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Abstract—The evolution of the computing paradigms and the Internet of Medical Things (IoMT) have transfigured the healthcare sector 

with an alarming rise of privacy issues in healthcare records. The rapid growth of medical data leads to privacy and security concerns to protect 

the confidentiality and integrity of the data in the feature-loaded infrastructure and applications. Moreover, the sharing of medical records of a 

patient among hospitals rises security and interoperability issues. This article, therefore, proposes a Federated Learning-and-Blockchain-

enabled framework to protect electronic medical records from unauthorized access using a deep learning technique called Artificial Neural 

Network (ANN) for a collaborative IoMT-Fog-Cloud environment. ANN is used to identify insiders and intruders. An Elliptical Curve Digital 

Signature (ECDS) algorithm is adopted to devise a secured Blockchain-based validation method. To process the anti-malicious propagation 

method, a Blockchain-based Health Record Sharing (BHRS) is implemented. In addition, an FL approach is integrated into Blockchain for 

scalable applications to form a global model without the need of sharing and storing the raw data in the Cloud. The proposed model is evident 

from the simulations that it improves the operational cost and communication (latency) overhead with a percentage of 85.2% and 62.76%, 

respectively. The results showcase the utility and efficacy of the proposed model 

Keywords- ANN, Blockchain, Federated Learning, Elliptical Curve Digital Signature (ECDS), Blockchain-based Health Record Sharing 

(BHRS), Electronic Patient Records (EPRs), Internet of Medical Things (IoMT) 

 

I.  INTRODUCTION AND RELATED WORK 

The Internet of Medical Things (IoMT) and the Cloud are the 

cutting-edge technologies being used to modernize and improve 

the healthcare sector. Process automation and data sharing are 

combined in the healthcare system to offer users individualized 

healthcare services and goods [1]. The process in order to run 

various healthcare applications and offer medical services to end 

users, IoT-based healthcare applications incorporate several 

industrial equipment or sensors. Additionally, these devices are 

utilized to gather patient body vital statistics, which are then 

saved as electronic patient records (EPRs) on cloud servers. The 

information is made available to doctors via on-demand queries 

in order to monitor patients' health conditions and administer 

therapy [2]. However, the centralization of healthcare providers 

and poor interoperability are problems that most existing 

healthcare systems must deal with. A patient would not, in 

particular, limit his or her options to a single hospital or 

physician. On the other hand, he or she can be transported 

between hospitals or visit several clinics or medical 

professionals for medical monitoring or therapy. This 

emphasizes the value of sharing patient EPRs among various 

medical facilities. 

Due to the fact that they are accessed remotely, customized 

healthcare services can experience security and privacy 

problems. As a result, the patient's expectations were not met by 

the results of the ongoing intelligent treatment and remote 

monitoring. People require seamless mobility and resources to 

readily reach hospitals and high-quality healthcare [3, 4]. This 

Cloud-IoMT technology has the advantages of lower IT costs, 

reduced storage requirements, and increased productivity. 

Massive amounts of medical data are being stored and made 

accessible over the Internet thanks in part to industrial cloud-

based healthcare networks [5]. Personal privacy and data 

security issues in medical data systems continue to be crucial [6] 

because healthcare data is extremely dynamic and can travel 

from one site to another with various wireless connectivity. 

Furthermore, storing medical data on centralized third-party 
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Cloud servers increases security and privacy risks because the 

majority of the data is highly private and sensitive. In addition to 

causing financial or privacy breaches, these threats could lead to 

other attacks. Healthcare data is particularly vulnerable in the 

security framework and in the public domain, thus there is a 

great need to protect it. Additionally, with the existence of the 

physical gap between the IoMT and the Cloud, the 

communication and computation overhead significantly 

increases.   

To safeguard the healthcare system from unauthorized users 

and attacks, a number of security measures are available [7], [8]. 

The standard encryption techniques used to safeguard the EPRs 

are unstable and violate user privacy because of the dynamic and 

open nature of the healthcare system. Prior to sending the EPR 

data to a cloud server, encryption is essential. Make sure the 

system is free of any invading users by checking as well. 

Numerous security and privacy concerns arise as a result of the 

decentralized storage and exchange of medical data. Although 

data-searchable encryption techniques have been established, a 

number of problems remain, including user-side and server-side 

verification and the storage, retrieval, and searching of medical 

data without the aid of a reliable third party. Additionally, there 

are some limitations to cloud computing in terms of security and 

privacy, the accuracy of patient data, service latency, and 

performance monitoring. 

According to [10-12], the immutability, public verifiability, 

and programmability that blockchain technology possesses 

inherent benefits to address the aforementioned problems. 

Numerous studies [13, 9, 14] have recently used blockchain 

technology to distribute EPRs. 

 

 

Figure 1.  Traditional Blockchain-based EPRs Sharing (BEPRS) Framework 

Figure 1 depicts a typical framework for blockchain-based 

electronic patient record sharing (BEPRS), where a doctor (or 

healthcare provider) is in charge of creating and releasing 

patients' EPRs into a blockchain-enabled Cloud network so that 

a patient can easily show their EPRs to other healthcare 

providers. These EPRs may optionally be stored locally or on 

distant trusted cloud servers to reduce the cost of blockchain 

storage, and just the summary information of EPRs (such as hash 

value, indexing, and timestamp) is recorded in a blockchain. 

Patients and doctors can easily share and verify EPRs on 

existing BEPRS systems. However, sharing EPRs depends on 

the secured network architecture, and thus, interoperability and 

EPR privacy leakage will be a security issue. EPRs saved in 

blockchain are public to everyone, and malevolent spreading 

may lead EPRs to be disseminated after showing. We focus on 

the latter issue (EPRs can only be trusted by designated verifiers) 

because encryption and access control technologies can easily 

solve the former [15, 16]. For interoperability, the current study 

approaches an authentication mechanism for both users and 

service providers for the verification of data.  

Digital signatures are required for EPR authenticity, non-

repudiation, and integrity. This spreads harmful EPRs. EPRs and 

digital signatures can be sent to persuade others. Thus, the 

universal designated verifier signature proof (UDVSP, first 

proposed by Baek et al. [17]) may guarantee EPR verifiability, 

privacy, and anti-malicious propagation. Based on the UDVSP, 

a designator (e.g. patient) receives a new EPR with a signature 

from the signer (doctor-1). The patient can consult another 

doctor as Doctor-2 owns the patient’s EPR record.  

To our knowledge, all UDVSP schemes (including [17, 18]) 

use bilinear pairing operations to guarantee BEPRS system 

features which are computationally complex and hinder its 

incorporation into BEPRS or other systems like electronic 

voting, anonymous certification, and income summary 

management [19]. An improved UDVSP method is 

implemented.  

 

The contributions of this work are enlisted as follows: 

• The proposed model makes use of an integrated 

Federated Learning-and-Blockchain-supported 

approach that has been formulated for the privacy-

preserving of Electronic Patient Records (EPRs) in a 

collaborative framework; 

• Through the classification of insiders and intruders 

using the given dataset, a secure classification model 

built on ANN has been created; 

• For the interoperability issue, this work proposes a 

User-and-Service provider interaction authentication 

module;  

• To reduce the communicational latency, an 

intermediate layer called the Fog layer is introduced as 

a complement to the IoT-Cloud framework to facilitate 

computations and improve security; 

• An elliptic curve digital signature algorithm (ECDSA) 

is adopted to devise the bilinear pairing-free UDVSP 

scheme and frame a secured blockchain-based 

validation method; 
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• A blockchain-based electronic patient record sharing 

(BEPRS) is implemented to possess anti-malicious 

propagation; 

• A Federated learning approach is integrated into the 

framework to form a global model without the need to 

share the raw data with the Cloud; 

• In comparison to the method that is currently in use, the 

experimental study reveals that improvements have 

been made to classification accuracy, precision, recall, 

scalability, data privacy, and the identification of 

malicious conduct. 

