cl, Cs, 03) = (01, Cs, 03) A Ch 7& @@2

Common input(U;, Uz, V1, V5), Y
P’s input: y
V’s output:§

0P Co,C1,C,C5

(Ca da kl;kQ) & [[17q - 1]]4
Co & G\ {0g}; Cy « cUy —dWi
Cy <« Cy+cUy — k1 Vs

1%

Cg%k‘QUl

oy r P
R

r<«[1,q—1]

0p a,b,c,d v

b« ki —r modgqg;a<+ b—keoy modgq

e V's execution ending

Cy Uy —dVy

Cs — Co+cUy— (r+b)Vs

6’; — alUy + ybY

if (C1,Ca,C3) = (Cy,Cs,C5) A Co # Og,
then § « Accept elsed + L

then ¢ < Acceptelsed <+ |

Figure 8.2: Interactive designated verifier proof of mershgr to the languagdL(G)

8.4 Security analysis

We first note that the property of non-transferability isfifldd by our scheme as a direct conse-
guence of the use of designated-verifier proofs in the cofdieny protocols. Further, we state that
our scheme resists existential forgeries and that sigesiane invisible. Both security reductions
stand in the generic group model [Shoup, 1997].

8.4.1 The generic group model

As mentioned in Subsection 1.3.4, a generic group inferpitbgence of “encodings” of the group
elements instead of explicit formulas. More specificaliyeg an additive grougs with prime
orderq and non-identity elemen®, one can define a map: Z, — S C {0,1}* such that the
bit-stringo (i), i € Z,, represents the group element

A generic algorithmA will then consult the grougis's oracle for queries of typé_f, @),
where 7 refers to the set of considered group elements given by éneindings (i), i € 7 (A
does not know necessarily this), whereasa’ denotes the set of exponents. The oracle will re-
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spond to such a query with a randomly selected bit-stringeggmting the encoding of the element

(Lgyem ie (@) P . _ . N
We can give an interpretation of the oracle’s behavior @igarsuch a type of queries using
polynomials oveff,. In fact, letL = [z, 21, 22, 23, . - ., 2,43) D€ the sequence of queries’ answers

wheren denotes the total number of queries to the group oracle. Wensnterpretation similar
to that in [Sterret al, 2002]; the oracle will maintain, in addition to the outplist £, a further
list of polynomialsF;(X,Y') overF,, which we denote by-. The lists are updated as follows:

e PolynomialsFy, F1, F», F3 are settdFy = 0, F; = 1, F, = X andF3 = Y which correspond
to the neutral elemeridg, the generatoP, and the public key# andV respectively. The
corresponding bit-strings arg, z1, 22, 23 respectively.

o At the (-th query(7, @), the polynomialf; is defined a$ %l @, F= . If F, is already
listed asF}, thenF, is markedand the corresponding answerfp is returned. Otherwise,
2z, 1S selected at random fros), recorded together with its corresponding polynoniiain
L and.F respectively and then returned.to

It is easy to see that the simulation driven by this integdren is similar to that of the regular
algorithm provided that all answers corresponding to tive pelynomials are distinct and that no
non-zero polynomial; — F};, where: andj range then + 4 polynomials indices iF, vanishes
at(X,Y) = (u,v). In these conditions, we call the sequence of encodihgsafe sequence. We
measure the probability of such a sequence using the folpleimmas [Steret al, 2002]:

Lemma 8.1(Schwartz-Zippel) Let P be a non-zero affine bivariate polynomiallig[.X, Y], then:

Pr [P(z,y) =0] <1/q.

z,ycly
0]
Lemma 8.2. If n? < ¢ then the probability of unsafe sequences is upper-boungéd b 4)?/q.

Proof. The proof is similar to [Steret al., 2002], however, we exhibit it since our generic model
is slightly different.

We first note that the probability that the sequence of emgsif is constituted by distinct bit-
strings z;’s (corresponding to new queried polynomidlg is exactly]"[?:f’(l — é’). Thus the
probability that thez;’s are not all distinct is:

n+3 . n+3 .

i=1 q i—1 4 2q

Now, once the listC is set, we use Lemma 8.1 to bound the probability that, ambegjueried
polynomialsF;, there exist non-identical polynomials and F; evaluating to the same value at
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the point(u, v), or equivalently, there exists a non-zero polynonfigl- £; vanishing at(u, v).

