

DOCTORAL THESIS

Scientific Workflow Scheduling for

Cloud Computing Environments

Author: Advisor:

ISRAEL CASAS PROF. ALBERT Y. ZOMAYA

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

CENTRE FOR DISTRIBUTED & HIGH PERFORMANCE COMPUTING

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGIES

The University of Sydney

May 2017

i

Declaration of Authorship

I, Israel Casas, certify that:
• This thesis comprises only my original work and has not been submitted in any form

for a degree at any university.

• The intellectual content of this thesis is the product of my own work and that all the

assistance received in preparing this thesis and sources have been acknowledged, and

a list of references is given.

• This thesis contains material published in [1-3]. These are Chapters 4 5 and 6 . For the

three articles I designed the study, ran experiments and wrote the manuscripts.

Israel Casas

May 4, 2017

ii

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements above are correct.

__

Professor Albert Y. Zomaya

Principal Advisor

May 4, 2017

iii

Dedicated to my parents

Cecilia and Javier

iv

Acknowledgements

I feel enormously thankful to have worked with exceptional professors. Foremost,

thanks to Professor Albert Y. Zomaya who directed and gave a strong base to my doctorate.

Special thanks to Dr. Javid Taheri for his priceless support, he was a key figure to build the

structure of my research. In deep thanks I feel to Dr. Rajiv Ranjan for an invaluable support

on the fundamental moments on this research. Similarly, I feel thankful to Joanne Allison for

her support on the edition of this document. Special thanks to CSIRO (Commonwealth

Scientific and Industrial Research Organization) and CONACYT (Consejo Nacional de

Ciencia y Tecnología) for their economic support to produce this research.

Besides the academic field, I would like to thanks to the Long Family for have given

me a priceless support, memorable times, adventures, and more – Adam, Yvonne, Sean,

Cayla, John, Garry, Margaret, Rebecca, Kyle, Dean, Jordan, Christian, Aaron, Elvia and

Ernie – for life I will be thankful with you all. Special thanks to the Christian family, it is

incredible how much a friendship can achieve – Michael, Lyn, Rayner, Jeremy, Tanya, Gavin

and Kelly – thank you all. Thanks to my sister Samantha, for every call, every message and

every word, it really made a difference to me. Similarly, I thank to Shaghayegh Sharif Nabavi

for her unconditional and fraternal friendship.

Finally and most importantly, I would like to thanks to my parents, Cecilia and Javier

for all the love they have given me.

v

Abstract

Scientists use workflow applications to automate their experiments. To run these

workflows on computer systems, each of their tasks must be scheduled to a computational

resource. The scheduling of a task consists of assigning it to a resource in order to fulfill a

final goal such as minimizing total workflow execution time. For this reason, workflow

scheduling plays a crucial role in efficiently running experiments. Workflows often have

many discrete tasks and the number of different task distributions possible and consequent

time required to evaluate each configuration quickly becomes prohibitively large. For these

reasons, the scheduling of workflows is considered to be an NP-hard problem, i.e. a problem

not solvable within polynomial time with current resources.

A proper solution to the scheduling problem requires the analysis of tasks and

resources, production of an accurate environment model and, most importantly, the

adaptation of optimization techniques. To date, different solutions have been developed to

schedule complex applications on computing systems. Approaches thus far fail in (1)

providing a deep analysis of task interdependencies to fully exploit parallelism, (2)

incrementing computer system utilization, and (3) adapting the number of resources to run

each workflow. This study is a major step toward solving the scheduling problem by not only

addressing these issues but also optimizing the runtime and reducing monetary cost, two of

the most important variables.

To achieve these goals, this study proposes three scheduling algorithms capable of

answering key issues to solve the scheduling problem. Firstly, it unveils BaRRS, a scheduling

solution that exploits parallelism and optimizes runtime and monetary cost. BaRRS is also

capable of producing configurations with high system utilization values, an important

characteristic of running workflows on public cloud systems. Secondly, it proposes GA-ETI,

a scheduler capable of returning the number of resources that a given workflow requires for

execution. GA-ETI utilizes the capabilities of the genetic evolution to overcome current

scheduling algorithm deficiencies in terms of execution time and cost. Finally, it describes

PSO-DS, a scheduler based on particle swarm optimization to efficiently schedule large

workflows. PSO-DS is able to converge to a final solution without significantly adding time

overheads.

vi

To test the performance of BaRRS, GA-ETI and PSO-DS, they are compared to the

current state of the art scientific workflow schedulers. Experiments include a test bed based

on the VMware-vSphere and a cloud environment built on the Krypton Quattro R6010 server.

To test the algorithms, five well-known benchmarks are selected that represent different

scientific applications. The experiments found the novel algorithms solutions substantially

improve efficiency, reducing makespan by 11% to 78%. This represents a significant

improvement and major contribution to the field. The proposed frameworks open a path for

building a complete system that encompasses the capabilities of a workflow manager,

scheduler, and a cloud resource broker in order to offer scientists a single tool to run

computationally intensive applications.

vii

Contents

Declaration of Authorship .. i

Acknowledgements .. iv

Abstract ... v

List of figures.. x

List of tables ... xii

1 Introduction ... 1

1.1 Preliminaries .. 1

1.2 Motivation .. 5

1.2.1 Analysis of Task Interdependencies to Reduce File Transfer and/or Exploit Data

Replication ... 5

1.2.2 Increment System Utilization in Public Cloud Environments .. 5

1.2.3 Adapt the Number of VMs to Workflow Requirements ... 6

1.3 Research Objectives ... 6

1.4 Contributions and Research Methodology ... 7

1.4.1 Balanced and File Reuse-Replication Scheduling (BaRRS) ... 9

1.4.2 Genetic Algorithm with Efficient Tune-In of Resources (GA-ETI) 9

1.4.3 Particle Swarm Optimization with Discrete Adaptation and a Featured SuperBEST

(PSO-DS) ... 10

1.5 Thesis Organization ... 11

1.6 List of publications ... 12

2 Taxonomy ... 13

2.1 Preliminaries .. 13

2.2 Workflow Application.. 13

2.3 Scheduling Engine ... 15

2.4 Workflow Manager System.. 17

2.5 Cloud Computing System .. 19

2.6 Summary .. 20

3 Literature Review .. 21

3.1 Preliminaries .. 21

3.2 Scheduling Algorithms ... 21

3.2.1 Basic Scheduling Techniques... 21

3.2.2 Random Guided Algorithms .. 24

viii

3.2.3 Critical Path Based Scheduling Algorithms ... 25

3.2.4 Iterative Guided Searching Algorithms .. 29

3.3 Open Issues .. 33

3.4 Summary .. 35

4 BaRRS: A solution to the scheduling problem .. 37

4.1 Preliminaries .. 37

4.2 Framework ... 38

4.3 Problem statement .. 39

4.4 BaRRS Approach ... 41

4.4.1 Balanced with File Reuse and Replication Techniques Scheduling Algorithm (BaRRS)

 42

4.4.2 Runtime and Monetary Cost Estimation .. 44

4.4.3 File Reutilization and Replication .. 45

4.4.4 Queue balance .. 46

4.4.5 Workflow Contraction ... 47

4.5 Experiment Setup ... 47

4.6 Results .. 48

4.7 Analysis - Optimization of Runtime and Monetary Cost.. 51

4.8 Summary .. 56

5 GA-ETI: A Genetic Algorithm to Select the Number of Resources to Execute Workflows 57

5.1 Preliminaries .. 57

5.2 Framework ... 58

5.3 Problem Statement ... 60

5.4 GA-ETI Approach .. 62

5.4.1 Genetic Algorithm (GA) .. 63

5.4.2 The GA-ETI ... 63

5.4.3 Genetic Operators: Selection, Crossover, Mutation ... 67

5.4.4 GA-ETI Algorithm Complexity ... 70

5.5 Experiment Setup ... 71

5.6 Results .. 72

5.7 Analysis – Selection of Number of Resources .. 73

5.8 Discussion – GA-ETI Performance .. 74

5.9 Summary .. 78

6 PSO-DS: A Scheduling Engine for Scientific Workflow Managers ... 80

6.1 Preliminaries .. 80

6.2 Framework ... 81

ix

6.3 The Scheduling Problem .. 81

6.4 PSO-DS Approach ... 84

6.4.1 Particle Swarm Optimization (PSO) .. 84

6.4.2 The PSO-DS .. 87

6.4.3 Particle reconstruction .. 89

6.4.4 SuperBEST Particle and the GBEST ... 90

6.4.5 PSO-DS Algorithm .. 92

6.5 Experiment Setup ... 92

6.6 Results .. 93

6.7 Analysis – Scheduling Large Workflows ... 95

6.8 Discussion – PSO-DS Performance ... 97

6.9 Summary .. 100

7 Discussion ... 101

7.1 Preliminaries .. 101

7.2 Analysis of findings and patterns identified in experimental results 103

7.3 Important findings .. 105

7.4 Limitations ... 106

7.5 Recommendation for Further Research .. 107

7.6 Summary .. 107

8 Conclusions... 108

8.1 Contributions and Summary of Results .. 108

8.1.1 Balanced and File Reuse-Replication Scheduling .. 108

8.1.2 Genetic Algorithm with Efficient Tune-In of Resources .. 110

8.1.3 Particle Swarm Optimization with Discrete Adaptation and a Featured SuperBEST . 112

8.2 Future Work ... 114

9 References ... 116

x

List of figures

Figure 1. Example of a workflow. .. 2

Figure 2. Scheduler interaction with workflow and cloud resources. .. 2

Figure 3. Cloud computing system. .. 3

Figure 4. BaRRS, GA-ETI and PSO-DS Framework .. 8

Figure 5. Thesis outline... 11

Figure 6. Taxonomy of Scientific Application. ... 14

Figure 7. Taxonomy of Scheduling Engine. .. 15

Figure 8. Taxonomy of Workflow Manager System. .. 18

Figure 9. Taxonomy of Cloud computing systems. ... 19

Figure 10. Basic scheduling techniques examples. ... 22

Figure 11. Monte Carlo, an example of an algorithm based on randomness in finding the value of . 24

Figure 12. HEFT, a distinguish scheduler based on the critical path. .. 26

Figure 13. Genetic algorithm .. 29

Figure 14. Taxonomy selection for an environment to execute scientific workflows. 35

Figure 15. Example scientific applications. .. 39

Figure 16. Trade-off frontier. .. 42

Figure 17. Trade-off values example. ... 44

Figure 18. Workflow contraction example. ... 47

Figure 19. Epigenomics trade off. ... 49

Figure 20. Montage trade-off frontier. .. 49

Figure 21. Cybershake trade-off graph.. 50

Figure 22. LIGO trade-off frontier. ... 50

Figure 23. Epigenomics system utilization. .. 52

Figure 24. Epigenomics execution time. ... 52

Figure 25. Epigenomics monetary cost. .. 52

Figure 26. Montage system utilization. ... 53

Figure 27. Montage execution time... 53

xi

Figure 28. Montage monetary cost. ... 53

Figure 29. Cybershake system utilization. .. 54

Figure 30. Cybershake execution time. ... 54

Figure 31. Cybershake monetary cost. .. 54

Figure 32. LIGO system utilization... 55

Figure 33. LIGO execution time. .. 55

Figure 34. LIGO monetary cost. ... 55

Figure 35. Architecture for scientific workflow execution. ... 58

Figure 36. Resource utilization example. .. 60

Figure 37. Example of runtime calculation for a 4-task workflow. ... 61

Figure 38. Chromosome representation in GA-ETI. ... 65

Figure 39. Roulette wheel illustration. .. 67

Figure 40. Crossover operation example. .. 68

Figure 41. Mutation operators for GA-ETI. .. 70

Figure 42. Best configuration execution time and monetary cost. ... 74

Figure 43. Execution time results with a different number of VMs. ... 75

Figure 44. Epigenomics’ 𝑀𝑆𝑝𝑛 − 𝑀𝐶𝑠𝑡 graph. ... 76

Figure 45. GA-ETI generations analysis for the epigenomics workflow. ... 78

Figure 46. Cloud customer-provider affiliation. .. 83

Figure 47. Example to calculate makespan and monetary cost. .. 84

Figure 48. The PSO process. ... 85

Figure 49. Particle representation for the PSO-DS. ... 87

Figure 50. PSO-DS particle example. ... 88

Figure 51. Particle velocity update example. .. 89

Figure 52. The SuperBEST particle formation. ... 90

Figure 53. Results for function values, makespan and monetary cost for the five scientific workflows
highlighting the area where function values are above 80%. .. 95

Figure 54. Execution time results with a different number of VMs. ... 96

Figure 55. Epigenomics’ 𝑀𝑆𝑝𝑛 − 𝑀𝐶𝑠𝑡 graph. ... 97

xii

List of tables

Table 1. Granularity Level .. 8

Table 2. Trade-off values and MSE examples .. 44

Table 3. Characteristics of the scientific workflows. .. 47

Table 4. Parameter description to determine GA-ETI algorithm complexity. 71

Table 5. GA-ETI setup for population and genetic operators .. 72

Table 6. Execution time and monetary cost results for FSV, GA-ETI, HEFT and Provenance........... 73

Table 7. Optimal number of VMs for HEFT, Provenance, ... 73

Table 8. PSO-DS setup ... 93

Table 9. Characteristics of the scientific workflows employed in experiments to test GA-ETI 93

Table 10. Results for Makespan and monetary cost for PSO-DS and PEGASUS-WMS. 94

Table 11. Algorithms’ parameters selection for comparing GA-ETI, HEFT, Provenance, Flexible,
PSO-DS .. 98

Table 12. Scheduling time and its relation with final makespan ... 100

Table 13. Execution time comparison between scheduling algorithms. .. 102

Table 14. Monetary cost comparison between scheduling algorithms. ... 102

 Chapter 1: Introduction

1

1 Introduction

1.1 Preliminaries

Computer technology is a vital tool for scientific investigations. Workflows, the

connection between scientists and computer systems, are a collection of computational tasks

organized to accomplish a composite assignment as in climate modelling, genome

sequencing, seismic analysis and oil exploration. Scientific workflows include hundreds or

thousands of computational tasks which are interconnected following different dependency

patterns. Workflow tasks habitually require large input data files and/or perform an

extraordinary number of instructions. These factors provoke scientific workflows to produce

a high number of combinations to distribute their tasks on computer resources. As a

consequence, the process to select the optimal distribution becomes a complicated problem.

To cope with this problem, computational systems have a scheduling stage. During

this stage, workflows are discerned in order to discover the best distribution of their tasks to

computational resources. Formally expressed, scientific workflow scheduling is the analysis

of application structures to optimally assign tasks to computational resources based on

application characteristics and resource availability. The aim of workflow schedulers is to

produce a satisfactory solution in a relatively short time.

 Chapter 1: Introduction

2

Nevertheless, producing an optimal scheduling configuration becomes a serious

problem as the number of tasks increments. Also two of the most important variables, i.e.

execution time and monetary cost, are two conflicting objectives during optimization. On one

side, optimal execution times converge with solutions employing the fastest and most

expensive computer resources. On the other hand, a full optimization of monetary cost leads

to poor performance in terms of execution time. For the aforementioned issues, the

scheduling of workflows is classified as an NP-complete problem, i.e. a problem that cannot

be solved within polynomial time using current computing systems.

Figure 1. Example of a workflow.

Figure 2. Scheduler interaction with workflow and cloud resources.

<code/>
Sequential tasks

Parallel tasks

Input

Output

Computer

program

Each node represents a computer

program with its corresponding

input and output data files

Workflow

Workflow Scheduler Scheduled tasks Cloud resources

Task
Analysis

Objectives
Optimization

Tasks
Distribution

Scheduling engine

 Chapter 1: Introduction

3

Last but not least, the performance of schedulers depends directly on the targeted

computing system. Nowadays, different computer systems have the required capabilities to

execute these applications; nevertheless, cloud computing has the most attractive

environment to run scientific workflows due to five main characteristics. Firstly, cloud

computing systems have extraordinary amounts of computing power and massive data

storage capacity. Secondly, contrary to grid computing systems, every person and/or

institution can access cloud resources without any affiliation. Thirdly, cloud systems prevent

the need for their users to invest in costly systems, such as supercomputers. Fourthly,

contrary to cluster computing systems, cloud customers can scale up/down the number of

resources. Finally, cloud customers can have immediate access to computing resources while

supercomputing system users are usually required to wait for weeks to have access to

resources.

Figure 3. Cloud computing system.

Virtualization

• Extraordinary computing power

• Massive data storage capacity

• Access for public

• No initial investment

• Scale up/down the numbers of

 resources.

Operative system

Servers

Data storage

Cloud computing environment

• No waiting list to access

 resources

 Chapter 1: Introduction

4

However, cloud computing systems increase the difficulty of scheduling scientific

workflows because of their massive pools of resource. For this reason, scheduling

frameworks have been a focus of attention for researchers in the area of information

technology. Scheduling frameworks are of great importance to cloud computing systems.

They are a key element to increment system efficiency. They are also a lead driver for cloud

systems in being the main computer source that the scientific community employs to produce

discoveries in genomics, physics and medicine. Similarly, optimal scheduling frameworks

lead to proficient usage of cloud resources which in turn leads to energy savings, a crucial

concern for environmental health.

The main challenges of the scheduling problem are enumerated as follows:

1. Optimize the two essential but conflicting objectives, i.e. Runtime and monetary

cost.

2. Maintain at all times a balanced task distribution among computers to increment

system utilization.

3. Exploit parallelism and discover alternatives that converge to optimal solutions.

4. Adapt the necessary optimization theories to deliver superior results and then

compare these with current solutions.

5. Define and calculate the optimal number of resources to run a particular

workflow.

6. Deliver a solution with a low complexity in order to enable scalability and the

capability to analyze large workflow sizes.

For the aforementioned reasons, this thesis investigates the scheduling problem to

execute workflows in cloud computing environments. The study observed that current

workflows and the vast computational offers available are challenging the workflow

scheduling analysis with which current scheduling algorithms are not fully able to cope as

yet. For the above mentioned reasons, the study undertook in depth research to understand the

capabilities of Genetic Evolution and Particle Swarming to solve the workflow scheduling

problem. Exploration of these capabilities can lead to unprecedented improvements on

scheduling performance.

 Chapter 1: Introduction

5

1.2 Motivation

Even though several scheduling concerns have been extensively investigated, such as

the uncertainties produced by system failures, resource scalability, computer heterogeneity,

budget restrictions and deadline constraints among others, there are still some other concerns

that have not attracted the attention they deserve. After a deep analysis of such factors, this

thesis has identified three specific issues preventing scheduling algorithms from incrementing

their efficiency. These key factors are described below.

1.2.1 Analysis of Task Interdependencies to Reduce File Transfer and/or Exploit Data

Replication

Task interdependencies must obtain similar attention as task processing times during

scheduling analysis. This requirement emerged after an in depth analysis of scientific

applications as in [4], for which this study found that dependencies between tasks offer an

important opportunity to reduce file transfers where parallelism doesn’t offer improvement.

Parallelization, i.e. the execution of tasks at the same time, is an important factor to

incrementing performance when running applications over distributed systems. Even though

cloud environments are ruled by an economic model that influences scheduling decisions, the

scheduler should have flexibility in sacrificing parallelization in order to fully use resources

to increment performance. Moreover, a great number of workflow schedulers exploit

parallelism whenever possible without considering the trade off with the rest of variables as a

monetary cost.

1.2.2 Increment System Utilization in Public Cloud Environments

System utilization has a great impact on users and cloud provider objectives. From the

user’s side, they generally aim to execute applications at the lowest cost possible. On the

other side, public cloud providers intend to maintain an efficient quality of a service for every

user. Load balancing offers an opportunity to increment system utilization by evenly

distributing workloads among computing resources. Load balancing can be implemented

during decision making or it can run at periodic intervals during a scheduling process, i.e.

workflow balancing strategies in parallel machine scheduling. File transfer time reduction is

another important factor to incrementally improve system utilization. Even then, a scheduler

 Chapter 1: Introduction

6

needs to produce a trade-off between the number of replica files and task processing time to

choose an optimal task distribution in order to reduce total execution time. For the

aforementioned reasons, load balancing and data replication decisions must be embedded in

the scheduling engine to ensure the efficient distribution of load to increment system

utilization.

1.2.3 Adapt the Number of VMs to Workflow Requirements

Most scheduling algorithms use a fixed number of VMs to execute schedule tasks

with only a few exceptions where the number of VMs follows a simplistic criteria as in [5-

14]. In [5-9], authors drive the number of VMs selection by an equilibrium between a

monetary cost constraint and task computational demands while the scheduling mechanisms

in [10-14] require minor modifications for allowing number of VM selection. We observe

that a number of VMs are directly related to the workflow size and specific parameters. The

number of tasks in a workflow may be seen as the most important parameter to select the VM

pool size, even though parallelism has a stronger influence in selecting the number of VMs to

run a particular application since it dictates how many tasks can be executed at the same time.

To the best of our knowledge, this fact hasn’t been analyzed in previous works. This study

shows that adapting the number of VMs to execute a given workflow has a decisive impact

on the performance of the execution of the application on cloud environments.

1.3 Research Objectives

A high-performance algorithm, in this context, is a mechanism capable of producing

higher performance results compared to current workflow manager systems in terms of

execution time and monetary cost. The fundamental objective of this thesis is to design high

performance algorithms to solve the scheduling problem while considering task

interdependencies, the need to balance loads among cloud resources and the selection of VM

pool sizes. Task interdependencies considered in this thesis are: pipeline, data distribution,

data aggregation and data redistribution [4]. Pipeline structures joins tasks serially, data

distribution are group of tasks requesting a single set of input data files, data aggregation are

tasks requesting data files from at least two other parent tasks, and data redistribution

combines interdependencies (2) and (3) producing inputs for multiple tasks. This thesis

 Chapter 1: Introduction

7

engages the aforementioned concepts by conducting a specific study that has three main

objectives:

1. Analyze the key issues that have a strong influence on workflow scheduling in order

to: select a scheduling option based on particular workflow task dependencies,

maintain computer workload at all times and select a number of VMs that allows

minimal execution time and monetary cost compared with current scheduling

mechanisms.

2. Design new algorithms based on genetic evolution, particle swarming and system

utilization enhancers to incorporate the aforementioned requirements in the process of

assigning workflow tasks to cloud resources.

3. Validate the efficiency of the proposed algorithms in a controlled environment

employing benchmarks representing current scientific applications.

Therefore, this thesis performed an in depth investigation into genetic evolution and

particle swarm optimization algorithms to develop novel scheduling algorithms as well as to

increment our understanding of the key characteristics to adapt such evolutionary algorithms

into the scheduling problem. This study proposes three novel approaches to address the

scheduling problem for an optimal execution of scientific workflows on cloud computing

environments.

1.4 Contributions and Research Methodology

To achieve the proposed thesis objectives, this study engages in a triple stage

methodology as shown in Figure 4. BaRRS, GA-ETI and PSO-DS Framework: firstly, design

a scheduling engine highlighting the importance of system utilization; secondly, adapt a

genetic algorithm to consider a higher number of solutions; and thirdly, adapt the PSO

mechanism to include all the above features delivering an algorithm with a low complexity.

Characteristics of each stage are described below in Subsections 1.4.1 – 1.4.3. The proposed

scheduling mechanisms are then evaluated by conducting experiments on our private cloud

environment capable of generating AWS [15] instances such as the t2.micro, t2.small,

t2.medium and t2.large. The experimentation uses different benchmarks representing up-to-

date applications from different scientific areas.

 Chapter 1: Introduction

8

Figure 4. BaRRS, GA-ETI and PSO-DS Framework

Table 1. Granularity Level
Execution

Time (ExT)

Transfer Time

(TT)*

Granularity

(ExT/TT)

355 304 1.167763

10 2.85816 3.498754

63 6.4 9.84375

10 0.0636 157.2327

9635 23.712 406.3343

1344 2.064 651.1628

460 0.592 777.027

3333 2.08 1602.404

13 0.00024 54166.67

975 0.00060 1625000

*Considering a bandwidth of 1Mbps

This work targets the scheduling of scientific workflow with different number of

tasks. Where each task requires computing tasks and transferring data files. For specifying

BaRRS

Optimize

Increment

Small

applications

System

Utilizatio

n
Parallelis

m

Runtime Monetary

Cost

GA-ETI

Medium size

applications

Select number

of resources

Small

instance
Medium

instance
Large

instance

PSO-DS

Large size

applications

Guide user in

selecting

budget

constraint

Reduced

scheduling time
A discrete

adaptation

of the

PSO

Scheduling Scientific Workflow Applications

Application

Scheduling
Engine

Optimization

Cloud

computing

(IaaS)

Workflow

Manager System

(concrete)

D
at

a
R

ep
li

ca
ti

o
n

Q
u
eu

e
B

al
an

ci
n
g

F
il

e
R

eu
se

W
o
rk

fl
o
w

C
o

n
tr

ac
ti

o
n

C
lu

st
er

ed

C
ro

ss
o
v
er

D
ec

re
m

en
t

M
u
ta

ti
o
n
 o

p
er

at
o
r

In
cr

em
en

t

M
u
ta

ti
o
n
 o

p
er

at
o
r

P
ar

ti
cl

e

re
co

n
st

ro
cu

ti
o
n

S
u
p
er

B
es

t
P

ar
ti

cl
e

Scheduling

tools

User

 Chapter 1: Introduction

9

the granularity levels this thesis targeted, Table 1 presents ten examples of data/computer

intensive tasks, targeted by the proposed algorithms, exhibiting different granularity values.

For instance, the first task exhibits the lowest granularity level and refers to a data intensive

task from an application analysing seismic hazards while the last task shows the greatest

granularity level and refers to a computer intensive task encoding genes in a bioinformatics

application.

1.4.1 Balanced and File Reuse-Replication Scheduling (BaRRS)

This study introduces BaRRS, a novel algorithm that encompasses three scheduling

mechanisms with the objective of optimizing runtime and monetary cost. Firstly, BaRRS

customizes data reuse techniques to reduce data transfers by assigning parallel tasks to the

same VMs (whenever they reduce execution time). Secondly, the algorithm includes file

replication to complement data reuse decisions to duplicate files whenever parallel execution

optimizes runtime. Finally, BaRRS balances workloads among resources to increment system

utilization. The main contributions of BaRRS are:

1. A solution to the problem to optimize the two essential, yet conflicting, objectives in

workflow scheduling: runtime and monetary cost.

2. Introduces a triple scheduling mechanism based on load balancing, file reuse and data

replication to exploit parallelism and to increment system utilization.

3. Additionally, it computes a trade-off exhibiting the different levels to optimize the

selected objectives.

BaRRS bases its scheduling decisions on the analysis of task dependencies, file sizes,

task execution times, and network bandwidth, as well as the underlying VMs’ characteristics.

1.4.2 Genetic Algorithm with Efficient Tune-In of Resources (GA-ETI)

This study proposes the GA-ETI by incorporating the BaRRS techniques into an

adaptation of the genetic algorithm to select the optimal number of resources and to minimize

makespan and monetary cost values. A genetic evolution based scheduler provides the

following distinctive elements: (1) considers a population of solutions rather than building a

unique solution dismissing scheduling configurations that can lead to an optimal result, (2)

 Chapter 1: Introduction

10

has a population of solutions that evolve to produce an optimal (or close to optimal) solution

considering a wide range of solution spaces and (3) is a random guided process. More

importantly, GA-ETI holds specific characteristics that obtain superior results compared to

other GA based schedulers. The main contributions of GA-ETI include:

1. A solution to the problem to select the number of resources to execute workflows in

cloud computing systems.

2. A scheduling framework based on the capabilities of the genetic evolution theory to

provide superior results in terms of execution time and monetary cost over up-to-date

schedulers.

3. Additionally, this study concurrently reduces the characteristic randomness of the

genetic algorithm leading the GA-ETI to converge to a final solution with fewer

generations when compared with similar adaptations of the GA.

The GA-ETI mutation operator injects new VMs into a population to warranty

diversity among chromosomes. GA-ETI aims to consider a wider range of scheduling options

in order to produce an optimal (or close to optimal) final solution.

1.4.3 Particle Swarm Optimization with Discrete Adaptation and a Featured

SuperBEST (PSO-DS)

This study discloses the PSO-DS by embracing the capabilities of the BaRRS and

GA-ETI to manage large workflow size with a satisfactory scheduling overhead time.

Scheduling algorithms based on the PSO generally: (1) are relatively straightforward to

implement; (2) require a low number of variables to set up compared to genetic algorithms;

and (3) are capable of considering a space of solutions wide enough to provide a global

optimal result. The main contributions of the PSO-DS are:

1. A solution to the problem to schedule large size workflows in cloud computing

systems.

2. Extract and adapt the capabilities of the PSO to build a scheduler capable of executing

applications on a record time.

 Chapter 1: Introduction

11

3. Additionally, this study produces an enhanced PSO particle reconstruction to produce

scheduling configurations not achievable with existing approaches and introduces a

Super Particle that shortens the PSO search time.

