647 research outputs found

    Landscapes and Effective Fitness

    Get PDF
    The concept of a fitness landscape arose in theoretical biology, while that of effective fitness has its origin in evolutionary computation. Both have emerged as useful conceptual tools with which to understand the dynamics of evolutionary processes, especially in the presence of complex genotype-phenotype relations. In this contribution we attempt to provide a unified discussion of these two approaches, discussing both their advantages and disadvantages in the context of some simple models. We also discuss how fitness and effective fitness change under various transformations of the configuration space of the underlying genetic model, concentrating on coarse-graining transformations and on a particular coordinate transformation that provides an appropriate basis for illuminating the structure and consequences of recombination

    Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain

    Get PDF
    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain

    Aggregation of variables and system decomposition: Applications to fitness landscape analysis

    Get PDF
    In this paper we present general results on aggregation of variables, specifically as it applies to decomposable (partitionable) dynamical systems. We show that a particular class of transition matrices, namely, those satisfying an equitable partitioning property, are aggregable under appropriate decomposition operators. It is also shown that equitable partitions have a natural application to the description of mutation-selection matrices (fitness landscapes) when their fitness functions have certain symmetries concordant with the neighborhood relationships in the underlying configuration space. We propose that the aggregate variable descriptions of mutation-selection systems offer a potential formal definition of units of selection and evolution

    Incremental embodied chaotic exploration of self-organized motor behaviors with proprioceptor adaptation

    Get PDF
    This paper presents a general and fully dynamic embodied artificial neural system, which incrementally explores and learns motor behaviors through an integrated combination of chaotic search and reflex learning. The former uses adaptive bifurcation to exploit the intrinsic chaotic dynamics arising from neuro-body-environment interactions, while the latter is based around proprioceptor adaptation. The overall iterative search process formed from this combination is shown to have a close relationship to evolutionary methods. The architecture developed here allows realtime goal-directed exploration and learning of the possible motor patterns (e.g., for locomotion) of embodied systems of arbitrary morphology. Examples of its successful application to a simple biomechanical model, a simulated swimming robot, and a simulated quadruped robot are given. The tractability of the biomechanical systems allows detailed analysis of the overall dynamics of the search process. This analysis sheds light on the strong parallels with evolutionary search

    Modelling Genetic Algorithms and Evolving Populations

    No full text
    A formalism for modelling the dynamics of genetic algorithms using methods from statistical physics, originally due to Pr¨ugel-Bennett and Shapiro, is extended to ranking selection, a form of selection commonly used in the genetic algorithm community. The extension allows a reduction in the number of macroscopic variables required to model the mean behaviour of the genetic algorithm. This reduction allows a more qualitative understanding of the dynamics to be developed without sacrificing quantitative accuracy. The work is extended beyond modelling the dynamics of the genetic algorithm. A caricature of an optimisation problem with many local minima is considered — the basin with a barrier problem. The first passage time — the time required to escape the local minima to the global minimum — is calculated and insights gained as to how the genetic algorithm is searching the landscape. The interaction of the various genetic algorithm operators and how these interactions give rise to optimal parameters values is studied
    corecore