 

The rest of the paper is organized as follows: Section 2 

studies the existing works based on UDVSP, ECDSA and the 

integrated FL-and-Blockchain privacy-preserving model. 

Section 3 presents the preliminaries of the techniques used in this 

work followed by the system framework. The proposed 

methodology is presented in Section 4. The performance 

evaluation along with the security analysis is elucidated in 

Section 5. Finally, Section 6 concludes the article with potential 

future directions. 

II. REVIEW OF PREVIOUS STUDIES 

Blockchain is one of the trending technologies available 

today, because it offers a platform that is both safe and 

dependable, making it ideal for the administration of data in a 

wide variety of applications, including the banking sector, the 

healthcare industry, and supply chain management. 

Additionally, the Internet of Things is starting to show promise 

as a potential use for blockchain technology. In this part, various 

research papers that were published in the not-too-distant past 

are discussed in this section in order to investigate and have a 

better understanding of the roadmap of its function in connection 

with IoT.  

In order to securely retain healthcare certificates, Sharma et. 

al. [20] proposed a methodology for the distributed application's 

privacy protection. The ether scan tool was used to conduct an 

assortment of trials to quantify the operation cost, latency, and 

processing time in order to assess the performance of the 

suggested model. Lin et al. [21] have proposed the EMR chain 

model, which combines a bilinear pairing model that is 

compatible with blockchain technology and also uses a UDVSP 

scheme that takes no time at all, to address the long-standing 

problems with accessing electronic medical records in a 

centralized environment. In order to make the suggested system 

an anti-malicious propagation system, the UDVSP scheme 

employs the elliptical curve as the name of the digital signature 

method. For the purpose of maintaining the confidentiality of 

electronic health records (EHR), Alzubi et al. [22] have 

presented a hybrid model that is a blend of the deep learning 

model with the technology behind blockchains. The model that 

was presented has improved performance but at the expense of 

an increased amount of time consumption. Addressing the 

concerns of data privacy and security in a smart city's Internet of 

Things setting, Singh et. al. [23] proposed a solution which is a 

Blockchain and Federated Learning-enabled Secure 

Architecture for Privacy-Preserving in Smart Healthcare. 

Privacy is maintained, scalability is achieved, and data sharing 

is optimised through the integration of Blockchain-based IoT 

cloud platforms and Federated Learning technologies. Tackling 

data privacy problems and diverse model architectures in 

Healthcare 4.0, Veronika Stephanie et. al. [24] presented a 

Secure Multiparty Computation-based Ensemble Federated 

Learning with a Blockchain solution. With the suggested 

architecture, hospitals and other medical facilities may work 

together to enhance the global model while also creating their 

own model structures. In this study [25], the authors investigate 

whether or not it is possible to improve the field of evidence-

based medicine by merging machine learning with blockchain 

technology and privacy-preserving encryption approaches. In 

order to do predictive analysis in individualized healthcare 

utilizing EHRs, Gupta et al. [26] presented a unique supervised 

Deep Similarity Learning technique. In order to build patient 

representations and capture interactions between patients, the 

suggested technique uses CNN-Softmax, a Siamese-based 

neural network that leverages pairwise similarity learning. The 

model outperforms conventional similarity learning techniques 

by conducting illness prediction with outstanding accuracy 

(97.8%) using Convolutional Neural Networks (CNN) and 

Softmax-based supervised classification. Zaman et. al. [27] 

presented a study that introduces a revolutionary Holochain-

based architecture for protecting the privacy and security of IoT 

healthcare systems. In contrast to the blockchain, Holochain is 

inherently decentralized and user-centric since apps run locally 

on each user's device, and is ideal for instances where resources 

are limited since it solves the scalability problem presented by 

blockchain. The findings point to the possibility of the 

widespread implementation of IoT healthcare systems that are 

both efficient and protective of patient privacy. In this study [28], 

the authors present a regular pattern mining model for 

personalized healthcare utilizing IoT data that is built on a 

convolutional neural network (CNN). To reliably forecast 

abnormal health problems from unstructured medical health 

information, the suggested approach makes use of the Pearson 

Correlation Coefficient and regular pattern behavior. Significant 

health variables are identified, categorized using correlation 

analysis, and regular patterns connected to obesity, 

hypertension, and diabetes are discovered using this approach. 

Jia et. al. [29] presented a study that provides a federated 

learning data protection aggregation strategy for the IIoT that 

makes use of blockchain technology. This study provides 

essential assistance for data security in IIoT businesses and adds 

to improving safe data transmission and sharing in industrial 

environments. The work by Li, D., et al. [30] provides a 
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comprehensive review of Blockchain-federated learning 

(BCFL) as a potential decentralized deep learning system. BCFL 

combines Blockchain's security and speed improvements with 

federated learning's privacy-preserving strengths. In order to 

address privacy and efficiency concerns in fog computing, Qu 

et. al. [31] introduced FL-Block, a revolutionary blockchain-

enabled federated learning method. FL-Block allows for the 

decentralized privacy protection and poisoning attack resistance 

of a blockchain-based global learning model to be swapped with 

local learning updates of end devices. To improve privacy and 

security in IoHT applications, Rahman et. al. [32] present a 

lightweight hybrid federated learning (FL) architecture based on 

blockchain-based smart contracts. Xu, J., et al. [33] presented a 

study that presents FNCF, a privacy-protecting, individually-

tailored blockchain reliability prediction model based on 

federated learning neural collaborative filtering for Internet of 

Things settings. The approach protects users' privacy by not 

sharing critical context information with other parties. 

Offloading and scheduling difficulties in healthcare processes 

inside the IoMT fog-cloud network are investigated in a study 

published by Lakhan, A., et. al. [34]. A unique deep 

reinforcement learning and blockchain-enabled system is 

suggested, which combines task sequencing and research 

matching techniques with blockchain task scheduling.  

In the realm of healthcare and IoT applications, the 

integration of blockchain and federated learning technologies 

has ushered in a promising era of data privacy and security. 

However, striking the delicate balance between data privacy and 

utility, while guarding against re-identification risks, requires 

further research and development. Standardization and 

regulatory compliance must be addressed to enable seamless 

data sharing and ensure adherence to stringent healthcare data 

regulations. Moreover, the real-world applicability and resource 

requirements of these innovative approaches call for rigorous 

testing and validation in practical healthcare settings. Combining 

creativity and a meticulous approach will propel these 

technologies towards their full potential, revolutionizing the 

healthcare landscape and empowering patients with secure, 

privacy-preserving IoT-driven medical solutions. 

III. PROPOSED METHODS 

This section proposes a system framework followed by the 

techniques used in this work such as Artificial Neural Network 

(ANN), Elliptical Curve Digital Signature Algorithm (ECDSA), 

Universal Designated Verifier Signature Proof (UDVSP), 

Federated Learning (FL), and Smart contract. 

 

 

Figure 2.  A Blockchain-based Electronic Patient Record Sharing system in a 

collaborative IoMT-Fog-Cloud environment 

A. System Framework 

Figure 2 showcases the Blockchain-based Electronic Patient 

Record Sharing (BEPRS) system in a collaborative IoMT-Fog-

Cloud architecture. This architecture consists of three layers 

such as (1) Internet of Medical of Things (IoMT) as the ground 

layer, (2) Fog layer as the intermediate and complementary 

layer, and (3) Cloud layer as top layer.  