The proposed algorithm produces an adaptation of the original discrete particle swarm

optimization that is introduced into scheduling algorithms, where particles represent complete

scheduling configurations aiming to improve their evaluation value in terms of execution

time and monetary cost.

Figure 5. Thesis outline

1.5 Thesis Organization

The thesis outline follows a course as presented in Figure 5. Chapter 2 presents the

taxonomy of workflow applications and schedulers then it presents the literature review on

the scheduling algorithms. Chapter 4 presents BaRRS, a triple scheduling mechanism to solve

the scheduling problem. Chapter 5 explores GA-ETI, a scheduler based on the capabilities of

the genetic algorithm. Chapter 6 introduces PSO-DS, a PSO scheduler capable of scheduling

large workflow sizes. Chapter 7 concludes with a summary of the relevant issues presented

during experimentations, contributions, and discusses future work as well.

Chapter 1: Introduction

Chapter 2: Taxonomy

Chapter 4: BaRRS

Chapter 5: GA-ETI

Chapter 6: PSO-DS

Chapter 8: Conclusion

Chapter 3: Literature review

Chapter 7: Discussion

Chapter 9: References

 Chapter 1: Introduction

12

1.6 List of publications

Following is a list of publications achieved during the realization of this study. The

core of Journal 1 is presented in Chapter 4. Similarly, the main contribution of Journal 2 is

analyzed in Chapter 5. Finally, the work of Journal 3 is analyzed in Chapter 6.

Journals

1. I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, "A balanced scheduler with

data reuse and replication for scientific workflows in cloud computing systems", Future

Generation Computer Systems, 2016.

2. I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, "GA-ETI: An Enhanced

Genetic Algorithm for the Scheduling of Scientific Workflows in Cloud Environments",

Journal of Computational Science, 2016.

3. I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, "PSO-DS: A Scheduling

Engine for Scientific Workflow Managers", Journal of Supercomputing, 2016. (Under

revision)

 Chapter 2: Taxonomy

13

2 Taxonomy

2.1 Preliminaries

 This chapter presents taxonomy of workflow applications, scheduling engine

workflow manager systems and cloud computing environments. Firstly, Section 2.2 presents

the taxonomy of workflows to understand their application structure, and then Section 2.3

explores the taxonomy of the scheduling engines focusing on their architectures,

optimization, and dynamism and problem types. Then, Section 2.4 3.2 presents the taxonomy

of a workflow manager system. Finally, Section 2.5 explores the characteristics of a cloud

computing system.

2.2 Workflow Application

As expressed in Figure 6, workflow taxonomy consists of four main elements:

structure, domain, specification and composition. The following paragraphs describe each of

these elements.

 Chapter 2: Taxonomy

14

Workflow structure

Workflows have a fixed number of computational tasks. A computational task, also

named job, is a set of instructions requiring a set of input files. Tasks may exhibit

interdependencies; as a consequence, applications present two structure types: BoT and

DAGs. Bag of Tasks (BoT) are applications with parallel tasks with no interdependencies

between the tasks. Directed Acyclic Graphs (DAGs) are applications with tasks connected by

edges (data files). Task weight expresses processing time while edges denote file size or file

transfer cost. Workflows are commonly modeled as DAGs where nodes contain a task with

its required file or files set [9, 16-18].

Figure 6. Taxonomy of Scientific Application.

 Workflow domain

Applications cover two main domains: science and business. On one side, science

applications such as bioinformatics, data mining, high-energy physics, astronomy and

neuroscience benefit from cloud services to store, retrieve and run experiments. On the other

hand, business applications such as in economy, forecasting and oil exploration take

advantage of the scalability and performance of cloud computing services to extend their

computing power for fixed periods of time.

Workflows

Structure Domain Specification Composition

Science Business Abstract Concrete BoT DAG Language

based Graphical

 Chapter 2: Taxonomy

15

Workflow specification

Workflows can have an abstract or concrete description. Abstract workflow

description does not include low-level implementation details such as assigning a given task

to a particular resource. Consequently, tasks in an abstract workflow model are portable to

other computational systems. In contrast, concrete workflow descriptions fix tasks to specific

resources for their execution.

Workflow composition

Application owners can use syntax or graphics to express a workflow. Language-

based describes workflows using syntax such as XML (Extensive Markup Language).

Graphical expressed workflows require low-level details; hence users focus on a higher

abstraction of the application. Unified Modeling Language (UML) is a well know graphic

modeling system for workflows.

2.3 Scheduling Engine

As expressed in Figure 7, the scheduling engine taxonomy consists of four main

fundamentals: architecture, optimization objectives, dynamism and problem type. The

following paragraphs describe each of these elements.

Figure 7. Taxonomy of Scheduling Engine.

Scheduling

Engine

Architecture Optimization Dynamism Problem type

Centralized Hierarchi-

cal
Decentrali-

zed
Objective

s
Cons-

traints Offline Online Stochastic Static Dynamic

 Chapter 2: Taxonomy

16

Scheduling Architecture

Architecture refers to the origin of scheduling decisions. Schedulers with a centralized

architecture produce all their decisions from a central controller. These schedulers keep all

information regarding application execution and resource status. The main feature of central

schedulers is their high simplicity to implement and deploy. Hierarchical schedulers have a

central director and lower-level schedulers. The central director handles application execution

while low-level schedulers handle individual tasks. Decentralized schedulers contain different

scheduling units; each one manages a fixed number of tasks. Decentralized schedulers are

excellent tools for applications requiring scalability. Examples of different scheduling

architectures appear in [19-22]

Scheduling Optimization

Scheduling engines present two optimization criteria to enhance the execution of

applications. On one side, optimization based on objectives has the goal of meeting the best

possible value for a given criterion. Regarding the nature of an objective, optimization can

maximize or minimize the selected objective. For instance, monetary cost optimization

targets a minimization of cost values. On the other side, scheduling constraints restrict

particular values such as a deadline or a budget limitation.

Scheduling Dynamism

Static and dynamic scheduling refers to time between the moment a task is scheduled

and its actual execution. A static scheduler produces a full plan prior to workflow execution;

it enables a deep analysis producing superior results. Dynamic schedulers delay decision-

making as long as possible, producing scheduling decisions individually for each task. As a

consequence, dynamic schedulers are not able to analyze the whole application at once.

Scheduling Problem Type

The model of a scheduling problem depends on the nature of the application and

information available (such as task processing time, size of application and file sizes). In

some cases, schedulers have all the workflow information required. In other cases, schedulers

do not have any information about tasks, leaving them in a complex situation in relation to

their decision making. This taxonomy classifies scheduling problems into three types:

 Chapter 2: Taxonomy

17

Offline Scheduling is the perfect scenario to produce a deterministic scheduling. In an offline

scenario, the scheduler has all the required information prior to any decision making. This

information includes job execution and file transfer times. Most schedulers in this area focus

on polynomial time algorithms, complexity proofs, heuristics and worst case analysis.

Online Scheduling is the no-information case. The decision making is based on least

information or even with no information known previously. The scheduler obtains

information gradually as the application executes. Whether execution time is given at arrival

or not, online schedulers have a defined objective to minimize the time related to making the

best decisions to achieve its goals.

Stochastic Scheduling is the distributional information case. Stochastic schedulers manage

decisions based on deterministic and distributional information. For instance, a number of

jobs may be fixed and known in advance while job execution time is obtained from a

probability distribution. Actual execution time is only known at the end of job execution.

Stochastic schedulers have to determine policies to minimize objectives in a stochastic sense.

In [23], the author identified static and preemptive stochastic scheduling policies. Static

policies specify actions prior to the execution process without deviating from them if more

information becomes available. Preemptive dynamic policies take decisions at any time as

information becomes available.

Stochastic scheduling problems can have a static model under certain circumstances.

For instance, on applications with job processing times falling in an arbitrary distribution, a

stochastic representation can take the means of processing times in the given distribution.

Then, the original stochastic problem equals the optimal schedule solution in the offline

model.

2.4 Workflow Manager System

The scientific community is increasing the use of workflows to organize their

computing experiments. As a consequence, workflow manager systems demand middleware

that executes applications on computing resources. In relation to scheduling processes,

Workflow Manager Systems (WMS) present three main characteristics: specification,

composition and information retrieval.

 Chapter 2: Taxonomy

18

Figure 8. Taxonomy of Workflow Manager System.

Workflow Model Specification

In an abstract description, a task description does not specify a particular computer

machine for its execution. Abstract models enable application owners to describe workflows

without concern for low level implementation details. Tasks in an abstract workflow model

are portable to other computational systems. In contrast, concrete workflow descriptions fix

tasks to specific resources.

Workflow Composition System

In relation to language-expressed workflows, applications are literally described using

language syntax as XML (Extensive Markup Language). Graph-expressed workflows enable

application owners to express applications in graphical form. Graph-expressed models

require low level details; hence users focus on a higher abstraction of the application. Unified

Modeling Language (UML) is a well know graphic modeling system for workflows.

Information Retrieval

WMS retrieve information in three different ways: static, historical and dynamic.

Information that does not change over time is referred to as static. This information includes

VM parameters as number of processors, operating system, memory size, and VM

identification number. Historical information is retrieved from past operations. Workflow

Workflow

Manager

System

Specification Composition Information

retrieval

Abstract Concrete Static Historical Monito-

ring
Language

based Graphical

 Chapter 2: Taxonomy

19

managers utilize historical data to predict future behavior of resources. Monitoring task

execution is included as a dynamic retrieval of information. The status of task execution and

resource behavior information is used to re-schedule tasks after failure.

2.5 Cloud Computing System

In this study, the cloud computing taxonomy will focus on the technical elements of

virtualization and system architecture.

Figure 9. Taxonomy of Cloud computing systems.

Services

Cloud computing provides three main services:

• Software as a Service (SaaS), a tenant platform usually referred to as an

application service. On it, cloud owners develop and offer a broad range of

applications ready for use. Example of such applications are Google Apps,

Salesforce, Workday, Concur, Citrix GoToMeeting and Cisco WebEx

• Platform as a Service (PaaS), a platform with all the components required to

develop, test and host web based applications, such as Microsoft Azure

• Infrastructure as a Service (IaaS) delivers a service in the form of virtualization.

The most important feature of this service is its payment scheme. Clients are able

to scale up and down resources and reimburse only the deployed resources

Cloud

computing

Systems

Services Virtualization Cloud system

distinctiveness

IaaS PaaS SaaS Servers
Recover

from

failure
Storage Security

 Chapter 2: Taxonomy

20

Virtualization

Virtualization refers to the abstraction of hardware and operating systems in

computing systems [24, 25]. Server virtualization, a key concept in cloud environments, maps

physical resources to multiple partitions. These partitions can be dynamically created,

expanded and moved in order to satisfy computational demands.

Cloud System Main Distinctiveness

Cloud resources are not free from failure. In case of these occurrences, the cloud

administrator is ready with an instant backup to recover from failure avoiding any disruption

in the application’s operations. Security, in terms of data, is an important concern for specific

cloud customers. For instance, corporate clients often manage private data held on behalf of

customers and employees that must be kept protected requiring specific security privacy

policies. Users are able to use the cloud resources as a storage system without worrying about

where the actual files are saved. Even so, the main issue with storage is reliability, if a cloud

provider is not able to provide a security warranty, a high number of clients will avoid their

services.

2.6 Summary

This section provided taxonomy on classifying fundamental characteristics of cloud

environments to analyze/solve the workflow scheduling problem. The importance of this

taxonomy lies in its great influence on the decision making process of building specialized

scheduling that plays a key role in the execution of scientific applications on cloud

environments.

 Chapter 3: Literature review

21

3 Literature Review

3.1 Preliminaries

 This chapter describes the existing related work and concludes with the open issues

not considered by current schedulers. Firstly, Section 3.2 presents the existing solutions to

the scheduling problem. Secondly, section 3.3 exhibits how current solutions have left open

important issues.

3.2 Scheduling Algorithms

This section presents a survey of scheduling algorithms. Based on their performance,

algorithms are divided into four categories: (1) Basic scheduling techniques, (2) Random

guided procedures, (3) Critical path based scheduling frameworks and (4) Iterative and/or

evolutionary searching algorithms.

3.2.1 Basic Scheduling Techniques

Based on the taxonomy previously presented, basic scheduling techniques have a

centralized architecture employing time as their only optimization objective. These

 Chapter 3: Literature review

22

schedulers have a dynamic mechanism to allocate tasks; as a consequence, they are suitable

for solving online scheduling problems. A summary of the main characteristics is presented at

the end of this subsection.

Figure 10. Basic scheduling techniques examples.

Adaptive First Come First Served (AFCFS)

The AFCFS is a First Come First Served modified technique [6, 26]. The AFCFS

submits jobs to computing resources as they become available. If more than one computing

resource is available for a job, the AFCFS assigns the job to the resource that contributes the

lowest execution time. AFCFS gives priority to jobs requiring low processing time. Due to

this policy, AFCFS results in an increased response time for larger jobs.

Largest Job First Served (LJFS)

The LJFS assigns priority to each job based on its computing demands [27]. LJFS

gives the highest priority to jobs requiring the greatest computing processing time. To

execute an application, LJFS firstly prioritizes every job, and then it sends them for

execution. This technique provides a fast response to highly parallel jobs.

Arrival tasks

First Come First Served

10 8 7 4 3

Ordered task (largest first) Running

Largest Job First Served

Running

 Chapter 3: Literature review

23

Myopic

Myopic is considered to be one of the simplest scheduling procedures . It focuses on a

single task at a time and assigns tasks to computing resources in an arbitrary order. The

scheduling process continues until all tasks are distributed. A myopic algorithm has been

implemented in workflow manager systems such as Condor [28].

Min–min

Min-min [29, 30] is a scheduling heuristic that assigns priority to jobs based on their

expected completion time (ECT). Min-min groups tasks and then assigns them to a resource

that contributes the minimum ECT. The process moves to the next group of tasks until all

workflow tasks from all groups are assigned to a computing resource. In contrast to Myopic,

Min-min considers a group of tasks during its decision making, whereas Myopic considers

one task at a time. Min-min has been used in grid projects, such as Pegasus [31].

Max–min

The Max-min has a similar approach to Min-min. The main difference is that Max-

min assigns the highest priority to tasks requiring the longest execution time [29, 30]. In

every Max-min iteration, tasks with the maximum estimated processing time obtain the

resources that complete them within the earliest time. Max-min’s objective is to minimize

total execution time by executing the longest tasks on the fastest computing resource. Max-

min has been used in Pegasus [31].

Summary

The aforementioned techniques are schedulers based on a limited set of rules. Their

main characteristics are their irrelevant overhead scheduling time and their limited efficiency.

As a consequence, their application to schedule workflow applications to computer resources

is inefficient. They do not consider task interdependencies, a basic characteristic in every

scientific workflow. In contrast, this study considers task interdependencies as well as file

dependencies among computational tasks.

 Chapter 3: Literature review

24

3.2.2 Random Guided Algorithms

In order to allow schedulers to consider task interdependencies, different studies

developed algorithms that exploit randomness in the search for a scheduling solution. These

solutions have a centralized scheduling architecture and optimizing objectives such as

execution time. Their main difference from previous solutions is that random guided

algorithms produce a static scheduling prior to execution and attack the scheduling problem

as an offline problem type. A summary of the principal characteristics is presented at the end

of this subsection.

Figure 11. Monte Carlo, an example of an algorithm based on randomness in finding the value of .

Monte Carlo Algorithm

The Monte Carlo [32] (Figure 11) is an algorithm based on randomness, it is not an

exact method but its process requires a low computation power [33]. Monte Carlo builds

solutions based on randomness and probability distribution. It has four main stages: it firstly

defines a solution space, then it assigns random values to its inputs, after that it evaluates the

solutions produced and finally it aggregates the results. The Monte Carlo approach is

employed to solve the scheduling problem considering tasks as inputs; tasks aim to obtain a

resource for their execution. Applications that apply the Monte Carlo algorithm to scheduling

problems can be found in [34, 35] .

• Q R

R  Ratio

Given 𝜋 =
𝐴

𝑅2

and 𝑄 = ¼ A

then 𝜋 =
4𝑄

𝑅2

Monte Carlo

•
• •

•

• •

• • •

•
• •

(2) Count points

 Inside Q = 10

 Inside square = 13

(3) Compute result

 Inside Q = 10

 Inside square = 13

𝜋 ≅
4𝑄

𝑅2
≅

4(10)

13
≅ 3.07

A  Circle area

(1) Throw random points

Representation

 Chapter 3: Literature review

25

Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [36, 37] conducts a greedy search for an optimal (or close to optimal)

scheduling solution. GRASP, a randomized optimization technique, generates a group of

solutions at each step; it keeps a record of the best solution, and at the end of the entire

process, the best solution is presented as the final solution.

Non-Evolutionary Random Scheduling

The Random Scheduling (RS) algorithm presented in [38] matches and schedules

interdependent tasks to computing resources. RS firstly organizes tasks into a randomized

order while maintaining task precedent constraints. Then it assigns these tasks to the available

computing resources. RS presents similarities to evolutionary techniques such as GA but it

sacrifices output efficiency for lower memory usage, less algorithm complexity as well as

requiring fewer parameters to be set up.

Summary

As their name states, random guided algorithms exploit randomness to hopefully

obtain a satisfactory solution. The main disadvantage of these algorithms is scalability. Due

to randomness, the time to produce solutions becomes unacceptable as the size of a workflow

increases. In contrast, the scheduling solutions offered in this study reduce randomness by

guiding the search for solutions. Additionally, the solutions exploit parallelism, data

replication and system optimization.

3.2.3 Critical Path Based Scheduling Algorithms

With the aim to produce an efficient scheduler in terms of scheduling overhead time,

a great number of schedulers use the critical path at a preliminary scheduling stage. These

schedulers have a central architecture to produce their decision making. All of them optimize

at least execution time while some others allow including a particular constraint. Critical path

based schedulers produce a static configuration for offline and stochastic scheduling problem

types. A summary with the principal features is presented at the end of this subsection.

 Chapter 3: Literature review

26

Heterogeneous Earliest-Finish-Time (HEFT)

HEFT is the pioneer in using the critical path for scheduling [13]. HEFT focuses on

the scheduling of applications targeting a minimal execution time and a low scheduling

overhead time. HEFT firstly identifies the critical path. Then, it selects the first job on the

critical path and assigns it to the computing resource that has the potential to execute it with

the earliest finishing time. The algorithm continues until all jobs are scheduled.

Figure 12. HEFT, a distinguish scheduler based on the critical path.

Critical Path and Area Based (CPA) scheduling

The CPA (Critical Path and Area based scheduling) incorporates the concept of area

based scheduling to minimize the total workflow execution time [10, 11]. CPA considers the

area scheduling as the product of quantity of processors and time to execute a given

application. CPA first allocates one processor to each task from a preliminary group of

1

3 4 5 6 2

7 8 9

10

18

12
9

11

14

19
16

23
27

23 13 15

17
11

13

Tasks

Critical path

1

3

5

7

4

6 4

10

20

30

40

50

60

70

80

90

0

9
8

10

VM1 VM2 VM3

HEFT Schedule Task computing time

Schedule order

Task
1
2
3
4
5
6
7
8
9
10

VM1

14
13
11
13
12
13
7
5
18
21

VM2

16
19
13
8

13
16
15
11
12
7

VM3
9

18
19
17
10
9

11
14
20
16

1 2 3 4 5 6 7 8 9 10

1 3 4 2 5 6 9 7 8 10

 Chapter 3: Literature review

27

processors. Then, on every repetition, CPA allocates an additional processor to the most

critical task i.e. the task in the critical path which would contribute the greatest benefit. The

algorithm stops when the execution time of the critical path goes below the average execution

time between all processors.

Critical Path First (CPF)

CPF is a scheduling algorithm targeting resource performance optimization [14, 39].

CPF “stretches out” the scheduling efficiently and keeps the critical path length to a

minimum in order to optimize system performance. CPF first assigns critical path tasks to

resources to achieve a minimum execution time and then it assigns the rest of the tasks to

resources in a way that has minimal impact on their execution time. The main objective of

this approach is to exploit resource availability and maintain total execution time.

Heterogeneous Duplication-Based Scheduling (HDBS)

HDBS [12] incorporates the task duplication concept and the critical path to optimize

execution time. The HDBS algorithm initially labels critical path tasks as CP, tasks with

direct relation to any CP as in-branch (IB) tasks and the rest are labeled as out-branch (OB)

tasks. The HDBS starts the scheduling list with the initial CP task, then it starts adding

subsequent IB and CP tasks to the list while preserving precedence constraints. Then, every

unscheduled descended task of CP is recursively duplicated and integrated into the

scheduling list in order to minimize the execution time of the critical path. Finally, OB tasks

are added to the scheduling list. Algorithms duplicate OB tasks whenever they increment the

finishing time.

Dynamic Critical Path (DCP)

The DCP [40] is an algorithm based on the principle of shortening the longest path by

moving jobs to an earlier stage in the execution plan. The original approach was designed to

distribute tasks to a group of identical resources. To attack the scheduling problem for

heterogeneous resources, the algorithm:

 Chapter 3: Literature review

28

1. Puts all tasks into a queue on a single resource and leaves the rest of the resources

empty.

2. The DCP employs a term called earliest/latest starting time (AEST/ALST) to

represent the possible earliest/latest time to start execution of a given task on a

particular machine. Whenever a given task has a smaller AEST on a different

machine the algorithm moves the task. Nevertheless, the scenarios with different

types of resource mean that runtime of a task may be different over different

resources. As a consequence, authors create another term named absolute

earliest/latest finish time (AEFT/ALFT) referring to the possible earliest/latest

finish time of subtasks on its current machine.

3. The DCP approach finishes if all the tasks have been scheduled once. Yet, the

authors discovered that for applications with parameter-sweep tasks, the algorithm

will be able to increment effectiveness by 10%-20% whenever the algorithm is

run again on the scheduled result. Nonetheless, the time spent to schedule must

also be considered.

4. The algorithm takes into consideration data transfer time, even though the

algorithm does not consider inter-processes between subtasks. As a consequence,

the algorithm simply removes the terms that are related to transfer cost.

5. Whenever a subtask is scheduled, the algorithm checks whether dependent

subtasks are assigned to the same resource, in those scenarios a correct order of

execution is given to every job in the subtasks. Results exhibited that the DCP

effectively reduces makespan by 30% for applications that exhibit sweep tasks.

Summary

Critical path schedulers achieve efficient results in terms of scheduling overhead time.

Additionally, they deliver solutions with satisfactory execution times, even though the

inherent scheme of the critical path dismisses key configurations that have the potential to

reduce execution time. For instance, it uses all the available computer resources without

considering a reduced pool of resources that can lead to an optimal scheduling configuration.

To overcome these issues, this study includes important scheduling techniques as load

balancing and data replication in order to evaluate different configuration that have great

 Chapter 3: Literature review

29

potential to become an optimal solution. Additionally, it considers the monetary cost on its

model, as a consequence, the solution presented here delivers a trade-off between execution

time and economical cost.

3.2.4 Iterative Guided Searching Algorithms

Recent studies delivered solutions based on different optimization theories to offer

superior results as compared with other solutions. Iterative algorithms, as these schedulers

will be referred to, consider a centralized architecture that optimize selected objectives. The

main purpose of employing these theories is to produce a static scheduling considering an

offline and/or stochastic problem type. The main difference with the rest of the schedulers is

that iterative algorithms do not build a single final solution. Instead, these algorithms endorse

an iteration of a population of solutions in order to converge to an optimal (or close to

optimal) solution. Most of these iterative searching algorithms are based on firm theories in

economy, biology, and chemistry.

Figure 13. Genetic algorithm

•

• •

•

Next generation

Genetic algorithm

•

••••••

•••••

•••••••

••••••

••••••

••••••

•

••••••

•••••

•••••••

Mutation

Fitness Function

Selection

 Chapter 3: Literature review

30

Genetic algorithm

The Genetic Algorithm (GA) is a metaheuristic inspired by genetic evolution. GA is a

robust technique with a great capability to discern an optimal solution from a search space

[41, 42]. The GA consists of a population of chromosomes that evolve to obtain the strongest

elements. Selection, the first GA phase, starts every new generation by selecting

chromosomes from a previous generation. Then, at the crossover operator phase, the GA

splits and mixes pairs of chromosomes to give birth to offspring. The mutation operator phase

literally mutates chromosomes, altering their natural composition to incorporate new

variation to the population. Finally, at the elitism operation stage, the chromosomes with the

highest fitness values are copied to the next generation. GA terminates when it meets a

finishing criteria, usually at a specific number of iterations or when it gets a minimum fitness

value. Different research studies have adapted the GA to the scheduling problem [41-50]. In

these adaptations, chromosomes represent scheduling solutions and fitness function measures

parameters such as runtime, security or monetary cost. The success of every research

contribution relies on the approach to model the problem and the manner to adapt the GA to

the scheduling problem. Even so, most genetic based scheduling algorithms fail to adapt the

methodology without the excessive randomness from the original algorithm, as a

consequence they require excessive time to converge on a final solution. To cope with this

issue, this study introduces an adaptation of the GA to solve the scheduling problem. The

proposed algorithm modifies the chromosome operator to combine parts of chromosomes that

already have proved optimal results. Also, its modified mutation operator includes and

dismisses computer resources during the scheduling process allowing the modified algorithm

to converge to the specific number of resources that application requires. Additionally, this

study succeed in designing an algorithm with a reduced complexity.

Particle Swarm Optimization (PSO)

PSO, inspired by bird swarming, has similarities with Darwinian theories as a genetic

algorithm [51, 52]. PSO is used as an optimization process to find a solution for nonlinear

problems. It encompasses a population of particles swarming to reach the position that

maximizes (or minimizes) its evaluation function value. In the initial population, particles

acquire random positions and velocities. Then, the process combines particles with their best

position registered and with the best particle, particles chase the elements with the highest

evaluation function values. PSO terminates when it meets a finishing criteria such as number

 Chapter 3: Literature review

31

of iterations. In order to implement the PSO with regard to the scheduling problem, different

research studies utilized the discrete PSO version [53-60]. On these solutions, particles

comprise a complete scheduling algorithm where position represents tasks assigned to

computational resources and velocity dictates a probability to move them to a different

resource. One common issue with PSO is that in practical experience results are not presented

constantly, i.e. the method performs better at some times than others. To cope with this issue,

this study presents an adapted PSO scheduler enhanced with a super particle that collects the

most popular particles’ elements instead of only selecting a global best particle. By doing so,

the algorithm is able to provide repetitiveness and a warranty of not getting trapped in a local

optimum. Additionally, this study produces a novel scheduling reconstruction from particles’

velocities that allows the adapted technique to schedule groups of consecutive tasks to the

same resource.

Chemical Reaction Optimization (CRO)

CRO emulates chemical reactions where molecules interact with each other with the

objective of obtaining the minimum state of free energy. Chemical reactions frequently occur

in closed containers with a fixed number of molecules. Collisions during the CRO process

attempt to modify the molecule’s structure. Whenever a molecule hits another element or

container wall, energy is released. If the energy reaches a predefined value, it alters the

molecule(s)’ internal structure. The four collision types in the CRO are: on-wall ineffective

collision, decomposition, inter-molecular ineffective collision, and synthesis. On-wall

ineffective and decomposition collisions consider only one molecule. Inter-molecular

ineffective and synthesis collisions contemplate a pair of molecules. Inter-molecular collision

yields a pair of new molecules, while synthesis fuses a pair of molecules into one. On-wall

ineffective and decomposition collisions produce results close to the molecular to molecular

collisions.

At each CRO iteration, a collision is selected. Firstly a molecule energy value is set,

then a temporary value is randomly selected between the interval [0,1]. If the value is greater,

it will cause a unimolecular collision. If it is less, then intermolecular collisions occur. The

algorithm uses α and β as thresholds for the criteria of unimolecular and intermolecular

collisions selections, respectively. α refers to the maximum number of collisions that can take

place. In the cases that a molecule hits a number larger than α, then a decomposition takes

place. β refers to the least amount of energy a molecule should have. For a couple of

 Chapter 3: Literature review

32

molecules m1 and m2, the synthesis is activated when the energy m1 < β and m2 ≤ β.

Whenever this sentence is false, then an intermolecular ineffective collision occurs.

 CRO finishes when a stopping criterion is reached, then the best solution is reported

as the final solution. Different studies adapted the CRO to the scheduling process.

Adaptations such as [61, 62] resulted in the molecules representing a complete scheduling

solution and collisions offering the possibility of molecules to interchange their

configuration. Due to the nature of the CRO, it emulates a hermetic container without the

possibility of including an external factor such as a new computer resource. This limitation

forces the algorithm to consider a limited number of configurations that may not end in an

optimal solution. In contrast, this study proposes a genetic algorithm with a mutation operator

that specifically injects new resources to the process; in this way, the algorithm has greater

possibilities to converge to an optimal solution on a reduced number of iterations.

