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� Abstract

In this paper we present general results on aggregation of variables, specifically as it applies to decom-
posable (partitionable) dynamical systems. We show that a particular class of transition matrices,
namely, those satisfying an equitable partitioning property, are aggregable under appropriate decomposi-
tion operators. It is also shown that equitable partitions have a natural application to the description of
mutation-selection matrices (fitness landscapes) when their fitness functions have certain symmetries
concordant with the neighborhood relationships in the underlying configuration space. We propose that
the aggregate variable descriptions of mutation-selection systems offer a potential formal definition of
units of selection and evolution.

Keywords: Fitness Landscapes, Aggregation of Variables, Decomposability, Mutation, Selection
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� Introduction

Biological systems as a general rule consist of very large numbers of interacting, hierarchically
arranged subcomponents. Every introductory biology textbook presents its reader with the statement
that multicellular organisms often consist of a large number of cell types arranged into precise configura-
tion in three dimensions, while each cell in turn contains a vast array of macromolecules. Conversely,
individual organisms (often of differing genotype) themselves interact with one another in demes and
populations which are faced with both intra and interspecific competition.

The resulting high dimensionality of most biological systems should make an exhaustive descrip-
tion of the state space (and thus the state dynamic) completely intractable. What makes dynamical
system representation of biological models possible (and, for that matter, the conceptual identification
of "units" of biological structure and function) is the fortunate fact that an exhaustive description of the
state space is not necessary to predict the behavior of many biological entities and/or their components.
Consequently, it is of fundamental importance to theoretical biology to understand why and under what
circumstances a description of a complex system can be achieved with fewer macroscopic variables.
Although this representation has conceptually informed philosophers of  biology (Wimsatt 1981,
Schank and Wimsatt 1988), concrete results on this representation problem have largely been obtained
outside of biology, mostly in economics (Simon and Ando 1961, Ando and Fisher 1963), computer
science (Holland 1975) as physical chemistry (Haken 1977). In this paper we summarize the current
knowledge about aggregability of linear dynamical systems and put the existing results on a systematic
basis. Finally we discuss the applicability of these results to models of genetic evolution. 

A reduced variable description can be due to either of the two properties which we will  discuss
in this paper: system decomposability and aggregation of variables. As we will  see, while the two
concepts are often related to one another, they are in principle independent.

To make our definitions concrete, we start with a biological (or any complex, multivariable
dynamical system) with a state space specified by vector x={ x1 ...xn }  and some discrete time-evolution
operator �(x(t))=x(t+1) which fully  determines the distribution of the state variables in the next time
step. In the most general case, xi (t+1)=�i (x(t)), i.e. where each state variable is potentially dependent
on the state of every other variable in the system. Indeed, one could conjecture that an "exact" represen-
tation of any biological system would require exactly such a scenario, since in a living organism or an
ecosystem, every entity in some indirect way interacts with every other component.

Fortunately, it is often the case that biological systems are in some sense "modular", in that one
can identify subsets of  variables C={x1 ...xm },  where for  an appropriate ordering of  variables,
C1={ x1 ...xk1 },  ...CI ={ x �

j � 1
I k j � 1 ...x �

j � 1
I k j

}, ...Cm ={xn � km � 1 ...xn } with kJ =|CJ | the number of elements in

the Jth class. These subsets are chosen such that they interact strongly with one another and not at all
(or  sufficiently  weakly)  with  members  of  other  subsets.  Exact  decomposability  also  requires  that
CI �CJ =�.
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�

Consequently,  the  state  dynamics  of  any  variable  xi �CI  can  be  expressed  as  a  function
xi (t+1)=�i (CI (t)),  implying  that  the  function  �:x(t)�x(t+1)  itself  is  decomposable  into  functions
�1 ...�I ...�m , each of which acts only on the state variables within the corresponding partition CI . From
a computational standpoint, it  follows that each partition is dynamically self-contained, and that we
only need information about the state variables within the same partition to compute the frequency of
the variable in the next time step.

As a straightforward example of decomposability, consider a general linear dynamical system

x(t+1)=Ax(t) where A is a constant valued square matrix of dimension n with coefficients Aij . For an
arbitrary matrix structure, we have xi (t+1)=� j � 1

n Aij�x j�t� .  However, for a decomposable system, the

transition matrix will have a block-diagonal form

�0.1� A �

�

�

���������������

A1 0 0 0 0
0 � 0 0 0
0 0 AI 0 0
0 0 0 � 0
0 0 0 0 Ak

�

�

���������������

where each square submatrix AI  of dimension kI  (the number of elements in the Ith partition) contains
nonzero coefficients for (some) interaction terms Aij  for i,j�CI , and zero elsewhere, corresponding to
the absence of cross-partition interactions. For a system described by a matrix of the above form, we
have xi (t+1)=� j � CI

Aij �x j�t�  given i�CI.  It therefore follows that the dynamics within each partition can

be represented independently of one another as CI (t+1)=AI CI (t). Decomposable linear systems and
approximately decomposable systems having this structure have been analyzed in some detail else-
where (Simon and Ando, 1961).

While no biological system is probably perfectly decomposable in such a way, it is reasonable,
at least as a first-order approximation, it is also true that a large degree of localization and modularity
exist in organismal design. At any given time during development, gene networks can often be parti-
tioned into regions of strongly interacting components, just as cells giving rise to specific tissue types
and organ systems are often developmentally and functionally modular with respect to the rest of the
organism. Another well-studied example comes from population biology - the so-called metapopula-
tion (Levins 1969), in which most competition and other forms of interaction between conspecific
individuals occur in localized demes rather than across an entire population. One even can argue that
biology as a science would be impossible if  there would not be a certain minimal degree of decompos-
ability, at least in experimental situations. 

The examples of organ systems and interdemic competition raises the related issue of aggregabil-
ity. Apart from being relatively self-contained modules, organ systems are characterized by what com-
plex systems theorists refer to as "emergent" properties, i.e. from a particular interaction of lower-order
"microvariables" there arise identifiable "macrostate" variables which have interaction properties as
state variables in their own right. For instance, even though organs are in some sense aggregates of
cells, it is obviously useful to think of organs as having roles as individual entities within physiological
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systems apart from being aggregates of cell types, just as interacting living organisms are obviously
individuated entities rather than a collection of organs.

To  formalize  these  notions  of  "emergence"  and  "macrostates,"  consider  again  a  dynamical
system with n state variables, x(t+1)=�(x(t)). We define this dynamical system to be aggregable if there
exists some transformation y=f(x) such that y has m<n state variables, and that there is some operator �
such that y(t+1)=�(y(t)) gives a dynamically sufficient description of the dynamics of y (i.e. y1 ...ym  act
as state variables for the aggregated system). 

A familiar example of aggregation of variables comes from thermodynamics, where macrostate
variables such as energy, temperature, and entropy can be derived from the distribution of molecular
microstates in an ensemble, and that the macrostates themselves serve as dynamically sufficient state
variables for the system. Aggregation of variables is also implicit in the identification of units of selec-
tion in evolutionary biology, in arguing that higher entities such as genomes (or under group selection
scenarios, populations) act as units of transmission and selection while being themselves composed of
such units (genes) at the lower level.

It should be noted that we make no assumptions about which variables contribute to any mac-
rostate component yI . In principle, each yI  could be a function of all of the microstates or any subset
thereof, yI =f(x1 ...xn ), hence the variables contributing to any two macrostates could contain any num-
ber of overlapping microstate variables. Thus, while aggregation of variables provides a reduced vari-
able description of the system dynamics at the macrostate level, the individual macrostates need not be
functions of non-overlapping partitions of microstates. Indeed, in the case of thermodynamics, each
macrostate variable is a function of  every microstate (gas molecule configuration). Consequently,
aggregativity need not imply decomposability, nor vice-versa.

Dynamical systems which are both decomposable and aggregable constitute a special class of
phenomena. In such systems, each macrostate variable yI  is a function of a partition fI (CI ), i.e.
yI (t+1)=�yI (t)=�( fI (CI�t�)). Model representations of such systems combine the computational and
conceptual advantages of having on the one hand the smaller number of macrostate variables as a
consequence of aggregativity and smaller, mutually exclusive subsets of microstates contributing to
each variable. 

We now turn our attention to the formal properties of decomposable and aggregable linear
systems.

� Aggregation and Decomposability of Linear Dynamical Systems

Consider again a generic, n-dimensional linear dynamical system x(t+1)=Ax(t).  We ask

whether there exists an aggregation operator Q such that for y=Qx, there is a matrix A
�

 specifying the

aggregate dynamics y(t+1)=A
�

y(t). In general Q can be any (mxn) linear operator that projects the n-
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dimensional vector x into m-dimensional space for y.
It follows from the definitions of aggregativity that 

�1.0� x��t � 1� � Ax��t�, Y ��t � 1� � A
�

�Y ��t�
QAx � A

�

�Qx,

therefore, given an aggregation Q for a system defined by A, the operator for the aggregate dynamics A
�

has to satisfy the relation:

�1.1� �A
�

�Q � QA

Note that this relation has to hold for arbitrary aggregation and transition operators, though for the
purposes of further analysis we restrict attention to linear operators.

If  QQT  is intertible, A
�

 can be solved for explicitly:

�1.2�a� A
�

�QQT � QAQT,

A
�

� QAQT ��QQT� � 1

This implies that in cases where an exact aggregation of variables (defined by Q) exists, A
�

 can
be expressed in the above form. As will  be discussed below, it does not imply that an exact aggregate
dynamical operator A

�
 exists for an arbitrary aggregation rule (though it  will  be argued that in some

sense 1.2a is the best approximation to an aggregate dynamics operator even in cases where an exact

aggregation in terms of Q doesn't strictly speaking exist). 

Expressed in summation form and defining matrix D=QQT , (1.2a) is

�1.2�b� A
�

IJ � 	
K � 1

m

�	
i � 1

n

�	
j � 1

n

�QIi�Aij�QTjK�D
� 1
KJ

The product QQT  in (1.2) is invertible if and only if Q is full rank. If Q is an orthogonal square

matrix,  this  product  is  the  identity  matrix  and  we  have  a  trivial  diagonalisation  as  the  aggregate

A
�

=QAQ � 1 .

