
Knowledge Discovery and Monotonicity
The monotonicity property is ubiquitous in our lives and it appears in

different roles: as domain knowledge, as a requirement, as a pro-

perty that reduces the complexity of the problem, and so on. It is

present in various domains: economics, mathematics, languages, ope-

rations research and many others. This thesis is focused on the

monotonicity property in knowledge discovery and more specifically

in classification, attribute reduction, function decomposition, frequent

patterns generation and missing values handling. Four specific

problems are addressed within four different methodologies, namely,

rough sets theory, monotone decision trees, function decomposition

and frequent patterns generation. In the first three parts, the mono-

tonicity is domain knowledge and a requirement for the outcome of

the classification process. The three methodologies are extended for

dealing with monotone data in order to be able to guarantee that

the outcome will also satisfy the monotonicity requirement. In the

last part, monotonicity is a property that helps reduce the computa-

tion of the process of frequent patterns generation. Here the focus is

on two of the best algorithms and their comparison both theore-

tically and experimentally.

ERIM
The Erasmus Research Institute of Management (ERIM) is the Research

School (Onderzoekschool) in the field of management of the Eras-

mus University Rotterdam. The founding participants of ERIM are the

Rotterdam School of Management and the Rotterdam School of

Economics. ERIM was founded in 1999 and is officially accredited by

the Royal Netherlands Academy of Arts and Sciences (KNAW). The

research undertaken by ERIM is focussed on the management of the

firm in its environment, its intra- and inter-firm relations, and its

business processes in their interdependent connections. The objective

of ERIM is to carry out first rate research in management, and to

offer an advanced graduate program in Research in Management.

Within ERIM, over two hundred senior researchers and Ph.D. candi-

dates are active in the different research programs. From a variety of

academic backgrounds and expertises, the ERIM community is united

in striving for excellence and working at the forefront of creating

new business knowledge.

www.erim.eur.nl ISBN 90-5892-058-5

V IARA N. POPOVA

V
IA

R
A

 N
. P

O
P

O
V

A

K
n

o
w

le
d

g
e

 D
isco

v
e

ry
 a

n
d

 M
o

n
o

to
n

icity

37

Knowledge Discovery
and Monotonicity

Erim - 04 omslag Popova 16/2/04 11:15 am Pagina 1

Knowledge Discovery and Monotonicity

Opsporen van kennis en monotoniciteit

Thesis

to obtain the degree of Doctor from the
Erasmus University Rotterdam

by command of the
Rector Magnificus

Prof.dr. S.W.J. Lamberts

and according to the decision of the Doctorate Board

The public defense shall be held on

Thursday 1 April 2004 at 13:30 hrs

by

Viara Nikolaeva Popova
born in Bourgas, Bulgaria

Doctoral Committee:

Promotor: Prof.dr. A. de Bruin

Other members: Prof.dr.ir. H.A.M. Daniels
Prof.dr. P.H.B.F. Franses
Prof.dr. J.N. Kok

Copromotor: Dr. J.C. Bioch

Erasmus Research Institute of Management (ERIM) Rotterdam School of Man-
agement / Rotterdam School of Economics Erasmus University Rotterdam

Internet: http://www.erim.eur.nl

ERIM Electronic Series Portal: http://hdl.handle.net/1765/1

ERIM Ph.D. Series Research in Management EPS-2004-37-LIS

The research reported in this thesis has been carried out in cooperation with
SIKS, the Dutch Research School for Information and Knowledge Systems.

SIKS Dissertation Series No. 2004-05

ISBN 90 - 5892 - 061 - 5

c© 2004, Viara Popova

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means electronic or mechanical, including photo-
copying, recording, or by any information storage and retrieval system, without
permission in writing from the author.

Cover illustration:
c© 2004, Corel

Acknowledgements

Many people contributed to this research in different ways. They should not
be left unmentioned. First of all, my gratitude goes to Cor for his patience
and help along the way. I also want to thank Wim, Walter and Jeannette -
chapter 5 is based on our joint research on Frequent Patterns and I enjoyed a
lot working with you. Eelco and Robbert, the figures in this thesis would not
have been good enough without your help. To everybody else, thanks for the
moral support and practical help to make these four years easier for me.

ii Acknowledgements

Contents

1 Introduction 1
1.1 John Smith and His Grades Prediction System 1
1.2 Knowledge Discovery . 2
1.3 Background Knowledge . 3
1.4 Monotonicity . 4

1.4.1 Economics . 4
1.4.2 Natural Sciences . 4
1.4.3 Natural Language . 5
1.4.4 Mathematics . 6
1.4.5 Operations Research . 6

1.5 Monotonicity in Knowledge Discovery 7
1.5.1 Monotone Classification 8
1.5.2 Monotone Problems . 8
1.5.3 Monotone Data Sets . 9
1.5.4 Monotone Classifiers . 10

1.6 The Contribution of This Thesis 11
1.6.1 Ordinal Attribute Reduction and Rule Induction

with Rough Sets . 12
1.6.2 Monotone Decision Trees 12
1.6.3 Monotone Decomposition 12
1.6.4 Frequent Patterns . 13

2 Ordinal Attribute Reduction and Rule Induction with Rough
Sets 15
2.1 Introduction . 15
2.2 Basic Notions in Rough Sets Theory 16

2.2.1 Decision Tables and Indiscernibility 16
2.2.2 Set Approximations . 18
2.2.3 Reducts . 19
2.2.4 Complexity and Heuristics 21
2.2.5 Object Reducts . 22

iv CONTENTS

2.2.6 Classification Rules . 23
2.2.7 Extensions of Rough Sets Theory 24

2.3 Rough Sets on Monotone Problems 25
2.3.1 Monotone Information Systems 25
2.3.2 Monotone Discrete Functions 35
2.3.3 Related Research . 41

2.4 Experiments . 44
2.4.1 The Bankruptcy Prediction Problem 44
2.4.2 The Bankruptcy Data set 45
2.4.3 Reducts and Decision Rules 45

2.5 Conclusions . 49

3 Monotone Decision Trees 51
3.1 Introduction . 51
3.2 Algorithms for the Induction of Monotone Decision Trees 52

3.2.1 The Algorithm of Ben-David 53
3.2.2 The Algorithm of Makino et al. 54
3.2.3 The Algorithm of Potharst and Bioch 55

3.3 Monotone Decision Trees from Noisy Data 58
3.4 Pruning and Labelling Rules that Guarantee the Monotonicity . 60

3.4.1 Labelling Rules . 61
3.4.2 Pruning . 65

3.5 Splitting Criteria for Monotone Decision Trees 70
3.6 Missing Values in Monotone Data Sets 72
3.7 Experiments . 75

3.7.1 Experiments on the Dynamic and Static Labelling Ap-
proaches . 76

3.7.2 Experiments on the Pre-pruning and Post-pruning Ap-
proaches . 76

3.7.3 Experiments on the Comparison of the Entropy and the
Conflicts Splitting Criteria 79

3.8 Conclusions . 82

4 Monotone Decomposition 85
4.1 Introduction . 85
4.2 Function Decomposition . 86

4.2.1 The Function Decomposition Methods Introduced by Zu-
pan et al. 86

4.2.2 Other Related Research 90
4.3 Function Decomposition with Monotonicity Constraints 90

4.3.1 Monotone Decomposition of Discrete Functions 92
4.3.2 Existence of a Positive Extension of the Scheme f =

g(S0, h(S1)) . 95

CONTENTS v

4.3.3 Assignments with a Minimal Number of Values 98
4.3.4 Default Rule for Covering the Whole Input Space 100

4.4 Conclusions . 101

5 Frequent Patterns 103
5.1 Introduction . 103
5.2 Association Rules . 104
5.3 The Apriori Algorithm . 106
5.4 The FP-Growth Algorithm . 107
5.5 The Depth-First Algorithm . 112
5.6 FP-growth and Apriori . 114
5.7 Depth-First and Apriori . 118
5.8 Theoretical Comparison of FP-Growth and Depth-First 119

5.8.1 The Complexity of FP-Growth 119
5.8.2 The Complexity of Depth-First 122

5.9 Experimental Comparison of FP-Growth and Depth-First 124
5.10 Conclusions . 128

A Data Sets Used for the Experiments 129
A.1 Bankruptcy Data Set . 129
A.2 Nursery Data Set . 130
A.3 Cars Data Set . 133
A.4 Almaden Data Sets . 134
A.5 Retail Data Set . 135

B Experimental Results 137

Summary 147

Bibliography 151

vi CONTENTS

Chapter 1

Introduction

1.1 John Smith and His Grades Prediction Sys-

tem

John is a student and has to prepare for an important exam. He has been
through this situation many times before with various success but this time
he decides to try something new. Something revolutionary that is bound to
succeed. Something scientific!

He has decided to find the answer to the question of how his professor decides
which grades to give to the students. And using this, John would be able to
predict his own grade even before he went to the exam. Besides, he might also
be able to find out what he should do in order to improve his chances.

So, he gets down to work. He starts by diving in all his previous examination
experience to select which are the important factors that might influence the
professor’s decision:

– First of all “smartness” of course – he has seen how easily his very smart
colleagues get their high grades.

– Then it should be “appearance”. Well if he were a teacher he would definitely
give higher grades to all those pretty girls . . .

– “Self-confidence” is a very important factor as well – one should be able to
present oneself.

– And, well, the amount of material one has studied should also matter some-
how, he guesses.

He cannot think of anything else, so, he decides that these are all the relevant
factors. He then contacts a number of older students and questions them about

2 Introduction

the exam and their self-evaluation on the selected criteria. He ends up with a
dozen examples which he organizes in a nice table:

smartness appearance self-confidence preparation grade
high ugly low high 8

average pretty high average 7
average neutral low average 6

.

That should do, he concludes, and proceeds with the analysis of the data.
Looking at the table he decides that the following rules are true:

smartness = high, self-confidence = high → grade ≥ 8

smartness = average, appearance = pretty → grade ≥ 7

Well, he is not too smart, he admits with regret, he is more average. However
he is quite good-looking. Therefore the second rule predicts at least 7. And this
is definitely a good grade. Hmm, the preparation didn’t seem to matter . . .

Fortunately not, he smiles in relief, since he didn’t have any time for it
anyway from all that hard scientific work.

1.2 Knowledge Discovery

The reader should not take the example of John Smith too seriously. However
it might help in pointing our attention in the right direction – the area of
knowledge discovery. The researchers in this area try to bridge the gap between
data and knowledge and the benefits from such research are apparent. However
the so-formulated goal is far from trivial.

Looking at the problem from a general point of view, knowledge discovery
usually relies on two major resources: data and background information. The
background information is all the domain knowledge that we have or the plausi-
ble assumptions that we can make about the goal. Having some idea of what we
are looking for would guide us through the space of all possible solutions. Data,
on the other hand, can help by narrowing the space of all possible solutions and
thus make it easier to find the goal.

The two factors obviously complement each other. When enough data is
available, the need for background knowledge and assumptions is less. We can
simply let data “speak for itself”. When, however, data is limited we have to
rely on additional information to ensure the quality of the discovered knowledge.

Other issues also play a role. Computational limitations can prevent us from
processing amounts of data that are too large. Nowadays computer resources

1.3 Background Knowledge 3

become increasingly more powerful and accessible. At the same time, the data
that becomes available and which we would like to use grows as well. The
conflict will probably always exist as the more technology advances the more
ambitious goals will be considered.

Background information, on the other hand, might be unproven and biased
and lead us in the wrong direction. The area of statistics often relies on model
assumptions while machine learning methods often try to limit the assumptions
and use only the data.

In practice we would prefer to make fewer assumptions but the availability
of reliable prior knowledge1 can be valuable. In the following section we present
a brief overview of the types of prior knowledge we might rely on.

1.3 Background Knowledge

We can distinguish the following main types of background knowledge that
might be available to us in the process of knowledge discovery:

– knowledge about the describing attributes and the outcome (class): here we
include the knowledge we might have about the meaning of the attributes,
the way they can be measured, and which is a meaningful way to represent
them, etc.

– knowledge about the relationship between the describing attributes and the
outcome (class): here we include the available knowledge about how the
attributes relate to each other, which attributes are relevant in explaining
the class, which of them are the most important ones, how they influence
the change in the class, the character/shape of the function, etc.

– knowledge about the desired application and possible use of the system to be
built: this is usually normative knowledge which restricts our choice on the
methods we can use in order to meet the requirements of the application
area. It can include knowledge about misclassification costs, requirements
for transparency, interpretability, degree of correctness, some computa-
tional issues, the need for explanation of the proposed solution/prediction,
etc.

– other knowledge: more general knowledge that can be applied to the specific
domain.

In this research we focus on the background knowledge about a specific
property – the monotonicity property which will be described in the following
section.

1In the literature, background knowledge is also referred to as prior knowledge or domain
knowledge.

4 Introduction

1.4 Monotonicity

Monotonicity is a ubiquitous property in all areas of our life which appears
in different ways. Let us start with a number of examples before we proceed
with the more formal definition. These examples are from completely different
domains but the similarity between them might soon become apparent.

1.4.1 Economics

First we give two examples from the area of economics.

Bankruptcy prediction is the problem of detecting in advance whether a
company is going to go bankrupt, so that appropriate measures can be taken
on time. A related problem is that of credit rating which has to assign scores
to companies applying for credit. The scores are used to help banks decide
to which companies they should choose to give the credit. The choice should
obviously be made in such a way which maximizes the chance the credit will be
paid back and is therefore connected to the company’s financial situation.

The data that is available about the companies is the set of financial indi-
cators taken from their annual reports. Among those parameters, a suitable
subset is selected and used as the data on which the decision will be based.

For these parameters it holds that the better the company performs on a
particular parameter the better its overall situation is. Therefore if we compare
two companies such that the first company dominates the second one on all
financial indicators then the overall evaluation of the second one cannot be
higher than that of the first one. This rule should apply both for the credit rating
strategy used by the bank as well as for the bankruptcy prediction strategy.

1.4.2 Natural Sciences

Numerous examples of monotone relationships between factors can be given
from all natural sciences. Let us choose a couple of simple cases where mono-
tonicity is present.

In biology it is known that the bigger the animals of a certain group evolve
the lower the number of individuals becomes. This is largely due to the increas-
ing amount of food necessary to support a single animal. The availability of
food becomes a problem and the same geographical area can support the exis-
tence of fewer animals. Such knowledge is used, for example, by paleontologists
in studies on dinosaurs.

A different example indicates that bigger containers of the same shape cool
down the stored hot substance more slowly than their smaller counterparts. It
holds that the bigger the container the slower it cools down. Here the size of
the surface that is in contact with the outside world plays a role.

1.4 Monotonicity 5

1.4.3 Natural Language

Monotonicity is also reflected in the way we speak. It is a known property in the
area of natural language processing. Expressions like “many”, “few”, “some”,
“at least two”, “more than five”, “both”, etc. are called quantifiers and some
of them can be monotone increasing or monotone decreasing (see, for example,
[8]). We demonstrate this with two examples. Consider first the sentence:

Several children sing loudly.

We can make the sentence more general by leaving out “loudly”:

Several children sing.

Notice that if the first statement is true than the second (more general or
stronger) statement is also true:

Several children sing loudly. ⇒ Several children sing.

By the way, the reverse implication is not true since it is possible that none
of the children who sing sings loudly:

Several children sing. 6⇒ Several children sing loudly.

Such quantifiers are called upward monotone. A bit more formal definition
will state that upward monotone quantifiers are closed under extension. Other
examples of upward quantifiers are: “most”, “all”, “at least three”, etc.

Consider now another sentence:

No children sing.

We make it more specific by adding “loudly”:

No children sing loudly.

If the first statement is true than the second (more specific or weaker) one
will also be true:

No children sing. ⇒ No children sing loudly.

This is the reverse property of the upward monotonicity – quantifiers that
are closed under contraction are called downward monotone. Other downward
monotone quantifiers are: “few”, “neither”, “at most two”, etc.

Notice that in the second example the quantifier “no” is not upward mono-
tone since the more specific statement does not imply the more general one:

No children sing loudly. 6⇒ No children sing.

6 Introduction

The monotonicity property proves to be important in natural language stud-
ies because the monotone quantifiers can be much easier to evaluate. If we ask
the question whether a particular quantified statement is true or false, the min-
imal number of elements from the domain that we have to check to verify or
falsify the statement is often significantly lower for the monotone quantifiers
than for the non-monotone ones.

1.4.4 Mathematics

The above given examples are fairly different and still there is a red line con-
necting them. We now look at it from a more formal and precise point of view.
Being such an ubiquitous property in our lives, monotonicity is well studied in
mathematics. The most straight-forward way of representing it is as a property
of a function.

Let f be a function f : X → Y , where X and Y are (partially) ordered sets.
f is called non-decreasing if for each pair x1, x2 ∈ X such that x1 < x2 it is
true that f(x1) ≤ f(x2). Similarly f is called non-increasing if for each pair
x1, x2 ∈ X such that x1 < x2 it is true that f(x1) ≥ f(x2).

f is called monotone if it is either non-decreasing or non-increasing. An
equivalent definition states that a function is monotone if its first derivative
does not change sign.2

Let us take another point of view. A property of graph is a collection of
graphs which is closed under isomorphism. A property P is called monotone
if for any graph G satisfying P , every subgraph of G also satisfies P . In other
words, P is a family of graphs which is closed under taking subgraphs. An
example of such property is the property of being a Hamiltonian graph.

In certain areas the “mirroring” notion of anti-monotonicity is also used.
A graph property P is called anti-monotone if for any graph G if G does not
satisfy P then no graph G1 ⊇ G satisfies P .

It is easy to see that monotonicity of functions and of graph properties
describe a similar phenomenon in a different setting. For the most part of this
thesis we will rely on the functional point of view, however, the other perspective
will also play a role in the last chapter (chapter 5).

1.4.5 Operations Research

One example of a monotone function can be given from Game Theory. A co-
operative game is a function v : 2N → R such that v(∅) = 0, N denotes the
set of players and the subsets of N are called coalitions. A simple game is a
co-operative game v : 2N → {0, 1} such that v(N) = 1 and v is non-decreasing,
therefore monotone. A coalition C is winning if v(C) = 1 and losing if v(C) = 0.
An example of such a game is the weighted majority voting.

2Note that we do not restrict the first derivative to be continuous.

1.5 Monotonicity in Knowledge Discovery 7

Another example comes from reliability theory which considers the prob-
ability that a structure will perform the task it was designed for (called the
reliability of the structure). With that respect, a structure can be represented
as a Boolean function of its components where 0 represents failure of the com-
ponent/structure and 1 denotes that the component/structure is functioning.
This function is called non-degenerate if it has at least one relevant component
and semi-coherent if it is 0 when all components fail and 1 when all components
function. For non-degenerate functions, the property of semi-coherence is equiv-
alent to monotonicity of the function. It is interesting to realize that reliability
theory and game theory are closely connected and a semi-coherent structure in
reliability theory corresponds to the notion of a simple game in game theory.
The reader is referred to [70] for a detailed discussion on both topics.

1.5 Monotonicity in Knowledge Discovery

We now concentrate on the area of knowledge discovery and the way the mono-
tonicity property appears there. We first briefly discuss a couple of examples
within different aspects of knowledge discovery and then concentrate on the
sub-area of classification which plays a very important role in this thesis.

The concept of a reduct comes from the Rough Sets theory and is discussed in
detail in chapter 2. Informally speaking, a (non-minimal) reduct is such a subset
of attributes that does not introduce additional inconsistencies in the data.
We can, therefore, use reducts to detect redundant attributes. An important
property of reducts is that any superset of a reduct is also a reduct. In other
terms, if the subset relation is the ordering relation on the set of all subsets of
attributes, then the the concept of a reduct is a monotone Boolean function.

A similar fact can be drawn from Database Theory where one of the most
important concepts is that of a key for a data table. A set of attributes X is
called a key if no two rows of the data table agree on every attribute in X .
Again it is an important property that every key must contain some minimal
key and conversely every superset of a key is also a key. In fact, a key is a reduct
of a table where no decision attribute is designated.3

Association rules generation is another area of knowledge discovery (dis-
cussed in chapter 5) where monotonicity plays a role. Here the concept of a
frequent pattern is important: a set of items that appear together more of-
ten than a predefined threshold. The property of being an infrequent pattern
is monotone while the property of being a frequent pattern is anti-monotone.
This knowledge can be used in reducing the number of candidate patterns that
need to be counted and therefore helps to speed the frequent patterns generation
algorithms. A similar argument holds for the generation of association rules.

3This variation of the definition of a reduct is not discussed in chapter 2. The reader is
referred to [60] for more information.

8 Introduction

In this thesis, monotonicity is discussed from the aspects of attribute reduc-
tion, function decomposition, missing values handling, frequent patterns gener-
ation and classification. We now turn our attention to classification.

1.5.1 Monotone Classification

Classification is a sub-area of knowledge discovery that refers to the problem
of predicting the value of a target variable by building a model based on some
relevant independent variables where the target and the independent variables
are of discrete type.

As background knowledge in classification, monotonicity relates to most of
the previously defined groups (see section 1.3). First of all it includes the infor-
mation that the attributes come from ordered domains. Furthermore it indicates
that the target variable is a monotone function of the describing independent
attributes. It also poses a requirement to the system to be built that its predic-
tions should also satisfy the same property.

In the following subsections, the effect of monotonicity from the point of
view of classification will be defined more precisely. Three points of view can be
relevant: the problem, the data set drawn from it and the classifier for prediction
of the target variable for future instances.

1.5.2 Monotone Problems

We start by defining a problem P as the tuple P = 〈X, A, f〉 where:

X = {x1, x2, . . . , xm} is the input space, the set of all possible objects that we
want to be able to classify;

A = {a1, a2, . . . , an} is the set of attributes that we use to describe the objects,
we will also refer to them as condition attributes;

f : X → F is a function where F is the set of possible values of the outcome (in
the following we will also refer to it as the class or the decision attribute).
f is the function that we want to guess or approximate.

We call the problem P a monotone problem if:

1. X is partially ordered using the attributes in A;4

2. f is a monotone function: ∀xi, xj ∈ X, xi ≤ xj ⇒ f(xi) ≤ f(xj).

Note that, in fact, here we describe a positive function, however, any negative
relation can be easily transformed to a positive one by redefining the correspond-
ing attribute. We can change the coding of the values so that the highest one

4Although the requirement for partial order is sufficient for our discussion, the definition
can be generalized to only requiring quasi-order (see [15]).

1.5 Monotonicity in Knowledge Discovery 9

gets the lowest label and the lowest one gets the highest label. We can also use
a different but “mirroring” attribute – for example an attribute called “degree
of lightness” might be replaced by the attribute “degree of darkness”.

Since we do not have a complete specification of the function f we cannot
check the property by computation. Here we rely on prior knowledge coming
from experience or from other research on the underlying mechanisms in the
domain.

1.5.3 Monotone Data Sets

A data set DP drawn from the problem P is a tuple 〈U, A, fD〉 where:

U = {x1, x2, . . . , xk} ⊂ X is a set of objects;

A = {a1, a2, . . . , an} is the attribute set of P ;5

fD : U → FD ⊆ F where fD is completely specified over U so that fD(x) ≈
f(x) where “≈” is an application specific measure of closeness or equality.
In the ideal case fD is equal to f over U , however, in real life applica-
tions the available data is sometimes infested with noise and/or imprecise
measurements. In the rest of the thesis we assume equality unless noise is
explicitly taken into account.6 Note that, in the case of equality, we may
say that fD is a partially defined function over X which has an extension
f .

A data set D (in the following we will skip the subscript P if no confusion
arises) is called a monotone data set if:

1. U is partially ordered using the attributes in A,

2. the function fD is monotone: ∀xi, xj ∈ U, xi ≤ xj ⇒ fD(xi) ≤ fD(xj).

The monotonicity of a data set is verifiable in a straightforward way by
exhaustive computation.

Let us now look at how the monotonicity of the problem relates to the
monotonicity of a data set drawn from it.

In a noiseless and precise data collection process where f is an extension of
fD, it is true that the monotonicity of the problem implies the monotonicity of
the data set. The reverse, however, is not true. That is easy to see if we consider

5A more general formulation might state that AD ⊆ AP or AP ⊆ AD or even AD∩AP 6= ∅.
However, since the choice of the relevant attributes out of all possible ones comes before the
classifier generation process, relies on experts’ knowledge and is therefore outside of the scope
of this analysis, we choose the simpler formulation which is sufficient for our goals.

6In this way we also exclude probabilistic problems where the data points are assigned
distributions instead of single labels. This case, however, falls outside of the scope of this
thesis and we choose the simplifying assumption of equality.

10 Introduction

the extreme case of a data set containing only one object. Such a data set is
always monotone because there are no other objects to compare with. But since
such a data set can be drawn from any problem, then every problem, monotone
or not, can produce many monotone data sets.

When the data set is noisy this might influence the monotonicity as well.
If the problem is monotone it might still generate a non-monotone data set as
some values will be incorrect or imprecise. In this case we can only rely on
domain knowledge to assure us that the problem is monotone and then the non-
monotonicity of the data set will be interpreted as a sign for the presence of
noise.

More precisely we can represent the situation as follows. Let the data set
D = 〈U, A, fD〉 be the one generated based on the problem P in the ideal case
(with no noise or imprecision). In this case f is an extension of fD. In practice,
however, the data set we record is a noisy version of D denoted by D∗ where
D∗ = 〈U, A, f∗

D〉 and f∗
D : U → FD.7 The monotonicity of D does not imply the

monotonicity of D∗.

In the rest of this thesis when we discuss the monotonicity of a data set we
assume that we know the underlying problem to be monotone.

1.5.4 Monotone Classifiers

The goal of the classification methods is to find a classifier using the available
data set. A classifier based on a data set D is defined as a function f̂ : Û → FD

where U ⊂ Û ⊆ X and f̂(x) ≈ fD(x) for x ∈ U . Here again “≈” is a domain
specific measure of closeness. In the ideal case when the data set contains no
noise and imprecision we would like the closeness to be equality.8

Note that we chose to define f̂ over Û such that U ⊂ Û ⊆ X . Ideally we
would like this Û to be equal to X which would mean that we generalize from
a small subset to the whole input space. However there exist many algorithms
for generating classifiers that do not cover the whole input space – for them the
requirement is Û to be as close to X as possible.

Let us assume that the available data set is a noisy version D∗ of D. In that
case we cannot require of the classifier we are about to build to agree with f ∗

D

as we already know that it is noisy and therefore not equal to f on U (and f is
our ultimate goal).

A large number of techniques are available for fighting with noise. Most
of them we can represent as methods that (implicitly or explicitly) build an

7We make the simplifying assumption that the noisy values do not leave the ranges of the
attributes in A and class values in FD. Such noise is often easy to detect as it results in
impossible values that are obviously incorrect.

8The function we want to guess or approximate is f and therefore we actually want f̂ to
be close or equal to f . But the only data that we have about f is D, therefore we try to
approximate that data hoping that it is in turn close enough to f .

1.6 The Contribution of This Thesis 11

approximation of the noisy data set Dappr such that fappr
D ≈ f∗

D according to
some appropriate measure for closeness and fappr

D ≈ fD according to a (differ-
ent) appropriate measure for closeness. This second measure is often implicit
and is based on certain assumptions made by the different methods. The ap-
proximation data set is further used for building the classifier.9

A classifier f̂ is called a monotone classifier if it is a monotone function.

The monotonicity property here is not interpreted as a characteristic that
we detect afterwards but more as a requirement coming from the domain area
and from the way we are going to apply the classifier. It is possible to generate
a monotone classifier for a problem that is known to be non-monotone. That
might be taken as a sign that the classifier does not have some of the important
characteristics of the problem and is therefore not close enough to the goal. If,
however, we know that the problem is monotone then monotonicity might be
one of the requirements we pose to the classifier.

A number of methods take explicitly into account the monotonicity property
of the problem and generate monotone or nearly monotone classifiers. Some
examples can be given from the area of decision trees [9, 55, 18, 64, 13, 30, 65],
neural networks [76, 35], rough sets [40, 12, 41], logical analysis of data [33, 25,
23, 24], decision lists [11], instance-based learning [10], etc.

It has to be emphasized that, while in some sub-areas of classification meth-
ods have already been developed for taking monotonicity into account, in most
algorithms it has not been extensively studied or has not even been addressed
at all. This thesis is a contribution in the direction of developing methods that
can process monotone data and satisfy the restriction of monotonicity of the
resulting classification and prediction model.

1.6 The Contribution of This Thesis

This thesis is divided in four parts each of which is connected to the above
discussed monotonicity property however in a different way and from a different
point of view. In this section the four problems will be briefly presented with
an indication of where the specific contribution of the thesis lies.

The thesis is organized in four independent chapters each devoted to one of
the specific problems. The two appendices give additional information on the
data used in the experiments for the main chapters and additional experimen-
tation results. In the following subsections we briefly present the four chapters
and their contribution.

9One of the algorithms that explicitly generates the approximation data set is the Monotone
Decision Trees algorithm discussed in chapter 3.2 with the proposed extension for handling
noisy data. There the approximation data set is called the updated data set.

12 Introduction

1.6.1 Ordinal Attribute Reduction and Rule Induction

with Rough Sets

Chapter 2 takes its starting point from the Rough Sets theory. The classical
Rough Sets theory does not take into account the monotonicity property of
the data and therefore does not guarantee that the class prediction will satisfy
the constraint. In our research, an extension of the methodology is proposed
for classification with monotonicity constraints. It can be used for attribute
reduction of monotone data sets such that preserves the monotonicity property
by means of generating monotone reducts. It can further be used to generate
rules that compose a monotone classifier.

The main contribution of our research in comparison to the only previous
approach in the same direction is the method for rules generation which (unlike
the earlier method) composes a consistent monotone classifier even when the
data contains monotone inconsistencies. Furthermore, an alternative method for
the generation of monotone reducts is proposed which is easier to comprehend
and apply than the previous approach.

Most of the research has been previously published in [12].

1.6.2 Monotone Decision Trees

Chapter 3 focuses on monotonicity in the context of decision trees. It extends an
existing algorithm that generates monotone decision trees for classification with
monotonicity constraints. The original algorithm can only be applied on strictly
monotone noiseless data. We propose an extension that allows the generation
of monotone trees from noisy inconsistent data, new methods for pruning the
trees so that they remain monotone and functions for monotone labelling of
the leaves. Empirical comparison is also done between two splitting criteria for
decision trees to give more insight into which one performs better in the setting
of a monotone problem.

As a result of this research a set of methods become available which provide
to the monotone trees generation process tools similar to those available for
the general tree generation algorithms: noise handling, simplification, missing
values handling, etc. That opens the door to easier application of the monotone
decision trees algorithm in real-life setting.

Most of the chapter is based on the publications [17, 16].

1.6.3 Monotone Decomposition

Chapter 4 is in the area of functional decomposition applied to knowledge dis-
covery. Again here the previously available methods do not take into account the
monotonicity property. In this thesis, the existing methodology is extended to
handle monotone problems in such a way that the decomposed function remains
monotone.

1.6 The Contribution of This Thesis 13

We concentrate on the subproblem of determining whether there exists an
extension of the positive scheme f = g(S0, h(S1)) for given subsets S0 and S1

of the set of attributes. Furthermore, we propose methods for finding such an
extension with a minimal number of distinct values of the intermediate concept
in order to minimize the complexity of the decomposed structure.

The main result of this research is in providing methods for generating a
monotone classifier through decomposition. It could be used not only for clas-
sifying future unseen examples but also in getting better insight into the hier-
archical structure of monotone data.

The results of this research have been published in [63].

1.6.4 Frequent Patterns

Finally chapter 5 lies in the area of data mining and, more specifically, asso-
ciation rules generation. It focuses on the first part of the problem – frequent
patterns discovery. Two of the best algorithms in the literature are consid-
ered, namely, FP-growth and Depth-First implementations of Apriori. They
are compared theoretically and empirically in order to give more insight into
their differences and how certain features of the data sets can influence the
performance of both algorithms.

Very little had previously been done in the area of theoretical comparison
of frequent patterns generation algorithms and no previous experimental com-
parisons had included the Depth-First algorithm. Our research is therefore an
important step forward in this direction. We propose two formulas for com-
plexity analysis of the two algorithms in focus measuring two important factors
influencing the performance – the number of database queries and the number
of nodes in the data structure built by the algorithm. The experimental com-
parison uncovers some of the data properties that influence the difference in
performance.

This research has been published in [36, 51].

14 Introduction

Chapter 2

Ordinal Attribute

Reduction and Rule

Induction with Rough Sets

2.1 Introduction

The theory of Rough Sets dates back to the early 1980’s. It was first proposed
by Zdzis law Pawlak and was extensively presented in [59, 60]. A large number
of researchers contributed to the further development of the field by extending
and applying the theory.

Rough Sets theory is a mathematical tool based on sets theory with, as a
main goal, the induction of approximations of concepts. The two main appli-
cations of the classical Rough Sets theory are in attribute reduction and classi-
fication. It was later applied within other areas such as unsupervised learning
[53].

An important feature of Rough Sets theory is the fact that it does not make
additional model assumptions and does not need special model parameters. It
relies solely on the data available. This is a major difference from, for example,
the methods of fuzzy sets where the agent is required to assign numerical values
to express the imprecision of his knowledge. In Rough Sets theory, instead, the
imprecision is expressed by qualitative concepts (approximations) derived from
the data [60]. Another important feature is the ability to deal with noise and
inconsistent data. In fact inconsistent data is processed in the same way as
consistent data and no additional methods are required.

In this chapter an extension of the classical Rough Sets theory is proposed
for handling monotone data. It provides methods for generating a classifier, by
means of decision rules, which is guaranteed to be monotone over the whole

16 Ordinal Attribute Reduction and Rule Induction with Rough Sets

age experience grades
Anna 21-30 none good
Bill 21-30 none good
Cathy 21-30 4-6 average
Dave 31-40 1-3 excellent
Emma 31-40 4-6 good
Frank 31-40 4-6 good

Table 2.1: An information system

input space. The methods can also be applied for monotone attribute reduction
where the reduced set of attributes also satisfies the monotonicity constraint.
Most of the research has been previously published in [12].

The chapter is organized as follows. Section 2.2 gives a brief introduction to
the classical Rough Sets theory. The proposed extension for monotone classi-
fication is presented in section 2.3. Further some experiments were performed
on the problem of bankruptcy prediction as a monotone classification problem.
The results are discussed in section 2.4. The conclusions of the chapter are given
in section 2.5.

2.2 Basic Notions in Rough Sets Theory

2.2.1 Decision Tables and Indiscernibility

Traditionally all basic notions in the theory of Rough Sets are defined using
sets and equivalence relations. For our purpose, however, it is enough to start
directly with a decision table. For a good introduction to the classical Rough
Sets Theory the reader is referred to [60].

An information system S is a tuple S = 〈U, A, V 〉 where:

U = {x1, x2, . . . , xn} denotes a non-empty, finite set of objects (observations,
examples),

A = {a1, a2, . . . , am} denotes a non-empty, finite set of attributes, and

V = {V1, V2, . . . , Vm} is the set of domains of the attributes in A.

An example of an information system is given with table 2.1 where:

U = {Anna, Bill, Cathy, Dave, Emma, Frank},

A = {age, experience, grades},

V = {{21−30, 31−40}, {none, 1−3, 4−6}, {average, good, excellent}}.

