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Abstract: Metaheuristic algorithms have been used to solve scheduling problems in grid computing. However, 
stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study 
proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid 
computing. The proposed approach is based on a high level hybridization. The proposed hybrid approach is 
evaluated using the static benchmark problems known as ETC matrix. Experimental results show that the proposed 
hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average 
makespan values. 
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INTRODUCTION 

 
Grid computing technology is considered as an 

intelligent multi-level platform that provides a wide 
range of services (Kołodziej and Khan, 2012). Grid 
computing is defined as “geographically distributed 
computers, linked through the Internet in a grid-like 
manner and are used to create virtual supercomputers of 
vast amount of computing capacity able to solve 
complex problems from e-Science in less time than 
known before” (Xhafa and Abraham, 2010). Another 
definition for grid computing is “a form of distributed 
computing that coordinates and provides the facility of 
resource sharing over various geographical locations” 
(Rajni and Chana, 2013). From these definitions, grid 
computing could be defined as a technology of 
connecting various resources distributed in different 
locations with the aim to provide various services. 

Grid systems evolve from existing technology such 
as distributed computing, web service and the Internet 
(Magoules et al., 2009). Grid systems are classified as 
modern High Performance Distributed Systems 
(HPDSs) along with clusters and cloud systems 
(Kolodziej, 2012). However, there are crucial 
characteristics which differ between them, such as 
scale, network type, administrative domain, resources 
structure   and  security  (Hsu  et al.,  2011;  Kołodziej 
et al., 2014; Montes et al., 2012). 

There are many different types of grid systems, 
such as: 
 

• Sensor grid, which is based on sharing sensor 
resources in a sensor network (Li and Li, 2014) 

• Campus grid, which is implemented in campus 

environments in order to facilitate unified access to 

the distributed and heterogeneous resources such as 

clusters,  storage and scientific instruments (Bose 

et al., 2004) 

• Data grid, which is mainly designed to provide 

data-intensive applications that need to access, 

transfer and modify massive data stored in 

distributed storage resources (Venugopal et al., 

2006) 

• Desktop grid, another important type of grid 

developed to connect Personal Computers (PCs) 

with large-scale networks using the Internet or any 

other high-speed connection media (Kolodziej, 

2012) 

• Utility grid, which is based on providing 
computing services to the users or organizations in 
return for regular payment (Babafemi et al., 2013; 
Garg et al., 2009). 

 
Grid system has been utilized in various fields, 

such as the high energy physics grid in Japan 
(Sakamoto, 2007), molecular systems using grid 
environment (Costantini et al., 2014), multi-physics 
coupled  applications  using  Batch   Grid (Murugavel 
et al., 2011), Enzyme Design Process using University 
of California Grid (Wang et al., 2011), medical 
informatics using GridR environment which is based on 
embedding R software into grid framework (Wegener 
et al., 2009), processing of scientific knowledge using 
high performance grid computing by means of natural 
language processing and text mining (Jeong et al., 
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2014), Climate Simulations for Europe and India 
regions based on grid computing environment (Cozzini 
et al., 2014), 3D electrophoresis coupled problem 
simulation based on Asynchronous grid computing 
environment (Chau et al., 2013), high-resolution 
agricultural systems modelling using grid computing 
and parallel processing (Zhao et al., 2013), services for 
neuroimaging analysis using Intelligent grid based on 
neuGRID project (Richard et al., 2013), The Earth 
System Grid Federation (ESGF) which is based on 
nodes that are geographically distributed around the 
world (Cinquini et al., 2012) and chemistry experiment 
tools based on PL-Grid environment (Eilmes et al., 
2014). 

One of the main components in grid computing 

systems is the Resource Management System (RMS) 

which is required in providing and sharing the resources 

efficiently in the grid environment (Czerwinski et al., 

2012; Siddiqui and Fahringer, 2005). RMS could be 

implemented with one or multiple resource 

management nodes called Resource Manager (RM) (Qu 

et al., 2005). Resource management in grid computing 

is a challenging task due to the heterogeneous, 

dynamic, autonomous and ephemeral grid resources (Li 

and Li, 2012). RMS has several services, such as Grid 

Information Services (GIS), monitoring the status of 

tasks and environment, resource scheduler, resource 

reservation,   accounting  and  reporting   (Czerwinski 

et al., 2012; Abraham et al., 2000). The scheduler has 

the main influence in grid computing performance 

(Amiri et al., 2014). The scheduler’s responsibility is to 

map the submitted jobs from users to the suitable and 

available resources (Qureshi et al., 2014). The 

efficiency of the scheduler depends on the implemented 

scheduling algorithm. Scheduling could be done using 

simple algorithms such as greedy or random approach. 