The ground layer is an IoMT layer which consists of several 

internet-enabled medical things, such as smart medical 

equipment, smart gadgets, smart devices, etc. with different 

specifications. All these devices are federated learning (FL)-

enabled devices which enable security features in the proposed 

collaborative architecture. All these devices produce 

voluminous data which are sensed through sensors and 

forwarded to the computing nodes through networking devices. 

In addition, these devices are used to access the patient’s records 

through Cloud servers. Healthcare experts and patients work in 

this layer to access the EPRs from the Cloud server through 

Blockchain network. Next, a complementary to the Cloud layer 

called the Fog layer is introduced in this architecture to provide 

seamless computation on the edge of the network. In the existing 

literature, an integration of IoMT and Cloud layer is exhibited 

for sharing and storing the EPRs. However, the physical gap that 

exists between the IoMT and the Cloud servers results in 

increasing the latency and communication overhead. Moreover, 

the unawareness of the physical location of the data in the Cloud 

datacenter leads to security and privacy issues. The introduction 

of the Fog layer between the Cloud server and the IoMT not only 

reduces the incurred latency but also brings the computations 

nearer to the end devices over the edge of the network. 

Furthermore, the centralized storage and centralized architecture 

of the Cloud are now surmounted by the distributed nature of 

Fog computing. This layer, in this architecture, encompasses 

heterogeneous resources for computation along with a privacy-
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preserving model that facilitates the identification of insiders and 

intruders users through ANN, building a secured BEPRS scheme 

through a proposed model, and a validation scheme through 

ECDSA. This layer contains many components responsible for 

generating and accessing the EPRs, such as Doctors, Patients, 

and Blockchain network. Doctors: This entity is in charge of 

keeping patients' EPRs and offering diagnostic services. The 

doctor creates an EPR after receiving a patient's outpatient care 

request (Step 1) and then conceals it (with the EPR signature) 

with blinding variables. Then, in step two (for later retrievals), 

the doctor uploads the blinding EPR signature onto the 

blockchain network. In addition, the patient will get the blinding 

elements as a "Response" (Step 3). Additionally, while 

providing diagnostic services, this entity may need the patient to 

submit historical EPRs (Step 5) and obtain relevant data from the 

blockchain for verification (Step 6). The alternate doctor also 

uploads the updated EPR with diagnostic services into the 

Blockchain (Step 7). Patients: Owner of the EPRs, this entity 

acquires fresh EPRs and blinding factors following diagnoses 

and displays his or her prior EPRs before diagnosis. The 

authenticity of blinding EPRs linked on blockchain may be 

verified through blinding factors (Step 4). When a patient visits 

a different doctor, the patient can submit historical EPRs to get 

more precise and effective medical care. However, to prevent the 

harmful spread of EPRs, the patient uses his or her blinding 

characteristics to demonstrate ownership of one EPR without 

explicitly displaying the EPR (Step 5). Blockchain network: 

This entity is responsible for keeping blinding EPRs up to date 

and offering uploading (Step 2 & Step 7), checking (Step 4), and 

getting (Step 6) services linked to EPRs. It could be joined if it's 

public, or else it might be permissioned. Unlike the former, 

which is exclusively kept up by members with permission, the 

latter kind is maintained by anybody. Any blockchain that 

supports smart contracts might be used in our proposal. At the 

top, the Cloud layer consists of many servers used to store and 

access the EPRs on demand from anywhere. In our architecture, 

medical professionals and patients are allowed to access the 

Cloud servers through a distributive model for accessing EPRs 

through an authentication mechanism. 

Besides, the above system architecture ought to satisfy the 

following properties. (1) Compatibility: this property ensures the 

compatibility and interoperability of several devices supporting 

blockchain i.e., public blockchain and private blockchain. (2) 

Completeness: this property ensures the acceptance of proof of 

owning the EPRs with an authorized blinding factor. The EPRs 

cannot be generated without an authorized blinding factor. (3) 

Anti-malicious propagation: this property ensures preventing the 

EPRs from being manipulated or propagating maliciously. For 

instance, if Doctor _1 shares the patient’s EPR with another 

Doctor_2 then the Doctor_2 must trust the suggestions given on 

the EPR by Doctor_1 and should be propagated malevolently. 

(4) Unlinkability: this property ensures that the two EPRs with 

blinding factors cannot be merged into one to preserve the 

privacy of EPRs. 

B. Blockchain 

A blockchain is a form of public ledger or distributed 

database where verified transactions and digital events are saved 

and chronologically connected in data blocks. The records 

created by the transaction verifier and the data provided by the 

transaction initiator together make up the so-called data block. 

Additionally, each block has a timestamp and the hash of the 

block before it, making the data in the blockchain unchangeable 

and traceable. Valid blocks will be uploaded to the blockchain 

whenever there is consensus among 51% of the distributed 

network's users. This distributed P2P network is also robust 

against single-point failure and attacks because each node 

reserves the same copy of transaction records. Consequently, 

blockchain has received a lot of attention in a variety of 

industries. 

C. Artificial Neural Network (ANN) for malicious user 

detection system 

The ANN structure mimics the interconnected neurons found 

in the human brain. The Input layer, the Hidden layer(s), and the 

Output layer are some examples of the three layers that make up 

its architecture. The input layer receives the input data, while the 

hidden layer or layers between the input and output layers 

represent a large number of neurons. In an ANN, each layer 

processes information from the Input layer in the Hidden layer 

and outputs them in the Output layer. The weights of all the 

preceding nodes are used to calculate the output of each node 

using an activation function. An Adam optimizer is employed in 

the hidden layer to train the network more quickly and 

effectively. Figure 3 displays the suggested ATDS framework. 

To manage the coordination of all the nodes, this is implemented 

into the server at the Fog layer. This framework is made up of 

important components including Data preparation, Data 

Augmentation, and a Fully linked layer. The data acquisition 

module of the data pre-processing gathers the data from several 

servers and pre-processes it. The Data Augmentation module 

then divided the entire data set into the Training set and the 

Validation set. The dataset is further subjected to feature 

extraction and reduction in order to recover the pertinent 

intrusion-related features, and classification is then performed 

on the training dataset to give the ANN instructions on how to 

perform as accurately and quickly as possible. The output 

module then generates the detection rate pertaining to the threat 

or non-threat. A UNSW-NB15 dataset has been used for the 

testing phase [35]. 
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Figure 3.  ANN-based Malicious Users identification 

The ANN is a widely used mathematical framework used for 

information processing that models the information transmission 

process of the human brain through neurons. The input, hidden, 

and output layers are the three fundamental layers of the ANN, 

which facilitate the prediction process. The acquired dataset's 

traits or qualities comprise the input layer, which the intelligent 

system receives. The hidden layers do the necessary calculations 

by applying a non-linear modification to the input data. After 

receiving information from the hidden layer, the output layer 

then generates the outcome. The Multi-Layer Perceptron (MLP) 

is taken into consideration in this study. The MLP is a feed-

forward neural network enhancement in which the signal only 

flows forward. With the exception of the input nodes, each node 

in an MLP computes a weighted sum of the nodes from the layer 

preceding it. Mathematically, it can be stated as follows: 

 

𝜃𝑡 = [∑ 𝜔𝑖𝑗𝛼(ln(𝑖))𝑛
𝑖=1 ] + 𝜑𝑘                          (1) 

 

 

Where the bias for the output layer is represented by 𝜑𝑘 . 

