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We consider genotypic convergence of populations and show
that under fixed fitness asexual and haploid sexual populations
attain monomorphic convergence (even under genetic linkage
between loci) to basins of attraction with locally exponential
convergence rates; the same convergence obtains in single
locus diploid sexual reproduction but to polymorphic
populations. Furthermore, we show that there is a unified
theory underlying these convergences: all of them can be
interpreted as instantiations of players in a potential game
implementing a multiplicative weights updating algorithm to
converge to equilibrium, making use of the Baum–Eagon
Theorem. To analyse varying environments, we introduce the
concept of ‘virtual convergence’, under which, even if fixation
is not attained, the population nevertheless achieves the fitness
growth rate it would have had under convergence to an
optimal genotype. Virtual convergence is attained by asexual,
haploid sexual and multi-locus diploid reproducing
populations, even if environments vary arbitrarily. We also
study conditions for true monomorphic convergence in
asexually reproducing populations in varying environments.
1. Introduction
One of the central questions of evolutionary theory has long been
identifying conditions for asymptotic convergence to fixation on a
monomorphic population. The classical example of such a result is
the simplest case of asexual reproduction without mutation (e.g.
bacteria reproducing in a petri dish) in which a version of the
fundamental theorem of natural selection obtains: the mean fitness
of the population, which follows the dynamic of the replicator
equation, increases monotonically, leading to asymptotic fixation to
a monomorphic population consisting of an optimal genotype with
respect to the fitness environment.

Even this strong result, however, fails to hold once one
considers arbitrarily varying fitness environments over time, even
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in asexually reproducing populations; in sexually reproducing populations the matter is more complicated
still. In this paper, we consider the general question of genotypic convergence of populations implementing
various reproductive strategies under conditions of both fixed and varying environments. To this end, we
also introduce a concept that we term ‘virtual convergence’, applying ideas originally developed for the
study of algorithms.

In greater detail, we consider here three discrete time population reproductive strategies: asexual,
haploid sexual and diploid sexual. The relevant state spaces for all of these is a polytope Q. In the
asexual case Q ¼ DðGÞ, the space of probability distributions over the set Γ of possible genotypes,
what is of interest is tracing over time the relative frequency of the genotypes. In the sexual cases, the
focus instead is on the relative frequency in the population of alleles at each locus; if there are m loci
with k + 1 alleles per locus, the polytope of interest is Q ¼ Dk

1 � � � � � Dk
m.

The dynamics considered will in general be describable by a transformation T :Q ! Q. That is, if the
population is at state u [ Q at time t, under the model it will be in state T(θ) at time t + 1. The main matter
studied is then the asymptotics of the trajectory defined by Tn(θ), starting from any θ, as n increases. If for
each initial point x [ Q there is a point y [ Q such that lim n→∞ Tn(x) = y then the dynamic converges
polymorphically; if y is a point distribution in Dk

i for each 1≤ i≤m then the convergence is monomorphic.
pen
Sci.8:210309
1.1. Fixed environments and convergence in potential games
The first question we consider asks which of these dynamics is guaranteed to converge, either
monmorphically or polymorphically, when environments are fixed and unchanging over time, and we
show that the asexual replicator dynamic, the sexual haploid dynamic—even under genetic
inheritance linkage between loci—and the single-locus diploid dynamic all converge.

Furthermore, we provide a unified explanation for the convergence of all of these dynamics in the
discrete time setting: all of them may be considered to be manifestations of potential games in which
the players monotonically increase the potential payoff.

Potential games (introduced in [1]) satisfy the property that the incentives of the players to change
strategies are all captured in one global potential function—the name is inspired by the concept of a
potential in physics—that is common to all the players. Significantly, this introduces the possibility
that the players can together ‘climb’ the potential to attain (at least locally) optimal payoffs.

The key to several of our convergence results is due to theorem 3.1, in which we show that, whenever
a set of players playing a potential game each implement the multiplicative weights updating algorithm
in sequentially choosing their actions, the play will always converge to a fixed point that is a Nash
equilibrium. Furthermore, crucially the dynamic always implements a monotonic climb of the
potential payoff, even though there is no coordinating element at all to the updating of the players,
each of whom updates based on the private information of the stage payoff received without
explicitly taking into account the payoffs and updated distributions of the other players.

This result ultimately depends on an application of the Baum–Eagon inequality (see appendix A),
which was originally intended for application to the study of hidden Markov models, but has proved
to be valuable for the study of discrete time dynamics, where the standard tools of continuous time
gradient climbing, which depend on partial derivatives, are not available.

This is especially pertinent to our study of convergence in the sexual haploid model, where the
dynamic can be described as an identical interests game being played by the loci, with the objective
being identifying an optimal genotype; the theorem shows that the replicator dynamic conducted
independently among the alleles at each locus, which is the essence of the sexual reproduction model,
is guaranteed to converge. The exception to all this is the multi-locus diploid model under linkage
disequilibrium, where the disequilibrium term prevents application of the Baum–Eagon inequality,
and in fact it has long been known that convergence under that model is not guaranteed.

A further advantage of undergirding the fixed environment theorems by appeal to the Baum–Eagon
Theorem is that it enables us to make use of theorems from [2] to obtain finer resolution insights into the
dynamic paths followed by populations along the way towards convergence. This includes the fact that
surrounding each pure Nash equilibrium there exists a basin of attraction, and even more strongly a basin
of attraction that is exponentially stable. This implies that an observer following a path through the state
space (including that of any potential game in which the players are implementing the polynomial
multiplicative weights updating algorithm) will for a long time register relatively small increase in
mean payoff until the path enters the exponential basin of attraction, at which point an acceleration
will be noted with exponentially fast convergence to a fixed point of local maximal mean payoff.
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1.2. Varying environments and virtual convergence
When environments vary, sufficiently wildly varying environments from one time period to the next can
make it impossible for the dynamic to converge to any single population state in Q. To contend with this
we introduce here a new concept of ‘virtual convergence’. This is defined using tools borrowed from
computer science and introduced to the population genetics literature in the past decade, which
involve regret minimization algorithms. The metaphor often used to describe this approach is that of
selecting an action with respect to varying payoff functions in subsequent time periods based on
advice offered by a collection of experts. The objective is attaining asymptotically the payoff that
would have been achieved had one followed from the start the advice of the best expert in hindsight
in every time period; a no regret algorithm achieves this objective.

In the evolutionary setting, the analogues of the experts of the previous paragraph are genotypes and
the payoffs are fitness values. The question then becomes: is it the case that, no matter what sequence of
environments and hence fitness values is realized, the reproducing population asymptotically attains the
mean fitness that is the growth rate that it would have achieved had it been comprised from the start
monomorphically by the optimal-in-hindsight genotype? If yes, then we say that virtual convergence
is attained.

With these definitions, we study here modes of convergence for the asexual, haploid sexual and diploid
sexual reproduction, variously under independence of inheritance between loci as well as genetic linkage,
fixed fitness and varying fitness conditions.1 A summary of some of the results appears in table 1.

As can be seen in the summary, all of the reproduction models studied here attain virtual
convergence, no matter how wildly environments vary. They attain this by exploiting the regret
minimization aspect of the multplicative weights updating algorithm.

In a sense, it can be said that the reproductive processes studied here are nearly as opportunistic as
they can be. When the environment is fixed, they will converge to local optima as represented by Nash
equilibria. In some cases, when the environment is sufficiently regular (i.i.d. or stationary ergodic), the
information inherent in the process of the changing environment can be extracted to yield optimal
results (see proposition 4.1).

Virtual convergence captures the capacity of populations to minimize regret in hindsight, thus
ensuring that the asymptotic growth per time period equals the rate that could have been achieved by
selecting ahead of time the genotype of highest growth rate. Significantly, this shows that even in the
most extremely arbitrarily varying environments the reproductive processes manage to do the best
they can under the circumstances. Conceptually this underscores how impressively efficient the
reproductive processes that have evolutionarily emerged are. These results may also enable better
predictions of the outcomes of evolutionary processes in future research efforts.

1.3. Non-arbitrarily varying environments
The gap between fixed environments and entirely arbitrarily varying environments is large. The subject
of convergence when environments vary in a structural way is explored here only with respect to the
asexual replicator model, where we show that convergence to a monomorphic population is
guaranteed under ergodically varying environments and under a broader property we introduce that
we call one-step-ahead superiority.

1.4. Literature review
Our theorem on the convergence of potential games to pure Nash equilibria when all players implement
the MWU algorithm (theorem 3.1) is equivalent to a theorem in [3] on convergence to pure Nash
equilibria in congestion games. Our result provides an independent proof for potential games, in
which form it readily applies to the evolutionary contexts that are the focus of this paper.

The results on asexual reproduction in fixed fitness environments mentioned in §4 are well-known
and standard in the literature. Our most significant new contribution here is theorem 4.4, in which we
introduce the concept of asymptotically one-step-ahead superior on average genotypes, showing that
under the asexual replicator dynamic if the population contains such a genotype then it will converge
to that genotype under arbitrarily varying environments.
1In all models in this paper, generations are discrete and non-overlapping, populations are infinite, and no mutation, migration or
genetic drift is included in the models.



Table 1. Summary of modes of convergence. The code for the simulation generating figure 1 can be found in the electronic
supplementary material.

reproduction fixed fitness convergence varying fitness convergence section

asexual monomorphic virtual section 4

haploid monomorphic virtual section 5

single locus diploid polymorphic virtual section 6.1

multi-locus diploid virtual virtual section 6.2

royalsocietypublishing.org/journal/rsos
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That the Baum–Eagon inequality sheds light on the convergence properties of haploid reproduction,

as finds expression here in lemma 5.1, has long been noted by many researchers, stretching all the way
back to [4] (see also, among others, [5–7]). However, many of those sources fail to relate the application of
the Baum–Eagon inequality to the underlying common interests game and most significantly to the Nash
equilibria of that game, which is accomplished here in theorem 5.2. We also make use of results from [2]
(the follow-up paper to [4]) to study details regarding basins of convergence to the Nash equilibria in the
haploid dynamic (theorem 5.4).

Further contributions in this paper in the haploid reproduction setting are the monomorphic
convergence results under genetic linkage (theorem 5.8) and the virtual convergence under varying
environments (theorem 5.9).

Convergence to mixed strategy Nash equilibria in the single-locus diploid setting under fixed fitness,
as noted in §6.1, is well-established (e.g. [8]); as in the haploid case, we contribute here insights into the
structure of the basins of convergence (theorem 6.1), and aspects of virutal convergence in varying
environments (theorem 6.4).

Two papers with some overlap with the topics in this paper are [9,10]. The first explores natural
selection in stochastically varying environments. In such an environment it is often assumed that
organisms with state dependent strategies have an evolutionary advantage that increases with
capacity to detect environmental changes. In [9], it is shown, however, that counterintuitively there are
models in which lower accuracy in detecting changes actually leads to higher growth.

In [10], Cheong et al. study cooperation between populations in periodically varying environments,
especially prisoners’ dilemma situations with periodically varying payoffs. The periodic payoff
component is added in such a way that the behaviour of a given population depends both on its
own payoffs and the payoffs of its opponent. This creates an opportunity for cooperation under the
replicator dynamics.

The results of those papers are complementary to our results on evolutionary reproductive
algorithms under varying environments. We leave it to future research to study how virtual
convergence may shed light on situations of state dependent reproductive strategies and the evolution
of cooperation.
2. Basic models and notation
2.1. Simplices
For an integer m, Δm denotes the standard finite dimensional simplex over m + 1 points. For a finite set Γ,
Δ(Γ) denotes the collection of probability mass functions over the elements of Γ. We will denote the subset
of Δ(Γ) consisting of distributions with support on one element of Γ alone by Δ1(Γ), and the element of
Δ1(Γ) placing all support on g∈ Γ will be denoted by 1g.