. 4 . . L
Since there are at mo{tn;L ) possible polynomials, such a probability is upper-bounbid

("3 ") /a= e+ a2

Summing up the two probabilities, we get the announced tiesul O

Remark 8.4. All the polynomialg:, are affine bivariate, i.e. of the formX + bY + c. Moreover,
in case one of the private keyisor v is revealed, for instance in the universal conversion, the
polynomialsF; in play become affine univariate (of the forX’ + b where the indeterminat&
refers to the public key).

Finally, a security proof in this model assures the absehaa adversary who behaves generi-
cally with respect to the given group. However, a securitopin the generic model does not rule
out the existence of a successful adversary for a specifigodioent, 2002; Steret al., 2002].

8.4.2 Resistance to forgery

The theorem below states that our variant of Michels-Petekorster's scheme BUF-CMA-
secure in the generic group model assuming the preimageaese, the random affine preimage
resistance and the random linear collision resistancesofitidlerlying hash function family.

Theorem 8.3. Let A be anEUF-CMA-adversary in the generic group model, operating in time
t, after n group queries andn signing queries, such that < n? andn > 1, with success
probability Succhs ™.

There exist adversaridgs, C, andD operating in time’ against the:-random affine preimage
resistance, the-random linear collision resistance, and the preimagesesice of the underlying
hash function (respectively) such that:

t' <t+bnrglnn+m(rg + 7 + 5lnn(rg + Ty2) + 7F)

and

euf-cma

Succ
5- Such?lI;Te(n) + Succﬂ?on(n) +6- nQSuccirg(n) > 755’“4

—12n*/q — 6mn*6q — 12mn®/q
wherej is the advantage of an adversary playing a distinguishepandr, 77, 741, 752 and
7, are the running times fof, ', H!, H?, andh respectively.

The EUF-CMA-adversaryA will output a valid signature* = (R*, T*, s*) on a message:*
for the time periog* with success probabilitSuccﬁ‘j{jma. In our security analysis, this event is
divided into sub-events according to wheth&r or 7 were created during the simulation by a

signature query or by a group query.
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In the lists used to maintain the group oracle, a group el¢mreated during a group query
will have a “group” tag, while the tagssignR” and “signT” will correspond to elements created in
a signature query. In fact, a signature query on a messdgethe time periogh will be answered
by a triple(R, T, s), whereR, T € G, hence the need to specify whether the element was created
asanRkoraTl.

Remark 8.5. The procedure that adds a new elemerib the list will be denote&ecor d(z|| Fy||t;),
whereF, andt, are the corresponding polynomial and tag respectively.

The different forgeries output byt will be classified as follows:
e Type O: Tag(R*) = group, Tag(T™*) = group,

e Type 1: Tag(R*) = group, Tag(T™

(
(

= group, Tag(T

signR,

*

o Type 2: Tag

signT,

o Type 3: Tag(R*) = signR, Tag(T™) = group,

e Type 5: Tag

e Type 6: Tag

)
(R*) = )
(R) )
(R) ) =
o Type 4: Tag(R*) = signR, Tag(T*) = signR,
(R) ) =
(R*) = signT, Tag(T™) =
(R¥) ) =

(

(
R*) = signR, Tag(T*

(

(

o Type 7: Tag(R*) = signT, Tag(T™) = signR,

e Type 8: Tag(R*) = signT, Tag(T™) = signT.

We denote, the probability that the forgery* = (R*, T*, s*) output by.A is of typeType 6 (for
0 €{0,...,8}). We have:

E €p = Succﬁf’jma

The adversarie$s, C, andD agalnst then-random affine preimage resistance, theandom
linear collision resistance, and the preimage resistafiteainderlying hash function respectively
will simulate the group and signing oracles according toaheged kind of forgery returned by
A. More precisely, adversag/will use the forgery to find a random linear collision if it iftype
Type 5, D will exploit a forgery of typeType 0to break the preimage resistance and finally, the
adversary3 will utilize all the remaining cases to find a random affineiprege.

Finally, in our unforgeability proof, we assume tHatC andD have revealed the private key
(universal conversion) so thatis able to check the validity of the answers to his signatuerigs.
It follows that the confirmation/denial oracles are usefes$iim. Also, the adversaries, C, and
D will manipulate affine univariate polynomials during thegp oracle simulation, i.e. they will
receive queries of typg:, b) corresponding to the polynomialX + b.
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Remark 8.6. The reductiornR (anyone of the adversariés C or D) will force A to return a tuple
(R*,T*, s*) such thatR* = Og when the forgery is ofype 4and F/(T*) = 0 when it is ofType 8
Therefore, the reduction must guess correctly when theefgng of the given type, then simulate
the group and signing oracles accordingly. In these cashs, ddversaryA will fail to return a
valid forgery, thus, = eg = 0, granted that the reduction doesn’t abort, i.e. provideseaf@ct
simulation of the group/signing oracles. We will denote ph&bability that the reduction fails in
the above cases Wt[R aborts|. Theses latter quantities will be deduced from the ovetaitsss
of R according to the following elementary lemma:

Pr[A A =B] > Pr[A|-B| — Pr[B]

Proof. Let (R*,T™, s*) be the forgery output byl on the message* for the time periog*. Due
to the similarities in the reduction’s behavior, we will détonly the case where the forgery is of
typeType 2 and give a sketch of the other cases.

