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Abstract 

Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that 
solely relies on the data to find patterns and decision rules. Despite its non­
invasive approach and ability to generate human readable rules, classical RSDA 
has not been successfully used in commercial data mining and rule generat­
ing engines. The reason is its scalability. Classical RSDA slows down a great 
deal with the larger datt;l sets and takes much longer times to generate the rules. 

This research is aimed to address the issue of scalability in rough sets by 
improving the performance of the attribute reduction step of the classical RSDA 
- which is the root cause of its slow performance. We propose to move the en­
tire attribute reduction process into the database. We defined a new schema to 
store the initial data set. We then defined SOL queries on this new schema to 
find the attribute reducts correctly and faster than the traditional RSDA approach. 

We tested our technique on two typical data sets and compared our results 
with the traditional RSDA approach for attribute reduction. In the end we also 
highlighted some of the issues with our proposed approach which could lead to 
future research. 



Contents 

Contents 

List of Tables 

List of Figures 

List of Symbols and Abbreviations 

1 Introduction 
1.1 Introduction 
1.2 Motivation. 

1.3 Proposed Solution. 
1.4 Components of the Thesis 

2 Review of Related Work 
2.1 Introduction ..... 
2.2 Decision Trees . . . . 

2.2.1 Decision Tree Representation 
2.2.2 ID3 ...... . 
2.2.3 C4.5 ........ . 

2.3 Naive Bayes Classifier . . 
2.3.1 Bayesian Learning 
2.3.2 Bayes Theorem . . 

2.3.3 Naive Bayes Classifiers: 
2.3.4 Naive Bayes Classifier Example: 

2.4 Genetic Algorithm ..... . .... 

i 

ii 

iii 

v 

3 
3 

4 

4 

4 

7 

7 
8 
8 

13 

14 
16 
16 
16 
17 
18 
20 



11 

2.4.1 Hypothesis Representation ...... . 
2.4.2 Genetic Operators. . . . . . . 
2.4.3 The Fitness Function 
2.4.4 Selection....... 

3 Review of Rough Set Data Analysis 

3.1 Introduction ................. . 
3.2 Introduction t9 Rough Set Data Analysis. . 

3.2.1 Basic Model of RSDA ....... . 
3.2.2 
3.2.3 
3.2.4 
3.2.5 

Attribute Reduction or Reducts ... 
Decision Reducts 
Rule Generation. 
Rule Significance 

3.2.6 Discretization. 
3.2.7 Rough Entropy . .......... \ 

4 Preliminary Attempts to Improve Rough Set Scalability 
4.1 Introduction ................. . 
4.2 Scalability .................. . 
4.3 Scalability of the Rough Set Algorithm . . . 
4.4 Proposed Solutions for Better Scalability . . . . . . . 

4.4.1 Faster Data Access ......... . 
4.4.2 Reduct Generation in Database . . . 

4.5 The Challenge . . . . . . . . . . . . . . . . . 
4.6 Attempts in Reduct Determination in Databases 

4.6.1 Initial Attempt .......... . 
4.6.2 Issues with the Initial Attempt .. .... . 
4.6.3 Second Attempt. . . . . . . . . .. .... . 
4.6.4 Issues with the Second Attempt . 

5 An Improved Reduct Determination Algorithm 
5.1 Introduction..... . ... . 
5.2 Improved Approach .... . 

6 Testing and Results 
6.1 Introduction .. 
6.2 First Test . . . . 

6.2.1 Adult Data Set 

CONTENTS 

20 
22 
22 
23 

25 
25 
26 
26 
29 
30 
31 
32 
34 
36 

39 
39 
40 

40 

41 
41 
42 
43 
43 
44 

55 
56 
60 

61 
61 
62 

67 

67 

68 
68 



CONTENTS 

6.2.2 Results for Horizontal Scalability . 
6.2.3 Results for Vertical Scalability . 

6.3 Second Test. . . . . . . . . . . . . . . . 
6.3.1 Person Activity Data Set . . . . 
6.3.2 Results for Vertical Scalability . 

7 Discussion of the Results 
7.1 Census Data Set: ... 
7.2 Person Activity Data Set 

8 Conclusion and Future Research 
8.1 Conclusion... 
8.2 Future Research 

Bibliography 

iii 

70 

71 
73 

73 

74 

77 
77 

78 

81 
81 
83 

85 



List of Tables 

2.1 Television sets 

3.1 Television sets 

3.2 Discernibility Matrix 

4.1 Television sets . . 

4.2 Price Table . . . . 

4.3 Guarantee Table . 

4.4 Sound Table . . . 

4.5 Screen Table . . . 

4.6 Price and Guarantee View 

4.7 Price and Sound View .. 

4.8 Price and Screen View .. 

4.9 Guarantee and Sound View 

4.10 Guarantee and Screen View 

4.11 Sound and Screen View .,. 

4.12 Guarantee and Sound and Screen View 

4.13 Television sets ......... . 

4.14 TV _HIGH and TV _LOW Tables 

4.15 TV _SUBSET Table . 

4.16 TV ~EDUCT Table ... 

5.1 TV SUBSET Table ... . 

5.2 Decision Tables ..... . 

. ,; 

6.1 ADULT _GRTKFIFTYK and ADULT _LESSEQ-.FIFTYK . 

iv 

7 

25 
30 

43 

44 

44 

45 

45 

48 

49 

50 
51 

52 
53 
54 

56 
56 
59 
59 

62 
64 

70 



LIST OF TABLES 

6.2 Horizontal Scalability Results ..... . 
6.3 Vertical Scalability Results . . . . . . . . 
6.4 Person Activity Table(For each activity) 
6.5 Vertical Scalability Results . . . . . . . . 

v 

71 

72 
74 
75 



List of Figures 

2.1 Television Sets Decision Tree. . . . . . . . . . . . . . . . . . . . . . .. 12 

VI 



List of Symbols 
, 

and Abbreviations 

Abbreviation Description 

RSDA Rough Set Data Analysis 
GA Genetic Algorithm 
DM Data Mining 
SQL Structured Query Language 

vii 





Acknowledgements 

I acknowledge the discussion and supervision from my first supervisor - Profes­
sor Ivo Diintsch. It was the result of those early discussion with Prof. Diintsch 
that I came up with the motivation of improving the scalabilitY'of the Rough Set 

~ 

Algorithm. 

I also acknowledge my current supervisors - Professor Brian Ross and Professor 
Michael Winter and Graduate Director - Professor Sheridan Roughten for their 
help, guidance and support. Prof. Ross's and Prof. Winter's supervision and 
ideas steered me into the right direction and helped me to finish my thesis in time. 

I also like to acknowledge my mother and brothers praying and wishing me 
back home especially my wife NIDA (Non Invasive Data Analysis - Its a co­
incident) for suffering through with me during this work and supporting and 
praying for me all the time. 

In the end, I like to dedicate my endeavor and my thesis to my son Syed Shameer 
Mahmood in anticipation and hope that one day he will do a better job than his 
dad. 

1 





Chapter 1 

Introduction 

1.1 Introduction 

This research will primarily focus on Rough Set Data Analysis (RSDA) and its 
issue of scalability. RSDA was developed by Z. Pawlak and his co-workers in 
early 1980s [19]. This technique has since been greatly researched and to date 
there are more than 1300 papers published related to it. At its core, RSDA is 
largely based on three basic operations: 

• Attribute reduction 

• Rule generation 

• Prediction 

Until recently RSDA had been considered as part of the soft computing. How­
ever now it is also regarded as a non-traditional AI technique. Unlike other 
soft computing techniques that require additional model assumptions like prior 
probabilities, degrees of belief or fuzzy functions, RSDA does not rely on any 
assumptions or external parameters. Due to this property, RSDA is considered 
as a non-invasive data analysis - a data analysis that relies on the data only. This 
property of not relying on the external parameters and assumptions makes the 
RSDA a technique of choice for rule generation in critical system like medical 
and financial data where a small external assumption can have a big impact in 
the final outcome of the analysis. The motto of the RSDA is "Let the Data Speak 
for Themselves". 

3 
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1.2 Motivation 

Despite of the non-invasive approach of RSDA, it has still not been used to a 
great extent in industry for rule generation and prediction. This primarily is due 
to issue of its scalability. Scalability is the property of a program or system that 
if the complexity of inputs from a specified set of inputs considered increases 
the runtime behavior of the program increases just moderately, e.g. polynomial 
with a low degree. In, case of rough set algorithms, this is not the case. The 
classical rough set algorithm tends to slow down as the data set gets bigger. The 
slowness primarily occurs during the process of attribute reduction or finding 
reducts. This research is primarily aimed to address the issue of scalability in 
the rough set algorithm. We will only concentrate on the improvement of the 
reduct finding in the rough set to improve its performance. 

1.3 Proposed Solution 

The solution that we are proposing is to move the whole reduct finding process to 
the database instead of finding them in memory in case of the traditional rough 
set theory (which creates a discernibility matrix to find the reduct). We propose 
to create a new schema to store the original data set in the database tables and 
then define the SQL queries on the proposed schema to find the reducts correctly 
and efficiently. This way the whole process of reduct finding is externalized and 
be done separately from the main rough set algorithm. 

1.4 Components of the Thesis 

This thesis will be comprised of 8 Chapters. The rest of the thesis presents the 
research about the related algorithms, the rough set algorithm and our proposed 
approach and solution. The Chapters and their contents are as following: 

• Chapter 1: Introduction 

• Chapter 2: Review of Related Work - Presents the research about the other 
contemporary data mining and rule generation techniques like decision 
trees, naive bayes and genetic algorithm. 

• Chapter 3: Review of Rough Set Data Analysis - Presents the detailed 
analysis of the RSDA. 
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• Chapter 4: Preliminary Attempts to Improve Rough Set Scalability - This 
chapter presents our proposed database schema and preliminary attempts 
to arrive at our final solution for reduct finding in the database. 

• Chapter 5: An Improved Reduct Determination Algorithm - This chapter 
presents the final version of our solution to the attribute reduct finding in 
the database. 

• Chapter 6: Testing and Results - In this chapter we present the tests that we 
have performed on two different datasets and present the results in com­
parison with the traditional discernibility matrix reduct finding approach. 

• Chapter 7: Discussion on the Results - This chapter discusses the results 
of the tests done in the chapter 6 and present a comparative discussion on 
the results for the two data sets. 

~ 

• Chapter 8: Conclusion and Future Research - This chapter will conclude 
our thesis and also highlight the areas where future research can be per­
formed to make our proposed solution workable for most of the data sets. 





Chapter 2 

Review of Related Work 

2.1 Introduction 

This chapter details a comparison of the RSDA technique with three most widely 
used contemporary machine learning techniques, i.e., decision tree, naive bayes 
and genetic algorithm. These three techniques are picked for the comparison 
with the rough set approach because all these techniques are also capable of 
producing the human readable if-then type rules. The techniques are explained 
separately with the emphasis on the rule generation. For a better understanding 
and consistency, the same example data set is used in the description of all the 
techniques including the RSDA. The example data is given in the following table: 

I Case Type I Price I Guarantee I Sound I Screen I d 

1 high 24 months stereo 76 high 
2 low 6 months mono 66 low 
3 low 12 months stereo 36 low 
4 medium 12 months stereo 51 high 
5 medium 18 months stereo 51 high 
6 high 12 months stereo 51 low 

Table 2.1: Television sets 

The above table shows a simple Information System 1. An information system 
U = (U,O, Vq, fq)qED. is a structure that consists of the following: 

7 
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1. A finite set U of objects. 

2. A finite set 0 of attributes. 

3. For each q E 0, 

• A set Vq of attribute values. 

• A mapping function fq : U -+ Vq 

The information system is represented as a matrix because both U and 0 are 
finite. The table shows the information system I with 6 objects types (1 to 6) and 
four attributes namely Price, Guarantee, Sound and Screen. Also in the table 
there is one more column labeled as "d". This new attribute" d" comes with its 
own set of values Vd and a information mapping function d : U -+ Vd. We relate 
the values of an object with respect to attributes of 0 to its value with respect to 
d. Therefore the new attribute is called as dependent or deci~ion attribute while 

~ 

the q E 0 are called as independent or conditional attributes. This new structure 
D = (I, d) is called as a decision system. 

2.2 Decision Trees 

Decision tree learning is one of the most widely used technique for inductive 
inference. Decision tree learning is a method for approximating discrete valued 
target functions represented as a tree structure. It is important to understand that 
the decision trees approximate only discrete valued target functions therefore can 
be represented as a human readable if-then rules. This feature of the decision 
trees alone has helped this technique to be the most widely used. 

The application of the decision trees is broadly ranged from medical diagnosis 
applications to assessment of the credit risk in the financial industry. There are 
quite a few decision tree algorithms that have been developed but all of them 
are based on the core algorithm of a top-down greedy search through the space 
of the possible decision trees. In this introduction we will explain the two most 
popular of these algorithms, i.e., ID3 and C4.5. 

2.2.1 Decision Tree Representation 

As the name suggests, decision tress are represented as "trees". From the set 
of attributes A, an a E A is selected as the root node. From the root node the 
development of the tree starts. Every node in a decision tree specifies a test of 
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some attribute of the instance and each subtree from that node corresponds to 
one of the possible values for that attribute. From the root node, an instance 
is classified by testing the attribute specified by that node. Then moving down 
that tree branch corresponding to the value of the attribute in the given example. 
The process is repeated for the subtree rooted at the new node. In general, a de­
cision tree represents a disjunction of conjunctions of constraints on the attribute 
values of the instances. Each path from the root node to the leaf corresponds 
to the conjunction of the attribute tests and the tree itself is disjunction of those 
conjunctions. 