2.2. Potential games
Let I be a finite set of m players. Associate with each player i a finite set of actions Ai. Denote
A =A1 × · · · ×Am, and the cross product of all action sets except from i by A−i. A game is defined by
a payoff function u :A ! Rm. The projection of the payoff function to the payoff of player i is
denoted ui(ai, a−i). Payoff functions extend in the obvious multi-linear manner to payoff functions of
mixed strategies.
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An identical interests game is a game satisfying the property that ui(a) = uj(a) for each a∈A and each i,
j∈ I. A potential game is a game with a potential function F :A ! R satisfying for all a−i∈A−i and all a0i,
a00i∈Ai,

Fða0i, a�iÞ �Fða00i , a�iÞ ¼ uiða0i, a�iÞ � uiða00i , a�iÞ:
An ordinal potential game is game with a potential function F :A ! R satisfying for all a−i∈A−i and all
a0i, a00i∈Ai,

Fða0i, a�iÞ �Fða00i , a�iÞ . 0 , uiða0i, a�iÞ � uiða00i , a�iÞ . 0:

Every identical interests game is a potential game and every potential game is an ordinal potential game.

2.3. The discrete replicator equation
Much of the background material for the population genetics models here is from [7] and [6].

Time is discrete and denoted by positive integers t. Let f t :Dm ! Rm be given for each time t, with
f ti :D

m ! R for each 1≤ i≤m being the standard coordinate projection of ft.
The mean value function associated with ft, denoted �f t, maps θ∈ Δm to R by

�f tðuÞ : ¼
X

1�i�m

uif ti ðuÞ:

The discrete replicator equation is then the recursive mapping from Δm to Δm defined by

utþ1
i : ¼ uti

f ti ðuÞ
�f tðuÞ

: ð2:1Þ
2.4. Alleles and genotypes
The model assumptions which will be maintained throughout are that populations are infinite (i.e. only
proportions of genotypes and alleles in the population are of interest, not absolute numbers), that
generations are discrete and non-overlapping, that selection occurs but not mutation or migration, and
that stochastic genetic drift over time does not occur.

We assume that each gentoype is composed of m genetic loci. Each locus i is associated with a set of
alleles Ai composed of k + 1 alleles. A genotype is then formally a string g = a1 a2… am, such that ai [ Ai

for each 1≤ i≤m. Denote the collection of all possible genotypes by G.
At each time t, there is an adult population Pt composed of individuals, each of which bears a

genotype g∈ Γ. The sub-population of individuals bearing genotype g at time t is denoted Pt
g.

The adults in the population at time t reproduce (asexually, haploid sexually, or diploid sexually,
depending on the particular model being studied). After the adults in population Pt reproduce, an
offspring population Vt comes into existence. The sub-population of individuals bearing genotype g at
time t is denoted Vt

g.
Denote by dtg [ DðGÞ the weight or relative proportion of genotype g at time t in the offspring

population, i.e. the proportion of the set Vt
g in Vt. At the beginning of period t + 1, the adult

population Pt dies, and as the individuals in Vt attain maturity they form the adult population Ptþ1.
A selection fitness value wt

g [ ½0, 1� is associated with each genotype g at each time t. This is
interpreted as the probability that an offspring individual bearing genotype g in population Vt will
survive and attain reproductive maturity as an adult in population Ptþ1.

2.5. Asexual (clonal) reproduction model
In this model, at each time t, each individual in Pt

g produces ζ offspring (where ζ is a positive integer),
each of whom bears the same genotype g as its parent. The offspring thus produced in population Vt

then mature into the adults in population Ptþ1, subject to selection as determined by fvt
ggg[G.

The relevant state space of the dynamic is the simplex Δ(Γ). The mean fitness at time t is

�wt : ¼
X
g[G

dtgw
t
g: ð2:2Þ

In models in which wt
g is constant over time we may suppress the time denotation and simply write wg,

and hence �wt ¼Pg[G d
t
gwg.
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The dynamics of asexual reproduction are governed by the asexual replicator equation as the
equation of motion,

dtþ1
g ¼ dtg

wt
g

�wt : ð2:3Þ

This follows the schema of equation (2.1), with the fitness wt
g in the role of fi and �w corresponding to �f .

It will sometimes be convenient to express equation (2.3) generically as

dþg ¼ dg
wg

�w
, ð2:4Þ

suppressing reference to t when its value is clear from context. In general, throughout this paper, we will
write expressions such as x+ in place of the longer xt+1.

2.6. Haploid sexual reproduction model
This model will be central to much of the paper, hence we present its assumptions here in some detail.
We suppose a monoecious sexually reproducing haploid population, with panmictic mating occuring in
pairs. Initially, it will be supposed that there is no linkage between loci, i.e. each offspring at each locus
bears the allele of one of the parents at the corresponding locus with equal probability. This assumption
will be relaxed subsequently.

We will sometimes denote allele j at locus i by aij, where 1≤ i≤m and 1≤ j≤ k + 1, when convenient
without confusion by context. When it is important to distinguish the jth allele in locus i from the jth
allele at locus i0, we will explicitly write ai ji . Let Caiji

denote the collection of all possible genotypes
that contain aiji at the slot for locus i. Write Pt

aiji
: ¼ Sg[Caiji

Pt
g and Vt

aiji
: ¼ Sg[Caiji

Vt
g.

Denote by qtiji the allelic frequency of allele aiji at locus i at time t in population Vt, i.e. qtiji is the
proportion of Vt

aiji
in Vt. Call qti ¼ fqtijg1�j�kþ1 the allelic frequency distribution of locus i at t; this is an

element of a k-simplex, which we will denote Dk
i . The relevant phase space for studying the

evolutionary dynamic is then a polytope composed of an m-cross product of simplices:

Q : ¼ Dk
1 � � � � � Dk

m: ð2:5Þ
The topology for studying convergence is the product topology of the simplices regarded as manifolds.

Going from Δ(Γ) to Q is always possible, since we defined qtiji as the proportion of Vt
aiji

in Vt for each
aiji . Denote the mapping thus defined by r :DðGÞ ! Q.

For g ¼ a1j1a2j2 . . . amjm and an allelic frequency distribution qt [ Q denote

qtg ¼ qt1j1q
t
2j2 . . . q

t
mjm : ð2:6Þ

If dtg ¼ qtg for all g, a population is said to be in linkage equilibrium. When linkage equilibrium obtains,
the inverse mapping r�1 :Q ! DðGÞ is well-defined by applying equation (2.6). When we make use of
this inverse mapping, given x [ Q we will write [ρ−1(x)]g to stand for the gth component of ρ−1(x)∈ Δ(Γ).

The marginal fitness of allele aij at time t is defined as

wt
ij : ¼

X
g[Caij

wt
g

dtgP
g0[Caiji

dtg0
: ð2:7Þ

From the collection fwt
ijg1�j�kþ1, we furthermore can calculate the mean payoff for locus i, which is

�wt
i : ¼

Pkþ1
j¼1 q

t
ijw

t
ij. But this yields nothing new, because �wt

i ¼ �wt of equation (2.2) for all loci i.
The dynamic in this model is the haploid sexual replicator which can be shown to be

qtþ1
ij ¼ qtij

wt
ij

�wt , ð2:8Þ

and applies at every allele j of every locus i. This clearly follows the schema of equation (2.1) with wt
i here

in the role of ft in equation (2.1) and �wt
i as �f t. As before, it will sometimes be convenient to express

equation (2.8) generically as

qþij ¼ qij
wij

�w
, ð2:9Þ

suppressing reference to t when its value is clear from context.
The haploid sexual replicator dynamic maps points in Q to points in Q, and hence also maps points in

Dk
i to points in Dk

i under the projection from Q to Dk
i .



Table 2. Comparison of parallel notations used in this paper for game theoretic models and evolutionary reproduction models.

game notation evolution notation

action sets: A = A1,…, Am alleles: A = A1,…, Am
pure action profile: x = a1,…, am genotype: g = a1… am
mixed strategy profile: q allelic frequency distribution: q

payoff function: u fitness: w

potential/objective function: ϕ mean fitness: �w

royalsocietypublishing.org/journal/rsos
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2.6.1. Haploid reproduction as an identical interests game

In the fixed fitness case, the collection of fitness values {wg}g∈Γ can be regarded as defining an identical
interests game between the loci. Here, we essentially rewrite some of the previous sections in notation
that is more familiar from the game theory literature, and unite the analysis of haploid dynamics with
that of the dynamics of player strategies in repeated identical interests games when the players
implement the haploid sexual replicator equation, equation (2.8), in updating their strategies.

From the fixed fitness haploid model with polytope Q of alleles at the various loci, define an identical
interest game WQ as follows. Each locus i becomes a player i. The set of alleles of locus i becomes the
set of pure actions Ai of player i. For each profile of pure actions (a1,…, am)∈A1 × · · · ×Am, the payoff
wi(a1,…, am) =w(a1,…, am) to each player i is identical and defined to be

wða1, . . . , amÞ : ¼ wg,

where g = a1… am is the genotype defined by ai [ Ai for each i and wg is fitness payoff to genotype g.
Here qi [ Dk

i , which previously denoted the distribution of alleles in locus i, is interpreted as a mixed
strategy. The mean fitness �w is interpreted as �w ¼ wðq1, . . . , qmÞ, the expected payoff (to each player in
the game) when each player/locus i plays mixed strategy qi. The expected payoff/mean fitness �w plays
the role of the potential function in the identical interests game WQ.

Every potential game (and hence every identical interests game) admits at least one pure strategy
Nash equilibrium, namely the pure strategy profile yielding the highest potential payoff. The set of all
pure Nash equilibria is the set of local maxima of the potential. Denote this set of pure Nash
equilibria of WQ by NWQ

.
Each n [ NWQ

is by definition a profile of alleles (a1,…, am), one from each locus. Hence, it is naturally
associated with a particular genotype that we will denote gn [ G.

Note that if the set of mixed strategy profiles is restricted to a subset Q0 , Q, a different identical
interests game WQ0 is induced. The set of pure Nash equilibria of WQ0 may differ from the set of pure
Nash equilibria of WQ.

We may write qiaj as a synonym for qij when qi is the mixed strategy of i. We can write w(p; q−i) for the
expected payoff when locus i plays mixed strategy p while all the other loci play mixed strategy q−i. In a
special case, this notation becomes w(aj; q−i), standing for the expected payoff when pure action/allele
a j [ Ai is chosen at locus i while all the other loci play mixed strategy q−i; this is none other than the game
interpretation of the marginal fitness of allele aj [ Ai, which was above written as wij. Then for each i,

wðq1, . . . , qmÞ ¼
X
a‘[Ai

qia‘wða‘; q�iÞ:

Table 2 presents in summary form comparisons between parallel notations used for the game theoreticmodels
and the evolutionary reproduction models in this paper.
2.7. Diploid sexual reproduction model

2.7.1. One locus

In the single locus diploid model, with a set of alleles A, one needs to keep track of pairs of alleles,
aiaj [ A, which constitute the genotypes. We suppose no position effects and hence do not distinguish
between aiaj and ajai. Random mating is also assumed, hence Hardy–Weinberg ratios hold during the
mating phase (with selection then moving the adult population away from the Hardy–Weinberg ratios).
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Label the frequency of allele ai at time t by pti and the frequency of genotype aiaj by Pt
ij ¼ Pt

ji ¼ ptip
t
j .

Denote the fitness of genotype aiaj by Wt
ij ¼ Wt

ji, and the population mean fitness by

�Wt ¼
X
i,j

Pt
ijW

t
ij ¼

X
i

ðptiptiWt
ii þ

X
j=i

ptip
t
jW

t
ijÞ: ð2:10Þ

Define the marginal fitness of allele ai as

Wi ¼
X
j

piWij ¼ piWii þ
X
j=i

pjWij: ð2:11Þ

With all the preliminaries in place, the dynamic is once again defined by a straight-forward replicator
as the equation of motion

pþi ¼ pi
Wi
�W

, ð2:12Þ

for each allele.

2.7.2. Multiple loci

The multi-locus diploid model is complicated to describe; we omit most details and present only the
minimal notation needed for our purposes here.

As before we suppose that there are m loci with k + 1 alleles per locus. The state space is Dk
1 � � � � � Dk

m
and trajectories are elements ðp1, . . . , pmÞ [ Dk

1 � � � � � Dk
m.

Within each locus i, as in the single locus model, the alleles are between themselves playing at each
time period a symmetric potential game with a fitness Wt

ikil assigned to each pairing aik ail , where
aik , ail [ Ai. However, Wt

ikil is now a function not only of aik ail but of the entire profile p−i of the allelic
distributions of the other loci.