If the row vectors of Q=�q1 ...�qm�T  are orthogonal to one another, QQT  is a diagonal matrix
with entries DII =
k � I �QIk

2  (which equals nI  for matrices of unweighted characteristic vectors, since

each nonzero coefficient of Q is unity) with the inverse D
� 1  having reciprocal entries DII

� 1 = 1��������DII
. Thus,

for aggregations of decomposable systems, the coefficients of A
�

 are, expressed again as sums:

�1.3� A
�

IJ � 	
i

�	
j

�QIi�Aij�

QJj
������������������
k �QJk

2

It can be shown that some aggregate description exists for any dynamical system specified by a

square matrix A, albeit an often trivial one. It follows as a general consequence of the spectral theorem

for matrices that we can always write an aggregation in terms of the eigensystem of A, i.e. for a matrix
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of eigenvectors Q  of A  with a corresponding diagonal matrix of eigenvalues �,  we have Q	=QA,

because every matrix A has at least one eigenvalue 
 and at least one associated eigenvector q, since

we can write Aq=
q. We can treat q as a (column vector) matrix Q, thus the following holds with

A
�

=(
) and Q=q:

Result 1.1:

Every nxn matrix A with n�2 has an aggregation of variables with m<n.

As a corollary, given eigenspace {q1 ...qm } of A, associated with eigenvalue 
, the mxn matrix

Q with rows qi  is an aggregation of variables for A with A
�

=
Im , where Im  is the mxm identity matrix
for some m<n.

If A is symmetric, we obtain a stronger result, i.e an aggregation for any m macrostates up to
m=n can be constructed:

Result 1.2:
If A is symmetric it has an aggregation with every dimension m, 1�m�n.

Proof: A symmetric (or Hermitian) has n real eigenvectors. It suffices therefore to select any m of them

for the construction of the matrix Q of eigenvectors.

The disadvantage of an eigensystem aggregation, of course, is that in order to compute each of
the m aggregate variables one requires information about all n microstates, as eigenvectors are gener-
ally expressed as a linear combination of all n state variables of a system. Consequently, although the
aggregation allows a reduced state variable description of system dynamics, the aggregate variables
themselves often have no interpretation from the standpoint of macroscopic system properties. The
main motivation behind aggregation of variables, after all, is to uncover dynamically sufficient vari-
ables at various levels and clusters of variables that act in a dynamically coherent manner. Identifying
subsets of coherently acting variables ultimately allows one to determine the nature of any system's
communication with other, similar systems (through interaction of macrostate variables, as in thermody-
namics), as well as offering insight into the "emergent" macrostate variables that ultimately drive the
relevant system dynamics. 

Consequently, we are interested in aggregations which also determine system decompositions

(i.e. Q with orthogonal row and column vectors), or at least aggregation operators where the entries for
any one row or column are a small subset of the total state space. While it  follows from Theorems
1.1-2 that some aggregation always exists, it should be apparent that an aggregation with an arbitrary

choice of Q (one computationally convenient or intuitively meaningful from the standpoint of system

structure) need not necessarily satisfy A
�

Qx=QAx for any vector x for A
�

 defined in (1.2).
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� Interpretation of A
�

In order for A
�

 to be an appropriate descriptor of the aggregate dynamics, both X=Qx and

X(t+1)=A
�

Qx  must be meaningful state variables. Ideally, one would want the defining dynamical
properties of the original system to be conserved in the transformed, aggregate description. For exam-

ple, if  x describes a probability distribution and A is a transition matrix, we expect that X should also

be a probability distribution under the action of A
�

.

In the above special case of A a stochastic matrix acting on distribution vectors, it is not neces-
sarily the case that any aggregation of variables (acting on the original state vector x) should give a

distribution or that the aggregate dynamics operator A
�

 is stochastic. For an arbitrary choice of weighted

entries in Q,  �J �A
�

IJ is not generally equal to unity given �i �Aij =1 for all j.

Given a row-stochastic, irreducible matrix A (the same arguments apply to column stochasticity

by transposition and left versus right multiplication), by assumption 1n A=1n . In order for A
�

 as to be

row-stochastic, we also need to satisfy 1m A
�

=1m . Because A
�

Q=QA, it follows that

1m �A
�

�Q � 1m�QA � 1m �Q

i.e. 1m Q is an eigenvector of A
�

 with the eigenvalue 
=1. Since by the Perron-Frobenius Theorem this

eigenvalue is unique, it follows that 1m Q=1n . This leads to Lemma 1.0:

Lemma 1.0:

   For any positive-definite (and therefore irreducible) stochastic matrix A, A
�

 defined in (1.4) is stochas-

tic if and only if 1m Q=1n

since �1m�Q�i =� j � 1
m qij , i.e. the column sum of Q, this condition will  always be fulfilled for a partition-

ing.
One often encounters a more fundamental problem than conservation of stochasticity in the

transformation from A to A
�

. While (1.2) follows as a consequence of (1.1), the converse is not true, i.e.

it does not follow that given a rate matrix A and an arbitrary aggregation Q there will  be a dynamically

sufficient description of the aggregate variables in terms of A
�

=QAQT��QQT� � 1
. Otherwise it would

be the case that any aggregation (at least those specified by full-rank aggregation matrices) would be
possible for any linear dynamical system.

To see that given some transition operator A and a choice of aggregation Q, the matrix A
�

 in
(1.2) does not in general satisfy (1.1), 

A
�

� QAQT ��QQT� � 1
� A

�

�QQT � QAQT �

A
�

�QQT �Q � QAQT �Q
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the last line cannot generally be rewritten as A
�

Q=QA because (QT Q) is not itself a full-rank matrix
and is therefore not invertible.

On the other hand, it is the case that in some sense A
�

 as defined in (1.2) is the best approxima-

tion to the aggregate dynamics given an arbitrary (not exactly aggregable) A and choice of aggregation

Q. By "best approximation", we mean that for a defined set of state vectors x, we want to minimize the

difference between the aggregation of the state vector after a time step, Y(t)=QAx(t) versus the approxi-

mation to Y(t) as A
�

Qx(t). To do this we compute the distances for some norm of

�� Y ��t� � Qx��t� �� � �� Bt�Y ��0� � Q�At�x��0� ��

given a choice of aggregate dynamic matrix B, or equivalently, we ask which B minimizes ||BQx-QAx||

for a set of x in the state space. From the following result, we can show that B=A
�

 will on average
minimize the difference:

Theorem 1.1:

The matrix B=A
�

 minimizes minB ||BQ-QA||, where the matrix norm ||X|| is the Frobenius (Euclidean)
norm, i.e.

�� X �� �

�

�
�����	
i,j

Xij
�

�
�����

1
�
2

We derive the B that minimizes ||BQ-QA|| by differentiating and solving for the coefficients of B

(here the indices I,J and K,L denote the m rows of Q, while i,j and k,l are used to index the n columns

of Q and the rows/columns of A)

�1.6� � � �� BQ � QA ���2

��������������������������������������������
�BIJ

�

2��
K

��
k

�
�
�
����	

L

�BKL�QLk � 	
l

�QKl�Alk
�
�
�����

�
�
����	

L

�QLk�
� BKL
�������������
� BIJ

�
�
���� � 0

The partial derivative 
�
BKL����������
BIJ

 = 1 for K=I, J=L and is 0 otherwise. Hence, (1.6) can be rewritten as:

�Y �KI�LJ�QLk  = KI QJk . Substituting, we obtain

	
K

�	
k

�	
L

�BIJ�QJk�	KI�QJk � 	
K

�	
k

�	
l

�QXl�Alk�	KI�QJk

�
L

�BIL�	
k

�QLk�QkJ
T � 	

L

�BIL�DLJ � 	
k

�	
l

�QKl�Alk�QkJ
T
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The last  expression is  equivalent to BQQT =QAQT ,  therefore B=A
�

 minimizes the Euclidean norm

||BQ-QA||.
This does not mean that ||A

�

Qx-QAx|| is minimized for any choice of x (or even lower dimen-
sional subspaces of the n-space of x), however, it does mean that over an ��n dimensional region the

vector space defined by the rowspace of A, A
�

 gives a minimum distance between A
�

Qx and QAx.
It follows because for any choice of a uniform state vector x��={x��1 ...x��n } where x��i =x�� j  and an n-

dimensional sphere �(x) about x�� , letting G=BQ-QA, �=Gx=BQx-QAx (with gij  the coefficients of G):


i � 	
j � 1

n

gij�xj, � 
 �2 �
�
�
�����


	
j � 1

n

gij�xj


�
�
�����
2

�
�
�
�����	
j � 1

n

gij�xj
�
�
������

�
�
�����	
j � 1

n

gij�xj
�
�
����� �

�
i

�
�
�����	

j

gij�xj
�
�
������

�
�
����	

k

gik�xk
�
�
���� � �

j

�
k

xj�xk�	
i

gij�gji � � xGT �Gx �

Computing the expected value of � � �2 , by integrating over x={x1 ...xn }, we derive:

E� � 
 �2� � � � 
 �2 ��x���x �

	
i

	
j

	
k

Gij�� ��x��xj�xk��x Gji
T � 	

i

	
j

	
k

Gij��Cov��xj, xk� � x�2 ��Gji
T

For a distribution �(x) with spherical symmetry around x��  (i.e. for all xi , �(x��+xi ')=�(x��-xi ')), we have

� xi���x1 ...�xn��� xi � 0, therefore:

Cov��xj, xk� � x�2 � � ��x��xj�xk��x �

� � ...�� xj�� xk���x1 ...�xn���xj��xk ...��x � 	jk�Var��xj�
since by definition, spherical distributions have zero cross term covariances. Furthermore, we require
that the radii in all orthogonal directions are equal, i.e. Var(xi )=Var(x j )=�2  for all i,j. Consequently,

�1.7�
E� � 
 �2� �

��2 � x�2��	
i

	
j

g2ij � ��2 � x�2��� �� G ���2
� ��2 � x�2��� �� BQ � QA ���2min

If for convenience we chose x��=0 and the variance (corresponding to the square of the n-ball radius)

equal  to  unity,  then  the  integral  over  the  sphere  gives  us  � �� BQ � QA ���2min=||A
�

Q-QA||.
Consequently, one can think of (1.2)  as the best possible approximation to an aggregable system even
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in cases where an exact aggregation is not possible.