The construction of the decision tree starts from the root node and then 
subsequent nodes are selected for the subtrees. The selection of an attribute 
at the root node level and then at every subsequent level is dependent on the 
"information gain" of every attribute [18]. The information gain of an attribute 
is the measure of the expected reduction in entropy. Given a <;ollection A of all 
the positive and negative examples of some target attribute, the inlformation gain 
Gain(5, A) of an attribute A, relative to a collection of examples 5 is defined as: 

~ i5vi Gain (5, A) = Entropy(5) - ~ lSI Entropy(5v) 
v E values (A) 

(2.1) 

where values(A) is the set of all possible values for the attribute A, 5v is the subset 
of 5 for which the attribute A has the value v. If the target atribute can take c 
values then the entropy of 5 relative to target is given by the following formula: 

c 

Entropy(5) = L -Pi ZOg2 Pi (2.2) 
i=l 

In the above formula Pi is the proportion of 5 belonging to class i that is induced 
by one of the target attributes. 

Consider the television set information system given in Table 2.1. Suppose 5 
is a collection of the training examples described by the attributes in the TV set 
information system. To select the root node, we have to calculate the information 
gain for every attribute using the Equation 2.1 and then an attribute with the 
highest information gain is selected as a root element. 

To calculate the information gain of an attribute, first we have to calculate the 
Entropy(5) of all the whole system according to the decision or target attribute. 
By using the Equation 2.2, we can do that as follows: 
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In our TV set information system, with respect to the decision attribute, there 
are three positive{3+) and three negative(3-) examples. Having equal number of 
positive and negative examples mean that the entropy will be equal to 1. Lets 
calculate it using the Equation 2.2. 

Entropy([3+, 3-]) 

Now lets calculate the information gain of the individual attribute. Here the 
calculations are shown for the Guarantee attribute. The rest are self explanatory. 

values { Guarantee) = 6mths, 12mths, 18mths,24mths 

S = [3+,3-], Entropy{S) = 1 , 
~ 

S6mths = [0+,1-], Entropy{S6mths) = 0 

S12mths = [1+,2-], Entropy{S12mths) = 0.9183 

S18mths = [1+,0-], Entropy{S18mths) = 0 

S24mths = [1+,0-], Entropy{S24mths) = 0 

Now the information gain for the "Guarantee" can be calculated using equation 
2.1 as: 

Gain{S, Guarantee) 
1 3 1 1 

= 1- ("6)0 - ("6)0.9183 - ("6)0 - ("6)0 

= 0.5085 

The calculation above shows that the attribute Guarantee's information gain 
value is 0.5085. Similarly the information gain for all the other attributes i.e. 
price, screen and sound can be calculated using Equation 2.2. The calculated 
information gain for other attributes is: 

Gain{S,Price) = 0 

Gain(S, Sound) = 0 

Gain{S, Screen) = 0.5085 

From the information gain values of all the attributes, we can see that either 
the Guarantee or the Screen could be selected as the root node. Lets say we 
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select Guarantee as the root node. The process of selection for the root of then 
every subsequent sub-tree continues with the remaining attributes and training 
examples until every node ends up as the leaf node. If we draw the decision 
tree using the method of calculation given above and for the TV sets information 
system, it would look like the Figure 2.1. The diamonds represent the leaves 
while the ovals represent the nodes. 

For a customer having a "high" probability of buying a TV set, the decision 
would look like as: 

(Guarantee = 18mths) V (Guarantee = 24mths) V (Guarantee = 12mths /\ Price = 
medium) V (Guarantee = 12mths /\ Price = high /\ Screen = 76) V (Guarantee = 

12mths /\ Price = high /\ Screen = 51/\ Sound = stereo) 
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G::uarantv 

6mths 

stereo / ~ono 

Figure 2.1: Television Sets Decision Tree 
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2.2.2 103 

ID3 is based on the core decision tree algorithm that employs a top down greedy 
search through the space of the possible decision trees [18]. ID3 constructs the 
top down tree starting with the fundamental question: "Which attribute be the 
root element?". For the selection of the root element, each element is evaluated 
to determine how well it would classify the training examples. This evaluation 
is done by calculating the ~formation gain of every attribute. The attribute with 
the highest information gain is selected as the root element. A descendant of 
the root node is then created for each possible values of this attribute, and the 
training examples are then sorted to the appropriate descendant node. 

The process of selecting a new attribute and partitioning the training ex­
amples is repeated for each non-terminal descendant node but only training 
examples that are associated with that descendant node are incorporated in­
stead of using all the training examples. The algorithm does not include those 
attributes that are already been dealt with higher up in the tree, therefore every 
attribute appears only once in the tree. This process of excluding the attributes 
at the higher node and incorporating the next best attribute continues for each 
new leaf node until one of the following two conditions are met: 

1. Every attribute has already been included along this path through the tree. 

2. All the training examples associated with this leaf node have the same 
target value i.e. their entropy is zero. 

This process forms a greedy search for an acceptable decision tree in which 
the algorithm never backtracks to reconsider earlier choices. ID3 like any other 
inductive learning algorithms is characterized as searching a space of hypotheses 
for the one that fits the training examples. The hypotheses space of ID3 is the 
set of all the possible decision trees. In this search, ID3 performs a simple-to­
complex hill climbing search starting from an empty tree and the progressively 
search for a decision tree that correctly classifies the training data. The evaluation 
function of this hill climbing search is the information gain measure. 

Issues in 103 

Despite its popularity and the practical use in many different applications, ID3 
decision tree algorithm suffers from some major issues. Some of the most no­
ticeable are the following: 
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1. Over-fitting of the training data. A hypothesis h E H is said to over-fit the 
training data if there exists some alternative hypothesis h' E H, such that 
h has smaller error than h' over the training examples, but h' has smaller 
error than h over the entire distribution of instances. The most common 
causes of over-fitting are: 

• When there is noise in the data or 

• when the number of training examples is too small to produce a 
representative sample of the true target function 

Common heuristics to avoid over-fitting are: 

• Don't try to fit all examples, stop before the training set is exhausted 

• Fit all examples then prune the resultant tree 

2. Choice of the appropriate attribute selection measure 

3. Handling missing values 

4. Handling attributes with the different cost 

5. Scalability. 

2.2.3 C4.S 

C4.5 is the descendant of the ID3 algorithm. Like ID3, C4.5 also generates 
classifiers expressed as a decision trees. However, C4.5 is different from ID3 in 
the selection of the node. At every level, C4.5 selects one attribute of the sample 
data that most effectively splits its elements into subsets belonging to one class 
or another. C4.5 uses normalized information gain known as "gain ratio" which 
takes number and size of branches into account when choosing an attribute. The 
gain ratio is calculated by dividing the information gain by the "intrinsic info". 
The intrinsic info is the calculation of the entropy of distribution of instances into 
branches. 

For example in our TV set example, the intrinsic info of the attribute Guar­
antee is the sum of the entropies for its different values. 

Intrinsic Info(Guarantee) [1,3,1,1] = 0 + 0.9183 + 0 + 0 

0.9183 
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Now the gain ratio for the "Guarantee" will be: 

Gain Ratio(Guarantee) = Information Gain(Guarantee)/Intrinsic Info(Guarantee) 

= 0.5085/0.9183 

= 0.5537 

The same calculation follows for the other attributes and the one with the highest 
gain ratio is selected as a node. 

C4.5 has a few base cases. 

• All the samples in the list belong to the same class. When this happens, it 
simply creates a leaf node for the decision tree saying to choose that class. , 

• None of the features provide any information gain. In this case, C4.5 creates 
a decision node higher up the tree using the expected value of the class. 

• Instance of previously-unseen class encountered. Again, C4.5 creates a 
decision node higher up the tree using the expected value. 

Another major difference and, in fact an enhancement to ID3, is the process 
of rule-post-pruning in C4.5 [21]. This procedure helps avoid the problem of 
over-fitting in ID3. The method for rule-post-pruning is given below: 

1. Develop the initial (un-pruned) decision tree based on the complete train­
ing data even allowing over-fitting. 

2. Each path from the root of the tree to the leaf becomes a rule. Convert the 
initial tree into a set of such rules. 

3. Each rule is then simplified or pruned by removing any precondition in 
the rule. Here I mention that only those preconditions that result in the 
improvement of the estimated accuracy of the rule are discarded. 

4. Sort the pruned rules by their estimated accuracy as a default class of rules 
in chosen. 
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2.3 Naive Bayes Classifier 

Our second classification algorithm in comparison with RSDA is naive Bayes 
classifier. Naive Bayes classifiers are among the most practical approaches ap­
plied to most of the learning problems. Naive Bayes classifiers became popular 
because of the fact that it is easy to construct and does not require any complicated 
iterative parameter estimation schemes. Also the rules produced by the naive 
Bayes classifiers are easy to interpret. Before I explain naive Bayes classifiers, it 
is important to understand the underlying Bayesian learning method. 

2.3.1 Bayesian Learning 

Bayesian learning is based on the assumption that probability distribution gov­
erns the quantities of interest and carrying out reasoning about these probabilities 
together with the observed data can create optimal decisions. According to [181, 

~ 

the basic features of the Bayesian learning methods include the following: 

1. Every training example incrementally increase or decrease the estimated 
probability that a hypothesis is correct. 

2. Every Bayesian learning method is required to know the prior probability 
and the probability distribution for each possible candidate algorithm over 
the observed data. 

3. Bayesian learning methods allow probabilistic predictions about hypothe­
ses. 

4. This method also allows that new instances can be classified by combining 
the predictions of multiple hypotheses, weight by their probabilities. 

2.3.2 Bayes Theorem 

Bayes theorem provides a way to find the most probable hypothesis, given the 
data D and any initial knowledge about the hypothesis in the hypotheses space. 
Mathematically, Bayes theorem is defined as: 

( / ) 
_ P{D/h) P{h) 

PhD - P{D) (2.3) 

where P{h/D) is called a the posterior probability of hypothesis h given the data 
D. P{D/h) denotes the probability of the observing data D given some space in 
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which the hypothesis h holds. P(h) is known as the prior probability of h which 
reflects the background knowledge that h is the correct hypothesis. P(D) denotes 
the prior probability about the training data D. 

In most of the decision learning problems, the goal is to find the most prob­
able hypothesis h E H given the observed data D. Such a maximally probable 
hypothesis is called maximum a posteriori (MAP) hypothesis. These hypotheses 
can be determined by using the Bayes theorem which calculates the posterior 
probability of each candidate hypothesis. Mathematically, MAP hypothesis de­
noted as hMAP is calculated as: 

hMAP = argmaxhEH P(h/D) 

P(Djh)P(h) 
argmaxhEH P(D) 

(2.4) 

We can remove the P(D) from the Equation 2.4 as it is the probability of the give 
data D and is a constant independent of h. Therefore the hMAP betomes: 

hMAP = argmaxhEH P(Djh) P(h) (2.5) 

2.3.3 Naive Bayes Classifiers: 

Naive Bayes classifiers are based on the Bayesian theorem. These classifiers 
applies to the learning tasks where each instance x is described as the conjunction 
of attribute values and where the target function f(x) can take on any value from 
the finite set V. 

When a new instance presented as a tuple of attribute values < aI, a2, ... , an >, 
the naive Bayes classifier predicts the target value for this new instance based on 
the learning on the training examples. Using the Bayesian theorem, classification 
of the new instance described by the attribute values < aI, a2, ... , an > is given as: 

Elaborating the equation using the Equation 2.6, we get 

P(al' a2, ... , anlVj) P(Vj) 
VMAP = argmaxv-EV ( 

J Pal, a2, ... , an) 

VMAP = argmaxVjEV P(al' a2, ... , anlVj) P(Vj) 

(2.6) 

(2.7) 

(2.8) 

Naive Bayes classifier simplifies the above equation by assuming that the at­
tribute values are conditionally independent given the target value. Therefore 
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the probability of conjunction < aI, a2, ... , an > is just the product of probabilities 
for the individual attributes i.e. P(a}, a2, ... , anlVj) = TIi P(ailvj). Using this in 
Equation 2.8 we get: 

(2.9) 

where VNB denotes the target value output by the naive Bayes classifier. 
In summary, the naive Bayes learning method involves the learning from the 

training examples in the form of estimation of P(Vj) and P(ailvj). The set of these 
estimates correspond to the learned hypothesis. This learned hypothesis is then 
used to classify new instances by applying the Naive Bayes classifier as given in 
Equation 2.9. 

2.3.4 Naive Bayes Classifier Example: 

Let us explain the naive Bayes classifier using the television buying decision 
example. We will use the same data as in the decision tree example. Suppose 
we have the following instance to classify using the Naive Bayes classifier. 
Price = high, Guarantee = 18 months, Sound = stereo, Screen = 51 
We will use naive Bayes classifier to predict the target value (high or low) of the 
chances of buying the television. Using the naive Bayes equation, we have 

(2.10) 

Which will become as following once we use the data from an instance of the 
television buying information system: 

Vhigh or low = argmaxVjE(high,low) P(Vj) P(price = highlVj) 

P(Guarantee = 18mthslvj) P(sound = stereolvj) 

P(screen = 511Vj) 

To assign this instance to either high or low target value, we calculate Vhigh and Vzow 

for this particular instance. We will need 10 probabilities that can be estimated 
from the training data. Let us first calculate the individual P(Vi) i.e. 

P(Buying television = low) 
3 
6 = 0.50 

P(Buying television = high) ~ = 050 6 . 
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Now we estimate the conditional probabilities. 

P(price = high 1 buying television = low) 

P(price = high 1 buying television = high) 

P(guarantee = 18mths 1 buying television = low) 

P(guarantee = 18'mths 1 buying television = high) 

P(sound = stereo 1 buying television = low) 

P(sound = stereo 1 buying television = high) 

P(screen = 511 buying television = low) 

P(screen = 511 buying television = high) 

1 
= :3 = 0.33 

= ~ - 033 3 - . 

= Q =0 
3 
1 

= :3 = 0.33 

= ~ - 033 3 - . 