Assuming that 𝑖 = 1,2, ⋯ , 𝑛  and 𝑗 = 1,2, ⋯ , 𝑚 , denote the 

nodes in the hidden and output layers, respectively, 𝑖𝑗 signifies 

the weight between the nodes of the hidden layer and output 

layer. In this instance, the activation function is represented by, 

 

ln(𝑖) = (∑ 𝜌𝑙𝜔𝑙𝑖
𝑠
𝑙=1 ) +  𝜑𝑖                           (2) 

 

Where 𝜌𝑙 stands for the number that corresponds to the 𝑙𝑡ℎ 

node in the input layer with the value 𝑙 = 1,2, ⋯ , 𝑠. 

 

As a result, we use the sigmoid function as the activation 

function to process the result of Eq. 2 which can be denoted 

through the following representation, 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜌) =  
1

(1+ 𝑒𝜌)
                              (3) 

Now, by using the values in Equations (1) and (2) in Eq. (3), 

we obtain, 

 

  𝜃𝑡 = [∑ 𝜔𝑖𝑗𝛼((∑ 𝜌𝑙𝜔𝑙𝑖
𝑠
𝑙=1 ) +  𝜑𝑖)𝑛

𝑖=1 ] + 𝜑𝑘     (4) 

 

D. Elliptic Curve Digital Signature Algorithm (ECDSA) 

This scheme is used to form the bilinear pairing for the 

UDVSP. This algorithm involves four procedures, namely, 

Setup, Electronic Key Generation (EKG), Electronic Signing 

(ESign), and Electronic verification (EVer). All these 

procedures are explained as follows: 

• Setup: this step is represented 𝑝 ← 𝑆𝑒𝑡𝑢𝑝(1𝛿)  and a 

combination of input and output. This step takes input, 

namely, 𝛿 as a security parameter and produces output 𝑝 as 

a public parameter, where 𝑝 = {𝐸𝑐 , 𝐹𝑝, 𝑆, 𝐼, 𝐺, 𝑟1, 𝑟2, 𝐻𝑓}. 𝑟1 

and 𝑟2  are primer numbers of 𝛿  bits, 𝐸𝑐  is an elliptical 

curve defined by 𝑎2 = 𝑏3 + 𝑥𝑏 + 𝑦%𝑟1 (𝑥, 𝑦𝜖𝐹𝑝), 𝑆 is an 

additive set consisting of all the parameters of 𝐸𝑐, and an 

infinity point 𝐼, 𝐹𝑝 is a finite state consisting of 𝑝 elements, 

𝐺  denotes the generator of 𝑆  of order 𝑟2 , and 𝐻𝑓  denotes 

the hash function expressed as 𝑍𝑟2
→ {0, 1}∗. 

• EKG: this step is computed through input as a public 

parameter 𝑝  and produced output in terms of public and 

secret keys. It arbitrarily selects a secret key 

𝑠𝑘  (𝑑𝑢(𝜖𝑍𝑟2
)) to compute the public key 𝑃𝑘  (𝑃𝑢(= 𝑑𝑢𝐺)). 

This can be expressed as 𝐸𝐾𝐺(𝑝) → (𝑑𝑢 , 𝑃𝑢). 

• ESign: this step takes the system public parameter 𝑝 and a 

secret key 𝑠𝑘(= 𝑝, 𝑑𝑢) , and a message as inputs. It 

arbitrarily selects 𝑘 𝜖 𝑍𝑟2
 to estimate 𝐾 = 𝑘𝐺 = (𝑎𝑘 ,

𝑏𝑘)%𝑟2. It returns an output message in the form of 𝛼(𝑟, 𝑠), 

where 𝑟 = 𝑎𝑘%𝑟2, 𝑠 = 𝑘−1(𝐻𝑓(𝑚𝑒𝑠𝑠𝑎𝑔𝑒) + 𝑑𝑢𝑟)%𝑟2 . It 

is expressed as 𝐸𝑆𝑖𝑔𝑛(𝑝, 𝑠𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒) → 𝛼(𝑟, 𝑠). 

• EVar: this step of the algorithm takes the system public 

parameter 𝑝 , public key 𝑃𝑘 = (𝑝, 𝑃) , a message and a 

𝐸𝑆𝑖𝑔𝑛(𝛼(𝑟, 𝑠)) . It scans 𝐸𝑆𝑖𝑔𝑛  and estimates 𝐾 , =

[𝑠−1 𝐻𝑓(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)]𝐺 + (𝑠−1𝑟)𝑃 = (𝑎𝐾
′ , 𝑏𝐾

′ ) , and 𝑟′ =

𝑎𝐾′%𝑟2. If 𝑟′ = 𝑟%𝑟2 then it returns 1 (as an indication of 

valid), otherwise, returns 0. It is expressed as 

𝐸𝑉𝑎𝑟(𝑝, 𝑃𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝛼(𝑟, 𝑠)) → {0, 1}.  

 

E. Universal Designated Verifier Signature Proof 

(UDVSP) 

This UDVSP is consisting of six sets of procedures, namely, 

Setup, KGen, ESign, Verf, Transform, and IVer [20]. Each 

procedure is explained as follows: 

• Setup: this step of the algorithm includes two parameters as 

input and output, namely, security parameter (𝛿)  and a 

system public parameter (𝑝) . It is expressed as 𝑝 ←

𝑆𝑒𝑡𝑢𝑝(1𝛿). 

• KGen: this step of the algorithm includes an input as system 

public parameter 𝑝 , and an output as a combination of a 

public key 𝑃𝑘 and a secret key 𝑠𝑘. It is expressed as follows: 

𝐸𝐾𝐺(𝑝) → (𝑠𝑘 + 𝑃𝑘). 
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• ESign: this step takes the system public parameter 𝑝 and a 

secret key 𝑠𝑘, and a message as inputs. It returns an output 

message in the form of 𝛼(𝑟, 𝑠) . It is expressed as 

𝐸𝑆𝑖𝑔𝑛(𝑝, 𝑠𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒) → 𝛼(𝑟, 𝑠). 

• EVar: this step of the algorithm takes the system public 

parameter 𝑝 , public key 𝑃𝑘 , a message and a 

𝐸𝑆𝑖𝑔𝑛(𝛼(𝑟, 𝑠)) . It returns 1 as an indication of a valid 

signature of the message, otherwise, returns 0. It is 

expressed as 𝐸𝑉𝑎𝑟(𝑝, 𝑃𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝛼(𝑟, 𝑠)) → {0, 1}.  

• Transform: this step of the algorithm includes public 

parameter 𝑝, public key 𝑃𝑘 and a valid signature 𝛼(𝑟, 𝑠) as 

inputs and produces a pair of transformed signature and a 

secret key. It is expressed as 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑝, 𝑃𝑘 , 𝛼(𝑟, 𝑠)) →

(𝛼′(𝑟, 𝑠) + 𝑠𝑘
′ ). 

• IVar: this verification is run between a designator (𝑃) and a 

designated verifier (𝑉). This step takes a public parameter 

𝑝 , a public key 𝑃𝑘 , a message, and an updated signature 

(𝛼′(𝑟, 𝑠)) as inputs. The input of the designator is the secret 

key (𝑠𝑘
′ ) and for the designated verifier, it is null. The key 

objective of the designator (𝑃) is to verify the transformed 

signature from the original signature (𝛼(𝑟, 𝑠)). Based on the 

verification, it returns 1 if it is validated & verified, 

otherwise, returns 0. It is expressed as follows: 

𝐼𝑉𝑎𝑟[𝑃(𝑠𝑘
′ ) ↔ 𝑉](𝑃, 𝑃𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝛼′(𝑟, 𝑠)) → {0, 1}. 