However, using more sophisticated algorithms will 

enhance the scheduler’s efficiency, which in turn will 

enhance the grid performance in general. 

Scheduling of jobs in grid computing is known as 

an NP-complete problem due to the complexity and 

intractable nature of the problem (Burkimsher et al., 

2013; Prajapati and Shah, 2014), which could be solved 

using metaheuristic algorithms. These types of 

algorithms have the ability to find near optimal solution 

in reasonable time compared to optimal solution in a 

very long processing time (Xhafa et al., 2011a). 

Metaheuristic algorithms, such as Tabu Search (TS), 

Genetic Algorithm (GA) and Ant Colony Optimization 

(ACO), show very promising performance to solve 

various types of scheduling problems (Zapfel et al., 

2010). However, hybridizing two or more algorithms 

show better performance than applying a stand-alone 

algorithm (Kolodziej, 2012). This is due to the ability 

of the hybrid approach to skip from local minima, using 

more options available in the algorithms used for the 

hybridization. Hybrid approaches between ACO and 

GA have been studied in Chaari et al. (2012) and Al-

Mahmud and Akhand (2014). These hybridized 

approaches are different from the proposed hybridized 

approach in this study. The Ant System (AS), which is 

a variant of ACO, has been used in Chaari et al. (2012) 

and Al-Mahmud and Akhand (2014) to solve robot path 

planning and university class scheduling respectively. 

In this study, the Ant Colony System (ACS), which is 

another variant of ACO, is used to solve job scheduling 

in static grid computing environment. 

 

METAHEURISTIC ALGORITHM FOR NP 

PROBLEMS 

 

In computational grid systems, scheduler is an 

important component for resource management. 

Scheduler algorithm has the responsibility to schedule 

jobs efficiently (Amiri et al., 2014). Job scheduling is 

known as an NP-complete problem which needs 

metaheuristic algorithms to be solved (Folino and 

Mastroianni, 2010). One of the best metaheuristic 

algorithms in the field of optimization is ACO. ACO is 

considered as a swarm intelligence algorithm which 

mimics the behaviours of real biological ants. ACO is 

implemented to solve various problems, such as routing 

(Wang et al., 2013), scheduling (Neto and Filho, 2013) 

and classification (Michelakos et al., 2011). Many 

studies have implemented and enhanced ACO for job 

scheduling in grid computing. An ACO approach for 

job scheduling in grid system in Kant et al. (2010) 

proposed two types of ants, namely the red and black 

ants for the purpose of sharing the search load. The 

performance of this algorithm was compared with Min-

Min algorithm presented in Liu et al. (2009) and first 

come first serve algorithm. Experimental results show 

that this algorithm outperforms the other two 

algorithms.  

A study presented by Chang et al. (2009) proposed 

the Balanced ACO (BACO) algorithm for job 

scheduling in grid. The proposed algorithm is based on 

the basic ideas from the ACO algorithm. Each ant in the 

system represents a job in the grid systems. In addition, 

the pheromone value represents the weight for a 

resource in the grid system. Higher weight means that 

the resource has a better computing capability. The 

study also considered the bandwidth speed availability 

between the scheduler and resource. This algorithm has 

been implemented in the Taiwan UniGrid which 

consists of more than 20 campuses. The experimental 

results show that the BACO algorithm outperforms the 

improved ACO in Yan et al. (2005), fastest processor to 

largest task first (Menasce et al., 1995) and Sufferage 

(Silva et al., 2003). 

A hybrid ACO approach (HACO) for job 

scheduling in grid computing proposed in Nithya et al. 

(2011) has integrated the heuristic information to make 

the algorithm converge faster to the solution. The 
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experiments conducted have used the benchmark model 

known as Expected Time to Compute (ETC) model 

presented in Braun et al. (2001). The performance of 

HACO was compared with ACO in terms of makespan 

criterion. Empirical results show that HACO 

outperforms the existing ACO algorithm.  