Even for transition operators that are not aggregable with respect to a given Q,  we can ask
whether there exists a subspace of values x for which the system is exactly aggregable. We show that
for systems where the aggregation matrix corresponds to a partition (decomposition) of variables, one

can specify conditions on x and on A such that 

QAx � QAQT ��QQT� � 1
�Qx

holds exactly.

We restrict our attention to partitionings defined by Q, i.e. aggregations which are also decompo-
sitions. With a proper ordering of state variables, the partition matrix can be written in the form

Q �

�
�
������
q1 0 0
0 � 0
0 0 qm

�
�
������

If the aggregate variables are an unweighted sum �i � CI
xi ,  each vector qI  is a characteristic vector

defined such that qiI =1 for xi �CI  and 0 otherwise. Because the aggregate variables for partitions are
functions of non-overlapping subsets of variables, they tend to be more computationally tractable in
determining conditions for aggregability.

We first compute the constraints on x for arbitary A and Q for which the aggregation is exact.
Rewriting the matrix products in terms of sums, we have

�1.8�a� �QAx�I �
�
�
����	

i

QIi�Aij
�
�
�����x � �

j

�
�
����	

i

QIi�Aij
�
�
�����xj

for QI  a characteristic vector, the above evaluates to

�1.8�b� �QAx�I �
�
�
����	
i � I

QIi�Aij
�
�
�����x � �

j

�
�
����	
i � I

Aij
�
�
�����xj

while applying (1.3) gives us for the general case

�1.9�a�

�QAQT��QQT� � 1
�Qx�

I
� �

J

�
�
�
�����	
i � I

�	
j � J

�QIi�Aij�
QJj

����������������������
k � J �QJk
2

�
�
������	

k � J

�QJk�xk

which for matrices of characteristic vectors is
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�1.9�b� �
J

�
�
�
�����	
i � I

�	
j � J

�
1

�������
nJ

�Aij
�
�
������	

k � J

xk

Setting (1.8b) equal to (1.9b) and solving for x given arbitary A, we have

�1.10�a�

xj �
1

�������
nJ

	
j � J

xj j � CJ � xi � xj � i, j � CI

i.e. exact aggregation is satisfied whenever the within-partition distributions are uniform. 

When the coefficients of Q are weighted characteristic vectors and thus not equal to unity, in
order for (1.8a) to equal (1.8b), the entries of x must satisfy the relationship:

�1.10�b� xj �
QJj

����������������������
k � J �QJk
2 	

j � J

�QIk�xk � j, k � CJ

If the aggregate variables are an unweighted sum �i � CI
xi ,  each vector qI  is a characteristic

vector defined such that qiI =1 for xi �CI  and 0 otherwise. Because the aggregate variables for partitions
are functions of non-overlapping subsets of variables, they tend to be more computationally tractable in
determining conditions for aggregability.

We first compute the constraints on x for arbitrary A and Q for which the aggregation is exact.
Rewriting the matrix products in terms of sums, we have

�
J

�
�
�
����	
r � J

�	
i � I

�QIi�Air�
QJr

����������������������
k � J �QJk
2

�
�
�����QJj � 	

i � I

�QIi�Aij

Because Q is nonzero only for j�J, the outer sum on the left-hand side evaluates to the term inside the
parentheses multiplied by Q, giving us the constraint

�1.11�a�

	
r � J

�	
i � I

�QIi�Air�QJr �

k � J �QJk

2

����������������������
QJj

�	
i � I

�QIi�Aij

In the case of Q a matrix of characteristic vectors, both sides simplify to:
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�1.11�b�

	
i � I

�Aij �
1

�������
nJ

��
j � J

��
i � I

�Aij � 	
i � I

�Aij � 	
i � I

�Aik � j, k � CJ

This corresponds to a matrix A where the within-partition column sums are equal to a constant. Matri-
ces with this structure are said to be column-equitable (Tinhofer and Stadler 2001) and correspond to
an equitable partition of state variables. From this we can conclude that an exact aggregation correspond-
ing to equitable partitions are always satisfied for column (or row) equitable matrices. In the case of

arbitrary coefficients in Q, the constraint can be interpreted as a weighted column-equitability.

Conditions (1.11) insure that A is aggregable under the constraints of Q for any choice of state

vector x. While (1.10) suggests that for an arbitrary A there will  always be some x which satisfy exact
aggregability, it turns out that only for column-equitable matrices are aggregable solutions x invariant

and stable under the action of A, (in other words, if  x(t) is aggregable, x(t+1)=Ax(t) will  only be aggre-

gable if A is column equitable), i.e.

Result 1.3:

   If  x is an exactly aggregable solution QA
�

x=AQx, then in general Ax is also aggregable if  and only if

A is column-equitable.

 In the case of Q a matrix of characteristic vectors, if  x satisfies the aggregability conditions,
then from (1.10) we know that xi =x j  for all i,j�CI . Since we have 

�Ax�i � 	
k

Aik�xk � 	
K

	
k � K

Aik�xk

and equality of xkK  for all k within each partition K, in order for 

	
K

	
k � K

Aik�xk � 	
K

	
k � K

Ajk�xk�Aik � Ajk�for i, j � CI.

In the case of real-valued coefficients of Q, the same reasoning shows that if  x satisfies (1.10b), then

Ax will  generally only be aggregable if the weighted-column equitability condition (1.11b) holds.

� Equitable Partitions

Exact aggregability of a transition matrix A (with Aij  the transition rate from j to i) requires that
given partitions CI ,CJ

	
i � I

Aij � 	
i � I

Aik � SIJ � j, k � CJ; i�CI
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An intuitive interpretation of the constant column sum sIJ  is that every element i of the partition I has
the same number (or, in the continuous case, magnitude) of connections to some element(s) of partition
J. There is no requirement that the matrices be symmetric, therefore the sum of connections from all
elements of J to any particular element i of I need not be constant. This corresponds to the special case
of a column-equitable partition of a transition matrix.

An equitable partitioning of any set of vertices corresponds to a decomposition into subsets
such that every element of each subset has the same number of connections (overall) to the elements of
any other partition. The concept of equitable partitions was first developed in connection to graph
theory (Schwenk 1974, McKay 1981, Godsil 1990) as a method of identifying graph invariance proper-
ties under within-partition perturbation. 

The graph-theoretic definition of equitable partitions is given a graph G=(V,E) with vertex set
V,E and a partition of vertices �=(C1 ...Cm ) into m non-empty and mutually disjoint subsets C. The
partition � is said to be equitable if for any i and j the number of neighbors (denoted by RIJ ) of any
vertex x j �CJ  depends only on the partition indices I,J and thus independent of choice of vertex within
a partition.

The equivalence classes defined by an equitable partition specify a reduced "quotient graph"
G/�, a directed multigraph where each partition CJ  is represented as a "reduced" vertex VJ  with RIJ

connections to vertex VI . Any partition � corresponds to a representation as a characteristic matrix Q
such that QIi =1 for i�I and 0 otherwise.

Figure 0 illustrates equitable partitioning on a graph. Consider first the 12 vertex, 15 edge graph
on the left hand side. The labeled graph on the right hand side codes each vertex by shadings and
shapes in accordance to membership in equivalence classes (e.g. solid circles have one solid circle and
two open circle neighbors, shaded squares are defined by having one open circle, one shaded square,
and one open square neighbor, etc). The directed graph on the bottom represents the quotient graph for
the equitable partitioning.

The number of edges RIJ  can be computed directly from the adjacency matrix of the original
graph in Figure 1. Arranging terms so that members of the same equivalence classes are in the same
partition blocks,  we get the adjacency matrix,  with Aij =1 for  vertices connected by an edge and 0
otherwise:
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A �

�

�

�������������������������������������������������

0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

�

�

�������������������������������������������������

for  which  the  quotient  graph  coefficients  (corresponding  to  the  number  of  edges  connecting
"aggregate" vertices in the lower graph of Fig. 1) are given by:

RIJ � 	
i � I

	
j � J

Aij ; R �

�

�

����������

0 2 1 0
1 1 0 0
1 0 1 2
0 0 1 0

�

�

����������

The matrix R can be interpreted as an aggregation of variables representation of the adjacency

matrix A, note that according to definition (1.2), R differs from A
�

 only by normalization constants.
Equitable partitioning can be interpreted as an exact aggregation of variables where the aggregation
matrix specifies equivalence classes with respect to the number of neighbors in other subsets.  

As with any subsets defined by an equivalence relation, equitable partitions can be interpreted
as the orbits under the action of a permutation (group automorphism) on the vertex set. This basic
property of vertex invariance within a partition can be described formally by defining equitable parti-
tions as orbits of a group automorphism of a graph. If Aut[G] is the is the automorphism (permutation)
group of all permutations of G, and H is any subgroup of Aut[G], then the orbits O1

H ...Om
H  of V under

H define an equitable partition and correspond to C1 ...Cm .
The definition of equitable partitions is readily generalized to transition matrices with non-

discrete coefficients. Stadler and Tinhofer (2001) define a row and column equitable matrices, respec-

tively, such that given any partition � (and corresponding aggregation matrix Q with row vector qI ), 

�2.1� AqI � 	
J 	 1

m

�RJI�qJ ; qI
T

�A 
 	
J � 1

m

�SIJ�qTJ

where

RIJ 
 	
j � J

�Aij ; SIJ  	
i � I

�Aij

Copy of DecompPaper.nb 14



The matrix is row-equitable if for some real-valued matrix R (referred to as the structure matrix of an
equitable partition G/�) such that all rows of the submatrix AIK  (a rectangular submatrix of dimension
|CI |x|CK |, i.e. the submatrix where all entries of Aij  with i�CI  and j�CJ ) sum to the same value RIJ .
Column equitability requires that the every column sum within block I,J is equal to SIJ .