= ~ = 1 
3 
1 

= ~ = 0.33 

2 '; 
= :3 = 0.66 
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Next we calculate the Vhigh and V/ow . We use Equation 2.10 and calculate it for 
both chances of buying television being "high" and "low". For chances being 
high, it will be: 

Vhigh = P(decision = high) * P(price = high 1 high) * 

P(guarantee = 18mths 1 high) * P(sound = stereo 1 high) * 

P(screen = 511 high) 

We have already calculated these probabilities, therefor inputting their values 
we get: 

Vhigh = 0.5 * 0.33 * 0.33 * 1 * 0.66 

= 0.037 

Similarly for chances being low, the probabilities would be 

V/ow = P(decision = low) * P(price = high 1 low) * 
P(guarantee = 18mths 1 low) * P(sound = stereo 1 low) * 

P(screen = 51 1 low) 

Inputting the calculated probabilities values we get: 

V/ow = 0.5 * 0.33 * 0 * 0.33 * 0.3 

= 0 
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Therefore the naive Bayes classifier will assign this new instance as a "high" 
chance of buying a television. 

2.4 Genetic Algorithm 

The genetic algorithms (GA) constitute a learning approach that is based on 
the simulation of the natural evolution. GAs search for the best hypothesis in 
the search space using the concept of biological evolution [18]. Hypotheses in 
genetic algorithms are encoded as strings and their interpretation depends on 
the application. The search for the appropriate hypothesis starts from an ini­
tial population consisting of a collection of hypotheses. This initial population 
of hypotheses is created randomly with say 100 or more hypotheses. The ini­
tial population then gives rise to the next generation by means of the genetic 
operations like mutation and crossover. At every generatidn~ a fraction of the 
population members go through a fitness test and the most fit hypothesis have 
the better chance to participate in the development of the next generation. 

2.4.1 Hypothesis Representation 

The first step that we have to consider while applying a genetic algorithm to 
a problem is the representation of the hypothesis. In GAs, the hypotheses are 
represented as bit strings. The bit strings are used because the genetic operators 
like mutation and crossover can easily be applied on them. As we are doing the 
comparative analysis of different techniques with the rough set approach, we 
need to have a representation of if-then-else type rules. The representation of 
such rules as strings can be complex. A simple representation of such rules in 
GA system were given by De Jong et a1. [6]. They suggested to represent these 
rules by choosing an encoding that would allocate specific substrings for each of 
the rules precondition and the postcondition. 

To understand the representation of such rules, let us consider our television 
set buying information system. The information system consists of the four 
attributes i.e. Price, Guarantee, Sound and Screen. Let us consider on of these 
attributes, for example Price. The attribute price can take on three possible 
values i.e. low, medium and high. This attribute can be represented by a bit 
string of the length three in which each bit corresponds to one of the possible 
three values. Placing a 1 in some position shows that the attribute is allowed 
to take on the corresponding value. Therefore 100 means that the price is low 
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and 010 means that the price is medium. The is representation can be further 
generalized to show that the value 011 means that the price can be either medium 
or high. Using this method of representation, we can represent the conjunction of 
constraints on multiple attributes by concatenating the corresponding bit strings. 

Similarly we can represent the decision variable d as 2 bit string for the 
possible values of low or high. But here we could possibly face an issue with 
this type of representation because if for some hypotheses, we end up with 11 
representation of decision'variable, then it means that regardless of the precon­
ditions, the postcondition does not constraint the target attribute of buying T.V. 
To avoid this issue, we can use the single bit representation of the decision vari­
able where 1 means yes or high and 0 means No or Low. Now if we have a rule like: 

If Guarantee = 12 months and Price = medium then decision = high 
can be represented as: 

Price Guarantee Sound Screen d 

010 0100 11 

And for a rule like: 

If Guarantee = 18 months then decision = high 
is represented as: 

1111 1 

Price Guarantee Sound Screen d 

111 0010 11 1111 1 

Note that in the above examples, say if a rule does not use all the attributes, 
its representation will still incorporate the bit strings of all attributes. This is 
achieved by assigning value 1 for every possible position in the bit string for 
this attribute. In fact, this assignment indicates that the rule does not care about 
the value of the attribute. The main advantage of using all the attributes in 
the representation of the hypothesis as a bit string is that it ensures the fixed 
length representation of the hypothesis which makes it easier especially in the 
crossover operation. Given this representation method, we can represent all the 
hypothesis and start with the initial random population of hypotheses and then 
by using a GA to search for a good hypothesis. 
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2.4.2 Genetic Operators 

There are two types of genetic operators applied to the hypothesis in GAs mu­
tation and crossover. For mutation we suggest standard one bit mutation i.e. 
choosing a bit at random and replace it with its complement. 

In case of if-then hypothesis rules, we use a two point crossover. This 
crossover is done by selecting two random points between 1 and the length 
of the hypothesis. We ~ark the two parents with these points and then create 
two offspring from them. The first child hypothesis is created by taking the first 
unmarked piece of the first parent and the marked piece of the second parent and 
then add the second unmarked piece of the first parent again. The same process 
repeats for the second child but starting from the second parent. we illustrate 
it by the an example. Consider the two rules in section 2.4.1 and we randomly 
select 2 and 9 as the two points for our crossover. Using these crossover points, 
the parent hypotheses will look like as: 

Price Guarantee Sound Screen d 

01..:....0 _=01:....:.0..:....0 _--=1=1 1111 1 

Price Guarantee Sound Screen d 

111 0010 11 
~-::....::..::...::-.--..::..::. 

1111 1 

Now after applying the two point crossover, the first child hypothesis will be: 

Price Guarantee Sound Screen d 

011 0010 11 1111 1 

And the second child hypothesis will be represented as: 

Price Guarantee Sound Screen d 

110 0100 11 1111 1 

2.4.3 The Fitness Function 

The fitness function plays the key role in the application of GAs. The fitness 
function defines the criteria for ranking the potential hypotheses and the proba­
bility of selecting them to be included in the next generation. In case of complex 
procedures like if-then rules representation as bit strings, the fitness function 
measures the overall performance of the resulting procedure rather than the 
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performance of the individual rules as in the case of the classification rules. In 
[18], Mitchell suggested that the fitness for such hypothesis is based on its clas­
sification accuracy over the training data. Therefore the fitness for a hypothesis 
his: 

Fitness(h) = (correct(h)2) (2.11) 

where correct(h) is the number of all the training examples correctly identified 
by the hypothesis h. 

2.4.4 Selection 

There are different types of selection used for the GAs such as roulette-wheel or 
fitness proportionate selection, rank selection and tournament selection [13]. For 
the if-then rule hypotheses population, Mitchell [18] suggested to use the pro­
portionate or roulette-wheel selection. As mentioned in the last section that our 
fitness function is based on the overall performance of the resulting procedure 
rather than the performance of the individual rules, we employ the same idea 
here and the selection of the hypothesis will not only be dependent on its own 
fitness but will also be dependent on the fitness of the competing hypotheses. 
Therefore the probability of a hypothesis hi to be selected for the next generation 
is given as: 

Pr(h.) = Fitness (hi) 
I r.j=l Fitness(hj ) 

(2.12) 

This means that the probability of the hypothesis hi to be selected is directly 
proportional to its own fitness and inversely proportional to the fitness of its 
competing hypotheses. 





Chapter 3 

Review of Rough Set Data 
Analysis 

3.1 Introduction 

This chapter continues with our discussion of the comparative analysis of dif­
ferent machine learning and data mining techniques with RSDA. Once again to 
keep the consistency of our discussion in line with decision trees, naive Bayes 
and genetic algorithm in the last chapter, we will use the same example data 
of television buying decision table. The example data is given in the following 
table: 

I Case Type I Price I Guarantee I Sound I Screen I d 

1 high 24 months stereo 76 high 
2 low 6 months mono 66 low 
3 low 12 months stereo 36 low 
4 medium 12 months stereo 51 high 
5 medium 18 months stereo 51 high 
6 high 12 months stereo 51 low 

Table 3.1: Television sets 

25 
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3.2 Introduction to Rough Set Data Analysis 

The last technique that we will focus in the our discussion on different soft 
computing and Artificial Intelligence techniques for data mining is the rough set 
data analysis. Rough set data analysis (RSDA) was developed by Pawlak and his 
co-workers in early 1980s [19]. This technique has since been greatly researched 
and to date there are more than 1300 papers published related to it. At its guts, 
RSDA is largely based pn three basic operations: 

• Attribute reduction 

• Rule generation 

• Prediction 
, 

Until recently RSDA had been considered as part of the "soft'Computing field", 
however in [10], it is also regarded as a non-traditional AI technique. Unlike 
other soft computing techniques that require additional model assumptions like 
prior probabilities, degrees of belief or fuzzy functions, RSDA does not rely 
on any assumptions or external parameters. Due to this property, RSDA is 
considered a a non-invasive data analysis - a data analysis that relies on the data 
only. A lot of research material has been published on this non-invasive property 
of RSDA [8, 10, 11]. This property of not relying on the external parameters and 
assumptions makes the RSDA a technique of choice for rule generation in critical 
systems like medicine [12,23,24] and financial data [4, 16] where a small external 
assumption can have a big impact in the final outcome of the analysis. 

3.2.1 Basic Model of RSDA 

The basic model of RSDA is based on assumption (which is not external) that 
the granularity of the data can be expressed as partitions and their associated 
equivalence relations on the set of the objectsi such a relationship is called as the 
indiscernability relation. Before we explain RSDA, let us understand the concept 
of partition, equivalence relation and eventually an indiscernability relation. 

Partition 

Suppose that U is a non-empty set. A partition is a family P of non-empty subsets 
of U such that" each element of U contained in exactly one element of P". 
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Equivalence Relation 

A equivalence relation e on Uis a binary relation that is reflexive, symmetric and 
transitive, i.e., if x, y, z E U, then by definition an equivalence relation e is 
represented as: 

x e x (re flexitivity) 

~ e y implies y e x (symmetry) and 

x e yand y e z imply x e z (transitivity) 

Each partition P induces an equivalence relation e on U as: 

x e y ¢:> x and yare in the same class of P. 

Conversely each equivalence relation e on U induces a partition P of U with 
classes ex as: ' 

ex = y E U : x e y 

To explain the indiscernibility relation, first we need to explain the represen­
tation of data or knowledge in RSDA. The data for RSDA is usually represented 
in the form of a matrix as what is called as an information system. 

Information System 

An information system U = (U,O, Vq, fq)qEO is a structure consists of the follow­
ing: 

1. A finite set U of objects. 

2. A finite set 0 of attributes. 

3. For each q E 0, 

• A set Vq of attribute values. 

• A mapping function fq : U -t Vq 

The information system is represented as a matrix because both U and 0 are 
finite. To show an example information system, we will consider the television 
set buying data in Table 3.1 that we have been using in the explanation of other 
techniques in this chapter. The table shows the information system I with 6 ob­
jects types (1 to 6) and four attributes namely Price, Guarantee, Sound and Screen. 
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Also in the table there is one more column labeled as "d". This new attribute 
"d" comes with its own set of values Vd and a information mapping function 
d : U -+ Vd. We relate the values of an object with respect to attributes of 0 
to its value with respect to d. Therefor the new attribute is called as dependent 
or decision attribute while the q E 0 are called as independent or conditional 
attributes. This new structure D = (I, d) is called as a decision system. Now that 
we have understood an information system, we can define the indiscernibility 
relation. 

Indiscernibility Relation 

In an information system, two objects are indiscernible or are in indiscernibility 
relation if they have same values for the attributes contained in 0 i.e. they are 
in the same equivalence class of Q. 

x =eQ yif and only if a(x) a(y) for all a E Q 

Set Approximation 

Set approximation helps us define the crisp partitioning of objects in an in­
formation system based on the equivalence relation. In rough set theory our 
knowledge about the subset X of Uis only limited to its equivalence classes e and 
their unions. 
So for X ~ U, we say 

de! 
!e = {x E Q ex ~ X} (3.1) 

is the lower approximation of X and 

-e de! 
X = {x E Q : ex n X *" CP} (3.2) 

is the upper approximation of the X. In this context we say that if ex ~ !, we 
know for certain that x E X and if ex ~ U \ X we know for certain the x f!. X. The 
area of uncertainty lies in the region X\!.In this area of uncertainty we are not 
sure about the membership of x since ex intersects both X and U \ X. 

A rough set of U is a pair (!, X) where X ~ U. A rough set is called definable if 
X = X. 
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3.2.2 Attribute Reduction or Reducts 

Data dependencies and the reduction of the number of attributes comprise one 
of the major research interests in the field of data mining. RSDA probably gives 
the most structural and simplified way of finding the data dependencies and 
attribute reduction. 

Let us consider D = (U,O, Vq, f q, d) be a decision system representing the 
television buying scenario presented in the Table 3.1. The basic idea of attribute 
reduction in RSDA [10] is'the comparison of the equivalence relation generated 
by the sets of attributes. For every Q k 0, we associate an equivalence relation 
8Q on U. From our definition of indiscernibility, we can see that if x 8Q y, that 
means that x and yare indiscernible with respect to the values of their attributes 
from Q. Also we can understand that if P, Q k 0 then 

When 8Q k 8p, we say that P is dependent on Q written as Q ~ P. 

Definition of a Reduct 

A set P k Q k 0 is called a reduct of Q if: 

2. For each Rep, 8R *- 8Q 

A reduct is a minimal by definition which means that the attributes within a 
reduct are independent and none of them can be omitted. The reducts produce 
deterministic rules. The intersection of all the reducts of Q is called the core of 
the Q. 

Finding a Reduct 

There are few different ways of finding the reducts of an information system. 
Here we will consider a very simple method of finding the core and the reducts 
by creating a "discernibility matrix". Before we create such a matrix, first we 
define the discernibility function. 

