241 research outputs found

    A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

    Full text link
    Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing

    Scientific Workflow Scheduling for Cloud Computing Environments

    Get PDF
    The scheduling of workflow applications consists of assigning their tasks to computer resources to fulfill a final goal such as minimizing total workflow execution time. For this reason, workflow scheduling plays a crucial role in efficiently running experiments. Workflows often have many discrete tasks and the number of different task distributions possible and consequent time required to evaluate each configuration quickly becomes prohibitively large. A proper solution to the scheduling problem requires the analysis of tasks and resources, production of an accurate environment model and, most importantly, the adaptation of optimization techniques. This study is a major step toward solving the scheduling problem by not only addressing these issues but also optimizing the runtime and reducing monetary cost, two of the most important variables. This study proposes three scheduling algorithms capable of answering key issues to solve the scheduling problem. Firstly, it unveils BaRRS, a scheduling solution that exploits parallelism and optimizes runtime and monetary cost. Secondly, it proposes GA-ETI, a scheduler capable of returning the number of resources that a given workflow requires for execution. Finally, it describes PSO-DS, a scheduler based on particle swarm optimization to efficiently schedule large workflows. To test the algorithms, five well-known benchmarks are selected that represent different scientific applications. The experiments found the novel algorithms solutions substantially improve efficiency, reducing makespan by 11% to 78%. The proposed frameworks open a path for building a complete system that encompasses the capabilities of a workflow manager, scheduler, and a cloud resource broker in order to offer scientists a single tool to run computationally intensive applications

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Evolutionary multi-objective workflow scheduling in Cloud

    Get PDF
    Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services.This work is supported by the National Science Foundation of China under Grand no. 61272420 and the Provincial Science Foundation of Jiangsu Grand no. BK2011022

    Provendo robustez a escalonadores de workflows sensíveis às incertezas da largura de banda disponível