Matrices  which  satisfy  both  the  row  and  column  equitability  relationships  are  said  to  be
"equitable." This is a stronger condition than is necessary for exact aggregation, but it does not require
matrix symmetry or identity of all Aij  for all i,j�CI ,CJ . An equitable matrix has the property:

�2.2� SIJ�nI � RIJ nJ

where nI =|CI |, etc. Equitable matrices have a number of significant spectral properties (Stadler and
Tinhofer 2000), which are briefly summarized by the following theorem:

Theorem 2.1 (Stadler and Tinhofer, 2000):

If R and S are the row and column structure matrices for A,�, and qI  is the characteristic vector for
partition CI , then for matrix eigenvalues 
 and eigenvectors x,

a) Spec(R)=Spec(S)�Spec(A)

b) Ax=
x and qI x�0 for some i � 
�Spec(S)

c) �R (x)=�S (x); if A is diagonalizable, then R,S are diagonalizable and �R (x) is a factor of �A (x).

Computing the aggregation matrix A
�

 for an equitable partition is straightforward using (1.2),

for A a column equitable matrix, we have

�G � ��IJ � A
�
IJ � �QAQT ��QQT� �

1�
IJ

� 	
i � I

�	
j � J

�
1

�������
nJ

�Aij

which is simply 1�����nJ
S.

Because the aggregate matrix is simply a normalized structure matrix, it follows from the above
Theorem that any eigenvalues of the aggregate matrix A

�
 will  also be eigenvalues of the adjacency

matrix A, while the characteristic polynomials of A
�

 will  be factors of the characteristic polynomial of

A provided that A is a diagonalizable matrix.
It  was shown above that the concept of equitable partitioning can be extended to aggregation

matrices Q  whose nonzero entries are arbitrary positive real numbers rather than unity. While the
column-equitable partition constraint (1.11b) follows from aggregation by characteristic vectors (1.8b),

a more general criterion (1.11a) describes the conditions on A consistent with weighted characteristic
vectors. We will  refer to such systems as "weighted" equitable partitions, i.e. systems where the aggre-
gated variables also correspond to a decomposition.

A special case of weighted equitable partitioning is that of the decomposable systems discussed
in Simon and Ando (1961). For a dynamical system specified by a matrix of the form (0.1), over a
timescale sufficient such that every state vector subset xI  whose dynamics are given by submatrix AI  is
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within some error � of its equilibrium distribution, there exists an aggregation of variables given by Q
such that qI =v�I  (the first eigenvectors of AI ) and a corresponding aggregate dynamics operator A

�
II =
I1

(the leading eigenvalue of AI ).

Aggregation of variables in Simon-Ando type systems, where the row vectors of Q are the first
eigenvectors of each submatrix, represent a limiting scenario for equitable partitions, namely one where
the membership of any variable xiI �CI  is determined not by symmetries of interaction but simply by
whether there is any interaction with another state variable at all. Because there is no symmetry require-

ment for within-partition interactions, each coefficient of Q has a real-valued term, qiI =v�iI .

� Equitable Partitions on Fitness Landscapes

Introducing equitable partitions from a graph theoretic perspective makes a number of biologi-
cal applications intuitive. Many biological systems, including metabolic and gene networks, are repre-
sented as (edge or vertex-weighted) graphs. Perhaps the best-studied graph representation in biology is
the model of a fitness landscape, or more generally, a genotype configuration space. We propose that
equitable partitioning may prove to be a powerful tool for analyzing complex fitness landscapes, in that
it  offers both an aggregate-variable description of system dynamics and the identification of self-con-
tained decomposable entities that serve as building blocks of fitness functions.

A  "fitness landscape" (Wright 1932, Stadler 1994) consists of a configuration space (V,�) of
entities  (genotypes,  phenotypes,  etc)  and a  real-valued function f(V)��  mapping each vertex to a
fitness value. The configuration space itself is defined by some neighborhood relationship between
vertices, most often defined in terms of transition probabilities between different genotypes via muta-
tion. If  we define genotypes as length n strings where each "locus" has one of a k-letter alphabet, the
vertex set consists of kn  genotypes. The neighborhood relationship is specified by positing a per-locus
point mutation rate �.

Because mutations at each locus are independent of one another, the mutation matrix can be
represented recursively as a Kronecker product of per-locus mutation matrices (Rumschitzki 1987,

Eigen et al 1989), i.e. an n-locus mutation matrix M is constructed as follows (assuming equal muta-
tion rates at all loci and equal rates between alleles at any locus):

�3.1� M �

�

�

�����������

Mn � 1 �Mn � 1 � �Mn � 1

�Mn � 1 � �Mn � 1 �Mn � 1

� � � �

�Mn � 1 �Mn � 1 � Mn � 1

�

�

�����������
�

�

�

�����������

1 � � �

� � � �

� � � �

� � � 1

�

�

�����������
�Mn � 1

If  we posit a sufficiently low point (per locus) mutation rate �<<1 such that the probabilities of multi-
ple mutants per generation scale in proportion to �d �0 for d�2, then a reasonable first-order approxima-
tion of the mutation space is as a Hamming graph (V,E), where E is an edge connecting any two verti-
ces (x,y) whose Hamming distance d(x,y)=1.
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Constructing a transition (weighted adjacency) matrix for mutation on a Hamming graph is
straightforward. For an n-locus system with point mutation, as a first order approximation (with col-

umn normalization) the mutation matrix M is specified by:

Mij � � if d��i, j� � 1; Mij � 1 � n� if d��i, j� � 0

Mij � 0 if d��i, j� � 2

with the transmission dynamics fully determined by x(t+1)=Mx(t).
The factorization of mutation matrices into individual loci suggests an immediate application of

equitable partitioning to M. Since the ordering of genotypes is arbitrary, we can arrange them into
equivalence classes defined by the allelic identity at any given locus. For example, we write down the
possible genotypes hierarchically by allelic identity at each locus for a 2 locus, 3 allele system,
000,001,010,011,100,101,110,111, the mutation selection matrix is

M3 �

�

�

����������������������������

1 � 3�� � � 0 � 0 0 0
� 1 � 3�� 0 � 0 � 0 0
� 0 1 � 3�� � 0 0 � 0
0 � � 1 � 3�� 0 0 0 �

� 0 0 0 1 � 3�� � � 0
0 � 0 0 � 1 � 3�� 0 �

0 0 � 0 � 0 1 � 3�� �

0 0 0 � 0 � � 1 � 3��

�

�

����������������������������

It  can be seen that there are several decompositions of M consistent with equitable partitioning. The
first and obvious one is that a partition into 4x4 blocks (corresponding to equivalence classes identical

at the first locus 0**  and 1**)  is equitable. If  we use right multiplication such that x(t+1)=Mx(t) for a
genotype distribution x, then the column structure matrices SII =1-2�  should be proportionate to the
exchange rates within  equivalence classes while SIJ=�  should give a measure of  cross-partition
exchange rates. 

Generalizing this result is straightforward because every point mutational neighbor except for
the one at the reference locus lies within its respective partition, therefore for an n-locus mutation
system, SII =1-(n-1)� and SII =�. Furthermore, under the assumption of equal forward and reverse muta-

tion rates, the matrix is symmetric, so that R=S for any mutation matrix of this form. Consequently, all

of the results of Theorem (2.1) apply, including part c (because M=MT , M is diagonalizable).

Another consequence of the factorizability of M is that the matrix is characterized by "nested"
equitable partitions. Within an equivalence class defined as 1**,  for example, there are additional
equivalence classes defined by 10* and 11* and so forth. For a partition with equivalence classes
defined on a pair of loci, the structure matrices have the form RII =1-(n-2)�, with off-diagonal entries
RIJ  equal to � when  IJ are members of the same equivalence class with respect to the first locus and 0
otherwise. 

This can be repeated over equivalence classes defined over an arbitrary number of loci, i.e. for
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k-locus equivalence classes, there are 2k  partition blocks with structure matrix entries RII =1-(n-k)� and
RIJ =�  for IJ members of the same equivalence class with respect to (k-1) reference loci, otherwise
RIJ =0.

Equitable partitioning immediately becomes problematic when we introduce fitness values and
have a mutation-selection matrix instead. Using absolute rather than relative measures of frequency and
fitness  allows  a  linear  representation  of  mutation-selection  systems  (Jones  1976,  Thompson  and
McBride 1974, Hermisson et al 2001) i.e.

�3.2� xi��t � 1� � xi��t��wi � 	
j � 1

k

��ij�wj�xj � �ji�wi�xi�

or in matrix form, x(t+1)=Ax(t) where A=WM and W is a diagonal matrix of fitness values for each
genotype, i.e. Wii =wi  and 0 elsewhere.

It should be clear that  in  general (for instance, the case where all  genotypes have different

fitness values), there is no symmetry in A and thus the mutsel matrix will not be equitable (as every
row or column sum within any block partition will be different from every other). However, the same
arguments that allow equitable partitioning on a mutation matrix allow it in cases where the fitness
function is also factorizable. 

If the fitness function of any genotype can be expressed as a product of the fitness contributions
of each individual locus, then the mutsel matrix can be constructed recursively given an existing matrix

A for n-1 loci and an nth locus which at which the 1...� alleles contribute fitness values wi
n  (nth locus,

ith allele), 

(3.3)    An =

�

�

������������

w1
n w1

n�� � w1
n��

w2
n�� � w2

n�� w2
n��

� � � �

wk
n�� wk

n�� � wk
n

�

�

������������
�An � 1

Consider the special case where the fitness contribution at any locus depends only on its allelic
state (for instance, in a Boolean genotype, each 0 or 1 has an equal contribution to fitness regardless of
its position), which reduces the above recursion to matrices with identical wi

1=...wi
n=wi  for all loci.

This is analogous to the assumption we made in constructing the mutation matrix, i.e. transition rates
being equal at all loci.