A discernibility function () : U * U ...... 2° is defined as: 

de! 
{)(a, b) = {q EO: fq(a) *- fq(b)} 
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The discernibility matrix is then created by assigning to each (a, b) E lf2 the 
set b(a, b) for all those attributes q for which q(a) =I- q(b). Since the assignment 
(a, b) ---7 b(a, b) is symmetric and b(a,a) = 0, we need to record only the upper 
triangle of the matrix. For the television buying decision system, the discernibil­
ity matrix would look as follows: 

2 3 4 5 6 

1 Pr,Gu,So,Sc ·Pr,Gu,Sc Pr,Gu,Sc Pr,Gu,Sc Gu,Sc 
2 Gu,So,Sc Pr,Gu,So,Sc Pr,Gu,So,Sc Pr,Gu,So,Sc 
3 Pr,Sc Pr,Gu,Sc Pr,Sc 
4 Gu Pr 
5 Pr,Gu 
6 

Table 3.2: Discernibility Matrix 

Now considering the discernibility function and matrix, we propose another 
definition of the core and the reduct: 

1. The core of I is a set 

{q EO: b(a,b)} = {q} for some a,b E U} 

2. P k 0 is a reduct of I if P is minimal with respect to the property 

P n b(a,b) =I- 0 
for all a, b E 0, D(a, b) =I- 0 

By following the above definition and looking at the discernibility matrix given 
in Table 3.1 for the television buying information system, we can see that {Pr, Gu} 

is the only reduct as well as the core. 

3.2.3 Decision Reducts 

The above section explains how to find the reducts of an information system. 
However an information system with the decision attribute is a decisionsystem as 
explained in section 3.2.1. For a decision system, we find the decision reducts. A 
decision reduct is a minimal set of attributes that preserves the decision making 
power of the original system [5]. Decision reducts are used to create the minimal 
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decision rules for a decision system. The decision reducts can also be created by 
creating a discernibility matrix as described in the last section but the matrix is 
created while considering the value of the decision attribute. A decision-relative 
discernibility matrix of a decision system defined as D = (I, cf) is the n x n matrix 
o defined as following: 
for i and j in 1, ... , n, 

Oi,j = {a E Ala(xi) 1= a(xj)} 

If we create the decision-relative discernibility matrix for the decision system 
given in section 3.2.1, we can see that {Pr, Gu} and {Pr, Sc} are the two decision 
reducts and Pr is the core of the system. 

3.2.4 Rule Generation 

The reducts are then used to synthesize the minimal decision, rules. Once the 
reducts are computed, the rules can then be constructed by overlaying the reducts 
over the original decision table and reading off the values. 

Once again there are different ways for generating the decision rules from 
the reducts for an information system. We will discuss here a method that is 
based on the relations among the classes of the equivalence relations associated 
with the attribute sets [10]. In this method we assume that the partition induced 
by 8Q is {Xl, .... ,Xn } and the one induced by 8d is {Yl, .... ,Ym}. For each Xi, we 
associate a set M = {Yj : Xi U Yj 1= CPl. 

Using the above method one can clearly understand that because sets Yl! .... , Y m 

partition U, then 

if x E Xi, then x E Yh or x E Yh or .... or x E Yj;(j) 

where {Yh' .... , Yj;(j)} = M. We know that each class Xi corresponds to the feature 
vector (ta)aEQ where x E Xi if and only if fq(x) = al and .... fqn (x) = an. 
Similarly x E Yj if and only if fd(X) = bi for some bi E Vd. 

This process gives us general form of generating decision rules of the form 

We denote these rules as Q ~ d. 
For our television set buying example, the Xi are: 

Pr: 
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Gu: 

{ad, Xs 

and Y j would be 

One can clearly see that Xi for Guarantee are more deterministic so we start 
constructing our rules from Guarantee and the incorporate Price in it. The 
decision rule using this technique would look like as: 

1 
= 6 months: 

If Guarantee = 12 months: 

~ 18 months: 

If Price 

low 

{ 
= medium: 
= otherwise : 

high 

high 
low 

In general our decision rules have the form a ~ f3, where a is a positive 
boolean combination of descriptors of the form fqi(x) = ai and f3 is a disjunction 
of descriptors of the form fd(X) = bj. 

3.2.5 Rule Significance 

Like any inference system, we have to consider that any rule constructed using 
the rough set approach is not due to chance. This consideration is especially 
important when rules are to be used for prediction or classification of unseen 
data. A good method of finding rule significance is mentioned in the book 
[10] that presents a statistical hypothesis testing solution to this problem. The 
hypothesis test is done to test the claim that "a rule Q ~ d using rough set is 
due to a chance". Care has to be taken that the no specific model assumptions 
are used which are not justified by the data at hand. The hypothesis test is as 
follows: 

Ho: The rule Q ~ d is due to a chance. 

Ha: The rule Q ~ d is not due to a chance. 
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The level of significance in our case is 0.05. The test statistics is the approximation 
quality y. The test will be done by comparing y to the approximation quality of 
the rules obtained by reordering randomly the feature vectors for objects in the 
information system I, while keeping the decision values constant. 

To find the significance of the approximation quality of the rules obtained by 
randomly reordering the feature vectors for objects, we let I: be the set of all the 
permutations of V, and 0 E y. we define a new attribute function aV by: 

aV(x) = { a(o(x», 
a(x), 

ifa E Q 
otherwise 

The resulting information system Iv permutes the Q-columns according to 0, 

while leaving the d-columns constant. We also let QV be the result of the per­
mutation in the Q-columns, and y(Qv ~ d) be the approximation quality of the 
new rule QV ~ d in the information system Iv. 

Next we measure the test statistics value as: 

_ «Q dlR » - ly(Q""->d) ~ y(Q"-'d): vEL! a - p y ~ 0 - lUI! 

If a < 0.05, the rule Q ~ d is significant and we reject Ho(null hypothesis), 
otherwise the rule Q ~ d is casual and we fail to reject Ho. 

Conditional Significance: 

We find the conditional significance if we have to determine the influence of one 
attribute on the classification success. Traditionally in rough set theory, the effect 
on approximation quality by omitting an attribute within reduct is the indicator 
of the importance of that attribute. But this approach suffers from one problem 
i.e. we are not sure if the decline of approximation quality is due to a chance. To 
test the conditional significance we again do a hypothesis test as before: 

Ho: The influence of q on y(Q ~ d) is due to a chance. 

Ha: The influence of q on y(Q ~ d) is not due to a chance. 

Again if 0 is a permutation of V and a E Q, we define 

av,q(x) = { a(o(x», 
a(x), 

if a = q 
otherwise 

The test statistics will be calculated as follows: 
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_ «Q dlH » - ly(Qn,QZeadstod) ~ y(Q,,->d): vEL! 
a - p y ~ 0, q - lUI! 

Again if a < 0.05, we reject Ho(null hypothesis), otherwise we fail to reject Ho 
and call q as conditional casual. 

3.2.6 Discretization 

Discretization is a process of collecting numerical values into classes such as 
intervals or ranges of 'values. For discrete numerical values, a very simple 
yet efficient discretization technique was presented by Powloski and Skowron 
[20]. This technique transforms an information system I into a new binarised 
information system r. The general idea for binarisation of an information system 
is as follows: 

Given an information system I = (U, 0, (Vq)qEO)' for each attribute q E 0 let V: be the set attribute values which are actually taken by son;e x E U. For each 
t E V:' we define a new attribute function: qt : U ~ 0,1 as: 

if q(x) = t, 
otherwise 

we let Oq = qt : t E V:' and IB be the information system with attribute 0+ 

UqEO Oq. 
Once the system is binarised, we do the following: 

1. For each q E 0 and each a E V;, find all the t E V: for which 

Vx E U [qt(x) = 1 implies d(x) = a] 

2. Let Mq,a be the set of all these binary attributes, and define a new binary 
attribute mq,a by 

mq,a(x) = 1 ¢:> qt(x) = 1 for some t E Mq,a 

¢:> maxtEMQ,,4(x) = 1 

Then we replace all the attributes qt, t E Mq,a simultaneously by the attribute mq,a. 
This step I found is the most important and efficient step in this technique as it 
collects all the attribute values of q that do not split the decision class belonging 
to a into a single attribute value. 

This practice gives us a new information system r = (U, 0*, (V~)qEO) where 
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Vq = {mq,a : a E V;} U Vq UaEV; Mq,a 

Also in this new information system, for each x E U, there is exactly one tx E Vq 
such that qt(x) = 1 by definition of Vq, and we set q*(x) = tx. 
By considering the minimal reducts of this new binarised information system 
before collecting the attribute values can significantly reduce the number of 
attribute values even further but care should be taken as it is an expensive 
procedure. 

Next the effect of this binarisation technique on the dependency structure of 
the original system is verified. This is done by checking if the binarisation has 
an effect on the significance of attributes. The verification can be done by testing 
two things: 

1. y(Q ~ d) = y(Q* ~ d) 

This can be proved as following: ~ 

Suppose that P(Q) and P(d) is the set of classes of Band Bd. Now 

y(Q ~ d) = E I{x : X is a d-dete;;iniStic class of BQ}I 

If Y is a class of P(d), the 

z = U {X E P(Q) : X ~ Y} 

contains only those elements of U that contributed to the Q-deterministic 
part of Y. Since Z is a class of Q*, and every d-deterministic class of BQ* has 
the same form, it proves our claim. 

2. p(y(Q ~ dlHo)} 2:: p(y(Q* ~ dlHo)} 

This can be proved as following: 
We know that attribute values are identified in the filtration process, for 
each R ~ 0, every class of BR* is a union of classes of BR. Thus, given any 
a E L, the rule Qa ~ d will have at least as many deterministic classes as 
Q*a ~ d. That means y(Qa ~ d) 2:: y(Q*a ~ d). Similarly for every 
a E L, we have y(Qa* ~ d) 2:: y(Q* ~ d) which means 

y(Qa ~ d) 2:: y(Q*a ~ d) 2:: y(Qa* ~ d) 2:: y(Q* ~ d) = y(Q ~ d) 

which proves our claim. 
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The above two proofs verify that the approximation quality of a binarised in­
formation system is same as the original system and the rule significance is not 
worse than before. 

3.2.7 Rough Entropy 

Rough entropy measures proposed in [9] is a very different way of measuring the 
prediction quality of tq.e prediction rules. The rationale behind this concept is 
that the reduct based prediction rules are only relative to the chosen reduct which 
only measures the uncertainty of the prediction and do not take into account the 
predictor variables. In order to measure to measure the prediction success of the 
set of predictor attributes unconditionally, the authors proposed to combine: 

1. The complexity H(Q) of coding the hypothesis Q. 
, 

2. The conditional coding complexity H(dIQ) of d, given~ by the values of 
attributes in Q 

into one measure as H(Q ~ d). This will be done by suitable entropy functions. 
Let P be a partition of U with classes Xi, i :::; k each having the cardinality rio 

Here the assumption is that the elements of U are randomly distributed within 
the classes of P, so that the probability of element x being in class Xi is just ~. 

The entropy is defined as: 

H(P) = L~=l ~. logz(~) 

For the purpose of expression, if B is an equivalence relation on U and P is its 
induced partition, then we will write H(Q) instead of H(P). Furthermore, if Q is 
a set of attributes, then we will write H(Q) instead of H(BQ). 

Entropy actually estimates the mean number of comparisons minimally nec­
essary too retrieve the equivalence class information of a randomly chosen ele­
ment x E U. So entropy H(P) actually measures the granularity of the partition 
P. If there is only one class the H(P) = 0 and if P corresponds to identity w, then 
H(P) has the maximum value 10gz(IUI). 
Now in order to find entropy of the set of attribute Q - H(Q), we suppose that 
Xi, 1 :::; i :::; t, are the classes BQ each having cardinality rio Furthermore, let lUI = 
nand ITi be the probability measure associated with BQ, i.e. 

-~ 
n 

The entropy of BQ is 
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H(Q) - \' t A I 1 - \' t ri I n 
- L..i=l ITi· ogz iii - L..i=l Ii ogz r; 
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In order to keep only the deterministic classes of 8Q, a new equivalence relation 
8Q on the U is defined as: 

x =e+ Y if and only if x = y or there exists some 1 :::; i :::; c such that x, y E Xi 
Q 

The probability measure -$i associated with 8Q is: 

if 1 :::; i :::; c, 
otherwise 

Now we can define formally the rough entropy with respect to Q ~ d rule as: 

H(Q ~ d) = Li -$i .log(Ji) 

H(Q ~ d) will have maximum value logz(n) when: 

• 8Q is the identity relation, and everything can be explained by Q, or 

• y(Q ~ d) = 0, everything is guessing 

Another type of rough entropy is the normalized rough entropy(NRE) for­
mally defined as S(Q ~ d). For this purpose there are two situations: 
- If 8d be identity w, so the H(d) = logz(n). Then 

S(Q ~ d) = { 1, 
0, 

- else if H(d) < logz(n), then 

if 8Q = w, 
otherwise 

S(Q ~ d) = 1 _ H(Q"->d) -H(d) 
log2(n) - H(d) 

Here 5 is an unconditional measure as both the complexity of the rules and the un­
certainty of the predictions are combined into one measure. So if S(Q ~ d) = 1, 
it is the perfect prediction result while if S(Q ~ d) = 0, it is the worst case. 
More specifically if S(Q ~ d) has a value near 1, the entropy is low and cho­
sen attribute combination is favorable and if it has a value near 0, it indicates 
casualness. 