The standard analysis in the literature tracks the distribution of gametes (where each gamete is one
possible haploid half of a diploid genotype). Each gamete g can be assigned a marginal fitness Wg as a
function of the fitnesses of the pairings at each locus and the allelic frequency, and from this the mean
fitness �W of the population is calculated. Denoting the frequency of gamete g by rg, one can derive a
recursion formula that is reminiscent of, but not identical to, the replicator equation

rþg ¼ rg
Wg
�W

�Dg, ð2:13Þ

where Dg is the linkage disequilibrium for g. The existence of the disequilibrium term Dg means that the
diploid multi-locus dynamic is not a replicator dynamic, making the analysis of this dynamic different
from all the other models studied in this paper.
3. Multiplicative weights, potential games and virtual convergence
3.1. Regret minimization
The objective of many of the on-line learning algorithms developed in the literature in recent years is the
attainment of regret minimization. Let K , Rk be non-empty, bounded, compact and convex. At each
iteration time t, algorithm A selects an element xt [ K, while a concave function ‘t :K ! R is revealed.

The goal of the algorithm is to minimize the average regret over any n rounds, defined as

RnðAÞ : ¼
Xn
t¼1

‘tðx�Þ �
Xn
t¼1

‘tðxtÞ,

where x� [ arg maxx[K
Pn

t¼1 ‘tðxÞ. In other words, the objective is to have minimal regret relative
to having selected the best possible x� [ K from the start and playing x� in a fixed manner at every
time period.

An algorithm implements asymptotic regret minimization if its regret is sub-linear, i.e. RnðAÞ ¼ oðnÞ
as n→∞. When this holds

lim sup
n!1

1
n

Xn
t¼1

‘tðx�Þ � 1
n

Xn
t¼1

‘tðxtÞ � 0, ð3:1Þ
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where x� is the element of K with the optimal average payoff.2 In other words, the average
regret converges to zero in the limit and the payoff of the algorithm approaches that of having
selected the optimal in hindsight x� from the start and monotonically selecting only that point at
every iteration.

3.2. Multiplicative weights update algorithm
The multiplicative weights update algorithm comes in two flavours: a polynomial and exponential
version. In the polynomial version, d∈ Δk is mapped to d+∈ Δk, conditional on receipt of a given tuple
of real numbers (ℓ1,…, ℓk), by

dþi ¼ dið1þ h‘iÞP
j djð1þ h‘jÞ ð3:2Þ

for some η > 0. Dividing the numerator and denominator of equation (3.2) by η changes nothing, hence
equation (3.2) can be equivalently expressed as

dþi ¼ dið1=hþ ‘iÞP
j djð1=hþ ‘jÞ : ð3:3Þ

In the special case in which η→∞, sometimes called the parameter-free version of the algorithm (cf. [11]),
equation (3.3) becomes

dþi ¼ di‘iP
j dj‘j

¼ di
‘i
�‘
, ð3:4Þ

which is exactly the replicator equation. (In this section, as in others, the term dþi is written as
meaning dtþ1

i ).
The MWU dynamic determined by equation (3.2) can be given suggestive interpretations that relate it

conceptually both to regret minimization and Nash equilibria. Consider that under equation (3.2)
increases (respectively, decreases) the weight of di if ℓi is greater (respectively, less) than the mean
payoff

P
j djð1=hþ ‘jÞ. This can be interpreted as the algorithm ‘regretting’ that it previously gave

weight to the coordinates in Δk that yielded lower than average returns and correspondingly lowering
their weights relative to the others in a retrospective attempt to lessen the regret.

For another interpretation of equation (3.2), note that ℓi is greater than the mean payoff thenP
j djð1=hþ ‘jÞ if and only if deviating from the mixed weighted d∈ Δk to a distribution placing all the

support on the ith coordinate would yield a higher payoff than the expectation of d itself: an idea
very close in spirit to the reasoning behind the Nash equilibrium solution concept.

In its exponential version, the multiplicative weights update algorithm, also known as the
Hedge algorithm ([12])), maps d∈ Δk to d+∈ Δk, conditional on receipt of a given tuple of real
numbers (ℓ1,…, ℓk), by

dþi ¼ di � eh‘iP
j dj � eh‘j

ð3:5Þ

for some η > 0.
The replicator equation can also be shown to be a special case of the exponential algorithm ([13]) as

expressed in equation (2.1). The key is to register not the fitness payoffs at each time period but the
logarithms of the fitnesses: given a fitness tuple f = ( f1,…, fm), form the tuple (ℓ1,…, ℓm) by setting
ℓi = (1/η)ln( fi). Then apply equation (3.5):

dþi ¼ di � eh‘iP
j dj � eh‘j

¼ di � ehðð1=hÞ lnðfiÞÞP
j dj � ehðð1=hÞ lnðfjÞÞ

¼ di
fi
�f
:

It is well known in the literature that the multiplicative weights update algorithm attains regret
minimization. In the genetic context studied here, this translates into attaining asymptotic
average growth rates equal to that of having selected the optimal-in-hindsight genotype g� from
the start and hypothetically running history again with a population consisting solely of g� at every
time period.
2Strictly speaking we need to consider the lim sup in equation (3.1) because the limiting average payoff value might not be well
defined.
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Furthermore, since the haploid sexual reproductive strategy can be interpreted as an implementation
of the replicator independently in each locus, the interpretation of the replicator as an instantiation of the
multiplicative weights updating algorithm is applicable in several of the models in this paper,
beyond the asexual model.

Several papers studying the applicability of multiplicative weights updating algorithms to
evolutionary models have been published in recent years. A brief list of such papers includes [11,14–16].

3.3. Multiplicative weights and Baum–Eagon
It is instructive to compare the multiplicative weights updating algorithm, especially in its parameter-free
version:

qþi ¼ qi
‘i
�‘
,

and Baum–Eagon updating (as in equation (A 1))

qþij : ¼ qij
@U=@qijP

s qisð@U=@qisÞ :

From the perspective of each Δi, the Baum–Eagon updating is a special case of the multiplicative weights
updating algorithm in which the payoff ℓij is given as the partial derivative of a potential function Uwith
respect to qij. This perspective will have a significant role here, as many of the dynamics that will be
studied benefit both from the monotonic potential increase afforded by the Baum–Eagon Theorem
and the regret-minimization given by the multiplicative weights algorithm aspect.

3.4. Convergence in potential games
The content of the following theorem is technically equivalent to a theorem in [3] (see also [17]), which is
expressed and proved there in the context of congestion games. We present it here with a full proof for
two reasons: (a) an independent proof for potential games is of value; (b) the proof here can readily be
understood in the context of reproductive strategies, such as haploid sexual reproduction, given the
interpretation of such strategies as implementing the multiplicative weights updating algorithm, as
described in §3.2, in the context of a potential game between loci, with alleles in the role of pure
actions, as described in §2.6.1.

Theorem 3.1. Suppose that each of a finite set of players playing a potential game implements the polynomial
multiplicative weights update algorithm at discrete time periods to update his mixed strategy, starting from a mixed
strategy of full support.

Then the strategy profile of the players will converge to a fixed point that is a Nash equilibrium.

Theorem 3.1 is a stronger result than may appear at first glance, because there is no explicit
coordinating element between the players that is assumed. To see why this may be surprising,
consider the following extremely simple 2 × 2 game, which is an identical interests game (and hence a
potential game):

S B
S ð2, 2Þ ð0, 0Þ
B ð0, 0Þ ð1, 1Þ

One may interpret this as a coordination game between a couple, who wish to meet. If they are both at
the symphony hall (action profile (S, S)) they each receive a payoff of 2; if they are both at the beach
(action profile (B, B)) they each receive a payoff of 1; otherwise they fail to meet and receive zero
payoff. Suppose that both players simultaneously implement a simple-minded best reply strategy,
beginning at action profile (S, B). Then in the next time period, the action profile will be (B, S),
followed by (S, B) etc. Lacking a coordinating element, no convergence to a fixed point is attained.

By contrast, theorem 3.1 does guarantee convergence under the multiplicative weights update
algorithm, even though there is no coordination between the players and each player updates his or
her mixed strategy from one time period to the next entirely independently of the other players. It is
as if coordination is attained ‘for free’. This result is attained by virtue of the Baum–Eagon Theorem,
which underlies the proof of the theorem and guarantees that, despite the lack of coordination, a
monotonic climb up the potential of the game ensues at each time period.



royalsocietypublishing.org/journal/rsos
R.Soc.Op

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 S

ep
te

m
be

r 
20

21
 

3.5. Virtual convergence
Let Q : ¼ Dk

1 � � � � � Dk
m be a polytope, with T :Q ! Q a transformation.

We will say that the dynamic defined by T converges polymorphically if for each initial point x [ Q

there is a point y [ Q such that lim n→∞ Tn(x) = y. In the special case that for each x the limit y =
limn→∞ Tn(x) = (q1,…, qm) satisfies the condition that qi is a point distribution in Dk

i for each 1≤ i≤m,
the dynamic converges monomorphically.

Suppose now that a linear fitness function ‘t :Q ! R is revealed for each time t. For an initial point
x [ Q, denote xn : = Tn(x), with T0(x) = x. We will say that the dynamic defined by T virtually converges
polymorphically if for any sequence ℓ1, ℓ2,… of payoffs and any initial point x [ Q, there is a point
y� [ Q such that

lim sup
n!1

1
n

Xn
t¼1

‘tðy�Þ � 1
n

Xn
t¼1

‘tðxtÞ
�����

����� ¼ 0:

In the special case that virtual convergence is to a y� that is a point distribution in Dk
i for each 1≤ i≤m, we

say that virtual monomorphic convergence obtains.
en
Sci.8:210309
4. Asexual (clonal) reproduction
The dynamics of frequency independent asexual reproduction without mutation is perhaps the simplest
of evolutionary dynamics—essentially ‘bacteria in a Petri dish’. Despite the apparent simplicity, there is
much to be said here that will also have implications for the analysis presented in later sections.
4.1. Fixed fitness
We suppose here a fixed fitness value wg for each genotype at each time period, generically with a
genotype g� ∈ Γ whose fitness wg� is maximal among the genotypes. There are several ways to analyse
this; in the spirit of this paper, we may regard this dynamic as a single-player potential game. In this
interpretation, there is one player whose mixed strategy at time t is a probability measure dt∈ Δ(Γ)
over the genotypes in Γ. The expected payoff is

P
g[G d

t
gwg. Theorem 3.1 then implies convergence to

a fixed point in Δ(Γ).
Alternatively, we may directly apply the Baum–Eagon Theorem. The dynamics are governed by the

asexual replicator equation,

dþg ¼ dg
wg

�w
: ð4:1Þ

Since �w ¼Pg[G dgwg, it follows that @ �w=@dg ¼ wg, hence equation (4.1) is an application of the Baum–
Eagon transformation as expressed in equation (A 1). (As before, dþi means dtþ1

i .)
Denote by T0 : Δ(Γ)→ Δ(Γ) the transformation that defines d+ = T0(d ) by mapping dg to dþg for each g

according to equation (4.1). Since the population mean fitness is increasing monotonically, limn!1 Tn
0 ðdÞ

for any starting distribution d∈ Δ(Γ) converges to a point in Δ1(Γ), i.e. a fixed point that is a point
distribution, since the only fixed points of equation (4.1) are point distributions. All the weight is
asymptotically on 1g�, where g� is the genotype of maximal fitness.

This implies that the interior of the simplex Δ(Γ) forms a global exponentially stable basin of
attraction. If, by contrast, the initial point lies within a strict subface F, Δ(Γ), then the convergence
will again be to a monomorphic population whose genotype is the genotype of maximal fitness
within F. This will clearly be sub-optimal if g� � F.
4.2. Temporally varying fitness
The fixed fitness setting of asexual reproduction is the simplest evolutionary model, yielding perhaps the
strongest result that can be expected, of monotonic and rapid fitness increase towards convergent fixation
to the globally optimal genotype. This satisfactory result, however, may not necessarily obtain if fitnesses
are no longer fixed in time.

In a temporally varying fitness model, we suppose that there is a collection of possible environments
V, such that each v [ V determines a fitness landscape such that each genotype g is assigned a fitness
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value wg(ω) under ω. At each time t one environment ω from V is selected, with the payoff to the
genotypes registered in accordance to the fitness landscape of that environment.