A decision table is a special case of an information system where among

2.2 Basic Notions in Rough Sets Theory 17

age experience grades hired
Anna 21-30 none good yes
Bill 21-30 none good no
Cathy 21-30 4-6 average no
Dave 31-40 1-3 excellent yes
Emma 31-40 4-6 good yes
Frank 31-40 4-6 good yes

Table 2.2: A decision table

the attributes in A we distinguish one or more called a decision attribute(s)1.
The other attributes are called condition attributes. In the case of a decision
table we use the notation: A = C ∪ {d}, C = {a1, a2, . . . , am} where ai –
condition attributes, d – decision attribute. As an example, the information
system of table 2.1 is extended to a decision table in table 2.2 by adding a
decision attribute d = hired with Vd = {yes, no}.

A closer look at table 2.2 will show that Anna and Bill have identical values
for all condition attributes and the same can be seen about Emma and Frank.
One of the building notions of Rough Sets Theory is the indiscernibility relation
between objects. It is defined relative to a set of attributes and determines
whether, given the set of attributes, two objects are the same (indiscernible) or
different. More precisely, the indiscernibility relation generated by a set B ⊆ A
in an information system S is defined as:

INDS(B) = {(x, y)|x, y ∈ U, ∀a ∈ B a(x) = a(y)}. (2.1)

The indiscernibility relation is an equivalence relation2 and it partitions the
set of objects in equivalence classes of objects that are indiscernible with respect
to the given subset of attributes. In the example, for B = C the partition is:

INDS(C) = {{Anna, Bill}, {Cathy}, {Dave}, {Emma, Frank}}

and for B = {grades}:

INDS(B) = {{Anna, Bill, Emma, Frank}, {Cathy}, {Dave}}.

The equivalence class of an object x generated by a set of attributes B is
denoted by [x]B .

It is clear that for B1 ⊆ B2 ⊆ A always INDS(B2) ⊆ INDS(B1) or, intu-
itively, the more attributes we add the finer the partition becomes. Therefore

1In the following we only consider one decision attribute as this is usually the case in
classification, however, all the definitions can easily be generalized for more than one decision
attribute.

2An equivalence relation R is a binary relation that is reflexive (xRx), symmetric (xRy ⇒
yRx) and transitive (xRy, yRz ⇒ xRz).

18 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Figure 2.1: The set approximations

by removing attributes from the table in general we reduce the available infor-
mation for discerning the objects and the important question is which attributes
are dispensable and which should not be removed. In Rough Sets Theory those
attributes are detected using the notions of lower/upper approximation and
positive region.

2.2.2 Set Approximations

Given sets X ⊂ U and B ⊂ A, the lower approximation of X with respect to B
is defined as:

BX = {x ∈ U |[x]B ⊂ X} (2.2)

or the collection of objects whose equivalence classes are subsets of X .
The upper approximation of X with respect to B is defined as:

BX = {x ∈ U |[x]B ∩ X 6= ∅} (2.3)

or all objects whose equivalence classes have a nonempty intersection with X .
A rough set X is defined as the pair (X, X). X is called crisp (or definable)

if X = X.
Figure 2.1 shows an example of the set approximations where the grid is the

partitioning generated by the indiscernibility relation, the oval shape is the set
to be approximated, the dark grey area is the lower approximation and the light
grey area is the upper approximation.

In the case of a decision table, one is interested in the lower and upper ap-
proximation of the equivalence classes of the decision attribute and by varying

2.2 Basic Notions in Rough Sets Theory 19

the set B it is possible to analyze the attributes on whether they are dispensable
or not. In the example of table 2.2 the decision attribute generates two equiva-
lence classes: Xyes = {Anna, Dave, Emma, Frank} and Xno = {Bill, Cathy}.
Then the lower approximation of Xyes with respect to C is:

CXyes = {Dave, Emma, Frank}.

The object Anna is not included because its equivalence class is not a subset of
Xyes. Anna is however included in the upper approximation since its equivalence
class has a non empty intersection with Xyes:

CXyes = {Anna, Bill, Dave, Emma, Frank}

Similarly:
CXno = {Cathy},

CXno = {Anna, Bill, Cathy}.

The positive region of D ⊂ A with respect to B ⊂ A is defined as:

POSB(D) = ∪{BX : X ∈ IND(D)} (2.4)

or the collection of the B-lower approximations corresponding to all the equiv-
alence classes of D.

The set D in this particular case will be equal to {d} where d is the decision
attribute. In the example:

POSC(d) = {Cathy, Dave, Emma, Frank} = CXno ∪ CXyes.

2.2.3 Reducts

An attribute a ∈ B is called dispensable (or superfluous) in B ⊂ A if POSB(d) =
POSB/{a}(d). Otherwise it is called indispensable.

In the example the attribute grades is dispensable in C because for the
attribute set B = {age, experience}:

POSB(d) = BXno ∪ BXyes = {Cathy} ∪ {Dave, Emma, Frank} =

= {Cathy, Dave, Emma, Frank} = POSC(d).

The set of all indispensable attributes in C with respect to d is called the
core. Note that the core can be empty if no attributes are indispensable in C.
B is called independent with respect to d if every attribute in B is indispensable
with respect to d.

A reduct of C with respect to d is defined as every subset B ⊂ C such
that B is independent with respect to d and POSC(d) = POSB(d). A reduct
is actually such a subset of conditional attributes that discerns the objects in

20 Ordinal Attribute Reduction and Rule Induction with Rough Sets

A B C D E F
A ∅ ∅ {e,g} ∅ ∅ ∅
B ∅ ∅ ∅ {a,e,g} {a,e} {a,e}
C {e,g} ∅ ∅ {a,e,g} {a,g} {a,g}
D ∅ {a,e,g} {a,e,g} ∅ ∅ ∅
E ∅ {a,e} {a,g} ∅ ∅ ∅
F ∅ {a,e} {a,g} ∅ ∅ ∅

Table 2.3: The discernibility matrix

the same way as the full set of conditional attributes while being minimal with
respect to inclusion. Therefore it allows all attributes not in the reduct to be
ignored and thus to achieve reduction in the number of attributes (or attribute
reduction).

One decision table can have more that one (and sometimes very many)
reducts. Obviously in some cases the full set of attributes can also be a reduct.
Since the attributes in the core are all indispensable for C, then they should
appear in all reducts and the core is actually the intersection of all reducts.

The notion of a reduct is fundamental for Rough Sets Theory and a number
of equivalent definitions are available in the literature.3 One that provides
an important, for our purpose, point of view on reducts uses the notions of
discernibility matrix and discernibility function.

The discernibility matrix shows how each two objects differ from each other
given the condition attributes. It is formally defined as follows:

(cij) =

{
{a ∈ A : a(xi) 6= a(xj)} for i, j : d(xi) 6= d(xj)
∅ otherwise .

(2.5)

Each entry of the matrix contains the (names of the) attributes for which the
two objects differ when they are from different classes. The matrix is obviously
symmetrical with empty main diagonal. It is therefore enough to only consider
the entries on the lower side of the main diagonal.

For the example decision table (table 2.2), the discernibility matrix is shown
on table 2.3 where for compactness the objects are denoted by {A,B,C,D,E,F}
and the condition attributes by {a,e,g}.

From the discernibility matrix we can construct a Boolean function called a
discernibility function f of m Boolean variables â1, â2, . . . , âm where âi corre-
sponds to the attribute ai for 1 ≤ i ≤ m. It is defined as follows:

f(â1, â2, . . . , âm) =
∨ {∧

ĉij |1 ≤ j ≤ i ≤ n, cij 6= ∅
}

(2.6)

3The notion of a reduct as well as many of the other basic notions can also be defined for
an information system without a decision attribute. Here, however, we only consider decision
tables and those definitions are not taken into account.

2.2 Basic Notions in Rough Sets Theory 21

where ĉij = {âk|ak ∈ cij}.
It is known that the set of all prime implicants4 of f corresponds to the set

of all reducts of the table. They can be computed by dualizing the discernibility
function. Here we briefly introduce the notion of dualization (see also [14, 11,
49]).

For a Boolean variable x the complement of x is defined as x = 1 − x.
The complement of a Boolean function is defined as f(x) = f(x). The dual
of a function can then be defined as fd(x) = f(x). It can be computed by
interchanging the conjunction and disjunction signs and simplifying the resulting
expression.

Therefore the dual of the discernibility function can be represented as in the
following formula:

fd(â1, â2, . . . , âm) =
∧ {∨

ĉij |1 ≤ j ≤ i ≤ n, cij 6= ∅
}

(2.7)

When the expression is simplified to disjunctive normal form, each conjunction
in it corresponds to a reduct.

Equivalently, the reducts are the minimal transversals5 of the set of entries
of the discernibility matrix. In other words, they are the minimal subsets of
condition attributes that have a non-empty intersection with each non-empty
entry of the matrix.

In the example, the dual of the discernibility function generated from the
matrix of table 2.3 is given below:

fd = (e ∨ g)(a ∨ e ∨ g)(a ∨ e ∨ g)(a ∨ e)(a ∨ g)(a ∨ e)(a ∨ g) (2.8)

The function from equation 2.8 can be simplified to:

fd = (a ∨ e)(a ∨ g)(e ∨ g) = ae ∨ ag ∨ eg

from which it can be seen that the prime implicants are {a,e},{a,g} and {e,g}.
It is easy to verify from the table that these are indeed the minimal transversals
of the entries as well. The core in this case is empty.

2.2.4 Complexity and Heuristics

Generating a reduct of minimum length is an NP-hard problem. Therefore,
in practice a number of heuristics are preferred for the generation of only one

4An implicant p of a function f(X) is such an elementary conjunction for which p(X) =
1 ⇒ f(X) = 1 for all Boolean vectors X. p is a prime implicant if no other implicant can be
obtained by deleting literals from p.

5A transversal of a collection of sets is such a set that has a non-empty intersection with
each set from the collection. A minimal transversal is such a transversal that does not properly
contain another transversal.

22 Ordinal Attribute Reduction and Rule Induction with Rough Sets

“good” reduct. Two of these heuristics are the “Best Reduct” method [47] and
Johnson’s algorithm [48].

The complexity of a total time algorithm for the problem of generating all
minimal reducts (or dualizing the discernibility function) has been intensively
studied in Boolean function theory, see [14, 37, 11]. Unfortunately, this problem
is still unsolved, but a quasi-polynomial algorithm is known [39]. However, these
results have not yet been mentioned in the rough set literature, see e.g. [49].

As it was mentioned above, two of the more successful heuristics for gener-
ating one reduct are the Johnson’s algorithm and the “Best reduct” heuristic.
Strictly speaking these methods do not necessarily generate reducts, since the
minimality requirement is not guaranteed. Therefore, for this topic we shall
make the distinction between (non-minimal) reducts and minimal reducts. One
possible approach used to solve the problem is to generate the reduct and then
check whether any of the subsets are also reducts.

The Johnson’s heuristic uses a very simple procedure that tends to gener-
ate a reduct with minimal length (the minimality is not guaranteed, however).
Given the discernibility matrix, for each attribute the number of entries where
it appears is counted. The one with the highest number of entries is added to
the future reduct. Then all the entries containing that attribute are removed
and the procedure repeats until all the entries are covered.

It is logical to start the procedure by simplifying the set of entries: removing
the entries that contain strictly or non strictly other elements. In some cases
the results with and without simplification might be different.

The “Best reduct” heuristic is based on the significance of attributes mea-
sure. It is defined based on the measure of dependency between a set R ⊂ C
and the decision attribute d:

k(R, d) = card(POSR(d))/card(POSC (d)).

If R is a reduct of C then k(R, d) = 1. Further the significance of an attribute
a added to R is defined as follows:

SGF (a, R, d) = k(R + {a}, d) − k(R, d).

The procedure starts with the core and on each step adds the attribute with
the highest significance, if added to the set, until the value reaches one.

In many of the practical cases the two heuristics give the same result, how-
ever, they are not the same and a counter example can be given. The data set
discussed in our experiments in section 2.4, for example, gives different results
when the two heuristics are applied.

2.2.5 Object Reducts

The notions discussed so far give us methods for attribute reduction in a consis-
tent way. Rough Sets theory goes further by generating rules from the reduced

2.2 Basic Notions in Rough Sets Theory 23

table. For that the notions of object-relative discernibility function and object-
reduct are introduced.

The object-relative discernibility function (or j-relative discernibility func-
tion) is defined over the jth column of of the discernibility matrix:

fd
j (â1, â2, . . . , âm) =

∧ {∨
ĉij |j ≤ i ≤ n, cij 6= ∅

}
(2.9)

It describes how one particular object (denoted here by j) can be discerned from
all other objects of different classes.

The prime implicants of the j-relative discernibility function are called object-
reducts (or value-reducts) and they represent the minimal necessary information
to discern the object.

From the discernibility matrix of table 2.3, the discernibility function of
object E is as follows:

fd
E = (a ∨ e)(a ∨ g)

The prime implicants (and object reducts) are {a} and {e,g}. Similarly for
object D the discernibility function is:

fd
D = (a ∨ e ∨ g)(a ∨ e ∨ g)

and the prime implicants are {a}, {e} and {g}.

2.2.6 Classification Rules

From the object reducts one can generate classification rules in the following
way. For each attribute in the reduct the corresponding values are retrieved
from the related object. They constitute the left-hand side of the rule. The
right-hand side contains the class value (the value of the decision attribute) of
the object.

For example the rules corresponding to the object reducts of object E are:

a = 31−40 ⇒ h = yes

e = 4−6, g = good ⇒ h = yes

In order to generate a classifier, rules are extracted for each object and each
corresponding value-reduct. This usually results in a large number of rules
although some of these are repetitious, consequently, pruning the set can avoid
this. The classifier is usually applied on an unseen object as follows:

1. The new object is compared to each rule in order to extract the set of
rules that fire.

2. If no rule fires a special default rule is applied. This, for example, might
assign the majority class from the table to the new object.

24 Ordinal Attribute Reduction and Rule Induction with Rough Sets

3. If at least one rule fires and no conflicting predictions occur the consensus
prediction is assigned to the object.

4. If rules with conflicting predictions are detected, a form of voting is per-
formed in order to decide which class to choose. Ranking is usually applied
to the rules based on (among other things) the support of the rule in the
table.

The Rough Sets methods have been applied in a large number of domain ar-
eas including medicine, economics, finance, environmental studies, engineering,
information science, social sciences, molecular biology and chemistry. For a list
of case-studies and tools the reader is referred to [49].

2.2.7 Extensions of Rough Sets Theory

Many authors argue that the classical Rough Sets theory is too restrictive and
the research in that direction results in a number of attempts to extend the
theory or relax the constraints in different ways.

The variable precision rough set model [80] is a step in that direction. The
method is a generalization of the theory of Rough Sets aimed at handling un-
certain information by allowing controlled degree of misclassification.

Another approach in that direction is proposed in [57] by relaxing the indis-
cernibility relation from an equivalence to a tolerance relation.

Other extensions of the methodology provide various ways of refining the
results by generating “better” reducts and decision rules. Rough Sets theory
gives the possibility of computing all reducts of a set of attributes. This can be
both an advantage and a disadvantage. The full set of reducts can provide a
better overall picture of the properties of the data and the possibility to choose
which reduct to use. However the number of reducts can be overwhelmingly high
and the classical theory does not provide assistance in the choice of a reduct.
While the reduct of a minimal length might sometimes be preferred, one can
argue that it does not need to be the best solution and its calculation is an
NP-hard problem.

The idea of dynamic reducts was introduced in [7] and strives at generating
more “stable” reducts. The underlying idea is that the classical reducts some-
times reflect peculiarities in the data and are sensitive to small changes in the
decision table. Therefore, random samples from the data are used and the most
frequently appearing reducts (the dynamic reducts) are expected to be more
robust and reflect the real structure of the data.

Similar arguments apply to the generation of decision rules. In [56] the notion
of default rules is introduced as rules that have exceptions and an algorithm is
proposed to generate such rules by systematically removing attributes from the
data. Such rules are believed to be more general and better for classifying
unseen objects.

2.3 Rough Sets on Monotone Problems 25

The extensions mentioned in this section are just some of the existing ones.
The large body of research in the area produced many more interesting methods
for “customizing” the classical theory for solving different problems.

2.3 Rough Sets on Monotone Problems

In this section we focus on a specific type of problems, namely, the monotone
problems. We present the contribution of this chapter in extending Rough Sets
theory towards dealing with such problems. In subsection 2.3.3 we also discuss
related research and how the approaches differ from our approach.

2.3.1 Monotone Information Systems

Let us consider a decision table S = (U, C ∪ {d}, V) where for each attribute
ai ∈ C∪{d} the corresponding set of values Vi is ordered. This induces a partial
order over the universe U : for x, y ∈ U , x ≤ y if ak(x) ≤ ak(y) ∀ak ∈ C. In
the rest of this section we only consider decision tables with ordered attribute
values.

We call the decision table S = (U, C ∪ {d}, V) monotone when for each
couple xi, xj ∈ U the following holds:

ak(xi) ≥ ak(xj), ∀ak ∈ C ⇒ d(xi) ≥ d(xj) (2.10)

where ak(xi) is the value of the attribute ak for the object xi. The following
example will serve as a running example for this section.

Example 1

The following decision table represents a monotone data set (table 2.4):

U a b c d
x1 0 1 0 0
x2 1 0 0 1
x3 0 2 1 2
x4 1 1 2 2
x5 2 2 1 2

Table 2.4: Monotone decision table

26 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Positive Area

We shall now look at the problem from a more general point of view. Let R, S
be arbitrary relations on a universe U . Then we define R ⊆ S ⇔ (xRy ⇒
xSy, ∀x, y ∈ U).

Given a data set, any subset of attributes A ⊆ C induces a relation RA on U .
In the general case, this was an equivalence relation. Here however we consider
only attributes with full order over the attribute values. We can then define the
relation RA as follows: for x, y ∈ U , xRAy if ∀ai ∈ A ai(x) ≤ ai(y). Both in
the general and the ordinal case, a data set is called consistent if RC ⊆ R{d}

where d is the decision attribute.
Furthermore, for each x ∈ U we define an upset and a downset with respect

to R as follows:
x↑R = {y : xRy}

x↓R = {y : yRx}.

In the next paragraphs we try to redefine the notions of lower and upper
approximations for the ordinal case. This would eventually lead us to a new
definition for the positive area in the monotone case. We are guided by the
following simple considerations.

The intuition behind the definitions is that these should behave in a similar
way to those for the general case while taking into account the monotonicity
property. In the general case, the lower approximation of a set consists of those
points that can be unambiguously assigned to that set. We expect the same
from the monotone lower approximation, only that here “unambiguously” takes
a new meaning. Intuitively those should be the points that belong to this set
which do not participate in inconsistent pairs, therefore no point that dominates
them belongs to a lower class and no point that is dominated by them belongs
to a higher class.

More formally we can define the upward lower and upper approximation of
a set X ⊆ U with respect to the relation R and a relation Rd:

R↑(X) = {x ∈ X : x↑R ⊆ x↑Rd}

R↑(X) = {x ∈ X : x↑R ∩ x↑Rd 6= ∅}.

Similarly the downward lower and upper approximations can be given with
the downset of x:

R↓(X) = {x ∈ X : x↓R ⊆ x↓Rd}

R↓(X) = {x ∈ X : x↓R ∩ x↓Rd 6= ∅}.

The intersection of the upward and the downward approximations defines
the monotone lower and upper approximations:

Rl(X) = R↑(X) ∩ R↓(X)

2.3 Rough Sets on Monotone Problems 27

R l(X) = R↑(X) ∩ R↓(X).

For compactness, in the following RlB (X) will be denoted by B l(X).
A step further is to define the monotone positive area for a set B ⊆ C as:

POSB(d) = ∪{B l(X) : X ∈ [U]d}

where
[U]d = {X ⊆ U : ∀x, y ∈ X, d(x) = d(y)}.

Following the same intuition the positive area contains all points that do not
participate in inconsistent pairs. Obviously the data set consisting of only the
positive area is monotone.

Now we are ready to redefine the notion of a reduct: B ⊆ C is a monotone
reduct if POSB(d) = POSC(d) and B is minimal with respect to inclusion.

Before giving a simple example to demonstrate the redefined notions of pos-
itive area and reduct, we prove two lemmas to clarify the chosen definitions.

Lemma 1 Let RB be the relation on U induced by a set of attributes B ⊆ C.
Then:

POSB(d) = {x ∈ U : y ∈ x↑RB ⇒ d(y) ≥ d(x) and y ∈ x↓ RB ⇒ d(y) ≤ d(x)}.

Proof:
POSB(d) = ∪{B l(X) : X ∈ [U]d} =

= ∪{B ↑(X) ∩ B ↓(X) : X ∈ [U]d} =

= {x ∈ X : x↑RB ⊆ x↑Rd, x↓RB ⊆ x↓Rd, X ∈ [U]d} =

= {x ∈ U : x↑RB ⊆ x↑Rd, x↓RB ⊆ x↓Rd} =

= {x ∈ U : y ∈ x↑RB ⇒ d(y) ≥ d(x) and y ∈ x↓RB ⇒ d(y) ≤ d(x)}.

�

Lemma 2 If the data set is monotone the following statements are equivalent:

1. B is a reduct;

2. RB ⊆ Rd.

Proof: It is easy to see that if the data set is monotone then POSC(d) = U .
This follows directly from the previous lemma since the data set will contain no
inconsistencies that would be excluded from the positive area. Therefore for a
reduct B ⊆ C the same holds: POSB(d) = U . Which means that:

∀x ∈ U : x↑RB ⊆ x↑Rd, x↓RB ⊆ x↓Rd ⇔

28 Ordinal Attribute Reduction and Rule Induction with Rough Sets

U a b c d
x1 1 1 1 1
x2 1 0 0 1
x3 1 1 0 0
x4 0 1 1 0

Table 2.5: A small example of a monotone data set with one inconsistent pair
of data points

⇔ ∀x ∈ U : y ∈ x↑RB ⇒ x↑Rd, y ∈ x↓RB ⇒ x↓Rd ⇔

⇔ ∀x ∈ U : xRBy ⇒ xRdy, yRBx ⇒ yRdx ⇔

⇔ RB ⊆ Rd.

�

Let us now consider the following small example given in table 2.5 which
contains four objects described by three binary condition attributes and one
binary decision attribute.

It is easy to see that objects x2 and x3 are conflicting. The positive area here
will be POSU

C = {x1, x4} which can be calculated using lemma 1. For example
x2 6∈ POSU

C because x3 ∈ x↑RC but d(x3) < d(x2). Similarly x3 6∈ POSU
C .

We have 6 proper subsets of C which are the candidates for reducts. Let
us check for the set {a, c}. Here again x2 and x3 are conflicting and are not
included in the positive area which is POSU

{a,c} = {x1, x4}.

If we check, however, for the set containing only {a} we discover that it is
not a reduct. Here again x2 and x3 are not in the positive area but also x1 is
excluded because it is in conflict with x3. Therefore POSU

{a} = {x4} 6= POSU
C

which means that {a} is not a reduct of C.
An interesting question is what happens if we simply delete the inconsistent

pairs of examples from the data and consider the remaining monotone decision
table. Do we get the same reducts as from the full data? The answer in general
is no. For our example we demonstrate this by deleting x2 and x3 so that the
resulting set of objects is W = {x1, x4}. Since this set is monotone then the
positive area is POSW

C = W = {x1, x4}. We consider again the candidate
reducts {a, c} and {a}. It turns out that as before {a, c} is a reduct, however,
now also {a} is a reduct which was not the case for the full data table.

The intuitive explanation of the difference is that by deleting data points we
lose some information that might have otherwise influenced the result. Deleting
data is hardly ever a good strategy (even when it is corrupted) which is the
motivation for the large amount of research in areas such as handling of noise
and missing values in classification data.

It can also be argued that in order to reduce the lost information we can
delete only one of the conflicting pair of data points. In this however we are

2.3 Rough Sets on Monotone Problems 29

confronted with a different problem – it is not straightforward to choose which
of the two points to delete as they can be conflicting with a set of other points.
This might result in a complicated graph structure consisting of the points
candidates for deleting linked by the inconsistencies between them. Finding
the minimal number of points to delete that will make the data monotone is
equivalent to finding a minimal cut for the graph.

Monotone Discernibility Matrix

Here we take the other point of view on reducts and try to redefine the discerni-
bility matrix in the monotone case.

Let S = (U, C∪{d}, V) be a decision table. In the classical rough sets theory,
the discernibility matrix (DM) is defined as follows:

(cij) =

{
{a ∈ A : a(xi) 6= a(xj)} for i, j : d(xi) 6= d(xj)
∅ otherwise.

The variation of the discernibility matrix proposed here is the monotone
discernibility matrix Md(S) defined as follows:

(cij) =

{
{a ∈ A : a(xi) > a(xj)} for i, j : d(xi) > d(xj)
∅ otherwise.

(2.11)

Unlike the general discernibility matrix, the monotone one is not symmetric.
We assume that the objects are ordered in increasing value of their decision
attribute. In this case all entries of the matrix that are above the main diagonal
will be empty. A dual definition can be given for the monotone discernibility
matrix, M ′

d(S), which will be used later for generating dual format rules:

(c′ij) =

{
{a ∈ A : a(xi) < a(xj)} for i, j : d(xi) < d(xj)
∅ otherwise.

(2.12)

In this case the entries below the main diagonal will be empty.
In the general case the discernibility matrix is closely connected to the posi-

tive area. The points which do not belong to the positive area are exactly those
which have an empty entry of the discernibility matrix in their row/column
corresponding to an object of a different class. We would like to prove that a
similar relationship holds for the monotone case.

In the following, by cxy|B we denote the entry of the monotone discernibility
matrix corresponding to the points x, y only restricted to the attributes in B.

Lemma 3 For B ⊆ C it holds that: x 6∈ POSB(d) if and only if at least one
of the following conditions is true:

30 Ordinal Attribute Reduction and Rule Induction with Rough Sets

x1 x2 x3 x4

x1 ∅ ∅ ∅ ∅
x2 ∅ ∅ ∅ ∅
x3 {c} ∅ ∅ ∅
x4 {a} {a} ∅ ∅

Table 2.6: The monotone discernibility matrix for the data set given in table 2.5

1. ∃y : d(x) > d(y), cxy|B = ∅

2. ∃y : d(y) > d(x), cyx|B = ∅.

Proof:
x 6∈ POSB(d) ⇔ x↑RB 6⊆ x↑Rd or x↓RB 6⊆ x↓Rd ⇔

⇔ (∃y ∈ x↑RB , y 6∈ x↑Rd) or (∃y ∈ x↓RB , y 6∈ x↓Rd) ⇔

⇔ (∃y ∈ x↑RB , d(y) < d(x)) or (∃y ∈ x↓RB , d(y) > d(x)) ⇔

⇔ (∃y : cyx|B = ∅, d(y) < d(x)) or (∃y : cxy|B = ∅, d(y) > d(x)).

�

Let us go back to the small example in table 2.5. The (very simple) monotone
discernibility matrix is given in table 2.6. The entry of the matrix that satisfies
the conditions of the lemma is c23 (considering the full set of attributes C). It
corresponds to x2 and x3 which, as we showed in the previous subsection, are
exactly those two points that do not belong to the positive area for C.

Monotone Discernibility Function

Based on the monotone discernibility matrix, the monotone discernibility func-
tion can be constructed following the same procedure as in the classical Rough
Sets approach. For each non-empty entry of the monotone discernibility matrix
Md, cij = {ak1

, ak2
, . . . , akl

}, we construct the conjunction C = ak1
∧ak2

∧ . . .∧
akl

. The disjunction of all these conjunctions is the monotone discernibility
function:

f = C1 ∨ C2 ∨ . . . ∨ Cp. (2.13)

The monotone reducts of the decision table are the minimal transversals of
the entries of the monotone discernibility matrix. In other words the monotone
reducts are the minimal subsets of condition attributes that have a non-empty
intersection with each non-empty entry of the monotone discernibility matrix.
That follows directly from lemma 3. In section 2.3.2 we give another equivalent
definition for a monotone reduct described from a different point of view.

Looking back to the example which we used for the positive area (table 2.5)
we can easily see that the only reduct is {a, c} (the only minimal combination

2.3 Rough Sets on Monotone Problems 31

1 2 3 4 5
1 ∅ {a, b} {b, c} {a, c} {a, b, c}
2 {a, b} ∅ {a, b, c} {b, c} {a, b, c}
3 {b, c} {a, b, c} ∅ ∅ ∅
4 {a, c} {b, c} ∅ ∅ ∅
5 {a, b, c} {a, b, c} ∅ ∅ ∅

Table 2.7: General discernibility matrix

of attributes covering all non-empty entries). That is indeed the same result as
the one we got using the positive area. However this data set is too small to
demonstrate the idea and we therefore prefer to use a better one in the following
example.

Example 2

Consider the decision table from example 1 (table 2.4). The general and mono-
tone discernibility matrix for this table are shown in table 2.7 and table 2.8.

1 2 3 4 5
1 ∅ ∅ ∅ ∅ ∅
2 {a} ∅ ∅ ∅ ∅
3 {b, c} {b, c} ∅ ∅ ∅
4 {a, c} {b, c} ∅ ∅ ∅
5 {a, b, c} {a, b, c} ∅ ∅ ∅

Table 2.8: Monotone discernibility matrix Md(S)

The general discernibility function is:

f(a, b, c) = ab ∨ ac ∨ bc.

Therefore, the general reducts of table 2.4 are respectively: {a, b}, {a, c} and
{b, c} and the core is empty. However, the monotone discernibility function
looks different:

fmon(a, b, c) = a ∨ bc.

So the monotone reducts are: {a, b} and{a, c}, and the monotone core is {a}.
It can easily be shown that these monotone reducts preserve the monotonicity
property of the data set.

32 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Noise with Respect to Monotonicity

In the beginning of this section we defined a monotone data set. In practice,
however, we are not guaranteed that the available data sets will be strictly
monotone even when our domain knowledge tells us that they should be. Due
to noise, monotone inconsistencies might be present, i.e., pairs of data points
x, y ∈ U such that x ≤ y and d(x) < d(y).

One of the attractive features of the general rough sets theory is that it can
deal easily with inconsistencies of the type x = y, d(x) 6= d(y). In this subsection
we would like to emphasize that the monotone extension of the theory proposed
here behaves in a similar way towards the monotone inconsistencies.

The definition of a monotone reduct states that it should preserve the pos-
itive area of the original set of attributes. For strictly monotone data sets this
means that a reduct should preserve the monotonicity property so that the re-
duced data set remains monotone. However, when the original data set contains
monotone inconsistencies they are excluded from the positive area. In this case
the reduct is required to introduce no additional inconsistencies and therefore
the number of conflicting pairs of points should remain the same in the reduced
data set.

When using the monotone discernibility matrix, the conflicting pairs will
result in empty entries in the matrix. These are obviously not taken into account
in the discernibility function and thus cannot disrupt the generation of reducts.
In the data set used for the experiments for this chapter (see section 2.4) contains
one inconsistent pair of points. One of these points was removed in order to
make the set monotone. That, however, was done only for clarity and in general
is not necessary.

The next subsection discusses how rules can be generated from the monotone
discernibility matrix. It is easy to see that monotone inconsistencies cannot
disrupt that process either, for the same reason – the conflicts result in empty
entries in the discernibility matrix which are simply not taken into account in
the rules generation.

Rule Generation

The next step in the classical Rough Set approach [60, 49] is, for the chosen
reduct, to generate the value (object) reducts using a similar procedure as for
computing the reducts. A contraction of the discernibility matrix is generated
based only on the attributes in the reduct. Further, for each row of the matrix,
the object discernibility function is constructed – the discernibility function
relative to this particular object. The object reducts are then the minimal
transversals of the object discernibility functions.

Using the same procedure but on the monotone discernibility matrix, we can
generate the monotone object reducts. Based on them, the classification rules

2.3 Rough Sets on Monotone Problems 33

class d ≥ 2 class d ≥ 1
a ≥ 2 a ≥ 1
b ≥ 2
a ≥ 1 ∧ b ≥ 1
c ≥ 1

Table 2.9: Monotone decision rules

are constructed. For the monotone case we use the following format:

if (ai1 ≥ v1) ∧ (ai2 ≥ v2) ∧ . . . ∧ (ail
≥ vl) then d ≥ vl+1 . (2.14)

Each such rule should cover at least one example of class higher than the minimal
one and no examples of the minimal class value.

It is also possible to construct the classification rules using the dual format:

if (ai1 ≤ v1) ∧ (ai2 ≤ v2) ∧ . . . ∧ (ail
≤ vl) then d ≤ vl+1 . (2.15)

This type of rules can be obtained by the same procedure by only considering
the dual format of the monotone discernibility matrix instead. As a result we
get rules that cover at least one example of class smaller than the maximal class
value and no examples of the maximal class.

It can be proven that in the monotone case it is not necessary to generate
the value reducts for all the objects – the value reducts of the minimal vectors
of each class will also cover the other objects from the same class. For the rules
with the dual format we consider respectively the maximal vectors of each class.
Tables 2.9 and 2.10 show the complete set of rules generated for the whole table.

A set of rules is called a cover if all the examples with class d ≥ 1 are covered,
and no example of class 0 is covered. (Assuming, of course, that 0 is the minimal
class value which we can ensure by changing the coding of the decision attribute
without affecting the order of the values.) A similar definition can be given for
the set of dual-format rules.

The minimal covers (computed by solving a set-covering problem) for the
full table are shown in tables 2.11 and 2.12. In this case the minimal covers
correspond to the unique minimal covers of the reduced tables associated with
respectively the monotone reducts {a,b} and {a,c}.

The set of rules with dual format is not an addition but rather an alternative
to the set rules of the other format. If used together they may be conflicting in
some cases.

It is known that the decision rules induced by object reducts in general
do not cover the whole input space. Furthermore, the class assigned by these
decision rules to an input vector is not uniquely determined. We therefore briefly
discuss the concept of an extension of a discrete data set or a decision table in
the following section.

34 Ordinal Attribute Reduction and Rule Induction with Rough Sets

class d ≤ 0 class d ≤ 1
a ≤ 0 ∧ b ≤ 1 b ≤ 0
a ≤ 0 ∧ c ≤ 0 c ≤ 0

Table 2.10: The dual format rules

class d ≥ 2 class d ≥ 1
a ≥ 1 ∧ b ≥ 1 a ≥ 1

b ≥ 2

Table 2.11: The minimal cover for {a, b}

class d ≥ 2 class d ≥ 1
c ≥ 1 a ≥ 1

Table 2.12: The minimal cover for {a, c}

class d ≤ 0 class d ≤ 1
a ≤ 0 ∧ b ≤ 1 b ≤ 0

Table 2.13: The minimal cover for {a, b} (dual format)

class d ≤ 0 class d ≤ 1
a ≤ 0 ∧ c ≤ 0 c ≤ 0

Table 2.14: The minimal cover for {a, c} (dual format)

2.3 Rough Sets on Monotone Problems 35

2.3.2 Monotone Discrete Functions

The theory of monotone discrete functions as a tool for data-analysis has been
developed in [11]. Here we only briefly review some concepts that are crucial
for our approach. A discrete function of n variables is a function of the form:

f : X1 × X2 × . . . × Xn → Y,

where X = X1 ×X2 × . . .×Xn and Y are finite sets. Without loss of generality
we may assume: Xi = {0, 1, . . . , ni} and Y = {0, 1, . . . , m}. Let x, y ∈ X be two
discrete vectors. Least upper bounds and greatest lower bounds will be defined
as follows:

x ∨ y = v, where vi = max{xi, yi}, (2.16)

x ∧ y = w, where wi = min{xi, yi}. (2.17)

Furthermore, if f and g are two discrete functions then we define:

(f ∨ g)(x) = max{f(x), g(x)}, (2.18)

(f ∧ g)(x) = min{f(x), g(x)}. (2.19)

(Quasi) complementation for X is defined as: x = (x1, x2, . . . , xn), where xi =
ni − xi. Similarly, the complement of j ∈ Y is defined as j = m − j. The
complement of a discrete function f is defined by: f(x) = f(x). The dual of a
discrete function f is defined as: fd(x) = f(x). A discrete function f is called
positive (monotone non-decreasing) if x ≤ y implies f(x) ≤ f(y).