Immune System

The immune system is a biological self-defense mechanism in organisms to protect

themselves from bacteria and viruses. The immune system defense has two main phases:

innate and adaptive systems. During a virus or bacteria attack, organisms uses the innate

system as a first line of defense, it uniformly fights aggressors right after their attack with

biochemical substances and blood cells. If intruders prevail over the innate defense, then the

adaptive system comes into play. The adaptive system mainly uses B and T lymphocytes

from white blood cells to prevail with cellular immunity creating antibodies to dissolve

intruders. Important research studies successfully adapted the immune system to the

scheduling problem as in [63-65]. In this study authors designed a scheduling algorithm

where tasks aim to survive a virus attack. The success of the adaptation of the immune

system to the scheduling problem relies on the representation of its actors, for instance, B and

T lymphocytes can be represented by the fastest computer. In these scenarios the optimization

of monetary cost would struggle as the algorithm is already making a decision before the start

of the scheduling process. In contrast, this study proposes scheduling algorithms that start the

scheduling process with a variety of solutions and subsequently allows them to

include/dismiss solutions in order to increment the performance of its solutions.

 Chapter 3: Literature review

33

Auction Theory

In economy theory, auction is an instrument to sell assets to a group of bidders. The

bidding mechanism, the core of auctions, consists of bidders (consumers) offering a price for

a product or service to providers. In English auctions, consumers raise their offer until the

highest bid is reached. In Dutch Auctions, product prices decrease until a consumer decides

to purchase the asset. In Sealed Auctions, potential consumers secretly submit and offer their

bid, the winning bidder is the one with the highest bid. The Vickrey Second-Price Auction is

a modified sealed auction where the second best offer is the winner of the auction. In

Continuous Double Auctions, bidders and providers submit their proposals to each other.

The process continues until a match is made. These auction theories have the capabilities to

solve the scheduling problem. Examples of these theories applied to the scheduling problem

appeared in [66, 67]. On them, bidders are users aiming to obtain computational resources to

execute their application at the best price. Even so, auction theory has practical

disadvantages. For instance, in the Vickrey auction [68], bidders need to offer a bid to each

good they would like to buy. When applied to the scheduling problem, it is impossible to run

the auction as theory dictates due to the high number of combinations that tasks and computer

resources produce. The nature of the scheduling problem requires a solution that bypasses the

evaluation of every single option and yet produces outstanding solutions. To cope with this

issue, this study proposes solutions that directly exploit parallelism, balance loads across

resources and discover key distribution of tasks among resources. These specific rules

prevent solutions from analyzing configurations that have poor performance.

3.3 Open Issues

The related work described in Section 3.2 presented a review of the state of the art of

scheduling algorithms. The exhibited studies have delivered different contributions to

existing issues such as: straightforward decision mechanisms [6, 28-31], random allocation of

tasks [33-36, 38] , optimization of execution times based on pre-organized lists [10-14] and

outstanding scheduling frameworks based on different optimization theories [41-47, 51-57,

61-63, 66-68]. The open questions this study targets follow specific characteristics drawn

from the taxonomy previously presented. Figure 14 presents a selection of the taxonomies to

execute scientific workflow applications.

 Chapter 3: Literature review

34

Firstly, the efficient execution of scientific workflows requires a centralized

scheduling engine to fully manage workflows during execution as developed in [6, 10-14, 28-

31, 33-36, 38, 41-47, 53, 55-57, 61-63, 66, 67, 69]. In addition, a static analysis is required

prior to execution in order to consider every scheduling possible configuration as proved in

[10-14, 33-36, 38, 41-47, 53, 55-57, 61-63, 66, 67]. Since the full workflow is known prior to

execution, the scientific problem considers an offline and/or stochastic model as adopted in

[10-14, 33-36, 38, 41-47, 53, 55-57, 61-63, 66, 67]. Equally important scientific applications

exhibit dependencies among their tasks, for this reason scheduling engines must accept DAG

style workflows similar to [41-47, 53, 55-57, 61-63, 66, 67]. Concerning workflow

management systems which are an important part of the experimentation process, WMS are

required to accept concrete description configurations from the scheduler as per Condor [28]

and Pegasus [31] frameworks. In relation to the cloud system, the execution of the

application requires virtualization of computing resources in the form of Virtual Machines.

For instance, Amazon EC2 is a well-known public cloud provider with IaaS availability.

 Chapter 3: Literature review

35

Figure 14. Taxonomy selection for an environment to execute scientific workflows.

3.4 Summary

Subsection 3.2.4 presented exceptional scheduling solutions based on diverse

optimization theories; solutions exhibited outstanding results compared with the algorithms

presented in Sections 3.2.1 - 3.2.3 . This study recognizes that authors of the mentioned

algorithms maximize parallelism, exploit data replication and duplications of jobs, and

challenged both computing and data intensive applications. Even so, these scheduling

techniques made modest contributions to: define the number of VMs, increment system

utilization, provide users with different scheduling plans, contemplate a cost model based on

public cloud charging scheme and analyze the optimization of conflicting objectives such as

time and cost. Any attempt to produce superior results must involve a specific modification

of their decision-making engine. The open issues this thesis addresses are the efficient

execution of scientific workflows on cloud environments minimizing makespan and

monetary cost as well as defining the number of required VMs. To accomplish this goal, this

Scheduling

Engine

Architecture

Optimization

Centralized

Objectives

Hierarchical

Constrains

Dynamism

Problem type

Static

Offline

Dynamic

Online

Decentralized

Stochastic

Application
Structure

Domain

BoT

Science

DAG

Business

Workflow

Manager

System

Specification Abstract Concrete

Composition

Information

Language

Static

Graphical

Historical Monitoring

Cloud

computing

Systems

Distinctiveness Security Storage

Virtualization

Services

VMs

IaaS PaaS SaaS

 Chapter 3: Literature review

36

thesis proposes scheduling solutions that not only exploit parallelism but search for efficient

alternatives and adapt important optimization theories such as genetic algorithm and particle

swarm optimization.

 Chapter 4: BaRRS, a solution to the scheduling problem

37

4 BaRRS: A solution to the

scheduling problem

4.1 Preliminaries

This chapter presents a triple mechanism to solve the scheduling problem. This

apparatus is referred to as the “Balanced with Data Reuse and Replication Scheduler”,

BaRRS. Firstly, Section 4.2 presents the framework required to present BaRRS. Section 4.3

presents the problem statement, then Sction 4.4 describes in full detail the BaRRS approach.

Section 4.5 describes the experimental setup to test BaRRS. Next, Section 4.6 presents the

obtained results. Section 4.7 provides a discussion of the obtained results focusing on the

optimization of objectives. Finally, Section 4.8 gives a conclusion with the most remarkable

features of the BaRRS performance.

The main contributions of BaRRS are: (1) concurrently optimizing two important, yet

conflicting objectives, i.e. runtime and monetary cost, (2) introducing a triple-mechanism

scheduler based on load balancing, file reuse and data replication, and (3) exploring the trade-

off between the aforementioned objectives through scheduling sample configurations. The

core of this chapter has been published in the Future Generation Computer Systems journal

[1].

 Chapter 4: BaRRS, a solution to the scheduling problem

38

4.2 Framework

The environment model consists of a set 𝐕𝐌 = [vm1, … , vmv] with 𝑣 VMs. The

characteristics of each VM are network bandwidth (𝑣𝑚𝑗
𝑏𝑤), number of cores (𝑣𝑚𝑗

𝑐𝑜𝑟𝑒𝑠),

memory (𝑣𝑚𝑗
𝑚𝑒𝑚) and disk size (𝑣𝑚𝑗

𝑑𝑖𝑠𝑘). The model adopts hours as the minimum time unit

to hire a computer resource, i.e. a VM. The VM hourly cost is given by 〈𝑐1, … , 𝑐𝑣〉.

Every workflow W = [t1, … , tn] has 𝑛 number of tasks. Tasks have a set of input files

with size 𝑖𝑛𝑖
𝑠𝑖𝑧𝑒. Parent tasks of 𝑡𝑖 are given by 𝑡𝑖

𝑝𝑎𝑟𝑒𝑛𝑡𝑠
. Before a task is executed, a central

manager needs to transfer its respective input files to the respective VM. The time to transfer

𝑖𝑛𝑖
𝑠𝑖𝑧𝑒 is set by 𝑡̂𝑖

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
 while the task execution is given by 𝑡̂𝑖

𝑒𝑥𝑒. Total estimated time to

execute the i-th task is denoted as:

 𝑡̂𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑡̂𝑖

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
+ 𝑡̂𝑖

𝑒𝑥𝑒 Eq. 1

Figure 15 exhibits five scientific workflow examples extracted from [4]; each with a

specific dependency pattern between tasks. A workflow level is a group of tasks with a single

parent group. The parallelism, P, of a level is the number of tasks building the given level; for

example, the Montage workflow in Figure 15.b has nine levels, where the second level has

the maximum parallelism, max(P), with six tasks. On each workflow, nodes are represented

by a circle containing a single task 𝑡𝑖 with its input set of file(s) of size 𝑓𝑖
𝑠𝑖𝑧𝑒. Depending on

how nodes are related, five main workflow structures/distributions are highlighted: (1)

Pipeline structure connects nodes serially, (2) Data distribution highlights a set of nodes

requiring a single set of input files, (3) Data aggregation represents nodes requiring files

from at least two other nodes, and (4) Data redistribution highlights nodes combining

structures (2) and (3) requiring and producing files for multiple nodes. In order to organize

workflow analysis, we define w-level as the number of workflow levels and parallel-tasks as

the maximum number of tasks a workflow can execute in parallel. For example, the Montage

workflow has nine w-levels and parallel-tasks has a value of six as exhibited in Figure 15a.

 Chapter 4: BaRRS, a solution to the scheduling problem

39

Figure 15. Example scientific applications.

This model considers the following assumptions: (1) the system executes W at a time

and contemplates computing and data-intensive workflows, (2) each VM works under a

particular bandwidth 𝑣𝑚𝑗
𝑏𝑤 that is assumed to be fixed during the execution of W, and (3)

resources are requested from a cloud provider prior to execution and released after the

execution of each task in the workflow. Additionally, it is assumed that users will provide the

estimated execution time 𝑡̂𝑖
𝑒𝑥𝑒 for all tasks in W. The file transfer time is given by the total

size of file(s) divided by the minimum bandwidth value between VMs, expressed as:

 𝑡̂𝑗
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

=
𝑖𝑛𝑖

𝑠𝑖𝑧𝑒

𝑚𝑖𝑛(𝑣𝑚𝑝
𝑏𝑤, 𝑣𝑚𝑖

𝑏𝑤)
 Eq. 2

Where 𝑣𝑚𝑝
𝑏𝑤 and 𝑣𝑚𝑖

𝑏𝑤 refer to the VMs executing 𝑡𝑖 and its parent 𝑡𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

respectively.

4.3 Problem statement

The scientific workflow scheduler formulates the scheduling problems as a weighted

optimization problem of two objectives (monetary cost and runtime). It assigns tasks to VMs

to minimize execution time and monetary cost based on user requirements. To formulate this

problem, the considered tasks are distributed among the VM’s queues,

[𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒, … 𝑣𝑚𝑣

𝑞𝑢𝑒𝑢𝑒]. A queue is defined as a decomposition of a set into disjointed subsets

whose union is the original set. Based on this model, the scheduling problem is defined as

finding the corresponding elements of each VM queue to maximize the following augmented

a) LIGO b) Montage c) Cybershake d) Epigenomics e) SIPHT

 Chapter 4: BaRRS, a solution to the scheduling problem

40

objective function (F):

 𝐹 = 𝑤1

(𝑚𝑎𝑥𝑡𝑖𝑚𝑒 − 𝑅𝑢𝑛𝑡𝑖𝑚𝑒)

(𝑚𝑎𝑥𝑡𝑖𝑚𝑒−𝑚𝑖𝑛𝑡𝑖𝑚𝑒)
+ 𝑤2

(𝑚𝑎𝑥𝑐𝑜𝑠𝑡 − 𝐶𝑜𝑠𝑡)

(𝑚𝑎𝑥𝑐𝑜𝑠𝑡−𝑚𝑖𝑛𝑐𝑜𝑠𝑡)

Eq. 3

Variables maxtime, mintime, maxcost and mincost are continuously updated during the

scheduling process reflecting the best and worst VM configurations. These values represent

the maximum and minium values of runtime and monetary cost.

Runtime is defined as the maximum time taken by the slowest or least powerful VM

to execute the current queues of jobs, expressed as:

 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑀𝑎𝑥𝑗=1
|𝑉𝑀|

[𝑣𝑚𝑗
𝑡𝑖𝑚𝑒] Eq. 4

Where, 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒is the time to execute 𝑣𝑚𝑗

𝑞𝑢𝑒𝑢𝑒
on 𝑣𝑚𝑗

𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 = ∑ 𝑡𝑖

|𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

|

𝑖=1

Eq. 5

Cost or Monetary is defined as the sum of runtimes of each VM multiplied by its

respective cost, expressed as:

𝐶𝑜𝑠𝑡 = ∑ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑣𝑚𝑗

𝑐𝑜𝑠𝑡

|𝑉𝑀|

𝑗=1

Eq. 6

Since application owners do not have tools to accurately estimate total execution time

or monetary cost for their workflows, our approach offers an abstract and flexible way to

choose a particular scheduling configuration driven by 𝑤1 and 𝑤2 representing Execution

time and monetary cost optimization weights, where:

 Chapter 4: BaRRS, a solution to the scheduling problem

41

𝑤1 + 𝑤2 = 1 Eq. 7

In this way, the workflow owner gives a percentage weight to constraints based on his

needs.

4.4 BaRRS Approach

In order to achieve the aforementioned goals, BaRRS produces an estimation table for

large workflows. This table is presented to application owners for comparing monetary costs

and execution time tradeoffs for executing their large workflow considering heterogeneous

VM configurations (e.g. CPU Type, CPU Speed, cores, memory, renting cost, etc.). Firstly,

BaRRS estimates results for a subset of VMs denoted as subVM where 𝒔𝒖𝒃𝑽𝑴 ⊂ 𝑽𝑴

and |𝒔𝒖𝒃𝑽𝑴| = 𝛼|𝑽𝑴| size (0 < 𝛼 ≤ 1). Next, BaRRS employs a trade-off analysis

technique [44, 70, 71] for building the complete set of solutions considering an exhaustive set

of VM configurations. In this chapter, the trade-off is modeled by the exponential shape

graph, 𝑓𝑒(𝑥) = 𝐴𝑒×exp(𝑥𝑘𝑒), that maps the number of VMs to the execution time and its

respective monetary cost. As in [44], this study found that exponential function has a lower

mean square error (MSE) in comparison to the linear regression and other distributions.

Hence an exponential graph was selected to model the scheduling estimations trade-offs.

Given that 𝑠𝑢𝑏𝑉𝑀𝑖
𝑡𝑖𝑚𝑒 is the execution time of ith configuration in 𝒔𝒖𝒃𝑽𝑴 then 𝐴𝑒 =

max(𝑠𝑢𝑏𝑉𝑀𝑖
𝑡𝑖𝑚𝑒) where 𝑖 = 1,2, … 𝑣. From 𝑓𝑒(𝑥), each VM configuration 𝑥𝑖 = 𝑠𝑢𝑏𝑉𝑀𝑖

produces a different 𝑘𝑖:

𝑘𝑖 =

ln (
𝑓𝑒(𝑥)

𝐴𝑒
)

𝑥𝑖

Eq. 8

Then,

 𝑘𝑒 =
∑ 𝑘𝑖

|𝑠𝑢𝑏𝑉𝑀|
𝑖=1

|𝑠𝑢𝑏𝑉𝑀|

Eq. 9

Finally,

𝑓𝑐(𝑥) = ∑ 𝑓𝑒(𝑥) 𝑣𝑚𝑗

𝑐𝑜𝑠𝑡

|𝑉𝑀|

𝑗=1

Eq. 10

 Chapter 4: BaRRS, a solution to the scheduling problem

42

An example of 𝑓𝑒(𝑥) and 𝑓𝑐(𝑥) is shown in Figure 16a-b. Figure 16c presents an

example of a complete trade-off graph with all possible combinations of VM configurations

with their respective runtime and monetary cost.

This algorithm includes the parameter 0 < 𝛼 ≤ 1 to control the number of estimations

in order to decrease the scheduling overhead time. For 𝛼 = 1, BaRRS behaves as a brute

force algorithm because it produces all possible configurations with their respective runtime

and monetary cost to execute a workflow. For 𝛼 < 1, the number of configurations is

uniformly distributed among all possible configurations. As an example, for |𝑉𝑀| = 10 and

𝛼 = 0.5, BaRRS will produce five (|𝑉𝑀|) estimation points; they will be for 𝑥 =

{2,4,6,8,10}.

4.4.1 Balanced with File Reuse and Replication Techniques Scheduling Algorithm

(BaRRS)

Algorithm 1 presents the BaRRS heuristic. It first computes runtime and monetary

cost for the selected number of estimations (line 1). Line 2 builds the complete set of

solutions for the different possible number of VM resource configurations. Finally, line 3

presents the trade-off solutions to a user.

Figure 16. Trade-off frontier.

VMs x x+1

 b) Cost a) Execution time

 c) Trade-off

VMs x x+1

fc(x)
fe(x)=Ae x exp(xke)

fc(x) fe(x)

fc(x)

fe(x)

fe(x) vs fc(x)

 Chapter 4: BaRRS, a solution to the scheduling problem

43

Algorithm 1 The BaRRS Approach
Input: Workflow W,

Output: Trade-off scheduling plans

1: Estimate Runtime, Monetary Cost (Algorithm 2)

2: Build Trade-off graph

3: Present solutions

In this context, the trade-off graph is defined as a set of solutions where each solution

has a different number of VMs with its respective execution time and monetary cost. The set

of trade-off values connected together are called the trade-off frontier. This trade-off follows

a similar shape as the Pareto frontier [44, 71], the main difference is that the trade-off offers

flexibility to analyze the complete spectrum of number of VMs, which is a key feature from

this study.

The exponential function 𝑓𝑒(𝑥) is then used to obtain runtime where x is the number

of VMs. Selection of 𝑘𝑒 and 𝐴𝑒 values requires significant attention since they drive the final

trade-off shape [44]. In this work, the variable 𝐴𝑒 corresponds to the maximum execution

time for each approach. From the previous estimated solutions, 𝑘𝑒 is obtained as

 log (
𝑓𝑒(𝑉𝑀)

𝐴𝑒
) = 𝑉𝑀𝑘𝑒

Eq. 11

A different 𝑘 is produced for each combination of VMs with a different MSE. Based

on experimental practice, this study found the mean value of 𝑘𝑒 offers minimum MSE.

Figure 17 and Table 2 present an example of this concept. From an original graph 𝑔(𝑉𝑀),

five estimated k values produce different MSE, Table 2. Then 𝑓(𝑉𝑀) reconstruct 𝑔(𝑉𝑀)

using 𝑘̅ as shown in Figure 17. Since the left tail on the 𝑓(𝑉𝑀)graph does not match 𝑔(𝑉𝑀)

this approach does 𝑓(1) = 𝐴𝑒 to overcome this issue.

 Chapter 4: BaRRS, a solution to the scheduling problem

44

Table 2. Trade-off values and MSE examples

Parameter Value MSE

𝑘1 -0.2672 0.00043

𝑘2 -0.3683 0.00018

𝑘3 -0.3539 0.00014

𝑘4 -0.3068 0.00014

𝑘5 -0.2582 0.00056

𝑘̅ -0.3109 0.00011

𝑘̅ =
1

𝑛
∑ 𝑘𝑖

𝑛
𝑖=1 .

Figure 17. Trade-off values example.

4.4.2 Runtime and Monetary Cost Estimation

Algorithm 2 computes runtime and monetary cost. It first applies workflow

contraction (line1). It then creates a VM pool. The size of the VM pool (|𝑉𝑀|) and the

maximum estimated number are set in lines 2 and 3. The cycle from lines 4 to 7 obtains the

best scheduling plan for the selected maximum number of estimations.

Algorithm 2 Runtime and Monetary Cost
Input: Workflow W, VM set

Output: Scheduling plan

1: Workflow contraction

2: |𝑉𝑀| = 𝑚𝑎𝑥 (𝑃); Solutions=Ø

3: 𝑀𝑎𝑥𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = |𝑉𝑀|

4: For i = 1 to MaxEstimations

5: Do Scheduling Algorithm

6: Solutions = Solutions + CurrentSchedule

7: End

8: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥𝑖=1

𝑡𝑜𝑡𝑎𝑙𝐹𝑖

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10

S
c
a
le

d
 E

x
e
c
u

ti
o
n

 T
im

e

Virtual Machines

Original g(VM) f(VM)

 Chapter 4: BaRRS, a solution to the scheduling problem

45

Algorithm 3 presents the Scheduling Algorithm. Its objective is to produce VM

queues. This algorithm analyzes the total workflow task levels (|L|). It first enumerates the

total number of descended tasks from the actual level (line 2). Then all the tasks are placed as

in group A (line 3). Lines 4-11 add each task to the available scheduling queues based on file

reutilization (line 6) and replication (line 7) techniques. Based on these techniques, the

selected tasks are added to the scheduling queue that contributes the greatest Objective

Function value.

Algorithm 3 Scheduling
Input: Workflow W, VM set

Output: Scheduling plan for the given VM set

1: For l=1 to |L|

2: s = total number of descend from actual level

3: A  [29]

4: while parents ≠ ø

5: for j=1 to s //for all descended

6: File reuse and replication as per Algorithm

7: Queue balancing as per Algorithm 5

8: Add task(s) to the q with the highest

function value 9: End

 10: End

11: End

4.4.3 File Reutilization and Replication

The file reutilization mechanism reduces the number of file transfers during workflow

execution. This technique identifies parent and descended tasks and allocates them into the

same VM. The file replication objective is to transfer a parent task’s file replica to VMs

where its descended tasks will be deployed. In this approach, the policy to apply one rule or

the other is based on the file transfer time saved against the task execution.

Algorithm 4 presents the file reutilization and replication mechanism. The complete

algorithm analyses all tasks in the workflow (lines 1-8). The bandwidth value is set to the

minimum value among the machine holding the input files and a selected target VM (line 2).

Line 3 presents the fundamental part of this algorithm. If the total time to transfer the input

files exceeds execution time, then the task is added to the same task parent queue, e.g.

reutilization. Otherwise the task is added to another VM, causing a new transfer (replication).

 Chapter 4: BaRRS, a solution to the scheduling problem

46

Algorithm 4 File reuse and replication

Algorithm 3 File reutilization and replication Input: Workflow W, VM set

Output: Reorganize vmi
queue  {VM} with file reutilization

1: For all 𝑡𝑖 ∈ 𝑊

2: 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = min (𝑣𝑚𝑖
𝑏𝑤|𝑡𝑖

𝑝𝑎𝑟𝑒𝑛𝑡𝑠
∈ 𝑣𝑚𝑖

𝑞𝑢𝑒𝑢𝑒
 ,

𝑣𝑚𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑏𝑤)

3:
 If

𝑖𝑛𝑖
𝑠𝑖𝑧𝑒

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
≥ 𝑡̂𝑖

𝑡𝑜𝑡𝑎𝑙 and 𝑡𝑖
𝑝𝑎𝑟𝑒𝑛𝑡𝑠

= [∅] then

4: 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

ti|ti
parents

5: else

6: 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

ti|ti
parents

7: end

8: end

Algorithm 5 Queue balance
Input: Workflow W, VM set

Output: Balanced 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

∈ 𝑉𝑀

1: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑞𝑢𝑒𝑢𝑒 = |𝑊| |𝑉𝑀|⁄

2: 𝑏𝑎𝑔 = [∅]

3: For all 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

∈ 𝑉𝑀

4: 𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 = |𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒|

5: If 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

> 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑞𝑢𝑒𝑢𝑒 then

6: 𝑏𝑎𝑔[𝑣𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑞𝑢𝑒𝑢𝑒

𝑞𝑢𝑒𝑢𝑒
, 𝑣𝑚𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒

𝑞𝑢𝑒𝑢𝑒
]

 7: else if 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

< 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑞𝑢𝑒𝑢𝑒 and

𝑏𝑎𝑔 ≠ [∅] 8:

𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

[𝑏𝑎𝑔1, 𝑏𝑎𝑔𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑞𝑢𝑒𝑢𝑒−𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒]

 9: End

10: end

4.4.4 Queue balance

The objective of this technique is to balance all VM queues. Scheduler rules can

overload a particular queue leading to unbalanced load across VMs. To balance scheduling

queues, this procedure interchanges tasks between all queues in order to lower the difference

between their loads without worsening any optimization goal. Algorithm 5 presents the

balance technique. It first computes the average number of tasks between VMs (line 1). Line

2 empty the bag set. Later, lines 3–9 analyze all 𝑣𝑚𝑖
𝑞𝑢𝑒𝑢𝑒

for all VMs. Tasks are moved from

overloaded queues, those with higher queue length than the average, to this bag. If a queue’s

size is lower than the average, tasks from bag are transmitted to it, considering its incurred

data transfer time.

 Chapter 4: BaRRS, a solution to the scheduling problem

47

4.4.5 Workflow Contraction

BaRRS tries to group tasks of a workflow for faster distribution among VMs; it starts

by grouping serial tasks. Figure 18 exemplifies this procedure; the serially connected tasks

inside dotted ellipses are grouped together to produce a contracted workflow as shown on left

side of the figure.

Figure 18. Workflow contraction example.

4.5 Experiment Setup

The performance of BaRRS was evaluated using a VMware-ESXi-based (version 5.5)

private cloud to validate the solutions. This environment generates VMs matching AWS [15]

instances such as the t2.small. The cloud consists of three Krypton Quattro R6010 with 4-way

AMD OpteronTM 6300 series (64-Cores each), ESXi. Twelve VMs were prepared to perform

as workers. Pegasus-WMS (4.2) on Ubuntu 14.04 was used as the workflow management

system, where BaRRS was implemented.

Table 3. Characteristics of the scientific workflows.

 Nodes w-levels
parallel-

tasks

Average file

size (MB)

Average task

execution time

(s)

Dependencies

patterns

Epigenomics 100 8 24 749 2346 (2)(3)(4)

Montage 100 9 62 20.6 11.34 (2)(3)(4)

Cybershake 100 5 48 1156.1 51.70 (1)(3)(4)

Ligo 100 8 24 55.6 222.0 (1)(4)(5)

Sipht 100 7 51 22.02 210.27 (4)(5)

(1) Process; (2) Pipeline; (3) Data distribution; (4) Data aggregation; (5) Data Redistribution

 Chapter 4: BaRRS, a solution to the scheduling problem

48

Five scientific workflows were selected from [4] to produce the experiments.

Workflows represent applications from different scientific areas including astronomy,

geology, biology, cosmic analysis and biotechnology. Their details are presented in Table 3.

As described in Literature Review Chapter, most algorithms intended for cloud

environment use a fixed number of VMs in their scheduling procedures. To the best of this

researcher’s knowledge, Provenance Adaptive Scheduling Heuristic [72], is among the state-

of-the-art approaches that is also able to produce scheduling plans with different numbers and

combinations of VMs based on execution runtime, monetary cost and reliability

requirements. For this reason, the Provenance Scheduling approach is selected for

comparison with BaRRS.

The Provenance scheduler analyses groups of tasks ready for execution, it groups

them in queues with sizes depending on their historical execution time profile. This approach

is able to increment the number of VMs as long as the monetary cost of an application does

not exceed its upper limit (monetary constraint). The parameter values w1, w2 and  are set

to 0.50. On the trade-off graphs, each point corresponds to a unique number of VMs

expressed as “{}”. For example, {3, 5, 7} represents trade-off points for VMs three, five and

seven.

4.6 Results

Epigenomics workflow

The Epigenomics trade-off graphs in Figure 19 show how BaRRS outperformed

Provenance. Provenance’s low performance is related to the way it schedules tasks of a

workflow: one task level at a time. This causes VMs to remain idle until an entire level

finishes execution. Only then, VMs can continue to execute the next level task set.

Furthermore, VMs do not save files if not used by the next executing task. As a result, files are

sent to a central disk, thus adding unnecessary file transfers to increase both execution time

and monetary cost.

 Chapter 4: BaRRS, a solution to the scheduling problem

49

Figure 19. Epigenomics trade off.

Montage workflow

The main characteristic of the Montage trade-off graphs (Figure 20) is that most of the

solutions are executed within one hour. This situation is caused by a low computing demand

from Montage workflows. Tasks neither need high computing power nor large scale file

transfer. It also presents a particular dependency pattern: each task on the second level

depends on two tasks from the first level. BaRRS analyses both levels and explores data reuse

by identifying the pair of parent tasks and their descendants. Following that, it groups and

deploys them to the same VM. For this reason, BaRRS leads to lower execution and cost

values in comparison to a Provenance approach.

Figure 20. Montage trade-off frontier.