A simple hill climbing dynamic cannot be applicable here because there is a different ‘hill’ (i.e. fitness
gradient derived from the environment) at each time period; the trajectory under the transformation T0 will
no longer be monotonically increasing in mean fitness. Despite this, the replicator algorithm does an
excellent job at learning, even under conditions of temporally varying fitness. This can be seen in severalways.

Consider first a discrete i.i.d. model in which there is a probability measure μ over V determining the
selection of the environment at each time period, repeated indefinitely. This determines for each
genotype g an expected fitness payoff under μ. An optimal population will (generically) be composed
of the genotype with maximal expected fitness payoff, and the replicator reliably identifies this
genotype. More generally:

Proposition 4.1. Let ðV, B, mÞ be a probability space over a collection V of environments. For each genotype
g∈ Γ, define a random variable wg(ω)∈ [0, 1], interpreted as the fitness of g under environment v [ V, from
which the expected fitness is given as Eðwg j mÞ ¼

Ð
V wgðvÞdmðvÞ.

Let S :V ! V be a stationary and ergodic transformation defining a stochastic process for each g by
wt

gðvÞ ¼ wgðStðvÞÞ. Then under the asexual replicator dynamic, with probability one the population
asymptotically converges to a monomorphic population consisting of the genotype with maximal expected fitness.

Proposition 4.1 indicates that when there is sufficient structure to the stochastic process of the varying
environments, at least as expressed in stationary ergodicity (which include i.i.d. as a special case), the
replicator dynamic will be able to extract the information inherent in the process to identify the
optimal genotype and converge to that genotype, from any initial population state (that at least
minimally includes the optimal genotype).

From here one can ask what happens when the stochastic process of varying environments can be
any process at all. It is not difficult to conjure examples of temporally varying environments that do
not admit convergence to a single genotype. For example, let

wt
g ¼ e1=2 for t � 100 mod 200

e1=3 for t . 100 mod 200

�

and

wt
h ¼ e1=3 for t � 100 mod 200

e1=2 for t . 100 mod 200

�

Then clearly both lim infð1=TÞPT
t¼1 lnw

t
g , lim supð1=TÞPT

t¼1 lnw
t
h and lim infð1=TÞPT

t¼1
lnwt

h , lim supð1=TÞPT
t¼1 lnw

t
g. When one genotype is strong the other is weak, each temporarily

overtaking the other only to fall back later.
Nevertheless, it is possible to extend proposition 4.1 to much more general environments using

the notion of one-step-ahead expected log-fitness. The one-step ahead expected log-fitness is the expected
log-fitness of a generation conditional on the past generations.

Definition 4.2. Let ðV, B, mÞ be a probability space over a collection V of environments and let (ψt)t≥1
be a stochastic process of environments relative to ðV, B, mÞ. For each genotype g∈ Γ, define a process by
wct

g ¼ wgðctÞ, interpreted as the fitness of g under environmental process ψt. Let r
g
t ¼ lnwct

g denote the
log-fitness; assume that rgt is always bounded.

We will call r̂gt ¼ ð1=tÞPt
s¼1 E½rgsþ1jrgs , . . . , rg1� the average one-step-ahead expected log-fitness of g at t.

Definition 4.3. A genotype g is asymptotically one-step-ahead superior on average if
lim inft!1r̂

g
t . lim supt!1r̂

h
t with probability one for all genotypes h∈ Γ with h≠ g.

Theorem 4.4. If a genotype g∈ Γ is asymptotically one-step-ahead superior on average then, under the
asexual replicator dynamic, with probability one the population asymptotically converges to a monomorphic
population consisting of the genotype g.

It is worthwhile noting here that in the case of an ergodic environment, lim inft!1r̂
g
t and lim supt!1r̂

g
t

are one and the same and equal to the constant E[lnwg] almost surely. Thus the sufficient condition
established in theorem 4.4, namely asymptotic one-step-ahead superiority, is reduced to E[lnwg] > E[lnwh].

The statement of theorem 4.4 supposes that genotype g is asymptotically one-step-ahead superior on
average with probability one with respect to all environments. Suppose instead that a genotype g is
asymptotically one-step-ahead superior on average only with respect to a subset A1

g of the collection
of environments. Then we obtain the following corollary.
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Corollary 4.5. If PrðA1
g Þ . 0, where A1

g is the set of environments in which genotype g is asymptotically
one-step-ahead superior on average, then under the asexual replicator dynamic, with probability one in A1

g the
population asymptotically converges to a monomorphic population consisting of the genotype g.

Algorithms such as the multiplicative weights and mirror ascent algorithms have been developed in
the computer science literature in recent years for the sake of optimization under conditions of no
statistical structure. The replicator dynamic, it turns out, exploits the results afforded by these algorithms.

Theorem 4.6. Under the replicator dynamic, for any arbitrary temporally varying fitness there is an optimal-
in-hindsight genotype g� such that for any initial point in the interior of the simplex, asexual reproduction virtually
converges monmorphically to g�.

In summary, we interpret the results of this section from a learning perspective: the objective is to
learn which genotype is best fit for the environment process, via the algorithmic tool of the replicator.

When the environment is fixed, the replicator homes in on the objectively fittest genotype. When the
environment process is sufficiently structured, as in a stationary ergodic process, the replicator makes
use of time averaging to identify a winning genotype. Failing that, in the worst case in which there is
insufficient structure for predictive learning, the replicator still manages to extract information, by
application of regret minimization via the multiplicative weights updating algorithm; virtual convergence
occurs in the sense that one can imagine a population which from the start consisted of only the
optimal-in-hindsight genotype and attaining the same asymptotic average growth rate as actually attained.
210309
5. Haploid sexual reproduction
5.1. Fixed fitness
In this section, the population will be presumed to reproduce via haploid sexual reproduction under a
fitness landscape {wg}g∈Γ that is fixed throughout time.

5.1.1. Under linkage equilibrium

Under linkage equilibrium, in population Vt
g the equation dtg ¼ qt1j1q

t
2j2 . . . q

t
mjm holds for each genotype

g ¼ a1j1a2j2 . . . amjm . As Vt
g matures into Ptþ1

g , selection applies such that linkage equilibrium does not
hold for Ptþ1

g ; however, by assumption random mating between the reproducing adults in Ptþ1
g

immediately restores linkage equilibrium in the next offspring generation Vtþ1
g .

One advantage of working with an assumption of linkage equilibrium is that we may identify in a
bijective manner a point in the allelic frequency space Q and a corresponding point in the genotypic
frequency space Δ(Γ). We shall freely do so in this section as follows.

Recalling the haploid sexual replicator,

qþiji ¼ qiji
wiji

�w
, ð5:1Þ

define t :Q ! Q to be the transformation given by the mapping of qij to qþij for each locus i and allele j in i.
Exploiting the linkage equilibrium assumption, define a transformation T1 : Δ(Γ)→ Δ(Γ) by

T1ðdÞ ¼ r�1 � t � rðdÞ: ð5:2Þ

Abusing terminology, we will call both τ and T1 haploid sexual replicator transformations. This
enables us to analyse the dynamics equally well under either T1 or τ; both define discrete dynamical
systems determining trajectory paths in Δ(Γ) or in Q, respectively.

The Baum–Eagon inequality applies here with respect to the haploid reproduction dynamic, hence it
follows immediately that mean fitness increases monotonically until a fixed point of the dynamic is
attained.3 The domain is the polytope Q as defined in equation (2.5).

Lemma 5.1. The haploid sexual replicator transformation (under linkage equilibrium and without genetic
linkage between loci) satisfies the Baum–Eagon inequality, with mean fitness �w as a Lyapunov function.

It follows that the population will asymptotically converge to a fixed point of the dynamics defined
by the transformation T1 along paths of monotonically increasing mean fitness. In fact, a stronger
3This result is actually mentioned, without a detailed proof, all the way back in the original paper by Baum & Eagon [4].
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statement can be made: assuming that the Nash equilibria of the associated game are isolated (which is
true generically), convergence will not only be to a fixed point, it will be to a Nash equilibrium (which is
a strict subset of the set of fixed points).4

Theorem 5.2. Under haploid recombinative sexual reproduction (under linkage equilibrium and without
genetic linkage between loci), trajectories almost always increase mean fitness monotonically.

Beginning from almost any interior point of Δ(Γ) the haploid sexual replicator dynamic converges asymptotically
to a monomorphic population in which each individual bears a genotype gn from the set NWQ

of pure Nash
equilibria of the associated potential game WQ.

Corollary 5.3. If the initial point of the allelic frequency of the population lies in any face Q0 of Q then the
dynamic converges asymptotically to a monomorphic population consisting of genotypes from the set of pure
Nash equilibria of the associated potential game W 0

Q.

There are immediate interesting implications of theorem 5.2. One of these is that Δ(Γ) is entirely
partitioned into asymptotically stable basins of attraction (deterministically in this model).

Theorem 5.4. For each pure Nash equilibrium n [ NWQ
, there exists Bν , Δ(Γ) containing 1gn [ D1ðGÞ

such that starting from any initial point in Bν the population under the dynamic will converge to a
monomorphic population consisting solely of genotype gn, i.e. Tn

1 ðxÞ �! 1gn for every x∈ Bν. Apart from
separatrices between these basins of attraction, which are of negligible measure, the sets in the collection {Bν}
form a partition of Δ(Γ).

Even more than that can be said here. By theorem 6 of [2], any transformation of the form defined in
equation (A 1) increases U-homotopically, from which it follows that the haploid sexual replicator
transformation T1 : Δ(Γ)→ Δ(Γ) increases �w-homotopically.

Proposition 5.5. Let St(x) = tT1(x) + (1− t)x. For each pure Nash equilibrium n [ NWQ
, there exists a

neighbourhood Hν , Δ(Γ) of 1gn such that St(Hν) , Hν for 0 < t≤ 1, and for every x∈Hν, Tn
1 ðxÞ �! 1gn .

Furthermore, each Hν has the homotopy type of a disk.

The significance of the ‘basin ofhomotopic attraction’Hνofproposition5.5 is that not onlydoes everypoint
x∈Hν converge to gn under the dynamic, also a small perturbation of around x preserves this property. By
contrast, around any pure strategy point that is neither a local maximum or a local minimum there are
points such that a small perturbation can lead to asymptotic convergence to different fixed points.

Finally:

Proposition 5.6. For each pure Nash equilibrium n [ NWQ
, there exists a neighbourhood Eν , Δ(Γ) of 1gn

that is an exponentially stable basin of attraction.

Within the exponentially stable basin of attraction around a Nash equilibrium, the haploid sexual
replicator dynamics resembles the asexual replicator dynamics, with exponential convergence to an
equilibrium point.

The containment relations are 1gn [ En # Hn # Bn. This implies that an observer following a trajectory
starting in Bν far from gn will likely initially see a slow and moderate increase in mean fitness, with broad
polymorphism, for a long time, but once the trajectory enters Eν suddenly an extremely fast rise in mean
fitness will be registered along with rapid convergence to a monomorphic population.

5.1.2. Under genetic linkage between loci

Genetic linkage in this section means physical linkage between loci: in the context of haploid
reproduction, this means that an offspring zygote might inherit a pair (or more) of alleles from one of
the parents as a package, in contrast to an assumption of independent inheritance with probability 0.5
from each parent at each locus.

The term linkage disequilibrium refers to a population genotype distribution that does not equal the
cross product of the marginal distribution as reflected in the allelic distribution. We note that in the game
theoretic terms that we have been applying throughout to the study of genetic reproduction, linkage
equilibrium corresponds to independent strategy selection of each player, while linkage disequilibrium
corresponds to dependencies in the selection of strategies.
4This important point, that convergence is to a Nash equilibrium and not only to the set of fixed points of the dynamic (which actually
includes any distribution with support on one genotype), seems to be missing from several accounts in the literature applying the
Baum–Eagon inequality in the evolutionary setting. See for example [5, Appendix B], [6, p. 47] and [7, p. 34].
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We initially present an analysis of the haploid sexual replicator under genetic linkage between loci in
the case of two loci, for clarity of exposition.