Each entity in this algorithm has a specified role. For instance, 

the steps 𝐾𝐺𝑒𝑛 and 𝐸𝑆𝑖𝑔𝑛 have been executed by the signer 

and the designator performs verification (𝐸𝑉𝑎𝑟)  and 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  operations. Moreover, there are two 

communications that take place in this scheme. First, it is 

between the 𝐸𝑆𝑖𝑔𝑛 and 𝐸𝑉𝑎𝑟, i.e., the signature generated by 

the 𝐸𝑆𝑖𝑔𝑛 should be accepted by the 𝐸𝑉𝑎𝑟 step. The second is 

between 𝐼𝑉𝑎𝑟  and 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 , that is, the transformed 

signature with specified inputs should be accepted by the 𝐼𝑉𝑎𝑟 

step of the algorithm. 

 

F. Federated Learning (FL) 

Traditional ML techniques gather and process data on 

a central server. As a result, the computing and communication 

overheads on the central server increase. Because ML's 

usefulness and accuracy depend on the amount of data and the 

server's capacity, this raises challenges. The training data may 

also disclose sensitive information about the data and its owner. 

As a result, the owner of the data is hesitant to make it public, 

especially when it comes to medical data. The incapacity of the 

central server to safeguard the data, which precludes the data 

owner from sharing their medical history for training, is another 

significant issue. As a result, privacy concerns prevent the data 

from being used effectively. Google created a brand-new 

concept known as "federated learning" in an effort to allay data 

owners' privacy worries. It enables the data owners to 

collectively upload their data into a global model without 

releasing the actual data [36]. This learning model can be 

separated into two groups from the perspective of networking: 

(a) Centralized FL and (b) Decentralized FL. In the centralized 

FL model, the local models are brought together via a central 

server into a single global model. In the decentralized FL, 

however, the aggregating process is carried out by each data 

owner. The fundamental FL model is trained using patient-

specific data in our process. The FL operates in this manner. 

Consider a central server with a FL job, N trainers, and the 

server. While the central server has an initial global model, each 

trainer has a local model. The server first sends the first global 

model to each trainer. All of the trainers train the global model 

using their local data after it has been received, and they then 

update their local models before sending them to the central 

server, which retains the original data. The global model is then 

updated as necessary by the central server, which then merges 

all of the local models. Using the local data that was supplied to 

each trainer by the central server, the trainers subsequently 

update the overall model. Until the global model converges or 

has gone through the maximum number of training iterations, 

this process is repeated. In order to safeguard the privacy of the 

raw data and the data owner, privacy and sensitive information 

are stored locally because the trainers must submit changes to 

the models. Since trainers upload only the alterations into the 

global model rather than the original data, FL minimizes 

communication and computation overheads due to its effective 

high communication capabilities. Figure 4 shows the FL-

enabled privacy-preserving model. 

 

 

Figure 4.  Federated Learning (FL)-enabled Privacy-preserving model  

G. Smart Contract 

On the public ledger, smart contracts are event-driven 

computer programs. It is capable of managing and transferring 

assets with high value. The open source blockchain network 

Ethereum is a well-known use case for smart contracts. Smart 

contracts are specifically scripts or codes that are used in 

blockchain. The scripts on the contract content could be run 

without the aid of an external trusted authority once the 

predefined circumstances have been activated. The whole 

procedure is computerized, and the completed transactions are 

logged on the public ledger for auditing. The owner of the asset 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

Article Received: 14 August 2023 Revised: 04 October 2023 Accepted: 20 October 2023 

___________________________________________________________________________________________________________________ 

 

    1138 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 

has the authority to cancel the user's access privileges if they 

break the terms of the agreement. To precisely govern the data 

sharing of EPRs, the proposed method allows patients to 

predefine access rights, access actions (read, write, or copy), 

and access duration in smart contracts. 

To manage blinding EPR signatures (including uploading, 

checking, obtaining, and revoking), our EPRChain system uses 

smart contracts. Only if it was entered into the smart contract 

by authorized doctors is one blinding EPR signature valid. 

Patients can then adopt these obscuring elements to produce 

reliable proof. Others can obtain these blinded EPR signatures 

to confirm the legitimacy of the patients' documentation. 

Additionally, blinding EPR signatures can only be uploaded or 

revoked by approved doctors. Thus, the four algorithms Upload, 

Check, Get, and Revoke are the essential components of our 

developed smart contract. 

IV. PROPOSED METHODOLOGY 

This section presents the modified UDVSP and EPR system 

along with an EASEID (Efficient Access management and 

Session-based Electronic Identification Distributed) model. 

A. Modified UDVSP Scheme 

The ECDSA is incorporated in the UDVSP to avoid time-

consuming issues in bilinear pairing in UDVSA. The detailed 

scheme is illustrated here: 

• Setup: this step is represented 𝑝 ← 𝑆𝑒𝑡𝑢𝑝(1𝛿)  and a 

combination of input and output. This step takes input, 

namely, 𝛿 as a security parameter and produces output 𝑝 as 

a public parameter, where 𝑝 = {𝐸𝑐 , 𝐹𝑝, 𝑆, 𝐼, 𝐺, 𝑟1, 𝑟2, 𝐻𝑓} . 𝑟1 

and 𝑟2 are primer numbers of 𝛿 bits, 𝐸𝑐 is an elliptical curve 

defined by 𝑎2 = 𝑏3 + 𝑥𝑏 + 𝑦%𝑟1 (𝑥, 𝑦𝜖𝐹𝑝), 𝑆  is an 

additive set consisting of all the parameters of 𝐸𝑐, and an 

infinity point 𝐼, 𝐹𝑝 is a finite state consisting of 𝑝 elements, 

𝐺 denotes the generator of 𝑆 of order 𝑟2, and 𝐻𝑓 denotes the 

hash function expressed as 𝑍𝑟2
→ {0, 1}∗. 

• EKG: this step is computed through input as a public 

parameter 𝑝  and produced output in terms of public and 

secret keys. It arbitrarily selects a secret key 𝑠𝑘  (𝑑(𝜖𝑍𝑟2
)) 

to compute the public key 𝑃𝑘  (𝑃(= 𝑑𝑢𝐺)) . This can be 

expressed as 𝐸𝐾𝐺(𝑝) → (𝑑, 𝑃). 

• ESign: this step takes the system public parameter 𝑝 and a 

secret key 𝑠𝑘(= 𝑝, 𝑑), and a message as inputs. It arbitrarily 

selects 𝑘 𝜖 𝑍𝑟2
 to estimate 𝐾 = 𝑘𝐺 = (𝑎𝑘 , 𝑏𝑘)%𝑟2 . It 

returns an output message in the form of 𝛼(𝑟, 𝑠), where 𝑟 =

𝑎𝑘%𝑟2, 𝑠 = 𝑘−1(𝐻𝑓(𝑚𝑒𝑠𝑠𝑎𝑔𝑒) + 𝑑𝑟)%𝑟2 . It is expressed 

as 𝐸𝑆𝑖𝑔𝑛(𝑝, 𝑠𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒) → 𝛼(𝑟, 𝑠). 

• EVar: this step of the algorithm takes the system public 

parameter 𝑝 , public key 𝑃𝑘 = (𝑝, 𝑃) , a message and a 

𝐸𝑆𝑖𝑔𝑛(𝛼(𝑟, 𝑠)) . It scans 𝐸𝑆𝑖𝑔𝑛  and estimates 𝐾 , =

[𝑠−1 𝐻𝑓(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)]𝐺 + 𝑟𝑃 = (𝑎𝐾
′ , 𝑏𝐾

′ ) , and 𝑟′ = 𝑎𝐾′%𝑟2 . 