Description of B. B picks uniformly at random an integére {0, 1,2,3,4,5,6,7,8} which is

his guess for the type of the forgery output Ay In the following simulation, we suppose thdt

returns a forgery of typ&ype 2 and that) = 2 (B has correctly guessed the forgery’s type).
The forgery produced by satisfies the following equatién

a—0b-F(R*) = (ad —bc)-v-F(T*)-h(m),

whereR* = aU + bP andT* = cU + dP. SinceT* was generated during a signature query as a
“T" (Tag(T) = signT ), we have: = 0 (the verification of the signature involves the verificatain
equation 8.1 and df = dP). Hence, the equation turns out tobeb- F'(R) = a-d-v-F(T')-h(m)

or
b

1——-F(R)=d-v-F(T)-h(m).
a
Thus, in order to find a random affine preimafanust plug the values andg in answers to the
group and to the signature queries (respectively). Moreipeg/, he must answer group queries
(a,b) by Rsuchthatl — - F(R) = «. Similarly, signature queries must be answered®yT’, s),

suchthat-d-v- F(T) = 5:

Game 0. We consider areUF-CMA-adversaryA in the generic group model. In any game
Game i, we denoteS; the event {R*, T, s*) is a valid forgery of typelype 2andf = 2”.
By definition, we havé’r[Sy| = £5/9.

3this follows from the verification equation 8.1.
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Game 1.We use the interpretation described above for the genamewhich considers a safe
sequence&. This game differs from the previous one only on unsafe secgsge Using the
Lemma 8.2 we get:

| Pr$1] — Pr[So]| < (n+4)%/q.

Game 2.In this game we modify the simulation of the group oracle. @erg(a;, b;) such that
the corresponding polynomial (X) = a; X + b; is new,3 does the following:

o ctr + 0%

Repeat
Pi ck the nextw; in the instance of the random affine preimage problem rafre(
Conput e 7; < (1 — ay)a;b; *;
Conput e R; « G(r;) ;
ctr < ctr + 1;
Until (R; # Fail) U (ctr = 51nn);

Pick R, & S;
Ret urn R;;

The eventS; differs from the previous one ik; remains undefined. Since the experiments
are mutually independent(andb; are uniformly distributed), we may use a lemma from
elementary probability theory [Stewt al., 2002, Lemma 5] to bound the corresponding
probability by1/n%. The overall probability whenranges the set of queries indices is then
1/n. Hence, we have:

Pr[Ss] > (1 — 1/n) Pr[S,].

Game 3. In this simulation, the group oracle replacBs from the previous game by;. It
executes Recor d(R;||a; X + b;||group) and returns the new value &f; as a response to
the oracle query. Since the inputs@bare uniformly distributedd; is picked at random),
we can use: times the almost-invertibility of” (the so-callechybrid techniqugto bound
the probability ofSs:

| Pr[S3] — Pr[Ss]| < ndg.

Game 4.In this game 3 simulates the signing oracle. On quéry,, p,) it does the following:
e Conmputee, + H(pj);
e Pick R; & 5;
° COITpUt e dj — pr(mj,Rj);

e ctr + O;

“4In the remaining of the chaptettr denotes a counter ranging frahto 5 In n.
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Repeat
Pi ck the nexts; in the instance of raPrej;
Conput e t; « —d; v ;;
ctr < ctr + 1;

Until (G(t;) # Fail) U (ctr = 51nn);

T; < G(t;);

Pi ck a; & Ly,

Conput e s; < —F(R;) - a;
Return (R;, T}, s;);

This game differs from the previous onedf(t;) remains undefined, which occurs with
probability less thatn/n?, or if T} is distinguished from a uniformly random string

in which case the probability is upper-boundedrhy; (using the same hybrid technique).
Thus:

Pr[Sy] > (1 —m/n?) Pr[Ss] — mdg.