    Get PDF
    Orientadores: Edmundo Roberto Mauro Madeira, Luiz Fernando BittencourtTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Para que escalonadores de aplicações científicas modeladas como workflows derivem escalonamentos eficientes em nuvens híbridas, é necessário que se forneçam, além da descrição da demanda computacional desses aplicativos, as informações sobre o poder de computação dos recursos disponíveis, especialmente aqueles dados relacionados com a largura de banda disponível. Entretanto, a imprecisão das ferramentas de medição fazem com que as informações da largura de banda disponível fornecida aos escalonadores difiram dos valores reais que deveriam ser considerados para se obter escalonamentos quase ótimos. Escalonadores especialmente projetados para nuvens híbridas simplesmente ignoram a existência de tais imprecisões e terminam produzindo escalonamentos enganosos e de baixo desempenho, o que os tornam sensíveis às informações incertas. A presente Tese introduz um procedimento pró-ativo para fornecer um certo nível de robustez a escalonamentos derivados de escalonadores não projetados para serem robustos frente às incertezas decorrentes do uso de informações imprecisas dadas por ferramentas de medições de rede. Para tornar os escalonamentos sensíveis às incertezas em escalonamentos robustos às essas imprecisões, o procedimento propõe um refinamento (uma deflação) das estimativas da largura de banda antes de serem utilizadas pelo escalonador não robusto. Ao propor o uso de estimativas refinadas da largura de banda disponível, escalonadores inicialmente sensíveis às incertezas passaram a produzir escalonamentos com um certo nível de robustez às essas imprecisões. A eficácia e a eficiência do procedimento proposto são avaliadas através de simulação. Comparam-se, portanto, os escalonamentos gerados por escalonadores que passaram a usar o procedimento proposto com aqueles produzidos pelos mesmos escalonadores mas sem aplicar esse procedimento. Os resultados das simulações mostram que o procedimento proposto é capaz de prover robustez às incertezas da informação da largura de banda a escalonamentos derivados de escalonardes não robustos às tais incertezas. Adicionalmente, esta Tese também propõe um escalonador de aplicações científicas especialmente compostas por um conjunto de workflows. A novidade desse escalonador é que ele é flexível, ou seja, permite o uso de diferentes categorias de funções objetivos. Embora a flexibilidade proposta seja uma novidade no estado da arte, esse escalonador também é sensível às imprecisões da largura de banda. Entretanto, o procedimento mostrou-se capaz de provê-lo de robustez frente às tais incertezas. É mostrado nesta Tese que o procedimento proposto aumentou a eficácia e a eficiência de escalonadores de workflows não robustos projetados para nuvens híbridas, já que eles passaram a produzir escalonamentos com um certo nível de robustez na presença de estimativas incertas da largura de banda disponível. Dessa forma, o procedimento proposto nesta Tese é uma importante ferramenta para aprimorar os escalonadores sensíveis às estimativas incertas da banda disponível especialmente projetados para um ambiente computacional onde esses valores são imprecisos por natureza. Portanto, esta Tese propõe um procedimento que promove melhorias nas execuções de aplicações científicas em nuvens híbridasAbstract: To derive efficient schedules for the tasks of scientific applications modelled as workflows, schedulers need information on the application demands as well as on the resource availability, especially those regarding the available bandwidth. However, the lack of precision of bandwidth estimates provided by monitoring/measurement tools should be considered by the scheduler to achieve near-optimal schedules. Uncertainties of available bandwidth can be a result of imprecise measurement and monitoring network tools and/or their incapacity of estimating in advance the real value of the available bandwidth expected for the application during the scheduling step of the application. Schedulers specially designed for hybrid clouds simply ignore the inaccuracies of the given estimates and end up producing non-robust, low-performance schedules, which makes them sensitive to the uncertainties stemming from using these networking tools. This thesis introduces a proactive procedure to provide a certain level of robustness for schedules derived from schedulers that were not designed to be robust in the face of uncertainties of bandwidth estimates stemming from using unreliable networking tools. To make non-robust schedulers into robust schedulers, the procedure applies a deflation on imprecise bandwidth estimates before being used as input to non-robust schedulers. By proposing the use of refined (deflated) estimates of the available bandwidth, non-robust schedulers initially sensitive to these uncertainties started to produce robust schedules that are insensitive to these inaccuracies. The effectiveness and efficiency of the procedure in providing robustness to non-robust schedulers are evaluated through simulation. Schedules generated by induced-robustness schedulers through the use of the procedure is compared to that of produced by sensitive schedulers. In addition, this thesis also introduces a flexible scheduler for a special case of scientific applications modelled as a set of workflows grouped into ensembles. Although the novelty of this scheduler is the replacement of objective functions according to the user's needs, it is still a non-robust scheduler. However, the procedure was able to provide the necessary robustness for this flexible scheduler be able to produce robust schedules under uncertain bandwidth estimates. It is shown in this thesis that the proposed procedure enhanced the robustness of workflow schedulers designed especially for hybrid clouds as they started to produce robust schedules in the presence of uncertainties stemming from using networking tools. The proposed procedure is an important tool to furnish robustness to non-robust schedulers that are originally designed to work in a computational environment where bandwidth estimates are very likely to vary and cannot be estimated precisely in advance, bringing, therefore, improvements to the executions of scientific applications in hybrid cloudsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2012/02778-6FAPES

    The Contemporary Affirmation of Taxonomy and Recent Literature on Workflow Scheduling and Management in Cloud Computing

    Get PDF
    The Cloud computing systemspreferred over the traditional forms of computing such as grid computing, utility computing, autonomic computing is attributed forits ease of access to computing, for its QoS preferences, SLA2019;s conformity, security and performance offered with minimal supervision. A cloud workflow schedule when designed efficiently achieves optimalre source sage, balance of workloads, deadline specific execution, cost control according to budget specifications, efficient consumption of energy etc. to meet the performance requirements of today2019; svast scientific and business requirements. The businesses requirements under recent technologies like pervasive computing are motivating the technology of cloud computing for further advancements. In this paper we discuss some of the important literature published on cloud workflow scheduling

    Hybrid ant colony system and genetic algorithm approach for scheduling of jobs in computational grid

    Get PDF
    Metaheuristic algorithms have been used to solve scheduling problems in grid computing.However, stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid computing.The proposed approach is based on a high level hybridization.The proposed hybrid approach is evaluated using the static benchmark problems known as ETC matrix.Experimental results show that the proposed hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average makespan values

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    corecore