105 research outputs found

    Recent advances in the theory and practice of logical analysis of data

    Get PDF
    Logical Analysis of Data (LAD) is a data analysis methodology introduced by Peter L. Hammer in 1986. LAD distinguishes itself from other classification and machine learning methods by the fact that it analyzes a significant subset of combinations of variables to describe the positive or negative nature of an observation and uses combinatorial techniques to extract models defined in terms of patterns. In recent years, the methodology has tremendously advanced through numerous theoretical developments and practical applications. In the present paper, we review the methodology and its recent advances, describe novel applications in engineering, finance, health care, and algorithmic techniques for some stochastic optimization problems, and provide a comparative description of LAD with well-known classification methods

    Knowledge Discovery and Monotonicity

    Get PDF
    The monotonicity property is ubiquitous in our lives and it appears in different roles: as domain knowledge, as a requirement, as a property that reduces the complexity of the problem, and so on. It is present in various domains: economics, mathematics, languages, operations research and many others. This thesis is focused on the monotonicity property in knowledge discovery and more specifically in classification, attribute reduction, function decomposition, frequent patterns generation and missing values handling. Four specific problems are addressed within four different methodologies, namely, rough sets theory, monotone decision trees, function decomposition and frequent patterns generation. In the first three parts, the monotonicity is domain knowledge and a requirement for the outcome of the classification process. The three methodologies are extended for dealing with monotone data in order to be able to guarantee that the outcome will also satisfy the monotonicity requirement. In the last part, monotonicity is a property that helps reduce the computation of the process of frequent patterns generation. Here the focus is on two of the best algorithms and their comparison both theoretically and experimentally. About the Author: Viara Popova was born in Bourgas, Bulgaria in 1972. She followed her secondary education at Mathematics High School "Nikola Obreshkov" in Bourgas. In 1996 she finished her higher education at Sofia University, Faculty of Mathematics and Informatics where she graduated with major in Informatics and specialization in Information Technologies in Education. She then joined the Department of Information Technologies, First as an associated member and from 1997 as an assistant professor. In 1999 she became a PhD student at Erasmus University Rotterdam, Faculty of Economics, Department of Computer Science. In 2004 she joined the Artificial Intelligence Group within the Department of Computer Science, Faculty of Sciences at Vrije Universiteit Amsterdam as a PostDoc researcher.This thesis is positioned in the area of knowledge discovery with special attention to problems where the property of monotonicity plays an important role. Monotonicity is a ubiquitous property in all areas of life and has therefore been widely studied in mathematics. Monotonicity in knowledge discovery can be treated as available background information that can facilitate and guide the knowledge extraction process. While in some sub-areas methods have already been developed for taking this additional information into account, in most methodologies it has not been extensively studied or even has not been addressed at all. This thesis is a contribution to a change in that direction. In the thesis, four specific problems have been examined from different sub-areas of knowledge discovery: the rough sets methodology, monotone decision trees, function decomposition and frequent patterns discovery. In the first three parts, the monotonicity is domain knowledge and a requirement for the outcome of the classification process. The three methodologies are extended for dealing with monotone data in order to be able to guarantee that the outcome will also satisfy the monotonicity requirement. In the last part, monotonicity is a property that helps reduce the computation of the process of frequent patterns generation. Here the focus is on two of the best algorithms and their comparison both theoretically and experimentally

    Combining rough and fuzzy sets for feature selection

    Get PDF

    Improving the Scalability of Reduct Determination in Rough Sets

    Get PDF
    Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that solely relies on the data to find patterns and decision rules. Despite its noninvasive approach and ability to generate human readable rules, classical RSDA has not been successfully used in commercial data mining and rule generating engines. The reason is its scalability. Classical RSDA slows down a great deal with the larger data sets and takes much longer times to generate the rules. This research is aimed to address the issue of scalability in rough sets by improving the performance of the attribute reduction step of the classical RSDA - which is the root cause of its slow performance. We propose to move the entire attribute reduction process into the database. We defined a new schema to store the initial data set. We then defined SOL queries on this new schema to find the attribute reducts correctly and faster than the traditional RSDA approach. We tested our technique on two typical data sets and compared our results with the traditional RSDA approach for attribute reduction. In the end we also highlighted some of the issues with our proposed approach which could lead to future research

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Internet-based solutions to support distributed manufacturing

    Get PDF
    With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture
    corecore