Representations

Normal Forms Discrete variables are defined as:

xip = if xi ≥ p then m else 0, where 1 ≤ p ≤ ni, i ∈ (n] = {1, . . . , n}. (2.20)

Thus: xip+1 = if xi ≤ p then m else 0. Furthermore, we define xini+1 = 0 and
xini+1 = m. Cubic functions are defined as:

cv,j = j.x1v1
x2v2

· · ·xnvn
. (2.21)

Notation: cv,j(x) = if x ≥ v then j else 0, j ∈ (m].
Similarly, we define anti-cubic functions by:

aw,i = i ∨ x1w1+1 ∨ x2w2+1 · · · ∨ xnwn+1. (2.22)

Notation: aw,i(x) = if x ≤ w then i else m, i ∈ [m) = {0, . . . , m − 1}. Note,
that j.xip denotes the conjunction j∧xip, where j ∈ Y is a constant, and xipxjq

36 Ordinal Attribute Reduction and Rule Induction with Rough Sets

denotes xip∧xiq . A cubic function cv,j is called a prime implicant of f if cv,j ≤ f
and cv,j is maximal with respect to this property. The DNF of f :

f =
∨

v,j

{cv,j | v ∈ j ∈ (m]}, (2.23)

is a unique representation of f as a disjunction of all its prime implicants (v is
a minimal vector of class d ≥ j).

If xip is a discrete variable and j ∈ Y a constant then xd
ip = xip+1 and

jd = j. The dual of the positive function f =
∨

v,j j.cv,j equals fd =
∧

v,j j∨av,j .

Example 3

Let f be the function defined by table 2.11 and let e.g. x11 denote the variable:
if a ≥ 1 then 2 else 0, etc. Then:

f = 2.(x11x21 ∨ x22) ∨ 1.x11, and

fd = 2.x12x21 ∨ 1.x22.

Decision Lists In [11] it is shown that monotone functions can effectively be
represented by decision lists of which the minlist and the maxlist representations
are the most important ones. We introduce these lists here only by example. The
minlist representation of the functions f and fd of example 3 are respectively:

f(x) = if x ≥ 11, 02 then 2

else if x ≥ 10 then 1 else 0,

fd(x) = if x ≥ 21 then 2

else if x ≥ 02 then 1 else 0.

The meaning of the minlist of f is given by:

if (a ≥ 1 ∧ b ≥ 1) ∨ b = 2 then 2

else if a ≥ 1 then 1 else 0.

The maxlist of f is obtained from the minlist of fd by complementing the
minimal vectors as well as the function values, and by reversing the inequalities.
The maxlist representation of f is therefore:

f(x) = if x ≤ 01 then 0

else if x ≤ 20 then 1 else 2,

2.3 Rough Sets on Monotone Problems 37

minvectors maxvectors class
11, 02 2

10 20 1
01 0

Table 2.15: Two representations of f

or equivalently:

if a = 0 ∧ b ≤ 1 then 0

else if b = 0 then 1 else 2.

The two representations are equivalent to a table as the one represented in ta-
ble 2.15 that contains respectively the minimal and maximal vectors for each
decision class of f . Each representation can be derived from the other by dual-
ization.

Extensions of Monotone Data sets

A partially defined discrete function (pdDf) is a function: f : D 7→ Y , where D ⊆
X . We assume that a pdDf f is given by a decision table such as e.g. table 2.4.
Although pdDfs are often used in practical applications, the theory of pdDfs is
only developed in the case of pdBfs (partially defined Boolean functions). Here
we discuss monotone pdDfs, i.e. functions that are monotone on D.

If the function f̂ : X 7→ Y , agrees with f on D: f̂(x) = f(x), x ∈ D, then

f̂ is called an extension of the pdDf f . The collection of all extensions forms a
lattice: for, if f1 and f2 are extensions of the pdDf f , then f1 ∧ f2 and f1 ∨ f2

are also extensions of f . The same holds for the set of all monotone extensions.
The lattice of all monotone extensions of a pdDf f will be denoted here by

E(f). It is easy to see that E(f) is universally bounded: it has a greatest and
a smallest element. The maxlist of the maximal element called the maximal
monotone extension can be directly obtained from the decision table.

Let us define the following notation:

↓x = {y ∈ X : y ≤ x}

↑x = {y ∈ X : y ≥ x}

↓D =
⋃

x∈D

↓x

↑D =
⋃

x∈D

↑x

Now we can define two functions which can be proved to be extensions of
their corresponding function.

38 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Definition 1 Let f be a monotone pdDf. Then the functions fmin and fmax

are defined as follows:

fmin(x) =

{
max{f(y) : y ∈ D ∩ ↓x} if x ∈ ↑D
0 otherwise,

(2.24)

fmax(x) =

{
min{f(y) : y ∈ D ∩ ↑x} if x ∈ ↓D
m otherwise.

(2.25)

Lemma 4 Let f be a monotone pdDf. Then
a) fmin, fmax ∈ E(f).

b) ∀f̂ ∈ E(f) : fmin ≤ f̂ ≤ fmax.

Since E(f) is a distributive lattice, the minimal and maximal monotone
extension of f can also be described by the following expressions:

fmax =
∨

{ f̂ | f̂ ∈ E(f)} and fmin =
∧

{ f̂ | f̂ ∈ E(f)} . (2.26)

We introduce the following notation. Let Tj(f) = {x ∈ D : f(x) = j}.
A minimal vector v of class j is a vector such that f(v) = j and no vector
strictly smaller than v is also in Tj(f). Similarly, a maximal vector w is a
vector maximal in Tj(f), where j = f(w). The sets of minimal and maximal
vectors of class j are denoted by minTj(f) and maxTj(f) respectively.

According to the previous lemma fmin and fmax are respectively the minimal
and maximal monotone extension of f . Decision lists of these extensions can be
directly constructed from f as follows. Let Dj = D∩Tj(f), then minTj(fmin) =
minDj and maxTj(fmax) = maxDj .

Example 4

Consider the pdDf given by table 2.4, then its maximal extension is:

f(x) = if x ≤ 010 then 0
else if x ≤ 100 then 1

else 2.

As described in the last subsection, from this maxlist representation we can
deduce directly the minlist representation of the dual of f and finally by dual-
ization we find that f is:

f = 2.(x12 ∨ x11x21 ∨ x22 ∨ x31) ∨ 1.x11. (2.27)

However, f can be viewed as a representation of table 4. This suggests a close re-
lationship between minimal monotone decision rules and the maximal monotone
extension fmax. This relationship is discussed in the next section. Furthermore,
the relationship with the methodology Logical Analysis of Data (LAD) is briefly
discussed in subsection 3.5.

2.3 Rough Sets on Monotone Problems 39

The Relationship between Monotone Decision Rules and fmax

We first redefine the concept of a monotone reduct in terms of discrete functions.
Let X = X1 ×X2 × . . .×Xn be the input space, and let A = {1, . . . , n} denote
the set of attributes. Then for U ⊆ A, x ∈ X we define the set U.x respectively
the vector x.U by:

U.x = {i ∈ U : xi > 0} (2.28)

and

(x.U)i =

{
xi if i ∈ U
0 if i /∈ U.

(2.29)

Furthermore, the characteristic set U of x is defined by U = A.x.
Now we can give a new definition for a monotone object reduct:

Definition 2 Suppose f : D → Y is a monotone pdDf, w ∈ D and f(w) = j.
Then V ⊆ A is a monotone w-reduct iff ∀x ∈ D : (f(x) < j ⇒ w.U 6≤ x.U).

Note, that in this definition the condition w.U 6≤ x.U is equivalent to w.U 6≤
x. The following lemma is a direct consequence of this definition.

Lemma 5 Suppose f is a monotone pdDf, w ∈ Tj(f). Then V ⊆ A is a
monotone w-reduct ⇔ ∀x(f(x) < j ⇒ ∃i ∈ V such that wi > xi).

Corollary 1 V is a monotone w-reduct iff V.w is a monotone w-reduct. There-
fore, without loss of generality we may assume that V is a subset of the charac-
teristic set W of w: V ⊆ W .

Monotone Boolean functions We first consider the case when the data
set is Boolean, therefore the objects are described by condition and decision
attributes taking one of two possible values {0, 1}.

The data set represents a partially defined Boolean function (pdBf) f : D →
{0, 1} where D ⊆ {0, 1}n. As we have only two classes, we define the set of true
vectors of f by T (f) := T1(f) and the set of false vectors of f by F (f) := T0(f).

In the sequel we abuse the notation in the following way: in the Boolean
case we will make no distinction between a set V and its characteristic vector
v.

Lemma 6 Let f : D → {0, 1} be a monotone pdBf, w ∈ D, w ∈ T (f). Suppose
v ≤ w. Then v is a w-reduct ⇔ v ∈ T (fmax).

Proof: Since v ≤ w, we have:

v is a w-reduct ⇔ ∀x(x ∈ D ∩ F (f) ⇒ v 6≤ x) ⇔ v ∈ T (fmax).
�

Theorem 1 Suppose f : D → {0, 1} is a monotone pdBf, w ∈ D, w ∈ T (f).
Then, for v ≤ w, v ∈ min T (fmax) ⇔ v is a minimal monotone w-reduct.

40 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Proof: Let v ∈ min T (fmax) and v ≤ w for some w ∈ D. Then v is a monotone
w-reduct. Suppose ∃u < v and u is a monotone w-reduct. Then by definition 2
we have: u ∈ T (fmax), which contradicts the assumption that v ∈ min T (fmax).

Conversely, let v be a minimal monotone w-reduct. Then by lemma 6 we
have: v ∈ T (fmax). Suppose ∃u < v : u ∈ T (fmax). However, v ≤ w ⇒ u < w
therefore u is a monotone w-reduct, which contradicts the assumption that v is
a minimal w-reduct. �

The results imply that the irredundant (monotone) decision rules that cor-
respond to the object reducts are just the prime implicants of the maximal
extension.

Corollary 2 The decision rules obtained in rough set theory can be obtained by
the following procedure:

a) find the maximal vectors of class 1 (positive examples)
b) determine the minimal vectors of the dual of the maximal extension, and
c) compute the minimal vectors of this extension by dualization. The com-

plexity of this procedure is the same as for the dualization problem.

Although the above corollary is formulated for monotone Boolean functions,
results in [33] indicate that a similar statement also holds for Boolean functions
in general.

Monotone Discrete Functions Let us now consider the case when f is a
monotone partially defined discreet function (pdDf). First we observe that the
following lemma is true:

Lemma 7 Suppose f is a monotone pdDf, w ∈ Tj(f) and v ≤ w. If v ∈
Tj(fmax) then the characteristic set V of v is a monotone w-reduct.

Proof: fmax(v) = j implies ∀x(f(x) < j ⇒ v 6≤ x). Since w ≥ v we therefore
have ∀x(f(x) < j ⇒ ∃i ∈ V such that wi ≥ vj > xi). �

Remark: Even if in lemma 7 the vector v is minimal: v ∈ min Tj(fmax), then
still V = A.v is not necessarily a minimal monotone w-reduct.

Theorem 2 Suppose f is a monotone pdDf and w ∈ Tj(f) . Then V ⊆ A is a
monotone w-reduct ⇔ fmax(w.V) = j.

Proof: If V is a monotone w-reduct, then by definition ∀x(f(x) < j ⇒ w.V 6≤
x). Since w.V ≤ w and f(w) = j we therefore have fmax(w.V) = j.

Conversely, let fmax(w.V) = j, V ⊆ A. Then, since w.V ≤ w and the
characteristic set of w.V is equal to V , lemma 7 implies that V is a monotone
w-reduct. �

2.3 Rough Sets on Monotone Problems 41

Theorem 3 Let f be a monotone pdDf and w ∈ Tj(f). If V ⊆ A is a minimal
monotone w-reduct, then ∃u ∈ min Tj(fmax) such that V = A.u.

Proof: Since V is a monotone w-reduct, theorem 2 implies that fmax(w.V) = j.
Therefore, ∃u ∈ minTj(fmax) such that u ≤ w.V . Since A.u ⊆ V and A.u is a
monotone w-reduct (by lemma 7), the minimality of V implies A.u = V . �

Theorem 3 implies that the minimal decision rules obtained by monotone w-
reducts are not shorter than the minimal vectors (prime implicants) of fmax.
This suggests that we can optimize a minimal decision rule by minimizing the
attribute values to the attribute values of a minimal vector of fmax. For example,
if V is a minimal monotone w-reduct and u ∈ minTj(fmax) such that u ≤ w.V
then the rule:

’if xi ≥ wi then j’,

where i ∈ V , can be improved by using the rule:

’if xi ≥ ui then j’,

where i ∈ V . Since ui ≤ wi, i ∈ V , the second rule is applicable to a larger part
of the input space X .

The results so far indicate the close relationship between minimal monotone
decision rules obtained by the rough sets approach and by the approach using
fmax. To complete the picture we make the following observations:

Observation 1 : The minimal vector u (theorem 3) is not unique.

Observation 2 : Lemma 7 implies that the length of a decision rule induced
by a minimal vector v ≤ w, v ∈ min Tj(fmax), is not necessarily smaller than
that of a rule induced by a minimal w-reduct. This means that there may exist
an x ∈ X that is covered by the rule induced by v but not by the decision rules
induced by the minimal reducts of a vector w ∈ D.

Observation 3 : There may be minimal vectors of fmax such that ∀w ∈ D
v 6≤ w. In this case if x ≥ v then fmax(x) = m but x is not covered by a
minimal decision rule induced by a minimal reduct.

In the next two subsections we briefly compare the rough set approach and the
discrete function approach with two other methods.

2.3.3 Related Research

The Approach of Greco et al.

Earlier research presented by Greco et al. in [40, 41] had the same goal of in-
corporating the monotonicity property of the problem in the Rough Sets anal-
ysis. They, however, started from a very different direction - the Multi-Criteria

42 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Decision Aid (MCDA) methodology and hence they position the research in
multi-criteria sorting and ranking.

They start by substituting the indiscernibility (equivalence) relation by a
dominance relation in the following way. For each criterion q there is an asso-
ciated outranking relation Sq on the universe U such that xSqy whenever “x
is at least as good as y with respect to q”. The intersection of those relations
DP = ∩q∈P Sq for a set of criteria P ⊆ C is a dominance relation.

Furthermore, the following sets are defined (where Cls denotes the set of
objects of class s):

Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls,

D+
P (x) = {y ∈ U : yDP x},

D−
P (x) = {y ∈ U : xDP y}.

New definitions for the lower and upper approximation are given for the sets
Cl≥t as follows:

P (Cl≥t) = {x ∈ U : D+
P (x) ⊆ Cl≥t },

P (Cl≥t) =
⋃

x∈Cl≥
t

D+
P (x),

and similarly for the sets Cl≤t as follows:

P (Cl≤t) = {x ∈ U : D−
P (x) ⊆ Cl≤t },

P (Cl≤t) =
⋃

x∈Cl≤
t

D−
P (x).

The boundaries of Cl≥t and Cl≤t are defined as:

BnP (Cl≥t) = P (Cl≥t) − P (Cl≥t), BnP (Cl≤t) = P (Cl≤t) − P (Cl≤t).

In order to define a reduct, the quality of approximation measure is used
(where Cl is the partition of U generated by the decision attribute):

γP (Cl) =
|U − ((

⋃
t∈T BnP (Cl≥t))

⋃
(
⋃

t∈T BnP (Cl≤t)))|

|U |
.

A reduct is thus such a minimal subset p ⊆ C for which γP (Cl) = γC(Cl).
Three different types of decision rules are defined and used together to form

a classifier:

if q1(x) ≥ v1 and q2(x) ≥ v2 and . . . and qk(x) ≥ vk then x ∈ Cl≥t ,

2.3 Rough Sets on Monotone Problems 43

if q1(x) ≤ v1 and q2(x) ≤ v2 and . . . and qk(x) ≤ vk then x ∈ Cl≤t ,

if q1(x) ≥ v1 and q2(x) ≥ v2 and . . . and qk(x) ≥ vk and qk+1(x) ≤ v1 and
qk+2(x) ≤ v2 and . . . and qk+l(x) ≤ vk then x ∈ Clt ∪ Clt+1 ∪ . . . ∪ Clt+s.

There are a number of differences between our approach and the approach
of Greco et al. which are briefly discussed in the following paragraphs.

First of all, the definition of a reduct in our approach is based on the positive
area (and the discernibility matrix is used for the computations) while Greco
et al. use the quality of approximation measure. As a consequence, different
definitions for the lower and upper approximations are appropriate. In fact the
approximations proposed by Greco et al. cannot be directly used to re-define
the positive area because the union of all lower approximations of Cl≥t is always
equal to U (and the same holds for the union of all lower approximations of

Cl≤t). That is easy to see starting from the fact that Cl≥1 = Cl≤n = U .

It should be emphasized that the resulting definition of a reduct is equiva-
lent to the one of Greco et al. by means of covering the same set of reducts.
However the procedure used for their generation is different - Greco et al. use
a version of the quality of approximation measure while we use a version of
the discernibility matrix and dualization. The notion of monotone discernibil-
ity matrix introduced here is an important one and it becomes useful in other
settings as well. In chapter 4 we show how it can help in monotone function
decomposition.

Another important difference is the type of rules that are generated and how
they are used. The three types of rules defined by Greco et al. when used to-
gether might lead to monotone inconsistencies and therefore the final classifier
is not guaranteed to be monotone. In our approach only the first two types of
rules are allowed but they are used as alternative solutions and not together.
This results in monotone classifiers. Furthermore, the maximal/minimal exten-
sions allow us to assign single class values and not intervals. They also cover
the whole input space which is not necessarily the case for the rule sets of Greco
et al.

A fundamental difference is the goal of both approaches. In [40, 41] the goal
is to incorporate the additional knowledge of ordering and preference while at
the same time taking into account any existing inconsistencies. However, by
generating rules covering the conflicting data point the classifier becomes by
definition non-monotone. The method presented here, on the other hand, aims
at generating a monotone classifier which covers the whole input space.

The above mentioned differences were also demonstrated in our experiments
where the same data set was used as in [40] in order to facilitate the parallel.

44 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Rough Sets and Logical Analysis of Data

The Logical Analysis of Data methodology (LAD) was presented in [33] and
further developed in [25, 23, 24]. LAD is designed for the discovery of structural
information in data sets. Originally it was developed for the analysis of Boolean
data sets using partially defined Boolean functions. An extension of LAD for
the analysis of numerical data is possible through the process of binarization.
The building concepts are the supporting set, the pattern and the theory.

A set of variables (attributes) is called a supporting set for a partially defined
Boolean function f if f has an extension depending only on these variables. A
pattern is a conjunction of literals such that it is 0 for every negative example
and 1 for at least one positive example. A subset of the set of patterns is used to
form a theory – a disjunction of patterns that is consistent with all the available
data and can predict the outcome of any new example. The theory is therefore
an extension of the partially defined Boolean function.

Our research suggests that the LAD and the RS theories are similar in several
aspects (for example, the supporting set corresponds to the reduct in the binary
case and a pattern with the induced decision rule). The exact connections will
be a subject of future research.

2.4 Experiments

2.4.1 The Bankruptcy Prediction Problem

The research in bankruptcy prediction has a long history dating back to the
1930s. A number of statistical methods were applied for developing models able
to predict in advance whether a company will go bankrupt or not. The analysis
is based on financial information about the company in the form of financial
indicators and ratios obtained from the company’s annual reports. The main
goal is to describe the relationship between these indicators and bankruptcy
using available data about companies that have already gone bankrupt and
data about “healthy” companies.

A major breakthrough in the research was achieved in the 1960s by applying
the method of discriminant analysis for bankruptcy prediction. In 1968 Altman
proposed multivariate discriminant analysis for developing the prediction model
[4] and the approach has been further improved and tested in a number of
studies since then. However, this method makes several assumptions that are
not always present in real-life data. This encouraged the researchers to look
for alternatives. One of them is the logistic analysis that was proposed in the
1980s. It was applied on bankruptcy data and gave very good results.

The success of the machine learning methods in a number of application
domains suggested that they might be useful for predicting bankruptcy as well.
Neural networks, decision trees, genetic algorithms, rough sets and other ma-

2.4 Experiments 45

chine learning approaches were applied to bankruptcy data with promising re-
sults [6, 52, 62, 74, 75]. In a number of studies these methods are tested and
compared to the traditional statistical techniques. Some of the articles suggest
that the new approaches outperform the classical methods on data sets from a
number of areas including bankruptcy prediction.

In this research the bankruptcy prediction problem is interpreted as a clas-
sification problem with monotonicity constraints.

2.4.2 The Bankruptcy Data set

The data set used in the experiments is discussed in [74, 40]. The sample
consists of 39 objects denoted by F1 to F39 – firms that are described by 12
financial parameters. To each company a decision value is assigned – the expert
evaluation of its category of risk for the year 1988. The condition attributes
denoted by A1 to A12 take integer values from 0 to 4.

The decision attribute is denoted by d and takes integer values in the range 0
to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.
This and the other data sets used in the following chapters are described in
more details in Appendix A.

The data was first analyzed for monotonicity. The problem is obviously
monotone (if one company outperforms another on all condition attributes then
it should not have a lower value of the decision attribute). Nevertheless, one
noisy example was discovered, namely F24. It was removed from the data set
and was not considered further.

2.4.3 Reducts and Decision Rules

The minimal reducts have been computed using our program Dualizer. There
are 25 minimal general reducts (minimum length 3) and 15 monotone reducts
(minimum length 4). They are given in tables 2.16 and 2.17 respectively.

We have also compared the heuristics to approximate a minimum reduct:
the “Best reduct” method (for general reducts) and the Johnson strategy (for
general and monotone reducts). The results are given in tables 2.18 and 2.19.
Note that for the “Best reduct” method the results do not change for the mono-
tone case since we use no additional information. For the Johnson’s heuristic,
however, the results change because we use the monotone discernibility matrix
instead of the general discernibility matrix. The set of generated reducts here
is also influenced by whether we use simplification (remove redundancies, etc.)
or not both for the general and for the monotone case.

Table 2.20 shows the two sets of decision rules obtained by computing the
object (value)-reducts for the monotone reduct (A1, A3, A7, A9). Both sets of
rules have minimal covers, of which the ones with minimum length are shown
in table 2.21. A minimal cover can be transformed into an extension if the rules

46 Ordinal Attribute Reduction and Rule Induction with Rough Sets

Minimal general reducts:
A1, A7, A11
A3, A6, A7, A12
A1, A3, A7, A9
A5, A6, A7, A8
A1, A3, A7, A12
A5, A6, A7, A9
A1, A5, A7, A9
A5, A6, A7, A10
A1, A6, A7, A12
A5, A6, A7, A11
A1, A7, A8, A9
A5, A6, A7, A12
A1, A7, A9, A12
A6, A7, A8, A10
A2, A3, A6, A7
A6, A7, A8, A11
A2, A5, A6, A7
A6, A7, A8, A12
A2, A6, A7, A11
A6, A7, A9, A11
A2, A6, A7, A12
A6, A7, A9, A12
A3, A6, A7, A8
A3, A6, A7, A9
A3, A6, A7, A10

Table 2.16: All minimal general reducts

2.4 Experiments 47

Minimal monotone reducts:
A1, A3, A7, A9
A1, A5, A7, A9
A2, A3, A6, A7
A2, A5, A6, A7
A3, A6, A7, A9
A3, A6, A7, A10
A3, A6, A7, A12
A5, A6, A7, A8
A5, A6, A7, A9
A5, A6, A7, A10
A5, A6, A7, A11
A5, A6, A7, A12
A1, A3, A6, A7, A8
A1, A3, A6, A7, A11

Table 2.17: All minimal monotone reducts

The Best Reduct method: Johnson’s algorithm:
with simplification without simplification

A1, A7, A8, A11 A1, A3, A7, A9 A1, A7, A8, A11
A6, A7, A8, A11 A1, A5, A7, A9 A6, A7, A8, A11

A3, A6, A7, A9 A3, A6, A7, A8
A5, A6, A7, A9

Table 2.18: General reducts using the two heuristics

Johnson’s algorithm:
with simplification without simplification

A1, A3, A7, A9 A2, A5, A6, A7
A1, A5, A7, A9 A5, A6, A7, A8
A3, A6, A7, A9 A5, A6, A7, A9
A5, A6, A7, A9 A5, A6, A7, A10

A5, A6, A7, A11
A5, A6, A7, A12

Table 2.19: Monotone reducts using the two heuristics

48 Ordinal Attribute Reduction and Rule Induction with Rough Sets

class d ≥ 2 class d ≥ 1
A1 ≥ 3 A1 ≥ 3
A7 ≥ 4 A3 ≥ 3
A9 ≥ 4 A7 ≥ 3
A1 ≥ 2 ∧ A7 ≥ 3 A9 ≥ 4
A3 ≥ 2 ∧ A7 ≥ 3 A1 ≥ 1 ∧ A3 ≥ 2
A7 ≥ 3 ∧ A9 ≥ 3 A1 ≥ 1 ∧ A9 ≥ 3

A3 ≥ 2 ∧ A7 ≥ 2
A3 ≥ 2 ∧ A7 ≥ 1 ∧ A9 ≥ 3

class d ≤ 0 class d ≤ 1
A7 ≤ 0 A7 ≤ 2
A9 ≤ 1 A9 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 0
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A7 ≤ 1
A1 ≤ 0 ∧ A3 ≤ 1 ∧ A7 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A9 ≤ 2
A3 ≤ 0 ∧ A9 ≤ 2
A3 ≤ 1 ∧ A7 ≤ 2 ∧ A9 ≤ 2
A3 ≤ 2 ∧ A7 ≤ 1 ∧ A9 ≤ 2

Table 2.20: The rules for (A1, A3, A7, A9)

are considered as minimal/maximal vectors in a decision list representation. In
this sense the minimal cover of the first set of rules can be described by the
following function:

f = 2.x73x93 ∨ 1.(x33 ∨ x73 ∨ x11x93 ∨ x32x72). (2.30)

The maximal extension corresponding to the monotone reduct (A1, A3, A7, A9)
is represented in table 2.22.

Our results show that the function f or equivalently its minlist consists of
only 5 decision rules (prime implicants). They cover the whole input space.
Moreover, each possible vector is classified as d = 0, 1 or 2 and not as d ≥ 1 or
d ≥ 2 like in [40, 41].

The method presented in [40, 41] uses both formats shown in table 2.20 to
describe a minimal cover, resulting in a system of 11 rules. Using both formats
at the same time can result in much (possibly exponential) larger sets of rules.
As mentioned before, using both formats of rules at the same time may also
result in conflicting predictions.

We also computed a monotone decision tree [18, 64] for the bankruptcy data
set discussed here. The tree is given in figure 2.2. It appears that monotone
decision trees are larger because they contain the information of both an exten-
sion and its dual. The topic of generating monotone decision trees is discussed

2.5 Conclusions 49

class d ≥ 2 class d ≥ 1
A7 ≥ 3 ∧ A9 ≥ 3 A3 ≥ 3

A7 ≥ 3
A1 ≥ 1 ∧ A9 ≥ 3
A3 ≥ 2 ∧ A7 ≥ 2

class d ≤ 0 class d ≤ 1
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A7 ≤ 1 A7 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 1 ∧ A7 ≤ 2 A9 ≤ 2
A3 ≤ 1 ∧ A7 ≤ 2 ∧ A9 ≤ 2

Table 2.21: The minimal covers for (A1, A3, A7, A9)

class d = 2 class d = 1
A1 ≥ 3 A3 ≥ 3
A3 ≥ 4 A7 ≥ 3
A7 ≥ 4 A1 ≥ 1 ∧ A3 ≥ 2
A9 ≥ 4 A1 ≥ 1 ∧ A9 ≥ 3
A1 ≥ 2 ∧ A7 ≥ 3 A3 ≥ 2 ∧ A7 ≥ 2
A3 ≥ 2 ∧ A7 ≥ 3 A3 ≥ 2 ∧ A7 ≥ 1 ∧ A9 ≥ 3
A7 ≥ 3 ∧ A9 ≥ 3

Table 2.22: The maximal extension for (A1, A3, A7, A9)

in detail in the next chapter.

2.5 Conclusions

This chapter discusses an extension of the theory of Rough Sets for generating
monotone classifiers from monotone data sets. Our approach uses the concepts
of monotone discernibility matrix/function and monotone (object) reduct and
the theory of monotone discrete functions. It has a number of advantages over
previous research on the problem as it was summarized in section 2.3.3 and in
the discussion on the experiment with the bankruptcy data set in section 2.4.

Compared to the previous research, the approach presented here produces
smaller sets of rules that are consistent (do not predict conflicting class values),
cover the whole input space and form a monotone classifier. When the maximal
extension is used, the predictions are of single class values and not sets of values
as in the previous research.

Another difference is the use of the discernibility matrix for computing the
monotone reducts. This approach provides a comprehensive method for gener-
ating all monotone reducts instead of using heuristics for generating one short
(but not necessarily of minimum length) reduct.

50 Ordinal Attribute Reduction and Rule Induction with Rough Sets

a7 > 2��
��

a6 > 0 ��
��

a5 > 0 ��
��

0
,
,
,, l

l
ll

a8 > 0 ��
��

0
�
�� \

\\
1

�
�� \

\\
1

"
"
"
"
" b

b
b
b
b

a9 > 2��
��

1
�
�� \

\\
2

Figure 2.2: Monotone decision tree for the bankruptcy data set

Compared to monotone decision trees, our method produces a more compact
classifier since the decision tree contains the information of both the extension
and its dual.

Furthermore, it appears that there is a close relationship between the deci-
sion rules obtained using the rough set approach and the prime implicants of
the maximal extension. Although this has been shown for the monotone case
this also holds at least for non-monotone Boolean data sets. We have discussed
how to compute this extension by using dualization.

The generalization of the discrete function approach to non-monotone data
sets and the comparison with the theory of Rough Sets is a topic of further
research. Finally, the sometimes striking similarity we have found between
Rough Set Theory and Logical Analysis of Data remains an interesting research
topic.

Chapter 3

Monotone Decision Trees

3.1 Introduction

In the previous chapter we considered a classifier expressed in decision rules.
Another frequently used representation is a decision tree. A decision tree is a
directed, acyclic, connected graph with a designated starting node (a root) and
a designated set of terminal nodes (leaves). At each non-terminal node a test
is performed on a certain attribute value(s) and at each leaf a class value is
assigned.

Decision trees were first introduced in Machine Learning by Quinlan with
the ID3 algorithm [66, 67]. It was applied originally to discrete domains but
was extended to C4.5 which is also applicable to continuous domains [69]. C4.5
is now one of the most popular decision tree algorithms. The statistical point
of view on the problem was expressed in the other mainstream decision tree
algorithm CART (Classification and regression trees) [26].

A number of attempts were made to apply decision trees on the classification
for monotone problems, see [9, 18, 55, 64], from which the most successful was
the monotone decision trees algorithm introduced in [18, 64].

This chapter addresses the problem of classification with monotonicity con-
straints in the context of monotone decision trees (MDT). It extends the al-
gorithm presented in [64] in several directions in order to provide a full set of
possibilities for solving real-life problems similar to the possibilities available for
the classical decision trees.

Data noise is one problem that frequently occurs in real-life classification
problems and is extensively studied by a number of authors from different per-
spectives. In classification problems with monotonicity constraints, noise often
causes an additional problem not relevant for the general case – violation of
the monotonicity constraint. The MDT algorithm requires a strictly monotone
data set. This chapter proposes an extension for dealing with monotonicity

52 Monotone Decision Trees

noise which allows the generation of a monotone tree from any non-monotone
data set.

Decision tree pruning is another area that has attracted a lot of attention (see
[27] for a survey). A number of successful methods are available for reducing the
tree size and avoiding the overfitting of the particular properties of the data set.
However the monotonicity constraint raises new questions, the most important
of which is how to label the new leaves so that the tree remains monotone. This
chapter tries to answer the question in the setting of pre-pruning as well as
post-pruning. Furthermore, we address the more general problem of labelling
any tree in a consistent way so that it becomes monotone.

Most of the chapter is based on the publications [17, 16].

The chapter is organized as follows. Section 3.2 presents the original mono-
tone decision tree algorithm. An extension for generating monotone trees from
noisy non-monotone data is described in section 3.3. A number of pruning ap-
proaches and labelling functions which guarantee the monotonicity of the tree
are presented in section 3.4.

Section 3.5 investigates the performance of two different splitting criteria in
monotone decision tree generation in order to give more insight into which one
better fits the classification problems with monotonicity restrictions. Section 3.6
explores the problem of missing attribute values in the context of monotone
classification. A simple preprocessing method is proposed as an extension of
a number of general approaches for filling in the unknown values so that the
monotonicity property of the resulting data set is guaranteed.

The methods discussed in the paper are tested experimentally and the exper-
imental settings, data sets and results are given in section 3.7. The conclusions
of the chapter are given in section 3.8.

3.2 Algorithms for the Induction of Monotone

Decision Trees

The classical decision tree algorithm can be characterized by three rules:

– a stopping rule defining when to stop growing a branch and turn the current
node to a leaf,

– a splitting rule which fires when the stopping rule fails to fire – it defines how
to split a node by choosing the best attribute and the best split value for
the test associated to the node, according to a consistent criterion,

– a labelling rule which fires when the stopping rule fires and defines how to
label the new leaf – this label will later be assigned to all new examples
classified to this leaf.

3.2 Algorithms for the Induction of Monotone Decision Trees 53

This algorithm in its general form does not take into account the mono-
tonicity property of the data set. Given a fully monotone data set it is not
guaranteed to generate a monotone classifier. The first attempt to confront the
problem was presented by Ben-David in [9] where a non-monotonicity index was
proposed to measure how monotone a tree is. Used together with the entropy
splitting criterion, the index influences the generation process towards building
a nearly monotone tree. The monotonicity, however, is not guaranteed. An
improvement to the algorithm towards a better measure for the monotonicity
of the tree is proposed in [65].

The research of Makino et al. presented in [55] goes a step further by pro-
viding a method for generating a monotone tree for the 2-class problem. The
algorithm requires a strictly monotone data set. A more general approach ap-
plicable to the k-class problem was proposed by Potharst and Bioch in [18, 64].
It also requires a monotone data set. This method is the starting point of the
research presented in this chapter.

An overview of the three methods will be presented in the next two subsec-
tions. The algorithms of Ben-David [9] and Makino et al. [55] will be briefly
described in subsections 3.2.1 and 3.2.2 respectively. More attention will be
paid to the algorithm of Potharst and Bioch [18, 64] which is presented in sub-
section 3.2.3 together with a small example.

3.2.1 The Algorithm of Ben-David

The method of Ben-David modifies the impurity criterion for choosing the best
attribute-value pair to split on for the splitting rule. To the traditional measure
defined in the ID3 algorithm a measure for the non-monotonicity is added which
results in the so-called total-ambiguity-score. This is defined in the following
paragraph using the notation of [9].

First, a non-monotonicity matrix M is constructed which is a symmetric
k × k matrix for a tree containing k branches. An entry mij (and mji) of M is
1 if the corresponding branches i and j are non-monotone with respect to each
other and 0 otherwise.