Chapter 4 

Preliminary Attempts to Improve 
Rough Set Scalability 

4.1 Introduction 

This chapter talks about the scalability in general in the field of data mining and 
then specifically about the scalability in the rough set approach in particular. In 
the last section of this chapter, I will present the proposed solution to improve 
the scalability in rough sets. Since its inception in the mid 80s, rough set theory 
has been regarded as a very powerful data mining and knowledge discovery 
technique. Rough Set being a non-invasive data analysis technique [10] has 
an edge over other data mining and knowledge discovery techniques because 
this feature on non-invasiveness is very critical for sensitive data like financial 
[12,23,24] and medical data [4, 16]. Also other features of the Rough Set theory 
like attribute reduction, discretization and output as the human readable rules 
lead to its overall high prediction accuracy. Despite all of its prediction accuracy 
and ease of use, Rough Set theory has not been very successful in its usage in the 
commercial data mining and knowledge discovery applications and tools. The 
main reason for its commercial failure is the scalability of Rough Set algorithm 
because Rough Set Algorithms slow down proportionally with the increase in 
records. Let us first discuss what scalability is and what it means in case of data 
mining and knowledge discovery algorithms. 
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4.2 Scalability 

Scalability is the property of a program or system that if the complexity of inputs 
from a specified set of inputs considered increases the runtime behavior of the 
program increases just moderately, e.g. polynomial with a low degree. In case 
of data mining algorithms, scalability means that if the data processed by the 
algorithm increases, its performance should also scale accordingly or at least 
does not slow down exponential to the data increase. Data mining algorithms 
can encounter two different types of increase in the input data: 

1. Column Scalability: In this case the number of attributes or columns re­
mains static but the number of rows or records increases. If the algorithm is 
row scalable, then by increasing the number of rows will result in the scal­
ing of the algorithm too and its performance will not de,cline proportionally 
to the number of rows. ~ 

2. Column Scalability: The column scalability of an algorithm means that 
the performance of the algorithm scales proportionally with the increase 
in the number of columns. Unlike the row scalability, in case of column 
scalability the number of rows do not stay static and they can increase too. 
Column scalability is more difficult to achieve than the row scalability. 

4.3 Scalability of the Rough Set Algorithm 

The rough set algorithm has not been commercially used in rule engines and data 
mining applications because of its poor scalability. Classical rough set algorithm 
suffers from the both row and column scalability issues. The performance related 
issues of classical rough set algorithm are primarily due to its integral step of 
attribute reduction. In the commercial world, the decision systems consist of data 
sets that can sometimes reach millions of rows e.g. in case of bank or credit card 
customer bases. Finding a reduct using a discernibility matrix in the classical 
rough set algorithm involves comparison of each record in the decision system 
with all the other records in order to create their partitions or equivalence classes. 
This comparison operation is the most time and space consuming operation and 
is the cause of poor scalability of the rough set algorithm. Increasing the number 
of records would result in more comparison; decreasing the performance of the 
algorithm. Research has found that finding all the reducts in an information or 
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decision system is an NP complete [7, 15] problem. Let us discuss time and space 
issues regarding rough set. 

Due to the inherent feature of attribute reduction, the rough set algorithm 
requires comparison of every record in the decision table with every other record 
for a subset of conditional attributes to find the reduct. This process consumes 
a lot of time as finding a reduct has exponential complexity. Especially for large 
data sets the algorithm can get really slow. 

Also if the comparison operation of the records in the decision table is done 
in the data structures inside the memory of the machine, then it would reguire 
large amount of memory and resources. The data structures used for storing the 
equivalence classes of the objects for a subset of conditional attributes can grow 
very rapidly and would require large memory. 

4.4 Proposed Solutions for Better Scalabilit}( 

In this research, our focus is to improve the scalability of the rough set algorithm 
by improving on the reduct generation step of the algorithm which is the main 
cause of its poor performance for the large data sets. As finding all the reducts 
for a data set is an NP complete [7, 15] problem, we will try to show that for 
some of the experimental data sets, we can improve the reduct finding process 
and give sub exponential performance. To improve the performance of reduct 
finding, we propose the following: 

• Faster access of the data from the database . 

• Processing of the reduct generation inside the database by defining a dif­
ferent schema and queries instead of finding them in the memory. 

By implementing the above mentioned steps, we propose that we can help bring 
down the time and space needed in the reduct generation which in turn will 
improve the over all scalability of the rough set algorithm. 

4.4.1 Faster Data Access 

Every data mining algorithm and knowledge discovery technique deals with 
the data usually in the form of the tables with large number of records. Rough 
set is no different as it is also applied to the data stored in tables in the form of 
a decision system. Processing of a huge data sets has been an area of research 
for a long time. In 1996 SLIQ [17] was presented as a decision tree classifier for 
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the large data sets but due to the use of a memory-resident data structure that 
scales with the size of the training set, SLIQ had an upper limit on the number 
of records. In the same year 1996, the creators of SLIQ developed an improved 
algorithm SPRINT [22] for the processing of very large data sets in the IBM 
Almaden Research Center. SPRINT deals with the data sets resident on the disks 
and introduced parallelization but its performance was equivalent to that of a 
classical decision tree algorithm. 

Modern data database systems like Oracle and SQL Server makes it possible 
to access that data lot faster with their indices and smart query optimizing 
engines but it is also a known fact that too many indices slow down the data 
access than speeding it up. Column based databases like Infobright [3]; which 
are more favorable for data mining due to their faster data access and intelligent 
optimizers can increase the performance of our proposed approach. For the 
purpose of this research, we used the MYSQL database. 

4.4.2 Reduct Generation in Database 

The second part of the solution for improving the scalability of the rough set 
algorithm proposes the reduct generation in the database instead of being done in 
memory. As we discussed earlier, reduct generation is the main cause of the poor 
scalability of the rough set algorithm. Reduct finding in the traditional rough set 
algorithm is achieved by creating a discernibility matrix and finding a reduct in 
the matrix. The discernibility matrix is created in memory by comparing every 
record in the dataset with every other record which at best could result in the 
O(n2) complexity. This complexity order would not be a big issue for the smaller 
data sets like 1000 records in that table. In that case the maximum number of 
comparisons would be 1000 * 1000 = 1,000,000 comparisons. However for the 
large datasets like 1 million records in the table, it would be very slow to create 
the discernibility matrix. Also after the matrix is created, we have to verify that 
every entry in the dataset has an element in common with the given set we are 
currently checking. That has to be done for every set to find all the reducts. 

This research proposes that the processing of the reduct finding should be 
done in the database by storing the data in the suitable schema and defining the 
SQL queries on it. Reduct finding, if done in the database would result in the 
following advantages: 

• Faster processing as the network latency during accessing and retrieving 
the data from the database is removed. 
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• Less CPU and memory resources usage . 

• Easy maintenance. If the whole reduct generation process occurs in the 
database then its maintenance or update would be lot easier as the only 
place to make the changes would be in the database schema or queries 
while the code for the rough set algorithm remains unchanged. 

4.5 The Challenge 

The challenge with the solution proposed above is that for its successful outcome, 
its implementation is not sufficient but it has to be implemented in such a way 
that the reduct finding process is scalable for most of the typical databases too. 
Shifting the reduct finding process from the memory to the database is not the 
complete solution because it just moves the time and space costlx mechanism of 
reduct finding to the database. Implementation of this mechanism in a way that 
for the larger datasets, the reduct finding process does not get slow is the real 
ask for this solution. 

4.6 Attempts in Reduct Determination in Databases 

The second part of our proposed solution requires the process of reduct de­
termination to be done in the database. To keep the consistency and easier 
understanding we used the same television buying data set that we used in the 
chapter 1 and 2. The data set presents a decision making scenario in which a 
user decides to purchase a television set based on the four attributes i.e. Price, 
Guarantee, Sound and Screen. The task is to find the attribute reducts for this 
data set in the database. 

I Case Type I Price I Guarantee I Sound I Screen I d 

1 high 24 months stereo 76 high 
2 low 6 months mono 66 low 
3 low 12 months stereo 36 low 
4 medium 12 months stereo 51 high 
5 medium 18 months stereo 51 high 
6 high 12 months stereo 51 low 

Table 4.1: Television sets 
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In our example of the television buying decision system mentioned above, we 
need to find decision reducts using a database schema and queries. 

4.6.1 Initial Attempt 

STEP 1 

We create a new schema, in which tables are defined for every attribute of the 
original decision system, and the columns for these tables are based on the 
possible values vector of each attribute. The character "Y" represent that the 
value is present for the object and the value "N" represents that it is not the case 
for a particular object. 

I Oid I High I Low I Medium I d 

1 Y N N high 
2 N Y N low 
3 N Y N low 
4 N N Y high 
5 N N Y high 
6 Y N N low 

Table 4.2: Price Table 

I Oid I 6 mos 112 mos 1 18 mos I 24 mos I d 

1 N N N Y high 
2 Y N N N low 
3 N Y N N low 
4 N Y N N high 
5 N N Y N high 
6 N Y N N low 

Table 4.3: Guarantee Table 



4.6. ATTEMPTS IN REDUCT DETERMINATION IN DATABASES 45 

I Oid I Stereo I Mono I d 

1 Y N high 
2 N Y low 
3 y N low 
4 y N high 
5 Y N high 
6 Y N low 

Table 4.4: Sound Table 

I Oid I 36" I 51" I 66" I 76" I d 

1 N N N Y high 
2 N N Y N low 
3 y N N N low 
4 N Y N N high 
5 N Y N N high 
6 N Y N N low 

Table 4.5: Screen Table 

STEP 2 

After defining all the tables we will execute following queries on the each table. 
In each query the results are stored in a temporary table i.e. HOLDUP and then 
a query on the" count" on this temporary table HOLDUP is made to ascertain if 
the conditional variable represented in the table is a decision reduct or not. 
Test for Price 

SELECT high,low,medium INTO HOLDUP 
FROM PRICE 
WHERE d = 'high' 
INTERSECT 
SELECT high,low,medium 
FROM PRICE 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 
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SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

Test for Guarantee 

SELECT sixmonths,twelvemonths,eighteenmonths, 
twentyfourmonths INTO HOLDUP 

FROM GUARANTEE 
WHERE d = 'high' 
INTERSECT 
SELECT sixmonths,twelvemonths,eighteenmonths,twentyfourmonths 
FROM GUARANTEE 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

Test for Sound 

SELECT stereo,mono INTO HOLDUP 
FROM SOUND 
WHERE d = 'high' 
INTERSECT 
SELECT stereo,mono 
FROM SOUND 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

Test for Screen 
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SELECT thirtysixinch,fiftyoneinch,sixtysixinch, 
seventysixinch INTO HOLDUP 

FROM SCREEN 
WHERE d = 'high' 
INTERSECT 
SELECT thirtysixinch,fiftyoneinch,sixtysixinch, 

seventysixinch 
FROM SCREEN 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 
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These results indicate that in our example a single attribute is not a decision 
reduct. 

STEP 3 

Now we define views as the join of two attribute tables and then execute the 
same intersect query and process used in step 2 to find the decision reduct. 

CREATE VIEW [PRICE AND GUARANTEE] AS 
SELECT PRICE.high,PRICE.low,PRICE.medium, 

GUARANTEE. sixmonths , GUARANTEE. twelvemonths , 
GUARANTEE. eighteenmonths , GUARANTEE. twentymonths ,GUARANTEE. d 

FROM PRICE JOIN GUARANTEE 
ON PRICE.oid=GUARANTEE.oid 

The query will create a view given in table 4.6. 
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I Oid I high I low I medium I 6 mos 112 mos 1 18 mos I 24 mos I d 

1 Y N N N N N 
2 N Y N Y N N 
3 N Y N N Y N 
4 N N Y N Y N 
5 N N Y N N Y 
6 Y N N N Y N 

Table 4.6: Price and Guarantee View 

We run the following query on this view: 

SELECT high,low,medium,sixmonths,twelvemonths, 
eighteenmonths,twentyfourmonth INTO HOLDUP 

FROM [PRICE AND GUARANTEE] 
WHERE d = 'high' 
INTERSECT 
SELECT high,low,medium,sixmonths,twelvemonths, 

eighteenmonths,twentyfourmonths 
FROM [PRICE AND GUARANTEE] 
WHERE d = 'low; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(~') FROM HOLDUP; 

COUNT = ~ - {DECISION REDUCT} 

Y high 
N low 
N low 
N high 
N high 
N low 

We adopt the same routine for the other combinations of the two attributes. 

CREATE VIEW [PRICE AND SOUND] AS 
SELECT PRICE.high,PRICE.low,PRICE.medium, 

SOUND. stereo, SOUND.mono, SOUND.d 
FROM PRICE JOIN SOUND 
ON PRICE.oid=SOUND.oid 

The PRICE and SOUND view will look like as: 
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! Oid ! high !low I medium I stereo I mono I d 

1 Y N N Y N 
2 N Y N N Y 
3 N Y N Y N 
4 N N Y Y N 
5 N N Y Y N 
6 Y N N Y N 

Table 4.7: Price and Sound View 

We run the following query on this view: 

SELECT high,low,medium,stereo,mono INTO HOLDUP 
FROM [PRICE AND SOUND] 
WHERE d = 'high' 
INTERSECT 
SELECT high,low,medium,stereo,mono 
FROM [PRICE AND SOUND] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

high 
low 
low 
high 
high 
low 

Using the same idea for the combination of the other attributes. 

CREATE VIEW [PRICE AND SCREEN] AS 
SELECT PRICE.high,PRICE.low,PRICE.medium, 

SCREEN.thirtysixinch,SCREEN.fiftyoneinch, 
SCREEN. sixtysixinch,SCREEN. seventysixinch,SCREEN.d 

FROM PRICE JOIN SCREEN 
ON PRICE.oid=SCREEN.oid 

The PRICE and SCREEN view wi11look like as: 
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, Oid , high 'low I medium' 36" , 41" , 66" , 76", d 

1 Y N N N N N Y high 
2 N Y N N N Y N low 
3 N Y N Y N N N low 
4 N N Y N Y N N high 
5 N N Y N Y N N high 
6 Y N N N Y N N low 

. Table 4.8: Price and Screen View 

We run the following query on this view: 

SELECT high,low,medium, 
thirtysixinch,fiftyoneinch,sixtysixinch,severltysixinch 

INTO HOLDUP 
FROM [PRICE AND SCREEN ] 
WHERE d = 'high' 
INTERSECT 
SELECT high,low,medium, 

thirtysixinch,fiftyoneinch,sixtysixinch,seventysixinch 
FROM [PRICE AND SCREEN ] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = ~ - {DECISION REDUCT} 

Now we create the view of Guarantee and Sound attributes. 