A successful variant of ACO algorithm for job 

scheduling in computational grid presented in Kumar 

and Sumathi (2011) is known as the ant colony system 

developed by Dorigo and Gambardella (1997). ACS 

algorithm enhances ant system in three phases: first, the 

exploration mechanism becomes stronger due to the 

implementation of the aggressive rule. Second, only the 

ant who found the best solution is allowed to deposit 

the pheromone trail to the arcs which belong to that 

solution. Third, the evaporation process will be applied 

only to the arcs used by ants to increase the exploration 

of alternative arcs (Dorigo and Stutzle, 2004). 
Besides ACO-based algorithm, there are many 

other algorithms that have been successfully applied to 
solve optimization problems. One of these algorithms is 
GA, which is a metaheuristic algorithm that imitates the 
principle of genetic process in living organisms 
(Sivanandam and Deepa, 2008). GA mimics the 
evolutionary process by applying selection, 
recombination and mutation to generate solutions from 
the search space. Genetic algorithm is a well-known 
algorithm to solve various types of combinatorial 
optimization problems. Enhanced Genetic-based 
scheduling for grid computing is proposed in Kołodziej 
et al. (2011b). The authors presented an implementation 
of Hierarchic Genetic Strategy (HGS) for job 
scheduling in dynamic computational grid environment. 
HGS has the ability to search the solution space 
concurrently using various evolutionary processes. The 
study focused on bi-objective optimization specifically, 
makespan and flow time simultaneously which have 
been optimized. Experiments were conducted under 
heterogeneous, large scale and dynamic environments 
using the grid simulator. HGS was tested with static and 
dynamic grid computing environment. The experiment 
with static environment is based on the ETC matrix 
model presented by Ali et al. (2000a) and for dynamic 
environment, the authors used a simulator presented by 
Xhafa and Carretero (2009). HGS was also compared 
with two other GA-based schedulers presented in Braun 
et al. (2001) and Carretero et al. (2007). The results 
show that HGS outperforms the other GA-based 
schedulers. However, it is not known how HGS will 
perform against other metaheuristic algorithms, since 
only GA-based algorithms were used for comparison.  

A study presented by Xhafa et al. (2011c) proposed 
a hybrid approach between GA and TS for independent 
batch job scheduling in grid computing. The hybrid 
algorithm aims to optimize the makespan and flowtime 
as a bio-objective scheduling problem. In addition, the 
authors proposed hierarchical and simultaneous 
approaches for optimizing makespan and flowtime. 

Two types of hybridization were provided, namely low 
and high level hybridization which are known as 
GA(TS) and GA+TS algorithms. The experiments 
conducted have considered static and dynamic grid 
computing environment using HyperSim-G simulator 
developed by Xhafa et al. (2007a). The proposed 
algorithms were compared with GA presented by 
Carretero et al. (2007) and TS presented by Xhafa et al. 
(2009a). Experimental results show that the proposed 
hybrid algorithms outperform the other stand-alone 
algorithms in terms of makespan criterion. However, in 
terms of flowtime criterion, GA and TS stand-alone 
algorithms outperform the proposed hybrid algorithm. 
Such a contradiction is normal for job scheduling in 
grid computing. In spite of the limitation on the 
experiments and benchmarking problem, the study has 
clearly illustrated the implementation of the hybrid 
algorithms. 

Kim et al. (2013) applied Artificial Bee Colony 
(ABC) for job scheduling in computational grid. The 
authors proposed Binary ABC (BABC), Efficient 
Binary Artificial Bee Colony (EBABC1) and flexible 
ranking strategy (EBABC2) algorithms. The study 
aimed to minimize the makespan criterion for job 
scheduling in grid computing. The experiments were 
conducted using a series of benchmark problems 
defined in Liu et al. (2010). The proposed algorithms 
were compared with genetic algorithm, simulated 
algorithm and particle swarm optimization algorithm. 
In terms of makespan criterion, EBABC1 and EBABC2 
algorithms achieved the best results among all other 
algorithms with superior performance for EBABC2. 

Nayak et al. (2012) proposed an algorithm which 

combined the merits of genetic algorithm and bacterial 

foraging optimization algorithm called Genetic 

Bacterial Foraging (GBF). The proposed algorithm 

implemented a dynamic mutation as presented in 

Michalewicz (1996) and crossover operator developed 

by Michalewicz (1999). The aim of the study is to 

reduce the execution time as a cost function. The 

experiment was conducted using a dynamic 

environment generated with a simulator developed by 

the authors. The proposed algorithm was compared 

with Bacterial Foraging Optimization (BFO) algorithm. 