Cybershake workflow

An important characteristic of this workflow is that most of its solutions are executed

at the average rate of 11,000 seconds, while not less than 10,000. The reason for such

execution time is the need to transfer 80GB input files. The network transfer time of these

files contributes to about 65% of total execution time or running time.

0

50

100

150

200

0 10 20 30 40 50 60E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Monetary cost (dollars)

BaRRS Provenance

Trade-off BaRRS Trade-off Provenance

215758e-0.35x

146659e-0.59x

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Monetary cost (dollars)

BaRRS Provenance
Trade-off BaRRS Trade-off Provenance

7135e-0.87x

4986e-0.69x

 Chapter 4: BaRRS, a solution to the scheduling problem

50

Figure 21. Cybershake trade-off graph.

Ligo workflow

Figure 22 presents the trade-off graph for BaRRS and Provenance. Solutions for both

approaches tend to execute at an average execution time of 3000 seconds at a cost of 3.00

dollars. The reason for this behavior is the uniformity of the dependency patterns. The first

two task levels contract (Workflow Contraction) in a single one, the same as levels four and

five, converting the problem to a simple map of parallel tasks where four VMs is the correct

number to achieve optimization constraints. Incrementing the number of VMs offers no

execution time improvement while increasing the monetary cost.

Figure 22. LIGO trade-off frontier.

8
10
12
14
16
18
20
22
24
26

0 10 20 30 40 50 60E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Monetary cost (dollars)

BaRRS Provenance

Trade-off BaRRS Trade-off Provenance

26479e-0.6x

22407e-0.9x

0

5

10

15

20

25

0 2 4 6 8E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Monetary cost (dollars)

BaRRS Provenance

Trade-off BaRRS Trade-off Provenance

22479e-2.99x

16895e-4.98x

 Chapter 4: BaRRS, a solution to the scheduling problem

51

4.7 Analysis - Optimization of Runtime and Monetary Cost

This section presents execution time, monetary cost and system utilization results for

the complete range of |VM| configurations. This measurement is to analyze the total time

VMs are active during execution, which is defined as:

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

∑ [𝑣𝑚𝑗
𝑡𝑖𝑚𝑒]

|𝑉𝑀|
𝑗=1

(𝑅𝑢𝑛𝑡𝑖𝑚𝑒)|𝑉𝑀|

Eq. 12

Where,

𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 = ∑ 𝑡̂𝑖

𝑒𝑥𝑒

|𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

|

𝑖=1

Eq. 13

Epigenomics

The six-machine configuration presents the highest utilization value for BaRRS as

shown in Figure 23. This condition is due to the following reasons. First, the Workflow’s

MaxLevel consumes 98.5% of the total execution time. Second, the size of files and

makespan values are similar for all tasks. Third, the twenty-four tasks in this level can

distribute uniformly on six VMs. For the same reason, this configuration presents a low

execution time and monetary cost as shown in Figure 24 and Figure 25.

The execution times gradually decrease as the number of VMs increases (Figure 24).

The reason for this behavior is the uniform distribution of tasks in the workflow graph.

Furthermore, each task only depends on a single parent, allowing a very uniform task

deployment across the VMs.

Montage

An important characteristic of the montage workflow is that the maximum number of

tasks across the level is 62. For simplicity, this level is referred to as MaxLevel. Even though

this level groups the majority of the tasks, it only contributes to about 57% of the total

execution time. This factor causes solutions with higher utilization values to demand only a

 Chapter 4: BaRRS, a solution to the scheduling problem

52

small number of VMs. Furthermore, as the number of VMs increases, their utilization

significantly drops (Figure 27).

Figure 23. Epigenomics system utilization.

Figure 24. Epigenomics execution time.

Figure 25. Epigenomics monetary cost.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

U
ti

li
za

ti
o
n

Virtual machines

BaRRRS Provenance

0

50

100

150

200

250

300

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Virtual machines

BaRRRS Provenance

0

10

20

30

40

50

60

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

M
o
n

e
ta

r
y
 c

o
st

 (
d

o
ll

a
r
s)

Virtual machines

BaRRRS Provenance

 Chapter 4: BaRRS, a solution to the scheduling problem

53

Figure 26. Montage system utilization.

Figure 27. Montage execution time.

Figure 28. Montage monetary cost.

Cybershake

Cybershake solutions have considerable low system utilization as shown in Figure 29.

The main reason for this performance is the size of input files. The average transfer input

time is about 92.4 seconds, while task average execution time is about 51.7 seconds. This

data-intensive workflow is suitable to execute on a small number of VMs to obtain higher

utilization values. Moreover, users are able to evaluate whether they execute their workflow

on the cloud or on their own resources based on this analysis. This highlights the importance

of this study to guide users.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

U
ti

li
za

ti
o
n

Virtual machines

BaRRS Provenance

0

1

2

3

4

5

6

7

8

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Virtual machines

BaRRRS Provenance

0
1
2
3
4
5
6
7
8
9

10

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

M
o
n

e
ta

r
y
 c

o
st

 (
d

o
ll

a
r
s)

Virtual machines

BaRRRS Provenance

 Chapter 4: BaRRS, a solution to the scheduling problem

54

Figure 29. Cybershake system utilization.

Figure 30. Cybershake execution time.

Figure 31. Cybershake monetary cost.

LIGO

LIGO has two MaxLevels with 24 tasks. All tasks in these two groups demand

different file sizes with different execution times. This causes lower system utilization values

for Provenance experiments (Figure 32). Both BaRRS and Provenance approaches lead to

similar results for execution time and monetary cost as presented in Figure 33 and Figure 34,

mainly because of fairly equal file transfer and execution times for tasks. Nevertheless,

BaRRS still outperforms, though marginally, Provenance because it considers all tasks during

scheduling. However, BaRRS contributes with the highest utilization value of 97% while

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

U
ti

li
za

ti
o
n

Virtual machines

BaRRS Provenance

0

5

10

15

20

25

30

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Virtual machines

BaRRS Provenance

0

5

10

15

20

25

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

M
o
n

e
ta

r
y
 c

o
st

 (
d

o
ll

a
r
s)

Virtual machines

BaRRS Provenance

 Chapter 4: BaRRS, a solution to the scheduling problem

55

Provenance’s highest value is 75% as shown in Figure 32. This improvement is also

reflected in the execution time and monetary cost for solutions with 4 VMs as shown in

Figure 33Figure 34. The data replication technique of BaRRS caused those encouraging

results. In contrast, Provenance groups tasks based on their computational demands without a

deep analysis of file transfers causing unsatisfactory results.

Figure 32. LIGO system utilization.

Figure 33. LIGO execution time.

Figure 34. LIGO monetary cost.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

U
ti

li
za

ti
o
n

Virtual machines

BaRRS Provenance

0

5

10

15

20

25

30

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
)

x
 1

0
0
0

Virtual machines

BaRRS Provenance

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

M
o
n

e
ta

r
y
 c

o
st

 (
d

o
ll

a
r
s)

Virtual machines

BaRRS Provenance

 Chapter 4: BaRRS, a solution to the scheduling problem

56

4.8 Summary

This chapter presented the BaRRS scheduling approach for deploying scientific

workflows on cloud-based VM resources. BaRRS is based on three techniques and a deep

workflow analysis. It produces a scheduling configuration that gives an application owner the

flexibility to choose different combinations of VMs based on execution time and monetary

cost tradeoff. These techniques include queue balancing, file reuse, and file reutilization. The

BaRRS approach takes special consideration of the workflow feature analysis such as file

sizes, task parallelism, and task interdependencies. Four scientific workflows are selected as

the application benchmark to test BaRRS performance. BaRRS was compared against the

state-of-the-art Provenance scheduling approach, experiments proved BaRRS’s superior

performance in meeting conflicting requirements.

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

57

5 GA-ETI: A Genetic Algorithm to

Select the Number of Resources to

Execute Workflows

5.1 Preliminaries

This chapter presents GA-ETI (Genetic Algorithm Scheduler with Efficient Tuning of

resources), an algorithm for selecting a number of VMs that achieves a minimal execution

time and monetary cost compared with present scheduling techniques. GA-ETI employs the

distribution mechanisms of BaRRS and extracts the capabilities of the genetic algorithm to

produce optimal scheduling solutions.

Firstly, Section 5.2 presents the environment model to run GA-ETI. Then Section 5.3

describes the problem statement. Subsequently, Section 5.4 describes in full detail the GA-

ETI approach. Next, Section 5.5 presents the experimental setup to test the GA-ETI. Section

5.6 provides a discussion of the obtained results focusing on GA-ETI performance. Section

5.7 gives an analysis of the selection of number of resources. Then Section 5.8 gives a

discussion on the algorithm performance. Finally, Section 5.9 provides a summary with the

most remarkable features of experimentation and algorithm performance.

The GA-ETI main contributions are: (1) a framework to solve the problem to select

the number of resources to run applications in cloud computing systems, (2) an adapted GA

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

58

scheduler capable of providing superior results in terms of execution time and monetary cost

when compared with up-to-date schedulers, (3) an adaptation of the GA without the excessive

randomness presented in the original genetic algorithm. The core of this chapter has been sent

for publication to the Journal of Computational Science [2].

Figure 35. Architecture for scientific workflow execution.

5.2 Framework

This section presents model and parameter definitions in order to define the

scheduling problem in the next section. In this study, the architecture for scientific workflow

execution in cloud environments is divided into three layers: (1) a Scientific Application

aims to be run on a cloud system, optimizing runtime and monetary cost; (2) a Scheduler

engine acting as a connection between the cloud environment and the scientific application,

its goal is to distribute a workflow’s tasks; and (3) a Cloud Environment containing a group

of servers offering VMs on a pay-as-you-go basis. An illustration of the described framework

is presented in Figure 35. The first layer, Scientific Application, considers a workflow 𝑾

aiming to be executed in a cloud system where a user is able to indicate optimization levels

for execution time and monetary cost, 𝑤1 and 𝑤2 respectively. The second layer, Scheduling,

receives workflow description, analyzes it and distributes tasks among the available resources

assembling a queue for each VM. Finally, a Cloud Environment is a physical place hosting a

Scientific application

Workflow Optimize objectives Output VM queues

Workflow Optimization
0% 100%

Time Cost

Scheduler

Cloud

Environment

Storage

Servers

Virtual machines

VM Queue
VM Queue

VM Queue
VM Queue

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

59

group of servers and storage devices providing computing power to clients through

virtualization. Each client has the option to select a number of resources to build his/her

particular group of resources 𝑽𝑴.

This model contemplates six assumptions: (1) scheduler analyzes and executes one

workflow at a time, (2) scheduler accepts both computing and data-intensive workflows, (3)

every VM has a fixed bandwidth (𝑣𝑚𝑗
𝑏𝑤), number of cores (𝑣𝑚𝑗

𝑐𝑜𝑟𝑒𝑠), cost per quantum of

time (𝑣𝑚𝑗
𝑐𝑜𝑠𝑡), memory size (𝑣𝑚𝑗

𝑚𝑒𝑚) and disk size (𝑣𝑚𝑗
𝑑𝑖𝑠𝑘), (4) our proposed scheduler,

GA-ETI, negotiates with the cloud provider to obtain the required VMs prior to execution of

each workflow, (5) users must supply or estimate execution time 𝑡̂𝑖
𝑒𝑥𝑒 for every task of 𝑊, as

envisioned on Pegasus-WMS, and (6) resource deployment assumes each VM executes one

task at a time.

This chapter uses part of the model from the work presented in [1], a research

focusing on the balancing of task queues in the execution of scientific applications in cloud

environments. The specific modifications to its model contributed in enhancing the output of

this research: firstly, the term 𝑖𝑑𝑙𝑒𝑣𝑚
𝑡𝑎𝑠𝑘 was introduced to decrease the overhead scheduling

time generated when calculating the execution of tasks from a given VM. This term

comprises the execution time from all parent tasks from a particular task. It is embedded in

the 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

 for time calculation purposes only. In this sense, the model avoids recurrent

execution time calculation whenever it finds task interdependency with other VMs; as a result

analysis of a complete scheduling configuration time obtained a reduction of 40% in the

study’s experimental practice. Secondly, a resource utilization constraint is included in order

to procure an efficient usage of resources. For its experiments, this study takes only the

scheduling configurations with the highest utilization resource values. Figure 36 presents an

example for the calculation of utilization for a set of three VMs. Resource 𝑣𝑚3 remains busy

for two hours while 𝑣𝑚1 and 𝑣𝑚2 execute their loads in 1.8 hr. For this reason, the cloud

provider charges the user for two hours for each machine causing a utilization resource of

0.933.

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

60

Figure 36. Resource utilization example.

5.3 Problem Statement

 Scientific Workflow Scheduling (SWS) is a problem defined as assigning tasks to

virtual machines to minimize: (1) total makespan to execute all workflow tasks and (2)

monetary cost that a user pays to have his/her application completed. To formally express this

problem, assume tasks are clustered and assigned to several VM queues

{𝑣𝑚1
𝑞𝑢𝑒𝑢𝑒

, 𝑣𝑚2
𝑞𝑢𝑒𝑢𝑒

… 𝑣𝑚|𝑉𝑀|
𝑞𝑢𝑒𝑢𝑒

} to be executed by {𝑣𝑚1, 𝑣𝑚2 … 𝑣𝑚|𝑉𝑀|,} respectively. A

cluster of tasks is defined as a decomposition of a workflow’s tasks set into disjoint subsets of

which the union is the original set. For instance, a pool of |VM| = 2 machines with

𝑣𝑚1
𝑞𝑢𝑒𝑢𝑒 = {𝑡1, 𝑡2} and 𝑣𝑚2

𝑞𝑢𝑒𝑢𝑒 = {𝑡3, 𝑡4} is executing a workflow of four tasks 𝑊 =

{𝑡1, 𝑡2, 𝑡3, 𝑡4}.

Given the above description, an SWS problem is stated as defining a pool of resources

𝑽𝑴 and assigning a workflow’s (𝑾) tasks to each virtual machine to minimize their

execution time and monetary cost:

 𝑀𝑆𝑝𝑛 = 𝐿𝐹𝑇𝑗=1
|𝑉𝑀|

 [𝑣𝑚𝑗
𝑡𝑖𝑚𝑒] Eq. 14

 𝑀𝐶𝑠𝑡 = ∑ 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒

|𝑉𝑀|

𝑗=1

 𝑣𝑚𝑗
𝑐𝑜𝑠𝑡 Eq. 15

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑉𝑀𝑠 𝑏𝑢𝑠𝑦 𝑡𝑖𝑚𝑒

𝑉𝑀𝑠 𝑝𝑎𝑖𝑑 𝑡𝑖𝑚𝑒
=

∑ [vmj
time]

|VM|
j=1

∑ vmj
time

|VM|
j=1

 =
vm1

time+vm2
time+ vm3

time

vm1
time+vm2

time+vm3
time

=
(1.8ℎ𝑟 + 1.8ℎ𝑟 + 2ℎ𝑟)

2ℎ𝑟 +2ℎ𝑟 + 2ℎ

 =0.933

2hr

1hr

idle

busy

𝑣𝑚1
𝑡𝑖𝑚𝑒

 𝑣𝑚2

𝑡𝑖𝑚𝑒 𝑣𝑚3
𝑡𝑖𝑚𝑒

0hr

Set of 3 VMs Utilization reflects the percentage of time that VMs remain

busy out of the time each of them are hired

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

61

Figure 37. Example of runtime calculation for a 4-task workflow.

Makespan, Eq. 14, also referred to as runtime and execution time through the text, is

the value of the 𝐿𝐹𝑇 (Latest Finishing Time) from all the VMs executing workflow 𝑊, while

monetary cost is the sum of all VMs cost multiplied by their respective round up runtime to

the closest integer as expressed in Eq. 15. In order to reduce monetary cost presented in [1],

this problem statement allows machines to be launched at different times by the cloud

provider. With this modification the proposed SWS solver has the freedom to employ a

particular VM for a specific interval. This modification led to a resource utilization

improvement of up to 30%. Similarly, 𝑀𝐶𝑠𝑡 only considers the amount of time each machine

is hired, yet cloud providers charge an hourly rate. Eq. 16 expresses the time each VM takes

to execute its corresponding load, where 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

 refers to the list of tasks assigned to 𝑣𝑚𝑗 .

In order to reduce the scheduling overhead time presented in [1], this study introduces the

term 𝑖𝑑𝑙𝑒𝑣𝑚
𝑡𝑎𝑠𝑘 (Eq. 17, exectuion time of parent task) in the calculation of 𝑣𝑚𝑗

𝑡𝑖𝑚𝑒. In this

sense, every 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

 would contain the complete information from all tasks to calculate its

total runtime and monetary cost without waiting for its calculation on a different 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒.

1

2 3

4

𝑣𝑚1

𝑞𝑢𝑒𝑢𝑒
= {1,2}

𝑣𝑚2

𝑞𝑢𝑒𝑢𝑒
= {3,4}

First consider a workflow’s

tasks distributed in two VMs

Then project tasks over time

Workflow 1

 𝑣𝑚1
𝑡𝑖𝑚𝑒 = 𝑡̂1

𝑡𝑜𝑡𝑎𝑙
+ 𝑡̂2

𝑡𝑜𝑡𝑎𝑙

 𝑣𝑚2
𝑡𝑖𝑚𝑒

= 𝑡̂1
𝑡𝑜𝑡𝑎𝑙

+ 𝑡̂3
𝑡𝑜𝑡𝑎𝑙

+ 𝑡̂4
𝑡𝑜𝑡𝑎𝑙

Afterwards calculate total

execution time for each VM

Even though 𝑣𝑚2 does not

execute 𝑡1 it must include

it only for runtime

calculation purpose

𝑣𝑚1

 𝑣𝑚2

t
1
 t

2

t
3
 t

4
 t

1

𝑖𝑑𝑙𝑒𝑣𝑚
𝑡 = 𝑖𝑑𝑙𝑒2

3 = ∑ 𝑡̂𝑖
𝑡𝑜𝑡𝑎𝑙

=

|1|

𝑖=1

𝑡̂1
𝑡𝑜𝑡𝑎𝑙

Refer to Eqs. 5 and 6 to calculate file transfer time

Transfer is not required as the file is produced
and consumed on the same VM

Transfer between different VMs is compulsory

Finally file transfers are required

as follows

𝑣𝑚1

 𝑣𝑚2

t
1
 t

2

t
3
 t

4
 t

1

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

62

This will enable the SWS solver to reduce the overhead time at the scheduling stage. An

illustration of 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 calculation is presented in Figure 37.

𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 = ∑ [𝑡̂𝑖

𝑡𝑜𝑡𝑎𝑙 + 𝑖𝑑𝑙𝑒𝑣𝑚
𝑡𝑎𝑠𝑘]

|𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

|

𝑖=1

 Eq. 16

𝑖𝑑𝑙𝑒𝑣𝑚

𝑡𝑎𝑠𝑘 = ∑ 𝑡̂𝑖
𝑡𝑜𝑡𝑎𝑙

|𝑝𝑎𝑟𝑒𝑛𝑡𝑠|

𝑖=1

 Eq. 17

The value of 𝑡̂𝑖
𝑡𝑜𝑡𝑎𝑙 expressed in Eq. 18 contemplates the time to transfer the required

𝑛 number of files and the time to run a task’s executable program, 𝑡̂𝑖
𝑒𝑥𝑒, which is a value

provided by the user

 𝑡̂𝑖

𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑡̂𝑖
𝑓

𝑛

𝑓=1

+ 𝑡̂𝑖
𝑒𝑥𝑒 Eq. 18

Finally, the time to transfer each file, 𝑡̂𝑖
𝑓
, depends on the bandwidth of the VM’s

parents 𝑣𝑚𝑝
𝑏𝑤 and 𝑣𝑚𝑖

𝑏𝑤, expressed as:

 𝑡̂𝑖
𝑓

=
𝑓𝑖

𝑠𝑖𝑧𝑒

𝑚𝑖𝑛(𝑣𝑚𝑝
𝑏𝑤, 𝑣𝑚𝑖

𝑏𝑤)
 Eq. 19

5.4 GA-ETI Approach

The Genetic Algorithm (GA) is a metaheuristic motivated by genetic evolution with

important features for combinational optimization. It is a robust technique to solve complex

problems in engineering and science due to its ability to detect a global optimum in the

complete search space [41]. Contrary to current heuristics solutions [6, 73, 74] GA does not

build a single solution. Instead, it applies genetic operators to current configurations (parents)

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

63

with the objective of generating stronger solutions (offspring) from evolution [42]. For these

reasons, this study modified the GA into the GA-ETI to solve the SWS problem. This section

presents the fundamentals of the GA and its adaptation for the cloud scheduling problem.

5.4.1 Genetic Algorithm (GA)

The original GA has an initial population that starts the GA with a group of possible

solutions [45]. Each chromosome is a string of genes encoding a specific solution. The

particular nature of an optimization problem defines chromosome and gene characteristics.

Through the genetic process, GA selects fittest chromosomes, combining them to produce a

final strong solution. The first phase to produce a new population is the selection operator. Its

objective is to select chromosomes to produce the next population [42]. A frequently used

selection technique is the roulette wheel where each chromosome is allocated a portion of the

wheel according to its fitness value; hence chromosomes with greater values are allocated

more slots with more chances to be selected for the next population. Then, the genetic

operators combine chromosomes to hopefully produce chromosomes with higher fitness

values: (1) Crossover splits and combines genes between two selected chromosomes

according to a predefined probability; (2) Mutation randomly selects genes from a

chromosome and changes their values according to another predefined probability.

Additionally, the fittest chromosomes are directly copied to the next population. Finally, GA

terminates when it meets selected criteria. The most used criteria are total execution time, the

number of iterations, fitness value, and conditional minimum improvement [41, 42, 45, 47].

The fitness function in GA evaluates the quality of each chromosome. For maximization

problems, the fitness function is proportional to the problem cost function while minimization

problems use the inverse value of this equation.

5.4.2 The GA-ETI

This section presents the enhanced Genetic Algorithm with Efficient Tune-In of

resources inspired by the fundamentals of the genetic process.

GA-ETI’s objective is to (1) solve the scheduling problem and (2) return the number

of resources a particular workflow needs for execution. Concurrently, GA-ETI optimizes

monetary cost and execution time. Genetic operators are carefully adjusted to distribute a

workflow's tasks on VM queues. Algorithm 1 presents the GA-ETI with its featured

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

64

components. Firstly, in step 1, GA-ETI uses Algorithm 2 to generate a preliminary population

with a size IP greater than a regular population. Then, step 2 reduces this preliminary

population to a regular size selecting the fittest chromosomes. Steps 4 to 14 develop the main

loop. Step 5 evaluates every chromosome using Eq. 20. Then, in step 6 a quarter of the fittest

chromosomes are directly copied to the next population for elitism and the rest of the

chromosomes are selected using the roulette wheel. Afterwards, steps 7-9 apply one-point

and multiple-point crossover to a selected group of chromosomes to produce offspring

followed by a mutation operator in steps 10-13. The algorithm stops when neither 𝑀𝑆𝑝𝑛n or

𝑀𝐶𝑠𝑡 present an improvement by returning chromosomes with the highest fitness value (step

15).

Algorithm 1: GA-ETI

Input: Workflow W, VM set

Output: Scheduling plan

1: Generate preliminary population (Algorithm 2)

2: Initial population  Select fittest chromosomes

4: While time or cost still improve

5: Evaluation

6: Selection

7: Crossover

8: - Conventional crossover

9: - Clustered crossover

10: Mutation

11: - Swap

12: - Increment VMs

13: - Decrement VMs

14: End

15: 𝐹𝑖𝑡𝑡𝑒𝑠𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥𝑖=1

𝑡𝑜𝑡𝑎𝑙𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤1

(𝑚𝑎𝑥𝑀𝑆𝑝𝑛 − 𝑀𝑆𝑝𝑛)

(𝑚𝑎𝑥𝑀𝑆𝑝𝑛−𝑚𝑖𝑛𝑀𝑆𝑝𝑛)
+ 𝑤2

(𝑚𝑎𝑥𝐶𝑠𝑡 − 𝑀𝐶𝑠𝑡)

(𝑚𝑎𝑥𝐶𝑠𝑡−𝑚𝑖𝑛𝐶𝑠𝑡)
 Eq. 20

The objective of 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (Equation 20) is to combine makespan and economical cost

into a single equation. For accomplishing this requirement, each member in 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is forced

to produce values between 0 and 1 as expressed in:

0 <
(𝑚𝑎𝑥𝑀𝑆𝑝𝑛−𝑀𝑆𝑝𝑛)

(𝑚𝑎𝑥𝑀𝑆𝑝𝑛−𝑚𝑖𝑛𝑀𝑆𝑝𝑛)
< 1 and 0 <

(𝑚𝑎𝑥𝐶𝑠𝑡−𝑀𝐶𝑠𝑡)

(𝑚𝑎𝑥𝐶𝑠𝑡−𝑚𝑖𝑛𝐶𝑠𝑡)
< 1

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

65

Where a value of 1 represents a solution with the best (lowest) registered makespan or

monetary cost and a value of 0 represent a solution with the worst (highest) ever registered

value. By forcing each member in producing values between 0 and 1, 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is able to

combine both quantities i.e. makespan and monetary cost. Then the terms 𝑤1 and 𝑤2 give an

optimization priority from 0 to 1 for each optimization objective by limiting their values as

follows:

𝑤1 + 𝑤2 = 1

Chromosome and fitness function description

Chromosomes represent a complete workflow scheduling where each gene represents a

task and the required VM to execute it; hence, chromosome length equals the size of the given

workflow |W|. Figure 38 describes a chromosome with an example. On it, the position of

𝑔𝑒𝑛𝑒1 represents 𝑡𝑎𝑠𝑘1, 𝑔𝑒𝑛𝑒2 represents 𝑡𝑎𝑠𝑘2 and so on. Similarly, the value of 𝑔𝑒𝑛𝑒1, 1,

expresses that 𝑣𝑚𝟏 executes the represented task, in this case 𝑡𝑎𝑠𝑘1; value of 𝑔𝑒𝑛𝑒2, 1,

assigns 𝑡𝑎𝑠𝑘2 to 𝑣𝑚𝟏 and so on.

Figure 38. Chromosome representation in GA-ETI.

Eq. 20 assigns a fitness value to each chromosome based on its makespan and

monetary cost on every iteration of Algorithm 1 (steps 4 - 14). 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 keeps a record of

maximum (𝑚𝑎𝑥𝑀𝑆𝑝𝑛 and 𝑚𝑎𝑥𝐶𝑠𝑡) and minimum (𝑚𝑖𝑛𝑀𝑆𝑝𝑛and 𝑚𝑖𝑛𝐶𝑠𝑡) values of 𝑀𝑆𝑝𝑛 and

𝑀𝐶𝑠𝑡 in order to provide a global evaluation to each solution; these values update on each

iteration on the main loop of GA-ETI. Additionally, the fitness equation enables the user to

1 1 2 2 2

Chromosome 1
representing workflow 1

Genes

Gene position  task ID
Gene value  vm ID

Workflow 1

 𝑣𝑚1 𝑣𝑚2

𝑡𝑎𝑠𝑘1 x

𝑡𝑎𝑠𝑘2 x

𝑡𝑎𝑠𝑘3 x

𝑡𝑎𝑠𝑘4 x

𝑡𝑎𝑠𝑘5 x

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

66

assign priority to a given optimization objective employing 𝑤1 and 𝑤2 as time and cost

optimization weights respectively where 𝑤1 + 𝑤2 = 1.

Pre-initial population

Algorithm 2 leads to an initial population with fittest chromosomes for GA-ETI. This

algorithm first produces a larger initial pre-population, then it reduces the population

selecting the best chromosomes to build the first generation. Algorithm 2 firstly identifies the

number of genes, largest-level and parallel-tasks and then assigns a random VM to each task

in steps 1-3. Since workflows do not require an unlimited number of resources, the algorithm

limits the size of 𝑽𝑴 to parallel-tasks which are the maximum number of tasks that can run

in parallel. The main loop in steps 4-13 executes IP times to build the pre-initial population.

The loop in steps 7-10 assigns a random value to each gene on every chromosome with

values from 1 to parallel-tasks. Finally, step 12 returns the initial population of a regular size.

Founded on this study’s practical tests, the best results were obtained with an IP value of 10.

Algorithm 2: Creating the Initial Population

Input: Workflow W

Output: Initial population

1: genes = number of tasks on workflow

2: largest-level = Largest workflow level

3: parallel-tasks = number of the tasks in largest-level

4: Set IP

5: For j=1:IP

6: For k=1: size of population

7: For i=1: genes

8: 𝑔𝑒𝑛𝑒𝑖 = random value from [1 to parallel-

tasks] 9: 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑘  𝑔𝑒𝑛𝑒𝑖

10: End

11: End

12: pre_initial_population  𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑘

13: End

14: Return pre_initial_population

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

67

Figure 39. Roulette wheel illustration.

5.4.3 Genetic Operators: Selection, Crossover, Mutation

GA-ETI makes use of the roulette wheel for selection of chromosomes for genetic

operators. The roulette wheel is a selection process simulating a partitioned spinning wheel.