Game 5. In this game B adds the elemenrt to the list, maintained by the group oracle, using
the commandrecor d(7;||d;||signT). This game differs from the previous one if leads to
inconsistencies in the simulation of the group oracle, ngmien d; (as a polynomial)
collides with another polynomial itF. SinceR; was drawn uniformly at random froi,
andd; is value ongp at(m;, R;), the probability of having such a collision is upper-bouthde
by n/q:

| Pr[S5] — Pr[Sy]| < mn/q.

Game 6. In this gameB computes; <+ a;(5;h(m;) — 1)F(R;)~! and addsR;, together with
its corresponding polynomidl; (X) = a; X + b; to the lists maintained by the group oracle
by executing the commariRRecor d(R;||a; X + b;||signR). Again, due to the randomness of
a;, the difference between the previous game is:

| Pr[Sg] — Pr[Ss]| < mn/q.

Game 7.In this game 3 exploits the forgery R*, 7™, s*) returned byA. We have supposed that
Tag(R*,T*) = (group, signT) andB generated the correét thus, there exist j such that
R* = R;,T* =Tjandl — £ F(R;) = o; and—d; - v - F'(T;) = B;. The equation satisfied
by the forgery turns out to be; + 5;.(m) = 0. B would then find a random affine preimage
with success probability:

raPre

Succ), ) > (1—m/n?)(1 —1/n)(e2/9 — (n+4)%/q) — (n — m/n 4+ m)dg — 2mn/q
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Procedure:

0 In signature queries (mj,p;):  createR; such thab; = 0.

[ Reject the forgery sinc&* = Qg (see 8.3.1)

Procedure:

0 Reject the forgery sinc&'(T;) = 0 (see 8.3.1)

Group queries (a;, b;): Doasin8.4.1.

Group queries (a;, b;): Doasin8.4.1.

Signature queries(m, p;):

e Conput e e, + Hl(p;) e ctr + 0
e Repeat :
pick R; <& 5
conput e d; + HZ (mj, R;)
conput e t; « d; ' h(m;) !
ctr < ctr + 1
Until (G(tj) #L1) U (ctr =51nn)
o Picka; <& 7,
eRecor d(R;j||la; X |signR) eRecor d(T||d;||signT)
e Conpute s; < F(Rj)aj_1 mod ¢
e Return (R]',Tj,S]')

Signature queries(m, p;):

ePick R; <% 5

e Conput e e, + Hl(p;)

e Conmput e d]' — ng (m]-, R]')

ectr <0

e Repeat: picka;j,b; £ Zq
conpute t; « (a; —b; - F(R;))a; 'd; 'v= h(m;)~!
ctr <—ctr +1

Until (G(tj) #L1) U (ctr =51nn)

eRecor d(R;lla; X + bj|signR)

eRecor d(T}||d;||signT)

e Conpute s; < F(Rj)a]._1 mod ¢

eReturn (1‘2‘7',7}'7 Sj)

Final output:

aj = biF(R}) = (a;b5 — afb)) F(RS) - v - h(m*).
ora} = bl = 0thusR} = Og. The forgery is then rejected.

Final output:

—d;F(T;) = 0thusF(T;) = 0, so reject the forgery.

Advantage and time €’ and t’) of B:

Pr[R aborts] < n?/q + mdg + 2mn/q
and
ty <t+n+m(ry +5lnn(rg + 72) + 7 + TF)

Advantage and time ofB:

Pr[R aborts] < n?/q + mdg + 2mn/q
and
ts <t+n+m(ryr + 72 + 7 + 57¢ Inn + 7F)

(a) Type 4: Tag(R*,T*) = (signR, signR)

or

raPre(n

(b) Type 8: Tag(R*,T*) = (signT,signT)

Succy, ) > €2/9 —n?/q — (n +m)dg — 2mn/q

and time

to <t+bdnlnn+m(rm + 752 + b1 Inn + 7, + 78).

We refer to Appendix for the treatment of forgeries offgpe 1, 3, 4, 6, 7, 8We provide in Figures
8.3(a), 8.3(b),8.3(c),8.3(d),8.3(e), and 8.3(f) the adraof B when processing the forgeries of
Type 4, 8, 1, 3, 6, fesp. We will consider that to the group quéry, b;), B will respond with
R;, and to the signature query 0m;, p;), he will answerR;, T}, s;), whereR; = a;U + b; and

Tj :CjU+dj.

Description of C.  C will provide a simulation which exploits a forge§Rr*, 7*, s*) of the type

Type 5. HenceC will simulate the group oracle in the standard way describe®i4.1. Further-
more, it will plug the);’s (instance of the random linear collision problem) in asssto signature
queries such that the returned signatiRe, 7}, s;) satisfiesd; - v - F'(T;) = A;. In this way, the

returned forgery R*, T*, s*) = (R;, T}, s*) will satisfy the following:

5In the proofs that follow, we consider that < n? andn > 1, in order to simplify the expressions.