The experiment results show that the proposed GBF 

algorithm outperforms BFO algorithm. However, the 

experiment scenario was very small, using only four 

resources and five tasks. Therefore, more studies are 

required to understand the behavior of Bacterial 

Foraging Optimization algorithm. 
Rajni and Chana (2013) conducted a study on 

Bacterial Foraging Optimization (BFO) algorithm for 
resource scheduling on computational grid systems. 
The study aimed to optimize makespan and cost values 
by considering Resource Provisioning (RP) units 
adopted from Aron and Chana (2012). The proposed 
approach was implemented using the GridSim 
simulator developed by Buyya and Murshed (2002). 
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The experiments were conducted by generating a 
workload using a model defined in Lublin and Feitelson 
(2003) and the expected time to compute the model 
presented in Ali et al. (2000b). The authors compared 
the proposed algorithm with genetic algorithm, 
simulated annealing and GA-TS algorithms. The 
experiment results show that the proposed BFO 
algorithm outperforms other algorithms in terms of 
makespan and cost values for both low and high 
machine heterogeneity benchmark problems. In 
addition, the results show that the Coefficient of 
Variation (CV) of the proposed algorithm is in the 
range 0-2%, which confirms the stability of the 
proposed algorithm.  

A comparison of four metaheuristic algorithms for 
task scheduling in computational grid system was 
presented by Meihong et al. (2010). The algorithms 
used in their study for comparison are genetic 
algorithm, ant colony optimization algorithm, particle 
swarm optimization algorithm and simulated annealing 
algorithms. The evaluation criteria are makespan and 
mean response time. The authors conducted 
experiments using static environment. The results show 
that the PSO algorithm has the best performance among 
the other algorithms. However, the experiments were 
conducted using very small scenarios (5 users and 3 
resources). Therefore, the robustness of the compared 
algorithms is not proven. In addition, only classical 
versions of the algorithms are used, while enhanced 
versions are better in terms of performance. In order to 
obtain a clear picture about which metaheuristic is 
better, more investigations and experiments are 
required using a known benchmark such as the one 
presented in Braun et al. (2001).  

Izakian et al. (2010) proposed a discrete particle 
swarm optimization for job scheduling in grid 
computing. Their approach aims to minimize the 
makespan and flowtime simultaneously in grid 
computing. In their study, they provided two 
representations for mapping between problem solution 
and PSO particle. The first representation used a direct 
encoding that is a vector with the size equal to the 
number of tasks. Each element in the vector represents 
the machine number. The second representation used a 
binary matrix size of (jobs number * machines 
number). The matrix was represented with values of 
either 0 or 1. The benchmark problem used to evaluate 
the proposed algorithm is based on the expected time to 
compute the model presented by Braun et al. (2001). 
The proposed algorithm was compared with GA, ACO, 
PSO and Fuzzy PSO algorithms. The experiment results 
show that the proposed algorithm achieved good results 
in makespan reduction, while for flowtime, the 
algorithm performed the worst. Although the study 
aims to minimize makespan and flowtime, the 
contradiction is clear between them such that the 
algorithm could not reduce both of them 
simultaneously. This contradiction is mentioned by 
Xhafa and Abraham (2010) in grid computing as well. 

In general, the proposed algorithm performs better than 
other algorithms.  

Another study using fuzzy particle swarm 

optimization for job scheduling in grid computing has 

been proposed in Liu et al. (2010). In their algorithm, 

they extended the velocity and position of particles 

from the real vectors to fuzzy matrices. The advantages 

of using fuzzy matrices in PSO are the speed of 

convergence and the increase of the ability to find a 

faster and feasible solution. The study used the 

makespan criterion to measure the algorithm’s 

performance. The performance of the proposed 

algorithm was compared with genetic algorithm and 

simulated annealing algorithm. The experiment results 

show that the proposed algorithm outperforms the other 

algorithms especially in terms of execution time. 

However, the study did not use a common benchmark 

in order to evaluate the proposed algorithm with other 

approaches. In addition, only genetic algorithm and 

simulated annealing algorithms were used for 

comparison, which are also not enough to give a 

complete picture.  