Under the assumption of multiplicative effects at each locus (or, in the case of a log transform,
additivity), the fitness landscapes corresponds to a single-peak "Fujijama" landscape (sensu Kauffman
1993). To give a concrete example, consider a fitness landscape for an n-locus, 2-allele system where
the optimum is chosen for convenience to be  x0={00...0}. We construct a multiplicative fitness func-
tion W(x)=W0�1 � s�d

�
x,x0 � , where W0  is the fitness of the optimum (the same arguments apply for any

fitness function which can be expressed as W(x)=f(x0 ,d(x,x0 )).
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This immediately suggests equivalence classes with respect to fitness measure, defined as all
genotypes  with  the  same  Hamming  distance  to  the  optimum.  There  are  (n+1)  such  classes,

Cd ={C0 ...Cn }  where C0 ={x0 } and Cd  is the set of 	n
d


  vertices of Hamming distance d with respect to

the optimum.

An aggregation operator for a Hamming distance-based equitable partition Qx=X (with Xd  the
frequency distribution within the class Cd ) is  given by a matrix of characteristic vectors (given an
arrangement of vertices starting with the optimum down through the various Hamming distance classes
1...n) such that Qdj =1 (or some nonzero coefficient in the case of a weighted aggregation operator) if j

is Hamming distance d from the optimum and 0 elsewhere. This gives us:

Xd � 	
i � Cd

xi � 	
i � 1

� n
d �
xi

Following (1.2), given mutation the mutation-selection matrix A, we derive the expression for
the aggregate dynamics matrix A

�
, summed over I,J classes of different components 

A
�

� 	
i � CI

� 	
j � CJ

�
1

�������
nJ

�Aij � �
i � CI

��
j � CJ

�
1

�����������

�n
J

�
�Aij

From the definition of equitable partitions each element i of equivalence class I has a constant
fitness value, WI , and all mutation rates �ij  must equal a constant-valued �IJ  for all i,j�I,J. An addi-
tional constraint is imposed by the structure of the hypercube if  we hold to the assumption that multi-
site mutations are negligible. Because each partition CI  is defined by Hamming distance I between its
elements and an optimum genotype, it can be seen that the members of each equivalence class do not
communicate with one another apart from the trivial Aii =Wi (1-n�) retention rate for each vertex. For
instance, if  in a 4-locus system {0000} is the optimum, there is no point mutation that will  take {1000}
to {0100} etc.

This means that for a sufficiently low mutation rate, the aggregate transition rates are in propor-
tion to the cross-term sums

A
�
II �

1
������
nI

�	
i � I �	

j � I �Aii � WI��1 � n�II�

A
�
IJ �

1
������
nI

�	
i � I �	

j � J �Aij � WJ ��IJ�nI�nJ

The coefficients of A
�

 can be interpreted as "aggregate" mutation rates and fitness values. Because the
fitness values of each genotype within any partition are equal, the aggregate fitness value W is equal to
that of any its elements w for all i�CI . The aggregate mutation rates  IJ  represent the collective transi-
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tion rate from partition CI  to partition CI , i.e. �IJ =�i � I � j � J �ij .
As for mutation matrices, the mutsel matrix for a multiplicative single-peaked landscape is both

row and column equitable, as a consequence of all genotypes within a partition (distance class) having

equal fitness. From Theorem (2.1a) it follows that the eigenvalues of A
�

 are a subset of those of A for a
multiplicative landscape. 

To illustrate, consider a mutation-selection matrix A for a five locus system with a per-locus
mutation rate �=0.1 and fitness values W00000 =1 at the optimum genotype and �1 � s�d  for any genotype

of Hamming distance d, with s=0.1. Figure 1a shows a plot of the spectrum of A. It can be seen in the

graph that  the multiplicity  of  every eigenvalue  corresponding to  each distance d  class  is  	n
d


 ,  e.g.


=0.7366 has a multiplicity of 5, 
=0.6295 has a multiplicity of 10, and so forth.
The spectrum of the aggregated mutsel matrix A

�
 (Fig. 1b) consists of the same eigenvectors as

that of the original matrix, only with multiplicities of unity because each Hamming class is represented

as a single variable. The leading eigenvalues of A and A
�

 (in this case 
1=0.8564) corresponds to the
equilibrium mean fitness of the population (Moran 1976, Buerger 1998, 2000), and the same leading
eigenvalue characterizes the equilibrium of the aggregate description. This is to be expected, as for any

exact aggregation, if  A
�

Qx=
Qx, then Ax=
x.
Eigen et al (1989, pgs 200-202) implicitly took advantage of equitable partitioning and aggrega-

tivity  to compute leading eigenvectors (their "quasispecies" distributions) and error-thresholds on a
single-peak landscape. While our aggregation operators follow a different scaling and formalization,
we essentially replicate Eigen et al's results to illustrate the utility of aggregation methods in calculating
mutant-class equilibrium frequencies and estimating error-threshold values.

The leading eigenvector for a single-peak mutation-selection matrix can be interpreted as the
mutation-selection equilibrium about the global optimum. Because of the fitness and mutational dis-
tance equivalence relations inherent in the system, computing the aggregate frequencies within equiva-
lence classes is as informative about the structure of the system as computing the entire distribution
(i.e. we are interested in the frequencies of the optimal fitness genotype, the total number of mutant
class 1 neighbors, etc).

Mutation-selection matrices are computed for the same fitness function as in Figure 1, for

different per-locus mutation rates. For each mutational value, the mutsel matrix A and the aggregate

matrix A
�

 is computed. The stationary distributions derived for each A
�

 are shown in Figure 2. For low
mutation rates of course, the equilibrium distributions are of course concentrated near the optimum,
with fairly  low probability density about the error one neighbors and negligible probability density
elsewhere. In contrast, as ��0.1 (as shown by the lower curves in Fig. 2, with the mutation rate being
n� where n=5 loci), the probability densities at and near the optimum are not necessarily greater than
elswhere,  illustrating the familiar  "error threshold" phenomenon. If individual genotype frequencies
rather than aggregate class frequencies were plotted, every frequency would tend towards 1�������32  at the

error thresshold. In the case of these plots of aggregate frequency, each class d tends towards 1�������32 	n
d


 .
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That error threshold estimates can be done on the aggregate representation illustrates that sub-
sets of genotypes defined by distance classes from the optimum are evolutionarily equivalent under
point mutation and selection. Hence, there are several implications of an equitable partition representa-
tion of a single-peak landscape. On the one hand, by replacing the state variables xi  with XI =�Qx�I , we
have reduced a 2n  dimensional system to one of n+1 dimensions (with the Hamming class d partition

having 	n
d


  members). Secondly, in by defining equivalence classes in terms of common fitness values

and neighborhood relations to members of other fitness classes, we have identified the entities the

selection and transmission process "sees" at a macroscopic level. Because X=Qx  is a dynamically
sufficient description of mutation-selection process, one can regard each aggregate variable XI  rather
than each genotype as a unit of evolution.

We next inquire whether equitable partitioning can be generalized to describe more complex
landscapes, namely, those where the fitness values of each genotype are defined by distances to multi-
ple local optima.

�  Aggregation of Multipeaked Landscapes

By extension of the model for a single-peaked landscape, we construct a fitness function where
the fitness of any genotype depends only on the Hamming distance to a set of k reference vertices,
W(x)=Fw (d1 ,d2 ...dk ), where d j  is the distance of genotype x to the jth vertex. An example of such a
fitness function would be one where each reference vertex corresponds to a local optimum, and the
fitness of any genotype is determined by how far it  deviates from any or all local optima. Again,
because the system is defined in terms of Hamming distances, there is the assumption of equivalent
effects at each locus.

In order for equivalence classes determined by Hamming distances to be dynamically sufficient
entities with respect to mutation and selection operators, both the fitness values and number of muta-
tional neighbors in each class must be fully determined by the Hamming distance values. While fitness-
value equivalence classes are well-defined for an arbitrary number of reference vertices, as we will
show below it is not necessarily the case that equivalence classes based on fitness are also equivalence
classes with respect to the number of mutational neighbors. In other words, unlike the case of a single
reference vertex (or, as we will  see, two) for three or more reference vertices Hamming distances alone
are not sufficient descriptors of neighborhood equivalence classes.

Consider (again on an n-locus, 2 allele configuration space) a fitness function Fw (d1 ,d2) deter-
mined by the Hamming distances with respect to two reference vertices x1 ,x2 . We define D12  as the
Hamming distance between the two reference vertices. If  D12=n (for  example, x1=00...0 and
x2=11...1), it should be obvious that the equivalence classes are identical to those defined by a single
reference vertex, because d1  is fully determined by d2=n-d1 .

When the reference vertices are not mirror images, some loci are identical and others are oppo-
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site, giving us 0<D12<n. Taking advantage of the symmetries in this situation, we divide the loci into
those that are identical at both reference vertices Nfix  and those that differ Nvar=n-Nfix . For any geno-
type x j , the distance to both reference vertices D � fix � , j  on the subset Nfix  loci is of course the same. The
subclass Hamming distances  D � fix � , j  together with D � var � j,2  and D � var� j,1  define equivalence classes
with respect to neighbors, because for any choice of genotype the Hamming distance over the fixed
subset to both reference genotypes is identical while the subset of variable loci behaves like a size Nvar

single-peak (or opposite pole) partitions. All  members of a particular class (D � var� j,1 ,D � fix � , j ) shares
exactly the same number of neighbors in class (D � var� j,1+1, D � fix � , j ) etc.

In turn, it can be shown that the variable and fixed loci are determined by the Hamming dis-
tances of each genotype to the reference vertices and by D12. Over the Nvar loci, the respective Ham-
ming distances from x j  to Nvar,1  and Nvar,2  are denoted as D � var� j,1  and D � var� j,2=Nvar-D � var� j,1 , i.e.