From the non-monotonicity matrix, the sum of the entries is calculated:

W =
k∑

i=1

k∑

j=1

mij .

It is used in the so-called non-monotonicity index defined as follows for the
attribute tests a1, a2, . . . , aν :

Ia1,a2,...,aν
=

Wa1,a2,...,aν

k2
a1,a2,...,aν

− ka1,a2,...,aν

.

54 Monotone Decision Trees

The non-monotonicity index in turn is used in the definition of the order-
ambiguity-score:

Aa1,a2,...,aν
=

{
0 if Ia1,a2,...,aν

= 0,
−(log2 Ia1,a2,...,aν

)−1 otherwise.

Finally the total-ambiguity-score is defined as the sum of the order-ambiguity-
score and the E-score as it was defined in the ID3 algorithm:

Ta1,a2,...,aν
= Ea1,a2,...,aν

+ Aa1,a2,...,aν
.

A variation of the definition employs a parameter R in order to control
the trade-off between the entropy measure (the E-score) and the monotonicity
measure (the order-ambiguity score A):

Ta1,a2,...,aν
= Ea1,a2,...,aν

+ RAa1,a2,...,aν
.

It is important to emphasize that the method works both for monotone and
non-monotone data, however, the major drawback is that the monotonicity of
the generated tree is not guaranteed.

3.2.2 The Algorithm of Makino et al.

This algorithm also uses a modified version of the splitting rule which favours
not only splits with equal number of positive and negative points but also those
that have the right child-node larger than the left child-node. More precisely,
the splitting in the ID3 algorithm is guided by the following functions:

gain(xi : c) = I(|P |, |N |) − E(xi : c),

E(xi : c) =
|B0(P)| + |B0(N)|

|P | + |N |
I(|B0(P)|, |B0(N)|)

+
|B1(P)| + |B1(N)|

|P | + |N |
I(|B1(P)|, |B1(N)|),

I(p, n) = −
p

p + n
log2

p

p + n
−

n

p + n
log2

n

p + n
,

where xi : c is the candidate split on attribute xi and value c, P is the set of
positive vectors, N is the set of negative vectors and for the candidate split:

B0(P) = {x ∈ P |xi < c},

B0(N) = {x ∈ N |xi < c},

B1(P) = {x ∈ P |xi ≥ c},

3.2 Algorithms for the Induction of Monotone Decision Trees 55

B1(N) = {x ∈ N |xi ≥ c}.

The above introduced functions are modified as follows:

E+(xi : c) =
|B0(P)| + |B0(N)|

|P | + |N |
I+(|B0(P)|, |B0(N)|)

+
|B1(P)| + |B1(N)|

|P | + |N |
I+(|B1(P)|, |B1(N)|),

I+(p, n) =

{
1 if p < n,
I(p, n) otherwise.

The main contribution of the algorithm, however, is the procedure of adding
points to the nodes in such a way that the resulting tree will be monotone1.
This procedure works as follows:

– Whenever a leaf t is labelled with 0, the maximal vector α(t) in the leaf is
added also with label 0. Furthermore, for each node which has yet to be
split or labelled (active nodes), the maximal vector smaller or equal to
α(t) is added with label 0 to the data in the node.

– Alternatively if the leaf t is labelled with 1, the minimal vector β(t) is added
with label 1. For each active node the minimal vector larger than β(t) is
also added to the node with label 1.

We emphasize again that this algorithm can only be applied on strictly
monotone Boolean data sets.

3.2.3 The Algorithm of Potharst and Bioch

The algorithm of Potharst and Bioch presented in [18, 64] extends in a non-
trivial way the algorithm of Makino et al. towards the k-class problem. It also
uses a procedure for adding new points.

Let T be a node of the tree T generated thus far on the data set D ⊆ X
where X is the input space. T can be represented as:

T = {x ∈ X : a(T) ≤ x ≤ b(T)}

where a(T) is called the lower corner and b(T) is called the upper corner of
T . In the following, the corners will be denoted simply by a and b when no
ambiguity occurs.

The original MDT algorithm is given in figure 3.1. In order to guarantee the
monotonicity of the tree, an update procedure is performed on the data set by

1In the algorithm there is also a procedure for adding points to ensure the quasi-
monotonicity of the generated tree but we do not discuss this aspect here as we are only
interested in the monotonicity property.

56 Monotone Decision Trees

split(node T):
update(T);
if T is homogeneous

label(T);
else

split T into disjoint TL and TR;
split(TL);
split(TR);

update(node T):
if a /∈ D

λ(a) = λmax(a);
add a to D;

if b /∈ D
λ(b) = λmin(b);
add b to D;

Figure 3.1: The monotone decision tree algorithm

adding at most 2 new data points with consistent labels. The update procedure
is performed every time a node is considered for splitting and the added points
are the lower and the upper corners of the node (if they are not already present
in the data set). The labels are chosen to be λmax(a) and λmin(b) respectively,
which are defined in the following, where cmin/cmax are the lowest/highest class
in the data set:

↓ x = {y ∈ X : y ≤ x}

↑ x = {y ∈ X : y ≥ x}

↓ D =
⋃

x∈D

↓ x

↑ D =
⋃

x∈D

↑ x

λmin(x) =

{
max{λ(y) : y ∈ D ∩ ↓ x} if x ∈ ↑ D
cmin otherwise.

λmax(x) =

{
min{λ(y) : y ∈ D ∩ ↑ x} if x ∈ ↓ D
cmax otherwise.

Using this way of labelling we guarantee that the lower corner gets the
minimal label possible for the node and the upper corner gets the maximal
possible label. At the same time the new points remain consistent with the rest
of the data, therefore the monotonicity constraint is not violated.

Figure 3.2 is meant to give some intuition in how this works. The figure
shows the two corners (a and b) of a leaf T . For corner b, the area of points
x in the data set such that x ≤ b is given. Similarly, for the corner a, the
area of points y such that y ≥ a is indicated. The intersection of those two

3.2 Algorithms for the Induction of Monotone Decision Trees 57

T

x

y

a

b

Figure 3.2: A leaf T with corners a and b

areas is obviously the leaf T . Let there exist a point y ≥ a. Then the labelling
function λmax will assign a label to a that is not greater than the label of y
because otherwise we introduce inconsistency in the data set. In a similar way,
the labelling function λmin will assign to b a label that is not lower than the
label of x ≤ b.

In order to illustrate how the algorithm works we use the example data set
from table 3.1. In the first step, the root of the tree (containing the whole
data set) is considered for splitting. The update rule fires and the corners
a = (0, 0, 0, 0, 0, 0) and b = (4, 4, 4, 4, 3, 3) are added with labels λ(a) = 0
and λ(b) = 3. Further a1 > 2 is chosen for a test of the node and the data
set is divided between the two children. Following the left-depth-first strategy

a1 > 2k
a6 > 1k

a4 > 1k
0
�� @@

1

��
� HHH a3 > 1k

1
�� @@

2

���
���

� XXXXXXX a3 > 1k
2
�� @@

3

Figure 3.3: The MDT generated for the example data set

58 Monotone Decision Trees

x a1 a2 a3 a4 a5 a6 λ
1 0 0 1 1 0 1 0
2 1 1 2 1 3 1 0
3 0 1 1 0 0 1 0
4 2 3 1 3 3 1 1
5 1 0 2 2 3 1 1
6 0 0 0 3 2 2 1
7 2 2 1 1 1 2 1
8 2 4 2 2 2 3 2
9 1 1 2 1 3 2 2
10 3 2 1 0 0 1 2
11 3 2 2 1 2 2 3
12 3 3 4 1 2 2 3
13 4 2 3 3 3 3 3
14 3 3 3 4 1 3 3
15 4 4 2 3 0 1 3

Table 3.1: The example data set

we consider the left child for splitting. The corners are a = (0, 0, 0, 0, 0, 0)
and b = (2, 4, 4, 4, 3, 3) where a is already present and b is added with a label
λ(b) = 2. The algorithm continues with finding the best split, etc. The full
monotone tree generated from this data set is given in figure 3.3.

Let L be the set of leaves of a tree T and N be the set of nodes of T . We
define a relation on N : for T, T ′ ∈ N , T ≤ T ′ ⇔ a(T) ≤ b(T ′).

Note that a simple criterion for checking the monotonicity of a tree ([64]) can
be defined as follows. Let T, T ′ ∈ L such that T = {x ∈ X : a(T) ≤ x ≤ b(T)}
and T ′ = {x ∈ X : a(T ′) ≤ x ≤ b(T ′)}. Then the tree is monotone if for any
choice of T and T ′: T ≤ T ′ ⇒ λ(T) ≤ λ(T ′).

3.3 Monotone Decision Trees from Noisy Data

Data noise is a problem that often occurs in practical applications of the classi-
fication algorithms and is extensively studied by many authors. The traditional
definition of noise considers data points which do not agree with the underly-
ing function because of wrong classification, incorrect/imprecise measurements,
typing mistakes, etc. Such points can mislead the classification algorithm and
cause the generation of an overly complicated and/or inaccurate classifier.

In monotone problems, however, noise will often manifest itself in a specific
way that is not relevant for the general methods. The restriction of monotonicity
of the data might be violated and data points can be inconsistent with each

3.3 Monotone Decision Trees from Noisy Data 59

update D for T :
l1 = λmax(a); l2 = λmin(b);
if a ∈ D

relabel a: λ(a) = l1;
else

label a: λ(a) = l1;
add a to D;

if b ∈ D
relabel b: λ(b) = l2;

else
label b: λ(b) = l2;
add b to D;

Figure 3.4: The new update rule

other, i.e., one point might dominate another on all attribute values but be
classified in a lower class. We refer to this type of noise as monotonicity noise.
The MDT algorithm requires strictly monotone data. In this section we propose
an extension which will allow the generation of a monotone tree from any noisy
data set.

When monotonicity noise occurs in the data, it appears as pairs of data
points that are inconsistent with respect to monotonicity. For the MDT algo-
rithm that results in tree nodes for which the lower left corner is assigned a
higher label than the upper right corner. More precisely, let T = {x ∈ X :
a(T) ≤ x ≤ b(T)} be the set (node) considered for splitting and let λ(a) and
λ(b) be the labels of a(T) and b(T) respectively. Then it might occur that
λ(a) > λ(b).

In order to solve the problem we propose a simple extension of the update
rule that not only grows the data set but also tries to repair the inconsistencies.
The new update rule is given in figure 3.4. The procedure always relabels the
corners with the consistent labels that are calculated from the rest of the data.
This algorithm always generates a monotone tree.

Theorem 4 The MDT algorithm of figure 3.1 with the update rule of figure 3.4
always generates a monotone tree.

Proof: Let us assume that the generated tree is not monotone:

∃T, T ′ ∈ L : T ≤ T ′ and λ(T) > λ(T ′)

By assumption T and T ′ are homogeneous. Therefore λ(T) = λ(a(T)) =
λ(b(T)) and λ(T ′) = λ(a(T ′)) = λ(b(T ′)). This implies

λ(a(T)) > λ(b(T ′)). (3.1)

60 Monotone Decision Trees

a1 > 2k
a6 > 1k

a4 > 1k
a2 > 0k

0

 JJ

a1 > 1k
a2 > 1k

a3 > 0k
0

 JJ

a3 > 2k
0

 JJ

1

�
�� Q

QQ 1

�
�� Q

QQ 1

�
�� Q

QQ 1

��
�� HHHH a3 > 1k

1

 JJ

2

��
��

�� PPPPPP a3 > 1k
2

 JJ

3

Figure 3.5: MDT on the non-monotone data set

The labels of the leaves are assigned as follows:

at a moment t we assign λ(a(T)) = λmax(a),

at a moment t′ we assign λ(b(T ′)) = λmin(b).

Let t < t′. Since T ≤ T ′ then a(T) ∈↓ b(T ′) ∩ D 6= ∅

⇒ λmin(b) ≥ λ(a(T))

⇒ λ(a(T)) ≤ λ(b(T ′))

which is a contradiction with condition 3.1. The case of t′ < t is analogous. �

An interesting observation is that, after a leaf is created, all the points
belonging to the leaf except the corners can be deleted from the data set since
they will not be used further in the tree generation.

To illustrate the algorithm we introduce monotone inconsistency in the ex-
ample data set of table 3.1 – we change the label of data point x3 from 0 to 1.
Thus we introduce an inconsistent pair of data points (x2,x3). The output of
the algorithm on the new data set is given in figure 3.5.

3.4 Pruning and Labelling Rules that Guaran-

tee the Monotonicity

Pruning is a general tree simplification method that has proven to give good
results both for reduction of the size of the tree and for reducing the overfitting

3.4 Pruning and Labelling Rules that Guarantee the Monotonicity 61

of the particular data set. Methods for pruning will be a valuable addition to
the monotone decision tree algorithms; however, the general approaches cannot
be applied directly. The main problem is how to guarantee that, after pruning
a node, the new leaf is given a label which will be consistent with the rest of
the labels and that the resulting tree will still be monotone.

Moreover, this raises the more general question of labelling monotone de-
cision trees. Given a tree generated by any classical algorithm, how do we
(re)label the leaves in a consistent way so that the tree becomes monotone?

Section 3.4.1 is devoted to the monotone labelling problem. Section 3.4.2
investigates how the labelling approaches can be applied when simplification of
the tree is necessary.

3.4.1 Labelling Rules

Two approaches to the problem of labelling are considered – dynamic and static
labelling. Dynamic labelling is applied while generating the tree, as soon as a
node is turned to a leaf and its label has to be chosen. Therefore it is assumed
that in most of the cases a part of the tree is not yet generated, thus information
about it is not available.

The static labelling approach on the other hand assumes that the whole tree
is already generated but the leaves are not assigned labels (or their labels have
to be ignored and re-assigned in order to generate a monotone tree). Therefore
the assumption is that usually more than one leaf will not yet be labelled and
for that part of the leaves only information about the corner labels is available.

The dynamic and the static approaches are presented in sub-sections 3.4.1
and 3.4.1 respectively.

Dynamic Labelling

One important difference between the static and the dynamic way of labelling
is to what extent the information in the tree is already available. While in the
static case the tree is grown and all the information about the shape of the
tree, the corners of the leaves and the labels of these corners is available, in the
dynamic case we only have a part of the tree built and the new label should be
based on partial information.

Therefore, for dynamic labelling, an important factor is the search strategy
used for building the tree, i.e., which part of the tree is expected to have been
built already and what kind of information will influence the new labels. In the
following we assume the depth-first strategy for growing the tree. First we note
an observation that holds for this strategy.

Lemma 8 Let T, T ′ ∈ L(T) in the monotone tree T generated with depth-first
strategy. Let T ≤ T ′. Then leaf T is generated before leaf T ′.

62 Monotone Decision Trees

label leaf T :
λ(T) = L(T);
λ(a(T)) = λ(T);
λ(b(T)) = λ(T);

Figure 3.6: The dynamic labelling rule

Proof: Let N be a node in T such that N is the least common ancestor of T
and T ′. Therefore ∃i such that exactly one of the following is true:

∀x ∈ T, ∀y ∈ T ′ : x(i) ≤ y(i) (3.2)

∀x ∈ T, ∀y ∈ T ′ : x(i) > y(i) (3.3)

Condition 3.3 contradicts the requirement T ≤ T ′. Therefore condition 3.2 is
true and T belongs to the left branch of N while T ′ belongs to the right branch
of N . Therefore, using the depth-first strategy, T will be generated before T ′.�

The general form of the dynamic labelling rule for a non-homogeneous leaf
T is given in figure 3.6 where L is the labelling function. Two possible forms
are proposed for the labelling function as follows:

L ∈ {Lmin, Lmax},

Lmin(T) = max{λ(a(T ′))|T ′ ≤ T},

Lmax(T) = min{λ(b(T ′))|T ≤ T ′}.

Note that for T ′ 6≡ T in the above formulas, a(T ′) = b(T ′) = λ(T ′).

Theorem 5 Let T be a tree generated using the extended MDT update rule for
a threshold of at least m points in a leaf, m ≥ 1. Let the leaves be labelled using
the dynamic labelling rule of figure 3.6 where one of the following strategies is
applied:

1. L(T) = Lmin(T), ∀T ∈ L,

2. L(T) = Lmax(T), ∀T ∈ L.

Then T is monotone.

Proof: Let the tree be generated using the left-depth-first strategy. The newly
generated leaf to be labelled is denoted by T . If T is the first leaf then the
current set of labelled leaves is monotone.

Let T be not the first leaf and let the current set of labelled leaves be
monotone. We label λ(T) = L(T).

3.4 Pruning and Labelling Rules that Guarantee the Monotonicity 63

Let L = Lmin(T). Then

λ(T) = max{λ(a(T ′))|T ′ ≤ T}.

Therefore, for each T ′ ≤ T , λ(T ′) ≤ λ(T). Therefore the tree remains monotone.
The proof is analogous for L = Lmax.

In the same way it can be proved for right-depth-first strategy. �

The following observations can help speed up the computation:

Observation 4 For the left-depth-first strategy the following holds:

Lmax(T) = λ(b(T)).

Observation 5 For the right-depth-first strategy the following holds:

Lmin(T) = λ(a(T)).

The experiments suggest that Lmax(a) tends to favor the lower classes while
Lmin(b) tends to favor the higher classes. Therefore they provide a choice to the
decision-maker for a more pessimistic against a more optimistic prediction.

Static Labelling

As mentioned before, static labelling is performed on the fully generated tree,
where the information about all the leaves (except their labels) is already avail-
able.

The earlier defined relation over the nodes/leaves of a tree is not transitive.
We define now a transitive closure relation, denoted by E, in the following way.
For T ′, T ′′ ∈ N :

T ′ E T ′′ ⇔ ∃T1, T2, . . . , Tm ∈ N such that T ′ ≤ T1 ≤ T2 ≤ . . . ≤ Tm ≤ T ′′.

In our implementations we used the algorithm of Warshall [77] for computing
the transitive closure.

We define Λmin and Λmax over the set of leaves L as follows:

Λmin(T) = max{λ(a(T1))|T1 ∈ L, T1 E T}

Λmax(T) = min{λ(b(T2))|T2 ∈ L, T E T2}

Then Λ is defined as: Λ ∈ {Λmin, Λmax}.
It can be shown that Λmin ≤ Λmax and they are monotone labellings, i.e.,

for leaves T1 ≤ T2, Λmin(T1) ≤ Λmin(T2) and Λmax(T1) ≤ Λmax(T2).

Theorem 6 Let T be a tree generated without labelling. Let the leaves be visited
following either left-depth-first or right-depth-first order. The leaves are labelled
using one of the following strategies:

64 Monotone Decision Trees

1. λ(T) = Λmin(T), ∀T ∈ L,

2. λ(T) = Λmax(T), ∀T ∈ L.

Then the resulting tree is monotone.

Proof: Let Λ = Λmin and the order of visiting the leaves is left-depth-first. Let
the last leaf labelled be T . If T is the first labelled leaf then the current set of
labelled leaves is monotone.

Let T be not the first labelled leaf and let the current set of labelled leaves
be monotone. The label of T is:

λ(T) = Λmin(T) = max{λ(a(T ′))|T ′ E T}.

Let us assume that the resulting set of labelled leaves is no longer monotone.
Using left-depth-first means that there are no labelled leaves T ′ such that T ET ′.
Therefore ∃T ′ET, λ(T ′) > λ(T). Since λ(T) ≥ λ(a(T ′)), then λ(T ′) > λ(a(T ′))

⇒ ∃T ′′ : T ′′ E T ′, λ(T ′) = λ(a(T ′))

⇒ T ′′ E T ⇒ λ(T) ≥ λ(a(T ′′)) = λ(T ′)

which is a contradiction with the assumption.
The proof is analogous for Λmax and for right-depth-first order. �

Comparison of the Two Labelling Approaches

In order to get more insight into the performance of the two presented ap-
proaches for labelling, experiments were conducted. The main goal was to
compare the results from the four possible combinations of settings: dynamic
labelling with Lmin, dynamic labelling with Lmax, static labelling with Λmin and
static labelling with Λmax.

The trees were generated using left-depth-first search strategy with pre-
pruning at predefined thresholds for the minimal number of points in a node
(see section 3.4.2). Therefore the size of the trees was almost always the same.

The results showed that:

• In general, the dynamic labelling produces trees with lower misclassifica-
tion rate on unseen data. The reason for this lies most probably in the
fact that the tree changes dynamically and it is possible to generate trees
that have a different shape, while in the static case the shape of the tree is
already fixed and the only feature that changes is the labels of the leaves.

• The difference between the two labelling functions for both approaches
was not so clear-cut and no conclusion can be made yet on which one is
preferable.

Details on the experimental setting and the results are given in section 3.7.

3.4 Pruning and Labelling Rules that Guarantee the Monotonicity 65

3.4.2 Pruning

When noise is present in the data set this creates difficulties for most of the
classification algorithms, e.g. by causing areas in the data to become difficult
to describe, and thus causes (sometimes substantial) increase in the complexity
of the generated classifier.

For the MDT algorithm the same effect is present when monotonicity noise
is introduced – the tree sometimes grows much larger and some isolated deep
branches might be generated in order to describe the inconsistent areas in the
data. This can be illustrated by the following example. We introduce incon-
sistency in the data set from table 3.1 by changing the label of x8 from 2 to
0 which results in one pair of inconsistent points (x7,x8). The monotone tree
generated by the algorithm has 148 leaves and 288 data points in the updated
data set.

Therefore we need methods for pruning the monotone tree in order to reduce
the size of the tree and avoid the overfitting of the noisy areas in the data in
such a way that we keep the monotonicity property of the tree.

This paper proposes methods for pruning within two main approaches – pre-
pruning and post-pruning. Pre-pruning is a general approach for pruning while
generating the tree by not growing branches which fail to satisfy a predefined
criterion and turning them to leaves. Therefore pre-pruning modifies the stop-
ping and the labelling rule of the algorithm. Post-pruning on the other hand
first grows the full tree and then tries to cut branches from it while a predefined
criterion is satisfied. It is therefore a post-processing step which requires two
separate rules – for choosing a branch to cut and for labelling the new leaves.

Pre-pruning

One criterion often used in traditional pruning techniques for prematurely stop-
ping the generation of a branch is a predefined threshold for the minimal number
of points in a leaf. Splitting is not allowed if the number of points in any of the
new leaves drops below the threshold, the current node is then turned to a leaf
and assigned an appropriate label.

Pre-pruning is a typical application of dynamic labelling. Once a non-
homogeneous node is turned to a leaf, the labelling rule of figure 3.6 is applied
and the leaf (and its corners) is given a consistent label.

Static labelling can also be used with pre-pruning if the labelling is delayed
until the whole tree is generated. The leaves are then visited in left-depth-first
or right-depth-first order and assigned labels as in theorem 6.

To illustrate the algorithm we use the example from table 3.1 with the change
described in section 3.4.2. Figure 3.7 shows the tree generated using pre-pruning
with threshold of at least 4 points in a leaf, using left-depth-first and dynamic
labelling with L = Lmax. The tree misclassifies 2 points from the original data
set.

66 Monotone Decision Trees

a1 > 2k
a5 > 0k

0
cc a3 > 1k
a4 > 0k

0
,, ll

1

!!
!! aaaa a6 > 1k

1
,, ll

2

���
��� XXXXXX a3 > 1k

2
,, ll

3

Figure 3.7: MDT generated with pre-pruning

In some cases both children-leaves of a node might be assigned the same
label. In this case the node can be pruned without further increase in the
misclassification rate.

Pre-pruning can be used together with the extension of the MDT algorithm
for noisy data as well as with the original algorithm on monotone data.

Post-pruning

The general approach of post-pruning the already generated tree defines two
additional rules – for choosing a branch to prune and for choosing a label for
the new leaf. First we address the second problem taking into account the
monotonicity property of the tree.

The approach we use for labelling is different from the ones already discussed
in section 3.4.1. In the particular application, we need a local labelling strategy
which assumes that the whole tree is fully generated and labelled except for the
current leaf, which needs to be assigned a label.

Let T be a monotone decision tree. For a node T = {x ∈ X : a(T) ≤ x ≤
b(T)} we define a consistency interval CI(T) where:

CI(T) =

{
[lmin(T), lmax(T)] if lmin(T) ≤ lmax(T)
∅ otherwise,

lmin(T) =

{
max{λ(T ′) : T ′ ∈ L, T ′ ≤ T} if ∃T ′ : T ′ ≤ T
cmin otherwise,

lmax(T) =

{
min{λ(T ′) : T ′ ∈ L, T ≤ T ′} if ∃T ′ : T ≤ T ′

cmax otherwise.

If CI(T) 6= ∅ then any value in CI(T) is a possible consistent label for T
preserving the monotonicity property of the tree.

3.4 Pruning and Labelling Rules that Guarantee the Monotonicity 67

Theorem 7 For a given monotone tree T and an arbitrary node T in T , sup-
pose that the children of T are pruned and that T is turned to a leaf. Let
CI(T) 6= ∅. Then for any l ∈ CI(T), l can be assigned as a label of T and the
resulting tree remains monotone.

Proof: Let us assume that the new tree is not monotone. Therefore there exists
T ′ ∈ L such that one of the following occurs:

T ′ ≤ T and λ(T ′) > λ(T) or (3.4)

T ≤ T ′ and λ(T) > λ(T ′). (3.5)

Let condition 3.4 be the case. Since T ′ ≤ T , we have λ(T ′) ≤ lmin(T). But
λ(T) = l ≥ lmin(T), therefore:

λ(T ′) ≤ lmin ≤ λ(T) < λ(T ′)

which is a contradiction.
The case of condition 3.5 is analogous. �

When the consistency interval contains only one point l = lmin = lmax, there
is only one possibility for a consistent label of the pruned node. However, if
lmin < lmax then a choice has to be made about which point from the interval
to assign. This choice is often domain dependent and reflects, for example, how
optimistic or pessimistic the prediction is required to be.

The second open question with monotone pruning is the choice of a node to
prune. It includes the order of visiting the nodes and the criterion for approval or
rejection of the current candidate for pruning. We consider two search strategies
for visiting the nodes. The first follows the depth-first order of visiting the nodes
and tries to prune the current node if both its children are leaves. The second
strategy iteratively tries to prune the frontier of the tree in depth-first order. On
each iteration it tries to prune all nodes whose (both) children are leaves none
of which has just be pruned. The loop terminates when the tree is traversed
without pruning any node. Our experiments point out that the second strategy
produces more balanced trees while the size of the trees is comparable to the
size of the trees produced by the first strategy.

Once a candidate for pruning is reached the decision needs to be made
whether to prune it or not. One logical criterion is the misclassification rate.
The algorithm computes the new label and then checks whether the misclassi-
fication rate of the tree with the new leaf is below a predefined threshold for
the percentage of misclassified data points. It is a general approach to use a
separate pruning set for checking the accuracy of the tree.

To illustrate the post-pruning algorithm we use the same example. As noted
before, the full tree contains 148 leaves. Figure 3.8 shows the pruned tree at
misclassification threshold 25% and assigning label lmax. For simplicity, no

68 Monotone Decision Trees

a1 > 2k
a5 > 0k

0"
" bb a3 > 1k

0"
" bb a6 > 1k

a4 > 1k
0"
" bb a1 > 0k

0"
" bb a5 > 1k

0"
" bb a5 > 2k

0�
� QQ 1


  ```````̀ a5 > 2k
0�
� QQ 2

   
   

  ```````̀ a3 > 1k
2�
� QQ 3

Figure 3.8: MDT generated with post-pruning

a1 > 2k
a5 > 0k

0"
" bb a3 > 1k

0"
" bb a6 > 1k

0"
" bb a5 > 2k

0�
� QQ 2


  ```````̀ a3 > 1k
2�
� QQ 3

Figure 3.9: MDT generated with post-pruning

separate pruning set was used but the misclassification rate was checked on the
original data set instead. The pruned tree misclassifies 3 points from the original
data set. Figure 3.9 shows the tree pruned at threshold 30% and 4 misclassified
points.

Again as with pre-pruning it might happen that both children of a node are
assigned the same label – then again we can prune the node without increasing
the misclassification rate.

Figure 3.10 illustrates the same algorithm with choosing lmin as the label of
the new leaf. The tree is pruned at misclassification threshold 25% and 3 mis-
classified points. Figure 3.11 shows the tree at threshold 30% and 4 misclassified
points.

The post-pruning algorithm can be applied as a post-processing step on any
monotone tree generated with another algorithm as soon as the information
about the leaf corners is available. It can also be used on a monotone tree



3.4 Pruning and Labelling Rules that Guarantee the Monotonicity 69

a1 > 2k
a5 > 0k

0
�� SS

a3 > 1k
0
�� SS

a6 > 1k
a4 > 1k

0
�� SS

a1 > 0k
0
�� SS

a5 > 1k
0
�� SS

a5 > 2k
0
�� SS

1

   
   

    `````````̀ a5 > 2k
a3 > 2k

a4 > 2k
0
�� SS

1

"
"" b

bb 1

"
"" b

bb 2

!!
!!! aaaaa a3 > 1k

2
�� SS

3

Figure 3.10: MDT generated with post-pruning

a1 > 2k
a5 > 0k

0"
" bb a3 > 1k

0"
" bb a6 > 1k

a4 > 1k
0"
" bb a1 > 0k

0"
" bb a5 > 1k

0�
� QQ 1

!!
!! aaaa 2


  ```````̀ a3 > 1k
2�
� QQ 3

Figure 3.11: MDT generated with post-pruning



70 Monotone Decision Trees

generated with the pre-pruning algorithm for further simplification of the tree.

Comparison of the Two Pruning Approaches

Experiments were conducted in order to compare and study the specifics of the
two pruning approaches. Here the main observations from these experiments
are presented.

It is theoretically clear that pre-pruning will generate smaller data sets and
therefore consumes less resources than growing the whole tree and pruning it
afterwards. This was confirmed to be a significant advantage of pre-pruning
against post-pruning, especially when the noise affects more severely the gener-
ation process.

The relation between the number of inconsistent pairs of data points and
the size of the tree is not straightforward – more important is the type of incon-
sistency that can confuse the tree generation. When the noise severely disturbs
the tree generation it is possible for the data set and the tree size to grow expo-
nentially. This is a known result for the original MDT algorithm for monotone
data. The problem occurs more often with noisy data since it is originally in-
consistent and can more easily confuse the generation process. However, using
pre-pruning the problem can be easily overcome and manageable trees can be
generated from any noisy data set.

On the other hand, for some of the data sets post-pruning seems to pro-
duce better results by pruning a large part of the tree with no change in the
misclassification rate.

As was expected, for several data sets using smaller thresholds for pre- and
post-pruning improves the accuracy of the tree by giving lower misclassification
rate than the full tree. This is a result of the reduction in overfitting the
particular samples due to the pruning and it is a known effect of tree pruning
in general.

Details about the data used, the performed experiments and the experimen-
tal results are given in section 3.7.

3.5 Splitting Criteria for Monotone Decision

Trees

One of the important rules in building a decision tree is the splitting rule which
defines how to split the current node into two branches. For a binary tree, a
split is a tuple of the type 〈ai, vj〉 where ai is the attribute to split on and vj is
the cut-off value. A lot of research has been carried out on finding appropriate
criteria for choosing good splits for the classical DT algorithms. One of the most
successful approaches is to choose the split which produces the highest decrease
in the entropy or the highest information gain. These two notions are usually



3.5 Splitting Criteria for Monotone Decision Trees 71

defined as follows. The entropy of a node T is:

Ent(T ) = −
n∑

i=1

pi log2pi

where pi is the proportion of data points with class i in T for an n-class problem.
Then the information gain of an attribute ai and cut-off value vj is:

Gain(T, ai, vj) = Ent(T ) −
∑

k∈{L,R}

|Tk|

|T |
Ent(Tk)

where TL/TR are respectively the left and the right child of T when split on
〈ai, vj〉.

However, for the specific case of MDT it is not clear which splitting criteria
are appropriate. Intuitively they should not only attempt to produce smaller
trees but also provide fast decrease in the inconsistencies in the tree. One such
criterion within the Multicriteria Decision Aid methodology was suggested in
[30, 29] although no experimental results were presented on its performance
compared to other criteria. The criterion aims at reducing the number of non-
monotone pairs of points in the resulting branches. It chooses the split with the
least number of inconsistencies/conflicts.

Let the current node T be split into the following non-overlapping subsets:

T ′ = {a(T ′) ≤ x ≤ b(T ′)}

and
T ′′ = {a(T ′′) ≤ x ≤ b(T ′′)}.

Let T ′ be the left branch. Therefore T ′ ≤ T ′′. If for all points x ∈ T ′, y ∈ T ′′ it
is true that λ(x) ≤ λ(y) then the split is monotone. There might be, however,
points such that λ(x) > λ(y). The number of those inconsistent pairs is counted
for all possible splits of the current node and the one with the lowest count is
chosen.

The experiments that were conducted for this section aim at giving more
insight into the performance of the two mentioned criteria in the context of
MDT. The two main aspects for comparison are the size and the accuracy of the
generated trees. The experimental results point at the following observations:

• On monotone data sets no criterion is systematically better than the other.

• With the increase of monotonicity noise in the data, the entropy criterion
tends to generate smaller trees.

• With the increase of monotonicity noise in the data the conflicts criterion
generates more accurate trees with lower misclassification rate on unseen
data.



72 Monotone Decision Trees

Intuitively the reason for the difference is probably in the orientation of the
two criteria. The entropy criterion strives at generating smaller trees by reducing
the diversity of classes in the leaves as quickly as possible. The conflicts criterion,
on the other hand, only cares about the consistency/monotonicity of the tree
and therefore produces trees that are larger but better fit the “character” of the
data. In this way it handles monotonicity noise more successfully but at the
cost of generating bigger trees.

Details about the data used, the performed experiments and the experimen-
tal results are given in section 3.7.

3.6 Missing Values in Monotone Data Sets

Missing values is a known problem in knowledge discovery. It comes as a result
of human mistakes and omissions but also when data for certain attributes is
difficult, expensive or even impossible to get. A special case is when for a
certain object this attribute is not relevant, for example, in the records of a
hospital the attribute “has given birth” is only relevant for female patients.
This specific case requires different methods, such as reorganization of the data
or specific classification algorithms, that can handle such data. In this section
we only consider the former type of missing values in the context of a monotone
classification problem.

We assume that the missing values are only found among the condition at-
tributes. If a value of the decision attribute is missing then this object cannot
contribute much information for the classification. If however a value of a con-
dition attribute is missing, the rest of the values, together with the decision
attribute, can still give important information. For this reason, the obvious
solution to simply ignore all objects with missing values is usually not the best
solution. The results are especially bad if the percentage of missing values is
high.

A number of approaches for handling unknown values are available in the lit-
erature, see [68, 54, 43] for surveys and experimental comparison of the methods.
However the only general approach that can be applied on monotone problems
without introducing inconsistencies is to discard the objects with missing val-
ues. We propose here a simple extension to a number of preprocessing methods
which guarantees that the resulting data set will still be monotone.

Let x be a data point with a missing value in attribute ai ∈ C. By x|A
we denote the vector consisting of all values in x for the attributes in A ⊂ C.
We define the relation [≤] on the set of examples as follows. Let x have known
values for attributes in A and missing values for all the rest in C\A and let y
have values for the attributes in B and missing values for C\B. Then we define
the relation as:

x [≤] y if x|A ∩ B ≤ y|A ∩ B.



3.6 Missing Values in Monotone Data Sets 73

Notation: In the following, bDc will denote the subset of objects in D that
are fully defined, i.e. contain no missing values.