Let r∈ [0, 1] be the recombination rate. Suppose one starts with a point d∈ Δ(Γ) representing the
population distribution. Project d to Q via θ = ρ(d ). Under the asexual replicator d is mapped to T0(d ),
and under the haploid replicator θ is mapped to τ(θ). Then the replicator equation under
recombination rate r is

dþ ¼ r½r�1ðtðuÞÞ� þ ð1� rÞaðdÞ
or, using the transformation T1 defined in equation (5.2),

dþ ¼ rT1ðdÞ þ ð1� rÞT0ðdÞ: ð5:3Þ
We may denote by Tr the transformation defined by equation (5.3) which is consistent with our labelling
of T1 and T0. When r≠ 1, genetic linkage between the loci occurs.

The recombination rate r is intended to describe a situation in which each offspring is produced by sexual
recombination with probability r and is produced by asexual cloning with probability 1− r. This results in an
offspring population, such that within that population, a weight r of the offspring is descended from a sexual
reproduction event and weight 1− r is descended from an asexual reproduction event.

We may instead consider the following situation, which is mathematically equivalent and more
convenient for our purposes: create two separate copies P0 and P1 of the reproducing population P,
maintaining the genotype frequencies of the original population in each copy, with relative population
size proportions jP1j=jP0j ¼ r=ð1� rÞ. Let P0 reproduce asexually to produce offspring population V0

and P1 reproduce haploid sexually to produce offspring population V1, finally combining them into
V ¼ V0 <V1 and regarding the genotypic frequency of V.

Slightly more generally, select fraction r of the population at random to reproduce by the haploid
sexual transformation, with the remaining 1− r of the population reproducing by the asexual
transformation. All of these alternatives result in an offspring population with weight r descending
from a sexual reproduction event and weight 1− r descending from an asexual reproduction event,
which is what is relevant.

Proposition 5.7. In a population starting at an initial point in linkage equilibrium, under two-locus haploid
recombinative sexual reproduction with recombination rate r, trajectories always increase mean fitness monotonically.

Beginning from any such interior point of Δ(Γ) the haploid sexual replicator dynamic converges asymptotically to a
monomorphic population in which each individual bears a genotype gn from the set NWQ

of pure Nash equilibria of the
associated potential game WQ.

In greater generality, suppose that there are m loci. Let λ be a partition of {1,…, m} into ℓ≤m partition
elements. An individual will be of λ-type if, when reproducing, the genes of that individual undergo
physical genetic linkage according to λ. In other words, if two λ-type individuals I1 and I2 mate and
produce an offspring O, then for each partition element �l of λ, all the alleles in the loci included in �l

in the genotype of O will be identical to either the alleles of �l in the genotype of I1 or the alleles of �l
in the genotype of I2, with equal probability. If the entire population reproduces in this way, denote
the resulting transformation from Δ(Γ) to Δ(Γ) by Tl.

If λ is the coarsest partition, consisting of only one partition element, this describes asexual
reproduction. For any other partition, λ-type reproduction with 1 < ℓ≤m partition elements reduces to
haploid sexual reproduction: simply regard the ℓ partition elements as ℓ independent loci. If λ is the
finest partition, in which each locus is its own partition element, this describes haploid sexual
reproduction under independence of inheritance at each locus.

Let L be the set of all partitions of {1,…, m}. For each l [ L let rl [ ½0, 1�, such that
P

l[L rl ¼ 1.
Interpret rl as the probability that an offspring is produced by physical genetic linkage in accordance
with partition λ. Mathematically, this is equivalent to selecting at random at each generation, for each
l [ L, a fraction rl of the population which reproduces by λ-type reproduction.

The resulting frlgl[L-tuple replicator equation is

dþ ¼
X
l[L

rlTlðdÞ: ð5:4Þ

Theorem 5.8. In a population starting at an initial point in linkage equilibrium, under m-locus haploid
recombinative sexual reproduction with recombination tuple frlgl[L, trajectories always increase mean fitness
monotonically.



Table 3. Two examples of fitness matrices for haploid reproduction with two loci and three alleles per locus.

a21 a22 a23

a11 wa11 ,a21 ¼ 0:40 wa11 ,a22 ¼ 0:60 wa11 ,a23 ¼ 0:80

a12 wa12 ,a21 ¼ 0:48 wa12 ,a22 ¼ 0:55 wa12 ,a23 ¼ 0:75

a13 wa13 ,a21 ¼ 0:20 wa13 ,a22 ¼ 0:51 wa13 ,a23 ¼ 0:70

a21 a22 a23

a11 wa11 ,a21 ¼ 0:40 wa11 ,a22 ¼ 0:48 wa11 ,a23 ¼ 0:20

a12 wa12 ,a21 ¼ 0:60 wa12 ,a22 ¼ 0:55 wa12 ,a23 ¼ 0:51

a13 wa13 ,a21 ¼ 0:80 wa13 ,a22 ¼ 0:75 wa13 ,a23 ¼ 0:70
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Beginning from any such interior point of Δ(Γ) the haploid sexual replicator dynamic converges asymptotically
to a monomorphic population in which each individual bears a genotype gn from the set NWQ

of pure Nash
equilibria of the associated potential game WQ.

The conclusion is that whether or not there is genetic linkage, in haploid sexual reproduction mean
fitness increases monotonically and the population always converges to a monomorphic population
corresponding to a pure Nash equilibrium of the potential game (this statement also holds true for
asexual reproduction, since the equilibrium of maximal mean fitness is itself a pure Nash equilibrium
of the potential game). Results similar to those in theorem 5.4 and proposition 5.5 also attain whether
or not there is genetic linkage, with sensitivity to initial conditions as before.

However, although under any genetic linkage structure convergence to some pure Nash equilibrium
occurs, the probability of converging to any particular pure Nash equilibrium, starting from the same
initial allelic distribution, differs from one linkage structure to another. The same initial point can
converge to different equilibria points depending on the linkage structure (as can be seen for example
in the extreme case of no recombination, under which convergence will always be to the asexual
globally optimal fitness equilibrium.)
5.1.3. External and internal environments

Let E be a collection of possible environments. Each e [ E determines a fitness landscape in the sense that
e is identified with an identical interests game We played by the loci, relative to a fixed allelic frequency
space Q.

In this section, we will make a distinction between what we term the ‘external environment’ and the
‘internal environment’. The external environment is the realization e1, e2,…, et,… and the corresponding
We1 , We2 , . . . , Wet , . . .. Parallel to this, we may take the perspective of any particular locus i. From
this perspective, the alleles in locus i are among themselves implementing an asexual replicator
dynamic as follows. Let ðqt1, . . . , qtmÞ denote the profile of allelic frequencies over time. At time t, the
identical interests game is Wet , and we may write the time t growth rate as the stage t game payoff
wetðq1, . . . , qmÞ. Let qt�i ¼ ðqt1, . . . , qti�1, q

t
iþ1, . . . , q

t
mÞ denote the profile of the m− 1 loci apart from i.

Call the sequence ðq1�i, q
2
�i, . . .Þ the internal environment from the perspective of locus i.

Define the total environment from the perspective of locus i at time t to be wetð�; qt�iÞ, meaning that each
choice of qi∈ Δ(Ai) yields the payoff wetðqi; q�iÞ. In this way, we may reduce the dynamic of each locus to
the asexual replicator, with the alleles in locus i implementing the asexual dynamic with respect to the
total environment from their perspective.
5.1.4. Virtual convergence

Table 3 presents examples of two fitness matrices with two loci and three alleles per locus. One may interpret
these as representing a population that is exposed to two possible environments, one per matrix, where the
top is interpreted as a ‘rainy year’ environment and the bottom one is a ‘drought year’ environment.

The top matrix has one pure Nash equilibrium, at (a11, a23), and the bottom matrix similarly one at (a13,
a21). It is possible, however, for an environment realization to create a trajectory that almost always remains
extremely close to points that are not Nash equilibria—even though from the perspective of both matrices
there is a repulsion from those points. For example, there can be a trajectory that begins close to (a13, a21) and
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remains there under an alternating realization, rainyoneyear anddrought the next. This is because although
at each time period the single period dynamic pushes away from (a13, a21), the directions of push away from
that point are nearly opposite, hence the trajectory never wanders far.

Alternatively, it is possible to imagine environment realizations in which very long stretches of one
environment bring the population very nearly to convergence to (a11, a23), followed by equally long
stretches subsequently driving the population very nearly to convergence to (a13, a21), repeated
periodically in such a way that there is no candidate even for ‘near convergence’. These simple examples
indicate that the behaviour under time varying fitness can be complex and highly dependent on initial
conditions and random realizations. Nevertheless, we can state the following theorem on virtual
convergence. The intuition behind it is that even when the external and internal environments change
upredictably, from the perspective of each individual locus the internal alleles are implementing the
simple replicator equation, hence each locus experiences virtual convergence.

Theorem 5.9. The haploid sexually reproducing dynamic virtually converges monomorphically under any
environment realization.

Note that although the result of theorem 5.9 guarantees virtual monomorphic convergence under
every environment realization, different realizations can lead to different virtual growth rates. If the
external environment process is sufficiently regular, however, then every realization will lead to the
same virtual convergence, even though the corresponding internal environment process may not
follow parallel regularity.

Proposition 5.10. If the external environment follows a stationary and ergodic stochastic process then every
environment realization leads to the same virtual monomorphic growth rate.
6. Diploid sexual reproduction
6.1. Single locus model

6.1.1. Fixed fitness

The diploid sexual reproduction in the single locus model is extremely similar to the haploid two locus
model, which enables many of the results from haploid sexual reproduction to be carried over almost
entirely (and arguably relatively simply, since the parallel is to two loci and not m loci) but for one
very significant difference: where in the haploid two locus model fitness is represented by a potential
matrix with a separate set of alleles for the row player and the column player (corresponding to
different alleles in the different loci), in the single locus diploid model the same alleles appear as both
row players and column players in the matrix.

The state space is the allelic frequency space Q ¼ DðAÞ, with the trajectories in Δ(A) recursively
following the replicator equation. The fitness landscape5 determined by fitness Wij corresponding to
gamete aiaj, denoted here as before by WQ is a symmetric matrix.

Dynamics with respect to symmetric matrices have long been studied in the literature of
evolutionary game theory. The parallels are clear: both the diploid single locus and the population
dynamic cases can be thought of as a single player game, in which the player selects a mixed strategy
(e.g. the ratio of hawks to doves in the population, or the ratio of allele A to allele B), receives an
expected payoff, and in the next time period updates the mixed strategy in accordance with a
replicator equation. In the evolutionary game theory literature, it is well known that such a dynamic
leads to convergence to evolutionarily stable Nash equilibria, which may be either pure or mixed
Nash equilibria.

In comparison with the haploid sexual model, the significant new element is, of course, the possibility
of convergence to mixed Nash equilibria. One possible evolutionary advantage of maintaining mixed
equilibria versus convergence to pure equilibria is that mixed equilibria may be similar to constantly
re-balanced portfolios in investment theory; it is well known that re-balanced portfolios (analogous to
mixed equilibria) can significantly outperform single stock portfolios (analogous to pure equilibria).

There is one major difference between the dynamics of the diploid sexual reproduction and the
population dynamics of a typical evolutionary game theory model. In the fixed fitness/matrix setting,
evolutionary game theory models can frequently exhibit cyclic or chaotic trajectories that never
5We assume here that there are no position effects.
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converge. By contrast, diploid single locus dynamic trajectories are generically monotonically increasing
in mean fitness and converge, to either a stable monomorphic population (pure Nash equilibrium) or a
stable polymorphic population (mixed Nash equilibrium).

This is because the diploid single locus dynamic follows the Baum–Eagon inequality, montonically
increasing in mean fitness. Theorem 3.1 is not directly applicable here, because of the nonlinearity in
the payoffs to the players with respect to the payoff matrix. One can instead show directly from the
equations of motion that the Baum–Eagon inequality holds. This result is known in the literature (e.g.
[6]); we reproduce it here for completeness.