Partition size depends on fitness of its elements. In this study, each element is a chromosome

and its partition size depends on its fitness value. Figure 39 presents a graphical description

of the roulette wheel. First it assigns size (𝑝𝑖) of each partition to every element

(chromosome). Then, all partition sizes are assigned to the wheel. Finally, the roulette wheel

spins and selects a winner.

GA-ETI adapts the conventional crossover and swap mutation from the original GA

to be used in this model. Additionally, a modified crossover and new increment and

decrement mutation operators were designed and added to the GA-ETI to produce a powerful

tool. Description of these mechanisms is as follows.

Conventional crossover

This operator is the accurate adaptation of the original GA crossover into the

scheduling problem. It allows the breaking of a pair of chromosomes into a limited number of

pieces and then combining their parts in order to produce offspring. Number and location of

breaking points are chosen arbitrarily. Figure 40.a presents an instance of this process. Firstly,

chromosomes 1 and 2 are selected from the population using the roulette wheel. Then, step 2

highlights that chromosomes can break on any number and location; in this case, only one

crossover point is used, dividing chromosomes into two parts each. Finally, chromosomes are

combined building offspring 1 and 2.

 𝑓
𝑖

= 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒

𝑝
𝑖

𝑝
𝑖+3

𝑝
𝑖+2

𝑝
𝑖+1

Selection

point

Chromosomes with

higher fitness value are

more likely to be

chosen

Firstly calculate probability of

selection for each chromosome
Secondly spin roulette wheel Finally output selected chromosome

𝑝
𝑖

=
𝑓

𝑖

∑ 𝑓
𝑖

𝑛
𝑖=1

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

68

Figure 40. Crossover operation example.

Clustered crossover

This enhanced crossover operator is specially adapted to the scheduling problem.

While conventional crossover breaks chromosomes at any location, clustered crossover does

not separate genes from the same workflow. This procedure allows GA-ETI to produce

newborns combining clusters of genes representing workflow levels. Figure 40.b presents an

example of this procedure. It first selects a pair of chromosomes in step 1; then, step 2 presents

clusters of genes for each chromosome. Workflow 1 is split into four-cluster chromosomes,

each one representing a level from the given workflow. From this chromosome division is

then selected a crossover breaking point(s). Finally, chromosomes mix with each other,

producing offspring.

Swap mutation operator

This study adapts the original GA swap operator to be applied with the GA-ETI. The

swap operator produces an offspring from a single chromosome, it first selects a pair of genes

and then it swaps their values. A pair of gene values is interchanged in each swap operation.

Figure 41.a presents an example of this operation. In step 1, a random pair of genes is selected

from the parent chromosome. Then in step 2, the selected genes swap their values, producing

offspring 1.

Step 1:

Crossover point

selection

Step 2:

Chromosomes

are split

Step 3:

Build offspring

Workflow 1

Chromosome 1
1 1 1 1 1 1

Chromosome 2

2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2
Crossover point can break chromosomes at any

point

1 1 1 1 2 2 2 2 2 2 1 1
Offspring 1 Offspring 2

a) Conventional crossover operation

Possible crossover breaking points

Chromosome 1

Offspring 1 Offspring 2

1 1 1 1 1 1

1 1 1 1 1 1

Chromosome 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 1 1 1

Genes are first clustered based on workflow level

organization. This prevents destruction of

workflow level distribution.

b) Clustered crossover operation

Possible crossover breaking points

1 1 1 2 2 2

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

69

Increment and decrement mutation operators

Increment and decrement instruments are a modification of the mutation operator to

change the number of VMs that a given chromosome uses. Figure 41b-c explain these

operators with an example. The decrement process in Figure 41b reduces the number of VMs,

i.e. gene values. In this example, chromosome 1 has three different gene values (1, 2 and 3)

while offspring 1 ends up with only two different values of genes (1 and 3). The procedure

starts with step 1, it first selects a random gene, and then it selects every gene with a similar

value. In step 3, it lists the different gene values presented on chromosome 1. Finally, in step

4, it selects a random value from the list in step 3 and replaces the selected gene(s) from step

2. As for the increment operator in Figure 41c, it adds a new gene value, i.e. a new VM to the

chromosome. As this example shows, offspring 1 ends up with an additional gene value. This

operator first selects a random gene value in step 1. Then in step 2, it lists the available VMs

that GA-ETI can use, but are not part of chromosome 1, in this particular case 4 – 9. Finally,

in step 3, a random value from the mentioned list replaces the selected gene from step 1.

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

70

Figure 41. Mutation operators for GA-ETI.

5.4.4 GA-ETI Algorithm Complexity

In order to measure GA-ETI’s complexity, this study defines the growing order of the

algorithm. For this purpose, let us first define 𝑇(𝑡, 𝑠, 𝑙) as the number of time units GA-ETI

needs to produce a scheduling configuration of a given workflow. GA-ETI is divided into

five different stages: initial population generation, evaluation, selection, crossover and

mutation. The complexity of each stage is extracted from Table 4, hence 𝑇(𝑡, 𝑠, 𝑙) obtains the

value of (𝑡)(𝑠)(𝐼𝑃) + (𝑠) + (𝑠 − 𝑙) + (0.6)(𝑠)𝑐 + (0.3)(𝑠). Since values of 𝐼𝑃, 𝑙 and 𝑐 are

constants and 𝑠 does not depend on the number of tasks then 𝑇(𝑡, 𝑠, 𝑙) = 𝑂(𝑡) where 𝑂(𝑡)

expresses the growing order of GA-ETI as a linear function of the number of tasks in the

workflow.

Chromosome 1 using

3 VMs (1,2,3) 1 2 3 3 1 2

Step 1: Select random gene

1 2 3 3 1 2

Step 2: Genes with similar value are also selected

Step 3: List of genes values in chromosome 1

(except selected)

1 3

Step 4: Select a random value from step 3 and

replace values on chromosome 1

1 3 3 3 1 3 Offspring 1 using

2 VMs (1,3)

Chromosome 1 using 3

VMs (1,2,3) 1 2 3 3 1 2

Step 1: Select random gene

Step 2: List of available genes values (VMs) not

used in chromosome 1

4 5

Step 3: Select a random value from step 2 and

replace value on chromosome 1

Offspring 1 using 4

VMs (1,2,3,4)

6 7 8 9

1 4 3 3 1 2

Step 1: Select random genes

Chromosome 1 1 2 3 3 1 2

1 1 3 3 2 2

Step 2: Swap genes

Offspring 1

a) Swap: conventional mutation operator

b) VM Decrement instrument: a modified

mutation operator
c) VM Increment instrument: a modified

mutation operator

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

71

Table 4. Parameter description to determine GA-ETI algorithm complexity.

Stage Complexity
Generate initial population

Assign a random number [1:VM] to each gene

(𝑡) from the complete population (𝑠) augmented

(𝑡)(𝑠)(𝐼𝑃)

Evaluation

Calculates 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 for each chromosome

(𝑠)

Selection

Run roulette wheel (𝑝) times to build a new

population taking off number of chromosomes

from elite operator

(𝑠 − 𝑙)

Crossover

The complete population has a maximum

probability of 0.6 to go through crossover

operator where each operation depends on a

constant number of crossing points

(0.6)(𝑠)(𝑐)

Mutation

The complete population has a maximum

probability of 0.3 to go through mutation

operator where the number of interchangeable

genes remains constant

(0.3)(𝑠)(𝑐)

(𝑡) Number of tasks (genes); (𝑠) Size of population (number of chromosomes); (𝐼𝑃) Pre-initial population factor; (𝑙)
Elite size group; 𝑉𝑀 Maximum number of virtual machines; (𝑐) Constant

As readers will notice, the number of VMs does not affect complexity since it is only

considered as a pool of values where genes initially obtain their identification number (see

stage 1 in Table 4). Furthermore, the size of population 𝑠 appears at every stage but is not

affected by type and size of workflow. Experimentation also reveals that the number of

iterations is affected by neither workflow type or size even for the unmodified GA. The

growing order of GA-ETI depends only on the number of tasks.

5.5 Experiment Setup

To evaluate the performance of GA-ETI, a private VMware-vSphere (version 5.5)

private cloud was employed to validate the solutions. Virtualization in this environment

generates instances matching the AWS [15] t2.small VM. The cloud consists of three

Krypton Quattro R6010s with 4-way AMD Opteron 6300 series (64-Cores each). For system

management, Pegasus-WMS (4.2) was employed on Ubuntu 14.04 where GA-ETI was

implemented with the parameters shown in Table 5. The five scientific workflows presented

in Section 4.2 are used to gauge the efficiency of the specific scheduling approach in this

work. The inputs for the experiments are workflow files including (i) executable files, (ii)

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

72

data files and (iii) workflow dependency description. The goal of experiments is to test the

proposed scheduler and analyze its behavior against up-to-date scheduling algorithms.

This study compares GA-ETI against three up-to-date schedulers in the same field.

This algorithm selection includes: Provenance [72], HEFT [13] and FSV (Flexible Selection

of VMs) [7]. In summary, Provenance groups tasks on queues depending on their historical

execution time and file sizes; HEFT creates a pre-schedule queue based on a critical path and

then distributes tasks following an earliest finishing time; and FSV emulates HTCondor’s

behavior [75] to execute tasks on available VMs. To manage the number of VMs, Provenance

increments the number of VMs as long as the monetary cost does not exceed a user’s budget;

HEFT and FSV use as many VMs as are available.

Table 5. GA-ETI setup for population and genetic operators

Parameter Symbol Value

Crossover probability 𝑝𝑐 0.60

Swap mutation 𝑝𝑠 0.25

Increment mutation 𝑝𝑖𝑛𝑐 0.20

Decrement mutation 𝑝𝑑𝑒𝑐 0.20

Pre-initial population factor IP 10

Initial population P 500

Time weight constraint 𝑤1 0.5

Cost weight constraint 𝑤2 0.5

In this section, the four algorithms schedule the workflows described in Section 4.2 .

For this first experimental stage, scheduling algorithms have access to as many VMs as

parallel tasks in the workflow. For instance, LIGO is able to use a pool of 24 VMs (see

parallel-tasks on Table 3).

5.6 Results

Table 6 presents the obtained results. For the Epigenomics workflow, GA-ETI and

HEFT produce similar runtime results (21190 and 22890 seconds, respectively) as its nodes

have a very uniform distribution allowing schedulers to allocate tasks evenly among VMs. In

contrast, FSV and Provenance presented higher time values (67325 and 89011 seconds,

respectively), on one hand FSV allocates tasks to any available VM without considering

dependencies causing duplication of data files, on the other hand, Provenance has an internal

grouping offset value that groups tasks based on previous executions and not on current tasks.

As for the Cybershake workflow, it presents a simple dependency pattern among tasks

allowing FSV to obtain similar results as GA-ETI and HEFT; in contrast, Provenance is

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

73

prevented from delivering better results due to its task grouping policy. Montage workflow

highlights the need to analyze dependencies between tasks; for this workflow, GA-ETI’s

scheduling policy allows groups of tasks sharing a common parent task to be allocated to the

same VM in order to lower file transfer time. In summary, HEFT outperformed Provenance

and FSV due to its simplistic nature in allocating tasks into VMs, even though HEFT does

not analyze job dependencies which prevents it from delivering lower values for time and

monetary cost as exhibited by GA-ETI.

Table 6. Execution time and monetary cost results for FSV, GA-ETI, HEFT and Provenance.

 Epigenomics Cybershake Sipht Montage Ligo

 Time (s) Time (s) Time (s) Time (s) Time (s)

GA-ETI 21190 4619 3587 270 3486

HEFT 22890 5199 3687 385 4717

FSV 67325 6549 6106 475 8508

Provenance 89011 8711 5090 550 8340

5.7 Analysis – Selection of Number of Resources

This section selects the best configuration from FSV, GA-ETI, HEFT and Provenance

from the results exhibited in Figure 43. To that end, each algorithm is forced to produce a

scheduling configuration for every possible number of VMs, then the outcomes are evaluated

with 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 for each algorithm. Once all configurations are rated, the highest value is

selected for each algorithm. Final results including number of VMs are presented in Table 7

and Figure 42 shows execution time and monetary cost.

Table 7. Optimal number of VMs for HEFT, Provenance,

FSV and GA-ETI.

HEFT Provenance FSV GA-ETI

Sipht 6 6 5 5

Cybershake 3 7 4 3

Epigenomics 6 8 5 24

Ligo 8 18 9 5

Montage 5 6 5 4

Results show that the number of tasks in a workflow does not influence the final

number of resources a given application needs. The number of VMs is related to (1)

workflow computational requirements, (2) file transfer demands, and (3) task dependency

constraints. For each workflow, all approaches select a similar number of resources with only

two specific exceptions for GA-ETI on Epigenomics and Provenance for Ligo. For the first

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

74

case, GA-ETI converges to solutions employing as many VMs as the number of tasks on the

largest workflow level (24). For the second case, Provenance selects a high number of VMs

due to the high number of tasks it groups on its first level.

Time Cost

a) Epigenomics

b) Cybershake

c) Sipht

d) Montage

e) Ligo

Figure 42. Best configuration execution time and monetary cost.

5.8 Discussion – GA-ETI Performance

To show the efficiency of this approach, it is analyzed from the following

perspectives.

GA-ETI performance superiority

In this section, GA-ETI’s behavior is analyzed and compared with the other

algorithms. For this matter, all approaches are forced to produce scheduling plans for all

0.00

10.00

20.00

30.00

40.00

0

20000

40000

60000

80000

100000

120000

HEFT Provenance FSV GA-ETI

C
o
st

 (
d

o
ll

a
r
s)

T
im

e
 (

se
c
)

0.00

0.50

1.00

1.50

2.00

2.50

0

1000

2000

3000

4000

5000

6000

7000

HEFT Provenance FSV GA-ETI

C
o
st

 (
d

o
ll

a
r
s)

T
im

e
 (

se
c
)

0.00

0.50

1.00

1.50

2.00

0

1000

2000

3000

4000

5000

6000

7000

HEFT Provenance FSV GA-ETI

C
o
st

 (
d

o
ll

a
r
s)

T
im

e
 (

se
c
)

0.00

0.20

0.40

0.60

0.80

1.00

0

100

200

300

400

500

HEFT Provenance FSV GA-ETI

C
o
st

 (
d

o
ll

a
r
s)

T
im

e
 (

se
c
)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0

2000

4000

6000

8000

HEFT Provenance FSV GA-ETI

C
o
st

 (
d

o
ll

a
r
s)

T
im

e
 (

se
c
)

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

75

possible number of VMs. Schedulers start mapping for a single machine incrementing the

number of VMs until the execution time does not improve. This criterion has been chosen

since increasing the number of VMs beyond such a point only increments monetary cost.

Figure 43 presents these results.

a) Epigenomics

b) Cybershake

c) Sipht

d) Montage

e) Ligo

Figure 43. Execution time results with a different number of VMs.

Results from Figure 40 show that HEFT and GA-ETI present the lowest runtime

execution time for the five workflows. Still, GA-ETI contributes the lowest values due to its

scheduling policies. For instance, the Cybershake workflow presents particular dependencies

where parallel nodes on the second level execute on 127.55 sec (63.35 sec for task execution

plus ~64 sec for 791MB input file transfer on a 100Kbps network); internally, GA-ETI

converged to solutions where groups of three of these parallel tasks are assigned to a single

VM executing them serially in 254.05 sec transferring input files only once to the same VM.

0

50

100

150

200

250

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

5

10

15

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

200

400

600

800

1000

1200
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

5

10

15

20

25

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

HEFT GA-ETI Provenance FSV

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

76

In contrast, HEFT executes them parallel in 127.55 sec, transferring input set files to the

different machines’ VM. Overall, these decisions mean that HEFT requires redundant file

transfers and executes the application in 5199 while GA-ETI only required 4619 seconds.

GA-ETI outperforms Provenance because the latter makes groups of tasks based on

historical data. For example, the LIGO workflow on its second level has tasks that execute on

~400 sec setting grouping factor to be ~400. As a consequence on the following level, it tries

to group as many tasks as possible to fulfill a total of ~400 sec, even though the next tasks

execute on only ~5 sec causing the algorithm to group all tasks on the same VM. In contrast,

GA-ETI provides flexibility to allocate tasks according to actual execution times. Finally,

GA-ETI outperformed FSV because this latter executes workflows using Pegasus and

HTCondor’s default scheduling policies that are based on VM availability.

Figure 44. Epigenomics’ 𝑀𝑆𝑝𝑛 − 𝑀𝐶𝑠𝑡 graph.

GA-ETI global search

This section presents results for makespan and monetary cost from the four schedulers

in order to examine results distributed in the 𝑀𝑆𝑝𝑛 𝑣𝑠 𝑀𝐶𝑠𝑡 space. Figure 44 presents the

𝑀𝑆𝑝𝑛 𝑣𝑠 𝑀𝐶𝑠𝑡 graph for the Epigenomics workflow since the rest of the applications present

similar behavior. On one hand, it is shown that Provenance and FSV present a semi-

distribution of their results in the makespan-cost space. On the other hand, HEFT and GA-

ETI present a stronger distribution of solutions along the space. This exercise proves that

0

20

40

60

80

100

120

140

9 19 29 39 49 59 69 79

T
im

e
 (

se
c
)

x
 1

0
0
0

Monetary cost (dollars)

HEFT GA-ETI Provenance FSV

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

77

GA-ETI considers chromosomes distributed over the complete search space without being

trapped at isolated locations. Additionally, GA-ETI’s algorithm configuration allows it to

consider solutions from the complete solution space without elite chromosomes driving it to

specific regions.

GA-ETI behavior

In this last experiment section, GA-ETI was allowed to produce generations until no

benefit was observed. Since workflows present similar behavior in terms of population

evolution, this section only presents the results from a single workflow type. Additionally,

three different workflow sizes were included for a deep analysis. For evaluation purposes,

GA-ETI is compared against the general GA. Original GA uses conventional crossover and a

swap mutation while GA-ETI additionally employs clustered crossover, increment and

decrement mutation mechanisms.

Figure 45 presents results for population evolution on the Epigenomics workflow.

GA-ETI is able to converge to a satisfactory solution with fewer generations due to its

enhanced crossover and mutation operators. These mechanisms complement each other,

transforming the original GA into a potent tool to resolve the programming problem. On one

side, clustered crossover avoids random selection of crossover points, instead, it first

identifies workflow levels then it breaks chromosomes into clusters that later combine to

produce offspring. This procedure allows the algorithm to combine the clusters of genes

instead of chromosomes being randomly divided. On the other side, increment/decrement

mutation provides an instrument to add/remove a particular VM from a chromosome

allowing the algorithm to restructure that particular chromosome. The application of the

mentioned operators allows GA-ETI to reduce randomness, an inherent characteristic from

the original GA in converging to a final result.

A closer look at these graphs also reveals thought-provoking facts on execution time

graphs. The difference between execution time obtained at the beginning and end of

algorithms is minimal for both attacks. This is caused due to algorithms having access to an

unlimited number of VMs allowing algorithms to take advantage of parallelism. This usually

results in high monetary costs, for this reason the main challenge of algorithms is to allocate

tasks to a reduced number of VMs while maintaining a low execution time.

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

78

GA-ETI GA

a) GA-ETI: Time – 50 nodes

b) GA-ETI: Time – 100 nodes c) GA-ETI: Time – 1000 nodes

d) GA-ETI:Cost – 50 nodes e) GA-ETI: Cost – 100 nodes f) GA-ETI: Cost – 1000 nodes

Figure 45. GA-ETI generations analysis for the epigenomics workflow.

5.9 Summary

This chapter presents GA-ETI, a scheduler for scientific applications for cloud

systems to concurrently optimize their execution makespan and monetary cost. GA-ETI

enhanced the original GA through purposeful/tailor-made modification to its crossover and

mutation operators. GA-ETI uses enhanced crossover to combine clusters of genes rather

than randomly divided chromosomes; it also employs increment/decrement mutations to

add/remove virtual machines from a given chromosome. Both modifications yield reduced

inherent randomness compared to the original GA. Using five workflows to represent a

variety of current scientific problems, GA-ETI was tested and proved its superiority against

three (HEFT, Provenance and FSV) well-known/up-to-date schedulers in this field. GA-ETI

solutions had lower makespan and monetary cost when compared with solutions provided by

HEFT. Unlike FSV, GA-ETI produces a complete scheduling configuration prior to

execution with better qualities. In contrast to Provenance, GA-ETI produces its own

scheduling configuration and uses a workflow manager system only as middleware to execute

scheduling decisions. GA-ETI also revealed that, despite the general impression, optimal

20

21

22

23

24

25

26
1

1
0
1

2
0
1

3
0
1

T
im

e
 (

se
c
)x

1
0
0
0

Generations

20

21

22

23

24

25

26

1

1
0
1

2
0
1

3
0
1

T
im

e
 (

se
c
)x

1
0
0
0

Generations

7

8

9

10

11

1

3
0
1

6
0
1

9
0
1

T
im

e
 (

se
c
)x

1
0
0
0

Generations

4

9

14

19

24

1

1
0
1

2
0
1

3
0
1

C
o
st

 (
d

ll
s)

Generations

4

9

14

19

24
1

1
0
1

2
0
1

3
0
1

C
o
st

 (
d

ll
s)

Generations

0

50

100

150

200

250

1

3
0
1

6
0
1

9
0
1

1
2

0
1

C
o
st

 (
d

ll
s)

Generations

 Chapter 5: GA-ETI A genetic algorithm to select number of resources to execute workflows

79

execution of workflows does not require a high number of resources (compared to the

number of parallel nodes) in most cases.

 Chapter 6: PSO-DS Scheduling engine

80

6 PSO-DS: A Scheduling Engine for

Scientific Workflow Managers

6.1 Preliminaries

This chapter presents PSO-DS (Particle Swarm Optimization with Discrete adaptation

and a featured SuperBEST), an algorithm to solve the problem to schedule large workflows.

PSO-DS employs the distribution mechanisms of BaRRS and readapts the GA-ETI

chromosomes into particles swarming for an optimal position.

Firstly, Section 6.2 presents the required definitions to understand the cloud model to

run the PSO-DS. Based on this model, Section 6.3 formally expresses the problem to solve.

Then, Section 6.4 presents the PSO-DS. In order to validate the PSO-DS, Section 6.5

describes the experiment setup. Then, Section 6.6 present results. Section 6.7 analyzes the

scheduling of large size workflows. Next, Section 6.8 discusses algorithm performance.

Finally, Section 6.9 provides a summary with the remarkable features of experiments.

The main contributions of the PSO-DS are: (1) an adapted PSO scheduler capable of

managing large workflow sizes in a record time, (2) a low complexity scheduling algorithm

 Chapter 6: PSO-DS Scheduling engine

81

based on the particle swarm optimization with upstanding results in terms of execution time

and monetary cost, and (3) presents a novel particle scheduling reconstruction, and introduces

a Super Particle that shorts the PSO search time for an optimal result. The core of this chapter

has been sent for publication to the Journal of Supercomputing [3].

6.2 Framework

Figure 46 presents the framework that the PSO-DS employs to execute workflows on

cloud environments. In this architecture: (1) a user develops his/her workflow 𝑾 =

{𝑡1, … , 𝑡𝑛} to solve a problem in a particular scientific area. Each task 𝑡𝑖 from 𝑾 has a set of

parents 𝑡𝑖
𝑝𝑎𝑟𝑒𝑛𝑡𝑠

 linked by a set of files with total size 𝑓𝑠𝑖𝑧𝑒. Then on (2), framework refers to

execution time 𝑡̂𝑖
𝑒𝑥𝑒 for each task. This framework recommends that a user collects the

calculated execution time from previous executions and then attaches it to each task. The user

selects the optimization level for each objective, i.e. monetary cost and makespan. It is

important to highlight that the user selects a percentage and not a budget or time value limit

since PSO-DS provides an analysis and then provides different options based on user

selection. Then at stage (3) the PSO-DS receives workflow with its information attached

including optimization levels. The user then receives feedback with the possible scheduling

configuration with different number of VMs, monetary cost 𝑀𝐶𝑠𝑡 and makespan 𝑀𝑆𝑝𝑛 then

he/she selects the one best suited to his situation. Finally, at stages (4-5), the cloud system

provides the required VMs and the scheduler submits tasks to each resource based on the

selected scheduling configuration and triggers execution.

6.3 The Scheduling Problem

The scheduler’s responsibility is to organize tasks into a set of 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

 to be

executed by a given 𝑣𝑚𝑗 with the objective of minimizing total makespan 𝑀𝑆𝑝𝑛 (Eq. 21)

and monetary cost 𝑀𝐶𝑠𝑡 (Eq. 22). To accomplish this task, the scheduler is required to

define the size of the pool of resources 𝑽𝑴 = {𝑣𝑚1, … , 𝑣𝑚𝑣} based on the cost to hire each

resource 𝑣𝑚𝑗
𝑐𝑜𝑠𝑡 and the potential time to execute each set of tasks 𝑣𝑚𝑗

𝑡𝑖𝑚𝑒 from a given 𝑣𝑚𝑗.

Makespan is the Latest Finishing Time (LFT) to execute all 𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

. Eq. 23 defines

 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 as the LFT from all tasks assigned to 𝑣𝑚𝑗. Eq. 24 expresses 𝑡̂𝑖

𝑡𝑜𝑡𝑎𝑙 as the time to

execute 𝑡𝑖 while Eq. 25 is the time to execute all its parent tasks. Finally, Eq. 26 is employed

 Chapter 6: PSO-DS Scheduling engine

82

to calculate the file transfer between 𝑣𝑚𝑝 and 𝑣𝑚𝑖. Figure 47 presents an example to

calculate 𝑀𝑆𝑝𝑛 and 𝑀𝐶𝑠𝑡 for a four task workflow and a two VM set with unitary values

for 𝑡̂𝑖
𝑒𝑥𝑒, 𝑓𝑖

𝑠𝑖𝑧𝑒, 𝑣𝑚𝑗
𝑏𝑤 and 𝑣𝑚𝑗

𝑐𝑜𝑠𝑡. Firstly, consider that the four tasks are equally distributed

to the set of VMs as indicated. Secondly, files are transferred only between tasks residing on

different VMs. Thirdly, tasks are presented over a timeline exhibiting its corresponding

execution time 𝑡̂𝑖
𝑒𝑥𝑒 and its transfer time 𝑡̂𝑖

𝑓
. Task 𝑡1 requires transfer of its corresponding

𝑓1
𝑠𝑖𝑧𝑒while 𝑡2 does not required data transmission since it is allocated to the same VM. In

contrast, 𝑡3 requires to transfer 𝑓3
𝑠𝑖𝑧𝑒 from 𝑣𝑚1 to 𝑣𝑚2 while 𝑡4 does not required any data

transmission. It is clearly seen that 𝑣𝑚1
𝑡𝑖𝑚𝑒 executes its set of tasks within three units of time

while 𝑣𝑚2
𝑡𝑖𝑚𝑒 executes its tasks in five units of time. Finally, 𝑀𝑆𝑝𝑛 selects the largest value

from [𝑣𝑚1
𝑡𝑖𝑚𝑒, 𝑣𝑚2

𝑡𝑖𝑚𝑒] obtaining the value of five. As for 𝑀𝐶𝑠𝑡, it obtains a value of eight

units of time.

 𝑀𝑆𝑝𝑛 = 𝐿𝐹𝑇𝑗=1
|𝑉𝑀|

 [𝑣𝑚𝑗
𝑡𝑖𝑚𝑒] Eq. 21

 𝑀𝐶𝑠𝑡 = ∑ 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒

|𝑉𝑀|

𝑗=1

 𝑣𝑚𝑗
𝑐𝑜𝑠𝑡 Eq. 22

 𝑣𝑚𝑗
𝑡𝑖𝑚𝑒 = 𝐿𝐹𝑇

𝑖=1

|𝑣𝑚𝑗
𝑞𝑢𝑒𝑢𝑒

|
[𝑡̂𝑖

𝑡𝑜𝑡𝑎𝑙] Eq. 23

 𝑡̂𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑡̂𝑖

𝑓 + 𝑡̂𝑖
𝑒𝑥𝑒 + 𝑡̂𝑖

𝑝𝑎𝑟𝑒𝑛𝑡
 Eq. 24

 𝑡̂𝑖

𝑝𝑎𝑟𝑒𝑛𝑡
= ∑ 𝑡̂𝑝

𝑓
+ 𝑡̂𝑝

𝑒𝑥𝑒

|𝑝𝑎𝑟𝑒𝑛𝑡𝑠|

𝑝=1

 Eq. 25

 𝑡̂𝑖
𝑓

=
𝑓𝑖

𝑠𝑖𝑧𝑒

𝑚𝑖𝑛(𝑣𝑚𝑝
𝑏𝑤, 𝑣𝑚𝑖

𝑏𝑤)
 Eq. 26

 Chapter 6: PSO-DS Scheduling engine

83

Figure 46. Cloud customer-provider affiliation.