We define, for an object x and a missing value in x for attribute a, the
following interval [vmin(x|a), vmax(x|a)] (which we call possible values interval)
where:

vmax(x|a) =

{
min{(y|a − 1) : y ∈ bDc, y [≤] x, d(y) > d(x)} if such y exists
amax otherwise.

vmin(x|a) =

{
max{(y|a + 1) : y ∈ bDc, x [≤] y, d(x) > d(y)} if such y exists
amin otherwise.

Here amin and amax refer to the minimal and the maximal possible value
respectively for attribute a.

Note that the possible values interval might contain no values in the case
when vmin(x|a) > vmax(x|a). This is a clear sign of noise in the data. The
following theorem explains why.

Theorem 8 Let D be a monotone data set described by condition attributes C
without missing values. Then for each object x ∈ D and each attribute a ∈ C
the possible values interval [vmin(x|a), vmax(x|a)] is non-empty.

Proof: Let the right side of the interval be extracted from the object y: vmax =
y|a − 1 where y|C\{a} ≤ x|C\{a} and d(y) > d(x).

Let x|a > vmax. Then x ≥ y but d(x) < d(y) therefore the D is not
monotone, which is a contradiction to the conditions.

Similarly let vmin = z|a + 1. If x|a < vmin then if follows that x ≤ z but
d(x) > d(z), which is a contradiction to the monotonicity of D.

Therefore x|a ∈ [vmin(x|a), vmax(x|a)] 6= ∅. �

Taking this result into account, a possible method to deal with cases when
the interval is empty is to ignore the object. If however the interval is not
empty, then any value from it is a valid assignment for x which preserves the
monotonicity. This is expressed in the following theorem.

Theorem 9 Let D be a data set with missing values such that bDc is monotone.
Let x ∈ D contain one missing value in attribute a. Let us assume that ∃v ∈
[vmin(x|a), vmax(x|a)]. Then bDc ∪ x is monotone.

Proof: Let us assume that bDc ∪ x is not monotone. Let the inconsistent pair
be y ≤ x such that d(y) > d(x). Therefore x|a ≥ y|a > vmax ≥ x|a, which is a
contradiction.

Similarly the assumption that x ≤ y while d(x) > d(y) will lead us to a
contradiction. �



74 Monotone Decision Trees

Note that in the theorem, x is allowed to have only one missing value. The
case of more missing values is more complicated since they depend on each other
and cannot be considered separately. In the following we assume that no object
has more than one unknown value.

The general algorithm proposed here goes through the following steps for
each object with a missing value:

1. Compute the possible values interval taking into account the fully defined
objects in the data set.

2. If [vmin, vmax] = ∅ then discard the object x.

3. If vmin = vmax then the interval contains only one value. Assign that value
to x|a.

4. If vmin < vmax then apply procedure fill-value(vmin, vmax).

The procedure fill-value which appears in the algorithm depends on the cho-
sen general method for filling in the missing values. Not all available approaches
are applicable since we want to restrict the possible values to the interval we
have calculated and not all methods can accommodate this restriction. We con-
sider here three candidates from the literature: most frequent value, k-nearest
neighbour and vector multiplication.

The most frequent value method is very simple – choose the most frequent
value for this attribute. The CN2 algorithm uses that idea (see [31]). A re-
finement of the approach is the maximum relative frequency method proposed
in [50] which assigns the most common value within the decision class. For
our purpose we only consider the set of values included in the possible values
interval and choose the most common of them within the decision class.

The second method applies a version of the k-nearest neighbour algorithm
[32] to choose one value for the attribute. It applies some relevant distance
measure to extract from the data set the k objects that are closest to the object
x. Then it chooses the best (for example the most frequent) value for the missing
attribute. In the monotone case we are only interested in neighbours with values
within the computed interval. This restriction can easily be incorporated in the
original algorithm.

The third method adds new objects to the data set – x is multiplied by
assigning each of the possible values of the missing attribute [42]. By only
considering the values from the computed interval, this approach can also be
used in the monotone case. A refinement of the approach is to restrict the set
to only those values that appear within the decision class.

Applying the above presented algorithm with one of the three methods dis-
cussed for the fill-value procedure, results in a monotone data set, as long as
the initial fully defined data set bDc is monotone.



3.7 Experiments 75

Obviously the end result will depend on the order in which we visit the
objects and the attributes (because we use the already repaired objects for the
calculation of the new intervals). One possible approach to finding a suitable
order is to choose at each step the case with the smallest interval of possible
values. Therefore we have to update all intervals after each change. This,
however, does not add a lot of overhead since only one or a very limited number
of objects change at each step. On the other hand, the intervals cannot get
larger after a change because no objects in bDc are removed. They might,
however, get smaller, which might in some cases speed up the algorithm a little
(if for example the interval is reduced to only one value).

3.7 Experiments

In the following sub-sections we describe the experiments on the different meth-
ods presented in this chapter. Three data sets were used which will be discussed
first.

The Nursery data set was obtained from UCI Machine Learning Repository
[19]. It is a real-world monotone data set which represents applications for a
nursery school, contains 12960 instances described by 8 attributes and covers
the whole input space.

The Cars data set was also obtained from UCI Machine Learning Repository
[19] and is an artificial set describing cars by their properties and classifying
them according to their acceptability for a buyer. The original data was not
strictly monotone and for that reason one of the values of one attribute was
removed. The resulting set was monotone. It contains 1153 instances described
by 6 attributes.

Both data sets are described in more details in Appendix A.

For the experiments random samples of size 200 points were drawn from both
data sets. Monotone inconsistencies were introduced in the data in the following
way: a pair of comparable data points (such that either x ≤ y or x ≥ y) from
different classes was chosen at random and the labels were switched. This results
in one or more inconsistent pairs. The procedure can be repeated to introduce
more noise. Since both data sets cover the whole input space, they were also
used in the experiments as test sets for the misclassification.

The third data set used in the experiments is discussed in [40, 74]. The sam-
ple consists of 39 objects representing firms that are described by 12 financial
parameters. To each company a decision value is assigned – the expert evalua-
tion of its category of risk. Since this data set is very small it was only used in
one of the experiments.



76 Monotone Decision Trees

3.7.1 Experiments on the Dynamic and Static Labelling

Approaches

For the comparison of the two labelling approaches, four samples were used – one
from the Cars data set and three from the Nursery data. For each sample, the
algorithms were applied for the thresholds of minimum 5, 10, 15 and 20 points
in a node. For the static case the leaves were left unlabelled and the labelling
was performed at the end. Eight different combinations of settings were tested:
entropy versus conflicts splitting criteria, Lmin versus Lmax and Λmin versus
Λmax. The results about the splitting criteria are discussed in section 3.7.3 and
for the purpose of the current discussion the results will the averaged over the
two criteria.

As test sets, the full data sets were used as they cover the whole input space
(1153 points for the Cars data set and 12960 points for the Nursery data set).
The number of misclassified points per sample is given in table 3.2. The first
column contains the value of the threshold. Columns 2 and 3 give the results for
the tree labelled with static labelling for Λmin and Λmax respectively. Columns
4 and 5 give the analogous results for dynamic labelling and Lmin and Lmax

respectively.

As mentioned above, the size of the trees was practically the same for the
static and the dynamic case (per sample and threshold). Bearing this in mind,
it can be seen that the number of points misclassified by the trees which were
labelled dynamically is systematically lower than (often more than twice as low
as) that of the trees labelled statically.

On the other hand, no definite answer can be given to the question of which
labelling function to use: Lmin versus Lmax and Λmin versus Λmax. In the static
case the choice of labelling function made hardly any difference in the results,
while in the dynamic case for some samples Lmin is better and for the other
Lmax gives better results.

3.7.2 Experiments on the Pre-pruning and Post-pruning

Approaches

In order to compare and study the specifics of the two pruning approaches
presented in the chapter, experiments were conducted using a sample from the
Nursery data set and the bankruptcy data set. For each sample, 3 noisy sets
are generated by switching the labels of 1, 2 or 3 pairs of comparable points.
The new data sets are used to build the full MDT, the pre-pruned MDTs with
varied threshold of 2 to 5 points in a node and the post-pruned trees with varied
misclassification rate threshold of 5% to 20%. Each tree is represented by the
following indicators: number of points in the updated data set(u), number of
nodes (n), number of leaves (l), average depth (d), number of misclassified points
on the original data (o), and on the separate test set (t).



3.7 Experiments 77

static dynamic
thr Λmin Λmax Lmin Lmax

5 205 205 93 285
10 350 350 156 407
15 408 408 217 425
20 408 408 219 434
5 2495 2495 1708 1915
10 4012 4012 2172 2154
15 4530 3524 2395 2292
20 4950 4950 2512 2424
5 2436 2436 1821 1694
10 3380 3380 2486 1892
15 4653 4653 2587 2404
20 5055 5055 2967 2404
5 4152 4152 2097 3351
10 5402 5402 2489 3509
15 6892 6892 2983 4219
20 7398 7403 3130 4555

Table 3.2: Experimental data on the labelling approaches

The results for the Bankruptcy data set are given in table 3.3, where the
results from the monotone data set are presented in column 2. The three gen-
erated noisy data sets are given in the rest of table 3.3. Since the original set
is very small, no separate test data set is used. The last data set took too
long to generate the full tree due to exponential growth of the updated data
set. However, the pre-pruning algorithm generates manageable trees (even for
a threshold of 2 points) which are represented in the table.

The results for the Nursery data set sample are presented in a similar way
in table 3.4.

Further experiments were performed on two of the series from table 3.6.
These data sets are samples from the Nursery data set with added noise and
they are described in section 3.7.3. The goal was to see how the size and the
accuracy of the trees change on the full range of pre-pruning and post-pruning
thresholds. It is also possible to see how the chart changes with the addition of
more noise.

The trees were built using left-depth-first strategy and the entropy splitting
criterion. The labelling function for pre-pruning was Lmin and for post-pruning
Λmin. Similar results, however, were observed for Lmax and Λmax.

In this section only the charts for the monotone sample are included. The
rest of the results are presented in appendix B. Figure 3.12 shows how the size
of the tree (the number of nodes) changes with the increase of the pre-pruning



78 Monotone Decision Trees

mon full pre2 pre3 pre4 pre5 po5 po7 po10 po15 po20
u) 50 91 91 90 75 73 91 91 91 91 91
n) 11 53 53 51 35 33 11 9 7 7 7
l) 6 27 27 26 18 17 6 5 4 4 4
d) 2 13 13 12 8 8 2 2 2 2 2
o) 0 1 1 1 1 2 1 2 3 3 3
u) 123 123 121 104 83 123 123 123 123 123
n) 87 87 83 65 43 87 45 21 17 17
l) 44 44 42 33 22 44 23 11 9 9
d) 12 12 12 9 7 12 9 4 4 3
o) 2 2 2 2 3 2 2 3 5 7
u) * 195 180 121 100 * * * * *
n) * 163 145 83 61 * * * * *
l) * 82 73 42 31 * * * * *
d) * 14 14 9 8 * * * * *
o) * 4 5 5 6 * * * * *

Table 3.3: Experimental data for the bankruptcy data set

mon full pre2 pre3 pre4 pre5 po5 po7 po10 po15 po20
u) 482 598 459 353 311 283 598 598 598 598 598
n) 321 471 297 161 111 83 143 75 73 25 17
l) 161 236 149 81 56 42 72 38 37 13 9
d) 10 10 10 8 7 7 9 7 7 4 4
o) 0 1 35 38 39 40 9 13 19 29 36
t) 17 16 41 44 45 44 24 27 31 36 47
u) 592 410 341 295 275 592 592 592 592 592
n) 493 239 149 95 75 35 31 29 37 21
l) 247 120 75 48 38 18 16 15 19 11
d) 11 9 8 7 6 5 5 5 5 5
o) 1 27 34 36 39 9 13 19 29 37
t) 26 38 43 43 44 24 34 38 46 48
u) 2795 576 440 377 328 2795 2795 2795 2795 2795
n) 3449 419 255 179 129 3449 3449 3449 45 13
l) 1725 210 128 90 65 1725 1725 1725 23 7
d) 14 10 9 8 7 14 14 14 6 3
o) 24 16 28 41 47 24 24 24 28 37
t) 40 29 37 43 52 40 40 40 39 37

Table 3.4: Experimental data for the Nursery data set



3.7 Experiments 79

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

Figure 3.12: The number of nodes for the full range of pre-pruning thresholds

threshold. Figure 3.13 shows the change in accuracy (number of misclassified
points on the full data set) with the increase of the pre-pruning threshold. Fig-
ure 3.14 shows the size of the tree for the whole range of post-pruning thresholds.
Figure 3.15 shows the accuracy for all post-pruning thresholds.

From these charts and from the ones included in appendix B it can be seen
that with the increase of noise the curve for the number of nodes becomes steeper
both for pre-pruning and for post-pruning.

The flat area which appears at the beginning of the charts for post-pruning
are due to the initial number of misclassified points of the full tree. The lowest
thresholds for those points are lower than that number and the pruning does
not start, therefore the observed values are for the full tree. This flat area gets
larger when the noise in the data increases since then the tree becomes generally
more inaccurate.

An interesting observation is that with the increase of noise, pruning at low
thresholds improves the accuracy of the tree. This becomes more apparent as
the noise increases and is better seen in pre-pruning.

3.7.3 Experiments on the Comparison of the Entropy and

the Conflicts Splitting Criteria

These experiments were designed to answer two main questions in the compar-
ison of the two splitting criteria:



80 Monotone Decision Trees

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140

Figure 3.13: The number of misclassified points for the full range of pre-pruning
thresholds

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70

Figure 3.14: The number of nodes for the full range of post-pruning thresholds



3.7 Experiments 81

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

Figure 3.15: The number of misclassified points for the full range of post-pruning
thresholds

• Which criterion performs better on monotone data by means of generating
smaller and/or more accurate monotone trees?

• Which criterion handles better monotonicity noise (monotone inconsis-
tencies) by means of generating smaller and/or more accurate monotone
trees?

In order to give some insight into these questions the experiments were con-
ducted in two different settings. In the first part 10 monotone samples were
drawn from the Nursery data set. Monotone decision trees were generated from
each of them using the two criteria. The results – the number of misclassified
points over the full data sets and the number of tree nodes – are given in ta-
ble 3.5. It can be seen that the performance of the two criteria is different on
the different samples and no definite conclusion can be made on which one fits
monotone problems better.

For the second part of the experiments, 4 samples were chosen – 1 from the
Cars data set and 3 from the Nursery data set (rows 2, 3 and 7 from table 3.5).
For each data set, 6 noisy versions (5 for the Cars data) were generated by
switching the labels of 1 to 6 pairs of points. For sample 3 (row 3 from table 3.5)
the procedure was repeated 4 times generating 4 different series of noisy data
sets. For each of the generated 7 series, MDTs were built using the entropy and
the conflicts criteria.



82 Monotone Decision Trees

entropy num conflicts
miscl nodes miscl nodes
1612 321 1512 233
1516 95 1522 211
1520 87 1752 131
1645 85 1458 247
1478 143 1330 159
1354 151 1429 783
1277 163 1718 195
1266 107 1232 149
1087 401 1672 241
1504 343 1622 327

Table 3.5: Experimental data on the splitting criteria for monotone samples

The results per series are presented in table 3.6. The first column contains
the number of non-monotone pairs of points in the set. Columns 2 and 3 give
the number of misclassified points on the full data set and the number of nodes
for the tree generated with the entropy criterion, while columns 4 and 5 give
the respective information for the number of conflicts criterion.

It can be seen that with the increase of inconsistencies the number of con-
flicts criterion gives systematically better misclassification rates while producing
bigger trees than the entropy criterion.

3.8 Conclusions

This chapter is a contribution to the area of decision trees building in the context
of classification for monotone problems. The starting point is the Monotone
Decision Trees algorithm already available in the literature.

The original algorithm was extended in order to handle noisy data containing
monotone inconsistencies. This allows monotone decision trees to be generated
from any data set.

Furthermore, a number of additional methods were provided for pruning
both in the direction of pre-pruning and post-pruning. The problem of pruning
raised the question of finding consistent labelling strategies that guarantee the
monotonicity of the resulting tree. Several labelling functions were proposed for
this within the two approaches of dynamic labelling and static labelling. These
methods can easily be applied in the context of pruning but are nevertheless
separate methods that can be used in different contexts as well.

The pruning and labelling methods were tested experimentally in order to
give more insight into their performance and how they compare with each other.

Another question considered in this chapter is the choice of a splitting crite-



3.8 Conclusions 83

incons entropy num conflicts
pairs miscl nodes miscl nodes

0 52 53 47 83
19 90 293 74 171
55 196 311 103 373
86 218 421 172 501
111 225 469 176 521
118 224 473 186 609
0 1516 95 1522 211
2 1500 115 1520 303
21 2326 561 1789 397
28 2496 593 1773 583
31 2366 605 1737 589
40 2432 963 1763 639
42 2586 1787 1831 1069
0 1516 95 1522 211
31 2338 1071 2148 3303
71 2498 1581 2217 4447
91 2965 1887 2558 2969
109 3866 2987 2655 3137
128 4238 3299 2857 3975
129 4226 3309 2831 3873
0 1516 95 1522 211
11 1610 107 1741 227
22 1928 679 1817 1077
33 2084 699 1847 1069
42 2193 875 2006 1077
50 2678 1375 2273 2141
59 2575 1733 2273 2162
0 1516 95 1522 211
24 1528 77 1538 181
34 2054 361 1746 1113
36 2041 369 1758 1131
92 4035 3335 3287 8751
101 4250 4653 4306 8141
124 4467 5603 4740 9771
0 1520 87 1752 131
2 1512 157 1812 125
7 1673 747 1850 317
39 3052 3655 2692 3497
64 3607 3719 3003 3829
66 3685 3353 3327 4339
69 3798 3751 3322 4437
0 1277 163 1718 195
39 3035 2093 3607 3945
59 3518 3755 4283 5645
74 4577 2969 4369 5737
78 4603 3137 4553 5863
81 4547 3125 4504 5887
83 4547 3135 4466 5861

Table 3.6: Experimental data on the splitting criteria on non-monotone samples



84 Monotone Decision Trees

rion in building monotone decision trees. Two criteria from the literature were
discussed – the entropy criterion as the most popular general approach used in
decision trees and the conflicts criterion designed specifically for the monotone
context. Those were compared experimentally to determine which one gives
better results. The figures showed that the entropy criterion produces smaller
trees while the conflicts criterion generates more accurate trees.

The chapter also looks at the more general problem of missing values in
monotone data sets. The monotonicity constraint poses additional restrictions
to the process of filling in these values. A general scheme was proposed which
can be applied as a preprocessing step for filling in unknown values in monotone
data sets in such a way that the resulting data set is guaranteed to be monotone.

A number of directions for future research are still open. For example, it
might be possible to construct more “moderate” labelling functions which are
not necessarily either maximal or minimal.

The pruning methods can be refined as well, for example to accommodate a
better pruning criterion than just the misclassification rate. One possibility is to
incorporate a way to take into account the degree of how wrong the prediction
is. Intuitively a prediction that differs slightly from the real value is better than
such that differs a lot from it and the latter should be penalized more severely.

A different approach for generating monotone decision trees was recently
proposed in [65] and proper comparison between the two algorithms will be
beneficial in order to give insight into their performance and how they differ
in practical applications. Another new approach for pruning monotone deci-
sion trees was presented in [38] and an experimental comparison might give
interesting results.

The presented method for filling in missing values can be further refined and
experiments should be conducted in order to compare how well the three dif-
ferent methods predict the missing values. Other aspects of data preprocessing
in the contexts of monotone data sets might be interesting as well, such as, for
example, noise reduction and inconsistencies removal.



Chapter 4

Monotone Decomposition

4.1 Introduction

One of the most effective approaches for solving a complex problem is by split-
ting it into smaller subproblems that can be solved (relatively) separately. The
gains from such an approach are many, both for the human and the computa-
tional aspect. Complex problems are often impossible for humans to compre-
hend and solve at once, while smaller subproblems would be easier to grasp.
Big problems usually require a lot of computational power to solve at once and
it might be the case that such an amount is not available. Then by splitting
the problem we make it possible to solve within the available computational re-
sources. On the other hand if the runtime for finding the solution is the critical
resource, then we can process the subproblems in parallel and achieve better
performance.

Problem decomposition approaches are used in many areas of science. Exam-
ples of applications can be given from switching theory, game theory, reliability
theory, machine learning. One of the applications in machine learning is in
structured induction which aims at splitting a concept to be learnt in a hier-
archy of sub-concepts which can be used separately to generate classification
rules. The methods vary in their way of building the concept hierarchy but the
majority of them involve a human expert who provides domain knowledge of the
structure of the problem. This process can take a long time and a lot of energy
while the availability of the expert is not necessarily guaranteed. Therefore the
development of tools to assist the process or completely automate it might be
highly beneficial.

The contribution of this chapter is within the research in automating the de-
composition process. We concentrate on the problem of classification for mono-
tone data sets and aim at building a decomposition hierarchy that preserves
the monotonicity property with the ultimate goal of generating a monotone



86 Monotone Decomposition

classifier. The research was previously published in [63].
The chapter is organized as follows. Section 4.2 reviews related research in

the area. Section 4.3 presents the main results of our research. Section 4.4 gives
the conclusions and some directions for future research.

4.2 Function Decomposition

The research presented in this chapter is closely related to the methods presented
by Zupan et al. in [81, 82] and implemented in the system HINT. We first give
a short overview of those methods and then discuss other related research.

4.2.1 The Function Decomposition Methods Introduced

by Zupan et al.

The methods developed in [81, 82] aim at building a hierarchical structure based
on the attribute set describing the data points. A distinct feature of the ap-
proach is that no predefined intermediate functions or operators are used. In-
stead the sub-concepts are induced from the data.

The goal at each step is to decompose a function y = f(X) into y =
g(A, h(B)) where X is a set of input attributes X = {x1, x2, . . . , xn} and y
is the class label variable. f , g and h are partially defined discrete functions
defined by examples while A and B are disjoint subsets of the input attributes
such that A ∪ B = X . To find such a decomposition corresponds to finding a
new intermediate concept c = h(B).

As mentioned above, the functions g and h are not predefined in the appli-
cation of the method and are induced during the decomposition process. The
requirement for them is to have joint complexity which is lower than the com-
plexity of f and that is determined using some complexity measure. By applying
the method recursively on the two new functions h and g we can generate a hi-
erarchy of concepts. Figure 4.1 (taken from [82]) shows one step of the building
of such hierarchy.

The structure shown in figure 4.2 gives an example of a concept hierarchy.
The names of the intermediate concepts would not be given by the decompo-
sition method – those are just interpretations of the results given in order to
make the structure clearer.

The decomposition method is organized in the following steps: basic function
decomposition step, attribute partition selection and overall function decompo-
sition. They are described as follows:

– The attribute partition selection step determines which is the best partition
of the attribute set X into A and B. The criterion for selecting the best
one out of the set of all possible partitions is to minimize some predefined
complexity measure.



4.2 Function Decomposition 87

x1 x2
xj xm

... ...

F

X

x1 x2 c...

G

A

xj
xm

...

H

B

y y

decompose

Figure 4.1: The decomposition step

Job application

experienceeducation skills

type results years occupation main
expertise

degree

Figure 4.2: A concept hierarchy



88 Monotone Decomposition

– The basic decomposition step takes as an input the partition of the attributes
in sets A and B and finds the corresponding functions g and h such that
y = g(A, c) and c = h(B).

– The overall function decomposition step is the recursive application of the
above two steps for the current g and h functions. The recursion stops if
no decomposition can be found such that the resulting functions are less
complex than the function being decomposed.

In its general form the algorithm will suffer from its time complexity. A
number of heuristics can be applied in order to reduce the problem, for example
by limiting the size of B.

The method considers only disjoint partitions A ∩ B = ∅ which limits the
shape of the discovered hierarchies to hierarchical trees. Note that those trees
are different from the decision trees generated by methods such as C4.5 and
CART. The nodes of the hierarchical trees correspond to sets of attributes form-
ing a new concept while the nodes of the decision trees correspond to sets of
data points grouped by the attribute-value tests present in the branch leading
to the node.

The decomposition algorithm achieves higher generalization than the original
data set due to the basic decomposition step. The construction of the sets
defining the new functions g and h might lead to adding new points previously
not present in the data set. That however does not necessarily extend to a
cover of the whole input space. In the experiments reported by the authors a
default rule was used in order to be able to classify the uncovered points from
the input space. This rule assigns the value of the most frequently used class in
the example set that defines the intermediate concept.

Let us now concentrate on the basic decomposition step of the algorithm. It
starts by constructing the so called partition matrix. The rows of this matrix
correspond to the distinct combinations of values of the attributes in A and
similarly the columns correspond to the distinct values of the attributes in B.
The entries of the matrix contain the class label for the specific combination of
A and B values from the row and the column. Obviously some of those will be
empty and considered as “don’t care”.

As an example of a partition matrix we consider the data set from table 4.2.
Let us choose A = {a1, a2, a3, a6} and B = {a4, a5}. The corresponding parti-
tion matrix is given in table 4.1.

Two columns of the matrix are called compatible if they don’t contradict
each other or, more precisely, if they don’t contain entries for the same row
that are non-empty and are labelled with a different class label. The number of
such pairs of entries is called the degree of compatibility of the two columns. If
two columns are not compatible, they are called incompatible. In our example
we have two incompatible columns: 11 and 22. For them the values of the
attributes in A are the same but the class label is different.



4.2 Function Decomposition 89

13 23 11 12 22
3221 3 * * * *
2221 * 3 * * *
3132 3 * * * *
2112 * * 2 * *
2231 * * * 2 *
1121 * * 1 * 2
1211 * * 1 * *

h 1 1 1 1 2

Table 4.1: An example of a partition matrix

In order to find a new intermediate concept for B we need a labelling for
the columns of the partition table (in other words, values for the intermediate
concept c) such that g and h are consistent with f . That is exactly the case
when incompatible columns are never assigned the same label. The problem
is equivalent to graph colouring and the corresponding graph is the so called
incompatibility graph. Its vertices correspond to the columns of the partition
matrix and there is an edge between two vertices if and only if they are incom-
patible.

In the example, the graph contains five vertices and only one edge between
11 and 22 which indicates that they should be assigned different colours. That
restriction becomes clearer when we remember that for those two columns there
is a pair of data points from different classes that differ only in the values in
B. If we assign the same value for B then we introduce an inconsistency - two
points that have the same attribute values but are classified in different classes.
Therefore the last row of the matrix in table 4.1 is a valid assignment for the
intermediate concept.

The increase in the generalization achieved by the algorithm is due to the
empty entries in the partition matrix which now might be assigned a value.
This happens exactly when a non-empty entry exists in the same row which
corresponds to the same value of the new concept c (i.e. the same colour).

The overall decomposition algorithm starts by trying to decompose X by
considering all possible partitions such that B is not larger than a predefined
threshold for the number of attributes. For each candidate, a partition selection
measure is evaluated and the best partition is chosen. Then the complexity
of the two new example sets is determined and if it is lower than that of the
original set the decomposition is accepted. This is applied recursively until all
leaves in the concept structure are found to be non-decomposable.

A number of different partition selection measures were investigated, how-
ever, the most simple one, column multiplicity, proved to be the best. It chooses
the partition which leads to the least number of values of the new concept c.



90 Monotone Decomposition

Two information-based measures are proposed for determining the complexity
of the functions.

4.2.2 Other Related Research

The earliest approaches to decomposition were developed in the area of switching
circuits design back in 1940’s and 1950’s (see [5, 34]). Those methods decompose
the truth table of a Boolean function realized through binary gates and consider
both disjoint and non-disjoint decomposition.

Within machine learning the first attempts in decomposition were presented
in [71] where manually defined concept structures were used with two layers of
intermediate concepts.

A related field to function decomposition is feature extraction (also called
constructive induction) which aims at constructing new better attributes from
the existing ones through different methods. These methods in general need to
be given in advance the operators they can use for generating the new attributes.

Other approaches use an expert to decompose the problem and construct
the concept hierarchy, see for example [73] and [20]. Further, the hierarchical
structure is used to generate decision rules.

A lot of research has been done in the specific case of Boolean functions de-
composition. Important results relevant for our approach were presented in [22]
which investigates the problem of decomposability of partially defined Boolean
functions. It concentrates on the complexity of determining whether a Boolean
function is decomposable using a specific scheme. A scheme determines the
number of intermediate concepts to which the function should be decomposed
and the most general scheme considered is:

f = g(S0, h1(S1), h2(S2), . . . , hk(Sk))

where Si are (not necessarily disjoint) subsets of the set of all attributes A such

that
⋃k

i=0 Si = A.
The results presented in the paper show that deciding whether a partially

defined Boolean function is decomposable is an NP-complete problem for k ≥ 2.
For k = 1 the time complexity is proven to be O(mn) where m is the number
of data points defining the function and n is the number of attributes. The
article also examines the problem of positive schemes in the frames of Boolean
functions, which will be discussed in the following section.

4.3 Function Decomposition with Monotonicity

Constraints

Let us take a monotone data set D with an attribute set A and a monotone
labelling function which we view as a partially defined discrete function λ, λ :



4.3 Function Decomposition with Monotonicity Constraints 91

X a1 a2 a3 a4 a5 a6 λ
x1 3 2 2 1 3 1 3
x2 2 2 2 2 3 1 3
x3 3 1 3 1 3 2 3
x4 2 1 1 1 1 2 2
x5 2 2 3 1 2 1 2
x6 1 1 2 2 2 1 2
x7 1 1 2 1 1 1 1
x8 1 2 1 1 1 1 1

Table 4.2: An example of a monotone data set

D → {0, m}. The attribute set A is split into two disjoint subsets such that
S0, S1 ⊆ A, S0 ∪ S1 = A, S0 ∩ S1 = ∅. A scheme of the type f = g(S0, h(S1)) is
called positive if the functions g, h are required to be positive.

Intuitively the monotone decomposition problem tries to answer the ques-
tion whether for the given S0 and S1 there exists an extension of the posi-
tive scheme f = g(S0, h(S1)) and if ’yes’ to find such an extension. A more
general formulation of the problem will consider schemes of the type f =
g(S0, h1(S1), . . . , hk(Sk)) where

⋃k
i=0 Si = A and the sets Si might or might

not be disjoint. However, we only look at the case where the attribute set is
split into two non-intersecting parts with one intermediate concept.

Let us now try to give a more precise picture of the problem.

The requirement that h(S1) should be positive implies that the data set
generated by S1 and the corresponding values given by h should satisfy the
monotonicity constraint. We denote this data set by S1|h. Similarly the re-
quirement that g should be positive implies that the resulting set after applying
h on S1 in D should also satisfy the monotonicity constraint. That data set is
denoted by S0h|λ.

This is demonstrated using the example in table 4.2. The attributes are
split in subsets S0 = {a1, a2, a3} and S1 = {a4, a5, a6}. Let us assume that g
and h are known. Then the data set generated by applying h on S1 is given in
table 4.3. That data set is required to be monotone. Using the values of h in
the original table we construct the set from table 4.4. It is also required to be
monotone.

The problem has so far been investigated in the context of Boolean functions
in [22]. There a criterion is given for the existence of an extension of positive
schemes of a number of different types. Here we are only interested in schemes
of the type f = g(S0, h(S1)). The corresponding proposition in [22] states
that a partially defined Boolean function has an extension of positive scheme
f = g(S0, h(S1)) if and only if there is no pair of vectors x ∈ T ∗ and y ∈ F ∗ such
that x[S1] ≤ y[S1]. Here x[S1] denotes the vector containing only the values of



92 Monotone Decomposition

X a4 a5 a6 h
x1 1 3 1 3
x2 2 3 1 3
x3 1 3 2 3
x4 1 1 2 1
x5 1 2 1 2
x6 2 2 1 2

x7/x8 1 1 1 1

Table 4.3: The new data set generated using h, S1|h

X a1 a2 a3 h λ
x1 3 2 2 3 3
x2 2 2 2 3 3
x3 3 1 3 3 3
x4 2 1 1 1 2
x5 2 2 3 2 2
x6 1 1 2 2 2
x7 1 1 2 1 1
x8 1 2 1 1 1

Table 4.4: The new data set generated using g, S0h|λ

x for the attributes in S1 and T ∗ and F ∗ are defined as follows:

T ∗ = {x ∈ T |∃y ∈ F : y[S0] ≥ x[S0]},

F ∗ = {y ∈ F |∃x ∈ T : y[S0] ≥ x[S0]}.

Therefore deciding if a partially defined Boolean function has an extension
of a positive scheme f = g(S0, h(S1)) can be done in polynomial time with
complexity O(m2n).

In the rest of this chapter we investigate the corresponding problem in the
context of discrete functions.

4.3.1 Monotone Decomposition of Discrete Functions

We choose to take a slightly different point of view and go back to the mono-
tonicity restrictions over the two new data sets. For a representation of those
restrictions we use the monotone discernibility matrix we proposed in the con-
text of rough sets theory in chapter 2.

First, we prove the following lemma:



4.3 Function Decomposition with Monotonicity Constraints 93

Lemma 9 There exists a positive extension for the scheme f = g(S0, h(S1)) if
and only if there exists an assignment of values hD : D → {hi}k

i=1 such that the
two new data sets S1|h and S0h|λ are monotone.

Proof: Let there exist an assignment hD such that the two data sets are mono-
tone. Then we define the following functions h and g over the input space where
we denote the minimal possible value of hD with hmin and the minimal possible
value of λ with lmin:

h(x) =





hi if ∃y : hD(y) = hi, y[S1] ≤ x[S1] and
6 ∃z 6= y : z[S1] ≤ x[S1] such that hD(z) ≥ hD(x)

hmin otherwise.

g(x) =





λi if ∃y : λ(y) = λi, y[S0h] ≤ x[S0h] and
6 ∃z 6= y : z[S0h] ≤ x[S0h] such that λ(z) ≥ λ(y)

0 otherwise.

Let us check whether applying the two functions results in a positive exten-
sion. For this we need to prove that the two functions are positive or, in other
words, that applying them to new points always preserves the monotonicity
property over the currently labelled data.

Let S1|h be monotone and x be a new point on which we apply h: h(x) = hi.
Let ∃y, z ∈ D such that z ≥ x ≥ y. Therefore z[S1] ≥ x[S1] ≥ y[S1].

According to the definition of h, h(x) ≥ hD(y). Let h(x) = hi = h(v) for
some v ∈ D such that x[S1] ≥ v[S1]. Then z[S1] ≥ v[S1], therefore hD(z) ≥
hD(v) = hi = h(x). hD(z) ≥ h(x) also holds if 6 ∃y ∈ D such that x ≥ y. Then
h(x) = hmin.

This proves that, after adding the new point x, S1|h remains monotone. We
only used the property that S1|h is monotone, therefore, we can apply the same
arguments to the new data set including x.

In a similar way we can prove that the data set S0h|λ remains monotone
when adding the new point x (where x[S1] has already been labelled by h) using
the function g to label it.