�4.1�

dj,1 � D � fix � ,j � D � var 	 j,1
dj,2 � D 
 fix � ,j � D 
 var � j,2 � D 
 fix � ,j � �Nvar � D � var  j,1��

dj,1 � dj,2 � 2�D � fix � ,j � D � var � j,1 � 2�D � fix � ,j � D12
dj,1 � dj,2 � D � var � j,1 � D � var � j,2 � 2�D � var � j,1 � D12�

dj,1 � D � fix � ,j � D � var � j,1
dj,2 � D � fix � ,j � D � var � j,2 � D � fix � ,j � �Nvar � D � var � j,1��

2�dj,1 � 2��D � fix � ,j � D � var � j,1�
dj,1 � dj,2 � D12 � 2�D � fix � ,j

From the last set of derived relations, it can be seen that d j,1 ,d j,2 , and D12  are in themselves sufficient
to compute Dfix  and Dvar . In turn, the latter values define the mutational equivalence classes, because
any genotypes which have a common D � var � j,1  D � var � j,2  and D � fix � , j  with respect to the two reference
vertices share the same number of mutational neighbors in other equivalence classes (because Dfix  and
Dvar  fully determine the number of neighbors in hamming classes D � var � j,1 +1, D � var � j,2 -1 etc).

This implies that we can fully describe the mutation-selection dynamics on a fitness function of
two variables in terms of pairwise Hamming distances. As there are n possible distances to either x1  or
x2 , there are (n-D12 +1)(D12 +1) Hamming partitions, each of which has cardinality

�4.2� � CDfix,Dvar � � �n � D12
Dfix

��� D12
Dvar

�

Since D is of order n, the effective dimensionality of the aggregated system is of the order n2 ,
as one might expect for a system defined by two degrees of freedom. The dynamical sufficiency of
pairwise distance classes is  illustrated in Figure 3,  in which the equilibrium distributions are again
computed for a range of mutation rates. The fitness functions are in all cases chosen such that given
two local optima
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(at 00000 and 10101) with fitness values w1 ,w2 , while the fitness of all other genotypes x are given by
w1 �1 � s1�d +w2�1 � s2�d . 

In 3a, we compute distributions for a fitness function corresponding to Eigen et al's degenerate
quasispecies, one where w1=w2=1 over a range of mutation rates (the only difference being in the
choices of s values, with s2=.05<s1=0.1 so that the fitness function is "sharper" near the first optimum).
Unlike the Eigen et al model, the frequencies plotted are not individual genotype frequencies but rather
(d1 ,d2) equivalence class frequencies (with (0,3) and (3,0) the frequencies of the local optima). Figure
3b repeats the same for a near-degenerate quasispecies, one where w1=1 and w2=.99, giving error
threshold results qualitatively similar to those of Eigen and colleagues.

Taking as an example a fitness function Fw (d1 ,d2 ,d3)  defined by three variables, it  can be
shown with a counterexample that at least in the general case, Hamming distances to each of the three
reference vertices do not define equivalence relations with respect to the number of neighbors in other
Hamming distance classes. If  in a four locus system our reference points are 1110,1101,1011, both
1000 and 0111 are in the equivalence class specified by the Hamming distances (2,2,2). However,
while 1000 has a neighbor (0000) in the (3,3,3) class, there are no single-set neighbors in the (3,3,3)
class for 0111. Consequently, not all genotypes in an equivalence class defined by pairwise Hamming
distance (and in this model, fitness) are equivalent in their neighborhood relations. Therefore, from the
standpoint of mutation-selection operators, which depend on invariance in both fitness values and
number of neighbors across classes, these equivalence classes will  not give a dynamically sufficient
aggregation.

We can instead ask which equivalence relations do give satisfy the equitable partitioning proper-
ties with respect to mutation operators, and to what extent these partitions are concordant with equiva-
lence classes defined by constant fitness. We propose the following method of defining equivalence
classes which can be shown to define an equitable partitioning: let ! reference vertices be given. We
pick a particular reference vertex (the first one, for instance) and divide the set of all n sites into the
allelic state with respect to reference vertex 1.

For !  reference vertices,  there are 2 � � 1  possible  overlap classes "1 ,"12 ,"13 ..."123 ,..."123... �
defined in this way, the sizes of which are denoted as

n1, n12, n13, ...�n123, ...�n123... �

with

	
� � tuples

n1..ij... � n; 	
� � 1

� 	 1
��� � 1

�
� � 2


 � 1

where n1  are the loci with allelic states unique to the first reference vertex, n12  is the number of loci
shared between reference vertices 1 and 2 but different for all other vertices etc. By simple symmetry
arguments, the overlap classes n1=n23... �  ... n123..� =n0  etc, because by definition allelic states that are
shared on some set of reference vertices are also shared (in the opposite configuration) by the comple-
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menting subset of reference vertices. For example, if  an allelic identity of "1"  at some locus is unique
to a particular reference vertices, then the remaining reference vertices must have the allelic state "0" at
that site.

The neighborhood equivalence classes are defined by Hamming distances on the subsets
d1 ,d12...d123...d123... � . These represent the (partial) Hamming distances from any genotype to the sub-
sets of loci shared between various �-tuples of reference vertices, i.e. d123 is the Hamming distance of
the subset of loci on some genotype to the shared subset configuration defining references vertices
1,2,3.

For the reasons discussed above in the two-dimensional case, the Hamming distances across
overlap subsets define equivalence classes with respect to mutational neighborhoods. This can be seen
by noting that each overlap set acts as an effective single reference genotype with respect to the appropri-
ate subset of loci, and therefore the partial Hamming distances within any subset of loci defined as
shared over a �-tuple behave in the same way as Hamming distances on a single peak landscape. To see
that a partition of loci into overlap classes corresponds to equivalence classes under the action of point
mutation, we offer the following proof:

Result: Given a partitioning of loci into �-tuples, each corresponding to a class of loci with identical
allelic states over reference vertices in the �-tuple, the partial Hamming distances from any genotype to
the �-tuple reference vertices specifies an equitable partitioning.

Proof: We define the Hamming distance from any genotype to the ith reference vertex as Di  and the
partial distances to the �-tuple overlap classes as d � . Consider two genotypes x1  and x2 .

First, equal partial distances to the �-tuple classes imply equal Hamming distances, because
each D is a function of the d, namely

Di � 	
� � tuples

	 � ,i�� n �
������
2

� 	 � ,i�d � ,i �
n �
������
2

��

where � ,i =1 if i��-tuple, -1 otherwise. In other words, if  i is a member of the �-tuple, we add d, other-
wise (n-d). Similarly, equal overlap classes imply equal Hamming distance neighborhood classes for
any number of point mutations in a �-tuple set of loci. Assuming that x1  and x2  are in the same overlap
classes, then for any mutation in x1 , one can pick a mutation in x2  such that the mutant sequences are
in the same overlap (�-tuple) equivalence class. In turn, equal overlap classes imply equal Hamming
distance classes, therefore corresponding mutations in the same �-tuples of x1  and x2  will  result in
genotypes in the same Hamming classes (D1 ...D 	 ).

We note that while these results were derived for a 2-allele system, they can in principle be
generalized to scenarios with an arbitrary number of allels provided that certain constraints on the
fitness effects of each mutation are met (see Appendix). Because the equivalence classes defined by
overlap classes in the k-reference vertex case reduce to equivalence classes defined by Hamming dis-
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tances in the k=1 and k=2 cases, Hamming distance-based classes can be made to define equitable
partitions for l-allele models.

To illustrate an equitable partitioning for a three variable fitness function, consider again the
four locus system with the reference vertices 1110,1101,1011. The �-tuplet subsets of loci (g � ) defined
by overlaps are g123=1***,  g12=*1**,  g13=**1*,  g23= ***1,  each with corresponding size n � =1. By
symmetry, n12  is the mirror-image of n3  (defining the same loci) and so forth for other doubles and
singletons. For any genotype (we will  use 0000,0101,1010,1111 as examples), the partial Hamming
distances of  these four  genotypes on  the  four  subsets are,  respectively (d123,  d12,
d13,d23)=1111,1010,0101,0000.

In this case there are four overlap classes with sixteen possible partial Hamming distance config-
urations. The example suggests a generalized expression for the number of configuration classes and by
extension the size of the aggregated state space. 

A neighborhood equitable partitioning into subsets defined by overlap class distances gives us a
state space of size:

�4.3� �
� � tuples

�nijk... � 1� � � n
����������
2k � 1 � 1�2

k � 1

the upper bound is for the "worst case scenario" of reference vertices spaced equidistantly from another
(with an expected distance of n

����������2k � 1  between each vertex). The number of aggregate variables is of the

order n2k � 1
<2n , which is a substantial reduction of system dimensionality when k<<n.

In  turn,  the  number  of  genotypes  in  each  equivalence  class  defined  by
(d1 j ,d12 j ,...d123 j ,...d123... � j ) is 

�4.4� � Cd1,d12 j,... d123 j,... d123... � j � � �
� 	 tuples

��n12.. 


d12.. 

�

In the case of two reference vertices, (4.3) and (4.4) reduce to (4.2), as expected. Furthermore,
if  the reference vertices are chosen "sequentially" with respect to one another such that every reference
vertex contains a subset or mirror image of every other one (e.g. 0000,1100,1111), the state space is
reduced due to the number of degrees of freedom being less than the number of reference vertices (i.e.
the distance to 0000 is simply n minus the distance to 1111).

The difference between the two dimensional and k-dimensional fitness functions, of course, is
that in the general k-vertex model there is no one to one correspondence between mutational neighbor-
hood equivalence classes (defined by Hamming distances on overlap class subsets) and equivalence
classes defined by common Hamming distances with respect to all vertices (and by extension, fitness
classes when fitness is determined by these Hamming distances).

Result: Unequal overlap classes imply unequal Hamming distance neighborhood classes under point
mutation, even for genotypes with identical Hamming distance classes.
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Proof: Let x1  and x2  have the same Hamming distance classes (D1 ...D � ), but with different overlap
classes in some subset of �-tuples. Chose some arbitrary �-tuple such that d � ,2>d � ,1  (without loss of
generality). Select some � tuple distance d � '=d � ,1+1. For sake of argument (and again without loss of
generality), assume that locus 1 is a member of the �-tuple. Then under the action of a d � '-step mutation
in the �-tuple class of loci in x2 , the progeny are in the Hamming class (D1-d � ',...,Di -i,� d � ',...D� -
 � ,� d � ') with i,�  defined as in the previous result. From this it can be seen that x2  is in the d � ' partial
distance class of the �-tuple and in the d � ' Hamming distance class with respect to the reference verti-
ces.