CREATE VIEW [GUARANTEE AND SOUND] AS 
SELECT GUARANTEE.sixmonths,GUARANTEE.twelvemonths, 

GUARANTEE.eighteenmonths,GUARANTEE.twentyfourmonths, 
SOUND. stereo, SOUND.mono, SOUND.d 

FROM GUARANTEE JOIN SOUND 
ON GUARANTEE.oid=SOUND.oid 
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The GUARANTEE and SOUND view will look like as: 

laid I 6 mos 112 mos 1 18 mos I 24 mos I stereo I mono I d 

1 N N N Y Y N high 
2 Y N N N N Y low 
3 N Y N N Y N low 
4 N Y N N Y N high 
5 N l\T y N Y N high 
6 N Y N N Y N low 

Table 4.9: Guarantee and Sound View 

We run the following query on this view: 

SELECT sixmonths ,twelvemonths , eighteenmonths ,twentyfourmonths , 
stereo ,mono 

INTO HOLDUP 
FROM [GUARANTEE AND SOUND ] 
WHERE d = 'high' 
INTERSECT 
SELECT high,low,medium,thirtysixinch,fiftyoneinch, 

sixtysixinch,seventysixinch 
FROM [GUARANTEE AND SOUND ] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

Next we create the view of Guarantee and Screen attributes. 

CREATE VIEW [GUARANTEE AND SCREEN] AS 
SELECT GUARANTEE.sixmonths,GUARANTEE.twelvemonths, 

GUARANTEE. eighteenmonths ,GUARANTEE.twentyfourmonths , 
SCREEN.thirtysixinch,SCREEN.fiftyoneinch, 
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SCREEN. sixtysixinch,SCREEN. seventysixinch,SCREEN.d 
FROM GUARANTEE JOIN SCREEN 
ON GUARANTEE.oid=SCREEN.oid 

The GUARANTEE and SCREEN view will look like as: 

I Oid I 6 mos 112 mos 118 mos I 24 mos I 36" I 41" I 66" I 76" I d 

1 N N N Y N N N Y high 
2 Y N N N N N Y N low 
3 N Y N N Y N N N low 
4 N Y N N N Y N N high 
5 N N Y N N Y N N high 
6 N Y N N N Y N N low 

Table 4.10: Guarantee and Screen View, 

We run the following query on this view: 

SELECT sixmonths ,twelvemonths ,eighteenmonths, twentyfourmonths, 
thirtysixinch,fiftyoneinch,sixtysixinch,seventysixinch 
INTO HOLDUP 
FROM [GUARANTEE AND SCREEN ] 
WHERE d = 'high' 
INTERSECT 
SELECT sixmonths ,twelvemonths, eighteenmonths , twentyfourmonths , 
thirtysixinch,fiftyoneinch,sixtysixinch,seventysixinch 
FROM [GUARANTEE AND SCREEN ] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

And finally we create the view of Sound and Screen attributes. 
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CREATE VIEW [SOUND AND SCREEN] AS 
SELECT SOUND.stereo,SOUND.mono, 

SCREEN.thirtysixinch,SCREEN.fiftyoneinch, 
SCREEN. sixtysixinch,SCREEN. seventysixinch,SCREEN.d 

FROM SOUND JOIN SCREEN 
ON SOUND.oid=SCREEN.oid 

The SOUND and SCREEN view will look like as: 

laid I stereo I mono I 36" I 41" I 66" I 76" I d 

1 Y N N N N Y 
2 N Y N N Y N 
3 y N Y N N N 
4 y N N Y N N 
5 Y N N Y N N 
6 Y N N Y N N 

Table 4.11: Sound and Screen View 

We run the following query on this view: 

SELECT stereo,mono,thirtysixinch,fiftyoneinch, 
sixtysixinch,seventysixinch 

INTO HOLDUP 
FROM [SOUND AND SCREEN ] 
WHERE d = 'high' 
INTERSECT 
SELECT stereo,mono,thirtysixinch,fiftyoneinch, 

sixtysixinch,seventysixinch 
FROM [SOUND AND SCREEN ] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

high 
low 
low 
high 
high 
low 
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. These results indicate that in our example Price, Guarantee and Price, Screen are 
the decision reducts. 

STEP 4 

Next we do the JOIN of three attributes but we know that PRICE, GUARANTEE 

and PRICE, SCREEN are already found as reduct so in our combination of the 
three attributes, we will ignore those attributes as it will result in a combination 
that already has a reduct. Therefore 

{PRICE, GUARANTEE, SOUND} - IGNORED 
{PRICE, GUARANTEE, SCREEN} - IGNORED 
{PRICE, SOUND, SCREEN} - IGNORED 

We will only test GUARANTEE, SOUND, and SCREEN as below. 
'; 

CREATE VIEW [GUARANTEE AND SOUND AND SCREEN] AS 
SELECT GUARANTEE. sixmonths , GUARANTEE. twelvemonths , 

GUARANTEE. eighteenmonths ,GUARANTEE. twentyfourmonths, 
SOUND. stereo, SOUND.mono, SCREEN.thirtysixinch, 
SCREEN. fiftyoneinch,SCREEN. sixtysixinch, 
SCREEN.seventysixinch,SCREEN.d 

FROM GUARANTEE 
JOIN SOUND 
ON GUARANTEE.oid=SOUND.oid 
JOIN SCREEN 
ON GUARANTEE.oid=SCREEN.oid 

The GUARANTEE, SOUND and SCREEN view will look like 4.12: 

aid 6mos 12mos 18 mos ~4 mos ftereo Fono ~6" ~1" ~6" 

1 N N N Y Y N N N N 
2 Y N N N N Y N N Y 
3 N Y N N Y N Y N N 
4 N Y N N Y N N Y N 
5 N N Y N Y N N Y N 
6 N Y N N Y N N Y N 

Table 4.12: Guarantee and Sound and Screen View 

76" 

Y 
N 
N 
N 
N 
N 

d 

high 
low 
low 
high 
high 
low 
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We run the following query on this view: 

SELECT sixmonths,twelvemonths,eighteenmonths,twentyfourmonths, 
stereo,mono,thirtysixinch,fiftyoneinch,sixtysixinch, 
seventysixinch INTO HOLDUP 

FROM [GUARANTEE SOUND AND SCREEN] 
WHERE d = 'high' 
INTERSECT 
SELECT sixmonths,twelvemonths,eighteenmonths,twentyfourmonths, 

stereo,mono,thirtysixinch,fiftyoneinch,sixtysixinch, 
seventysixinch 

FROM [GUARANTEE SOUND AND SCREEN] 
WHERE d = 'low'; 

Next we check the COUNT of the HOLDUP table: 

SELECT COUNT(*) FROM HOLDUP; 

COUNT = 1 - {NOT A DECISION REDUCT} 

4.6.2 Issues with the Initial Attempt 

55 

The initial attempt seems to work fine and is able to find the decision reducts 
correctly for a given data set but this approach will not be practical for the data 
sets that have the attributes with a wide range of possible values. Let us take an 
example the attribute age of the bank account holder. The range of this attribute 
could be 18 - 95 may be. If we follow the above approach, the AGE table could 
have 78 columns including the decision column. Handling tables with such 
a wide range of possible columns would not only be practically challenging 
but also will affect performance badly too. In fact OUf, this attempt will not 
be possible to implement for the data set in which the attributes have infinite 
range of values like integer or real numbers. That is why we have dropped the 
idea presented in the initial attempt and began thinking for a more feasible and 
practical solution. 
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4.6.3 Second Attempt 

Keeping in mind the reason for the failure of the initial attempt regarding finding 
the decision reducts using database schema and queries, we are proposing a 
lot simpler and more practical solution to find the decision reducts inside the 
database.For this solution, once again we use the television buying example. 

I Case Type I Price I Guarantee I Sound I Screen I d 

1 high 24 months stereo 76 high 
2 low 6 months mono 66 low 
3 low 12 months stereo 36 low 
4 medium 12 months stereo 51 high 
5 medium 18 months . stereo 51 high 
6 high 12 months stereo 51 low 

Table 4.13: Television sets 

STEP 1 

We create a new schema, that includes two tables i.e. TV BIGH and TV _LOW. 
TV BIGH table contains all the records that have the decision class (d) as "high 
"and TV_LOW table contains all the records that have the decision class (d) as 
"low ". The new tables' structure is given below: 

Field Type I Null I 
Price varchar(8) Yes 

Guarantee int(ll) Yes 
Sound varchar(8) Yes 
Screen int(ll) Yes 

Decision_Class varchar(8) Yes 

Table 4.14: TV BIGH and TV _LOW Tables 

STEP 2 

After defining the tables now, we run the following queries. These queries get 
the count of the rows by doing the inner join of TV BIGH and TV _LOW tables 
using a set of columns. The columns for the JOIN are the subset of all the columns 
in the original tables. First we check for the one attribute: 
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SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (price) 

COUNT = 1 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (guarantee) 

COUNT = 2 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (sound) 

COUNT = 6 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (screen) 

COUNT = 2 - NOT A DECISION REDUCT 

Now we test for the combination of two attributes: 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (price,guarantee) 

COUNT = ~ - DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (price,sound) 

COUNT = 1 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (price,screen) 

COUNT = ~ - DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (guarantee,sound) 
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COUNT = 2 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (guarantee,screen) 

COUNT = 1 - NOT A DECISION REDUCT 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (sound,screen) 

COUNT = 2 - NOT A DECISION REDUCT 

Now that we know that the Price, Guarantee and Price, Screen are found as 
reducts we ignore those subsets of three attributes that contain fhe Price, Guarantee 
and the Price, Screen. This is to avoid finding the super set of reducts. The only 
set that remains then is checked. 

SELECT COUNT(*) FROM TV_HIGH 
INNER JOIN TV_LOW USING (guarantee,sound,screen) 

COUNT = 1 - NOT A DECISION REDUCT 

FINAL STEP 

The above schema and the queries are going to find all decision reducts. There 
is no chance of finding the super reducts. All the reduct finding logic works in 
the database outside the memory (Java). In the final step we combined the all 
the above queries and created a store procedure which will produce the decision 
reducts by calling all the queries in a loop. 

For this store procedure to work, we created another table -"TV -SUBSET" 
that contains all the subset except empty set for the tv table column names. The 
table also contains another column -"reducLflag" with a default value "N". This 
column is updated in the stored procedure if a particular subset is found to be a 
reduct. The store procedure also set the value "Y" for all the other subsets that 
have the reducts as a subset. The data in the new table "TV -SUBSET" is given 
below: 



4.6. ATTEMPTS IN REDUCT DETERMINATION IN DATABASES 59 

Subset I Reduct..Flag I 
1 price N 
2 guarantee N 
3 sound N 
4 screen N 
5 price, guarantee N 
6 price,sound N 
7 price,screen N 
8 guarantee,sound N 
9 guarantee,screen N 
10 sound,screen N 
11 price,guarantee,sound N 
12 price,guarantee,screen N 
13 price,sound,screen N 
14 guarantee,sound,screen N , 

15 price,guarantee,sound,screen N 

Table 4.15: TV ~UBSET Table 

Also we define another table TV -.REDUCT which will contain all the reducts 
after the store procedure is finished. This table structure is following: 

Table 4.16: TV -.REDUCT Table 

Now we define a store procedure that makes use of the TV_SUBSET and the 
TV -.REDUCT table. In case the subset is a reduct, the store procedure inserts a 
record in the TV -.REDUCT table and updates the reduct.1lag in the TV_SUBSET 
table for that and all the other records that have the last found reduct as a subset 
to avoid testing them and. Below is the syntax of the store procedure which can 
be run in any database. 

DROP PROCEDURE IF EXISTS GetAIITvReducts; 
DELIMITER / / 
PROCEDURE GetAIITvReducts (IN c INT) 
READS SQL DATA 
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BEGIN 
DECLARE done INT DEFAULT 1; 
DECLARE arg VARCHAR(1~~~); 
DECLARE sum VARCHAR(1~~~); 
hisLloop: LOOP 

SELECT subset INTO arg from test. TV_SUBSET 
WHERE id = done AND reduct_flag = 'N'; 
set @sql =concat('select COUNT(*) INTO @total 

FROM test.TV-HIGH 
INNER JOIN test. TV_LOW 
USING (', arg, ')'); 

PREPARE stmt1 FROM @sql; 
EXECUTE stmt1; 
IF @total = ~ THEN 

SET sum = REPLACE(arg,',','\%'); 
INSERT into test.TV_REDUCT(reduct) values (arg); 
UPDATE test. TV_SUBSET 
SET reduct_flag = 's' 
WHERE subset LIKE concat('\%',sum,'\%'); 
COMMIT; 

END IF; 
DEALLOCATE PREPARE stmt1; 
SET @total = ~; 
SET done = done + 1; 
IF done> c 

THEN LEAVE hist_loop; 
END IF; 
END LOOP hist_loop; 

END 
DELIMITER; 

4.6.4 Issues with the Second Attempt 

The solution presented above as a second attempt is workable and finds the 
reducts correctly. However the JOIN operation is very expensive and requires 
the full table scan. Due to the full table scan the "@sql" query in the above store 
procedure takes a long time and results may not be as good as expectations. 



Chapter 5 

An Improved Reduct 
Determination Algorithm 

5.1 Introduction 

In this chapter we present an improved reduct determination algorithm based on 
the second attempt toward the solution that we presented in the last chapter. This 
algorithm is based on the same schema what we presented in the last chapter i.e. 
separate tables for each decision class, a table of all the subsets for the conditional 
attributes and a table to insert the reducts found. There are however few changes 
that we made to the second solution from the section 4.6.3. These changes are 
following: 

• The results of the "@sql" query in the store procedure presented in the 
Section 4.6.3 are limited to 1 only. Therefore an addition of LIMIT 0,1 is 
added to the query. The reason for this addition is that we only need to 
know if there is one record common in two tables based on the combination 
of the variables fed from the subset table. 

• The second change that we made to our query is that instead of doing a 
JOIN, we opted to test each attribute in the WHERE clause i.e. change our 
query to: 

@sql = concat('select 1 INTO @total 
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FROM test. TV_HIGH X, test. TV_LOW Y 
WHERE X.PRICE = Y.PRICE AND X.SOUND = Y.SOUND LIMIT ~,1) 

which will test for PRICE,SOUND combination. Other combinations are 
also tested in the same manner. 