If for every assignment hD at least one of the two data sets is not monotone
then it is not possible to find a positive extension of the scheme by means of
positive h and g functions. �

In the following we sometimes abuse the notation by using h instead of hD

when no confusion arises.
Let us consider the data set generated by h, S1|h. The monotonicity con-

straint here will restrict the new class values in such a way that if x[S1] ≤ y[S1]
then h(x[S1]) ≤ h(y[S1]). That implies that if x[S1] = y[S1] then h(x[S1]) =
h(y[S1]). Therefore we can simply join the identical vectors x[S1] and consider
them together. In the new data set we assign some unknown values to the class



94 Monotone Decomposition

h2 ≥ h1, h3 ≥ h8

h2 ≥ h5, h4 ≥ h7

h2 ≥ h6, h4 ≥ h8

h2 ≥ h7, h5 ≥ h7

h2 ≥ h8, h5 ≥ h8

h3 ≥ h1, h6 ≥ h7

h3 ≥ h4, h6 ≥ h8

h3 ≥ h5, h7 ≥ h8

h3 ≥ h7, h8 ≥ h7

Figure 4.3: The set of constraints from the data table S1|h

x1 x2 x3 x4 x5 x6 x7 x8

x1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
x2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
x3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
x4 a1a2a3c14 a2a3c24 a1a3c34 ∅ ∅ ∅ ∅ ∅
x5 a1c15 c25 a1c35 ∅ ∅ ∅ ∅ ∅
x6 a1a2c16 a1a2c26 a1a3c36 ∅ ∅ ∅ ∅ ∅
x7 a1a2c17 a1a2c27 a1a3c37 a1c47 a1a2a3c57 c67 ∅ ∅
x8 a1a3c18 a1a3c28 a1a3c38 a1c48 a1a3c58 a3c68 ∅ ∅

Table 4.5: The monotone discernibility matrix using the variables cij

attribute {hi}k
i=0. Further we generate constraints of the type hi ≤ hj for the

class values for each couple of data points such that xi[S1] ≤ xj [S1].
Looking back to the example of table 4.2, the constraints generated in this

way will be as shown in figure 4.3 where we denote hi = h(xi[S1]).
As a next step, we replace the vectors x[S1] with the corresponding (for the

moment still unknown) values hi and that results in the data set S0h|λ). This
new data set should also be monotone which here means that if x ≤ y then x
cannot belongs to a lower class than y. We build the monotone discernibility
matrix as in chapter 2 with the only difference that here we have unknown
values for one attribute1. Therefore for that attribute we use special Boolean
variables cij which are true if h(xi[S1]) > h(xj [S1]) and false otherwise. The
monotone discernibility matrix for our example will look as shown on table 4.5.

If we look at the matrix closer, we realize that the constraints/variables that
are necessary in order to keep the data set monotone are the ones that appear
in the core and therefore will be present in every monotone reduct generated

1The monotone discernibility matrix was defined in chapter 2. For the purpose of the
current discussion we only recapitulate that this is an n × n matrix with entries consisting of
the subset of attributes for which the object of the higher class dominates the object of the
lower class.



4.3 Function Decomposition with Monotonicity Constraints 95

h2 > h5

h6 > h7

Figure 4.4: The set of constraints generated from the data table S0h|λ

from the matrix. The notion of the core in rough sets theory is explained in
more details in chapter 2. Here we only recall that the core consists of all
attributes that appear as single-attribute entries in the discernibility matrix. In
our particular case, when a cij variable appears in the core that indicates that for
the corresponding couple of objects xi and xj it holds that xi[S0] ≤ xj [S0] while
λ(xi) > λ(xj). Therefore to avoid the inconsistency we need to compensate by
ensuring that h(xi[S1]) > h(xj [S1]).

In this way we discover a second set of constraints for the new attribute h.
For the example the generated constraints are those shown in figure 4.4 where
again we denote hi = h(xi[S1]).

Note that in the case where the core of the monotone discernibility matrix
is empty, we have no constraints of the second type. In this specific case the
remaining constraints of only the first type can be satisfied by assigning the
same value to all h-variables and that would be a valid solution to the problem.

A natural way of representing those two sets of constraints is by using a
directed graph. The set of distinct values {hi}k

i=1 will be represented by the
vertices of the graph. For the representation of the constraints, however, we
need two different types of directed edges which are described in the following.

The first type of constraints (larger or equal) will be denoted by a dashed
arrow in the figures or by a double arrow in the text ′ ⇒′ where x ⇒ y will
mean that x ≥ y. The special case when x ≤ y and y ≤ x (corresponding to
x = y) can be denoted with a dashed undirected edge which can be traversed in
both directions in the figures or an equal sign ′ =′ in the text. For the particular
example this, however, does not occur.

The second type of constraints (larger) will be represented in the text and
in the figures by single (solid) arrows ′ →′ where x → y will mean that x > y.
Here it cannot occur that both constraints x > y and y > x are present.

In our example both sets of constraints result in the graph given in figure 4.5.

4.3.2 Existence of a Positive Extension of the Scheme f =
g(S0, h(S1))

We are now faced with the problem of finding out whether there exists an
assignment for the values {hi}k

i=1 such that it is consistent with all constraints
and if such assignments exist then to find one of them.

First, we introduce the following notation for i ∈ [0, m−1] where we assume



96 Monotone Decomposition

x
1

x
8

x
7

x
6

x
3

x
4

x
5

x
2

Figure 4.5: The constraints graph for the example

that 0 is the minimal value of the function λ and m is the maximal one:

Ti = {x ∈ D : λ(x) = i},

T>i = {x ∈ D : λ(x) > i} for i ∈ [0, m − 1],

T<i = {x ∈ D : λ(x) < i} for i ∈ [1, m].

Using that, we define the following two sets:

T ∗
>i = {x ∈ T>i | ∃y ∈ Ti, x[S0] ≤ y[S0]} for i ∈ [0, m − 1],

T ∗
<i = {x ∈ T<i | ∃y ∈ Ti, y[S0] ≤ x[S0]} for i ∈ [1, m].

We can now formulate the following criterion for existence:

Theorem 10 There exists a positive extension of the scheme f = g(S0, h(S1))
if and only if there are no data points xi, x

′
i, xi+1, x

′
i+1, . . . , xi+j , x

′
i+j , xi+j+1

such that xi+j+1 = xi and such that for all xk, x′
k the following conditions hold:

1. if xk ∈ Tl then x′
k ∈ T ∗

>l,

2. x′
k [S1] ≤ xk+1[S1].

Proof: First note that in the conditions of the theorem x′
k is not required to be

different from xk+1. However xk needs to be different from x′
k because otherwise

the first condition cannot be true.



4.3 Function Decomposition with Monotonicity Constraints 97

x
1

x
8

x
7

x
6

x
3

x
4

x
5

x
2

Figure 4.6: The constraint graph from figure 4.5 after applying the topological
ordering procedure

Also note that, because of the transitivity of the relation ≤ for vectors, if
the following two constraints are present: x[S1] ≤ y[S1], y[S1] ≤ z[S1] then the
constraint x[S1] ≤ z[S1] is also present.

Let us assume that there exists such a sequence of data points that satisfies
the conditions. This means that there exists a cycle in the constraints graph
such that

h(xi) < h(x′
i) ≤ h(xi+1) < h(x′

i+1) ≤ . . . < h(x′
i+j) ≤ h(xi).

It is clear that no such assignment for the values of h exists.

Let us now assume that no such sequence of data points exists. This means
that the constraints graph will be acyclic. It is known that in every acyclic
directed graph there exists at least one vertex with zero in-degree and at least
one vertex with zero out-degree. Therefore we can use topological sorting to
find an ordering of the vertices such that all edges point in the same direction
in this ordering. A simple algorithm exists to find such ordering which proceeds
as follows.

Since the graph is acyclic then we can find a vertex with a zero in-degree.
We choose it to be the first in the ordering and do not consider it or its edges
further in the sorting. The new graph is obviously also acyclic therefore we can
again find a vertex with zero out-degree which will be the second in the ordering.
We proceed like thais until all vertices are included in the ordering. We can now
represent the graph in such a way that all vertices are in one line and all edges
point to the left in the structure. As an example we use the constraint graph
of figure 4.5. After applying the topological sorting procedure we can represent
the graph as in figure 4.6.

The complexity of the topological sorting in O(|V ||E|) where |V | is the
number of vertices and |E| is the number of edges.

Now we need to find a labelling for the vertices consistent with all the
constraints. The most straightforward way is to use the topological ordering
{x1, x2, . . . , x|V |} and assign the corresponding values {1, 2, . . . , |V |} in the same
order. Such a labelling is obviously consistent with the constraints because due
to the topological sorting if a constraint h(xi) ≤ h(xj) or h(xi) < h(xj) exists
then i < j which are exactly the labels of xi and xj . �



98 Monotone Decomposition

4.3.3 Assignments with a Minimal Number of Values

In the previous subsection we proved that if the condition of the theorem is
satisfied then there exists a labelling consistent with the constraints. However,
the simple labelling that we used in the proof is probably not the best one we
can find as it assigns different value to each data point, which is in most cases
not necessary. In general we would be more interested in assignments with a
(close to the) minimal number of different values.

In order to address this problem we first define a path in the constraint graph
as a sequence of vertices x1, x2, . . . , xj such that for each pair xi, xi+1 there exists
either a single edge from xi to xi+1(constraint h(xi) < h(xi+1)) or a double edge
(constraint h(xi) ≤ h(xi+1)). The length of a path P is the number of single
edges participating in it, denoted by |P |. For an acyclic constraint graph, we
denote the maximal length of a path in the graph by χ.

Theorem 11 If there exists a positive extension of the scheme f = g(S0, h(S1)),
then the minimal number of values necessary for an assignment consistent with
the constraints equals the number χ + 1 of the constraint graph.

Proof: Let the path of a maximal length be x1, x2, . . . , xi with length χ. Then
χ + 1 is obviously a lower bound for the number of values necessary for a
consistent assignment as for each end point of a single edge we need a higher
value. We need to prove that there exists a consistent assignment with exactly
χ + 1 values.

Consider the following assignment:

hD(x) =

{
hmin + max{|P | : P − path starting from x} if such path exists,
hmin otherwise.

where hmin denotes the minimal possible value of h.
Is this assignment consistent with all the constraints? Let us assume that a

constraint x → y exists in the graph. Then hD(x) ≥ hD(y) + 1 since the longest
path starting from x will contain at least one single edge more than the longest
path starting from y. Let a constraint x ⇒ y exist. Then hD(x) ≥ hD(y)
because the length of the path from x will be at least as much as the path from
y.

Let y be such a vertex that hD(y) > χ+hmin. Therefore hD(y) = |P |+hmin

for some path P which is a path starting from y with length more than χ. This
is a contradiction with the definition of χ. Therefore the proposed assignment
needs exactly χ + 1 values. �

The assignment used in the proof of the theorem can be found by using the
topological ordering in the following way. We start by assigning hmin to the
first vertex where hmin denotes the minimal possible value for the h-variables.
Following the ordering we label each other vertex using the following procedure:



4.3 Function Decomposition with Monotonicity Constraints 99

X a1 a2 a3 h λ
x1 3 2 2 1 3
x2 2 2 2 2 3
x3 3 1 3 1 3
x4 2 1 1 1 2
x5 2 2 3 1 2
x6 1 1 2 2 2
x7 1 1 2 1 1
x8 1 2 1 1 1

Table 4.6: The new assignment for the h-variables using only two values

1. If no edges start from the vertex, assign hmin;

2. Otherwise for each such edge:

(a) extract the label of the end vertex;

(b) for single edges add 1 to the corresponding number;

3. Find the maximal among the numbers for all edges ending in x;

4. Assign this maximal number to the current vertex;

The complexity of the procedure is O(|V ||E|) where V is the set of all vertices
of the constraint graph and E is the set of all edges.

For our example we proposed an assignment in table 4.4. However, applying
the above described procedure we discover a better solution (by means of fewer
values) which is given in table 4.6.

An alternative assignment can be the following:

h′
D(x) =

{
hmin + χ − max{|P | : P − path leading to x} if such path exists,
hmin + χ otherwise.

In the same way as in theorem 11 we can prove that h′
D is a consistent

assignment and uses χ + 1 number of values.

Lemma 10 For each vertex x of an acyclic constraints graph, it holds that
hD(x) ≤ h′

D(x).

Proof: Let P be the longest path leading to x and Q be the longest path
starting in x. Therefore:

|P | + |Q| ≤ χ ⇒

⇒ |Q| ≤ χ − |P |,

which is equivalent to hD(x) ≤ h′
D(x).

In case no such Q exists for x then hD(x) = 0 ≤ h′
D . Similarly if no such P

exists for x then h′
D = hmin + χ ≥ hD. �



100 Monotone Decomposition

4.3.4 Default Rule for Covering the Whole Input Space

As was mentioned before, the decomposition method achieves higher general-
ization than the original data set. However there is no guarantee that the whole
input space will be covered. In lemma 9 we proposed two specific functions for h
and g that will cover the whole input space. Here we would like to take a more
practical point of view and reformulate the solution using simpler default rules
that classify examples not covered by the extended data set generated by the
full concept hierarchy. Obviously for the case when monotonicity constraints
exist this default rule should also satisfy the restrictions so that the resulting
classifier is guaranteed to be monotone over the whole input space.

The default rules we propose here will be discussed in the case of one inter-
mediate concept as in the previous sections. It can easily be generalized for the
whole concept structure.

As the new example x will have to be compared to two data sets we need
two labelling functions. At the first step we compare x[S1] with the data set
S1|h. If none of the data points in it is equal to x[S1] then we need to find a
new label consistent with S1|h. Once such a label is found we replace x[S1] with
it and compare the new example with the data set S0h|λ. Here again if none
of the already existing examples is equal to the new one we have to find a new
label that is consistent with the rest of the data.

In general it might not be necessary to apply a labelling function on both
steps. For example after applying the function at the first step the new example
might turn out to be already present at the second step.

Since those two steps look very similar, we can naturally use the same la-
belling function where the only difference is the data set we consider. We there-
fore denote the data set by D which in the first step should be replaced by S1|h
and in the second step by S0h|λ. The labelling function of the particular data
set will be denoted by λ(x) which in the first step should be replaced by h and
in the second step by g. We propose two different alternative versions of the
labelling function denoted by λmin and λmax as follows:

λmin(x) =

{
max{λ(y) : y ∈ D ∩ ↓ x} if x ∈ ↑ D
cmin otherwise;

λmax(x) =

{
min{λ(y) : y ∈ D ∩ ↑ x} if x ∈ ↓ D
cmax otherwise.

where X is the input space, cmin/cmax are the minimal and the maximal possible
label respectively and we use the following other notation:

↓ x = {y ∈ X : y ≤ x},

↑ x = {y ∈ X : y ≥ x},



4.4 Conclusions 101

↓ D =
⋃

x∈D

↓ x,

↑ D =
⋃

x∈D

↑ x.

In the proof of lemma 9 we used λmin both for h and g. However, in general
this is not necessary. Different functions can be used on the different steps, e.g.
λmin for labelling at the first step and λmax at the second step, as long as the
same function is applied every time we are at the same step. If we apply both
functions at the same step the monotonicity is no longer guaranteed.

Note that those functions are the same labelling functions used for adding
points to the updated data set in the Monotone Decision Trees algorithm (chap-
ter 3). They have been proven to give consistent labels when the data set is
monotone. It is also known that λmin tends to give higher labels and more
optimistic predictions than λmax.

As an example to demonstrate how the default rule works we consider again
the decomposed data set of tables 4.2, 4.3 and 4.4. Let us try to classify the new
data point x = (2, 2, 2, 2, 2, 2) which is not present in the original set. First we
consider x[S1] = (2, 2, 2) which does not appear in S1|h (table 4.3). We apply
the labelling functions and both λmin and λmax give the same label 2.

At the second step we replace that label in x and compare the new data point
(2, 2, 2, 2) with S0h|λ (table 4.4). It is not present there, therefore we need to
again apply a labelling function. We try both λmin and λmax and discover that
λmin predicts a label 2 and λmax predicts 3. Let us assume that we prefer more
optimistic predictions and we choose λmax. Therefore the final label assigned to
x = (2, 2, 2, 2, 2, 2) will be 3.

4.4 Conclusions

In this chapter we propose a decomposition method for discrete functions which
can be applied to monotone problems in order to generate a monotone classifier
based on the extracted concept hierarchy. We formulated and proved a criterion
for the existence of a positive extension of the scheme f = g(S0, h(S1)) in the
context of discrete functions.

We also propose a method for finding an assignment for the intermediate
concept with a minimal number of values based on topological sorting. The
complexity of the procedure is O(|V ||E|) where V is the set of all vertices of
the constraint graph and E is the set of all edges. Two alternative assignment
functions were defined for giving values to the intermediate concept.

Furthermore we propose two alternative default rules for the classification
of points not covered by the extended data set of the concept structure. These
default rules applied together with the concept structure produce a monotone
classifier in the case of a monotone problem.



102 Monotone Decomposition

A number of directions for further research can be mentioned. Our research
was focused on decompositions using the scheme f = g(S0, h(S1)). It would
be interesting to investigate whether some of the results could be extended to
the case of more complicated schemes using more intermediate concepts. The
research in the Boolean case points out a trend of fast increase in the complexity
when the scheme becomes more complicated and it is expected that in the
discrete case similar development will be observed.

It would also be interesting to consider decompositions with non-disjoint
attribute sets. In practical applications, the requirement for disjointness of the
attribute sets might be too restricting. However, this would probably increase
the complexity of the problem.

Another research direction would be to consider more than one intermediate
concepts based on the same subset of attributes. That would result in a scheme
of the type f = g(S0, h1(S1), h2(S1)) in the case of two intermediate concepts
over S1. For such a small number the complexity might still be lower than that
of the original set of attributes.



Chapter 5

Frequent Patterns

5.1 Introduction

Data Mining emerged back in the late 1980s and received a significant boost dur-
ing the 1990s. This large multidisciplinary field connects to a number of areas,
such as machine learning, statistics, information retrieval, pattern recognition,
database technology, knowledge-based systems, etc. For a good overview of the
area the reader is referred to [44]. In this chapter the focus is on association
rules mining and its major subproblem of frequent patterns generation.

The problem of association rules mining was first introduced in [1]. A pop-
ular way of explaining the problem is to give an example from the so-called
basket data, which constitutes one of the most important applications of the
research in this area. Due to the progress in bar-code technology, massive
amounts of data were collected and attracted the attention of analysts. This
data would usually consist of rows of records where each row is with various
length and represents the set of products bought by one customer at one visit
to the shop/supermarket/etc. Such data has huge potential benefits. Typical
questions that might be asked for example are: Which products are frequently
sold together? If the customer buys product A which other products is he/she
likely to buy? The answers to those questions can be used to analyze customer
buying patterns and sales trends and can be applied in marketing campaigns
such as promotions and special offers as well as for developing better ways of
arranging the products on the shop shelves. Association rules can help in giving
non-trivial answers to those questions.

An association rule reflects relations between the products in customer carts.
An example of such a rule can be: 74% of the customers who buy cereal also buy
milk. Of course this rule is obvious and we do not need to perform complicated
data analysis to retrieve it. Nevertheless, the data very often contains previously
unknown rules which can give food for thought to marketeers and analysts.



104 Frequent Patterns

Imagine, however, how many customers visit a relatively big supermarket
per day, week, and month. This points us to one of the main problems of the
field – the huge amounts of data require very efficient algorithms for processing.
Various proposals have been presented in the literature (among which [1, 28, 45,
61, 72, 78]) and some experimental comparisons have been performed (see for
example [46, 79]). Nonetheless, very little is done on the theoretical comparison
between the algorithms and even the experiments include only some of the
algorithms and do not provide “easy answers” to the question which ones to
choose for what kind of data.

This chapter is a contribution in that direction. It concentrates on the
main subproblem of association rules mining – frequent patterns generation.
Two of the best existing algorithms Depth-First [61] and FP-Growth [45] are
considered. They have not been previously compared although FP-Growth has
given very good results in experimental comparisons with other algorithms. The
goal of this research is to provide both theoretical and experimental insight into
the performance of the two algorithms, where they differ and which features of
the data sets influence the differences in their performance. The research was
previously published in [36] and extended in [51].

The chapter is organized as follows. Section 5.2 will give a formal definition
of the problem of association rules mining. Section 5.3 presents one of the first
and most popular algorithms in the literature – Apriori [1, 2] which became the
basis for many of the later algorithms. The FP-Growth algorithm is described
in section 5.4 and the Depth-First algorithm – in section 5.5. Their connection
with the Apriori algorithm is investigated in sections 5.6 and 5.7 respectively.
Section 5.8 gives the theoretical comparison of FP-growth and Depth-First and
they are experimentally compared in section 5.9. And finally section 5.10 gives
the conclusions.

5.2 Association Rules

In this chapter the problem of association rules mining will be formally described
using the notation and terminology of [1, 2].

Let I = {i1, i2, . . . , im} be a set of literals called items. A set X ⊆ I with
|X | = k is called a k-itemset. Let D be a multiset1 of transactions where each
transaction T consists of a set of items, T ⊆ I. Each transaction has a unique
identifier associated to it called TID.

An association rule is an implication of the type: X ⇒ Y with X, Y ⊆ I
and X ∩Y = ∅, where X is called the antecedent and Y is called the consequent
of the rule. Such a rule expresses that if a transaction T contains X then it
will, with some probability, also contain Y . Formulated like this, it is obvious

1A multiset is such a collection of objects where the order is ignored but identical objects
might be present. For example {a, b} is the same as {b, a} but is different from {a, a, b}.



5.2 Association Rules 105

that a rule can be generated for each two sets of items that appear together in
a transaction. Among these we are only interested in the “significant” ones –
those which appear often enough.

The support of an itemset X ⊆ I is defined as the fraction of transactions
in the database which contain all items in X , or:

support(X) =
|{T ∈ D |X ⊆ T} |

|D|
.

The support of a rule X ⇒ Y is defined as the fraction of transactions that
contain both X and Y or the probability p (X ∪ Y ). The confidence of a rule is
the conditional probability p (Y ⊆ T |X ⊆ T ) or, in other words, the ratio:

confidence(X ⇒ Y ) =
support(X ∪ Y )

support(X)

if support(X) 6= 0.

Now we can formulate the problem of mining association rules as: generate
all rules with support and confidence at least as high as some predefined thresh-
olds for minimal support and minimal confidence. An itemset with support at
least as high as the minimal support is called a frequent itemset (or a frequent
pattern). The problem can now be split into the following two subproblems that
can be solved separately:

1. Find all frequent itemsets with their supports.

2. For each frequent itemset X , generate rules by splitting the itemset into
two non-intersecting parts X\Y ⇒ Y as long as the confidence of the
resulting rule is at least as high as the minimal confidence.

The second step is the easier of the two and the overall performance of the
algorithm is determined by the first step, on which will be the focus of the
remainder of this chapter.

Note that as soon as step 1 is completed we need not read the database
anymore since all necessary information is already available for step 2. This is
a consequence of an important property of the set of frequent itemsets which
will be elaborated on in the following paragraphs.

First we give a quick review of the necessary terminology from lattice theory.
A binary relation R over a set U which is reflexive, antisymmetric and transitive
is called a partial order and (U, R) is called a partially ordered set. A partially
ordered set (U, R) in which for each pair x, y ∈ U there exists an element z that
is the least upper bound (also called join) and an element w that is the greatest
lower bound (also called meet) is a lattice. (U, R) is a complete lattice if join
and meet exist for each subset. Every finite lattice is complete.



106 Frequent Patterns

A partially ordered set is called a join semi-lattice (meet semi-lattice) if only
the join (meet) exists. The powerset of a set together with the inclusion relation
is a complete lattice.

Let L = 2I be the powerset of I. Then L is a lattice. The maximal element of
L is I and the minimal element is the empty set {}. It is easy to see that the set
of all frequent itemsets is a meet semi-lattice. Similarly the set of all infrequent
itemsets forms a join semi-lattice. The following lemma is a consequence:

Lemma 11 All subsets of a frequent itemset are also frequent.

Analogically we can see that all supersets of an infrequent itemset are also
infrequent. Formulated in a different way, the property of being an infrequent
pattern is monotone while the property of being a frequent pattern is anti-
monotone. This knowledge is important as it can be used in reducing the number
of candidate patterns. Bearing in mind the huge amount of data that usually
needs to be analyzed, such a property not only helps speed up the algorithms
but also in some cases makes the computation feasible.

Let us consider the example in figure 5.1. It represents the set of all possible
itemsets in I = {a, b, c, d, e}. The lines connecting the itemsets are the inclusion
relation. The frequent itemsets are indicated by oval frames. It can be seen
that for every frequent itemset all its subsets are also frequent. However not all
itemsets that are supersets of frequent ones turn out to be frequent as is the
case with {a, c} and {b, c, d}.

5.3 The Apriori Algorithm

In this section we will introduce the Apriori algorithm as it was originally pre-
sented by Agrawal and Srikant in 1994. The algorithm relies heavily on the
property discussed in the previous section that all subsets of a frequent itemset
are also frequent. That allows to limit the number of candidates for frequent
itemsets that need to be counted. A k-itemset is considered as a candidate if
all of its subsets of length k-1 have been found to be frequent.

The algorithm performs a breadth first search starting from the 1-itemsets.
It requires as many scans of the whole database as the maximal length of a
candidate itemset.

Figure 5.2 gives the Apriori algorithm. It uses the following notation: Lk

is the set of frequent k-itemsets, Ck is the set of candidates of length k. The
algorithm starts with a database pass to count the supports of all 1-itemsets.
The frequent ones among them are used to generate the candidates of length
2 by the apriori-gen function. Next the database is scanned again to count
the support of those candidates. For each transaction t the candidates that are
subsets of it are found (those are the subsets Ct

k of t for each Ck) and their
counts incremented. The candidates that turn out to be frequent are used to



5.4 The FP-Growth Algorithm 107

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Figure 5.1: The lattice of itemsets

generate the candidates of the next level. The procedure goes on until there are
no frequent itemsets at the current level.

The apriori-gen function takes as parameter Lk−1 and returns the new set
of candidates Ck. It works as follows. For each pair p = {i1, i2, . . . , ik−1} ∈
Lk−1 and q = {j1, j2, . . . , jk−1} ∈ Lk−1 such that i1 = j1, . . . , ik−2 = jk−2,
ik−1 < jk−1 a new candidate c = {i1, i2, . . . , ik−1, jk−1} is generated and added
to Ck. Further the set Ck is pruned by removing all candidates that contain a
subset of length (k-1) not present in Lk−1.

5.4 The FP-Growth Algorithm

One of the most efficient algorithms which appeared after Apriori was FP-growth
[45]. The most distinct feature of the algorithm is the use of a very complicated
but compact data structure for storing the necessary part of the database. This
structure, called FP-tree, allows an efficient procedure of extracting the frequent
patterns.

Let us first focus on the FP-tree. It is a tree-like structure which can be
defined as follows:

1. The FP-tree consists of: a root labelled by null, nodes connected in a tree
structure starting from the root, a header table.

2. Each node contains the following information: item name, count and node



108 Frequent Patterns

Apriori(D):
L1=all frequent 1-itemsets;
for(k=2; Lk−1 6= ∅; k++)

Ck=apriori-gen(Lk−1);
forall transactions t ∈ D

Ct
k=subset(Ck,t);

forall candidates c ∈ Ct
k

c.count++;
Lk = {c ∈ Ck|c.count ≥ minsup};

result=
⋃

k Lk;

Figure 5.2: The Apriori Algorithm

link. The item name is the item represented by the node, the count
represents the number of transactions contained in the path from the root
to the node. The node link is a link to the next node with the same item
in the tree or null if such a node does not exist.

3. Each of the rows of the header table contains an item name and a node
link which points to the first node in the tree labelled by the same item.

The structure is created using the FP-tree procedure which implements the
following algorithm in two steps:

1. The frequent 1-itemsets are discovered by a scan of the database. The set
is sorted in descending value of their support – it is denoted by L.

2. The root of the tree, R, is created. The database is scanned again and for
each transaction the items in the transaction are sorted following the order
of L and inserted in the tree using the procedure insert-tree(t|T ,R) on
the root R and the transaction t|T where t is the first item in the sorted
transaction and T is the rest.

The insert-tree procedure considers the first item in the transaction t and
checks if R has a child N labelled by the same item. If so, the count of that
child is incremented, otherwise a new child N is created and assigned count 1.
Further, the header table and the node links are updated if necessary. If the
rest of the transaction T is not empty then the procedure is called recursively
on T and N : insert-tree(T ,N).

Clearly two database scans are necessary for the generation of the tree.
Afterwards the information contained in this tree is enough for the process of
frequent patterns mining.

An example will give a clearer picture of the structure of the tree and the
building procedure. Table 5.1 shows a small transaction database which we



5.4 The FP-Growth Algorithm 109

TID transaction
1 a b d
2 b c d f g h
3 a b d g
4 d e f
5 b d f
6 a f

Table 5.1: The example transaction database

use for constructing an FP-tree. The full tree is given in figure 5.3 where the
parent-child links are denoted by solid lines and the node links by dashed lines.

The first step is to scan the database and find the frequent 1-itemsets. Let us
have a minimal support threshold of 2 which means that we are only interested
in itemsets that appear in at least two transactions. The frequent 1-itemsets2

(sorted in decreasing value of the support) are: (d : 5), (b : 4), (f : 4), (a : 3), (g :
2), where the numbers after the colon signs are the support values. The portion
of the database that contains only the frequent 1-itemsets is shown in table 5.2
where the transactions are also sorted in decreasing support.

We start with the first transaction {d, b, a}. The tree contains only the root
and the transaction will be inserted as a branch with counts equal to 1 for each
node. The second transaction is {d, b, f, g}. Starting from the root, we try to
insert d. But the root already has a child labelled with d, thus we only increase
the count of the node to 2 and proceed by trying to insert b in the subtree
originating at the d-node. However, there is again a child with the label b and
we increase the count of the b-node to 2 and proceed with f . The b-node this
time has no child carrying the label f and we create a new f -node as a child
with count 1. From that new node we try to insert g which results in creating
a child with item g and count 1.

The insertion of the third transaction {d, b, a, g} results in increasing the
counts in the branch d → b → a and creating a new child of the a-node labelled
with g. Proceeding in the same way we generate the full FP-tree given in
figure 5.3.

The FP-tree is a highly condensed way of representing the relevant part of the
database. This is due to the “collapsing” of transactions having the same prefix
– the prefixes of such transactions are stored together and further processed
together and only the count indicates that more than one transaction is present
in this branch. In the extreme case of having a database of identical transactions,
the tree will contain only one path corresponding to all the transactions.

2In the following we reserve the round brackets notation for itemsets that are found to
be frequent and appear in the output of the algorithm. The curly brackets will be used for
transactions in a (conditional) data base.



110 Frequent Patterns

TID transaction
1 d b a
2 d b f g
3 d b a g
4 d f
5 d b f
6 f a

Table 5.2: The sorted database containing only items originating from frequent
1-itemsets

d:5
b:4
f:4
a:3
g:2

d:5

b:4

a:2

g:1

root

f:2

g:1

f:1

f:1

a:1

Figure 5.3: The full FP-tree



5.4 The FP-Growth Algorithm 111

FP-growth(Tree,α):
if Tree consists of a single path P

for each combination β of nodes in P
generate β ∪ α with support= min support of a node in β;

else for each ai in the header of Tree
generate β = ai ∪ α with support= ai.support;
construct β’s conditional pattern base;
construct β’s conditional FP-tree Treeβ;
if Treeβ 6= ∅

FP-growth(Treeβ ,β);

Figure 5.4: The FP-growth procedure for mining the frequent itemsets

By sorting the items in decreasing support we influence the structure of the
tree. The goal is to minimize the number of nodes by starting with the most
frequent ones and to avoid generating new nodes by “collapsing” the identical
ones.

The special structure of the FP-tree will obviously need specific procedures
for extracting the frequent itemsets. This procedure is called FP-growth and
is given in figure 5.4. It takes as an input an FP-tree and a (possibly empty) set
of items that are called the prefix on the current step (denoted by α). At the
first call of the procedure the parameters are the full FP-tree generated from
the data set and an empty set for α.

The algorithm starts by checking if the tree consists of a single path. If
this is the case each subset of it is a frequent itemset which reveals another
efficiency feature of FP-growth – it is not necessary to mine the tree further. In
the extreme case of a database containing only identical transactions the tree
will contain a single path and the algorithm will simply terminate at this step.

If the tree contains more than one path, then the current frequent itemsets
are generated and the algorithm goes into recursion with each of them and their
corresponding conditional FP-trees. The conditional FP-trees are generated
using the FP-tree procedure discussed earlier based on the conditional pattern
base. The conditional pattern base of an item ai is the collection of all prefix
paths of the ai-nodes. They are extracted by starting from the head of the
node-link for ai in the header table. From the first node reached we extract the
path connecting it to the root and we attach to it the support of the ai-node.
We go on following the node-links to the next ai-node to extract the next path.

Let us look again at the example from figure 5.3. The mining process starts
from the header table and the items are considered from the bottom (in other
words we move from the leaves of the tree upwards). However, since the pro-
cessing step of an item is independent from the processing of the other items in



112 Frequent Patterns

the header table, the order does not influence the result.

First we output the pattern (g : 2) and then, starting from the header entry
for g and following the node links, we extract the conditional pattern base for
g. It contains two paths (considered here as transactions although there is no
one-to-one correspondence with the original transaction database): {d, b, a} and
{d, b, f}. They both have support 1 which is the support of the corresponding
g-node connected to them. We count the support of the items and discover
that a and f are not frequent (together with g). The remaining parts of the
transactions are used to generate a conditional FP-tree. It contains a single
path d → b with support 2, thus we output all combinations of items from the
path postfixed with g. The patterns are: (b, g : 2), (d, g : 2), (d, b, g : 2).

Note that the four patterns generated in this first step are the only ones in
which the item g participates. Therefore there is no need to consider this item
later in the mining process.

We go one step back in the recursion to the original tree and go on with the
item a in the header table. First we output the pattern (a : 3). The conditional
pattern base consists of two paths/transactions: {d, b : 2} and {f : 1} which
shows that f is not frequent and the conditional FP-tree again contains a single
path d → b. As a result we output the following patterns: (d, a : 2), (b, a :
2), (d, b, a : 2).

The algorithm goes on in a similar way with the items f , b and d.

5.5 The Depth-First Algorithm

The Depth-First algorithm was introduced in [61]. As the name suggests, a
depth-first strategy is used for the generation of candidates. Another important
feature is that the structure used to represent the itemsets is a trie which can
be described as follows.

A trie consists of nodes and links. Each node contains a number of cells
which are also called buckets. Each bucket is labelled by an item. The links
connect a bucket (as a parent) to a node (as a child). Each path in the trie
starting from the root is an itemset and therefore each bucket corresponds to a
unique itemset. An example trie is given in figure 5.5. The root node of that
trie contains five cells/buckets labelled with the items a, b, c, d and e. Each
path starting from one of those cells represents an itemset. For example the
path e → c → b → a represents the itemset {e, c, b, a} but that means this also
{e, c, b} is an itemset as well as {e, c} and {e}.

In the following, the terms “cell”, “path” and “itemset” will be used inter-
changeably in the context of an itemset trie. That is because each cell determines
exactly one path that leads to it starting from the root. This path corresponds
to an itemset containing the items present in the path.

The trie is an appropriate data structure for storing frequent patterns be-



5.5 The Depth-First Algorithm 113

de c b a

d c b a c b a b a a

c b a a b a a a

a a

Figure 5.5: An example of a trie

cause of the property that the set of all frequent itemsets is a meet semi-lattice
and every subset of a frequent itemset is also frequent. In this case each bucket
also contains a number which gives the support of the itemset represented by
the path from the root to that bucket.

Note that the trie is very different from the FP-tree as in the trie every cell
determines uniquely an itemset. This is not the case in the FP-tree where the
same itemset may be present in different branches of the tree and extracting
only one of those branches does not necessarily give us the full support of the
itemset.