Recall that by equation (2.11), Wi ¼
P

j piWij and that by equation (2.10), �W ¼Piðp2i WiiþP
j=i pipjWijÞ. Calculating the partial derivative, @ �W=@pi ¼ 2piWii þ

P
j=i 2pjWij ¼ 2ðpiWii þ

P
j=i pjWijÞ

(taking into account the fact that i will appear both in Wij and Wji for each j).
It follows that

P
j pið@Wi=@piÞ ¼ 2ðPiðp2i Wii þ

P
j=i p

t
ip

t
jWijÞÞ ¼ 2 �W . Hence

pi
@ �W=@piP

j pjð@ �W=@pjÞ
¼ pi

2ðpiWii þ
P

j=i pjWijÞ
2 �W

¼ pi
2Wi

2 �W
¼ pi

Wi
�W

¼ pþi ,

with the last equality following equation (2.12). Hence the Baum–Eagon Theorem applies to the dynamic
in Δ(A) and one concludes that in the single locus diploid sexual reproduction dynamic fitness
monotonically increases until a local maximum is attained.

The upshot is that, apart from the possible convergence to stable polymorphism when mixed strategies
are the end result of the dynamic, the diploid single locus model parallels the haploid two-locus model in
the crucial aspects of monotonic Baum–Eagon mean fitness increase while following a replicator recursion.
This enables us to adapt many of the results from the haploid analysis to the diploid model.

Theorem 6.1. In the diploid single-locus model, for each ESS equilibrium ν, there exists Bν , Δ(Γ) containing
1gn such that starting from any initial point in Bν the population under the dynamic will converge to a monomorphic
population consisting solely of genotype gn, i.e. Tn

1 ðxÞ �! 1gn for every x∈ Bν. Apart from separatrices between these
basins of attraction, which are of negligible measure, the sets in the collection {Bν} form a partition of Δ(Γ).

Proposition 6.2. Let St(x) = tT1(x) + (1− t)x. In the diploid single-locus model, for each ESS equilibrium ν,
there exists a neighbourhood Hν , Δ(Γ) of 1gn such that St(Hν) , Hν for 0 < t≤ 1, and for every x∈Hν,
Tn
1 ðxÞ �! gn. Furthermore, each Hν has the homotopy type of a disk.

6.1.2. Temporally variable fitness

The time varying fitness results of the haploid two-locus model similarly carry over to the diploid single-
locus model.

Theorem 6.3. The single-locus diploid sexually reproducing dynamic under varying fitness environments
virtually converges polymorphically under any environment realization.

6.2. Multiple locus model
The diploid multi-locus model under linkage equilibrium re-capitulates the diploid single locus model at
every locus. Hence the results of the previous section apply without changes.

Many of the tools of the previous sections fail to apply in the diploid multi-locus model under linkage
disequilibrium. The main equation of motion, equation (2.13), is similar to but not quite a replicator
equation. More to the point, the presence of the disequilibrium term causes the dynamic to fail to
conform to the Baum–Eagon conditions. Hence the Baum–Eagon theorem, even under fixed fitness,
cannot be used to conclude that monotonic fitness increase occurs; indeed, it has long been known
that there are examples of fitness landscapes in which diploid populations can exhibit reductions in
mean fitness over stretches of time and even periodically cycling trajectories. This leaves no possibility
for a general theorem on either monomorphic or polymorphic convergence.

However, virtual convergence (possibly polymorphic), which does not depend on monotonic fitness
increase, does obtain here under both fixed and temporally varying fitness. The proof is essentially the
same as the proof of haploid virtual convergence (theorem 5.9) under temporally varying fitness. As
before, we suppose a choice of environment realization e1, e2,… from a set of possible environments,
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and distinguish between the external environment, represented by such a realization, and the internal
environment perceived by a locus i, which is the allelic frequencies of the other loci at any time t.

Theorem 6.4. The multi-locus diploid sexually reproducing dynamic virtually converges polymorphically
under any environment realization.
typublishing.org/journal/rsos
R.Soc.Open

Sci.8:210309
7. Conclusion
There are two main themes in what has been shown in this paper: (1) when environments are fixed, the
monotonic climb of payoff values towards pure Nash equilibrium convergence in potential games under
independent application of the MWU algorithm is exploited by evolutionary reproduction in several of its
versions: asexual, haploid sexual, and single-locus diploid; (2) when environments vary, these
evolutionary reproduction algorithms asymptotically approach what we have termed virtual convergence,
under which they attain the best outcome that they could have attained in hindsight by implementing a
pure strategy (furthermore, in the haploid sexual case all these obtain even under genetic linkage).

These results shed light on the mechanisms used by evolutionary processes to attain near optimal
growth rates, providing a unified mathematical framework for understanding some known results on
fixed environment convergence in the asexual, haploid sexual and single-locus diploid sexual
reproduction models while also presenting novel results for both fixed and varying environment
population genetics models.

We have also proved several results that provide details regarding the topological structure of the
trajectories and basins of attraction of the haploid sexual reproduction model. We leave to future
research the possible use of these insights into the role of mutations.
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Appendix A. Baum–Eagon dynamics
We make use extensive use here of the Baum–Eagon inequality (originally developed for the study of
hidden Markov models by use of the Baum–Welch algorithm). The concepts and results in this section
are from [4] and [2]. A brief exposition on the Baum–Eagon inequality with applications to population
genetics appears in [6].
A.1. Baum–Eagon inequality

Let Q be a polytope given by a cross product of simplices,6 i.e. Q : ¼ Dk
1 � � � � � Dk

m. Denote the jth
element in the ith simplex by xij.

Let U(xij) be a real-valued polynomial function with non-negative coefficients over the variables {xij}i,
j. Let x be a point in the domain Q. Let T(x) denote the point of Q whose i, jth coordinate is given by

TðxÞij : ¼ xij
@U=@xijjxP

s xisð@U=@xisÞjx
, (A 1Þ

where the denominator is a normalizing element.
Then U(T(x)) >U(x) unless T(x) = x. ▪
It is possible to give the Baum–Eagon inequality an interesting gradient interpretation. Fix i, i.e.

concentrate on the ith simplex, with each element of Dk
i denoted as a tuple x i : = (xi1, xi2,…, xik). From
6As before, in greater generality, it is possible to allow each simplex to be of different dimension and attain the same results. For
simplicity of exposition, we restrict here to the special case in which all the simplices are of the same dimension.
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Figure 1. An illustration of the convergence to a monomorphic population consisting of one genotype under haploid sexual
reproduction. In both simulations, the frequency of the final genome in the population over generations is tracked. This
frequency appears to drift most of time, then converges at an exponential rate to fixation towards the end, in accordance with
proposition 5.6.
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the perspective of Dk
i , U may be considered to be a ‘potential’ function, involving (xi1, xi2,…, xik) and

other parameters.
Consider a Euclidean gradient vector derived from the potential in this perspective, that is,

rUðxiÞ ¼ ð@U=@xi1, @U=@xi2, . . . , @U=@xikÞ. Then the transformation of equation (A 1) can be
considered as mapping x i to rUðxiÞ � xi for each i separately, followed by projection to the simplex by
way of the normalization. In a sense, the Baum–Eagon dynamic is an application of a form of
‘gradient hill climbing’, locally within each simplex of the polytope Q, that taken together ensures a
global climb.
Appendix B. Proofs
Proof of proposition 4.1. This is a straightforward application of Birkhoff’s ergodic theorem. Again we

register the log fitness. By the ergodic theorem, for each g, limt!1ð1=tÞ lnðwt
gðvÞÞ ¼ Eðlnwg j mÞ with

probability one. Hence the genotype g� with the greatest expected log fitness (which is also the one
with the greatest expected fitness) dominates, as it grows at the fastest average rate. ▪

Proof of theorem 4.4. Consider the field Fgt ¼ sðrg1, . . . , rgt Þ and the random variable

Zg
t : ¼

Xt
s¼1

rgs �
Xt
s¼1

E½rgsþ1 jFgt �: (B 1Þ

This is a martingale since

E½Zg
tþ1 � Zg

t jFgt � ¼ E½rgtþ1 j Fgt � � E½rgtþ1 jFgt � ¼ 0, (B 2Þ
and it is bounded by assumption. Thus, by the Azuma–Hoeffding inequality:

Prðjt�1Zg
t j 	 ct�1=4Þ � exp � c2t3=2

c2t

� �
¼ expð�

ffiffi
t

p
Þ: (B 3Þ

Let Et be the event that jt�1Zg
t j 	 ct�1=4. Then we have shown that

X1
t¼1

PrðEtÞ �
X1
t¼1

expð�
ffiffi
t

p
Þ , 1: (B 4Þ

Using the Borel–Cantelli Lemma, we deduce

Pr
\
s	1

[
t	s

Et

 !
¼ 0: (B 5Þ

Note that \
s	1

[
t	s

Et ¼ fjt�1Zg
t j 	 ct�1=4 8t 	 1g, (B 6Þ
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implying that almost surely ð1=tÞZg
t ! 0 as t→∞. By the definition of Zg

t , we deduce that almost surely

lim
t!1

1
t

Xt
s¼1

rgs �
1
t

Xt
s¼1

E½rgsþ1 jFgs �
 !

¼ 0: (B 7Þ

Thus, by adding lim supt!1ð1=tÞ
Pt

s¼1 E½rgsþ1 j Fgs � ¼ lim supt!1r̂
g
t to both sides of the equals sign in

equation (B 7), we obtain that almost surely

lim sup
t!1

1
t

Xt
s¼1

rgs � lim sup
t!1

r̂
g
t , (B 8Þ

and by an entirely similar argument

lim inf
t!1

1
t

Xt
s¼1

rgs 	 lim inf
t!1 r̂

g
t : (B 9Þ

Next, recall that by assumption g is asymptotically one-step-ahead superior on average, meaning that by
definition lim infr̂gt . lim supr̂ht for all genotypes h≠ g. Combining this with the inequalities in (B 8) and
(B 9), which holds for every genotype, one obtains that for every genotype h

lim inf
t!1

1
t

Xt
s¼1

rgs . lim sup
t!1

1
t

Xt
s¼1

rhs : (B 10Þ

This is sufficient to deduce the statement of the theorem. ▪

Proof of corollary 4.5. As PrðA1
g Þ . 0 by assumption, we can consider the process c

g
t which is the

restriction of ψt to A1
g . The corollary then follows by applying theorem 4.4 to the process c

g
t . ▪

Proof of theorem 4.6. As shown in [13], the replicator is an instantiation of Hedge, the exponential
version of the multiplicative weights update algorithm. It follows that the replicator attain asymptotic
zero regret.

Translating this mathematical result back to the evolutionary setting, this is equivalent to stating that
asexual reproduction virtually converges monomorphically to an optimal-in-hindsight genotype g�. ▪

Proof of lemma 5.1. Focus on a particular allele aiji and its attendant qiji . Recall that by equation (2.2),
�w ¼Pg[G dgwg, that by equation (2.7), wiji ¼

P
g[Caiji

wgdg,i ji , while by equation (5.1) the haploid sexual
replicator is qþiji ¼ qijiðwiji=�wÞ.

For g � Caiji
, one has ð@ðdgwgÞÞ=@qiji ¼ 0. For g [ Caiji

, using dg ¼ q1j1q2j2 . . . qmjm (by linkage
equilibrium) yields

qiji
@ðdgwgÞ
@qiji

¼ q1j1q2j2 . . . qmjmwg ¼ dgwg:

Hence @ �w=@qiji ¼
P

g[Caiji
wgdg,iji ¼ wiji . It follows that qþiji ¼ qijið@ �w=@qijiÞ=�w. This is the schema for

applying the Baum–Eagon theorem of equation (A 1), with T1 as the transformation and �w the
Lyapunov function. ▪

Proof of theorem 5.2. By lemma 5.1, monotonic mean fitness increase along trajectories is immediate
from the Baum–Eagon Theorem.

Any pure strategy profile of the gameWG (corresponding to a point distribution concentrated on a single
allele at each locus) constitutes a fixed point of equation (2.8), and in fact the only fixed points of this
dynamic are pure strategy profiles. However, if g is a pure strategy profile of w that is not a Nash
equilibrium then it is not a stable point of the dynamic; using standard dynamics arguments involving
nullclines and separatrices, there exists around g a neighbourhood such that any �w-increasing trajectory
with initial point in the interior of that neighbourhood eventually leaves that neighbourhood.

