thesis

Internet-based solutions to support distributed manufacturing

Abstract

With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture

    Similar works