Procedure:

O In group queries (a;, b;):
epluga; in §i — F(R;).

O In signature qheries (my,pj):
e createR; such thab; = 0,
e plugB;ina; -v- F(R;).

Procedure:

O In group queries (a;, b;):
e plug i—J in —b; - v- F(Ry).
OlIn signatﬁre queries (m;j, p;):
e createR; such thab; = 0.

Group queries (a;, b;):

ectr < 0

e Repeat
pi ck the nextw; in theraPre(n) instance
conput e r; + (3 — ;)
ctr<—ctr+1 '

Until (G(r;) # Fail) U (ctr = 51nn)

e Recor d(R; = G(r;)||a; X + b;||group)

e Ret ur n(R;)

Group queries (a;, b;):

ectr <0
e Repeat
pi ck the next &;, ;) in theraPre(n) instance
conputer; « —b; "1 .v~1. i—J
ctr <~ ctr+1 '
Until (G(r;) # Fail) U (ctr = 51nn)
e Recor d(R; = G(r;)||ai X + b;||group)
e Ret ur n(R;)

Signature queries(m, p;):

e Conput e e, + H}(p;)
ectr < 0
e Repeat
pick R; <& 3
conpute d; « H2 (m;, R;)
conput e t; <+ a1 1. h(m)~1
e ctr¢ctr41
Until (G(tj) # Fail) U (ctr = 51nn)
e Recor d(T; = G(t;)||d;||signT)
o Pi ck the nextg; in theraPre(n) instance
e Conput e aj ﬁj L. F(Rj)71
e Recor d(Rj||a; X ||signR)
o Conpute s; < —F(R;) - a; '
e Ret ur n(Rj,Tj, S]')

Signature queries(m;, p;):

e Conput e e, + Hl(p;)
ectr < 0
e Repeat
pick R; &£ 5
conpute d; «+ H2 (m;, R;)
conputet; +d~1.v=t. h(m)~?
ctr «—ctr+1
Until (G(tj) # Fail) U (ctr = 51nn)
e Recor d(T; = G(t;)||d;]|signT)
ePicka; <& 3
e Recor d(Rj||a; X ||signR)
e Conput e s; « —F(R;)-a; "
e Ret ur n(Rj,T]-, Sj)

Final output:

a; — biF(R;) = —ajb; -v- F(Rj) - h(m)
or
Q; = Z—LL — F(Rl)
= —aj-v-F(Rj)-h(m*)

= —Bjh(m*)

Final output:

aj; = a]-bi ‘U F(Rl) . h(m*)
or
= 5 h(m)

Advantage and time ofB:

Such‘?BPTe(n) >e1/9—n?/q — (m +n)dg — 2mn/q. and
t1 <bnlnn+m(ryr + 7 +5Inn(ry2 +7¢) + 7F).

Advantage and time ofB:

Succ;‘?;;m(") >e3/9—n?/q— (m+n)dg — 2mn/q
and
t3 <74 5ntglnn+ m(rg +5nn(rg + 72) + T + TR).

(c) Type 1: Tag(R*,T*) = (group, signR)

(d) Type 3: Tag(R*,T*) = (signR, group)

The second equation follows froin— %F(RZ-) =d,; -v- F(T;) - h(m;) corresponding to the



Procedure: Procedure:

0 In group queries (a;, b;): 0 In signature queries (m;, p;):
eplug—p;ina; - F(R;) - v. o plug o in F(T}),

0 In signature queries (m;, p;): o plug —g; ina; F(R;)v.
o plug o in F(T}). Group queries (a;, b;): Doasin8.4.1.

Group queries (a;, b;):

Signature queries(m;, p;):