In otherwords, there is a basin of repulsion around every such point; hence the dynamic cannot converge
to non-Nash equilibria points. Convergence will therefore always be to a pure strategy Nash equilibrium
point, i.e. a local maximum of the potential �w. ▪

Proof of theorem 5.4. This is more or less a corollary of theorem 5.2. For each pure Nash equilibrium
n [ NWQ

, let Bν be the set of elements in Δ(Γ) that asymptotically converge to 1gn . By definition, this forms
an asymptotically stable basin of attraction. ▪
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Proof of proposition 5.5. This is an almost direct application of theorem 3 from [2]. We can identify Hν

as follows: for any η > 0, let Vη be the connected component in Δ(Γ) of fx [ DðGÞ j wðxÞ . wð1gnÞ � hg
that contains 1gn .

Let η0 > 0 be the smallest real number such that �Vh0
, the closure of Vh0

, contains another critical point of
w in addition to 1gn . Set Hn ¼

S
h,h0

Vh. Theorem 3 of [2] now applies to Hν to attain the conclusion. ▪

Proof of proposition 5.7. Suppose that at time t the population hasmean fitness �w. A sexually reproducing
sub-population of weight r is selected, whose mean fitness is �wr, and the complementary asexual sub-
population of weight 1− r therefore has mean fitness �w1�r, such that �w ¼ r�wr þ ð1� rÞ�w1�r. At time t + 1,
the offspring population of the sexual reproducers has mean fitness �wþ

r , and the offspring population of
the asexual reproducers has mean fitness �wþ

1�r.
Since both the T0 and the T1 transformations increase mean fitness (except at fixed points), it follows that

�wþ
r . �wr and �wþ

1�r . �w1�r. But �wþ ¼ r�wþ
r þ ð1� rÞ�wþ

1�r, hence �wþ . �w.
This argument relies on the T1 increasing mean fitness monotonically, which rests on theorem 5.2, which

in turn ultimately relies on theorem 3.1. In game theoretic terms, theorem 3.1 presumes independent choices
of strategies on the parts of the players (as opposed to correlated strategies), hence an initial point of linkage
equilibrium needs to be assumed. Starting from any such interior point, the trajectorywill follow increasing
mean fitness until it arrives at a local maximum, which will be a pure Nash equilibrium point. ▪

Proof of theorem 5.8. Suppose that at time t the population has mean fitness �w. For each partition
l [ L, a sub-population of weight rl of reproduction type λ is selected, whose mean fitness is �wl

such that �w ¼Pl[L rl �wl. At time t + 1, the offspring population of the λ-type reproducers has mean
fitness �wþ

l , with population mean fitness �wþ ¼Pl[L rl �wþ
l .

Using similar argumentation as in the proof of proposition 5.7, since the Tl transformations increase
mean fitness (except at fixed points) for all partitions λ, it follows that �wþ

l . �wl for all partitions λ.
Hence �wþ . �w.

Starting from any linkage equilibrium point, the trajectory will follow increasing mean fitness until it
arrives at a local maximum, which will be a pure Nash equilibrium point. ▪

Proof of theorem 5.9. In this proof, we ask a different question from the usual questions of regret
minimization: instead of asking whether an algorithm attains the same asymptotic rate as the best
expert, we suppose that the algorithm converges to the rate of the best expert and ask whether that
rate is equal to some exogenous rate.

Let e1, e2,… be any environment realization. Let i be a locus. By equation (2.8), the alleles in locus i are
each implementing a replicator equation (with respect to the identical interests game they are playing
against the alleles in the other loci). This implies that the reproductive dynamic internal to the locus
follows a multiplicative weights updating algorithm with respect to the total environment payoffs,
taking into account both external and internal environments. Hence, regret minimization applies to
this dynamic and in the limit the locus attains the average growth rate it would have attained had it
implemented the optimal fixed strategy-in-hindsight within Δ(Ai) at all times. In other words, the
individual locus attains virtual convergence.

From here, the proof proceeds inductively. Suppose that under the true dynamic each locus i exhibits
the mixed strategy sequence mi ¼ ðm1

i , m
2
i , . . .Þ, where mt

i [ DðAiÞ for each t. Furthermore, denote by L the
lim sup average growth rate payoff that is attained under the profile (μ1, μ2,…, μm) of these strategy
sequences (which is equal for each locus).

Let a�1 represent the pure strategy of locus 1 whose lim inf attains asymptotically zero regret, as in
equation (3.1), i.e, that asymptotically does as well as L. Locus 2 can then take the perspective of
facing an environment consisting of the external environment along with internal environment
ða�1, m3

i , . . .Þ, and virtually attain the same payoff with fixed optimal-in-hindsight a�2, i.e.ða�1, a�2, m3
i , . . .Þ

virtually attains L.
By induction, the sequence ða�1, a�2, . . . , a�j�1, m

j
i, . . .Þ attains L. At locus j, implement the optimal-in-

hindsight a�j against ða�1, a�2, . . . , a�j�1, m
jþ1
i , . . .Þ to attain payoff L under ða�1, a�2, . . . , a�j�1, a

�
j , m

jþ1
i , . . .Þ.

Continuing by induction, in this way eventually one concludes that population consisting entirely of
the genotype g� ¼ a�1a

�
2 . . . a

�
m is the optimal-in-hindsight genotype. ▪

Proof of proposition 5.10. Following the same reasoning as in previous proofs, consider the perspective
of locus i. The payoff received by locus i is equal to what it would gain if all the other loci were to play the
pure strategy profile q�i ¼ ða�1, . . . , a�i�1, a

�
iþ1, . . . , a

�
mÞ.

By assumption the external environment process selecting the realizations We1 , We2 , . . . is stationary
and ergodic. Since the q−i profile is virtually pure and fixed throughout time, the internal
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environment wetð�; q�1Þ reflects the external environment and is similarly stationary and ergodic. Hence
the virtual convergence of locus i, which is equivalent to that of an asexually reproducing population
under the conditions of a stationary and ergodic environment process, is always to the same payoff.
This holds equally true for all loci. ▪

Proof of theorem 6.1. The proof is the same as the proof of theorem 5.4. ▪

Proof of proposition 6.2. The proof is the same as the proof of proposition 5.5. ▪

Proof of theorem 6.3. By equation (2.12), the alleles in the locus are implementing a replicator equation
(with respect to the symmetric potential game they are playing among themselves). This implies that the
reproductive dynamic in the locus follows a multiplicative weights updating algorithm with respect to the
total environment payoffs, taking into account both external and internal environments. Hence, regret
minimization applies to this dynamic and in the limit the locus attains the average growth rate it would
have attained had it implemented the optimal fixed strategy-in-hindsight within Δ(A) at all times. □

Proof of theorem 6.4. Let e1, e2,… be any environment realization. Let i be a locus. By equation (2.12),
the alleles in locus i are each implementing a replicator equation (with respect to the symmetric potential
game they are playing among themselves). This implies that the reproductive dynamic internal to the
locus follows a multiplicative weights updating algorithm with respect to the total environment
payoffs, taking into account both external and internal environments. Hence, regret minimization
applies to this dynamic and in the limit the locus attains the average growth rate it would have
attained had it implemented the optimal fixed strategy-in-hindsight within Δ(Ai) at all times. In other
words, the individual locus attains virtual (possibly polymorphic) convergence.

From here the proof proceeds inductively as in the proof of theorem 5.9. Suppose that under the true
dynamic each locus i exhibits the mixed strategy sequence mi ¼ ðm1

i , m
2
i , . . .Þ, where mt

i [ DðAiÞ for each t.
Furthermore, denote by L the lim sup average growth rate payoff that is attained under the profile (μ1, μ2,
…, μm) of these strategy sequences (which is equal for each locus).

Letting s�1 represent the fixed (possibly mixed) strategy of locus 1 whose lim inf attains asymptotically
zero regret, as in equation (3.1), i.e, that asymptotically does as well as L. Locus 2 can then take the
perspective of facing an environment consisting of the external environment along with internal
environment ðs�1, m3

i , . . .Þ, and virtually attain the same payoff with fixed optimal-in-hindsight s�2, i.e.
ðs�1, s�2, m3

i , . . .Þ virtually attains L.
Continuing argument by induction, in this way eventually one concludes that population consisting

entirely of the genotype g� ¼ s�1s
�
2 . . . s

�
m is the optimal-in-hindsight genotype. ▪
Appendix C. Proof of convergence in potential games under the
polynomial multiplicative weights update algorithm

C.1. Preliminary setup

Let (A, u, ϕ) be a potential game, where A =A1 × · · · ×Am is the set of action profiles, u :A ! Rm the payoff
function, and F :A ! R the potential. For x∈A, we use xi to denote the action in x of the player i and x−i
to denote the actions in x of the players apart from player i. For simplicity, we will assume that |Ai| = k
uniformly for all players; the extension to the more general case is straightforward. Enumerating the
elements of Ai, the jth action of player i is aij .

A mixed strategy of player i will be denoted qi ¼ ðqi1 , . . . , qik Þ, and a profile of strategies q = (q1,…,
qm)∈ Δ(A1) × · · · × Δ(Am). The application of a profile q yields an expected payoff for player i that
we will denote ui(q). Given a pure action profile x ¼ ðx1j1 , x2j2 , . . . , xmjmÞ [ A and a profile of
strategies q, denote

qx ¼
Y

1�n�m

qn jn
(C 1Þ

and

qx�i ¼
Y

1�n�m;n=i

qn jn
: (C 2Þ
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Suppose that each player is applying the multiplicative updates algorithm to update the mixed strategy
he uses from one time period to the next. To interpret what is meant by this, we need to specify the payoff
player i receives for placing weight qij on action aij when his overall expected payoff is ui(q).

Suggestively borrowing notation introduced earlier here in the context of alleles, denote
Caij ¼ fx [ A j xi ¼ aijg, i.e. the set of action profiles with the action of player i fixed at aij . Next
suppose that player i fixes action aij while the other players choose mixed strategies q−i. In this case,
denote the expected payoff for player i by uijðq�iÞ, which is

uijðq�iÞ : ¼
X
x[Caij

qx�i uiðxÞ: (C 3Þ

Denote by uijðqij , q�iÞ the payoff player i receives for placing weight qij on action aij when the other
players choose q−i. Using equation (C 3), this is

uijðqij , q�iÞ : ¼ qijuijðq�iÞ: (C 4Þ

With that we can specify what it means for each player to apply the multiplicative weights
updates algorithm for η > 0. When q is the profile of mixed strategies, player i views the tuple
ðui1ðqi1 , q�iÞ, . . . , uik ðqik , q�iÞÞ. In response, the mixed strategy that player i chooses in the next time period
is given by

TðqijÞ : ¼ qij
1þ huijðq�iÞP

h qihð1þ huihðq�iÞÞ (C 5Þ

For ease of reading, we will from here express equation (C 5) more simply as

TðqijÞ/ qijð1þ huijðq�iÞÞ, (C 6Þ

supressing the denominator whose entire purpose is only to ensure that the result is a normalized probability
distribution.

C.2. Proof of theorem 3.1

We first prove that the potential payoff increases monotonically under the MWU algorithm in the special
case that the potential game is an identical interests game and that the updating rule is the parameter-free
case, i.e. for each i, j, uiðxÞ ¼ ujðxÞ ¼ FðxÞ, so that each player gets the same payoff (the potential) for each
profile of actions, and equation (C 6) becomes

TðqijÞ/ qijuijðq�iÞ: (C 7Þ

From here most of the work is unravelling of definitions. From equation (C 3) and (C 4) and
uiðxÞ ¼ FðxÞ, we obtain

uijðq�iÞ ¼
X
x[Caij

qx�iFðxÞ: (C 8Þ

At the same time, the expected payoff of player i under q is FðqÞ ¼Px[A qxFðxÞ. It follows that for each
available action aij ,

@F

@qij
¼
X
x[Caij

qx�iFðxÞ: (C 9Þ

Putting it all together yields

TðqijÞ/ qij
@F

@qij
,

which is exactly what is needed for application of the Baum–Eagon Theorem (since FðqÞ is a polynomial
function of the various probability weights of q). It follows that under this dynamic the value of F

increases monotonically from one time period to the next as long as T(q)≠ q, hence there is convergence
to a fixed point.