 

Proposed ACS+GA for job scheduling: Hybridization 

is a term which refers to the approach that combines 

two or more algorithms in order to achieve a result 

which is not achievable using a stand-alone approach 

(Xhafa et al., 2009b). Algorithms could be fully or 

partially hybridized to be able to get the best features of 

the combined algorithms. There are two levels of 

hybridization between algorithms, namely high level 

and low level (Xhafa et al., 2011c). In high level, which 

is also called loosely coupled hybridization, each 

algorithm preserves its identity. In other words, each 

algorithm operates fully in the hybridized approach. 

This type of hybridization can be seen as a chain of 

algorithm execution (�������ℎ	
 →  �������ℎ	  →⋯  →  �������ℎ	�). This execution can be further 

looped into a certain number of iterations until the 

termination condition is satisfied. Through the 

algorithm execution, the output solution is passed from �������ℎ	
 to �������ℎ	 and so on. In low level 

hybridization, also known as strongly coupled, the 

algorithms interchange their inner procedures. The level 

of hybridization reflects the degree of inner exchange 

among the hybridized algorithms. In low level 

hybridization, one of the algorithms is the main 

algorithm, which calls other algorithms at any time of 

execution (depending on the hybridization design). The 

low level hybridization algorithm could be presented 

as �������ℎ	
(�������ℎ	). In this representation, �������ℎ	
 is the main algorithm and �������ℎ	 is 

the subordinated algorithm (Jourdan et al., 2009; Xhafa 

et al., 2011b). 

This study implements a high level hybridization 

approach, namely ACS+GA. ACS will start first for a 

specific time and after ACS finishes execution, GA will  
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Fig. 1: ACS+GA (high level) pseudocode 

 

start to enhance the solution found by ACS. In other 

words, the solution found by ACS will be a part of the 

initial populations of GA.  

For ACS implementation, the heuristic information 

needs to be defined. For static environment, heuristic � 

value is calculated from the ��� 	�����using {1 / (����� + �����)} where ����� represents the expected 

time to compute ��!" �on 	�#ℎ�$% & and �����  is the 

previous load assigned to 	�#ℎ�$% & (Ku-Mahamud 

and Alobaedy, 2012). Longer computing time and more 

loads will produce a smaller heuristic value, which will 

make the probability of selecting this machine smaller 

and vice versa. The probability of ant " to map ��!" � 
to 	�#ℎ�$% & is calculated by: 

 

P��()*+ = -argmax3[���]. [�]78, if < ≤ <0; 
@, Otherwise; G          (1) 

 

where, ��� is the pheromone value, � is the heuristic 

value, H is a parameter which determines the relative 

influence of the heuristic information, < is a random 

variable uniformly distributed between [0, 1], <0 (0 ≤<0 ≤ 1) is a parameter which determines the 

exploration/exploitation rate and @ is a random variable 

selected according to the probability given by Eq. (2) 

with I = 1 (Dorigo and Stutzle, 2004): 

 P��()*J =  [KLM]N.[O]P
Q [KLM]N.[O]PRMST                               (2) 

For GA algorithm implementation, the output from 

the ACS algorithm will be a part of the initial 

population of GA. The solution will be in the form of a 

vector. The index of each element represents the task 

number, while the value of the vector element 

represents the machine number assigned to it. 

Therefore, the vector size is equal to the total number of 

tasks and the values in each element will be any value 

of non-negative integer number in the range of (0 to m-

1), where m is the total number of machines in the grid. 

Figure 1 depicts the pseudocode of the proposed 

algorithm. 

 

Problem formulation: The problem in job scheduling 

for grid computing is known as a multi-objective 

problem due to the various criteria in computational 

grid such as makespan, flowtime, load balancing, 

utilization, matching proximity, turnaround time, total 

weighted completion time and average weighted 

response time (Xhafa and Abraham, 2008). In this 

study, two criteria are implemented, namely makespan 

and flowtime, with the priority to makespan as the main 

optimization objective. Makespan metric measures the 

general productivity of grid computing. The best 

scheduling algorithm is the one that can produce a 

small value of makespan, which means that the 

algorithm is able to map tasks to machines in a good 

and efficient way. Therefore, the objective in this study 

is to minimize the makespan. Makespan is defined as 

the time when the last task finishes execution, formally 

defined as: 

 	�$�	�U����$ �V 	�"%!W�$:  	�$ Y� ∈ [\]^_3	��� ∈`abcd�8                             (3) 

 

where, Y#ℎ%� is the set of all possible schedules, @�e! 

is the set of all jobs to be scheduled and d� denotes the 

time when task & finalizes (Xhafa and Abraham, 2008). 