ectr < 0
e Repeat o Conput e e, + Hy(p))
pi ck the nexts; in theraPre(n) instance o Pi ck R; g
conput e r; « —fia; 'v~! o Conpute d; « H2 (mj, R;)
ctr <—ctr +1 ectr « 0
Until (G(r;) # Fail) U (ctr = 51nn) o Repeat
e Recor d(R; = G(r;)||a; X + b;||group) pi ck the nexta; in the RaPre(n) instance
e Ret ur n(f) conput e Tj + G(a;)
Signature queries(m, p;): ctr < ctr + 1
Until (G(ay) # Fail) U (ctr =51nn
o Conput e ep < Hy(p;) . Recor(d((T;): G(aj))nd(j llsignT) :
ectr+ 0 o Pi ck the next3; in the RaPre(n) instance.
ePick R; <& S e Conput e a; + —B; - v- F(R)™
e conput e d;  HZ (mj, R;) e Conput e b; + a; F(R;)" (1 +d; -v- F(T;) - h(m;))
e Repeat e Recor d(RjHan + bj ||signR)
pi ck the nexta; in the RaPre(n) instance e Comput e s; < —F(R;) -aj’l
conput e T + G(o;) e Ret urn(R;, T}, s;)
ctr <— ctr + 1 Final output:
Until (G(ay) # Fail) U (ctr = 51nn)
e Recor d(Tj = G(aj)||dj HSignT) —d]'F(T]') = —djai CU F(Rl) . h(m*)
o Pick aj < Z, or N
e Conpute b; « a; F(R,) ™' (1 +d; -v - F(T}) - h(m,)) FIy) = ai-v- PR h(m?)
e Recor d(R;|ja; X + b;[|signR) o = —Bi - h(m*)

o Conpute s; « —F(R;) - a;1 Advantage and time ofB:

e Ret ur n(Rj,Tj, S]')
Final output:

Succ;‘?gre(") > e7/9 —n?/q — még — 2mn/q
and
—d;jF(T;) = —dja; -v- F(R;) - h(m*) t7 <T4+n+m(rg + 72 + 7, +57¢Inn 4+ 7R)
or
F(T]) = a; vF(Rl)h(m*)
o = =Bi-h(m")
Advantage and time ofB:

Such‘?BF’m(n) > €6/9 —n%/q— (m+n)dg — 2mn/q
and
te <17+ 51gInn+ m(ty1 + 72 + 7 + 7F + 57¢ Inn)

(e) Type 6: Tag(R*,T™*) = (signT, group) (f) Type 7: Tag(R*,T™*) = (signT, signR)

equality fulfilled by the signatureR;, T;, s;) on the querym;, p;). It is worth noting thatn; # m*
since the attackeA is not allowed to return a forgery on a message he has prdyiqusried.
More precisely, on the signature quéry;, p,), C does the following:

e Conput e e, = H(p;);
e Pick R; & 5;
° COfert e dj = ng(mj, R]),
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o ctr < 0;

e Repeat
pi ck the next)\; in the instance of the random linear collision problem riGot
conputet; « X;-d;' vl
ctr < ctr + 1;
Until (G(t;) # Fail) U (ctr = 51nn);

o Conput e o; = (1 — Ajh(my))F(R;)™,

e Pick a; R Ly,

e Conput e b; = a; - aj;

e Conmputes; = (d;-v-h(my) - F(T;) —1)-b;";
e Record (R;||a;X + b;||signR) ;

e Record (7}||d,||signT) ;

e Return (R;,T},s;);

It is easy to conclude that this simulation, together withdhbove forgery returned by the attacker
will lead C to a random linear collision in timg:

ts <t+n+m(rg + 712 + 7 + TF + 57 Inn)

with success probability

Such{gOll(”) > €5/9 —n?/q — még — 2mn/q

Description of D. D exploits a forgery R*, T*, s*) whereTag(R*,T*) = (group, group) (i.e. a
Type Oforgery) to find a preimage of a certain value, sayl he equation satisfied by the forgery
is:

To simulate the group oracl® selects in advancej €x [1,n]. If i < j, then on the-th query
(a;,b;), D will select R; €r S and record it usindRecor d(R;||a; X + b;||group). On thej—th
query (a;,b;), comput e R; + Gl(a - (a; — b;F(R;))(a;b; — a;b;)~'v~1). With probability at
leastl/n?, D would have chosen the correcy and the success of havirig #.1 is at leastl /3
(almost invertibility of 7 and randomness af). If ® j < 4, D will proceed in a similar manner.
The remaining querieGu, b,), ¢ # i, j, will be answered exactly as in 8.4.1.