If 𝑟′ = 𝑟%𝑟2  then it returns 1 (as an indication of valid), 

otherwise, returns 0. It is expressed as 

𝐸𝑉𝑎𝑟(𝑝, 𝑃𝑘 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝛼(𝑟, 𝑠)) → {0, 1}.  

• Transform: given a public parameter 𝑝, the public key 𝑃𝑘, 

and a valid signature 𝛼 = (𝑟, 𝑠), this step arbitrarily selects 

𝑥, 𝑦𝜖𝑍𝑟2
  to estimate 𝑟′ = 𝑟 + 𝑥%𝑟2  and 𝑠′ = 𝑠 + 𝑦%𝑟2 . It 

returns the transformed signature as 𝛼′ = (𝑟′, 𝑠′). 

• IVar: there are four operations that take place between 𝑃 and 

𝑉: 

(a) First, P  estimates 𝐾 , = [𝑠−1 𝐻𝑓(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)]𝐺 + 𝑟𝑃 , and 

it randomly selects 𝜏, 𝛽 𝜖 𝑍𝑟2
, 𝑅1, 𝑅2 𝜖 𝐺 to estimate 𝐾′ =

𝐾 + 𝑅, 𝑅′ = 𝑥𝑅, 𝐷 = 𝑠′𝑅2 + 𝛽𝐾′ − 𝜏𝑃 . Afterwards, 𝑃 

send (𝐾′, 𝑅′, 𝐷) to 𝑉. 

(b) Second, 𝑉 arbitrarily selects a challenge 𝑐 𝜖 𝑍𝑟2
 and sends 

it to 𝑃. 

(c) Third, 𝑃  estimates 𝑍𝑅 = 𝑅2 − 𝑐𝑅1, 𝑍𝑎 = 𝜏 − 𝑎𝑐%𝑟2  and 

𝑍𝑏 = 𝛽 − 𝑏𝑐%𝑟2, and it forwards (𝑍𝑅, 𝑍𝑎 , 𝑍𝑏) to 𝑉. 

(d) Fourth, 𝑉  estimates 𝐷′ = 𝑠′𝑍𝑅 + 𝑍𝑏𝐾′ − 𝑍𝑎𝑃 +

𝑐[𝑠′𝐾′ + 𝑅′ − 𝑟′𝑃 − 𝐻′(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)𝐺]  and verifies that 

𝐷′ = 𝐷 is true or not. It returns 1 if it holds true, otherwise, 

it returns 0.  

 

B. Modified EPRChain Framework 

In this subsection, we explain our developed EPRChain 

system based on the aforementioned UDVSP scheme UDVSP 

= (KGen, ESign, EVer, Transform, IVer) and smart contract 

(Upload, Check, Get, and Revoke). 

 

• Setup: in this initialization phase, the Manager calls Setup 

to produce a public parameter 𝑝 , and deploys it in 

blockchain with a smart contract to get a smart contract id 

𝑆𝐼𝐷 for contract identity. The system manager then shares 

(𝑝, 𝑆𝐼𝐷) to other parties (such as patients and doctors) after 

which utilising cryptography algorithms to start the smart 

contract. Additionally, every doctor activates 𝐾𝐺𝑒𝑛  to 

create a secret key (𝑠𝑘 = 𝑑) as well as a public key (𝑃𝑘 =

𝑃). 

• Signing up (Registration): in order to receive the authorised 

blinding EPR signatures, patients must go through this 

registration procedure. The doctor specifically employs a 

secret key (𝑠𝑘) which determines the patient's original EPR 

signature by using 𝛼 = 𝐸𝑆𝑖𝑔𝑛(𝑠𝑘 , 𝑚𝑠𝑔), where 𝑚𝑠𝑔 is the 

diagnostic code for the patient message. After that, the 

physician uses 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 procedure to create the blinding 

EPR signature of 𝛼  and blinding Secret keys (𝑎, 𝑏) , i.e., 

( 𝛼′, 𝑎, 𝑏 ) = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝛼) . Next, to upload the 

transformed signature 𝛼′, the doctor invokes the 𝑈𝑝𝑙𝑜𝑎𝑑 in 

𝑆𝐼𝐷 through the smart contract. At last, the blinding secret 
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key (𝑎, 𝑏)  with the retrieving index 𝑖𝑛𝑑𝑒𝑥 = 𝐻𝑓(𝛼′)  is 

forwarded to the patients over a secured network. 

Correspondingly, the patient calls 𝐺𝑒𝑡(𝑖𝑛𝑑𝑒𝑥)  method to 

get the blinding information on the transformed signature. 

In addition, the patient uses the blinding technique to get the 

original secret code 𝛼  to reassemble the authentic EPR 

signature, and calls 𝐼𝑉𝑒𝑟 to verify that is valid. 

• Show. A patient will use this stage to privately show other 

doctors (like Doc_2) their EMR signature. The patient does 

not have to send his/her EPR, and then Doc_2 will accept 

the patient’s signature but will believe it is her own signature 

here. In particular, the patient and Doc_2 carry out the 

interactive protocol 𝐼𝑉𝑎𝑟  in this sentence. To get the 

patient's blinding EPR signature, Doc_2 must call 𝐺𝑒𝑡 

method to extract it from 𝑆𝐼𝐷. If the 𝐼𝑉𝑎𝑟 returns 1, EPR 

will belong to the patient and Doc_2 believes that the 

signature belongs to the patient; otherwise, Doc_2 will 

Refuse to believe this assertion. 

• Cancellation. The doctor starts this step to revoke a blinding 

EPR signature 𝛼′, i.e., the doctor initiates 𝑅𝑒𝑣𝑜𝑘𝑒 method 

to delete the 𝛼′  to delete it from the smart contract. 

Simultaneously, it can be checked if it has been revoked or 

not by others by calling 𝐶ℎ𝑒𝑐𝑘 function.   

 

 
 

Figure 5.  EASEID model 

C. Efficient Access Management and Session-based 

Electronic Identification and Distributed (EASEID) Model 

Figure 5 shows the efficient access management and 

session-based electronic identification and distributed model. 

This model showcases the interaction of users (end users/IoMT 

devices) and healthcare fraternities to the proposed EASEID 

model in conjunction with a blockchain network. This model is 

an interface between end-users/healthcare professionals and a 

blockchain network depicting the interaction and 

communication for requesting/uploading/getting EPRs. 

The production and maintenance of official health 

documents employing a variety of phases, including the 

acquisition, representation, validation, and justification of 

healthcare data, is proposed in this research using blockchain-

based EASEID. Various IoMT devices are used by users to 

administer medical certificates. There are no precise 

requirements for the device the user uses to retain the certificate. 

The EASEID offers a user interface so that users can generate, 

save, and validate medical certificates, among other services. It 

uses a distributed blockchain network to construct a web 

application. The user first registers in the EASEID and is given 

the special ID by the relevant authorities during registration. 

The healthcare authorities first confirm the users' records as 

healthcare experts if any user or patient contacts the healthcare 

centres to get an official health document. The necessary 

medical certificate is then generated via the blockchain 

network. To create blockchain-based documents with a distinct 

ID, the EASEID then processes or deploys the certificate on the 

blockchain network. The healthcare document is then saved as 

a transaction with a distinct block-based blockchain ID. The 

backend of the proposed IoMT-based architecture, which is a 

distributed file system, supports the public blockchain. There is 

a user interface to interact with the suggested system at the front 

end. The EASEID creates medical certificate records using the 

Ethereum public network. The consensus algorithm used by the 

proposed architecture is called Proof of Work (PoW). The 

distributed ledger is maintained by the EASEID, which also 

offers protection against unauthorised insertion, deletion, and 

updating of medical records. 