• The change in the last point prompts a change in the entries of our SUBSET 
table. Now we make entries for all the subset combinations but in the 
form of X.ATTRIBUTEl = Y.ATTRIBUTEl AND X.ATTRIBUTE2 = 
Y.ATTRIBUTE2andsoon. WewillnamethisnewcolumnasSQLSUBSET. 

Due to the changes that we mentioned above, we made a slight change in the 
subset table. We added another column SQLSUBSET in the table that contains 
the entries of the subset but in the format mentioned in the point 3 above. The 
entries for this additional column are presented in table 5.1 , 

I Id I SQL.5UBSET I Reduct-Flag I 
1 X.PRICE - Y.PRICE N 
2 X.GUARANTEE - Y.GUARANTEE N 
3 X.SOUND - y.sOUND N 
4 X.sCREEN - Y.SCREEN N 
5 X.PRICE - Y.PRICE and X.GUARANTEE - Y.GUARANTEE N 
6 X.PRICE - Y.PRICE and X.SOUND - Y.SOUND N 
7 X.PRICE - Y.PRICE and X.SCREEN - Y.SCREEN N 
8 X.GUARANTEE - Y.GUARANTEE and X.SOUND - y.sOUND N 
9 X.GUARANTEE - Y.GUARANTEE and X.SCREEN - Y.SCREEN N 
10 X.SOUND - Y.SOUND AND X.SCREEN - Y.SCREEN N 
11 X.PRICE = Y.PRICE AND X.GUARANTEE - Y.GUARANTEE AND X.SOUND - Y.SOUND N 
12 X.PRICE - Y.PRICE AND X.GUARANTEE - Y.GUARANTEEAND X.sCREEN - Y.SCREEN N 
13 X.PRICE - Y.PRICE AND X.SOUND - Y.SOUND AND X.SCREEN - Y.SCREEN N 
14 X.GUARANTEE - Y.GUARANTEE AND X.sOUND - Y.SOUND AND X.SCREEN - N 

Y.SCREEN 
15 X.PRICE - Y.PRICE AND X.GUARANTEE - Y.GUARANTEE AND X.sOUND - Y.SOUND N 

AND X.sCREEN = Y.SCREEN 

Table 5.1: TV SUBSET Table 

5.2 Improved Approach 

We revisited the solution provided in the second attempt. For a subset of at­
tributes to be a reduct, it is required that there should not be one record that is 
common in the both TV BIGH and TV ~OW tables. Keeping that in mind, we 
put the limit to one on the number of records retrieved. The improved version 
of the store procedure is following: 

DROP PROCEDURE IF EXISTS GetAIITvReducts; 
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DELIMITER / / 
PROCEDURE GetAllTvReducts (IN c INT) 
READS SQL DATA 
BEGIN 

DECLARE done INT DEFAULT 1; 
DECLARE sql_arg VARCHAR(l~~~); 
DECLARE sum VARCHAR(l~~~); 
hist_loop: LOOP 

SET @total = ~; 
SELECT sql_subset, red_subset INTO sql_arg, red_arg 
from test. TV_SUBSET 
WHERE id = done AND reduct_flag = 'N'; 
SET done = done + 1; 
IF done> c 

THEN LEAVE hist_loop; 
END IF; 
IF sql_arg <> " THEN 
set @sql = concat(select 1 INTO @total 

FROM test. TV_HIGH X, test. TV_LOW Y 
WHERE ',sql_arg,' LIMIT ~,1); 

PREPARE stmt1 FROM @sql; 
EXECUTE stmt1; 
DEALLOCATE PREPARE stmt1; 
IF @total = ~ THEN 

INSERT into test.TV_REDUCT(reduct) values (red_arg); 
SET sum = REPLACE(red_arg,',' ,'\%'); 
UPDATE test. TV_SUBSET 
SET reduct_flag = 's' 
WHERE subset LIKE concat('\%',sum,'\%'); 
COMMIT; 

END IF; 
END IF; 
SET sqLarg = " . , 

END LOOP hist_loop; 
END 
DELIMITER; 
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The above store procedure finds the reducts in the dataset very efficiently and 
quickly. Because all of the reduct finding process (which is the bottleneck in 
the rough set algorithm) is done in the database, it improves the scalability of 
the overall rough set algorithm a great deal. The store procedure will work for 
the data set with the decision variable with two classes. If however the decision 
attribute contains more than 2 classes, a slight change in the schema and the store 
procedure will make it workable. For the schema we will have to add a new 
table that contains all the binary combinations of the decision classes presented 
in Table 5.2: 

Field Type 

id int(l1) 
lefUable varchar(500) 

righUable varchar(500) 

Table 5.2: Decision Tables 

Now the store procedure will be changed as following: 

DROP PROCEDURE IF EXISTS GetAllTvReducts; 
DELIMITER / / 
PROCEDURE GetAllTvReducts (IN c INT) 
READS SQL DATA 
BEGIN 

DECLARE done INT DEFAULT 1; 
DECLARE tab_cnt INT DEFAULT 1; 
DECLARE sql_arg VARCHAR(l~~~); 
DECLARE sum VARCHAR(l~~~); 
hist_loop: LOOP 

SELECT sql_subset, red_subset INTO sql_arg, red_arg 
from test. TV_SUBSET 
WHERE id = done AND reduct_flag = 'N'; 
SET done = done + 1; 
IF done > c 

THEN LEAVE hist_loop; 
END IF; 
table_loop: LOOP 
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set @a = tab_cnt; 
set @st1 .- concat( 'SELECT id,left_table, right_table 

INTO @left_tab,@right_tab 
FROM test.DECISION_TABLES 
WHERE id = ? '); 

PREPARE stm1 FROM @st1; 
EXECUTE stm1 using @a; 
DEALLOCATE P~EPARE stm1; 
SET tab_cnt = tab_cnt + 1; 
IF tab_cnt > t THEN LEAVE table_loop; END IF; 
IF @left_tab <> " THEN 

set @sql = concat('select 1 INTO @total FROM 
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test.', @left_tab,' X, test.', @right_tab,' Y 
WHERE " sqLarg,' LIMIT 1');, 

PREPARE stmt1 FROM @sql; 
EXECUTE stmt1; 
DEALLOCATE PREPARE stmt1; 
IF @total > ~ THEN LEAVE table_loop; END IF; 

END IF; 
SET @left_tab = "; 
SET @right_tab = "; 

END LOOP table_loop; 
IF @total IS NULL OR @total = ~ THEN 

INSERT into test.TV_REDUCT(reduct) values (red_arg); 
SET sum = REPLACE(red_arg,',', '\%'); 
UPDATE test. TV_SUBSET 
SET reduct_flag = 's' 
WHERE red_subset LIKE concat (, \%' , sum, '\%') ; 

COMMIT; 
END IF; 

END IF; 
SET red_arg 

SET @total = ~; 
- ". - , 

END LOOP hist_loop; 
END 
DELIMITER; 





Chapter 6 

Testing and Results 

6.1 Introduction 

In this chapter we will test the solution that we proposed in the final section of the 
previous chapter. We will apply the store procedure on two different data sets to 
find the decision reducts in order to confirm the validity of our approach. The 
results from these tests will be compared against the results from the traditional 
discemibility matrix approach using the same data set. For the traditional dis­
cemibility approach, we will use the RSDA implementation in the Rseslib [2]. We 
have implemented these tests on an In tel (R) Core(TM)2 Duo CPUP8800 @ 2.66GHz 
machine with 4GB of RAM and running a Microsoft Windows XP Professional 
operating system. The comparison of the results will be presented to understand 
that how the scalability of the reduct finding is improved by using our proposed 
approach. The results are presented to view that our proposed approach of 
reduct finding performs better in terms of: 

• Horizontal Scalability: In this case the number of records or rows are kept 
fixed and the number of attributes or columns are increased gradually from 
lower to maximum number of attributes. 

• Vertical Scalability: In this case the number of attributes or columns are 
fixed while the number of records or rows are increased gradually from 
the lower to the maximum number of rows in the data set. 
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For testing of our algorithm and the traditional discernibility matrix approach, 
we downloaded two data sets from the UeI Machine Learning Repository [1]. 
These data sets are Adult Data Set and the Person Activity Data Set. A brief 
description of these data sets is given in the tests sections below. 

6.2 First Test 

In this test we will apply both our proposed stored procedure approach and the 
traditional discernibility approach on the Adult Data Set. For better readability 
and understanding, the results for both the vertical and horizontal scalability 
tests are presented in the form of the tables. 

6.2.1 Adult Data Set 
, 

The Adult Data Set [1] is a multivariate classification type of data set. The data 
was extracted from the US Census data 1994. The data set based on the 14 
attribute$ identifies whether a person makes over SOK or less than SOK a year. 
The attributes for this data set and their domain values are as following: 

• age: continuous. 

• workclass: Private, Self-emp-not:-inc, Self-emp-inc, Federal-gov, Local­
gov, State-gov, Without-pay, Never-worked. 

• fnlwgt: continuous. 

• education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc­
acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, Sth-
6th, Preschool. 

• education-num: continuous. 

• marital-status: Married-civ-spouse, Divorced, Never-married, Separated, 
Widowed, Married-spouse-absent, Married-AF-spouse. 

• occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, 
Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming­
fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. 

• relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, 
Unmarried. 
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• race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. 

• sex: Female, Male. 

• capital-gain: continuous. 

• capital-loss: continuous. 

• hours-per-week: co:r;tinuous. 

• native-country: United-States, Cambodia, England, Puerto-Rico, Canada, 
Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, 
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mex­
ico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Tai­
wan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thai­
land, Yugoslavia, EI-Salvador, Trinadad&Tobago, Peru,. Hong, Holand-
Netherlands. '; 

• decision-class: >5DK, <= SDK. 

There are 48842 records in this table with 11687 records have the decision class 
>5DK and 37155 have the decision class <= SDK. This means that in our proposed 
solution we create two table i.e. ADULT _GRTRJ<IFTY table that contains 11687 
records and the ADULT _LESSEQJ<IFTYK with 37155 records in it. Both tables 
have exact same columns and column names. 
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Field Type 

id int(ll) 
age int(ll) 

workclass varchar( 45) 
fnlwgt int(ll) 

education varchar(45) 
eduJlum int(ll) 

maritaLstatus varchar( 45) 
occupation varchar( 45) 
relationship varchar( 45) 

race varchar( 45) 
sex varchar(10) 

capitaLgain int(ll) 
capitaUoss int(ll) 

hours_per _week int(ll) 
native_country varchar( 45) 
decision_class varchar(lO) 

Table 6.1: ADULT _GRTR..FIFTYK and ADULT _LESSEQ..FIFTYK 

Using the ADULT _GRTR..FIFTYK and ADULT _LESSEQ..FIFTYK and apply­
ing the first store procedure mentioned in the section 5.2, we got the following 
results which is compared with the traditional discernibility matrix approach 
applied on the same data set. 

6.2.2 Results for Horizontal Scalability 

In this case the number of rows or records is static at 32561 and the results are 
based on increasing the number of columns from 4 to maximum number of 
conditional attributes i.e. 14. The original table consists of following conditional 
attributes . 

• AGE, WORKCLASS, FNLWGT, EDUCATION, EDU~UM, 
MARITALSTATUS, OCCUPATION, RELATIONSHIP, RACE, 
SEX, CAPITALGAIN, CAPITALJ.DSS, HOURSJJER_WEEK, 
NATIVLCOUNTRY 

There are two decision reducts that are found by both the approaches. These 
reducts are: 
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1. AGE, WORKCLASS, FNLWGT, EDUCATION, OCCUPATION, 
RELATIONSHIP, CAPIT ALGAIN, HOURSYER_WEEK 

2. AGE, WORKCLASS, FNLWGT, EDU~UM, OCCUPATION, 
RELATIONSHIP, CAPITALGAIN, HOURSYER_WEEK 

Attributes Time Taken Proposed Solution Reducts 
(Traditional 
Approach) 

Subsets Time Taken 

4 5 min 15 0.03 sec N 
5 6 min 31 0.06 sec N 
6 6 min 63 0.11 sec N 
7 6 min 127 0.47 sec N 
8 7 min 255 0.91 sec ~ N 
9 8 min 511 1.73 sec N 
10 9 min 1023 3.36 sec N 
11 9 min 2047 22.77 sec N 
12 10 min 4095 46.42 sec N 
13 10 min 8191 1 min Y 
14 10 min 16383 6 min Y 

Table 6.2: Horizontal Scalability Results 
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The results clearly shows that our proposed solution outperforms the traditional 
discernibility approach for different number of attributes while using the com­
plete set of records in the data set. Also by increasing the number of attributes 
discretely starting from 4, the time taken to find the reducts in the case of our 
proposed approach does not increase proportionally while the traditional ap­
proach scales poorly in that case. Therefore we can say that our algorithm is 
more horizontally scalable for this data set than the traditional discernibility 
matrix approach. 

6.2.3 Results for Vertical Scalability 

In this case the number of conditional attributes or columns is static at 14 and 
the results are based on increasing the number of rows or records from 10,000 
to maximum number of records in the data set. The original table consists of 
following conditional attributes. 
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• AGE, WORKCLASS, FNL WGT, EDUCATION, EDU~UM, 
MARITALSTATUS, OCCUPATION, RELATIONSHIP, RACE, 
SEX, CAPITALGAIN, CAPITAL~OSS, HOURSYER_WEEK, 
NATIVLCOUNTRY 

No. of At- No. of Time Taken Time Taken (Pro-
tributes Records (Traditional posed Approach) 

Approach) 

14 10,000 1 min 5 min 
14 15,000 2 min 5 min 
14 20,000 3 min 5 min 
14 25,000 6 min 5 min 
14 32,561 10 min 6 min 
14 48,842 24 min 7min~ 

Table 6.3: Vertical Scalability Results 

There are two decision reducts that are found by both the approaches for the 
full data set i.e. all the attributes and the complete set of records are: 

1. AGE, WORKCLASS, FNLWGT, EDUCATION, OCCUPATION, 
RELATIONSHIP, CAPIT ALGAIN, HOURSYER_WEEK 

2. AGE, WORKCLASS, FNLWGT, EDU~UM, OCCUPATION, 
RELATIONSHIP, CAPITALGAIN, HOURSYER_WEEK 

The results for the vertical scalability are different and less convincing from the 
ones for the horizontal scalability. However they also show that by increasing 
the number of records gradually starting from 10,000, the time taken to find the 
reducts in the case of our proposed algorithm does not increase proportionally 
while the traditional approach scales poorly in that case. For the less number of 
rows, the traditional approach does perform better than our proposed algorithm 
but for the larger number of records, our solution starts performing much better 
than the traditional approach. Therefore we can say that our algorithm is more 
vertically scalable too for this data set than the traditional discernibility matrix 
approach. 