To answer the signature queries;, p;), D does the following:

8In casei = j, we will havea; — b;F(R;) = 0, from whichD won’t learn anything. In order to prevent such a
caseD must insure that'(R;) # 3+ for the i-th query(a;, b;), which is satisfied with probability at least- 1/q.
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e Conputee, «+ Hl(p;);

e Pick R;,T; & ;

o Conput e d; < H? (m;, R;);

e Conpute a; = F(R;) (1 —d;-v-F(T})-h(m;));
e Picka; & 7y,

e Conput e b; = a;oy;

e Conput e s; < (d;-v-t;-h(m;) —1)b;";
e Recor d(R;||a; X + b;|signR);

e Recor d(T}||d,|signT);

e Return (R;,T},s;);

e Comput e ¢, + H}(p;);

e Pick R, & 5;

o Conput e d; < H? (m;, R;);

o ctr + 0;

e Repeat
pick a;, b; & Ly ,
computel; < (a; — b; - F(R;))a; 'd; v h(m;) ™,
ctr «+ ctr + 1;

Until (G(t;) #L1) U (ctr =51nn);

° CoerUt e Sj (d] -V - tj . h(m]) — 1)b;1,

e Recor d(R;||a; X + b;||signR);

e Record(Z; = G(t;)||d;||signT);

e Return (R;,Tj,s;);

We have:
Pre(n) €0

Succ), 7 > ke 2n?/q — még — 2mn/q.

and
to <t+n+m(rg + T2 + 7 + 7 + 576 Inn).
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8.4.3 Invisibility

Theorem 8.4.Let A be anINV-CMA-adversary operating in timg aftern group queries anan
signing queries, with advantage= Succjs %", such that, >> 2.
There exists an adversaBy operating in timg’ and attempting to break the pseudo-randomness

property of !, afterm queries (toH!), with success probabili@uccg”fg such that:

t/§t+n+m(7'H2 + 7 + 27F)

and .
Inv-cma 2
Succrf | > DUCCUsAT M
o1 2 2q

wherery, 752 andr, are the running time fof”, H? andh respectively.

Proof. Let B be the adversary attempting to break the pseudo-randorofigss using anINV-
CMA-adversary4 against the above undeniable signaturéeperates as previously in the generic
group model, and the polynomials manipulated by3 are also affine univariate, i.e. of the form
aX +b, however the indeterminate refers to the public keyn fact,5 does not know (otherwise
his task would be easy), but is allowed to choose the priveye k

Let m§, m;, andp* be the challenge messages and the challenge time period Bspll
forward p* to his own challenger as a challenge seed and will receivaray st which is either
the result of applyingZ! to p* or a uniformly chosen random string from the correspondpags.
B will then form the challenge signatuge” = (R*,7*,s*), usinge*, on the message:; for
b L& {0,1}. If e = H}(p*), thenu* is valid signature om:}, otherwise it is an invalid signature
on bothmg andmj. Thus, the answer ofl will suffice B to conclude.

More precisely5 will proceed as follows:

Game 0.Letmf, m} andp* be the challenge messages and the challenge time period3esib
form an undeniable signatuye, following the standard signing algorithm, et for some

b& {0, 1}. We denote by, be the eventA returns the bib” and we use a similar notation
S; in anyGames. By definition, we havé’r[Sy] = € + 3.

Game 1. B uses the interpretation described above which consideafeassquence in order to
simulate the group oracle. We get:

| Pr[S1] = Pr[Sol| < (n+4)*/q
Game 2.In this game 3 simulates the signing oracle. Let, p) be the signing query where

denotes the message to be signed;aadp* denotes the time period. A signatum, 7', s)
onm for the time periog should satisfy:

(d- F(T) - h(m))V = F(R)U + sR+ P
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whereT' = dP andd = H? (m, R) ande, = H,(p).
Thus if we writeR = aV + bP, we get:

d-F(T)-h(m) = s-a,
0 = uF(R)+s-b+1.

Thus,(R, T, s) should satisfy:

ab ' (uF(R)+ 1) = —d - F(T) - h(m).

As a consequencé, will do the following:
e request his challenger fe, = H!(p),
e pick R, T & Sand computel = ng(m, R),

o pickb & 2y and compute, = —b-d- F(T) - h(m) - (uF(R) + 1),
e executeRecor d(7||d||signT) andRecor d(R|jaX + b||signR).

The difference between the previous game is when the inttamuof R and7" along with
their polynomials leads to inconsistencies in simulathmgdgroup oracle, i.e. collisions with
polynomials inF. The probability that these collisions occur is upper-trdby2n/q,
thus:

| Pr[Sy] — Pr[Si]| < 2mn/q

Game 3.In this game5 simulates the challenge signature generation; he proeeedsly as in
Game 2 The difference is when the creat&d and7™ (elements of the challenge signature)
lead to inconsistencies with the group oracle:

| Pr[Ss] — Pr[Ss]| < 2n/q

Game 4. In this game 5 simulates the verification and conversion oracles. Sinciication
and conversion queries can occur only with respect to timegep # p*, B can request
his challenger for the conversion receipt= H_(p) for the time periodp, and simulate
perfectly the verification/conversion oracles. We clefidyePr[S,| = Pr[S;].