The Depth-First algorithm is given in figure 5.6. As a preprocessing step, the
frequent 1-itemsets are extracted by one scan of the database. The infrequent
ones are not further considered in the algorithm. The frequent 1-itemsets, de-
noted by i1, i2, . . . , in form the root of the trie. For each item in the root starting
from in−1 and moving towards i1, the subtrie that has been built to the right
of it is copied under the bucket. This new subtrie contains all the current can-
didates. Their support is counted by a database scan and the infrequent ones
are pruned (removed from the trie). The algorithm proceeds with the next
root-item to the left.

The count procedure is performed by extracting the transactions one by
one and “pushing” them through the trie. If the current transaction does not
contain the root item then we ignore it and proceed with the next transaction.
If it does it is checked for the first child-cell item. If that is present then we go
deeper recursively, if not we continue with the next child-cell.

A refinement of the algorithm is to sort the items in the root in increasing
order so that the most frequent one is in the rightmost cell of the root. This
would mean that by moving to the left in the structure fewer transactions need



114 Frequent Patterns

Depth-First():
T = the trie including only bucket in;
for m = n − 1 downto 1

T ′ = T ;
T = T ′ with im added to the left and a copy of T ′ appended to im;
C = T\T ′ (the subtrie rooted in im);
count(C);
delete the infrequent itemsets from T ;

Figure 5.6: The Depth-First algorithm

to be inspected in order to count the support of candidates. This improvement
will be assumed in the following.

The algorithm is illustrated with the example in figures 5.7 to 5.10 which
uses the database from table 5.1 and a support threshold of 2. For simplicity,
the supports of the cells in the trie are not shown in the pictures. We start with
the frequent 1-itemsets which here are a, b, c, d, e. They form the root node.
First we consider a and we create a root-cell for it. We then consider item b
and add it to the root. The subtrie to the right of it contains only a which is
copied under b. The resulting trie is shown on figure 5.7 where the newly copied
subtrie is drawn with dashed lines. The database is scanned for the support of
the candidate itemset (b, a) which turns out to be frequent.

The algorithm proceeds with the root-item c. The subtrie to the right of it
is copied under it, see figure 5.8. Again the database is scanned for the support
of the new part. The candidates that are actually being counted are (c, b),
(c, b, a) and (c, a). They turn out to be frequent and are kept in the trie. We
then proceed with the item d and the situation from figure 5.9. The database
is scanned again for the support of the following candidates: (d, c), (d, c, b),
(d, c, b, a), (d, c, a), (d, b), (d, b, a) and (d, a). They all prove to be frequent and
are therefore kept in the trie.

We finally consider the item e. The updated trie is shown in figure 5.10.
The database is scanned for the new candidates. This time however some of
them turn out to be not frequent: (e, d, c, b), (e, d, b) and (e, d, a). Therefore
their supersets (e, d, c, b, a), (e, d, c, a) and (e, d, b, a) cannot be frequent either.
The corresponding parts of the trie are pruned and the resulting structure is
the one from figure 5.5.

5.6 FP-growth and Apriori

The FP-growth algorithm was presented with the claim that it avoids one of
Apriori’s important drawbacks: the candidate generation process. Indeed it



5.6 FP-growth and Apriori 115

b a

a

Figure 5.7: An example of the Depth-First algorithm – item b

c b a

b a a

a

Figure 5.8: An example of the Depth-First algorithm – item c

d c b a

c b a b a a

b a a a

a

Figure 5.9: An example of the Depth-First algorithm – item d



116 Frequent Patterns

de c b a

d c b a c b a b a a

c b a a b a a a

a a

b a

ab a

a

Figure 5.10: An example of the Depth-First algorithm – item e

has been pointed out that in some circumstances Apriori needs to generate a
huge number of candidates and subsequently scans the database repeatedly to
count their support. For example, if a frequent pattern of length 100 is present
in the data then the number of candidates rises up to 2100. However it is an
interesting question whether indeed FP-growth generates no candidates. In
order to investigate the problem we take a different view on the algorithm.

Let us consider another representation of the mining process – the recursion
tree. It is in fact a trie with all frequent 1-itemsets in the root. Every path
in the final trie starting from the root is a frequent itemset. Furthermore the
items appearing in the same node have been generated in the same step of the
recursion and a child node is always a step deeper in the recursion from its
parent.

In order to explain clearer how the recursion tree is built and how it compares
to the FP-tree let us go back to the example of table 5.2 and figure 5.3.

In the first step of the algorithm we count the supports of the 1-itemsets.
Then we build the tree and start the mining procedure. Note that all items that
appear in the FP-tree are already proven to be frequent. The recursion starts
with the item g. By extracting the conditional pattern base we actually extract
all the transactions from the original database (although in a condensed form)
that contain the item g. We count the supports and as a result know those



5.6 FP-growth and Apriori 117

ag f b d

b d b d b d d

d d d

Figure 5.11: The underlying recursion tree for the example of table 5.2 and
figure 5.3

items that are frequent together with g, i.e., d and b. Therefore we have just
showed the itemsets (d, g) and (b, g) to be frequent and thus they appear in the
recursion tree – d and b are added as a child node for g.

Here we build the conditional FP-tree which contains a single path. How-
ever for the sake of clarity we ignore the rule that we can extract directly all
combinations of items in the path and proceed as before (the final results don’t
change). Now we go one level deeper in the recursion and investigate the item
b. From the conditional database it turns out that d is frequent and it is added
as a child of b. We now go back one level up in the recursion and proceed with
d, which does not bring any new results, so we return one more level up and
focus on the next item in the root node, i.e., a.

The final trie (or the recursion tree) is given in figure 5.11 without the
support counts of the cells.

Now let us go back to the discussion concerning candidates generation. Each
node in the recursion tree corresponds to a (conditional) database scan and
counting of the support of all candidate items to be included in the node. For
all those items (that appear in such a database) we know that they have been
frequent on the previous step with the corresponding prefix and they appear in
the node together with the parent. If we look closer at what actually happens at
each step in the recursion we discover that at every node a number of candidates
are considered and their support counted. For each candidate of length k, k > 1,
we already know that two of its subsets of length k − 1 are frequent, otherwise
it will not appear as a candidate. Let us illustrate it with an example.

Going back to the recursion tree of figure 5.11 we focus on the child node of
the root-item g. The item candidates at this step are a, f , b and d because they
are present in the FP-tree. We already know that they are frequent and they
are listed as neighbours to the right of g in the root-node. By extracting the
conditional pattern database of g we discover which ones actually appear to-
gether with g in a transaction. By counting their support we select the frequent
ones (together with g). These are b and d.



118 Frequent Patterns

We consider b – its candidate is the only item that appears in the condi-
tional tree, d (which means the itemset (d, b, g)). What do we know about this
candidate? One of its subsets of length k− 1 is frequent, i.e., the path from the
root to the parent, namely (b, g). We also know that (d, g) is frequent, which is
another k − 1 subset. In fact if it was not frequent we would not have consid-
ered (d, b, g) as a candidate as that would mean that d does not appear in the
conditional FP-tree of b.

Proceeding in the same way we realize that at each step, for each candidate
we know that at least two subsets of length k − 1 and identical prefix of length
k − 2 are frequent. But that is very similar to how Apriori works before the
pruning step is applied.

What is then the improvement in FP-growth?

One of the important improvements is the use of the FP-tree in order to
reduce the amount of data which needs to be scanned at each counting step.
Instead of going through the whole database we scan only the path in which
the prefix appears. Furthermore the transactions are listed in an efficient way
by joining those that are identical and processing them together.

5.7 Depth-First and Apriori

In this section we try to answer the similar question for Depth-First: how does
it connect to Apriori. In this case the answer can easily be seen in the examples
given earlier.

Looking at the example of figures 5.7 to 5.10 we see that the candidates at a
particular step are all itemsets confirmed as frequent at that moment, appended
to the new item. Therefore for each candidate of length k we know that at least
one subset of length k − 1 is frequent – the one that excludes the new item.
However we know nothing more for the rest of the k − 1 subsets as at that
moment no connection has been investigated with the new item. In fact the
only thing that we know about this item is that it is a frequent 1-itemset which
is guaranteed by the preprocessing step of the algorithm.

Therefore Depth-First is not a full implementation of Apriori since for each
candidate we only know that one subset of length k− 1 and the remaining part
of length 1 are frequent.

The difference compared to Apriori is that at each step we are not limited
to counting only itemsets of length k but also longer patterns. The number of
database scans is equal to the number of frequent 1-itemsets.



5.8 Theoretical Comparison of FP-Growth and Depth-First 119

5.8 Theoretical Comparison of FP-Growth and

Depth-First

For the theoretical analysis of the two algorithms we use the following notation
(as in [36] and [51]). Let the set of items be I = {1, 2, . . . , n}, where we denote
each item by an integer number for simplicity. The database contains m trans-
actions. Usually m is much larger than the number of items n. The threshold
of minimal support of a frequent itemset is denoted by minsup.

We assume that each item is known to be frequent. That is ensured by the
first step of both algorithms to count the support of the 1-itemsets, which we
consider as a preprocessing step.

Let A ⊆ I be a non-empty itemset. Then we define:

– supp(A) is the support of A;

– sm(A) is the smallest number/item in A;

– la(A) is the largest number/item in A.

Further we define for the special case of the empty itemset, denoted by ∅:

– supp(∅) = m;

– sm(∅) = n + 1.

– la(∅) = 0;

In the complexity analysis we consider two important factors for comparison:
the number of database queries and the number of nodes in the data structure(s).
A database query is defined as a question of the form “Does customer C buy
product P ?” or in other words “Does transaction T contains item I?”.

Intuitively both factors influence the runtime of the algorithms and the used
memory. A better explanation will be given in the following subsections for the
case of each algorithm.

5.8.1 The Complexity of FP-Growth

In order to make the analysis clearer we choose for a different representation
of the FP-growth algorithm. Following our new notation we assume without
loss of generality that the item numbers are ordered according to the support of
the corresponding 1-itemsets. In other words, in I = {1, 2, . . . , n} item 1 is less
frequent than item 2 which is less frequent than item 3, etc. Therefore the same
order will be followed when sorting the transactions for inserting in the FP-tree
and the branches of the FP-tree will have the items with larger numbers closer
to the root.



120 Frequent Patterns

FP-growth(itemset B, database D):
forall i > la(B) with B ∪ {i} frequent

D′ = the subset of transactions in D that support i;
count support for all items k from D′ with k > i;
remove infrequent items and items k with k ≤ i from D′;
build new FP-tree for D′;
if there are items left

call FP-growth(B ∪ {i},D′);

Figure 5.12: A different representation of the FP-growth algorithm

Bearing this in mind we can represent the FP-growth procedure as given in
figure 5.12 where we have skipped the printing of the results.

FP-growth is a very complex algorithm which is difficult to analyze. In order
to make the picture clearer the following assumptions are made:

– In the original algorithm, the transactions that are identical are joined and
processed together. In the experiments reported in section 5.9 this did not
happen too often. Therefore in our analysis we assume that this does not
occur (the transactions are never joined).

– When the database is detected to contain only a single path, the recursion
terminates and outputs all combinations of items in the path. This also
did not often occur in our experiments. Thus we assume that instead of
terminating the recursion goes on as normal.

– At every step of the recursion the items in the new sub-database are again
sorted according to their new supports and not according to the order
found at the first step. In the experiments this refinement did not influence
the results significantly and therefore we safely assume that only the first
order is used at every step.

Let us now go back to the notion of database query. Here the question
“Does customer C buy product P ?” is posed to the local database used at the
“count support” step of the algorithm from figure 5.12. That local database
corresponds to the current conditional pattern base.

Note that the preprocessing step when the support of the 1-itemsets is
counted makes exactly mn queries to the original database. This number is
not included in the calculations for the total number of queries.

In this case the following theorem gives an insight into the number of database
queries that the algorithm performs.



5.8 Theoretical Comparison of FP-Growth and Depth-First 121

Theorem 12 The number of database queries for the FP-growth algorithm ex-
cept for the preprocessing step equals:

∑

A 6= ∅
A frequent

n∑

j = la(A) + 1
{j} ∪ A\{la(A)} frequent

supp(A).

Proof: In order to prove the correctness of the formula we again consider
the underlying recursion tree. Every step of the recursion corresponds to a
cell/bucket in this tree. Every cell represents an itemset A given by the path
from the root to the cell. For this itemset we already know that it is frequent.
We also know that, due to the initial sorting of the transactions, the current
cell contains the “largest” item in A, or la(A).

Referring to the discussion in section 5.6, we know that the candidates for
new frequent itemsets are the right neighbours of the current cell for all of which
we already know that they (the corresponding paths) are frequent. Taking this
into account it is easy to see that the formula is correct.

The first sum sums over each step of the recursion or each cell in the recursion
tree. The second sum goes over each right neighbour of the current cell. For both
sums we add the support of A as that determines the number of all transactions
containing A and those are exactly the transactions that have to be checked for
the new items. �

The second important factor we would like to examine is the number of
nodes created during the run of the algorithm. By nodes here we mean not the
nodes of the recursion tree but the real nodes of the original FP-tree and all
conditional FP-trees necessary for the mining process.

Again FP-growth proves to be difficult to analyze. One reason for this is
the large number of nodes created and destroyed on the fly. Another reason
is the procedure of partly joining transactions having the same prefix and thus
reducing the number of nodes in the tree.

Assuming that no prefixes are joined in the tree, we establish an upper bound
for the real number of nodes that will be created by the algorithm.

Theorem 13 Taking into account the previously mentioned assumptions, the
number of FP-tree nodes created is at most equal to:

∑

A frequent

n∑

j = la(A) + 1
A ∪ {j} frequent

supp(A ∪ {j}).

Proof: It is easy to see that the contribution of the original FP-tree equals to:

n∑

i=1

supp({i}).



122 Frequent Patterns

Note that we consider only frequent items in our set I.
The nodes of the conditional FP-trees amount to the number of items in the

conditional pattern databases constructed in the mining process. That number
is equal:

∑

A 6= ∅
A frequent

n∑

j = la(A) + 1
A ∪ {j} frequent

supp(A ∪ {j})

which can easily be justified. For each frequent itemset A we construct a con-
ditional pattern database containing only items that are larger than the largest
item in A. Those items are inserted in the tree only if they are frequent in this
database or in other words if the corresponding pattern A ∪ {j} is frequent.
Each of the inserted items contributes its support to the sum, or supp(A∪{j}).

Therefore the total number is the sum of the two:

n∑

i=1

supp({i}) +
∑

A 6= ∅
A frequent

n∑

j = la(A) + 1
A ∪ {j} frequent

supp(A ∪ {j}) =

=
∑

A frequent

n∑

j = la(A) + 1
A ∪ {j} frequent

supp(A ∪ {j}).

�

Since this is only an upper bound for the number of nodes, in the experiments
in section 5.9 we count both the number of nodes according to the formula and
the real number of nodes.

5.8.2 The Complexity of Depth-First

The Depth-First algorithm searches for frequent patterns by first extending the
trie with the new candidates and then counting their support. The infrequent
patterns are removed from the trie and the algorithm proceeds in the same
way with the next root item. The counting of the support of the candidates is
an important step which determines to a large degree the performance of the
algorithm as it involves scanning the database.

The counting is performed by “pushing” the transactions one by one through
the sub-trie and incrementing the counters of those cells (or patterns) that are
present in the transaction. Only after the whole database is scanned do we have
enough information on which patterns are infrequent and should be removed.
This leads to the following specific feature of the algorithm. If a large number
of frequent itemsets of length k are present in the database but only a few (or
none) of the itemsets of length k + 1 are frequent we still have to count a huge



5.8 Theoretical Comparison of FP-Growth and Depth-First 123

number of candidates of length k + 1 at each step of the algorithm. In Apriori
those candidates will be counted in a single scan of the database.

The difference in the performance in this case will depend on how the number
of items, n, compares to k. When n is much larger than k then Depth-First will
be forced to count a large number of “false” candidates and perform n scans of
the database that will not produce longer patterns, while Apriori will only have
to perform about k scans. If, however, a high enough number of longer patterns
are present then Depth-First might prove to be more efficient by producing a
number of patterns of various length at each scan. We come back to this point
in the experimental comparison of FP-Growth and Depth-First in section 5.9.

Going back to the notion of database query, in this case we define it as a
question of the type “Does customer C buy product P ?” (or “Does transaction
T contain item I?”) posed to the original database. Here again the prepro-
cessing step of counting the support of the 1-itemsets makes mn queries in the
database. This number is not included in the total calculations.

The number of database queries as defined above for the Depth-First algo-
rithm is given in the following theorem:

Theorem 14 The number of database queries for the Depth-First algorithm is
equal to:

m(n − 1) +
∑

A 6= ∅
A frequent

sm(A)−1∑

j=1

supp({j} ∪ A\{la(A)}).

Proof: First we notice that the component m(n − 1) is the contribution of
the 1-itemsets. For each of them except for the last one we try to locate them
in every transaction in order to determine whether the transaction has to be
“pushed” down in the sub-trie or not.

The rest of the formula is contributed by the candidate itemsets. The first
sum runs through all frequent itemsets A – those will determine the candidates
that have to be counted in the next steps. They will appear in each sub-trie
copied under a root cell to the left of them. In other words, if (4, 5, 6) proves
to be a frequent itemset at the step of item 4, then we always have to check
(3, 4, 5, 6) as well as (2, 4, 5, 6) and (1, 4, 5, 6) at the later steps.

The number of these appearances is counted by the internal summation
which runs through all root items to the left of the current one. The contribution
of each one of them equals supp({j}∪A\{la(A)}). This number determines the
support of the parent cell of A which shows how many times a transaction will
be “pushed” as deep as A – this portion of the transaction will have to be
checked for the last item in A as well. �

It is easy to see that the contribution of the 1-itemsets in the number of



124 Frequent Patterns

database queries for both algorithms is the same and is equal to:

n∑

i=1

(n − i)supp({i}).

We now focus on the notion of number of nodes. In the context of Depth-
First a node is any cell in a node of the trie that needs to be created during
the run of the algorithm (including the candidates that will later be deleted).
Defined in this way, the total number of nodes is given in the following theorem.

Theorem 15 The number of nodes for the Depth-First algorithm equals:

∑

A frequent

[sm(A) − 1].

Proof: The root node contains n cells. Further we notice that the contribution
of all children cells in the trie is given by:

∑

A 6= ∅
A frequent

sm(A)−1∑

j=1

1,

which counts, for each cell, how many times it will be copied under a root item
to the left in the trie. Therefore the total number is:

n +
∑

A 6= ∅
A frequent

sm(A)−1∑

j=1

1 =

= n +
∑

A 6= ∅
A frequent

[sm(A) − 1] =

=
∑

A frequent

[sm(A) − 1].

�

5.9 Experimental Comparison of FP-Growth and

Depth-First

In the experiments, four data sets were used. Three of them are artificial,
generated by the well-known Almaden software (see [3]). The fourth data set



5.9 Experimental Comparison of FP-Growth and Depth-First 125

is a sample of real-life data collected from a big retail chain. Details about the
data can be found in appendix A.

The goal of the experiments is to give an insight into the “real” complexity
of the algorithms measured by the execution time, by comparing it to the the-
oretically determined complexity discussed in the previous section. We try to
find out where the algorithms’ performance differs and whether the theoretical
predictions go inline with the practical results.

The experiments were conducted at a Pentium-III machine with 256 MB
memory at 733 MHz, running Windows NT. The programs were developed
under the Borland C++ 5.02 environment, but are also usable with the Gnu

C++ compiler.
The results are shown in tables 5.3 to 5.6 where the following indicators are

compared for the minsup thresholds of 0.5%, 1.0%, 1,5%, 2.0% for the synthetic
data and 0.25%, 0.5%, 0.75%, 1.0% for the retail data set:

– the number of frequent 1-itemsets,

– the total number of frequent itemsets (including the frequent 1-itemsets),

– the execution time for Depth-First,

– the execution time for FP-growth,

– the number of queries for Depth-First according to the formula from theo-
rem 14,

– the number of queries for FP-growth according to the formula from theo-
rem 12,

– the number of nodes for Depth-First according to the formula in theorem 15,

– the real number of FP-tree nodes created during the run of the program,

– the number of nodes for FP-growth as given by the formula from theorem 13.

The experimental results given in tables 5.3 to 5.6 show some interesting
phenomena. One of them is the surprising difference between the performance
of the two algorithms for the retail data set at support 0.25%. This is a result
of the different character of this real-life data set which turns out to be a worst-
case scenario for the Depth-First algorithm. Compared to the artificial data sets,
the retail data contains a lot more frequent 1-itemsets but few longer frequent
itemsets. For Depth-First this results in a huge number of candidate 2-itemsets
that have to be counted but turn out to be infrequent. This is also reflected in
the difference between the small number of tree nodes for FP-growth and the
large number of trie nodes for Depth-First for this particular case.

In fact the number of candidate 2-itemsets (influenced by n) affects the per-
formance of the Depth-First algorithm in one more way through the procedure



126 Frequent Patterns

D100T20I6
minsup 0.5% 1.0% 1.5% 2.0%
# fr. 1-itemsets 730 561 435 358
# fr. itemsets 25,040 1,090 493 361
DF exec. time 29 11 8 6
FP exec. time 22 14 11 9
# queries DF 804,898,976 427,097,723 301,111,212 234,051,516
# queries FP 442,562,012 329,761,608 252,044,086 198,043,844
# nodes DF 10,558,723 401,703 116,816 65,303
# nodes-real FP 1,961,267 1,479,935 1,322,362 1,188,134
# nodes-formula FP 17,071,465 2,442,218 1,740,313 1,514,332

Table 5.3: Experimental results for the artificial data set D100T20I6

D100T20I4
minsup 0.5% 1.0% 1.5% 2.0%
# fr. 1-itemsets 688 559 439 369
# fr. itemsets 9,438 2,046 548 382
DF exec. time 23 12 8 6
FP exec. time 19 14 12 10
# queries DF 731,815,487 446,136,987 315,448,527 251,949,116
# queries FP 417,996,012 338,850,828 262,917,783 213,788,927
# nodes DF 3,912,166 676,159 134,778 72,546
# nodes-real FP 1,908,370 1,544,726 1,389,513 1,267,268
# nodes-formula FP 8,629,486 3,663,093 1,876,177 1,596,385

Table 5.4: Experimental results for the artificial data set D100T20I4

D100T20I2
minsup 0.5% 1.0% 1.5% 2.0%
# fr. 1-itemsets 635 527 445 359
# fr. itemsets 5,435 1,415 708 441
DF exec. time 20 11 9 6
FP exec. time 20 15 14 12
# queries DF 757,631,634 432,277,091 331,223,803 249,973,785
# queries FP 396,861,892 321,545,022 271,150,238 210,231,042
# nodes DF 2,512,289 456,566 174,620 83,544
# nodes-real FP 2,265,841 1,584,755 1,476,595 1,324,171
# nodes-formula FP 5,827,026 3,137,017 2,284,728 1,828,513

Table 5.5: Experimental results for the artificial data set D100T20I2



5.9 Experimental Comparison of FP-Growth and Depth-First 127

Retail data
minsup 0.25% 0.50% 0.75% 1.00%
# fr. 1-itemsets 2,101 920 493 320
# fr. itemsets 3,058 1,086 536 330
DF exec. time 66 12 4 2
FP exec. time 7 4 3 2
# queries DF 778,171,180 281,647,840 114,469,871 66,731,996
# queries FP 605,209,096 213,361,480 82,454,945 46,351,860
# nodes DF 4,148,742 571,763 142,475 54,486
# nodes-real FP 828,336 545,504 383,085 290,001
# nodes-formula FP 1,175,688 751,809 545,116 434,039

Table 5.6: Experimental results for the real-life retail data set

of copying. In this procedure, the current frequent itemsets are copied under the
new root item to be counted. Even though the infrequent items are not copied,
they are still traversed in order to find the frequent ones. Further experiments
showed that this results in a high number of node-visits, which explains why
for D100T20I6, minsup 0.5%, Depth-First creates more trie nodes than for the
retail data at 0.25% and still for the retail data performs much worse.

A different picture can be seen in the figures for the three artificial data
sets. There, due to the higher percentage of real frequent itemsets from the
candidate itemsets, Depth-First performs better than FP-growth in most of the
cases. Only for the lowest support in D100T20I6 and D100T20I4, does Depth-
First show slower runtime due to the rapid increase in the number of trie nodes
that are generated and visited.

The overall results of the experiments show the following picture of the
comparison of the two algorithms. The recorded execution time is proportional
to both the number of queries and the number of nodes of the data structures
which confirms the relevance of the two factors chosen in the theoretical analysis.

Furthermore from the experiments one might conclude that Depth-First out-
performs FP-growth for data sets with larger values of the ratio m/n. But if
there are fewer transactions compared to the number of items, FP-growth seems
better. The importance of the ratio m/n is that it partly determines the percent-
age of real frequent itemsets out of the generated candidates. This influences
the algorithms in a different way, as was discussed in the previous section, and
hence results in differences in the performance.



128 Frequent Patterns

5.10 Conclusions

This chapter focused on the problem of frequent patterns generation for asso-
ciate rules mining. More specifically, two of the best known algorithms from
the literature on this subject, Depth-First and FP-growth, are compared both
theoretically and practically with the goal to give more insight into their per-
formance as well as into which factors influence their differences.

The theoretical analysis examines two important factors for the algorithms’
performance: the number of database queries performed by the algorithm and
the number of nodes in the data structures created during the run of the al-
gorithm. Formulas for the calculation of each of those factors were established
and proved in theorems 12, 13, 14 and 15.

Further, the algorithms were compared experimentally by applying them to
four data sets, three artificial and one real-life data set. The experiments show
that the execution time is proportional to both the number of queries and the
number of nodes of the data structures. From the experiments one might con-
clude that Depth-First outperforms FP-growth for data sets with larger values
of the ratio m/n. But if there are fewer transactions compared to the number
of items, FP-growth seems to perform better.

The experiments also uncovered some interesting phenomena in the perfor-
mance of the algorithms discussed in section 5.9.

As this is the first attempt at achieving a theoretical grip on complexity,
a number of directions for future research are available. In the case of FP-
growth, for example, three simplifying assumptions were made. It would be
therefore interesting to investigate how those assumptions influence the result
and perhaps to incorporate them in new extended formulas.



Appendix A

Data Sets Used for the

Experiments

A.1 Bankruptcy Data Set

The bankruptcy data set used in some of the experiments is discussed in [74,
40]. The sample consists of 39 objects denoted by F1 to F39 – firms that
are described by 12 financial parameters. To each company a decision value is
assigned – the experts’ evaluation of its category of risk for the year 1988.

The condition attributes denoted by A1 to A12 take integer values from 0
to 4 and can be described as follows:

A1=earnings before interests and taxes / total assets

A2=net income / net worth

A3=total liabilities / total assets

A4=total liabilities / cash flow

A5=interest expenses / sales

A6=general and administrative expense / sales

A7=manager work experience

A8=firm’s market niche position

A9=technical structure-facilities

A10=organization-personnel



130 Data Sets Used for the Experiments

A11=special competitive advantage of the firm

A12=market flexibility

The first six attributes are quantitative (financial ratios) and the rest are
qualitative. They are coded on the ordinal scale where 4 is better than 3, 3 is
better that 2, etc.

The decision attribute is denoted by d and takes integer values in the range 0
to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.

Because of the small number of objects in the data set it can be printed here
in its full size, see table A.1.

The data was first analyzed for monotonicity. The problem is obviously
monotone (if one company outperforms another on all condition attributes then
it should not have a lower value of the decision attribute). Nevertheless, one
conflicting pair of data points was discovered, namely F24 and F31. It was
treated as noise and closer observations suggested that more probably exam-
ple F24 was noisy. For those experiments in which a monotone data set was
required, this example was removed from the data set and was not considered
further.

A.2 Nursery Data Set

The Nursery data set was obtained from the UCI repository of machine learning
databases [19] and has been first presented in [58]. It is based on a real-life
problem and classifies applications for nursery schools. It was generated by a
hierarchical model developed with the help of experts using the expert system
shell for decision making DEX [20]. The model was applied in practice and was
subsequently used for several years in the 1980’s in Ljubljana, Slovenia. Because
of the large number of applications for nurseries at that time, an objective
explanation for those rejected was necessary which was the reason for developing
the model.

The experts divided the problem in three subproblems (also called interme-
diate concepts):

– occupation of parents and child’s nursery (denoted by EMPLOY),

– family structure and financial standing (denoted by STRUCT FINAN),

– social and health picture of the family (denoted by SOC HEALTH).

The EMPLOY intermediate concept groups two input attributes:

– parents – parents’ occupation,

– has nurs – child’s nursery.



A.2 Nursery Data Set 131

U A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 d
F1 1 1 1 1 0 2 4 2 4 3 1 3 2
F2 3 4 1 2 2 2 4 3 4 4 3 4 2
F3 2 4 0 0 1 1 4 2 4 4 2 4 2
F4 1 2 1 0 1 3 4 1 4 3 2 3 2
F5 2 3 2 1 1 1 4 2 4 4 2 4 2
F6 2 4 2 2 2 1 4 2 3 3 2 3 2
F7 2 4 1 2 3 3 4 3 3 4 2 4 2
F8 0 0 3 0 1 2 4 1 3 3 0 3 2
F9 2 3 2 2 1 3 3 1 3 2 0 2 2
F10 2 3 1 0 1 1 3 1 3 3 0 3 2
F11 1 4 0 0 2 3 3 2 3 3 2 3 2
F12 2 2 3 3 2 3 3 1 3 3 0 2 2
F13 0 0 1 0 0 2 3 1 3 3 0 3 2
F14 1 0 0 0 3 2 3 1 3 3 2 2 2
F15 1 2 1 0 0 1 3 3 3 3 1 4 2
F16 1 2 3 2 0 4 3 1 3 2 1 2 2
F17 1 1 1 0 0 3 3 3 3 3 1 3 2
F18 1 0 2 0 0 2 4 1 3 1 0 2 2
F19 1 0 1 0 0 2 3 1 3 3 1 3 2
F20 1 0 1 0 0 4 3 1 3 3 1 3 2
F21 1 0 0 0 0 2 1 1 3 3 1 2 1
F22 0 0 2 0 1 0 2 3 3 3 2 3 1
F23 1 0 1 0 0 1 3 2 2 1 0 1 1
F24 0 0 0 0 0 0 2 1 3 3 1 2 1
F25 1 1 1 0 0 2 2 1 3 3 1 2 1
F26 1 1 0 0 0 2 1 1 3 3 1 2 1
F27 1 0 1 0 0 2 1 1 3 3 1 3 1
F28 0 0 3 0 2 0 1 1 2 2 0 1 1
F29 2 3 3 2 1 2 2 3 3 3 2 3 1
F30 2 0 2 2 0 1 1 2 3 3 1 2 1
F31 0 0 1 0 0 0 2 2 3 3 1 2 0
F32 2 4 1 0 0 0 2 1 2 3 0 2 0
F33 1 1 0 0 0 0 2 2 2 3 2 3 0
F34 1 0 0 0 0 0 1 1 2 3 2 3 0
F35 0 0 1 0 0 0 2 0 3 2 0 1 0
F36 0 0 2 0 1 0 1 0 2 2 1 2 0
F37 0 0 0 0 0 0 1 1 3 3 1 2 0
F38 0 0 2 0 0 0 0 0 3 2 0 2 0
F39 1 0 0 0 0 0 0 0 1 0 0 1 0

Table A.1: The bankruptcy data set



132 Data Sets Used for the Experiments

The STRUCT FINAN subproblem contains one intermediate concept and
two input attributes:

– STRUCTURE which is an intermediate concept defining the family structure
and containing the following input attributes:

- the form of the family, denoted by form,

- the number of children, denoted by children

– housing – an input attribute describing the housing conditions of the family,

– finance – an input variable for the financial standing of the family.

The SOC HEALTH intermediate concept contains the following two input
variables:

– social – an input attribute which describes the social conditions of the family,

– health – the health conditions of the family.

The Nursery data set used in our experiments has been derived from this
model and the structural information has been removed so that the resulting
data set contains eight input attributes. The attributes take the following values:

parents – usual, pretentious, great pret

has nurs – proper, less proper, improper, critical, very crit;

form – complete, completed, incomplete, foster;

children – 1, 2, 3, more;

housing – convenient, less conv, critical;

finance – convenient, invonv;

social – non-prob, slightly prob, problematic;

health – recommended, priority, not recom.

The decision attribute classifies the applicants in five groups according to
how strongly it is recommended to accept their application: not recom, recom-
mend, very recom, priority, spec prior. They were coded in our representation
of the data set as 0,1,2,3,4 respectively. The classes turned out to be not evenly
distributed and class 1 and 2 were rare in the data set. Class 1 appeared in only
two examples and had therefore hardly any influence on the induction process.
The examples belonging to class 2 were about 2% of the data. Each of the other
three class values (0,3,4) appeared in roughly 30% of the objects.



A.3 Cars Data Set 133

It is easy to see that the values of all attributes are ordered according to
how inconvenient the situation is (e.g. for the housing attribute convenient <
less conv < critical). They were coded with numerical labels with lowest value
0 and following the natural order. For example the housing attribute was coded
as convenient=0, less conv=1, critical=2.

Furthermore the problem from which the data set was drawn is obviously
monotone since the worse the situation of the family is the more recommended
it is to accept the child’s application. Nevertheless the data was checked for
monotonicity and was confirmed to have no monotone inconsistencies.

The number of instances is 12960, which completely covers the input space.
For our experiments samples were drawn randomly from the data set. Class 2
was drawn in most of the samples but was often too rare. That, for example,
in the experiments on monotone decision trees sometimes resulted in trees that
had only one leaf for that class. That leaf had few belonging points and was
subsequently pruned from the tree even for low pruning thresholds.

A.3 Cars Data Set

The Cars data was also obtained from the UCI repository [19]. Similarly to the
Nursery data set, the Cars data set was drawn from a hierarchical model with
the structural information removed from the data. The model was developed
for the demonstration of the DEX system [20] and was first presented in [21].

The model assigns evaluation to cars based on their characteristics from
the point of view of the buyer. On the first level there are two subproblems
(intermediate concepts):

– PRICE – the overall price of the car

– TECH – the technical characteristics of the car

The PRICE subproblem contains two input attributes:

– buying – the buying price of the car

– maint – the price of the maintenance

The TECH subproblem contains one intermediate concept and one input
attribute:

– COMFORT – an intermediate concept which includes three input attributes:

- doors – the number of doors,

- persons – capacity in terms of persons to carry,

- lug boot – the size of luggage boot;



134 Data Sets Used for the Experiments

– safety – an input attribute describing the estimated safety of the car.

The six input variables take the following values:

buying – v-high, high, med, low

maint – v-high, high, med, low

doors – 2, 3, 4, 5-more

persons – 2, 4, more

lug boot – small, med, big

safety – low, med, high

The examples are classified in four groups labelled as either unacc, acc, good
or v-good. These values are clearly ordered and were coded in our representation
as 0, 1, 2, 3. Our monotonicity analysis showed that all but one attribute behave
monotonically (the classification function is monotone over those attributes).
They were coded with integers with lowest value of 0 following the natural
order. For example the attribute maint has values v-high < high < med <
low which were coded with 0, 1, 2, 3 respectively (note that the higher the
maintenance costs of the car are the less attractive it is).

The remaining attribute, doors has values such that 2 < 3 < 4 but 4 6<
5-more. For our experiments we require monotone problems and therefore we
decided to slightly modify the input space by ignoring the single value 5-more
that behaves non-monotonically.