The distributed application based on a blockchain system 

for protecting medical records is shown in Figure 5. Four 

components make up the proposed system: users/IoMT devices, 

healthcare specialists, EASEID, and a blockchain network. The 

distributed application receives an initial registration request 

from hospitals or physicians of healthcare facilities. Following 

that, the EASEID verifies registration data, gets the entity's 

credentials from the Ethereum network, and stores the entity's 

data on the blockchain network. Similar to this, IoMT devices 

like wearable smartwatches and many others register in the 

proposed architecture by submitting the request to the EASEID 

with the unique identification number and carrying out the 

aforementioned registration process. The EASEID then 

presents the medical professionals with the gathered 

credentials. The user of the suggested application then sends a 

request for the medical records from the registered medical 

professionals in the system. Now, the medical professionals 

transmit the appropriate request to the EASEID together with 

the user information. Following request submission, the 

EASEID creates the desired medical document with a special 

ID and keeps user information in the suggested network. The 

user and the medical facility are then given access to the 

certificate's special ID by the EASEID. Finally, the user can 

utilise the special shared ID to access the created medical 

document. Additionally, by connecting the registered IoMT 

device to the suggested architecture via Wi-Fi, the user can 
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obtain the created certificate in the IoMT device. The suggested 

system is as follows successive actions: 

Step 1: Healthcare facilities send the distributed application a 

registration request together with the username, address, unique 

ID, etc. 

Step 2: After receiving the registration information, the 

EASEID confirms that the healthcare professional is already 

registered with the EASEID database. The EASEID stores the 

information about the experts in the blockchain after the 

verification network. 

Step 3: The blockchain network generates the login information 

after saving the information of the medical professionals and 

the distributed application receives the healthcare expert's 

credentials. 

Step 4: The EASEID provides the healthcare expert with the 

credentials and grants the expert access to the architecture 

services that are suggested. 

Step 5: Users show their health to Doc_1. 

Step 6: The healthcare professionals upload the patient’s EPR 

into the blockchain. 

Step 7: Users send the EASEID a registration request with the 

username, address, unique ID (if it has been issued), etc. 

Step 8: After receiving the registration information, the 

EASEID confirms that the healthcare professional is already 

registered with the EASEID database. The EASEID stores the 

information about the experts in the blockchain after the 

verification network. 

Step 9: The blockchain network generates the login information 

after saving the information of the medical professionals and 

the distributed application receives the healthcare expert's 

credentials. 

Step 10: The user receives the desired credential from the 

distributed application. 

Step 11: Users ask for the EPRs from healthcare experts. The 

dashed lines (Step 11 & Step 17) indicate that the user can also 

fetch its EPR from the EASEID upon signing up with 

credentials. 

Step 12: As medical professionals, healthcare facilities verify 

the accuracy of the information they have received from the 

user. For instance, a healthcare professional checks a person's 

health status and severity, length of the treatment, hospital 

consultant doctor, etc. if the user requests a sick certificate. 

Then, it makes a decision in accordance with the user's request, 

whether or not to move further. 

Step 13: Medical facilities process user requests in this phase to 

confirm the credentials and to create a medical certificate, then 

connect to the blockchain via the EASEID and Metamask wallet 

request. 

Step 14: The blockchain network stores the user information 

along with the information for the created certificate in the 

blockchain architecture and provides the EASEID with the 

produced unique certificate ID. 

Step 15: The EASEID provides the user and the healthcare 

provider with the generated certificate ID. 

Step 16: the healthcare experts issue the required EPR to the 

patient. 

Step 17: Using the EASEID, the user is given access to the 

medical certificate that was generated by simply using the 

specific ID provided by the certificate.  

V. PERFORMANCE EVALUATION 

In this section, the experimental setting is described, the 

performance metrics are assessed, and a comparison of the 

suggested work is made.  

A. Simulation Environment 

The Ethereum platform is used to implement the suggested 

work. Smart contracts are implemented on the open-source 

Ethereum public blockchain network. The suggested distributed 

application's many functions are provided by the smart contract. 

Users can sign up, create, check the validity of, and access 

medical certificates using this tool. Additionally, the smart 

contract detects illegal manipulation and unauthorised access 

and guards against assaults on the suggested design. The testing 

environment for the proposed work includes the Testnet for 

executing tests on the proposed work based on various 

performance evaluation parameters, including latency, 

processing time, throughput, and response time, as well as the 

Ganache tool for setting up the blockchain network and smart 

contracts for defining the fundamental functionalities. React 

Native, which offers an environment compatible with the 

Ethereum platform, is used to develop the EASEID's front end. 

NodeJS facilitates communication between the distributed 

application and the Ethereum framework. Variables, modifiers, 

states, and events—the fundamental building blocks of smart 

contracts—are built using the Solidity programming language. 

On the Testnet, the smart contracts are installed using a remix 

text network. The fundamental purpose of the Remix IDE is to 

create smart contracts that can be used both locally and 

worldwide. The MetaMask browser plugin, which adds a wallet 

as a browser extension, is used to connect to the Ethereum 

platform. 

B. Performance Assessment 

The Etherscan tool is used to assess the devised work's 

operational costs. It is an analytical tool that investigates the 

blockchain network's block. As a gas tracker for the Ethereum 

network, Etherscan keeps track of transactions, validates the 

effectiveness of smart contracts, and examines the status of 

processes. Gas as the cost is needed for the transaction's 

execution and is included in the cost blockchain network for 

Ethereum. The cost associated with carrying out a function in a 

blockchain network is measured in terms of Gas. The price of 

the Gas is determined by the miners based on supply and 
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demand. The price is determined by the manner in which the 

execution, deployment, and transfer of the transaction on the 

blockchain network. Gas typically comprises two parameters: 

price and limit. The user's willingness to complete a transaction 

determines the limit, which is indicated as ‘gwei’. Smart 

contract and transaction execution require a significant amount 

of computational power over the blockchain community. The 

smart contracts are implemented on TestRPC in the proposed 

work, and details of all completed tasks are gathered by the 

Etherscan tool. The operational costs of the suggested method 

on the TestRPC-based Ethereum blockchain network and 

employing Remix platforms are displayed in Table 1. The entity 

that requests the execution of the smart contract function is 

referred to as the caller in Table 1. In this case, four operations, 

namely considered are register( ),generate( ),issue( ), and 

verify( ). Using the distributed application, the proposed 

blockchain network implements these features and computes 

the price of each operation's Gas. 

TABLE I.  OBTAINED OPERATIONAL COST (GAS COST) 

Caller Module Remix TestRPC 

Healthcare/Users 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟( ) 0.000782 0.000396 

Healthcare 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒( ) 0.000805 0.000489 

Healthcare 𝑖𝑠𝑠𝑢𝑒( ) 0.000865 0.000602 

Healthcare/Users 𝑣𝑒𝑟𝑖𝑓𝑦( ) 0.000356 0.000287 

 

The proposed system's operational costs are shown in Figure 

6 when they are implemented on the Ropstern network's 

Ethereum blockchain-based system. Due to the processing 

necessary to complete the medical certificate generation process 

transactions, the suggested application raises the total Ether as 

the number of medical certificates increases. The transaction 

cost and execution cost of the suggested strategy are shown in 

Table 2. Any blockchain network often needs a reasonable 

amount of time to read information from a system application or 

an EASEID. The cost associated with executing a transaction is 

known as the transaction cost. Contrarily, execution cost is the 

full expense associated with adding the newly formed block 

having the blockchain structure containing numerous 

transactions. Table 2 illustrates the cost analysis of the proposed 

application's smart contract features in terms of transaction and 

execution costs. 