Game 5. In this game, we modify the challenge signature generatinriact, after.A outputs
mg, my, andp* , B outputsp* to his own challenger as a challenge seed, and gets a challeng

bit-stringe*, which is eitherHd} (p*), if somet’ il {0,1} is 1, or a random string from the
given space otherwise3 produces then the challenge signature= (R*, 7™, s*) onm}
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usinge*, i.e. proceeds exactly as the standard algorithm with tiepgion of computing*
as H2 (m}, R*). Note that where* is a random string, thep* is not a valid signature on
neithermf normj. Clearly:

Pr[S;5] = Pr[b, = bb' = 1]
and

1
mm#myzmzﬁ
At the end of the simulation, il outputsh, = b, thenB will respondd” = 1, i.e. e* is indeed

H}(p*), otherwise he respond3 = 0. We have:

1
Succly/, = Prfp” =] - 5
1
= |Pelp” = 1Y =1+ Pl = 0.0/ = 0] - 5
1
= |Pr[0” = 1|¥' = 1] Pr[t) = 1] + Pr[0” = 0|p' = 0] Pr[t' = 0] — 5

1
= SIPep = 1)1’ = 1] + Pefp” = 0y’ = 0] — 1

1
= 5 IPrlb, = blp' = 1] + Prfb, # bl = 0] — 1]

1 1
= — P _——
2 I'[S5] 2’
2
€ n
279"

Moreover,

t' <t4+n+m(ry + 7+ 278)

8.5 Conclusion

We properly defined security notions for convertible undbéie signatures that support the addi-
tional property ofachronouggradual conversion. Adapting the scheme proposed by MicRal-
tersen, and Horster in 1996, we realized the first schemerfaegithis useful notion of conversion.
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In addition, we gave the first security analysis of the Misheétersen-Horster protocol, thereby
addressing a problem left open since 1996. We have modifisdt¢heme such that it becomes a
generic one, which allows to use it for instance in the sgttihelliptic curves (and therefore of-
fers attractive practical advantages in terms of signdamgth and performances). In this context
and in comparison with the time-selective convertible umalele signatures from [Laguillaumie
& Vergnaud, 2005], the computational costs for the confiramdtlisavowal protocols and the con-
version algorithms are much smaller.
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Conclusion

In this thesis, we were interested in signatures with cdlettorerification, more specifically un-

deniable and confirmer signatures. We actually focused antb@roduce these signatures from
basic cryptographic primitives such as digital signatuegeryption, and commitment schemes.
In fact, we noticed that even the monolithic realizationshefse signatures are built upon popu-
lar primitives, which results in security and efficiency Bsas similar to those of the underlying

components, but still indispensable to carry out. Our manppse was to understand then bridge
the gap between these realizations and the known genestraotions of such opaque signatures.

To analyze the generic constructions of confirmer signaiuve used the famouseta-reduction
tool; such a tool was mainly applied to achieve impossipigsults, e.g. disproving equivalence
between complexity assumptions or separating resultsdeztwlealized and standard models. In
our study, we used meta-reductions to show that the popalarg constructions cannot achieve
secure confirmer signatures without using strong encrypi® a building block, which engen-
ders expensive confirmer signatures with limited efficieistantiations. This is actually due to
an inherent weakness in these constructions that consigite ipossibility of creating confirmer
signatures without the help of the signer. After identifyiihe weaknesses in the popular generic
constructions, comes the task of annihilating these wessaseat cheap costs and without com-
promising the security. Fortunately, this was doable bypyrbinding the digital signature - these
generic constructions require always the computation ofiadl signature - to the resulting con-
firmer signature. The outcome of this tweak was tremendoitsnazde the constructions rest on
very cheap encryption, and consequently led to short coefisignatures with small generation,
verification, and conversion costs. Another important eguence of this slight change consists
in allowing homomorphic encryptiom the design, which translates in efficient confirmation and
denial protocols.

The immediate prospect of such an analysis is its extensiotiner opaque or privacy-preserving
mechanisms/signatures, e.g. group signatures, desthwatdier signatures, or anonymous cre-
dentials. In fact, most such mechanisms involve a digighaiure on some message and an en-
cryption layer that ensures the privacy. Hence the possilmf applying the same techniques
in order to allow cheap and useful encryption in the desigd, taus achieve constructions with
many efficient instantiations. The long-run prospect cgtssh systematically applying the meta-
reduction tool in other cryptographic realizations in arttespot the potential flaws in the design,
and later repair these flaws and improve the resulting coctsbns.
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