In this model it is assumed that every VM has a fixed bandwidth (𝑣𝑚𝑗
𝑏𝑤), number of

cores (𝑣𝑚𝑗
𝑐𝑜𝑟𝑒𝑠), memory size (𝑣𝑚𝑗

𝑚𝑒𝑚) and disk size (𝑣𝑚𝑗
𝑑𝑖𝑠𝑘). Since this study uses

Pegasus as part of the experimentation, workflow description follows its format including

executable files, input data and DAX file which is an abstract description of the workflow

and its internal dependencies. Additionally, workflow must specify the time to execute each

of its task. Once information is complete, the analyzer produces scheduling plans with

different finishing time, monetary cost and number of VMs. For this task PSO optimization

techniques are employed as described in next section.

Operating System

Virtualization

Servers

Data storage

Cloud broker/provider

Workflow Manager System

PSO
Scheduler

Optimization objectives

Budget Time

User’s workflow

Resources for user

1
2

3 4

5

 Chapter 6: PSO-DS Scheduling engine

84

Figure 47. Example to calculate makespan and monetary cost.

6.4 PSO-DS Approach

For this study, the author developed a scheduling approach based on the Particle

Swarm Optimization (PSO) mechanism to solve the aforementioned problem. The PSO is a

process to find a solution for nonlinear problems in terms of their optimization functions.

PSO is based on particles continuously moving while aiming to obtain the coordinates that

optimize the evaluation value as illustrated in Figure 48. The PSO is strongly related to

swarming theory and has similarities with genetic algorithms (GAs) [51]. As compared with

GA, PSO has lower demands in terms of computational power, memory capacity, and

computer coding with exceptional capabilities to solve different kinds of optimization

problems [54].

6.4.1 Particle Swarm Optimization (PSO)

In the original form of PSO [51], the GBEST model is a searching technique in the

solution space for an optimal answer. It is orientated for problems expressed with real

Makespan
Largest Finishing Time (LFT)

𝑣𝑚1

 𝑣𝑚2

t
1
 t

2

t
3
 t

4
 t

1

Transfer is not required, file is produced

and consumed on same VM

Transfer between

different VMs is compulsory

Secondly file transfers are required as: Firstly consider tasks distributed as:

Even though 𝑣𝑚2 does not execute 𝑡1 it

must include it for makespan calculation

purposes

Thirdly execution of task and file transfers

are projected over time:

1+1 1+0

1+1 𝑣𝑚2 1+1 1+0

0 1 2 3 4 5

 𝑣𝑚1

𝑣𝑚2
𝑡𝑖𝑚𝑒 𝑣𝑚1

𝑡𝑖𝑚𝑒
𝑀𝑆𝑝𝑛 = 𝐿𝐹𝑇[𝑣𝑚1

𝑡𝑖𝑚𝑒 , 𝑣𝑚2
𝑡𝑖𝑚𝑒] = 5

𝑀𝐶𝑠𝑡 = 𝑣𝑚1
𝑡𝑖𝑚𝑒 + 𝑣𝑚2

𝑡𝑖𝑚𝑒 = 8

Monetary Cost
considering time units are expressed on

hours and 𝑣𝑚𝑖
𝑐𝑜𝑠𝑡 = 1

2

4

3

1

𝑣𝑚2

Workflow 1

Resources

𝑣𝑚1

𝑡̂𝑖
𝑒𝑥𝑒

=1

𝑓
𝑖
𝑠𝑖𝑧𝑒 = 1

𝑣𝑚𝑗
𝑏𝑤 = 1

 𝑡̂𝑖
𝑓
 𝑡̂𝑖

𝑒𝑥𝑒

𝑣𝑚1

 𝑣𝑚2

1 1

1 1 1

1

1

0

1 0

𝑡̂𝑖
𝑒𝑥𝑒

+ 𝑡̂𝑖
𝑓

 Chapter 6: PSO-DS Scheduling engine

85

numbers. In order to extend the PSO scope, a discrete version of the swarm algorithm is

developed in [52]. The core of the original version was kept intact, while differing only on

the discrete mode to manipulate the problem. Each particle in the PSO represents a solution,

has a position and a velocity in the search space. Through a series of iterations, particles

swarm through the solution space to find the maximum (or minimum) value for a given

evaluation function. The following is the notation to introduce the discrete PSO (Algorithm

1).

Figure 48. The PSO process.

On a population with size 𝑃, consider the position of the i-th particle as 𝑋𝑖
𝑡 =

(𝑥𝑖1
𝑡 , 𝑥𝑖2

𝑡 , … , 𝑥𝑖𝐷
𝑡) with 𝐷 bits where 𝑥𝑖𝑑

𝑡 ∈ {0, 1}. The particle’s velocity is then defined as

𝑉𝑖
𝑡 = (𝑣𝑖1

𝑡 , 𝑣𝑖2
𝑡 , … , 𝑣𝑖𝐷

𝑡) where 𝑣𝑖𝑑
𝑡 ∈ 𝑅. The PSO keeps a record of particle’s best position on

𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 = (𝑝𝑏𝑒𝑠𝑡𝑖1

𝑡 , 𝑝𝑏𝑒𝑠𝑡𝑖2
𝑡 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝐷

𝑡) as well as a global best solution ever found in

𝐺𝐵𝐸𝑆𝑇𝑡 = (𝑔𝑏𝑒𝑠𝑡𝑖1
𝑡 , 𝑔𝑏𝑒𝑠𝑡𝑖2

𝑡 , … , 𝑔𝑏𝑒𝑠𝑡𝑖𝐷
𝑡). Eq. 27 presents the function to calculate the

velocity 𝑣𝑖𝑑
𝑡 for the d-th dimension of the i-th particle on the t iteration. The  term

introduced in [76] is a particle’s inertia to continue moving towards its original direction.

Acceleration coefficients of 𝑐1, 𝑐2 act as the particles’ memory, inclining it to move toward

𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 and 𝐺𝐵𝐸𝑆𝑇𝑡, respectively. The objective of 𝑣𝑖𝑑

𝑡 is to drive a particle in the direction

of a “superior” position in terms of its evaluation function value. Position 𝑋𝑖
𝑡 is updated on

every iteration of the PSO.

Sigmoid function (Eq. 28) is employed to operate velocities, as probabilities values,

in the interval of [0, 1]. Additionally, 𝑣𝑖𝑑
𝑡 is limited to a fixed range of values [−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥]

Start Finish Intermediate

 Chapter 6: PSO-DS Scheduling engine

86

to prevent 𝑠(𝑣𝑖𝑑
𝑡) from falling on the upper or lower bound of [0, 1]. In this study’s

experiments, also advised by [77], 𝑉𝑚𝑎𝑥 = 4. Algorithm 1 presents the generic discrete

version of the PSO for a maximization optimization. In step 1, it initializes an array of

particles with random positions 𝑋𝑖
0 and velocities 𝑉𝑖

0. In steps 2-20, it executes its main cycle.

It employs function 𝐹 to evaluate each particle’s value in step 4, if a particle’s value is greater

than its previous best position then 𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 is updated by the particle’s value. Similarly, the

global best 𝐺𝐵𝐸𝑆𝑇𝑡 value is compared, and updated if required, with 𝑃𝑖
𝑡 (steps 7-9). In the

sub-cycles in steps 10-18, Algorithm 1 updates the velocities and positions for all 𝐷

dimensions of a particle. In steps 11-12, each particle updates its velocity 𝑣𝑖𝑑
𝑡 and caps its

values. Finally, based on the result of the sigmoid function, each particle sets the value for

each dimension 𝑥𝑖𝑑
𝑡+1 for iteration 𝑡 + 1. The main cycle continues until a termination

criterion is met.

Algorithm 1 Discrete PSO – The Global model

F: Evaluation Function

1: Initialize an arrangement of 𝑃 particles

2: While a termination criterion is not met

3: For each 𝑋𝑖
𝑡 particle in 𝑁𝑝

4: if 𝐹(𝑋𝑖
𝑡) > 𝐹(𝑃𝐵𝐸𝑆𝑇𝑖

𝑡)

 5: 𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 = 𝑋𝑖

𝑡

6: end

7: if 𝐹(𝑃𝑖
𝑡) > 𝐹(𝐺𝐵𝐸𝑆𝑇)

 8: 𝐺𝐵𝐸𝑆𝑇 = 𝑃𝑖
𝑡

9: end

10: For each dimension d in D

 11: Update 𝑣𝑖𝑑
𝑡 (Eq. 27)

12: Limit 𝑣𝑖𝑑
𝑡 ∈ [−𝑉𝑚𝑎𝑥 , +𝑉𝑚𝑎𝑥]

13: if 𝑠(𝑣𝑖𝑑
𝑡) > random [0,1]

14: 𝑥𝑖𝑑
𝑡+1 = 1

15: else

16: 𝑥𝑖𝑑
𝑡+1 = 0

17: end

18: end

19: end

20: end

 𝑣𝑖𝑑
𝑡 = 𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡) Eq. 27

 Chapter 6: PSO-DS Scheduling engine

87

 𝑠(𝑣𝑖𝑑
𝑡) =

1

1 + exp (−𝑣𝑖𝑑
𝑡)

 Eq. 28

6.4.2 The PSO-DS

This section presents the modified Particle Swarm Optimization with Discrete

adaptation and a featured SuperBEST (PSO-DS) –an extension to the generic PSO– to solve

the scheduling problem in this article. Following is the description of the PSO-DS particles,

velocity and the introduction of a featured SuperBEST particle.

Adaptation of particle format

Similarly to [55], PSO-DS requires unfolding of the original discrete PSO particles to

interpret integer numbers to solve the scheduling problem. In PSO-DS, particles have an

augmented format 𝑋𝑖
𝑡 = (𝑥𝑖11

𝑡 , 𝑥𝑖21
𝑡 , … , 𝑥𝑖𝑛𝑣

𝑡), 𝑥𝑖𝑗𝑘
𝑡 ∈ {0,1}, where 𝑥𝑖𝑗𝑘

𝑡 = 1 if the j-th task of

the i-th particle is executed in 𝑣𝑚𝑘, and 𝑥𝑖𝑗𝑘
𝑡 = 0 otherwise. For ease of explanation, this

study introduces a short format to represent particles i.e. 𝑋′𝑖
𝑡 = (𝑥′𝑖1

𝑡 , 𝑥′𝑖2
𝑡 , … , 𝑥′𝑖𝑛

𝑡), 𝑥′𝑖𝑗
𝑡 ∈

{𝑣𝑚1, … , 𝑣𝑚v}, is the abstract representation of particle 𝑋𝑖
𝑡 where 𝑥′𝑖𝑗

𝑡 is the 𝑣𝑚𝑘 executing

task 𝑗 of particle 𝑖 at time 𝑡. An example particle is presented in Figure 49 for a workflow

with four tasks 𝑾 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, and a set of two resources 𝑽𝑴 = {𝑣𝑚1, 𝑣𝑚2}. Here,

particle 𝑖 is expressed in its long and abstract format 𝑋𝑖
𝑡 and 𝑋′𝑖

𝑡, respectively.

Figure 49. Particle representation for the PSO-DS.

𝑋𝑖
𝑡 = (𝑥𝑖11

𝑡 𝑥𝑖21
𝑡 𝑥𝑖31

𝑡 𝑥𝑖41
𝑡 𝑥𝑖12

𝑡 𝑥𝑖22
𝑡 𝑥𝑖32

𝑡 𝑥𝑖42
𝑡)

𝑣𝑚2
𝑋′𝑖

𝑡 = (𝑣𝑚1 𝑣𝑚2 𝑣𝑚1 𝑣𝑚2)

𝑋𝑖
𝑡 = (1 0 1 0 0 1 0 1)

𝑋𝑖
𝑡 = (𝑥𝑖11

𝑡 𝑥𝑖22
𝑡 𝑥𝑖31

𝑡 𝑥𝑖42
𝑡)

Particle representation Workflow

Resources

𝑣𝑚1

Abstract
format

Long

format

task ID

𝑥𝑖𝑗𝑘
𝑡

vm ID
particle ID

 Chapter 6: PSO-DS Scheduling engine

88

For a particle expressed in its abstract format 𝑋′𝑖
𝑡, the number of different values that

each of its dimensions can have is 𝑣, given 𝑽𝑴 = {𝑣𝑚1, … , 𝑣𝑚v}. At the same time, 𝑣 is

driven by the number of parallel tasks in a given workflow. Figure 50 illustrates this concept;

for Workflow 1, the maximum number of tasks that can be executed in parallel is four (in the

third level of Workflow 1). As a consequence, 𝑽𝑴 is set to the values of

{𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, 𝑣𝑚4} because any additional VM (more than four) in the pool will remain

idle during execution of this workflow.

Figure 50. PSO-DS particle example.

Particle’s velocity adaptation

The velocity from Eq. 27 is transformed into Eq. 29 in order to follow each particle’s

adaptation. Firstly, for 𝑋𝑖
𝑡 (expressed in its long format), the best position is defined as

𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 = (𝑝𝑏𝑒𝑠𝑡𝑖11

𝑡 , 𝑝𝑏𝑒𝑠𝑡𝑖21
𝑡 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝑛𝑣

𝑡), while the global best particle in the population

is defined as 𝐺𝐵𝐸𝑆𝑇𝑡 = (𝑔𝑏𝑒𝑠𝑡11
𝑡 , 𝑔𝑏𝑒𝑠𝑡21

𝑡 , … , 𝑔𝑏𝑒𝑠𝑡𝑛𝑣
𝑡). Parameters , 𝑐1, 𝑟1, 𝑐1, 𝑟1 and

𝑉𝑚𝑎𝑥 have the same functions as in the original discrete PSO described in the previous

section. Additionally, Eq. 28 is slightly modified to produce Eq. 30 for managing dimension

velocities as a set of probabilities; i.e. representing velocities in the range of [0,1]. Here, each

dimension’s velocity 𝑣𝑖𝑗𝑘
𝑡 is the probability of 𝑣𝑚𝑘 to execute 𝑡𝑗.

 𝑣𝑖𝑗𝑘
𝑡 = 𝑣𝑖𝑗𝑘

𝑡−1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗𝑘
𝑡 − 𝑥𝑖𝑗𝑘

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗𝑘
𝑡 − 𝑥𝑖𝑗𝑘

𝑡) Eq. 29

Due to
workflow 1

having a

maximum of 4

parallel tasks
(third level)

Size of

VM pool is set to

4 machines

𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, 𝑣𝑚4}

Population
can only create particles

with the values
{𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, 𝑣𝑚4}

Workflow 1

(8 tasks)

Population Example

𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝟏 = {𝑥𝑖13
𝑡 𝑥𝑖21

𝑡 𝑥𝑖33
𝑡 𝑥𝑖41

𝑡 𝑥𝑖51
𝑡 𝑥𝑖62

𝑡 𝑥𝑖73
𝑡 𝑥𝑖81

𝑡 }
𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝟐 = {𝑥𝑖12

𝑡 𝑥𝑖24
𝑡 𝑥𝑖31

𝑡 𝑥𝑖42
𝑡 𝑥𝑖53

𝑡 𝑥𝑖61
𝑡 𝑥𝑖72

𝑡 𝑥𝑖81
𝑡 }

𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝟑 = {𝑥𝑖11
𝑡 𝑥𝑖24

𝑡 𝑥𝑖32
𝑡 𝑥𝑖43

𝑡 𝑥𝑖51
𝑡 𝑥𝑖64

𝑡 𝑥𝑖71
𝑡 𝑥𝑖84

𝑡 }

8 tasks

𝑥𝑖𝑗𝑘
𝑡

 Chapter 6: PSO-DS Scheduling engine

89

 𝑠(𝑣𝑖𝑗𝑘
𝑡) =

1

1 + exp (−𝑣𝑖𝑗𝑘
𝑡)

 Eq. 30

6.4.3 Particle reconstruction

PSO-DS has a population of solutions expressed as velocity probabilities requiring an

interpretation to construct scheduling configurations. In this context, VMs compete to

execute tasks, while each task can only be assigned to a single resource. In contrast to [55]

where construction of particles forces consecutive tasks to be assigned to different VMs, our

approach allows assignment of sets of successive tasks to the same VM to avoid unnecessary

data transfers. Consider 𝑠′(𝑣𝑖𝑗𝑘
𝑡) (Eq. 31) as the probability of assigning the j-th task to the k-

th resource from the pool of 𝑣 machines where ∑ 𝑠′(𝑣𝑖𝑗𝑘
𝑡)𝑣

𝑘=1 = 1. During a process to be

repeated for every task 𝑗 in every particle 𝑖, only one dimension, namely k-th, 𝑥𝑖𝑗𝑘
𝑡 = 1, while

{𝑥𝑖𝑗𝑘′
𝑡 = 0 | 𝑘′ ≠ 𝑘}; k is the index of the dimension with the maximum value. Figure 51

presents a velocity and position update example for a single task workflow and a set of four

VMs. Here, the 𝐺𝐵𝐸𝑆𝑇𝑡 indicates allocating the task to 𝑣𝑚4, while the particle 𝑋𝑖
𝑡 has

assigned the task to 𝑣𝑚1. In the resulting 𝑆′(𝑉𝑖
𝑡), the last dimension exhibits the highest

probability to obtain 1, and thus in the updated particle 𝑋𝑖
𝑡+1, 𝑣𝑚4 executes 𝑡1.

Figure 51. Particle velocity update example.

 𝑠′(𝑣𝑖𝑗𝑘
𝑡) =

𝑠(𝑣𝑖𝑗𝑘
𝑡)

∑ 𝑠(𝑣𝑖𝑗𝑘
𝑡)𝑣

𝑘=1

Eq. 31

𝐺𝐵𝐸𝑆𝑇𝑡

 = 𝑐2 = 𝑟2 = 0

𝑋𝑖
𝑡

𝑉𝑖
𝑡−1 = { 0 0 0 0 }

𝑉𝑖
𝑡

S(𝑉𝑖
𝑡)

𝑐1 = 𝑟1 = 1

S′(𝑉𝑖
𝑡)

0.268 0.500 0.500 0.731

1 0 0 0

0 0 0 1

−1 0 0 1

0.134 0.250 0.250 𝟎. 𝟑𝟔𝟓

𝑋𝑖
𝑡+1 0 0 0 1

First
consider

Given
𝐺𝐵𝐸𝑆𝑇𝑡 and 𝑋𝑖

𝑡

The resulting
velocity is

Converted
to probabilities

Construction
of probabilities

Finally
select the highest value

𝑋𝑖
𝑡+1 = {𝑣𝑚4} Abstract format

representation of 𝑋𝑖
𝑡+1

𝑣𝑚1 𝑣𝑚2 𝑣𝑚3 𝑣𝑚4 Columns represent resources
Rows represent tasks
(example only has 1 task) 𝑡1

𝑡1

𝑡1

𝑡1

𝑡1

𝑡1

 Chapter 6: PSO-DS Scheduling engine

90

6.4.4 SuperBEST Particle and the GBEST

A new particle was defined, namely 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡, in PSO-DS; 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 is built

using the most popular particles’ elements in the population. Consider the set 𝑋′′𝑗
𝑡 =

{𝑥′′𝑗1
𝑡 , 𝑥′′𝑗2

𝑡 , … , 𝑥′′𝑗𝑃
𝑡 }, 𝑥′′𝑗𝑖

𝑡 ∈ {𝑣𝑚1, … , 𝑣𝑚v}, where 𝑥′′𝑗𝑖
𝑡 is the value assigned to dimension j

in the 𝑖 − 𝑡ℎ particle (expressed in its abstract format) for a population with 𝑃 particles. In

this case, 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 = (𝑠𝑏1
𝑡, 𝑠𝑏2

𝑡 , … , 𝑠𝑏𝑛
𝑡), where 𝑠𝑏𝑗

𝑡 holds the value with highest

frequency from 𝑋′′
𝑗
𝑡
. Figure 52 illustrates the formation of the 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡. Firstly, from a

population of three particles 𝑋1
𝑡, 𝑋2

𝑡 and 𝑋3
𝑡, a set of 𝑋′′𝑗

𝑡 vectors expresses the population;

then the frequency of occurrence for each 𝑣𝑚𝑘 is counted; and finally, the 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 is

composed. The PSO-DS uses the 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 to build the 𝐺𝐵𝐸𝑆𝑇𝑡. For 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑
𝑡 =

𝑚𝑎𝑥𝑖=1
𝑃 [𝑃𝐵𝐸𝑆𝑇𝑖

𝑡] and 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑
𝑡 = 𝑚𝑎𝑥𝑖=1

𝑃 [𝑋𝐵𝐸𝑆𝑇𝑖
𝑡], the 𝐺𝐵𝐸𝑆𝑇𝑡 =

𝑚𝑎𝑥 (𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 , 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑
𝑡 , 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑

𝑡).

Figure 52. The SuperBEST particle formation.

Evaluation function and termination criterion

This study adopts a maximization optimization for the scheduling process in the PSO-

DS. It employs an evaluation function 𝐸𝑣𝑎𝑙𝑢𝑒 that integrates the makespan 𝑀𝑆𝑝𝑛 and

monetary cost 𝑀𝐶𝑠𝑡 with weight values 𝑤1 and 𝑤2 to control objective optimization. The

variables maxtime, mintime, maxcost and mincost retain maximum and minimum values of

makespan and economical cost through continuous update during PSO-DS processes. PSO-

DS continues until 𝐸𝑣𝑎𝑙𝑢𝑒 shows no improvement; PSO-DS outputs GBEST as the final

solution.

𝑿𝟏
𝒕 (𝑣𝑚2 𝑣𝑚2 𝑣𝑚1)

𝑿𝟏
𝒕 (𝑣𝑚1 𝑣𝑚3 𝑣𝑚1)

𝑿𝟏
𝒕 (𝑣𝑚2 𝑣𝑚3 𝑣𝑚1)

𝑺𝒖𝒑𝒆𝒓𝑩𝑬𝑺𝑻𝒕 (𝑣𝑚2 𝑣𝑚3 𝑣𝑚1)

Incidence
of every dimension value

Population
with P size of 3

𝑣𝑚1 = 1
𝑣𝑚2 = 2
𝑣𝑚3 = 0

Population
Express as set of 𝑋′′𝑗

𝑡

𝑣𝑚1 = 0
𝑣𝑚2 = 1
𝑣𝑚3 = 2

𝑣𝑚1 = 3
𝑣𝑚2 = 0
𝑣𝑚3 = 0

𝑿′′𝟏
𝒕 (𝑣𝑚2

 𝑣𝑚1
 𝑣𝑚2)

𝑿′′𝟐
𝒕 (𝑣𝑚2

 𝑣𝑚3
 𝑣𝑚3)

𝑿′′𝟑
𝒕 (𝑣𝑚1

 𝑣𝑚1
 𝑣𝑚1)

Particle
selects the dimension with
the highest incidence

 Chapter 6: PSO-DS Scheduling engine

91

 𝐸𝑣𝑎𝑙𝑢𝑒 = 𝑤1

(𝑚𝑎𝑥𝑀𝑆𝑝𝑛 − 𝑀𝑆𝑝𝑛)

(𝑚𝑎𝑥𝑀𝑆𝑝𝑛−𝑚𝑖𝑛𝑀𝑆𝑝𝑛)
+ 𝑤2

(𝑚𝑎𝑥𝐶𝑠𝑡 − 𝑀𝐶𝑠𝑡)

(𝑚𝑎𝑥𝐶𝑠𝑡−𝑚𝑖𝑛𝐶𝑠𝑡)
 Eq. 32

Algorithm 2 PSO-DS
𝑬𝒗𝒂𝒍𝒖𝒆 Evaluation Function, Population size 𝑃, 𝑉𝑚𝑎𝑥, Workflow 𝑾

1: Initialize an arrangement of 𝑃 particles with random positions and

velocities 2: While a termination criterion is not met

3: For all particles (𝑖 = 1 𝑡𝑜 𝑃)

4: if 𝑬𝒗𝒂𝒍𝒖𝒆(𝑋𝑖
𝑡) > 𝑬𝒗𝒂𝒍𝒖𝒆(𝑃𝐵𝐸𝑆𝑇𝑖

𝑡)

 5: 𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 = 𝑋𝑖

𝑡

6: end

7: if 𝑬𝒗𝒂𝒍𝒖𝒆(𝑋𝑖
𝑡) > 𝑬𝒗𝒂𝒍𝒖𝒆(𝐺𝐵𝐸𝑆𝑇𝑡)

 8: 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑
𝑡 = 𝑋𝐵𝐸𝑆𝑇𝑖

𝑡

9: end

10: if 𝑬𝒗𝒂𝒍𝒖𝒆(𝑃𝐵𝐸𝑆𝑇𝑖
𝑡) > 𝑬𝒗𝒂𝒍𝒖𝒆(𝐺𝐵𝐸𝑆𝑇𝑡)

 11: 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑
𝑡 = 𝑃𝐵𝐸𝑆𝑇𝑖

𝑡

12: end

13: end

14: For all tasks (𝑗 = 1 𝑡𝑜 𝑛)

15: 𝑋′′𝑗
𝑡 = {𝑥′′𝑗1

𝑡 , 𝑥′′𝑗2
𝑡 , … , 𝑥′′𝑗𝑃

𝑡 }

16: 𝑠𝑏𝑗
𝑡 = ℎ𝑖𝑔ℎ𝑒𝑟_𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒(𝑋′′

𝑗
𝑡)

17: 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 ← 𝑠𝑏𝑗
𝑡

18: end

19: 𝐺𝐵𝐸𝑆𝑇𝑡 = max (𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡, 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑
𝑡 , 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑

𝑡)

20: For all particles (𝑖 = 1 𝑡𝑜 𝑃)

21: For all tasks (𝑗 = 1 𝑡𝑜 𝑛)

22: For all VMs (𝑘 = 1 𝑡𝑜 𝑣)

23: 𝑣𝑖𝑗𝑘
𝑡 = 𝑣𝑖𝑗𝑘

𝑡−1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗𝑘
𝑡 − 𝑥𝑖𝑗𝑘

𝑡) +

𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗𝑘
𝑡 − 𝑥𝑖𝑗𝑘

𝑡) 24: 𝑣𝑖𝑗𝑘
𝑡 ∈ [−𝑉𝑚𝑎𝑥 , +𝑉𝑚𝑎𝑥]

25: s(𝑣𝑖𝑗𝑘
𝑡) = 1/(1 + exp(−𝑣𝑖𝑗𝑘

𝑡))

26: 𝑥𝑖𝑗𝑘
𝑡 = 0

27: end

28: 𝑠′(𝑣𝑖𝑗(0)
𝑡) = 0

29: For all VMs (𝑘 = 1 𝑡𝑜 𝑣)

30: 𝑠′(𝑣𝑖𝑗𝑘
𝑡) = 𝑠(𝑣𝑖𝑗𝑘

𝑡)/ ∑ 𝑠(𝑣𝑖𝑗𝑘
𝑡)𝑣

𝑘=1

31: if 𝑠′(𝑣𝑖𝑗𝑘

𝑡) > 𝑠′(𝑣𝑖𝑗(𝑘−1)
𝑡)

32: Save 𝑘

33: end

34: end

35: 𝑥𝑖𝑗𝑘
𝑡 = 1

36: end

37: end

38: end

 Chapter 6: PSO-DS Scheduling engine

92

6.4.5 PSO-DS Algorithm

The resulting PSO-DS algorithm is presented in Algorithm 2. In step 1, it creates a

population with size 𝑃 where random positions 𝑋𝑖
𝑡 and velocities 𝑉𝑖

𝑡 are assigned to the

population. Then steps 2 – 38 present the main loop. Steps 4 – 6 update 𝑃𝐵𝐸𝑆𝑇𝑖
𝑡 for every

particle; 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑
𝑡 and 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑

𝑡 update their values if the current particle has a

higher evaluation value. In steps 14 – 18, the algorithm builds the 𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 particle.

Following in step 19, PSO-DS selects 𝐺𝐵𝐸𝑆𝑇𝑡 from the pool

{𝑆𝑢𝑝𝑒𝑟𝐵𝐸𝑆𝑇𝑡 , 𝐺𝐵𝐸𝑆𝑇𝑃𝑏𝑎𝑠𝑒𝑑
𝑡 , 𝐺𝐵𝐸𝑆𝑇𝑋𝑏𝑎𝑠𝑒𝑑

𝑡 }. In steps 23 – 26, velocity 𝑣𝑖𝑗𝑘
𝑡 is updated and

capped to the range [−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥]. Next, s(𝑣𝑖𝑗𝑘
𝑡) expresses 𝑣𝑖𝑗𝑘

𝑡 as a probability in the

interval [0,1]; its respective position 𝑥𝑖𝑗𝑘
𝑡 is set to 0 as a preliminary step to update each

particle’s position. Steps 28 – 35 present procedures to update each particle’s position; it is

repeated 𝑛 times for a given workflow 𝑾 with size 𝑛. Steps 29 – 34 form a loop to calculate

𝑠′(𝑣𝑖𝑗𝑘
𝑡) for all 𝑘 resources that are competing to execute the j-th task in the i-th particle.