  

A key drawback is the need to remember which clusters are 

"forbidden" when looking for a workaround. With normal 

routing, such a problem should not arise: it is obvious that for 

any pair of numbers Asrc  =  ab, Adest  =  cd, it is impossible 

when the component a or c refers to the "forbidden". As for 

components b and d, they are important only for intra-cluster 

routing. 

TABLE II.  COST ASSESSMENT FOR SMART CONTRACTS  

Module Transaction cost 
Computational 

cost 

𝑟𝑒𝑞𝑢𝑒𝑠𝑡( ) 2124420 1606341 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒( ) 746168 426104 

𝑖𝑠𝑠𝑢𝑒( ) 1204620 988774 

𝑣𝑒𝑟𝑖𝑓𝑦( ) 965338 819928 

 

 

Figure 6.  Total Ether consumption 

Table 3 displays the performance of the suggested 

application when latency and processing time, two non-

functional factors, are taken into account. The findings show the 

differences between the suggested plan with and without the 

deployment of a blockchain. Due to its internal operations, such 

as mining, crypto hash evaluation, transaction, block 

construction, and adding the new block to the blockchain 

network, the system installed in a blockchain platform 

consumes more time than a system without a blockchain. 

TABLE III.  PERFORMANCE ASSESSMENT  

Fog-based 

Blockchain-

enabled 

Platform 

Attributes 

(in Sec.) 

Modules 

𝑹𝒆𝒒𝒖𝒆𝒔𝒕_𝑬𝑷𝑹() 𝑽𝒆𝒓𝒊𝒇𝒚_𝑬𝑷𝑹() 

Yes Latency 4.12 3.20 

Yes 
Computational 

Time 
2.76 3.05 

No Latency 10.86 8.12 

No 
Computational 

Time 
9.23 7.42 

The proposed work is also contrasted with previous research, 

including BinDaaS [37], data allocation using blockchain [38], 

and distributed healthcare networks [39]. Different facets of the 

proposed job, such as latency, throughput, and response time, 

are assessed and contrasted with similar efforts. The 

performance, robustness, and efficiency of the proposed work 

are assessed in comparison to those of the current works in this 

comparative analysis. The proposed work performance is 

compared to the existing works and evaluated based on the 
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delay involved in creating and confirming medical certificates, 

as illustrated in Figure 7. The latency parameter calculates the 

amount of time that has passed between when a user starts a 

transaction and when it is added to the blockchain network as a 

block. The BinDaaS requires extra time to produce the forecast 

for the medical records. In this phase, the relevant entities 

generate the prediction result after first confirming that the 

message sought by the other entities is accurate. In order to 

move the request from the blockchain network to the cloud 

virtual machine, there is a network propagation delay involved 

in the data allocation with blockchain work. Furthermore, in the 

considered architectures, the principles of Fog computing are 

not taken into account. The inherent limitations of Cloud 

computing, i.e., ingress traffic and incurred latency are high due 

to the physical gap that exists between Cloud servers and IoMT. 

However, these limitations are subdued with the introduction of 

the Fog layer between the Cloud servers and IoMT. Nonetheless, 

this introduction of Fog computing literally brought the 

computations closer to the end devices and thus, reduced the 

computation time, response time and latency.  

Due to the use of sophisticated authentication methods, the 

distributed hospital network model necessitates more delay than 

BinDaaS and data allocation using blockchain. As a result, 

processing medical papers required increased latency in the 

existing operations. In contrast to current works, the proposed 

work requires less latency time for processing medical records. 

The suggested effort speeds up the entire process of creating 

and verifying medical certificates by creating distinctive IDs for 

the medical documents. The proposed work has less latency 

than the existing literature, as shown in Figure 7. Therefore, 

compared to previous works, the proposed work offers a more 

reliable alternative for handling medical documents. 

 

Figure 7.  Performance analysis for latency  

The suggested work performance is evaluated based 

on throughput and contrasted with the current works, as 

illustrated in Figure 8. The throughput counts how many 

transactions a user completes in a specific period of time. 

Compared to previous work, the suggested architecture has a 

higher throughput for processing transactions started at random 

by users. The throughput of the existing works is lower than the 

throughput of the proposed work because they need a two-step 

process to execute transactions for various users. Additionally, 

because the proposed design only permits the verified user to 

initiate the transaction, it directly executes the transaction in 

response to the user's request. 

 

Figure 8.  Performance analysis for Throughput 

Thus, it operates more quickly. The performance of the 

proposed system is compared to the existing work by taking into 

account the response time necessary for processing the medical 

records, as shown in Figure 9. The response time takes into 

account the time needed for the system to complete the 

transaction and generate the response in accordance with the 

request. On the suggested system, the processing time for 

medical files of various sizes is measured. The proposed effort, 

however, takes less time to respond than the current work to 

process the medical data on the system. The current work entails 

additional overhead for handling medical records processing, 

which takes longer than the suggested system. 

 

Figure 9.  Performance analysis for Response Time 

C. Security Analysis 

In order to protect patient privacy in the healthcare sector, 

the suggested model makes use of ANN and blockchain to 

enable the FL approach to identify harmful users. The 

improvement in the suggested paradigm is demonstrated by the 

security study that follows. 
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1) The proposed paradigm includes the blockchain concept, 

which offers a tamper-resistant environment. The only 

operations that can be performed on the data in the 

healthcare system are added and search. In the proposed 

system, data deletion and change are not permitted. 

2) FL, which incorporates numerous learning outcomes by the 

local model, can guarantee the accuracy of the given model. 

3) The FL-block can withstand a wide range of assaults, even 

poisonous ones. 

4) The proposed model's distributed environment prevents a 

single point of failure. 

VI. CONCLUSIONS 

In this paper, a cutting-edge method for privacy protection 

based on blockchain integration and deep learning was 

developed. In this study, three processed datasets were 

categorised using an ANN-based deep learning architecture. 

The proposed approach has been used to identify normal and 

atypical users. Besides, this study offers a revolutionary 

blockchain-based distribution architecture with privacy-

preserving features for healthcare systems. A distributed 

application for creating and accessing medical certifications is 

offered by the suggested architecture. It uses a variety of smart 

contracts to register users, create certificates, validate users and 

certificates, stop attacks, and grant access to users. To assess the 

effectiveness of the suggested scheme, a number of 

experimental tests are carried out, and a number of metrics, 

including latency, processing time, throughput, and response 

time, are taken into account. 

The future of a completely digital healthcare infrastructure 

will be shaped by the exchange of Electronic Patient Records 

(EPR). The urgent problems of data provider centrality and poor 

interoperability must, however, be addressed. These issues need 

to be resolved right away. EPR sharing on the blockchain can 

reduce these problems, yet current remedies cannot counteract 

malicious propagation. In this work, we emphasise the proposal 

of an effective EPRChain-based EPR sharing system and the 

spread of anti-malicious ideas. In particular, we suggest a 

universal designated verifier signature proof without pairing 

(UDVSP) plan and create a cordial and well-matched smart 

contract, then EPRChain's design specifications. Our proposals 

(such as EPRChain and UDVSP) are in accordance with the 

results of the final security study and performance assessment. 

Making EPRChain feature-rich will include providing 

several plug-in designs, like authentication, access control, 

storage, and so forth), and expanding our UDVSP system to 

support numerous specified applications in the real world, such 

as verifiers. 
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