Moving on from the parameter-free case, consider next the more general polynomial update rule

TðqijÞ/ qijð1þ huijðq�iÞÞ ¼ qij þ qijðhuijðq�iÞÞ,
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but still maintain the assumption of an identical interest game, i.e. uiðxÞ ¼ ujðxÞ ¼ FðxÞ for all i, j, so that
equation (C 8) still holds.

Define

CðqÞ ¼
X

1�i�m

X
1�j�k

qij þ hFðqÞ:

Then

@C

@qij
¼ 1þ h

@F

@qij
, (C 10Þ

while equation (C 9) holds as before, i.e. @F=@qij ¼
P

x[Caij
qx�iFðxÞ. Putting it all together yields

TðqijÞ/ qij
@C

@qij
¼ qij þ qijðhuijðq�iÞÞ,

which is sufficient for obtaining the result we seek by appeal to the Baum–Eagon Theorem.
Finally, in greatest generality suppose that the game is fully a potential game as opposed to an

identical interests game. In this case, it is well known that the potential game can be decomposed into
an identical interests game and a dummy game. That is, uiðqÞ ¼ FðqÞ þDiðq�iÞ, where F is an
identical interests game and Di the payoff to i from the dummy game D, depends solely on q−i but
does not change at all with changes in qi.

It follows that @ui=@qij ¼ @F=@qij : in other words, this case essentially reduces to the case of an
identical interests game from the perspective of partial differentiation with respect to the weights of
the actions of player i. Hence, with minor modifications the same proof as applied earlier applies to
the general case; we omit the obvious details.

Up to here, we have shown that in a potential game in which all players implement an MWU
algorithm in discrete time all trajectories converge to a fixed point of the dynamic. Now we seek to
show that the convergence is specifically to a Nash equilibrium. In §D.1, we show that in the special
case of haploid reproduction under linkage equilibrium that around each point that is not a Nash
equilibrium there is a basin of repulsion, hence convergence can only be to a Nash equilibrium.

We show here, using proof by contradiction, that this holds true in general potential games under the
MWU dynamic. That is, if q is an initial profile, we seek to ascertain whether the limit p = lim n→∞ Tn(q)
can or cannot be different from a Nash equilibrium. Note that since p is a fixed point of the dynamic, for
each i, the support of pi is entirely on one action. Hence we can denote p ¼ ða�1, . . . , a�mÞ, where a�i [ Ai.

Suppose that p is not a Nash equilibrium. Then there is an i and an action a0i∈Ai such that a0i = a�i
and p0 ¼ ða�1, . . . , a0i, . . . a�mÞ satisfies Fðp0Þ . FðpÞ. By continuity, there is an open set O , Δ(A1) × · · · ×
Δ(Am) containing p such that for any r = (r1,…, rm)∈O, one has for r0 = (r1,…, a0i,…, rm) that Fðr0Þ . FðrÞ.

Now, since we assumed that p = lim n→∞ Tn(q), there is an integer n0 such that for all m≥ n0, T
m(q)∈O.

Hence for each such Tm(q), replacing the ith coordinate by the pure action a0i results in higher potential
payoff. As detailed in the explanation in §3.2, this implies that under the MWU dynamic the weight of a0i
can only increase at each time step from Tm(q) to Tm+1(q) for all m≥ n0. This implies that the weight of a0i
at p = lim n→∞ Tn(q) is positive, in contradiction to the assumption that p plays pure strategy a�i .
Appendix D. Basins of attraction and repulsion
It is clear from inspection of equation (2.8) that any pure strategy profile is a fixed point of the dynamic
(and conversely the only fixed points are pure strategy profiles); the set of pure Nash equilibria is a
proper subset of the set of pure strategy profiles. We complete this picture here by showing that
around any pure strategy profile that is not a Nash equilibrium there is a basin of repulsion;
conversely, around any profile that is a Nash equilibrium there is a basin of attraction.

We will make use of a collection of relative distribution weights (relative to an allele aij) fetg,ijgg[Caij
. To

define this, let etg,ij ¼ 0 if g � Caiji
. Otherwise, define

etg,ij : ¼
dtgP

g0[Caiji
dtg0

: (D 1Þ

In words, etg,ij is the weight of gentotype g among the genotypes containing aij. Clearly,
P

g[Caij
etg,ij ¼ 1.
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When linkage equilibrium holds, we can re-express etg,ij associated with allele aiji when
g ¼ a1j1a2j2 . . . amjm as

etg,ij ¼
dtgP

g0[Caiji
dtg0

¼
qt1j1q

t
2j2 . . . q

t
mjmP

g0[Caiji
dtg0

: (D 2Þ

Equation (2.7), defining the marginal fitness of allele aij at time t is rewritten in these terms as

wt
ij : ¼

X
g[Caij

wt
ge

t
g,ij: (D 3Þ

It will be useful to express equation (D 3) solely in terms of {qi} and {wg}. To that end, for a fixed
aiji [ Ai, enumerate the elements of Caiji

as (g1,…, gl). Each such g [ Caiji
is by definition a string of

alleles a1j1a2j2 . . . aiji . . . amjm where aiji is the same for each g [ Caiji
but the other alleles vary from one

such genotype to the other.
From equation (2.6), under linkage equilibrium, for each such g we have dtg ¼

Qm
n¼1 q

t
njn ¼

qt1j1q
t
2j2 . . . q

t
iji . . . q

t
mjm . For future reference, we will want to use a ‘reduced form’ of this expression,

defined as

dtg,�i ¼
Y

1�n�m,n=i

qtnjn ¼ qt1j1q
t
2j2 . . . q

t
iji . . . q

t
mjm (D 4Þ

by which we mean the m− 1-fold product that does not include qtij in it. Then we can re-write equation
(D 2) as

etg,iji ¼
dtgP

g0[Caiji
dtg0

¼
qt1j1q

t
2j2 . . . q

t
mjmP

g0[Caiji
dtg0

¼ qtiji
dtg,�iP

g0[Caiji
dtg0

¼
qtiji
qtiji

dtg,�iP
g0[Caiji

dtg0 ,�i

¼
dtg,�iP

g0[Caiji
dtg0 ,�i

:

(D 5Þ

Note that this entirely removes dependence on qtiji ; all dependence is on the allelic frequencies of loci
apart from locus i. We can go even further. Denote in vector notation ~dtiji ,�i : ¼ ðdtg1,�i

, . . . , dtgl,�i
Þ, with

respect to the eumeration of (g1,…, gl) as the elements of Caiji
. By tracing through the definitions,

it becomes clear that the dependence on aiji is superfluous. In other words, for aiji , aij0i [ Ai, two alleles
in locus i, one has ~dtiji ,�i ¼~dtij0i ,�i. We can, therefore, denote this vector uniformly as ~dt�i.

Similarly,
P

g[Caiji

dtg,�i ¼
P

g[Caij0
i

dtg,�i for aiji , aij0i [ Ai. Hence we can choose any one of them and
uniformly denote N�i : ¼

P
g[Caiji

dtg,�i.
Continuing with the vector notation, denote ~wiji : ¼ ðwg1 , . . . , wglÞwith respect to the enumeration of

(g1,…, gl) as the elements of Caiji
. In this, we cannot avoid dependence on the specific allele aiji .

From here, we can rewrite equation (D 3) as

wt
iji ¼

X
g[Caiji

wt
ge

t
g,iji ¼

1
N�i

h~dt�i, ~wijii (D 6Þ

using the vector dot product.
Finally, since the mean fitness �wt

i ¼
Pk

j¼1 q
t
ijw

t
ij, this becomes

�wt
i ¼

1
N�i

Xk
j¼1

qtijh~dt�i, ~wiji: (D 7Þ
D.1. Basins of repulsion around non-equilibrium points

Suppose that fitness values wg are fixed over time. Let ða�1, a�2, . . . , a�mÞ be a pure strategy profile of the
game that is not a Nash equilibrium. In the biological interpretation, this corresponds to a population
composed solely of genotypes g ¼ a�1, a

�
2, . . . , a

�
m, in which case �w ¼ wg ¼ wða�1, a�2, . . . , a�mÞ.

By definition of a non-equilibrium, there is at least one player/locus �i such that, if we write a��i ¼ a�ij
then there is a�ij0 such that wða�ij0 ; a���iÞ . wða��i ; a���iÞ. For ɛ > 0, construct for each player i the mixed strategy
q1i that gives weight 1− ɛ to pure action a�i [ Ai and spreads the rest of the weight ɛ among all the other
actions in Ai.
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We claim that for sufficiently small ɛ, the haploid sexual replicator dynamic at the mixed strategy
ðq11, . . . , q1mÞ draws away from ða�1, a�2, . . . , a�mÞ.

To see this, note that for ðq11, . . . , q1mÞ for small ɛ, for any i and iji [ Ai, it is the case that wiji is very
close to wðaiji ; a��iÞ. This is because by equation (D 6) ,

wiji ¼
1

N�i
h~dt�i, ~wijii,

where each element dg,�i [~d�i, for g ¼ a1j1 . . . aiji . . . amjm, is defined by dg,�i ¼
Q

1�n�m,n=i q
1
njn . By the

definition of ðq11, . . . , q1mÞ, for small ɛ the only relevant dg,−i that has appreciable weight is that
associated with g ¼ a�1 . . . aiji . . . a

�
m, where dg,−i =∏1≤ν≤m,ν≠i (1− ɛ). Hence wiji is very nearly wðaiji ; a��iÞ.

In particular, w�ij0 
 wða�ij0 ; a���iÞ . wða�i� ; a���iÞ 
 w�i� . By continuity, for sufficiently small ɛ this strict
inequality can be guaranteed to hold, w�ij0 . w�i� .

Since the players are implementing the haploid sexual replicator equation, equation (2.8), in updating
from one period to the next, when w�ij0 . w�i� at time t it follows that at time t + 1 in the distribution qtþ1

�i
relatively greater weight will be given to a�ij0 and relatively less to a��i . It follows that in the step from t to
t + 1 the dynamic moves away from ða�1, a�2, . . . , a�mÞ.

This is sufficient to conclude that the dynamic must converge to a pure Nash equilibrium.

D.2. Proof of proposition 5.6

Suppose that a� ¼ ða1 j�1 a2 j�2 . . . am j�mÞ is a pure strategy Nash equilibrium profile of the game.
Let B, D be defined as the collection of mixed strategy profiles (q1,…, qm)∈D such that for all i:

(1) qi j�i . qi ji for all ji = j�i [ Ai, and
(2) wi j�i . wi ji for all ji = j�i [ Ai.

In words, B is the set of mixed strategy profiles such that for each i, within the allelic frequency
distribution qi the greatest weight is placed on a1 j�1 and at the same time the marginal fitness of a1 j�1 is
the highest against all its competing alleles in locus i. (Recall that by equation (2.7) wi ji is a function of
genotypic density and hence also a function of (q1,…, qm).)

We can now proceed to show that B is an exponentially stable basin of attraction around a�. To see
this, first note that B is not empty because the profile a� is trivially an element of B. By continuity, B is
then a neighbourhood of a�.

Next, let ðqt1, . . . , qtmÞ [ B at time t. For any i, since wi j�i . wi ji for all ji = j�i , by equation (2.8) it
follows that at t + 1 the weight of allele ai j�i , i.e. q

tþ1
i j�i

, relative to qtþ1
i ji for any other allele, only increases.

So the first condition for qtþ1
i j�i

is satisfied.
Next, since a� is a Nash equilibrium, wða�Þ . wðai ji ; a�i� Þ for all ji = j�i . Recall that

wtþ1
iji ¼ ð1=N�iÞh~dtþ1

�i , ~wijii. Since the weight qtþ1
i0 j�

i0
increases relative to qtþ1

i0 ji0
for all i0, and

wðai j�i ; a�i� Þ . wðai ji ; a�i� Þ for all ji = j�i , it can only be the case that h~dtþ1
�i ,~vi j�i i . h~dtþ1

�i ,~vi jii, i.e.
wtþ1

i j�i
. wtþ1

i ji . Hence the second condition is satisfied and it follows that ðqtþ1
1 , . . . , qtþ1

m Þ [ B.
Finally, since for each i the weight qi j�i increases relative to any other qi ji monotonically (and even at an

increasing rate), asymptotically starting from any (q1,…, qm)∈ B the dynamic converges to a�.
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