The construction of a Hamming distance d' neighborhood set for x2  requires d' point mutations
on the �-tuple in question. The same cannot be done for x1 , for even though it is in the same Hamming
distance class, by assumption we have d � '>d� ,1 .

To demonstrate that equivalence classes defined by distances to reference vertices do not gener-
ally give equitable partitions, consider the graph in Figure 4a versus those in Figure 4b. In 4a, the

transition matrices A and their aggregate approximation A
�

 were computed by using a fitness function
W(x)=�i wi�1 � si�

di ,  with  three  reference  vertices  11101,11010,10110  and  w1 =w2 =w2 =1  ,  s1 =0.1

,s2 =0.05, s3 =0.01.The distribution x(t)  was computed over  10 time steps,  and in  the figure shown

Qx(10) is plotted against X(10) to show their divergence. A square error of ~10
� 2  is obtained. For this

particular choice of fitness functions, the aggregate approximation to the stationary distribution is quite
accurate,  simply because the macrovariable dominating the aggregate distribution X(t)  happens to
contain the optimal genotypes in the original system x(t).

In contrast, for the distributions shown in 4b, mutsel matrices were computed using a fitness
function  W(x)=�i w�1 � si�

�
i  with fitness components determined by overlap class identity oi  rather

than !-tuple Hamming distances (by coincidence, there are 3 overlap classes in this case, so the same w

and s parameters are used for convenience). Not surprisingly, the distributions Qx(t)  and X(t)  are
practically superimposed for any choice of t, with square errors of ~10

� 16  corresponding to the limits
of Mathematica's numerical accuracy.

It is fairly obvious that constructing fitness functions defined by overlap classes is highly unnatu-
ral and contrived, in that it is difficult  to invision how such a fitness function would occur in nature.
The example was chosen simply to illustrate the limits of aggregation of variables in systems with
multidimensional fitness functions. It  should also be noted that in this particular case aggregation of
variables offered no great reduction in the size of the state space even in the case where it was exact,
though this caveat becomes less significant for very large genotype spaces.

The non-congruence between mutational neighborhoods and Hamming distance classes (in this
case corresponding to phenotype or fitness classes) illustrates a fairly ubiquitous phenomenon in evolu-
tionary biology, in which genotypes with identical (or at least functionally equivalent) phenotypes have
different evolutionary histories by virtue of having different phenotypes in their immediate mutational
neighborhoods. For example, one can have a fitness landscape with ! peaks, some subset of which have
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identical fitness values. However, some peaks will be surrounded by relatively high fitness single-point
mutation  neighbors  while  others  will  have  low fitness  mutation  neighbors  (corresponding  to  high
versus low mutational robustness, e.g. Wagner et al 1997), and the equilibrium densities about each
peak will  ultimately reflect  the fitness  values of  their  mutational  neighbors  (Schuster  and Swetina
1989, Wilke 2001).

� Discussion

Aggregation methods have two major implications for the analysis of mutation-selection mod-
els, one practical, the other conceptual. At a practical level, the identification of equivalence classes
and dynamically sufficient aggregate variables reduces the dimensionality necessary for predicting
system dynamics and deriving equilibrium distributions. For mutation-selection models where Ham-
ming graphs are the underlying configuration space (a standard model for point mutation) and the
fitness functions are determined by Hamming distances to a small subset of local optima, the computa-
tional reduction is quite substantial, one from an exponential number of variables (#n  for a size #

alphabet) to a relatively small polynomial of the order n
� � � 1

�����������2
� � 1  for ! local optima as reference points.

More significant perhaps are the conceptual implications of the equivalence classes themselves.
By identifying equivalence classes of genotypes that are identical to one another in both their fitness
values and in their mutational neighborhoods (i.e. the number of mutational neighbors in other classes
defined by their mutational neighborhoods), one partitions genotypes into subsets that act identically
under the action of both the transmission (mutation) and selection operators. Numerous discussions on
the units of evolution (Lewontin 1970) have used dynamical sufficiency as a criterion for identifying
evolutionary units above or below the level of the individual. Implicit in this definition is the identifica-
tion of equivalence classes that can be described by aggregate variables under the action of higher-
order selection and transmission processes.

Most of the discussions of evolution of entities above the individual (genotype) level (such as
group selection, species selection etc) focuses on the identification of equivalence classes from the
standpoint of selection only. As was shown above in the case of a !>2 reference vertex fitness function,
it  is not sufficient for genotypes to be equivalent under selection for any subset be an evolutionary
equivalence class. If  the equivalence classes defined with respect to mutation and with respect to selec-
tion are not identical, neither a partition into fitness classes nor a partition into mutational neighbor-
hood classes gives a dynamically sufficient description for the mutation-selection process.

Our results presented here suggest that the actual range of fitness functions which allow exact
equitable partitioning may be quite limited. An obvious direction to take future inquiries into aggrega-
tion and decomposability would be to look for mutation-selection systems where the operator is nearly
equitably partitionable, and ask over which time scales approximation by equitable partitions gives a
good approximation of system dynamics.
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The decomposability and aggregation properties of one particular class of dynamical systems
have actually been studied in some detail, namely the "nearly decomposable" fast-slow linear systems
treated in Simon and Ando's (1961) work. Their approach focuses on the fact that some dynamical
systems can be partitioned into subsets such that within-partition interactions are much stronger than
cross-partition interactions. Such near-decoupling leads to short-term near-decomposability for each
subset and longer-term aggregation of variables as each subset tends to quasi-equilibrium. This class of
models may prove to be more generally applicable to evolutionary systems (Shpak et al, in preparation)
than the exact aggregation of equitable partitions.

However, decomposition of fast-slow dynamical systems is still  a special class of (weighted)
equitable partitions, at least as an approximation. As our analysis in the first section showed, any aggre-
gation of variables in a linear system will  be some form of equitable partition. Yet we know of many
example of dynamical decomposability and aggregability in biological systems that do not correspond
to equitable partitions. The reason, we believe, lies in the fact that other forms of decomposability and
aggregability are always associated with nonlinear systems and their properties.

A well-known example of decomposability in population genetics is the concept of selection
acting on genes (or specific characters) as opposed to genotypes. For instance, given an n-locus, multi-
allelic genetic system under linkage equilibrium and additive (or multiplicative) fitness functions, the
state dynamics can be sufficiently described in terms of allele frequencies at individual loci (Lewontin
and Kojima, 1960), in fact, the dynamics of alleles at each individual locus is dynamically sufficient.
For example, for  a genotype space on the frequencies of  {AB,Ab,aB,ab}, the frequencies {p( -
A*),p(a*),p(*b),p(*B)}  (with A*  denoting any genotype associated with allele A at the first locus) are
dynamically sufficient descriptors if  W(AB)=w(A)w(B)  and so on for the other genotypes, and if
p(AB)=p(A*)p(B*)  etc.

The ability to predict genotype frequencies from allele frequencies under linkage equilibria and
to derive fitness functions with reference to lower (single locus) units has suggested generalized mod-
els of character decomposition analyzed by Wagner and Laubichler (2000), Laubichler and Wagner
(2000), and in a somewhat different formulation by Kim and Kim (2000). We propose that this form of
dynamical decomposability (i.e.  through identification of  equivalence classes with  respect to
"characters" such as allelic states at a particular locus) is one which is independent and ultimately
incompatible with equitable partitioning.

Following Wagner and Laubichler but using a notation specific to genotype spaces consistent
with the fitness landscape analyses in this paper, define a set of genotypes { x1 ....xN }  with an associated
frequency vector pi ={ p1 ...pN }.  The equivalence classes C1={ C1 ....Ck }  and their associated frequen-
cies �I ={�1 ...�m }  are defined such that (for example) every genotype x�CI  has an identical allelic state
at a particular locus. More generally, the equivalence classes can be defined as a set of genotypes
identical over some subset of sites, or a "schema" (sensu Holland 1975, Goldberg 1988, Altenberg
1995). For example, one such equivalence class for a 4-locus genotype would be the set of all geno-
types C1  of the form 0***,  C2  of those of the form 1***,  defining partition C. In turn, another class of
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partitions C2  will  be defined by the allelic identity at the second locus, and so on.
Wagner and Laubichler define the Cartesian product C1xC2  to be an oc (orthogonal compli-

ment) partitioning if  C=C1xC2 , or more generally, C=C1xC2 ...xC
�

. They construct oc-partition by
choosing a set of invertible functions F={ fij |f:Ci �C j } which maps every element in one equivalence
class to the corresponding genotype in another class. For example, f could map 101 to 001, with *01
defining an equivalence class with respect to all loci except the first. In the case where F is a transitive
map, i.e. s= fIJ (x) and t= fJL (u) implies t= fIL (x), F defines a complementary (orthogonal) partitioning
C
���

={C1
����

...Ck
����

}, with every class in the complementary partition is C
���

={s�x if there is fIJ �F|s= fIJ (x)}.
This map defines an equivalence class because the functions in f are transitive and invertible (Rosen
1984, Bogart 1990), and defines each genotype x as x=CI �CJ

����
.

Given an oc-partitioning, Wagner and Laubichler have shown that for fitness functions satisfy-
ing the additivity condition and for "character" frequencies satisfying a generalized linkage equilib-
rium, the equivalence class frequencies �I  are a dynamically sufficient descriptor of evolution under a
selection operator. Specifically, they require that all fitness functions satisfy what they refer to as "pi-
additivity," with m the Malthusian fitness parameter:

�5.1� m��fIJ��x�� � m��x� � cIJ.

In other words, the fitness differences between members of the same equivalence class (i.e. allelic state
at a particular locus) are some constant cIJ  determined by the rest of the genotype or character state
configuration. This effectively excludes any type of nonlinearity due to epistasis in fitness functions.
The other condition, of course, is generalized ("Pi") linkage equilibrium, 

�5.2� pI��fIJ��x�� � pJ ��x�, where pJ ��x� �

p��x�
��������������

�J

with p(x) denoting the frequency of x while pJ (x) refers to the marginal frequency in the Jth partition.
This definition is equivalent to the conventional linkage equilibrium condition p(x��I ��

��
J )=�I �

��
J  .