6.3. SECOND TEST 73 

6.3 Second Test 

In this test we will apply both our proposed stored procedure approach and 
the traditional discernibility approach on the Person Activity Data Set. The 
details about this data set are given in the next section. For this data set we only 
collected the results for the vertical scalability tests. The results of our approach 
in comparison with the traditional discernibility matrix approach are presented 
in the form of the tables fGr readability and understanding. 

6.3.1 Person Activity Data Set 

The Person Activity Data Set [1] is a multivariate classification type of data 
set. The data contains recordings of five people performing different activities. 
Each person wore four sensor tags (ankle left, ankle right, belt and chest) while , 
performing the same scenario five times. The data set consist~ of 7 attributes 
identifies the person activity defined as one of the 11 decision classes. The 
attributes for this data set and their domain values are as following: 

• Sequence Name: {AOl,A02,A03,A04,A05,B01,B02,B03,B04,B05,C01, 
C02,C03,C04,C05, D01,D02,D03,D04,D05,EOl,E02,E03,E04,E05} Nominal 
- A, B, C, D, E = 5 people 

• Tag identificator: {01O-000-024-033,020-000-033-111,020-000-032-221, 
010-000-030-096 } 
Nominal 
- ANKLE_LEFT = 010-000-024-033 
- ANKLE RIGHT = 010-000-030-096 
- CHEST = 020-000-033-111 
- BELT = 020-000-032-221 

• timestamp: Numeric. 

• date: date = dd.MM.yyyy HH:mm:ss:SSS Date 

• x coordinate of the tag: Numeric. 

• y coordinate of the tag: Numeric. 

• z coordinate of the tag: Numeric. 
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• decision_class: {walking,falling,lying down,lying, 
sitting down,sitting,standing up from lying, on all fours, 
sitting on the ground, standing up from sitting, 
standing up from sitting on the ground} Nominal 

There are 164860 records in this data set with 7 conditional attributes and one 
decision attribute. The decision attribute comprised of 11 different decision 
classes. This data set was selected to show how our proposed algorithm perform 
for a dataset with large number of records and high number of decision classes. 
Using our proposed approach presented before, we created 11 tables, one for each 
decision class. We will show the structure of one table which is same for the other 
tables. Using the 11 different tables, one for each decision class and applying 

Field Type 

sequence-.name varchar( 45) 
tag3dentifier varchar( 45) 

timestamp varchar( 45) 
date varchar( 45) 

x_coord varchar( 45) 
x_coord varchar( 45) 
x_coord varchar( 45) 

decision_class varchar(45) 

Table 6.4: Person Activity Table(For each activity) 

the second store procedure mentioned in the section 5.2, we got the following 
results, compared against the traditional discernibility matrix approach applied 
on the same data set. 

6.3.2 Results for Vertical Scalability 

As mentioned before, we only did the tests for vertical scalability for this data 
set. This is because of the less number of conditional variables. For such a small 
number of conditional attributes, testing for horizontal scalability would not 
make much sense. In this case the number of conditional attributes or columns 
is static at 7 and the results are based on increasing the number of rows or records 
from 20,000 to maximum number of records in the data set. The original table 
consists of following conditional attributes. 
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• SEQUENCE-.NAME, TAGJDENTIFIER, TIMESTAMP, DATE, X_COORD, 

Y _COORD, AND Z_COORD 

No. of At- No. of Time Taken Time Taken (Pro-
tributes Records (Traditional posed Approach) 

Approach) 

7 20,000 3 min 3.84 sec 
7 40,000 15 min 7.92 sec 
7 60,000 33 min 9.31 sec 
7 80,000 87 min 10.05 sec 
7 100,000 96 min 12.34 sec 
7 120,000 142 min 14.31 sec 
7 140,000 195 min 16.75 sec 
7 164,860 276 min 19.34 sec , 

Table 6.5: Vertical Scalability Results 

There are FIVE decision reducts that are found by both the approaches for 
the full data set i.e. all the attributes and the complete set of records are: 

1. TIMESTAMP 

2. DATE 

3. X_COORD, Y_COORD 

4. X_COORD, Z_COORD 

5. Y_COORD,Z_COORD 

The results for the vertical scalability dearly shows that our proposed reduct 
finding approach performs much better than the traditional discernibility ma­
trix approach. 





Chapter 7 

Discussion of the Results 

'; 

In this chapter we are going to discuss the results that we obtained from the 
testing of the two data sets i.e. Census Data Set and the Person Activity Data 
Set performed and presented in chapter 6. The results of the tests are very 
encouraging for our proposed approach for finding the attribute reducts but 
they also highlight the fact that more research can be performed to improve our 
proposed approach. The results show that our approach performs far better 
than the traditional reduct finding approach using the discemibility matrix for 
the two data sets but we can also derive from the results that for certain other 
data sets, our approach may not perform very well. In the next chapter we 
will identify the types of those data sets and the scenarios where our proposed 
approach will not perform as well and there is a possibility of future research. 
Here we will discuss the results obtained in the last chapter and do a comparison 
of our approach with the traditional rough set reduct finding approach. 

7.1 Census Data Set 

This data set was comprised of 14 conditional and 1 decision attribute with 2 
decision classes. For this data set we performed two different tests . 

• The first test in section 6.2.2 was performed to test the horizontal scalability 
i.e. keeping the number of records constant while increasing the number of 
conditional attributes gradually in the tests. The results show that for fewer 
number of attributes, our proposed algorithm finds the reducts very fast but 

77 



78 7.2. PERSON ACTIVITY DATA SET 

as increase the number of the conditional attributes, our algorithm starts 
getting slower and takes longer times to find the reducts. This is because 
of the fact that our algorithm depends heavily on the number of subset 
combinations to be tested as the reducts. So as we increase the number of 
conditional attributes, the number of subsets increase exponentially i.e. 2n 

resulting in slowing down of the proposed algorithm. We can see from the 
results in the Table 6.2 that for fewer attributes, our proposed approach 
performs much faster than the traditional rough set algorithm but as we 
increase the number of attributes, our proposed approach starts performing 
just as good as the traditional discernibility matrix approach. 

• In contrast to the horizontal scalability, the vertical scalability test in sec­
tion 6.2.3 proved the strength of our proposed approach. In these tests we 
keep the number of conditional attributes constant at,maximum 14 while 
increase the number of records to be tested gradually starting from 10,000 
records and increasing them in 5,000 chunks. The results of this approach 
in the Table 6.3 show that for fewer number of records i.e. 10,000 to 20,000 
the traditional discernibility approach performs better than our proposed 
approach, however as the number of the records increase form 25,000 and 
up, the traditional algorithm slows down while our algorithm keeps per­
forming more or less same. This is the strength of our proposed algorithm 
that by increasing the number of records, our algorithm scales very well 
while the traditional discernibility approach slows down proportional to 
the increase in the number of records. 

7.2 Person Activity Data Set 

This data set comprised of 7 conditional attributes and 1 decision attribute. The 
data set contained 164,860 records. This data set was selected for two reasons. 
The first reason was the number of records. Using the data set with high number 
of records helps us testing how our proposed approach performs for higher 
number of records. The second reason was the number of decision classes for 
the decision attribute. This is very important as this would prove that for the 
data sets with more decision classes, our algorithm performs just as good as 
the data set with only two decision classes. As presented in Chapter 6, our 
proposed approach divides the data set into its respective decision class table. 
So in this case the test were done with data coming from 11 different tables. 
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For this data set we only performed the tests for testing the vertical scalability 
i.e. keeping the number of conditional attributes constant at maximum 7 while 
increasing the number of records gradually from 20,000 to the maximum. The 
result presented in Table 6.5 shows that our proposed approach performs far 
better than the traditional discernibjlity approach throughout. The results of 
our approach stayed in seconds for few of records i.e. 20,000 as well as for the 
maximum number rows. The traditional approach started in minutes and as we 
increased the number of rows to be tested the traditional approach started taking 
hours with the results for the maximum number of rows took it close to 5 hours 
to finish. 

The results for both the data sets are very encouraging and shows that our 
proposed algorithm of finding the attribute reducts in the database with right 
schema can improve the performance of the rough set algorithm and make it 
more scalable to be accepted commercially in data mining algorithms. 

~ 





Chapter 8 

Conclusion and Future 
Research 

8.1 Conclusion 

In this thesis we highlighted the issue of the scalability in the traditional rough 
set algorithm. We identified that the root cause of the poor scalability of the 
traditional rough set algorithm is the attribute reduction step. In the traditional 
rough set algorithm, the attribute reduction is achieved by creating a discernibil­
ity matrix as described in section 3.2.3 in the memory. This matrix is then used to 
find the attribute reducts. We proposed a completely different approach towards 
the reduct finding by moving the entire process into the database. In our pro­
posed approach, we defined a schema to store the data in the Information System 
and then defining queries on them (combined as a store procedure) outlined in 
the section 5.2. The advantages of our proposed solution are two-fold i.e. not 
only that it is faster than the traditional discernibility approach as demonstrated 
in the sections 6.2.2, 6.2.3, 6.3.2 but it also increases the overall efficiency of the 
RSDA and rule creation process by moving the resource costly process of reduct 
finding to a separate database server. 

Like any new concept and algorithm, our proposed algorithm also suffers 
from some issues. Analyzing the results for the adult data set in section 6.2.1, 
couple of big issues with our proposed approach are highlighted. For the adult 
data set, the results for horizontal scalability in section 6.2.2 shows that for the less 
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number of attributes, our algorithm outperforms the traditional discernibility 
matrix approach but as we increase the number of conditional attributes, our 
algorithm starts slowing down and performs just as good as the traditional 
discernibility matrix approach. The reason for this poor performance is that 
our algorithm depends on the number of subsets of the conditional attributes to 
be tested. As we increase the number of conditional attributes, the number of 
subsets increase exponentially i.e. 2n resulting in exponential slowing down of 
our algorithm. 

Another issue that is also evident from the results of the adult data set given 
in the sections 6.2.2, 6.2.3 is that if the number of number of attributes in a reduct 
is close to the total number of attributes, then our proposed approach starts 
behaving slowly. The reason for this behavior is again linked to our approach 
being dependent on the subsets of the attributes. Say if the reduct comprised , 
of n attributes, then to find that reduct form the table of all the subsets of the 
attributes, our proposed algorithm will have to test 2n- 1 subsets combinations. 
Therefore if we increase the "n", our proposed approach will take longer to find 
the reduct because the reduct is deep down in the subset combination table while 
our algorithm checks each combination sequentially. This behavior is evident 
from the results for the adult data set, where the first reduct found consists of 
8 attributes out of 14 conditional attributes. That is why in the case of adult 
data set, our algorithm performed slowly. In contrast to the adult data set, we 
can observe from the person activity data in section 6.3.1 set that our algorithm 
performed much faster because the first reduct consisted of 2 attributes out 
of the total 7 conditional attributes. The effect of finding the first reduct then 
decreases the number of tests on the subsets as all the other subset combinations 
that contain that reduct are discarded because they are super set of the reduct. 
This discarding or pruning increases the overall performance of our proposed 
algorithm. 

In conclusion we can say that our proposed approach can perform better than 
the traditional discernibility matrix approach for some of the typical data sets. 
However, it has an issue to deal with the number of attributes in the data set 
and also to handle the issue with the number of attributes in the reduct found. 
The worst case for our proposed algorithm will be if there is no decision reduct 
in a data set. These issues can be addressed in future research on our proposed 
algorithm. Some of the suggestions for the future research are given in the next 
section. 
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8.2 Future Research 

As identified in the previous section, our algorithm suffers from two major 
issues. First, it slows down if the number of conditional attributes in the data 
set are increased. Second, it sequentially checks the subset combination to find 
the reduct which results in slowness if the reduct is deep down in the subset 
combination table. For the issue of the number of conditional attributes, we 
suggest that we can perform the column division of the original data set table 
into two or more tables. For example, the adult data set presented in section 
6.2.1, we can divide the data set into two tables each containing the data for 7 
attributes and a decision attribute. These two tables can then be used to find 
the decision reducts. In the end a smart merging algorithm will be required to 
combine the results from the two tables and find the final decision reducts for 
the complete data set. 

For the second issue with our algorithm where the reducts Could be buried 
deep in the subset table, we suggest to use the genetic algorithm [18] or the 
heuristic search algorithms like hill climbing or simulated annealing which aim 
to find the reduct based on the fitness function for the subsets. The fitness 
function will optimize for the subset combination say the one with less num­
ber of attributes for the starters. We believe that employing heuristic search 
optimization algorithms can improve this issue in our proposed approach. 

We also believe that the performance of our algorithm can be increased if we 
remove the noise from the data set which is common for almost every data set. A 
unique way of removing the noise is suggested by Xiaohua Hu [14]. He proposed 
the data generalization technique which is performed inside the database. The 
technique removes noise from the data by performing attribute removal and 
attribute-oriented concept tree ascension. We believe if we combine the data 
generalization with our proposed algorithm to find the reducts in the database, 
then we can also generate the decision rules as proposed again by Xiaohua Hu 
[14]. This way the whole RSDA can be performed inside the database. 
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