Finally, only the resulting k resource (Step 32) in 𝑥𝑖𝑗𝑘
𝑡 obtains the value of 1 for the j-th task

in the i-th particle.

6.5 Experiment Setup

This section evaluates the performance of the PSO-DS using three main tests.

Experiment 1tested and compared the performance of the PSO-DS and the Pegasus-WMS to

schedule large workflows. Then experiment 2, analyzed the need to guide the user in

selecting a limited budget by comparing monetary costs when executing large workflows

with/without an unlimited budget. Finally experiment 3 compared the performance of the

PSO-DS against Provenance [72], HEFT [13], FSV [7] and GA-ETI [2] in scheduling large

workflow size.

The experimental test bed consists of a cloud computing system with three Krypton

Quattro R6010 with 4-way AMD OpteronTM 6300 series (64-Cores each). The Pegasus-

WMS (4.2) was selected as the WMS, it is installed on Ubuntu 14.04 operating system. The

VMware vSphere (5.5) manages computer resources and provides virtual machines with the

aforementioned platform. The PSO-DS performs as the scheduling engine with parameters

set as shown in Table 8. Five scientific workflows were selected from [4] to produce the

experiments. Workflows represent applications from different scientific areas including

 Chapter 6: PSO-DS Scheduling engine

93

astronomy, geology, biology, cosmic analysis and biotechnology. Their details are presented

in Table 9 (see Subsection 4.2

Table 8. PSO-DS setup
Parameter Symbol Value

Population 𝑃 100

Makespan optimization 𝑤1 0.5

Monetary cost optimization 𝑤2 0.5

Social acceleration coefficient 𝑐2 2

Personal acceleration coefficient 𝑐1 2

 Velocity limit 𝑉𝑚𝑎𝑥 4

Inertia coefficient  1.2

Table 9. Characteristics of the scientific workflows employed in experiments to test GA-ETI

 Nodes w-levels
parallel-

tasks

Average file

size (MB)

Average task

execution time

(s)

Dependencies

patterns

Epigenomics 997 8 245 749 2346 (2)(3)(4)

Montage 1000 9 662 20.6 11.34 (2)(3)(4)

Cybershake 1000 5 494 1156.1 51.70 (1)(3)(4)

Ligo 1000 8 480 55.6 222.0 (1)(4)(5)

Sipht 1000 7 584 22.02 210.27 (4)(5)

(1) Process; (2) Pipeline; (3) Data distribution; (4) Data aggregation; (5) Data Redistribution

6.6 Results

This first experiment stage has the objective of highlighting the need to add a

specialized scheduling analysis on top of WMS. Table 10 provides makespan and monetary

cost results for the PSO-DS and Pegasus-WMS. Epigenomics workflow presents the biggest

difference in terms of time and cost due to its great parallelism level. In this application,

PSO-DS converges to solutions where dependent tasks are executed on the same VM; as a

consequence PSO-DS successfully decreases the number of data transfers. Similar scenarios

are presented on the rest of the applications. For example, the Ligo workflow, which has

three main groups of tasks running in parallel, PSO-DS converges to solutions where not all

of the tasks are executed at the same time, since monetary cost is also considered as an

optimization objective it balances the optimization of makespan and cost. As for Pegasus

concerns, it presents higher makespan and cost values as its only objective is to execute the

application. Pegasus uses HTCondor as its internal DAG (Direct Acyclic Graph) executer.

HTCondor receives workflow and sends its tasks for execution with almost no control on

which tasks to execute on a given VM or which data files would be replicated. In contrast,

 Chapter 6: PSO-DS Scheduling engine

94

PSO-DS is able to evaluate a different number of scheduling configurations and chooses the

one that contributes to the highest optimization value.

Table 10. Results for Makespan and monetary cost for PSO-DS and PEGASUS-WMS.
 Makespan Monetary cost

 PSO-DS Pegasus-WMS PSO-DS Pegasus-WMS

Epigenomics 180889 809209 40.035 176.625

Cybershake 39396 49037 6.908 13.188

SIPHT 26879 64286 6.28 11.304

Montage 1440 3464 0.785 1.099

Ligo 17094 91572 5.495 20.41

The need to guide users in selecting a budget limit

This experiment allows the PSO-DS to produce scheduling configurations relaxing

the monetary cost optimization. Results are presented in Figure 53, it first schedules for two

VMs, then three, four and so on. For each workflow, three graphs are presented; the first

graph presents evaluation function values, second and third graphs present their

corresponding makespan and monetary cost. For each case, a red shadow highlights the

values with function values above 80%. As readers will notice, makespan drops dramatically

as the number of VMs increases, but once a low makespan is achieved, it doesn’t decrease

notably. In contrast, by incrementing the number of resources, the makespan slightly

decreases but monetary cost increases proportional to the number of VMs.

With the exception of Epigenomics, evaluation function values for every case present

similar behavior, they rise as the number of VMs increments, then it reaches a peak and

finally drops. Peak time is presented when number of VMs is optimal for a particular case.

For instance, when PSO-DS distributes Cybershake’s tasks into four VMs it obtains an

optimal case with a makespan of 39396 seconds at the cost of 6.908 dollars, even though the

minimal achievable makespan is 34465 at the cost of 32.97 dollars. As for the Epigenomics,

its evaluation function starts rising as a number of VMs are included, it reaches its peak with

five VMs then it starts dropping but it suddenly has a rise with twelve VMs. The reason for

this behavior is that the maximum number of parallel tasks is 24, for this reason PSO-DS

converges with a uniform distribution of these parallel tasks among 12 VMs. The reason

PSO-DS does not produce an improved scenario for 24 VMs is because the scheduling model

contemplates an hourly-changing model of every VM, causing the configuration with 24

VMs to present the minimal makespan but its cost rises tremendously.

 Chapter 6: PSO-DS Scheduling engine

95

6.7 Analysis – Scheduling Large Workflows

In order to provide arguments for the competence of the PSO-DS, this experiment

compares it against the four schedulers previously presented. With the exception of the

Cybershake, results show the PSO-DS is able to provide better results especially for the cases

Evaluation function values above 80% Corresponding values for makespan and monetary cost

a) Epigenomics

 b) Cybershake

 c) Sipht

 d) Montage

 e) Ligo

Figure 53. Results for function values, makespan and monetary cost for the five scientific workflows
highlighting the area where function values are above 80%.

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

E
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

No. of VMs

0

0.5

1

1.5

2

2.5

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9T

im
e
 (

se
c
)

x
 1

e
6

No. of VMs

0

50

100

150

200

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

M
o
n

e
ta

r
y
 c

o
st

(d
o
ll

a
r
s)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

E
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

No. of VMs

0

20

40

60

80

100

120

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

5

10

15

20

25

30

35

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

M
o
n

e
ta

r
y
 c

o
st

(d
o
ll

a
r
s)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

E
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

No. of VMs

0

50

100

150

200

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

5

10

15

20

25

30

35

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

M
o
n

e
ta

r
y
 c

o
st

(d
o
ll

a
r
s)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

E
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

No. of VMs

0

2

4

6

8

10

12

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

1

2

3

4

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

M
o
n

e
ta

r
y
 c

o
st

(d
o
ll

a
r
s)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

E
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

No. of VMs

0

50

100

150

200

250

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5T
im

e
 (

se
c
)

x
 1

0
0
0

No. of VMs

0

5

10

15

20

25

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

M
o
n

e
ta

r
y
 c

o
st

(d
o
ll

a
r
s)

No. of VMs

 Chapter 6: PSO-DS Scheduling engine

96

with a low number of VMs and function values above 80% as highlighted in the previous

section.

a) Epigenomics

b) Cybershake

c) Sipht

d) Montage

f) Ligo

Figure 54. Execution time results with a different number of VMs.

An important reason for these positive results is that PSO-DS is designed to consider

the most predominant factors affecting makespan such as task grouping that is based on their

dependencies, file sizes and available number of VMs. It is important to highlight that

whether HEFT and GA-ETI converge with similar makespan values they do it when the

number of VMs increases. An important factor to emphasize is that optimal function values

(above 80%) are presented as soon as makespan does the biggest drops. For example, in the

Sipht result graph, in Figure 54c, the makespan drops from 64692 to 26879 seconds with two

and five VMs respectively, beyond that number of resources makespan does not provide a

0

500

1000

1500

2000

2500

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

T
im

e
 (

se
c
)

x
 1

0
0
0

Virtual Machines

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

se
c
)

x
 1

0
0
0

Virtual Machines

19

39

59

79

99

119

139

159

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

T
im

e
 (

se
c
)

x
 1

0
0
0

Virtual Machines

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

se
c
)x

1
0
0
0

Virtual Machines

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

T
im

e
 (

se
c
)

x
 1

0
0
0

Virtual Machines

HEFT GA-ETI Provenance Flexible PSO-DS

 Chapter 6: PSO-DS Scheduling engine

97

substantial improvement for any of the algorithms. This behavior is presented for the rest of

the workflow execution.

Figure 55. Epigenomics’ 𝑀𝑆𝑝𝑛 − 𝑀𝐶𝑠𝑡 graph.

6.8 Discussion – PSO-DS Performance

This section provides a deeper analysis of the PSO-DS performance compared with

the rest of the algorithms for solid reference. Figure 55 presents results of the five scheduling

algorithms in a Pareto Front fashion, i.e. on the 𝑀𝑆𝑝𝑛 vs 𝑀𝐶𝑠𝑡 graph. Pareto Frontier is a

concept in economics with application in engineering [44]. It is defined as positioning

individuals where no one of them can improve its position without deteriorating another’s.

The Pareto frontier is built from connecting such individuals forming a curved-graph which

in engineering is used as a trade-off of values. In this case only the Epigenomics workflow is

analyzed since the rest of the workflows present similar behavior. Figure 55 shows the results

for makespan with its corresponding monetary cost. As readers will notice, the PSO-DS is

able to converge to the values spread along the complete 𝑀𝑆𝑝𝑛 vs 𝑀𝐶𝑠𝑡 curve. This analysis

provides proof that PSO-DS does not get trapped in particular sections of the solution space

and corroborates that the local best solution does not over-dominate the search for a solution.

In a similar manner, GA-ETI and HEFT distribute their values with great proximity to the

10

30

50

70

90

110

130

150

5 15 25 35 45 55 65 75 85 95

T
im

e
 (

se
c
)

x
 1

0
 0

0
0

Monetary cost (dollars)

GA-ETI HEFT Provenance Flexible PSO-ISI

 Chapter 6: PSO-DS Scheduling engine

98

PSO-DS due to their analysis and filtering of solutions. In contrast, FSV and Provenance

missed the opportunity to provide superior results due to their minimal workflow analysis.

Table 11. Algorithms’ parameters selection for comparing GA-ETI, HEFT, Provenance, Flexible, PSO-DS

Algorithm Parameter Description of how each value allows an even comparison

 Name Value Description among scheduling algorithms

Flexible

Step 1
Number of increments

to VM number

It allows the algorithm to include VMs one by one as the

proposed algorithms

M 234620
Time to execute with

onle one VM
This is the time to execute application using a single VM

MR 0 Marginal revenue

It starts from 0 to allow algorithm to analyze all possible values.

estimation is done through the user’s budget

function and the average response time T , both of which are

provided as input.

MC 0.15 Marginal cost

We choose to have MC as an input parameter as we expect

either the cloud administration or the IaaS consumer to set the

cost function

B

10.362

Budget (Monetary cost

if executed with a

single VM)

We allow the budget to be the one with a single VM. This is the

monetary cost to execute application using a single VM

physical

nodes
30

Number of available

VM

Previous experiments exhibited that using more than 30

machines does not improve execution objectives

Users 1 Number of users This thesis considers individual analysis

Initial VMs 1
Initial number of

resources
Experiment allows algorithm of using from 1 to 30 VMs

Max. VMs 30
Maximum number of

vms per user

VM cost 0.157 Cost per VM per hour Cost applies for the 5 algorithms

Provenance

1 0.5
Execution time weight

criterion

3 is assigned a value of 0 so 1 and 2 match 𝑤1and 𝑤2 from

GA-ETI and PSO-DS
2 0.5

Monetary cost weight

criterion

3 0
Reliability weight

criterion

Input files 997 Input files
The assigned value matches with the number of tasks in

application.

Available

virtual

cores

30

Group of cores that the

algorithms has access

to

Similarly to the rest of the algorithms, 30 machines is the limit

of available resources.

HEFT

SETV 997
Number of task in the

graph
This number matches the Epigenomics application

SETCCR N/A
Communication to

computation ratio

It doesn’t apply, experiments uses task as defined in the

Epigenomics application.

SET N/A Graph shape parameter
Experiment uses the following task interdependencies: pipeline,

data distribution, data aggregation and data redistribution

SET N/A

Range percentage of

computation cost on

processor

This parameter refers to the heterogeneity of vitual machiens. In

this experiments each task has already set up an estimated time

to be executed in a given machine

Number of

processors
30

Group of cores that the

algorithms has access

to

Similarly to the rest of the algorithms, 30 machines is the limit

of available resources.

PSO-DS

𝑃 100 Population Preliminary tests exhibited that 100 particles give the best

results.

𝑤1 0.5
Makespan
optimization weight

𝑤1 and 𝑤2 have a value of 0.5 to give the same priority to

monetary cost and execution time.

 Chapter 6: PSO-DS Scheduling engine

99

𝑤2 0.5
Monetary cost
optimization weight

𝑐1 2
Social acceleration
coefficient

Preliminary experiments testing  in the range of [0.9, 1.2] and

𝑐1 = 𝑐2 = 2 exhibited that a value of 1.2 for  produces the

best results.
𝑐2 2

Personal acceleration
coefficient

 1.2 Inertia coefficient

𝑉𝑚𝑎𝑥 4 Velocity limit 𝑉𝑚𝑎𝑥 is set to 4 to prevent 𝑠(𝑣𝑖𝑑
𝑡) in Eq. 30 to continuously

approaching the upper and lower bound of [0,1].

GA-ETI

𝑤1 0.5
Makespan
optimization weight 𝑤1 and 𝑤2 have a value of 0.5 to give the same priority to

monetary cost and execution time.

 𝑤2 0.5
Monetary cost
optimization weight

𝑝𝑐 0.6 Crossover probability

Preliminary experiments exhited superior results with this value

𝑝𝑠 0.2 Swap mutation

𝑝𝑖𝑛𝑐 0.2 Increment mutation

𝑝𝑑𝑒𝑐 0.2 Decrement mutation

IP 10
Pre-initial population
factor

P 100 Initial population It matches the PSO-DS initial population size

Table 11 presents selected parameters of each scheduling algorithm for making a

match for comparison purposes. Every scheduling algorithm uses their internal process for

producing a final solution. Then, graph in Figure 55 presents execution time and monetary

cost values calculated with equations 21 and 22 for all algorithms to allow a uniform

comparison.

Measure scheduling time

An important factor in scheduling algorithms is the time to run the scheduling process

itself. Table 12 presents timeframes to produce a scheduling configuration for a workflow

with 1000 nodes. The PSO-DS and GA-ETI present the highest processing time with 9500

and 50090 ms respectively while the FSV executes the algorithm in 15.1 ms. The reason for

this large difference is that FSV does not base its scheduling approach on an evolution of

solutions, it rather chooses a final solution from a limited number of configurations.

Similarly, HEFT considers a single solution executing the algorithm in only 115.3 ms. In

contrast, PSO-DS and GA-ETI evaluate a group of solutions on a series of iterations

unfolding solutions and executing their algorithms on a larger timeframe. However, none of

 Chapter 6: PSO-DS Scheduling engine

100

the approaches has an excessive execution time compared with the final makespan as an

exhibit on column three of Table 12.

Table 12. Scheduling time and its relation with final makespan

Scheduler Scheduling time (ms)
Percentage of scheduling time

compared with final makespan

PSO-DS 9500 9500 ms / 180889 s = ~0.00%

GA-ETI 50090 50090 ms / 250143 s = ~0.00%

HEFT 115.3 115.3 ms / 466189 s = ~0.00%

FSV 15.1 15.1 ms / 809208 s = ~0.00%

Provenance 154 154 ms / 1182699 s = ~0.00%

6.9 Summary

This chapter proposed PSO-DS, architecture to execute scientific workflows in cloud

computing systems. PSO-DS is based on PSO with a special adaptation to the scheduling

problem including a discrete formatting of particles and an enhanced super element. Using

five workflows representing current scientific problems, PSO-DS was tested and proved its

dominance against four cloud schedulers (HEFT, Provenance, FSV and GA-ETI). Through

experimentation, PSO-DS highlighted the need for a specialized scheduler on top of WMS.

PSO-DS is able to provide superior results in terms of makespan and monetary cost compared

with other schedulers, in particular in the cases with a small number of resources providing

function values above 80%. Additionally, PSO-DS provides scheduling configuration with

values spread along the complete 𝑀𝑆𝑝𝑛 vs 𝑀𝐶𝑠𝑡 curve. PSO-DS’s positive results exhibited

the main factors to consider during the scheduling process in order to optimize time and cost;

such characteristics include task grouping, job dependencies, file sizes and available number

of VMs. Additionally, PSO-DS exhibited that superior solutions execute parallel tasks

sequentially on the same VM in order to lower file transferring. PSO-DS experiments

underline the importance of not relaxing the monetary budget. Users may have an unlimited

budget, or some schedulers may consider this assumption. By loosening the monetary budget,

the user may obtain similar results at the expense of a pointless charge.

 Chapter 7: Discussion

101

7 Discussion

This chapter presents a discussion of the obtained results in regards to the thesis

objectives. Firstly, Section 7.1 gives an overview of the targeted thesis objectives. Then,

Section 7.2 provides an analysis of findings and patterns. Section 7.3 presents a discussion of

results. Subsequently, Section 7.4 discusses limitations of this research. Then, Section 7.5

provides recommendation for future investigation and finally, Section 7.6 presents a

conclusion.

7.1 Preliminaries

This thesis firstly presented BaRRS, a scheduling approach that minimizes execution

time and monetary cost; secondly it explored GA-ETI, a scheduling approach based on the

genetic algorithms that converge to a final solution after considering a complete solution

space; finally it presented PSO-DS, a scheduling mechanism with a reduced complexity

algorithm that includes all the features from previous scheduling approaches.

BaRRS: It gives a solution to the scheduling problem by minimizing application execution

time and monetary cost. It is a mechanism based on load balancing, data replication and

additionally it explodes parallelism to maximize system utilization. Moreover, BaRRS is

capable of building a trade-off considering scenarios with different values of execution time

and monetary cost.

 Chapter 7: Discussion

102

GA-ETI: It is a scheduling mechanism capable of adapting the number of resources to a

particular workflow execution. This approach is based on the capabilities of the genetic

evolution theory in providing findings in respect to runtime and monetary cost. Moreover,

GA-ETI decreases randomness from the original genetic process that enables the GA-ETI

developed here to converge on the final solution without running the algorithm over

excessive iterations.

PSO-DS: The PSO-DS is capable of manipulating workflow with a high number of tasks and

data files. PSO-DS is an adaptation of the PSO mechanism to construct a scheduler that can

converge to a final solution in a record time. Different to other PSO adaptations, the PSO-DS

produces an enhanced particle reconstruction and presents a Super Particle that allows the

algorithm to reduce the search time.

Tables Table 13 and Table 14 presents the execution time and monetary cost results of

BaRRS, GA-ETI, PSO-DS, HEFT, Provenance, Flexible and Pegasus-WMS for the

scheduling of the five analysed workflows. The proposed algorithms predominate the lowest

results among the rest of the algorithms due to their techniques for considering specific

application characteristics such as large data files and task dependencies.

Table 13. Execution time comparison between scheduling algorithms.

HEFT

(sec)
Prove-

nance

(sec)

Flexible

(sec)
GA-ETI

(sec)
PSO-DS

(sec)
BaRRS

(sec)
PEGASUS

WMS

(sec)

Epigenomics 42163 26450 98320 29846 6316 30843 78759

Montage 252 393 475 279 230 360 3464

Cybershake 4713 5805 6049 3056 2769 3389 4903

SHIPT 3687 4176 6532 4428 2587 4181 6428

Ligo 2846 3372 6944 4023 2346 2676 8157

Table 14. Monetary cost comparison between scheduling algorithms.

HEFT

(dlls)
Prove-

nance
(dlls)

Flexible

(dlls)
GA-ETI

(dlls)
PSO-DS

(dlls)
BaRRS

(dlls)
PEGASUS

WMS

(dlls)

Epigenomics 13.07 35.63 16.38 9.49 5.75 14.13 34.92

Montage 0.92 1.09 0.52 0.20 0.25 0.20 1.10

Cybershake 2.07 1.61 1.54 0.67 0.53 0.38 0.38

SHIPT 1.70 2.47 1.44 0.53 0.84 0.53 1.19

Ligo 1.24 2.35 2.61 1.54 0.92 1.70 3.50

 Chapter 7: Discussion

103

7.2 Analysis of findings and patterns identified in experimental results

Workflow tasks parallelism

Experimentation demonstrates that intrinsic characteristics of applications play an

important role in the scheduling process. For instance, the Epigenomics application that

exhibits parallelism on 96% of its nodes has the potential to employ 24 VMs for its

execution. Nevertheless, when HEFT and GA-ETI distribute these tasks among 12 VMs, the

execution time reaches almost the minimum runtime as shown in Figure 43a. Notice that

doubling the numbers of resources to 24 does not necessarily reduce execution time by half.

This is because parallel tasks require transfer of replica files causing extra file transfer that

increments runtime.

The aforementioned findings imply that GA-ETI and other scheduling algorithms

such as [7, 13, 72] do not necessarily exploit parallelism to the fullest. For instance refer to

the results of the Cybershake workflow from

Figure 43b. This is a data orientated workflow with its majority of nodes distributed on two

workflow levels. These nodes can be distributed over 48 resources but instead the GA-ETI

selects only two VMs. The reason for this decision is that the time to transfer files is

significant greater than the execution of tasks in the workflow.

Nevertheless the GA-ETI exhibited a particular favouritism for specific solutions.

Figure 44 expresses results from Figure 43a in a pareto style. On it, the GA-ETI shows that

the majority of solutions are concentrated on the center of the graph. An important

implication of these findings is that configurations have 6, 8, and 12 machines that

completely exploit application parallelism.

System utilization

The results obtained in Sections 4.6 4.7 showed that system utilization has a direct

relation to task parallelism. The data replication technique from BaRRS produces a strong

influence on parallel tasks, consequently the system utilization increases. To illustrate this

refer to Figure 19 Figure 22 where BaRRS and Provenance [72] produce trade-off for

applications exhibiting parallelism. On them, the proposed BaRRS presented superior

outcomes. The reason that Provenance does not produce similar results is that it allows users

to freely manipulate monetary constraints without advising of the potential degradation in the

 Chapter 7: Discussion

104

system utilization. On the contrary, the proposed BaRRS allows a user to change the priority

to the monetary cost optimization but it also keeps control of the runtime; as a consequence,

the system utilization is not affected.

An additional finding regarding the system utilization is the strong dependence of this

parameter on the nature of each application. The tested workflows have the same number of

tasks but each one requires different computational power and consequently their analysis is

different. To illustrate this refer to Figure 23,Figure 26,Figure 29 andFigure 32, graphs

exhibit different shapes for each workflow type. The shape of these graphs is dictated by the

number of data files, tasks dependencies and computational demands of each workflow.

Number of resources

This thesis makes a contribution to open discussion about the number of resources to

execute applications. Results from Section 4.7 exhibited that the number of resources directly

affects the scheduling process. The number of nodes in an application does not directly

influence the final number of resources as exhibited in Table 7. For this reason, the number of

resources was included as a variable in the GA-ETI. This approach provides an interesting

tactic to solve the problem of selecting the number of resources to run a workflow based on

its nature.

Randomness of the genetic algorithm

An important contribution of GA-ETI was the reduction of randomness compared to

the original GA as presented in Figure 45. This contribution relies on the GA-ETI mutation

operator. This operator introduces additional resources into the internal genetic process

causing diversity among chromosomes. This diversity causes the GA-ETI to expand the

range of scheduling options. A deep analysis of chromosome evolution in the GA-ETI

revealed that after each generation the quality of each chromosome significantly increments

converging to a final solution with fewer iterations.

A trade-off of optimization objectives

This thesis introduced a novel view to build a trade-off that a user employs to decide

which of the optimization objectives must have higher priority. The objective of the BaRRS

 Chapter 7: Discussion

105

trade-off is to offer the user a general view to execute an application considering its

characteristics such as computational demands and file data usage. Each of the different

options from the trade-off offers advantages and disadvantages that only a user can decide

based on his/her particular interests. To illustrate this concept Figure 19Figure 22 present a

trade-off exhibiting the different options to execute each application. Figure 19 shows that a

user has the option to execute application at a minimal time of ~20 000 seconds at the cost of

20.74 dollars or reduce monetary cost to 10.676 dollars at the expense of increasing execution

time to ~120 000 seconds. The main objective of the BaRRS is to guide a user in selecting

the best option according to his/her needs.

System utilization and evaluation function values

Another interesting finding was the similarities between system utilization and

evaluation function. Experimentation in Section 6.7 shows that not all results exhibit an

evaluation function value above 80% when testing the PSO-DS as shown in Figure 53.

Shapes of these graphs have strong similarities with the system utilization results from

Section 4.7 . Readers must also notice that the number of machines in the shaded area in

columns 2 and 3 from Figure 53 matches the ones that obtained the highest evaluation

function values in column 1 from the same figure. Moreover, runtime and monetary cost

uniformly decrease and increase, respectively, as the number of resources increases.

Nevertheless, only the system utilization exhibits a peak at a particular number of machines

(see Figure 23Figure 26 and Figure 32).

7.3 Important findings

One of the important findings of this thesis is the time to schedule large applications

with the PSO-DS. The overhead caused by this scheduling process represented an

insignificant percentage of the total runtime for applications with a greater number of tasks.

This result positions the PSO-DS as a solution to the problem to schedule large applications.

As presented in Table 10 (Section 6.8 , the PSO-DS algorithm produces a scheduling

solution in 9.500 seconds for an application with a thousand nodes that executes in 180889

seconds while the FSV, a scheduling algorithm based on [7], executes the algorithm in 15.1

ms. The reason for this large difference is that the FSV algorithm is not an evolution/iteration

 Chapter 7: Discussion

106

of solutions, instead it builds a final solution from a partial section of the solution space.

Correspondingly, HEFT [13] produces a single solution out of a pre-ordered list.

In contrast, PSO-DS and GA-ETI assess a collection of solutions over a number of

iterations. For this reason, PSO-DS and GA-ETI execute their algorithms on a larger

timeframe. Nevertheless, none of the approaches has an excessive execution time compared

with the final makespan. Furthermore, the high scheduling overhead time as in PSO-DS

yields a reduced final makespan. This is because PSO-DS takes advantage of the PSO

capabilities; in addition it uses a reconstruction particle that allows algorithms to build

solutions that are impossible to build with traditional adaptations of the PSO to the

scheduling problem.

7.4 Limitations

The proposed algorithms require different inputs such as the VM characteristics

including number of cores, bandwidth and memory size. This limitation may prevent

algorithms from an accurate analysis. Nevertheless, most of the cloud computing providers

make available this information. Moreover, a history module can be added to the scheduler so

it stores information from a cloud computing provider. These values are compulsory for

producing an accurate estimation of application execution. From one side, the bandwidth

value is employed for estimating file transfer times. File transfers become critical when

analysing data intensive applications. From the other side, the number of cores and memory

size affect directly task computation time and the way scheduler distribute tasks on the VMs.

The scheduling algorithms developed in Chapters 4 5 6 are susceptible to execution

interruptions. The three proposed scheduling algorithms, BaRRS, GA-ETI and PSO-DS are

designed to produce a static scheduling algorithm. Whenever a user halts a workflow

execution it affects the scheduling plan. After resuming execution, the final makespan may

have a significant difference to the one projected by the scheduler. The main reason for these

possible differences is that data files are programmed to be transferred, saved or deleted; by

halting execution, the workflow manager needs to rearrange such data files affecting the

produced scheduling plan. To avoid such inconveniences, the scheduler must produce a new

plan for the remaining tasks.

 Chapter 7: Discussion

107

7.5 Recommendation for Further Research

Through the extensive experimentation to produce this thesis, the author noticed that

the workflow manager system does not always detect when a machine halt task execution.

These interruptions directly affect the scheduling plan. For this reason it is recommended to

include an execution watcher capable of detecting machines that do not follow the scheduling

plan, for those scenarios in which the scheduler must re-schedule affected tasks.

7.6 Summary

This thesis presented efficient scheduling algorithms that directly benefit the client

and provider from a cloud computing system environment. From one side, the client is able to

execute his application at a lower time and cost compared with other scheduling algorithms

and more importantly, the client is able to prioritize objectives according to his/her needs.