It was shown by Wagner and Laubichler that if these criteria are met, the Crow and Kimura
(1970) selection equation on genotypes (in continuous time)

�5.3�a� p�i � pi��mi � m��

can be aggregated into a dynamically sufficient description as

�5.3�b� �I � �I��m�I � m��

with m���I  being the mean fitness of all genotypes in equivalence class I. The aggregation of p1 ...pN  into
state variables �1 ...� �  requires that the action of selection of genotypes within partition not changing
the fitness differences between partitions, so that ultimately the only "relevant" dynamics are due to
competition between partitions.

Aggregation into equivalence classes defined by allelic states at a given locus are shown to be
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dynamically sufficient if each equivalence class has an equal variance in fitness, a condition which if
fulfilled under pi-additivity and generalized linkage equilibrium. Their results have been extended to
discrete-time selection systems (Wagner and Carter, unpublished) and to mutation-selection scenarios
(Altenberg, unpublished) where the mutation operators fulfill the factorizability conditions of (3.1).

What is interesting about the Wagner and Laubichler results is that their equivalence classes do
not constitute an equitable partition. In fact, for the simplest case of a "Fujijama" landscape (e.g. 0000
the optimal genotype, with fitness md

�
x,x0 �  for Hamming distance d neighbors), the equivalence classes

are actually orthogonal to one another. Under equitable partitioning, {1000,0100,0010,0001} constitute
an equivalence class, while a partition into per-locus allelic identity classes gives the eight genotypes
{1000,1100,1010,...1111} for the partition determined by 1***.

The question arises as to how a partitioning which is non-equitable but nevertheless gives a
dynamically sufficient aggregation of variables occurs in apparent violation of Result (1.3). The answer
seems to lie in the fact that the general result of aggregations corresponding toe equitable partitions is
restricted to linear dynamical systems. In order for mutation-selection dynamics to be linearized, it is
necessary to use absolute frequencies and fitness values rather than relative frequencies and fitness
values (as in 3.2). This linearization is what allows for equitable partitioning into Hamming distance
(or overlap classes) given a congruence between fitness values and mutational distance.

In  contrast, the partitioning and aggregation into  equivalence classes based on shared
character/allelic states is only possible in a system with relative frequencies as state variables and
relative fitness values as the selection parameters. The reason is that the aggregation (5.3b) uses the
invariance property of the Crow-Kimura equation, which is invariant under he addition of a constant to
all fitness values (Wagner and Laubichler, 2000). The linearized dynamical system analyzed in the first
section of this paper does not have this property and hence does not allow this form of aggregation.

In other words, there exist decompositions and aggregations of variables in nonlinear systems
which do not apply to their linear counterparts. The transformation from absolute to relative frequen-
cies involves a projection of an N dimensional space onto a N-1 dimensional manifold (because of the
constraint that �i pi =1 and �I �I =1). Consequently, an aggregation which holds in the lower dimen-
sional space need not apply to the higher dimensional representation. 

However, the fact that the transformation of a linear representation of mutation-selection dynam-
ics to a nonlinear representation (using relative frequencies) involves a projection onto a lower-dimen-
sional substance implies that aggregability in the linear representation is probably a necessary (but not
sufficient) criterion for aggregability in the nonlinear representation.This suggests that there probably
exist entire families of aggregable and decomposable nonlinear dynamical systems. Given the fact that
the conditions under which linear systems can be decomposed is rather restrictive, and that most biologi-
cal systems involve some kind on nonlinear interactions, the majority of modular structures and emer-
gent "aggregate" characters in biological systems probably involve different aggregation and decomposi-
tion rules than can be described by equitable partitioning. 
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� Appendix: Equitable Partitions for Multiple Alleles

In general, the equitable partitions defined over Hamming classes for 1 and 2 reference vertex
fitness  landscapes or  by overlap  classes  for  larger  numbers  of  reference  vertices  do  not  apply  for
genetic systems with more than two alleles per locus. This is simply because for multiple alleles with
arbitrary fitness effects for any allele at a given locus do not define equivalence classes with respect to
distance, i.e. for any genotype no two Hamming distance d neighbors need have the same fitness value,
and thus the correspondence between mutational distance classes and fitness classes generally breaks
down (of course, the same is true if one allows for different effects of substitution at different loci). For
instance, if we allow 3 alleles per locus with different fitness effects, the genotypes 200 and 100 will
not have the same fitness distance to (Hamming distance one) sequence 000.

However,  if  one orders the L allelic states at  each locus as #={#1 ,#2 ...#L } and posits  L-1
mutation parameters �1 ,�2 ,...�L � 1  (ordered such that � is the symmetric mutation rate between appropri-
ately chosen subsets of #) , if  the fitness differences wi  correspond in proportion to each �i ,  then
mutational distance will be congruent with fitness differences. As an example, consider the familiar
Kimura 3-parameter model for nucleotides A,C,G,T with mutation rates

A  $
�

2
    G A    $

�
3

    T
         �1 %         %�1      ;   

C $�
2

   T C    $�
3

   G

and a fitness effect of wi  fixed for each mutation event �i  at all loci.
For a k-reference vertex system, we again use the first reference vertex as the sequence used to

derive all subsequent overlap classes. For any sequence, the alleles at each locus are labeled according
to their position in the mutation order scheme relative to the first reference vertex, i.e. for A: A=1,G=2,-
C=3,T=4, for C: C=1, T=2,A=3,G=4.

The overlap classes themselves are defined as follows: let nCI  denote the number of loci at
which all vertices in the set { i1}  are identical to the first vertex at the ith site, all vertices in the set { i2}
carrying label 2, and so forth through L. There are a total of L

� � 1  classes of the form:

nCI � n � 11 21 ... i1 ... � 1 � , � 12 ... i2 ... 	 2 � ,..., � 1L ... iL ... 	 L � , 	
I

nCI � n

Copy of DecompPaper.nb 31



Having  defined  subsets  of  loci  as  overlap  classes,  the  partial  Hamming  distances
(d

��
C1 d

��
C2 ,...d

��
CI ,...d

��
CL ) define equivalence classes (as for the diallelic case, for k>2 reference vertices the

fitness values of genotypes must be determined by partial Hamming distances in order to be equitable).
Each vector d

��
CI =(dC1

1 ...dCL

L ) such that each dCI

1 �{0...nCI } and �r dCI

r =n. In turn, every overlap class nCI

has subspace size:

	
k1 � 0

nCI

	
k2 � 0

k1

...� 	
kL � 1

� 0

kL � 2

1 � �n � L � 1
n

� � LnCI

for nCI  greater than some critical value, while over the entire space of possible overlap relations the
number of equivalence classes is

�
CI

��nCI � L � 1

nCI
� � �

CI

�n � L � 1��
����������������������������
n���L � 1��

� Ln

which again, for large numbers of loci, gives an effective reduction in the dimensionality. For the k=1
and k=2 vertex systems, overlap class partitions reduce to Hamming distance equivalence classes as
they did in the L=2 diallelic case.

The same reasoning used to show that partial Hamming distances define equitable partitions in
the diallelic case apply here, the only difference being that multiple mutational steps must be taken into
account for each type.
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� Figures

Figure 0:
An equitable partition of a 12-vertex graph and its reduced 6-vertex graph (from Stadler and Tinhofer,
2000), showing the four equivalence classes defined by equal numbers of neighboring vertices the
other classes.

Figure 1:

a) The spectrum of a mutation-selection matrix A for a 5-locus, 2-allele system with an optimum fit -
ness value W0=1.0 at 00000 and a fitness function W(x)=W0�.9�d

�
x,x0 �  (corresponding to a single-peak

fitness landscape) and a per-locus mutation rate �=0.1. Note the 	n
d


-fold multiplicity of eigenvalues in

the dth class.
b)  The spectrum of the aggregate representation A

�
 where the aggregation matrix sums members of the

same d-value equivalence classes into single variables. The eigenvalues are identical to those in part a,
but in the aggregate representation there is no eigenvalue degeneracy, each one has a multiplicity of one.

Figure 2:
For the same single-peak fitness function as shown in Figure 1, the frequencies of the d-class entries
are shown for the stationary (quasispecies) distribution of the aggregate mutsel matrix A

�
. The frequen-

cies of the optima and the class 1...5 Hamming distance neighbors are shown for a range of point muta-
tion rates 0<�<1.0. The figure illustrates the error threshold phenomenon at ��.25, as shown by the
fact that Hamming error 1...5 classes become as frequent as the optimum.

Figure 3:
a) Equilibrium distributions for "degenerate" quasispecies, i.e. a two-peak fitness landscape where
00000 and 10101 both have fitness equal to unity, while other genotypes have a fitness value deter-
mined by their minimum distance to one of the peaks �1 � si�min� di � , with si =0.1 for the first peak and
0.05 for the second (corresponding to a "steeper" slope about the first optimum). Of the twelve equiva-
lence classes, only the frequencies of each peak sequence and its Hamming distance one neighbor
classes are shown for clarity. Each frequency value corresponds to the aggregate pairwise Hamming
distance classes, with (0,3) and (3.0) corresponding to the respective local optima.
b) Shows the same scenari as in 3a, but with almost degenerate quasispecies, the fitness values of the
local optima are 1.0 and .99, respectively.

Figure 4:

a) Plot of Qx(10) versus X(10) for Hamming distance class aggregation after 10 time steps (with an
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initial distribution such that the frequency at 00000 is set to unity) and a per-locus mutation rate of 0.1.
The fitness function is chosen to be W(x)=�.99�d1 +�.95�d2 +�.9�d3 , giving the aggregate equivalence
classes (22 total) defined by equal entries (d1 ,d2 ,d3). The figure clearly shows that the frequencies
(across all equivalnce classes) derived from the aggregate dynamical operator A

�
 are not equivalent to

the aggregation of the frequencies derived from A.

b) Plot of Qx versus x for overlap class aggregation for a fitness function defined on the overlap classes
W(x)=�.99�o1 +�.95�o2 +�.9�o3 ,where each oi  represents the partial overlap distance. For this partitioning

there are 12 equivalence classes. The essentially perfect superposition of Qx(10) and X(10) demon-
strate that a fitness function defined on overlap classes gives an exact equitable partition.
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