The original data set contains 1728 examples which covers the whole in-
put space. After removing the 5-more value of the attribute doors with the
corresponding data points, the data set was reduced to 1153 and was found
to be monotone. The sample covers the whole modified input space. For the
experiments random samples were drawn with the size of 200 examples.

A.4 Almaden Data Sets

The Almaden data sets (see [3]) are synthetic data samples generated using
the software developed at IBM Almaden Research Center. The data mimics the
transactions in the retailing environment. It contains a set of transactions repre-
sented using 0’s and 1’s where 0/1 codes absence/presence of the corresponding
item in the transaction.

The generating program allows a large range of data characteristics. The
parameters that can be used are as follows:

|D| – the number of transactions,



A.5 Retail Data Set 135

|T | – the average size of the transactions,

|I | – the average size of the maximal potentially large itemsets,

|L| – the number of maximal potentially large itemsets,

N – the number of items.

We do not give here a description of the algorithm used by the program. For
more details the reader is referred to [3].

For our experiments on the comparison of the FP-Growth and the Depth-
First algorithms for generating frequent patterns we used three synthetic data
sets produced by the program. They were labelled as D100.T20.I2, D100.T20.I4
and D100.T20.I6 following the parameter values used to generate them.

The samples contain 100000 transactions with the number of different items
equal to 1000. The average size was 20 items in a transaction, the number of
maximal frequent itemsets was set to 2000 and 2, 4 or 6 respectively were chosen
as the average size of the maximal potentially large itemsets.

A.5 Retail Data Set

The Retail data set is a sample drawn from a real life transaction data collected
by a big retail chain and it was used in our exaperiments on frequent patterns
generation in chapter 5. From the whole set only those customers were consid-
ered who bought not more than 100 items. The motivation for this was based on
the observation that when more than 100 items were bought it is quite often not
individual customers but small businesses such as restaurants, offices, etc. The
sample that was drawn contains 59498 transactions and the number of different
items is 4644.

The experiments showed that the Retail data set differs in some character-
istics from the synthetic sets generated using the Almaden software (discussed
in the previous section). The main difference is in the fact that the Retail data
contains a much smaller percentage of frequent itemsets of length more than 1
out of the total number of frequent itemsets. In fact, for minsup equal to 1%
only 10 frequent itemsets had length more than 1 and none had length more
than 2 while 320 frequent 1-itemsets were found. For the same minsup the arti-
ficial data sets produce much larger percentage of longer frequent itemsets (529
out of 1090, 1487 out of 2046 and 888 out of 1415 respectively).



136 Data Sets Used for the Experiments



Appendix B

Experimental Results

In chapter 3 we discussed experiments meant to give insight into the behavior of
the pre-pruning and post-pruning strategies for monotone decision trees. There
only the results for the monotone case were given. The rest of the charts are
presented in this appendix.

The data sets used are based on one of the samples from the Nursery data
set (the second row from table 3.5). Since the Nursery data is monotone, the
sample is also monotone. Further we generated six versions of the sample by
adding increasing number of inconsistencies. That resulted in 2, 21, 28, 31, 40
and 42 conflicting pairs of data points. For these experiments we chose the first
four sets in the series.

For each set we generated monotone decision trees using the full range of
pre-pruning and post-pruning thresholds. For pre-pruning thais meant from a
threshold of at least 1 point in a leaf up to the threshold for which the tree
contains only one node. For post-pruning we start from a threshold of 1%
misclassification rate up to the point where the tree contains only one node.

The indicators that we measured were the number of misclassified points
over the whole data set and the number of nodes in the trees. The charts per
set, indicator and pruning method are given in the following figures.



138 Experimental Results

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140

Figure B.1: 2 non-monotone pairs, number of nodes for all pre-pruning thresh-
olds

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140

Figure B.2: 2 non-monotone pairs, number of misclassified points for all pre-
pruning thresholds



139

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70

Figure B.3: 2 non-monotone pairs, number of nodes for all post-pruning thresh-
olds

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

Figure B.4: 2 non-monotone pairs, number of misclassified points for all post-
pruning thresholds



140 Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140

Figure B.5: 21 non-monotone pairs, number of nodes for all pre-pruning thresh-
olds

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140

Figure B.6: 21 non-monotone pairs, number of misclassified points for all pre-
pruning thresholds



141

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70

Figure B.7: 21 non-monotone pairs, number of nodes for all post-pruning thresh-
olds

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

Figure B.8: 21 non-monotone pairs, number of misclassified points for all post-
pruning thresholds



142 Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140

Figure B.9: 28 non-monotone pairs, number of nodes for all pre-pruning thresh-
olds

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140

Figure B.10: 28 non-monotone pairs, number of misclassified points for all pre-
pruning thresholds



143

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70

Figure B.11: 28 non-monotone pairs, number of nodes for all post-pruning
thresholds

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

Figure B.12: 28 non-monotone pairs, number of misclassified points for all post-
pruning thresholds



144 Experimental Results

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140

Figure B.13: 31 non-monotone pairs, number of nodes for all pre-pruning thresh-
olds

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140

Figure B.14: 31 non-monotone pairs, number of misclassified points for all pre-
pruning thresholds



145

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70

Figure B.15: 31 non-monotone pairs, number of nodes for all post-pruning
thresholds

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

Figure B.16: 31 non-monotone pairs, number of misclassified points for all post-
pruning thresholds



146 Experimental Results



Summary

This thesis is positioned in the area of knowledge discovery with special atten-
tion to problems where the property of monotonicity plays an important role.
Monotonicity is an ubiquitous property in all areas of life and has therefore
been widely studied in mathematics. Monotonicity in knowledge discovery can
be treated as available background information that can facilitate and guide
the knowledge extraction process. While in some sub-areas methods have al-
ready been developed for taking this additional information into account, in
most methodologies it has not been extensively studied or even has not been
addressed at all. This thesis is a contribution to a change in that direction.

In the thesis, four specific problems have been examined from different sub-
areas of knowledge discovery. The research results are organized in four separate
chapters devoted to the four problems. The first three chapters are positioned in
the area of classification. The starting point for classification is a training data
set described by a number of attributes and a class attribute which represents
the target concept we want to predict in new examples. The training data is
used to build a classifier (a prediction model) which covers the whole input
space and is able to predict the values of the target concept for new, previously
unseen data.

The first chapter is focused on the rough sets methodology. An extension of
the methodology is proposed for classification with monotone constraints. The
approach can be used for attribute reduction of monotone data sets in such a
way that the reduced data set remains monotone – this is achieved by means of
generating monotone reducts. The proposed approach can further be used to
generate rules that compose a monotone classifier.

The extension utilizes a variation of the discernibility matrix – the so called
monotone discernibility matrix. It can provide a straightforward way for gener-
ating all monotone reducts or for using a heuristics for generating an approxi-
mation of a ’good’ monotone reduct. For theoretical completeness a connection
was also made to the notion of a positive area for which a new definition was
given in the monotone case. The developed methods have a number of advan-
tages over the only other existing approach for incorporating the monotonicity
property in rough sets theory. In order to underline the differences, the same



148 Summary

data set was used in our experiments and the results were compared.

The second chapter focuses on monotone decision trees. It extends an ex-
isting algorithm that generates monotone decision trees within the area of clas-
sification. The original algorithm can only be applied on monotone data with
no inconsistencies. In practice, however, noiseless data is hardly ever available.
The proposed new methods allow the generation of monotone trees from any
noisy and inconsistent data.

Furthermore methods for pre-pruning and post-pruning of the tree are de-
veloped so that it remains monotone. For this, special labelling functions are
used to guarantee the monotonicity property of the pruned trees. The problem
of monotone leaf labelling, however, is also treated as a separate topic in a more
general setting and not only in connection with pruning. The proposed labelling
functions can, for example, be used on any tree already generated by any other
method such that the labels of the corners are known or can be computed and
the monotonicity of the tree is required.

The chapter also includes empirical comparison between two available in the
literature splitting criteria for decision trees in order to give more insight into
which one performs better in the setting of a monotone problem. One of them is
a traditional information gain splitting for general decision trees and the other
one is oriented at reducing the monotone inconsistencies in the tree. The results
show that the information gain splitting tends to produce smaller trees while
the monotonicity-oriented one tends to generate more accurate trees.

The third chapter is in the area of functional decomposition applied to knowl-
edge discovery. The goal is to decompose a complex function to a concept hi-
erarchy that reflects the structure of the domain. In knowledge discovery the
function is represented by a data set and the hierarchical structure built from it
is further used for classification. In our research, the methodology is extended to
handle monotone problems so that the decomposed function remains monotone.

We concentrate on the subproblem of determining whether there exists an
extension of positive scheme of the type f = g(S0, h(S1)) for given subsets S0

and S1 of the set of attributes. The function h here is the intermediate concept
we need to introduce so that the decomposed function agrees with the original
one. In our research we also propose methods for finding an extension of this
type (when it exists) with minimal number of distinct values of the intermediate
concept in order to reduce the complexity of the decomposed function.

The last chapter lies in the area of data mining and association rules gener-
ation. It focuses on the first part of the problem – frequent patterns discovery.
Here again the monotonicity property plays a role as a property of the set of
infrequent patterns while the set of frequent patterns is anti-monotone. This
knowledge can be used in reducing the number of candidate patterns that need
to be counted and therefore helps speed up the frequent patterns generation
algorithms.

In our research, two of the best algorithms in the literature are considered,



Summary 149

namely FP-growth and Depth-First implementations of Apriori. They are com-
pared theoretically and empirically in order to give more insight into their dif-
ferences and how certain features of the data sets can influence the performance
of both algorithms. In the theoretical analysis complexity formulas were de-
rived for counting two of the most important factors for the performance of the
algorithms: the number of nodes created in the data structures and the number
of queries to the database during the run of the algorithm on the current data.

In the experimental research those formulas were tested against the actual
counts as well as the runtime performance of the algorithms for data sets with
different characteristics. It was shown that the proposed formulas are adequate
for counting the two factors. The results were also analyzed in order to explain
some interesting phenomena in the performance of the algorithms on the four
data sets used for the experiments.



150 Summary



Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 207–216, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast
discovery of association rules. In U.M. Fayaad et al., editor, Advances
in Knowledge Discovery and Data Mining, chapter 12, pages 307–328.
AAAI/MIT Press, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In J.B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings 20th Inter-
national Conference on Very Large Data Bases, VLDB, pages 487–499.
Morgan Kaufmann, 1994.

[4] E.I. Altman. Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy. The Journal of Finance, 4:589–609, 1968.

[5] R.L. Ashenhurst. The decomposition of switching functions. In Proceedings
on an International Symposium on the Theory of Switching, pages 74–116,
1959.

[6] B. Back, T. Laitinen, K. Sere, and M. Van Wezel. Choosing bankruptcy pre-
dictors using discriminant analysis, logit analysis, and genetic algorithms.
Technical Report 40, Turku Centre for Computer Science, 1996.

[7] J. Bazan, A. Skowron, and P. Synak. Dynamic reducts as a tool for ex-
tracting laws from decision tables. In Proceedings of the Symposium on
Methodologies for Intelligent Systems, Charlotte, NC, Lecture Notes in Ar-
tificial Intelligence, pages 346–355. Springer-Verlag, 1994.

[8] Gilad Ben-Avi and Yoad Winter. Monotonicity and collective quantifica-
tion. Journal of Logic, Language and Information, 12(2):127–151, 2003.

[9] A. Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29–43, 1995.



152 BIBLIOGRAPHY

[10] A. Ben-David, L. Sterling, and Y. Pao. Learning and classification of mono-
tonic ordinal concepts. Computational Intelligence, 5:45–49, 1989.

[11] J. C. Bioch. Dualization, decision lists and identification of monotone dis-
crete functions. Annals of Mathematics and Artificial Intelligence, 24:69–
91, 1998.

[12] J. C. Bioch and V. Popova. Rough sets and ordinal classification. In
Proceedings of the 11th International Conference on Algorithmic Learning
Theory (ALT’2000), Lecture Notes in Artificial Intelligence, pages 291–305.
Springer-Verlag, 2000.

[13] J. C. Bioch and V. Popova. Monotone classification and noisy data. Techni-
cal Report ERS-2002-53-LIS, Erasmus Research Institute of Management,
http://www.erim.nl, 2002.

[14] J.C. Bioch and T. Ibaraki. Complexity of identification and dualization
of positive boolean functions. Information and Computation, 123:50–63,
1995.

[15] J.C. Bioch and T. Ibaraki. Version spaces and generalized monotone
boolean functions. Technical Report ERS-2002-34-LIS, Erasmus Research
Institute of Management, http://www.erim.nl, 2002.

[16] J.C. Bioch and V. Popova. Labeling and splitting criteria for monotone
decision trees. In M. Wiering, editor, Proceedings of the 12th Belgian-
Dutch Conference on Machine Learning (BENELEARN’2002), pages 3–10,
Utrecht, 2002.

[17] J.C. Bioch and V. Popova. Monotone decision trees and noisy data. In
H. Blockeel and M. Denecker, editors, Proceedings of the 14th Belgium-
Dutch Conference on Artificial Intelligence (BNAIC’2002), pages 19–26,
Leuven, 2002.

[18] J.C. Bioch and R. Potharst. Decision trees for monotone classification.
In K. van Marcke and W. Daelmans, editors, Proceedings of the Dutch
Artificial Conference on Artificial Intelligence (NAIC’97), pages 361–369,
1997.

[19] C. L. Blake and C. J. Mertz. UCI repository of machine learning databases.
Irvine, CA: University of California, Department of Information and
Computer Science [http://www.ics.uci.edu/˜mlearn/ MLRepository.html],
1998.

[20] M. Bohanec and V. Rajkovič. DEX: An expert system shell for decision
support. Sistemica, 1(1):145–157, 1990.



BIBLIOGRAPHY 153

[21] M. Bohanec and V. Rajkovic. Knowledge acquisition and explanation for
multi-attribute decision making. In 8th International Workshop on Expert
Systems and Their Applications, pages 59–78, Avignon, France, 1988.

[22] E. Boros, V. Gurvich, P.L.Hammer, T. Ibaraki, and A. Kogan. Decompos-
ability of partially defined Boolean functions. Discrete Applied Mathemat-
ics, 62:51–75, 1995.

[23] E. Boros, P.L. Hammer, T. Ibaraki, and A. Kogan. Logical analysis of nu-
merical data. RUTCOR Research Report RRR 04-97, Rutgers University,
1997.

[24] E. Boros, P.L. Hammer, T. Ibaraki, and A. Kogan. Logical analysis of
numerical data. Mathematical Programming, 79:165–190, 1997.

[25] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I. Muchnik.
An implementation of logical analysis of data. RUTCOR Research Report
RRR 22-96, Rutgers University, 1996.

[26] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Wadsworth & Brooks, Monterey, 1962.

[27] L. Breslow and D. W. Aha. Simplifying decision trees: A survey. Knowledge
Engineering Review, 12:1–40, 1997.

[28] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting
and implication rules for market basket data. In Joan Peckham, editor,
SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 255–
264. ACM Press, 1997.

[29] K. Cao-Van. Supervised ranking, from semantics to algorithms (to be pub-
lished). PhD thesis, University of Gent, Belgium, 2003.

[30] K. Cao-Van and B. De Baets. Growing decision trees in an ordinal setting.
submitted to International Journal of Intelligent Systems, 2002.

[31] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning,
3:261–283, 1989.

[32] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13:21–27, 1967.

[33] Y. Crama, P. L. Hammer, and T. Ibaraki. Cause-effect relationships and
partially defined boolean functions. Annals of Operations Research, 16:299–
326, 1988.



154 BIBLIOGRAPHY

[34] H.A. Curtis. A new approach to the design of switching functions. Van
Nostrand, Princeton, N.J., 1962.

[35] H. Daniels and B. Kamp. Application of MLP networks to bond rating and
house pricing. Neural Computation and Applications, 8:226–234, 1999.

[36] J.M. de Graaf, W.A. Kosters, W. Pijls, and V. Popova. A theoretical
and practical comparison of depth first and FP-growth implementations
of Apriori. In H. Blockeel and M. Denecker, editors, Proceedings of the
Fourteenth Belgium-Netherlands Artificial Intelligence Conference (BNAIC
2002), pages 115–122, 2002.

[37] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM Journal on Computing, 24:1278–1304,
1995.

[38] A.J. Feelders and M. Pardoel. Pruning for monotone classification trees.
In M.R. Berthold et al., editor, Advances in intelligent data analysis V,
volume 2810 of Lecture Notes in Computer Science, pages 1–12, Berlin,
2003. Springer-Verlag.

[39] M. Fredman and L. Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of Algorithms, 21:618–628, 1996.

[40] S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to
evaluation of bankruptcy risk. C. Zopounidis (ed.), Operational Tools in the
Management of Financial Risks, Kluwer, Dordrecht, pages 121–136, 1998.

[41] S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicrite-
ria decision analysis. European Journal of Operational Research, 129:1–47,
2001.

[42] J.W. Grzimala-Busse. On the unknown attribute values in learning from
examples. In Proceedings of the Sixth International Symposium on Method-
ologies for Intelligent Systems (ISMIS’91), volume 542 of Lecture Notes in
Artificial Intelligence, pages 368–377. Springer-Verlag, 1991.

[43] J.W. Grzymala-Busse and M. Hu. A comparison of several approaches
to missing attribute values in data mining. In Proceedings of the Second
International Conference on Rough Sets and Current Trends in Computing
(RSCTC’2000), pages 340–347, Banff, Canada, 2000.

[44] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufman Publishers, 2001.

[45] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD’00), 2000.



BIBLIOGRAPHY 155

[46] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association
rule mining - a general survey and comparison. SIGKDD Explorations,
2(1):58–64, 2000.

[47] X. Hu and N. Cercone. Learning in relational databases: a rough set
approach. Computational Intelligence, 11:323–338, 1995.

[48] D.S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and System Sciences, 9:256–278, 1974.

[49] J. Komorowski, L. Polkowski, and A. Skowron. Rough sets: a tutorial.
In S.K. Pal and A. Skowron, editors, Rough-Fuzzy Hybridization: A New
Method for Decision Making, pages 3–98. Springer-Verlag, 1998.

[50] I. Kononenko, I. Bratko, and E. Roskar. Experiments in automatic learn-
ing of medical diagnostic rules. Technical report, Jozef Stefan Institute,
Ljubljana, Yugoslavia, 1984.

[51] W. Kosters, W. Pijls, and V. Popova. Complexity analysis of depth-first
and fp-growth implementations of apriori. In Machine Learning and Data
Mining in Pattern Recognition, Proceedings of the 3rd International Confer-
ence on Machine Learning and Data Mining (MLDM’2003), volume 2734 of
Lecture Notes in Artificial Intelligence, pages 284–292, Leipzig, Germany,
2003.

[52] M. Leshno and Y. Spector. Neural network prediction analysis: The
bankruptcy case. Neurocomputing, 10:125–147, 1996.

[53] P. Lingras. Unsupervised rough set classification using GAs. Journal of
Intelligent Information Systems, 16(3):215–228, 2001.

[54] W.Z. Liu, A.P. White, S.G Thompson, and M.A. Bramer. Techniques for
dealing with missing values in classification. In Proceedings of Advances
in Intelligent Data Analysis (IDA’97), volume 1280 of Lecture Notes in
Computer Science, pages 527–536. Springer, 1997.

[55] K. Makino, T. Suda, K. Yano, and T. Ibaraki. Data analysis by posi-
tive decision trees. In Proceedings International symposium on cooperative
database systems for advanced applications (CODAS), pages 282–289, 1996.

[56] T. Mollestad. A Rough Set Approach to Data Mining: Extracting a Logic
of Default Rules from Data. PhD thesis, Norwegian University of Science
and Technology, 1997.

[57] S.H. Nguyen and A. Skowron. Searching for relational patterns in data. In
Principles of Data Mining and Knowledge Discovery, pages 265–276, 1997.



156 BIBLIOGRAPHY

[58] M. Olave, V. Rajkovic, and M. Bohanec. An application for admission in
public school systems. In I.Th.M. Snellen, W.B.H.J. van de Donk, and J.-P.
Baquiast, editors, Expert Systems in Public Administration, pages 145–160.
Elsevier Science Publishers (North Holland), 1989.

[59] Z. Pawlak. Rough sets. International Journal of Computer and Information
Sciences, 11:341–356, 1982.

[60] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publisher, 1991.

[61] W. Pijls and J.C. Bioch. Mining frequent itemsets in memory-resident
databases. In E. Postma and M. Gyssens, editors, Proceedings of
the Eleventh Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC 1999), pages 75–82, 1999.

[62] P.P.M. Pompe and A.J. Feelders. Using machine learning, neural networks,
and statistics to predict corporate bankruptcy. Microcomputers in Civil
Engineering, 12:267–276, 1997.

[63] V. Popova and J.C. Bioch. Monotone function decomposition. Technical
report, ERIM, http://www.erim.nl, 2004.

[64] R. Potharst and J. C. Bioch. Decision trees for ordinal classification. In-
telligent Data Analysis, 4:1–15, 2000.

[65] R. Potharst and A.J. Feelders. Classification trees for problems with mono-
tonicity constraints. SIGKDD Explorations, 4:1–10, 2002.

[66] J.R. Quinlan. Discovering rules by induction from large collections of ex-
amples. In D. Michie, editor, Expert systems in the micro-electronic age.
Edinburgh University Press, 1979.

[67] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[68] J.R. Quinlan. Unknown attribute values in induction. In Proceedings of
the sixth international Machine Learning workshop, pages 164–168. Morgan
Kaufmann, 1989.

[69] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[70] K.G. Ramamurthy. Coherent Structures and Simple Games. Kluwer Aca-
demic Publishers, 1990.

[71] A.L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3:221–229, 1959.



BIBLIOGRAPHY 157

[72] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for
mining association rules in large databases. In The VLDB Journal, pages
432–444, 1995.

[73] A.D. Shapiro. Structured induction in expert systems. Turing Institute
Press in association with Addison-Wesley, Wokingham, UK, 1987.

[74] R. Slowinski and C. Zopounidis. Application of the rough set approach
to evaluation of bankruptcy prediction. Intelligent Systems in Accounting,
Finance and Management, 4:27–41, 1995.

[75] T.K. Sung, N. Chank, and G. Lee. Dynamics of modelling in data mining:
Interpretive approach to bankruptcy prediction. Journal of Management
Information Systems, 16:63–85, 1999.

[76] S. Wang. A neural network method of density estimation for univariate
unimodal data. Neural Computation and Applications, 2:160–167, 1994.

[77] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–
12, 1962.

[78] M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372–390, 2000.

[79] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association
rule algorithms. In F. Provost and R. Srikant, editors, Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-2001), pages 401–406, 2001.

[80] W. Ziarko. Variable precision rough set model. Journal of Computer and
System Sciences, 46:39–59, 1993.

[81] B. Zupan. Machine learning by function decomposition. PhD thesis, Uni-
versity of Ljubljana, 1997.

[82] B. Zupan, M. Bohanec, J. Demsar, and I. Bratko. Learning by discovering
concept hierarchies. Artificial Intelligence, 109(1-2):211–242, 1999.





Curriculum Vitae

Viara Popova was born in Bourgas, Bulgaria in 1972. She followed her secondary
education at Mathematics High School ”Nikola Obreshkov” in Bourgas. In 1996
she finished her higher education at Sofia University, Faculty of Mathematics
and Informatics where she graduated with major in Informatics and specializa-
tion in Information Technologies in Education. She then joined the Department
of Information Technologies, first as an associated member and from 1997 as an
assistant professor.

In 1999 she became a PhD student at Erasmus University Rotterdam, Fac-
ulty of Economics, Department of Computer Science. In 2004 she joined the
Artificial Intelligence Group within the Department of Computer Science, Fac-
ulty of Sciences at Vrije Universiteit Amsterdam as a PostDoc researcher.





ERASMUS RESEARCH INSTITUTE OF MANAGEMENT (ERIM)

ERIM PH.D. SERIES
RESEARCH IN MANAGEMENT

ERIM Electronic Series Portal: http://hdl.handle.net/1765/1

Berghe, D.A.F., Working Across Borders: Multinational Enterprises and
the Internationalization of Employment. (co) Promotor(es): Prof.dr. R.J.M.
van Tulder & Prof.dr. E.J.J. Schenk, EPS-2003-029-ORG, ISBN 90-5892-05-34,
http://hdl.handle.net/1041

Bijman, W.J.J., Essays on Agricultural Co-operatives; Governance Structure
in Fruit and Vegetable Chains, (co-) Promotor(es): Prof.dr. G.W.J. Hendrikse,
EPS-2002-015-ORG, ISBN: 90-5892-024-0, http://hdl.handle.net/1765/867

Campbell, R.A.J., Rethinking Risk in International Financial Markets, (co-)
Promotor(es): Prof.dr. C.G. Koedijk, EPS-2001-005-F&A, ISBN: 90-5892-008-
9, http://hdl.handle.net/1765/306

Chen, Y., Labour flexibility in China’s companies: an empirical study, (co-)
Promotor(es): Prof.dr. A. Buitendam & Prof.dr. B. Krug, EPS-2001-006-ORG,
ISBN: 90-5892-012-7, http://hdl.handle.net/1765/307

Delporte-Vermeiren, D.J.E., Improving the flexibility and profitability of
ICT-enabled business networks: an assessment method and tool, (co-) Promo-
tor(es): Prof.mr.dr. P.H.M. Vervest & Prof.dr.ir. H.W.G.M. van Heck, EPS-
2003-021-LIS, ISBN: 90-5892-040-2, http://hdl.handle.net/1765/359

Dijksterhuis, M., Organizational dynamics of cognition and action in the
changing Dutch and U.S. banking industries, (co-) Promotor(es): Prof.dr. F.A.J.
van den Bosch & Prof.dr. H.W. Volberda, EPS-2003-026-STR, ISBN: 90-5892-
048-8, http://hdl.handle.net/1037

Fenema, P.C. van, Coordination and Control of Globally Distributed Soft-
ware Projects, (co-) Promotor(es): Prof.dr. K. Kumar, EPS-2002-019-LIS,
ISBN: 90-5892-030-5, http://hdl.handle.net/1765/360

Fleischmann, M., Quantitative Models for Reverse Logistics, (co-) Promoter
(es): Prof.dr.ir. J.A.E.E. van Nunen & Prof.dr.ir. R. Dekker, EPS-2000-002-
LIS, ISBN: 3540 417 117, http://hdl.handle.net/1044

Fok, D., Advanced Econometric Marketing Models, (co-) Promotor(es): Prof.
dr. P.H.B.F. Franses, EPS-2003-027-MKT, ISBN: 90-5892-049-6, http://hdl.
handle.net/1035



Ganzaroli , A., Creating Trust between Local and Global Systems, (co-)
Promotor(es): Prof.dr. K. Kumar & Prof.dr. R.M. Lee, EPS-2002-018-LIS,
ISBN: 90-5892-031-3, http://hdl.handle.net/1765/361

Gilsing, V.A., Exploration, Exploitation and Co-evolution in Innovation Net-
works. (co) Promotor(es): Prof.dr. B. Nooteboom & Prof.dr. J.P.M. Groenewe-
gen, EPS-2003-032-ORG, ISBN 90-5892-05-42, http://hdl.handle.net/1040

Graaf, G. de, Tractable Morality. Customer discourses of bankers, veterinar-
ians and charity workers. (co-) Promotor(es): Prof.dr. F. Leijnse & Prof.dr. T.
van Willigenburg. EPS-2003-031-ORG, ISBN 90-5892-051-8, http://hdl.handle.
net/1038

Heugens, P.M.A.R., Strategic Issues Management: Implications for Cor-
porate Performance, (co-) Promotor(es): Prof.dr.ing. F.A.J. van den Bosch &
Prof.dr. C.B.M. van Riel, EPS-2001-007-STR, ISBN: 90-5892-009-7, http://hdl.
handle.net/1765/358

Hooghiemstra, R., The Construction of Reality, (co-) Promotor(es): Prof.dr.
L.G. van der Tas RA & Prof.dr. A.Th.H. Pruyn, EPS-2003-025-F&A, ISBN:
90-5892-047-X, http://hdl.handle.net/1765/871

Jong, C. de, Dealing with Derivatives: Studies on the role, informational
content and pricing of financial derivatives, (co-) Promotor(es): Prof.dr. C.G.
Koedijk, ISBN: 90-5892-043-7, http://hdl.handle.net/1043

Koppius, O.R., Information Architecture and Electronic Market Performance,
(co-) Promotor(es): Prof.dr. P.H.M. Vervest & Prof.dr.ir. H.W.G.M. van Heck,
EPS-2002-013-LIS, ISBN: 90-5892-023-2, http://hdl.handle.net/1765/921

Loef, J., Incongruity between Ads and Consumer Expectations of Advertis-
ing, (co-) Promotor(es): Prof.dr. W.F. van Raaij & prof. dr. G. Antonides,
EPS-2002-017-MKT, ISBN: 90-5892-028-3, http://hdl.handle.net/1765/869

Meer, J.R. van der, Operational Control of Internal Transport, (co-) Promo-
tor(es): Prof.dr. M.B.M. de Koster & Prof.dr.ir. R. Dekker, EPS-2000-001-LIS,
ISBN:90-5892-004-6, http://hdl.handle.net/1765/859

Miltenburg, P.R., Effects of modular sourcing on manufacturing flexibility
in the automotive industry. A study among German OEMs. (co) Promotor(es):
Prof.dr. J. Paauwe & Prof.dr. H.R. Commandeur, EPS-2003-030-ORG, ISBN
90-5892-052-6, http://hdl.handle.net/1039

Mol, M.M., Outsourcing, Supplier-relations and Internationalisation: Global
Source Strategy as a chinese puzzle, (co-) Promotor(es): Prof.dr. R.J.M. van
Tulder, EPS-2001-010-ORG, ISBN: 90-5892- 014-3, http://hdl.handle.net/1765/
355



Oosterhout, J. van., The Quest for Legitimacy; On Authority and Re-
sponsibility in Governance, (co-) Promotor(es): Prof.dr. T. van Willigenburg
& Prof.mr. H.R. van Gunsteren, EPS-2002-012-ORG, ISBN: 90-5892-022-4,
http://hdl.handle.net/1765/362

Peeters, L.W.P., Cyclic Railway Timetable Optimization, (co-) Promotor(es):
Prof. Dr. L.G. Kroon & Prof.dr.ir. J.A.E.E. van Nunen, EPS-2003-022-LIS,
ISBN: 90-5892-042-9, http://hdl.handle.net/1765/429

Puvanasvari Ratnasingam , P., Interorganizational Trust in Business to Busi-
ness E-Commerce, (co-) Promotor(es): Prof.dr. K. Kumar & Prof.dr. H.G. van
Dissel, EPS-2001-009-LIS, ISBN: 90-5892-017-8, http://hdl.handle.net/1765/
356

Romero Morales, D., Optimization Problems in Supply Chain Management,
(co-) Promotor(es): Prof.dr.ir. J.A.E.E. van Nunen & Dr. H.E. Romeijn, EPS-
2000-003-LIS, ISBN: 90-9014078-6, http://hdl.handle.net/1765/865

Roodbergen , K.J., Layout and Routing Methods for Warehouses, (co-) Pro-
motor(es): Prof.dr. M.B.M. de Koster & Prof.dr.ir. J.A.E.E. van Nunen, EPS-
2001-004-LIS, ISBN: 90-5892-005-4, http://hdl.handle.net/1765/861

Spekl, R.F., Beyond Generics; A closer look at Hybrid and Hierarchical
Governance, (co-) Promotor(es): Prof.dr. M.A. van Hoepen RA, EPS-2001-
008-F&A, ISBN: 90-5892-011-9, http://hdl.handle.net/1765/357

Teunter, L.H., Analysis of Sales Promotion Effects on Household Purchase
Behavior, (co-) Promotor(es):Prof.dr. ir. B. Wierenga & Prof.dr. T. Kloek,
EPS-2002-015-ORG, ISBN: 90-5892-029-1, http://hdl.handle.net/1765/868

Vis, I.F.A., Planning and Control Concepts for Material Handling Systems,
(co-) Promotor(es): Prof.dr. M.B.M. de Koster & Prof. dr. ir. R. Dekker,
EPS-2002-014-LIS, ISBN: 90-5892-021-6, http://hdl.handle.net/1765/866

Waal, T. de, Processing of Erroneous and Unsafe Data, (co-) Promotor(es):
Prof.dr.ir. R. Dekker, EPS-2003-024-LIS, ISBN: 90-5892-045-3, http://hdl.
handle.net/1765/870

Wielemaker, M.W., Managing Initiatives. A Synthesis of the Condition-
ing and Knowledge-Creating View. (co) Promotor(es): Prof.dr. H.W. Vol-
berda & Prof.dr. C.W.F. Baden-Fuller, EPS-2003-28-STR, ISBN 90-5892-050-
X, http://hdl.handle.net/1036

Wolters, M.J.J., The Business of Modularity and the Modularity of Business,
(co-) Promotor(es): Prof. mr.dr. P.H.M. Vervest & Prof.dr.ir. H.W.G.M. van
Heck, EPS-2002-011-LIS, ISBN: 90-5892-020-8, http://hdl.handle.net/1765/920



Wijk, R.A.J.L. van, Organizing Knowledge in Internal Networks. A Multi-
level Study, (co-) Promotor(es): Prof.dr.ing. F.A.J. van den Bosch, EPS-2003-
021-STR, ISBN: 90-5892-039-9, http://hdl.handle.net/1765/347



Knowledge Discovery and Monotonicity
The monotonicity property is ubiquitous in our lives and it appears in

different roles: as domain knowledge, as a requirement, as a pro-

perty that reduces the complexity of the problem, and so on. It is

present in various domains: economics, mathematics, languages, ope-

rations research and many others. This thesis is focused on the

monotonicity property in knowledge discovery and more specifically

in classification, attribute reduction, function decomposition, frequent

patterns generation and missing values handling. Four specific

problems are addressed within four different methodologies, namely,

rough sets theory, monotone decision trees, function decomposition

and frequent patterns generation. In the first three parts, the mono-

tonicity is domain knowledge and a requirement for the outcome of

the classification process. The three methodologies are extended for

dealing with monotone data in order to be able to guarantee that

the outcome will also satisfy the monotonicity requirement. In the

last part, monotonicity is a property that helps reduce the computa-

tion of the process of frequent patterns generation. Here the focus is

on two of the best algorithms and their comparison both theore-

tically and experimentally. 

ERIM
The Erasmus Research Institute of Management (ERIM) is the Research

School (Onderzoekschool) in the field of management of the Eras-

mus University Rotterdam. The founding participants of ERIM are the

Rotterdam School of Management and the Rotterdam School of

Economics. ERIM was founded in 1999 and is officially accredited by

the Royal Netherlands Academy of Arts and Sciences (KNAW). The

research undertaken by ERIM is focussed on the management of the

firm in its environment, its intra- and inter-firm relations, and its

business processes in their interdependent connections. The objective

of ERIM is to carry out first rate research in management, and to

offer an advanced graduate program in Research in Management.

Within ERIM, over two hundred senior researchers and Ph.D. candi-

dates are active in the different research programs. From a variety of

academic backgrounds and expertises, the ERIM community is united

in striving for excellence and working at the forefront of creating

new business knowledge.

www.erim.eur.nl ISBN 90-5892-058-5

V IARA N.  POPOVA

V
IA

R
A

 N
. P

O
P

O
V

A
 

K
n

o
w

le
d

g
e

 D
isco

v
e

ry
 a

n
d

 M
o

n
o

to
n

icity

37

Erim - 04 omslag Popova  16/2/04  11:15 am  Pagina 1