From the other side, the cloud provider is able to efficiently administrate its computing

resources and is able to maintain a high level of satisfaction to its clients. Similarly, the

environment benefits from reduced efficient energy consumption.

 Chapter 8: Conclusions

108

8 Conclusions

This chapter presents the conclusion of this thesis. It summarizes the main contributions

and results in Section 8.1 . Firstly, Subsection 8.1.1 presents the main highlights from the

BaRRS contribution. Subsection 8.1.2 summarizes the contribution from GA-ETI and

provides conclusions for selected experiment results. Subsequently, Section 8.1.3 summarizes

the PSO-DS algorithm. Finally, Section 8.2 discusses the direction of future work.

8.1 Contributions and Summary of Results

This thesis focused its efforts to incrementing our knowledge of the workflow

scheduling problem. One of the main focuses of this study was to examine key factors to

increase scheduling efficiency, such factors have not been properly analyzed by current

scheduling frameworks despite the great attention the research community has put to this

problem. Approaches presented in this thesis contribute to identifying the limitations of

current scheduling frameworks and to produce innovative techniques to engage these issues.

8.1.1 Balanced and File Reuse-Replication Scheduling

Chapter 4 presented BaRRS, a scheduling engine combining three distribution

mechanisms to give solutions to the scheduling problem. BaRRS encompasses load

 Chapter 8: Conclusions

109

balancing, data reuse and replication techniques to build an efficient heuristic to distribute a

workflow’s tasks to cloud computer resources. Data replication and data reuse complement

each other giving BaRRS the opportunity to discover opportunities in parallelism and reduce

file transfers. The load balancing mechanism contributes to increment system utilization. To

select the scheme that fulfills user needs, BaRRS provided a tradeoff with the execution time

and monetary cost.

Data replication, data reuse and load balancing techniques

Firstly, file replication is a consequence of executing parallel tasks. It consists in

creating and transferring a replica of a file. Even though other proposals have already

included data replication, the present study examines the effect of over exploiting

parallelization. This study analyzes the relation between file transfers, total execution time

and monetary cost. Secondly, to fully obtain the benefits of data replication, BaRRS

complements it with a data reuse technique. The file reutilization mechanism reduces the

number of file transfers during workflow execution. This technique assigns parent and

descended tasks into the same VM, consequently the file transfer is not needed. Whenever the

time to transfer the input files of a task exceeds its execution time, it applies data

reutilization, i.e. it adds tasks to the same resource executing its task parent, otherwise the

task is added to another VM, causing a new transfer (replication). Finally, data replication

and reuse techniques can overload a particular resource. The load balancing objective is to

evenly distribute tasks among all VM queues. This procedure interchanges tasks between all

queues without worsening any optimization goal.

Tradeoff based on a Pareto Frontier style

BaRRS produces a tradeoff with the values of monetary costs and execution time to

execute scientific workflows. In order to decrease the scheduling overhead time, this

algorithm produces a fixed number of estimations then it uses the exponential function to

build the complete tradeoff graph. BaRRS indirectly changes the number of VMs in order to

present different time and cost configurations. The tradeoff analysis is modeled by the

exponential shape graph to create a set of exhaustive scheduling configurations. A trade-off

graph is defined as set of solutions where each solution has a different number of VMs with

 Chapter 8: Conclusions

110

its respective execution time and monetary cost. This trade-off follows a similar shape as a

Pareto frontier, the main difference is that trade-off offers flexibility to analyze the complete

spectrum of number of VMs.

Summary of results

Results show that BaRRS achieves lower execution time compared to Provenance.

Experiments showed that solutions with a higher number of VMs do not necessarily lead to

lower execution times nor monetary cost. Certainly, solutions with a high number of VMs

presented a high monetary cost without necessarily reducing runtime. A close examination

revealed that achieving a minimum execution time is less demanding than obtaining a

minimum monetary cost. This is a consequence of the efficient application of the triple

scheduling mechanism to reduce execution time.

8.1.2 Genetic Algorithm with Efficient Tune-In of Resources

The VM selection problem

In Chapter 5 this study expressed the problem to select the optimal number of

resources to execute workflows by incorporating BaRRS techniques into a modified

evolutionary algorithm. GA-ETI, the proposed approach, gives a solution to this problem by

adapting the GA. The GA is a robust technique to solve complex problems in engineering and

science due to its capabilities to recognize a global optimum in the complete search space.

The VM selection challenge

Although other solutions have applied the capabilities of the GA, the solution

proposed here: (1) carefully adapted and modified the crossover and mutation operators to

reduce randomness in the GA, (2) its modified mutation operator directly changes the number

of resources in chromosomes and (3) it converges to a final solution with a reduced number

of generations. In order to control the number of VMs, each chromosome in the GA-ETI

model encompasses a scheduling configuration. Genes encode tasks and their respective VM

for execution. In this way, the mutation operator is able to identify a VM for its deletion or

 Chapter 8: Conclusions

111

add a new one to a given chromosome. Results demonstrated that the number of tasks in a

workflow does not influence the final number of resources that an application needs. Instead

the number of VMs has a stronger relation to (1) workflow task dependencies, (2) file transfer

demands, and (3) task dependency constraints.

The GA-ETI results highlighted the need to analyze task dependencies. For instance,

the GA-ETI converged to solutions where groups of parallel tasks are allocated to a single

VM. These decisions lead the GA-ETI to converge to solutions with a lower number of VMs

compared with the number of tasks that can run in parallel. These decisions also contributed

to reduce the number of file transfers as the VM required only one set of files per group of

parallel tasks. To clarify this concept, in the Cybershake application, the GA-ETI executes

groups of four parallel tasks on the same VM reducing to ¼ of time the transfer time for the

required tasks. In contrast, HEFT does not consider this option due to its scheduling policies

focusing on a task at the time. Results also demonstrated that incrementing the number of

resources to maximum does not necessarily increase efficiency. For example, the Cybershake

workflow has two groups of 48 parallel tasks and the GA-ETI converges to solutions that

only require eight VMs. To clarify this matter, the study went into a deep observation of the

GA-ETI process, and observed that chromosomes that exploit parallelization with 12, 24 and

48 VMs did not present a significant execution time reduction but their monetary cost was

significantly greater. The time execution could not be reduced due to the high number of file

transfers. Finally, GA-ETI introduces a new policy to predefine the number of VMs for a

given workflow. It first identifies the maximum number of tasks that can run in parallel. Then

it limits the number of VMs to that specific number since an extra VM would remain idle.

The impact of the GA on the scheduling problem

Besides the benefit in selecting the number of VMs, the modified operators of the

GA-ETI allow the algorithm to converge to a final solution with fewer generations compared

with the original GA. Firstly, the clustered crossover prevents the algorithm from breaking

chromosomes at a random point, instead it guides the algorithm to not destroy specific areas

of the chromosomes that have an optimal distribution. Secondly, the increment/decrement

mutation adds new VM to the population that allows the GA-ETI to restructure a particular

chromosome. Overall, both mechanisms complement each other, adapting the original GA

 Chapter 8: Conclusions

112

into a powerful tool with a reduced use of randomness causing the algorithm to converge to a

final solution at a reduced number of iterations.

Results also exhibited that the algorithm reaches a minimum execution time within a

few generations; and that the execution time of the final solution does not present a big

difference with this value. In contrast, the number of VMs reduces tremendously between the

start and end of the algorithm. This is because at the start of the algorithm most of

chromosomes have as many VMs as parallel tasks. Then, as the algorithm continues, the

main challenge is to reduce/maintain a low execution time while reducing the number of

VMs to obtain a satisfactory monetary cost.

Summary of results

This study concludes that parallelization, an important feature of distributed systems,

is exploited inefficiently in many schedulers. From one side, the number of VMs has a strong

influence on the scheduling configuration to execute applications. On the other side, the

number of VMs is driven by workflow characteristics. Current schedulers do not consider the

second premise. As a result their scheduling configurations are based on unsolid data. A few

exceptions consider this problem, offering simplistic solutions without a deep analysis. All

other approaches use a fixed pool of resources and no discussion exists to guide users in

selecting this parameter.

8.1.3 Particle Swarm Optimization with Discrete Adaptation and a Featured

SuperBEST

In Chapter 6 this study explored the problem of analyzing larger workflows without

(exponentially) incrementing the scheduling overhead time. The PSO-DS, the solution

proposed here, is an adaptation of the original discrete PSO to solve the scheduling problem.

The PSO is an optimizer with similar capabilities as the genetic algorithm to produce optimal

results. The most important characteristic of the PSO is its low complexity process. More

specifically, a scheduling algorithm based on the PSO converges to finest solutions after

considering a great number of combinations without requiring excessive processing time.

Although other studies have applied the PSO to the scheduling problem, this study’s

proposed solution: introduced a new particle named SuperBest to build the global best

 Chapter 8: Conclusions

113

element, it also introduced a novel scheduling reconstruction from particles velocities that

permits to assign sets of consecutive tasks to the same VM. The evaluation of the PSO-DS

aimed to compare it with four other mechanisms that have equivalent objectives to provide

arguments to validate its performance. The performance metrics were: scheduling time,

makespan and monetary cost. In greater detail, this study analyzed the mentioned metrics

focusing on the areas where the system utilization is greater than 80%. Results validate the

efficiency of the algorithm when analyzing large workflows as well as the evidence algorithm

maintain a low/reasonable scheduling overhead time.

The Algorithm’s main contributions

Firstly, experimentation showed that PSO-DS achieved improved results compared

with the HEFT, Provenance and FSV. These outcomes are the result of a series of reasons,

first of all the PSO-DS converges to solutions where machines are used completely for the

time they are hired. This is a consequence of considering monetary cost as an optimization

objective. Additionally, a deeper observation of experiment results revealed that PSO-DS

uniformly distributes tasks among resources for the cases where tasks have a long execution

time.

PSO-DS presented a higher scheduling overhead time compared with the HEFT, even

though its scheduling solution yields a reduced final makespan. For instance for a workflow

with a thousand nodes, PSO-DS needed 9500 ms to run the algorithm while HEFT runs in

only 115.3 ms. Even so, PSO-DS achieves a final makespan of 180889 seconds while HEFT

achieves 466189 seconds. The reason for this gap is that PSO-DS evaluates a population of

solutions on a series of iterations while HEFT only analyzes a single solution configuration.

The impact of the PSO to the scheduling problem

In addition, experimentation showed that PSO-DS results are spread along the 𝑀𝑆𝑝𝑛

vs 𝑀𝐶𝑠𝑡 curve in a Pareto style. With this analysis, the present study provided proof that

PSO-DS does not get trapped in particular sections of the solution space. Additionally, it

corroborates that local best solution does not over dominate the search for a solution.

Similarly, the design of the PSO-DS considers the most predominant factors that affect

makespan such as task grouping, file sizes and available number of VMs.

 Chapter 8: Conclusions

114

Furthermore, the introduction of the SuperBest in the process to build the global best

element provided warranty that the global best particle is predominant on the population. As

a result, PSO-DS is able to provide better results even for cases with a low number of VMs.

As for the scheduling reconstruction of particles velocities, the algorithm presented here

permits sets of consecutive tasks to be assigned to the same VM in order to avoid

unnecessary file transfers. For instance, in applications with moderate parallelization, PSO-

DS demonstrated that superior solutions execute parallel tasks sequentially on the same VM

in order to reduce file transferring.

Summary of results

The PSO-DS underlines the importance of not relaxing monetary budget. Users may

have an unlimited budget, or some schedulers may consider this assumption. But by

loosening tge monetary budget, a user may obtain similar results at the expense of a pointless

charge. Results showed that the algorithm is capable of converging on a final solution at a

lower number of iterations. More precisely, PSO-DS converges to solutions where groups of

parallel tasks are executed on the same VM, consequently PSO-DS is able to decrease the

number of data transfers.

8.2 Future Work

Cloud computing providers offer a wide number of services. Furthermore, more

complicated systems such as federated clouds and multi-cloud environments significantly

increment the number of such services making more complex the selection of services and

administration of computing resources. Future work proposes a framework for addressing this

problematic. The aim of this proposed framework is guiding users in selecting an adequate

service for his/her needs, estimate performance and guide him/her through all the process of

executing an application. The purpose of the framework is to act as a manager of applications

offering a compatible solution for the different cloud services available. The objective is to

create a tool that act as an interface between users and cloud computing resources. This

project requires adapting our proposed scheduling algorithms into the framework and

develops the required tools for creating an application manager. The main goal is using this

 Chapter 8: Conclusions

115

tool as an application manager in public cloud environments and subsequently for more

complicated systems such as federated clouds and multi cloud environments. In a multi-

clouds system, the framework can preserve control over files transfers across time zones and

geographies areas. In a federated cloud, this framework will automate decisions of replicating

files for exploiting parallelization.

Additionally, the experiments analyzed in this thesis reveal two important threads for

future investigation. Firstly, since workflows’ dependency patterns have an important

influence on selection of scheduling policies, it is crucial to modify scheduling algorithms to

accept a diverse set of patterns. The researcher’s future direction is to address this issue and

provide enhanced scheduling tools. Secondly, scheduling overhead time can impact

feasibility of scheduling strategies especially for large size workflows. For that reason, future

investigation are required to filter (detect and dismiss) low quality solutions before the

scheduler analyses the application; this should significantly reduce the scheduling overhead

time. Additionally, the researcher aims to develop/incorporate cloud pricing models to

consider fluctuation of the hiring cost of VMs during scheduling. Also, a focus on

performance oscillation in cloud environments and its impact on the execution of applications

should be considered. Finally, the author of this thesis is focusing on the analysis of large sets

of files (Big Data) for applications associated with biological viruses, terrorism and economic

crisis behavior.

 Chapter 9: References

116

9 References

[1] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, "A balanced scheduler with data reuse and

replication for scientific workflows in cloud computing systems," Future Generation Computer Systems,

2016.

[2] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, "GA-ETI: An Enhanced Genetic Algorithm

for the Scheduling of Scientific Workflows in Cloud Environments," Journal of Computational Science,

2016.

[3] I. Casas, J. Taheri, R. Ranjan, and A. Y. Zomaya, "PSO-DS: A Scheduling Engine for Scientific

Workflows Managers," Journal of Supercomputing (Under revision), 2016.

[4] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi, "Characterization of

scientific workflows," in Proceedings of the 3rd Workshop on Workflows in Support of Large-Scale

Science (WORKS 2008), 2008, pp. 1-10.

[5] H. Kloh, B. Schulze, R. Pinto, and A. Mury, "A bi‐criteria scheduling process with CoS support on

grids and clouds," Concurrency and Computation: Practice and Experience, vol. 24, pp. 1443-1460,

2012.

[6] I. A. Moschakis and H. D. Karatza, "Evaluation of gang scheduling performance and cost in a cloud

computing system," The Journal of Supercomputing, vol. 59, pp. 975-992, 2012.

[7] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis, "Flexible use of cloud

resources through profit maximization and price discrimination," in Data Engineering (ICDE), 2011

IEEE 27th International Conference on, 2011, pp. 75-86.

[8] C. Anglano and M. Canonico, "Scheduling algorithms for multiple bag-of-task applications on desktop

grids: A knowledge-free approach," in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on, 2008, pp. 1-8.

[9] A. Sulistio and R. Buyya, "A time optimization algorithm for scheduling bag-of-task applications in

auction-based proportional share systems," in Computer Architecture and High Performance

Computing, 2005. SBAC-PAD 2005. 17th International Symposium on, 2005, pp. 235-242.

[10] A. Radulescu, C. Nicolescu, and P. P. Jonker, "CPR: Mixed task and data parallel scheduling for

distributed systems," in Parallel and Distributed Processing Symposium., Proceedings 15th

International, 2001, p. 9 pp.

[11] T. N'Takpe and F. Suter, "Critical path and area based scheduling of parallel task graphs on

heterogeneous platforms," in 12th International Conference on Parallel and Distributed Systems-

(ICPADS'06), 2006, p. 8 pp.

[12] Y.-K. Kwok, "Parallel program execution on a heterogeneous PC cluster using task duplication," in

Heterogeneous Computing Workshop, 2000.(HCW 2000) Proceedings. 9th, 2000, pp. 364-374.

[13] H. Topcuoglu, S. Hariri, and M.-y. Wu, "Performance-effective and low-complexity task scheduling for

heterogeneous computing," Parallel and Distributed Systems, IEEE Transactions on, vol. 13, pp. 260-

274, 2002.

[14] Y. C. Lee and A. Y. Zomaya, "Stretch Out and Compact: Workflow Scheduling with Resource

Abundance," in Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International

Symposium on, 2013, pp. 219-226.

[15] AWS | Amazon Elastic Compute Cloud (EC2). Available: http://aws.amazon.com/ec2/

[16] A. Bala and I. Chana, "A survey of various workflow scheduling algorithms in cloud environment," in

2nd National Conference on Information and Communication Technology (NCICT), 2011, pp. 26-30.

[17] M. Naghibzadeh, "Modeling Workflow of Tasks and Task Interaction Graphs to Schedule on the

Cloud," CLOUD COMPUTING 2016, p. 81, 2016.

[18] A. Balmin, K. W. Hildrum, V. Nagarajan, and J. L. Wolf, "Automated scheduling management of

MapReduce flow-graph applications," ed: Google Patents, 2016.

[19] N. Mishra, A. Singh, S. Kumari, K. Govindan, and S. I. Ali, "Cloud-based multi-agent architecture for

effective planning and scheduling of distributed manufacturing," International Journal of Production

Research, vol. 54, pp. 7115-7128, 2016.

http://aws.amazon.com/ec2/

 Chapter 9: References

117

[20] H. M. Al-Najjar and S. S. N. A. S. Hassan, "A survey of job scheduling algorithms in distributed

environment," in Control System, Computing and Engineering (ICCSCE), 2016 6th IEEE International

Conference on, 2016, pp. 39-44.

[21] K. Wang, K. Qiao, I. Sadooghi, X. Zhou, T. Li, M. Lang, and I. Raicu, "Load‐balanced and locality‐

aware scheduling for data‐intensive workloads at extreme scales," Concurrency and Computation:

Practice and Experience, vol. 28, pp. 70-94, 2016.

[22] H. Qu, O. Mashayekhi, D. Terei, and P. Levis, "Canary: A Scheduling Architecture for High

Performance Cloud Computing," arXiv preprint arXiv:1602.01412, 2016.

[23] J. Y. Leung, Handbook of scheduling: algorithms, models, and performance analysis: CRC Press, 2004.

[24] P. Lubomski, A. Kalinowski, and H. Krawczyk, "Multi-level Virtualization and Its Impact on System

Performance in Cloud Computing," in International Conference on Computer Networks, 2016, pp. 247-

259.

[25] J. W. Rittinghouse and J. F. Ransome, Cloud computing: implementation, management, and security:

CRC press, 2016.

[26] S. Goswami and A. Das, "Optimization of Workload Scheduling in Computational Grid," in

Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and

Applications, 2017, pp. 417-424.

[27] G. L. Stavrinides and H. D. Karatza, "Scheduling Different Types of Applications in a SaaS Cloud," in

Proceedings of the 6th International Symposium on Business Modeling and Software Design

(BMSD’16), 2016, pp. 144-151.

[28] HTCondor. High Throughput Computing. Available: http://research.cs.wisc.edu/htcondor/

[29] M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, and R. F. Freund, "Dynamic matching and scheduling of

a class of independent tasks onto heterogeneous computing systems," in Heterogeneous Computing

Workshop, 1999.(HCW'99) Proceedings. Eighth, 1999, pp. 30-44.

[30] M. Rahman, R. Hassan, R. Ranjan, and R. Buyya, "Adaptive workflow scheduling for dynamic grid and

cloud computing environment," Concurrency and Computation: Practice and Experience, vol. 25, pp.

1816-1842, 2013.

[31] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,

and J. Good, "Pegasus: A framework for mapping complex scientific workflows onto distributed

systems," Scientific Programming, vol. 13, pp. 219-237, 2005.

[32] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method: John Wiley & Sons, 2016.

[33] P. Dagum, R. Karp, M. Luby, and S. Ross, "An optimal algorithm for Monte Carlo estimation," SIAM

Journal on computing, vol. 29, pp. 1484-1496, 2000.

[34] M. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya, "Randomized approximation scheme for

resource allocation in hybrid-cloud environment," The Journal of Supercomputing, vol. 69, pp. 576-592,

2014.

[35] K. Boston and P. Bettinger, "An analysis of Monte Carlo integer programming, simulated annealing, and

tabu search heuristics for solving spatial harvest scheduling problems," Forest science, vol. 45, pp. 292-

301, 1999.

[36] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, "Task scheduling strategies

for workflow-based applications in grids," in CCGrid 2005. IEEE International Symposium on Cluster

Computing and the Grid, 2005., 2005, pp. 759-767.

[37] C. Bierwirth and J. Kuhpfahl, "Extended GRASP for the Job Shop Scheduling Problem with Total

Weighted Tardiness Objective," European Journal of Operational Research, 2017.

[38] W. F. Boyer and G. S. Hura, "Non-evolutionary algorithm for scheduling dependent tasks in distributed

heterogeneous computing environments," Journal of Parallel and Distributed Computing, vol. 65, pp.

1035-1046, 2005.

[39] S. AlEbrahim and I. Ahmad, "Task scheduling for heterogeneous computing systems," The Journal of

Supercomputing, pp. 1-26, 2016.

[40] T. Ma and R. Buyya, "Critical-path and priority based algorithms for scheduling workflows with

parameter sweep tasks on global grids," in 17th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD'05), 2005, pp. 251-258.

[41] T. Wang, Z. Liu, Y. Chen, Y. Xu, and X. Dai, "Load Balancing Task Scheduling Based on Genetic

Algorithm in Cloud Computing," in Dependable, Autonomic and Secure Computing (DASC), 2014 IEEE

12th International Conference on, 2014, pp. 146-152.

[42] C.-L. Chen, V. S. Vempati, and N. Aljaber, "An application of genetic algorithms for flow shop

problems," European Journal of Operational Research, vol. 80, pp. 389-396, 1995.

[43] A. R. Simpson, G. C. Dandy, and L. J. Murphy, "Genetic algorithms compared to other techniques for

pipe optimization," Journal of water resources planning and management, vol. 120, pp. 423-443, 1994.

http://research.cs.wisc.edu/htcondor/

 Chapter 9: References

118

[44] J. Taheri, A. Y. Zomaya, and S. U. Khan, "Genetic algorithm in finding Pareto frontier of optimizing

data transfer versus job execution in grids," Concurrency and Computation: Practice and Experience,

2012.

[45] K.-S. Tang, K.-F. Man, S. Kwong, and Q. He, "Genetic algorithms and their applications," Signal

Processing Magazine, IEEE, vol. 13, pp. 22-37, 1996.

[46] Z. Zheng, R. Wang, H. Zhong, and X. Zhang, "An approach for cloud resource scheduling based on

Parallel Genetic Algorithm," in Computer Research and Development (ICCRD), 2011 3rd International

Conference on, 2011, pp. 444-447.

[47] K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng, "Hybrid genetic algorithm for cloud computing

applications," in Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific, 2011, pp. 182-187.

[48] L. Liu, M. Zhang, R. Buyya, and Q. Fan, "Deadline‐constrained coevolutionary genetic algorithm for

scientific workflow scheduling in cloud computing," Concurrency and Computation: Practice and

Experience, 2016.

[49] G. Luo, X. Wen, H. Li, W. Ming, and G. Xie, "An effective multi-objective genetic algorithm based on

immune principle and external archive for multi-objective integrated process planning and scheduling,"

The International Journal of Advanced Manufacturing Technology, pp. 1-14, 2017.

[50] B. M. Varghese and R. J. S. Raj, "A survey on variants of genetic algorithm for scheduling workflow of

tasks," in Science Technology Engineering and Management (ICONSTEM), Second International

Conference on, 2016, pp. 489-492.

[51] R. C. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of the

sixth international symposium on micro machine and human science, 1995, pp. 39-43.

[52] J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," in Systems,

Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International

Conference on, 1997, pp. 4104-4108.

[53] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, "A combinatorial particle swarm optimization for solving

multi-mode resource-constrained project scheduling problems," Applied Mathematics and Computation,

vol. 195, pp. 299-308, 2008.

[54] J. Kennedy, "Particle swarm optimization," in Encyclopedia of machine learning, ed: Springer, 2011, pp.

760-766.

[55] C.-J. Liao, C.-T. Tseng, and P. Luarn, "A discrete version of particle swarm optimization for flowshop

scheduling problems," Computers & Operations Research, vol. 34, pp. 3099-3111, 2007.

[56] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, "A particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing environments," in 2010 24th IEEE international

conference on advanced information networking and applications, 2010, pp. 400-407.

[57] D. Sha and C.-Y. Hsu, "A hybrid particle swarm optimization for job shop scheduling problem,"

Computers & Industrial Engineering, vol. 51, pp. 791-808, 2006.

[58] K. R. Kumari, P. Sengottuvelan, and J. Shanthini, "A Hybrid Approach of Genetic Algorithm and Multi

Objective PSO Task Scheduling in Cloud Computing," Asian Journal of Research in Social Sciences

and Humanities, vol. 7, pp. 1260-1271, 2017.

[59] S. Prathibha, B. Latha, and G. Suamthi, "Particle swarm optimization based workflow scheduling for

medical applications in cloud," Biomedical Research, pp. 1-1, 2017.

[60] H. Yuan, J. Bi, W. Tan, and B. H. Li, "Temporal task scheduling with constrained service delay for

profit maximization in hybrid clouds," IEEE Transactions on Automation Science and Engineering, vol.

14, pp. 337-348, 2017.

[61] H. J. Kim, H.-S. Lam, and S. Kang, "Chemical reaction optimization for task scheduling in grid

computing," IEEE Transactions on Parallel and Distributed systems, vol. 22, pp. 1624-1631, 2011.

[62] J. Xu, A. Y. Lam, and V. O. Li, "Chemical reaction optimization for the grid scheduling problem," in

Communications (ICC), 2010 IEEE International Conference on, 2010, pp. 1-5.

[63] Y. C. Lee and A. Y. Zomaya, "An artificial immune system for heterogeneous multiprocessor

scheduling with task duplication," in 2007 IEEE International Parallel and Distributed Processing

Symposium, 2007, pp. 1-8.

[64] M. Rasti-Barzoki, A. K. Beheshti, and S. R. Hejazi, "Artificial Immune System for Single Machine

Scheduling and Batching in a Supply Chain Scheduling Problem," International Journal of Engineering

Science (2008-4870), vol. 27, 2016.

[65] V. Vijayakumar, "Trust Based Resource Selection in Grids Using Immune System Inspired Model," in

Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges

(ISBCC–16’), 2016, pp. 213-223.

[66] R. Prodan, M. Wieczorek, and H. M. Fard, "Double auction-based scheduling of scientific applications

in distributed grid and cloud environments," Journal of grid Computing, vol. 9, pp. 531-548, 2011.

 Chapter 9: References

119

[67] M. D. De Assunçao and R. Buyya, "An evaluation of communication demand of auction protocols in

grid environments," in Proceedings of the 3rd International Workshop on Grid Economics & Business

(GECON 2006), 2006.

[68] K. Vanmechelen and J. Broeckhove, "A comparative analysis of single-unit vickrey auctions and

commodity markets for realizing grid economies with dynamic pricing," in International Workshop on

Grid Economics and Business Models, 2007, pp. 98-111.

[69] M. Wieczorek, R. Prodan, and T. Fahringer, "Scheduling of scientific workflows in the ASKALON grid

environment," ACM SIGMOD Record, vol. 34, pp. 56-62, 2005.

[70] J. Taheri, A. Y. Zomaya, P. Bouvry, and S. U. Khan, "Hopfield neural network for simultaneous job

scheduling and data replication in grids," Future Generation Computer Systems, vol. 29, pp. 1885-1900,

2013.

[71] J. Taheri, A. Y. Zomaya, H. J. Siegel, and Z. Tari, "Pareto frontier for job execution and data transfer

time in hybrid clouds," Future Generation Computer Systems, vol. 37, pp. 321-334, 2014.

[72] D. de Oliveira, K. A. Ocaña, F. Baião, and M. Mattoso, "A provenance-based adaptive scheduling

heuristic for parallel scientific workflows in clouds," Journal of grid Computing, vol. 10, pp. 521-552,

2012.

[73] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, "Multi-objective scheduling of many tasks in cloud

platforms," Future Generation Computer Systems, vol. 37, pp. 309-320, 2014.

[74] R. Achar, P. Thilagam, D. Shwetha, and H. Pooja, "Optimal scheduling of computational task in cloud

using Virtual Machine Tree," in Emerging Applications of Information Technology (EAIT), 2012 Third

International Conference on, 2012, pp. 143-146.

[75] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H. Epema, "Performance

analysis of cloud computing services for many-tasks scientific computing," Parallel and Distributed

Systems, IEEE Transactions on, vol. 22, pp. 931-945, 2011.

[76] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in Evolutionary Computation

Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International

Conference on, 1998, pp. 69-73.

[77] J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence: Morgan Kaufmann, 2001.