Flowtime is the second criteria used in this study which 

refers to the response time to the user submissions of 

task executions. Flowtime is defined as the sum of 

finalization time of all tasks, formally defined as: 

 V��f��	%: 	�$ Y� ∈ [\]^_3Q d�� ∈`abc 8               (4) 

 

These criteria could conflict with each other since 

limited resources could be the bottleneck of the system 

(Xhafa and Abraham, 2008). 

In order to test the proposed algorithm, a suitable 

benchmark is required to reflect the robustness of the 

algorithm. The benchmark should reflect the 

environment attributes such as resources and jobs 

heterogeneity. The considered benchmark for static grid 

computing is based on the successful model known as 

ETC to generate benchmarks on grid computing 

introduced by Braun et al. (2001). This model is widely 

accepted by researchers to be used for job scheduling in  

       Procedure ACS+GA 

      Initialize the number of ants $; 

       Initialize parameters and pheromone trails; 

       While (Termination condition not met) Do 

 For i = 1 to $ Do 

 Construct new solution; 

 Apply local pheromone update; 

 End For 

 Apply pheromone evaporation; 

 Apply Global pheromone update 

Update best found solution !∗; 

End while; 

// Genetic algorithm start here; 

Initialize population (P); 

Add (best found solution from ACS to P); 

Evaluate (P); 

While (termination condition not met) 

 ij ← Select (P); 

 Crossover (ij ); 
 Mutate (ij ); 
 Evaluate (ij ); 
 P ← Replace (ij ∪ P); 

End While; 

Return the best solution; 

End procedure; 
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Table 1: ACS parameter values 

Run time Beta Evaporation rate No of ants q 

45second 8 0.6 10 0.9 

 
Table 2: GA parameter values 

Run time Population size Intermediate size Crossover rate Mutation rate 

45second 10 6 0.9 0.4 

 
Table 3: GA implemented operators 

Elitism Selection operator Crossover operator Mutation operator 

True Tournament = 3 Fitness based Re-balanced 

 

grid  (Braun  et al., 2001; Garg et al., 2010; Kolodziej 

et al., 2011a, 2011b; Ritchie and Levine, 2004). The 

benchmark defines a matrix called Expected Time to 

Compute. Each row in the ��� [�, &] matrix contains 

the expected time to compute task [�] on machine [&]. 
Therefore, ETC has $ ∗ 	 entries where $ represents 

the number of tasks and 	 represents the number of 

machines. ETC matrix is again defined using three 

metrics, namely task heterogeneity, machine 

heterogeneity and consistency. Task heterogeneity 

measures the variance in execution time among tasks 

while machine heterogeneity measures the variance in 

machine speed among machines. The heterogeneity of 

tasks and machines is represented with two values of 

“high” and “low” respectively. In addition, the ETC 

matrix captures other possible features of a real 

heterogeneous computing system using three more 

metrics to measure the consistencies, namely consistent, 

inconsistent and semi-consistent. The ETC matrix is 

considered consistent whenever a machine ��  executes a 

task �� faster than another machine �+, therefore, 

machine �� will execute all other tasks faster than 

machine �+. ETC matrix is considered inconsistent 

when a machine �� could execute some tasks faster than 

machine �+ and some others slower. Finally, the semi-

consistent ETC matrix is an inconsistent matrix which 

has a consistent submatrix of specific size. Combining 

all these matrices will generate 12 distinct types of 

possible ETC matrix (Braun et al., 2001). 

 

EXPERIMENTS AND RESULTS 

 

Metaheuristic algorithms, such as ACS and GA, 

have many parameters that need to be tuned. The values 

of the parameters need a lot of tuning in order to 

achieve the desired performance (Zapfel et al., 2010). 

Therefore, the best values have been adopted from the 

literature. In this experiment, the parameter values for 

ACS and GA are selected based on the recommended 

values from Dorigo and Stutzle (2004) and Xhafa et al. 

(2007b) respectively. Table 1 presents the parameter 

values for the ACS algorithm. 

Table 2 shows the parameter values for GA. The 

total population size of GA is set to 10, while the 

selected population size as an intermediate population 

is set to 6. The probability to operate a crossover 

operation is 0.9, while the probability to operate a 

mutation operation is 0.4 (Xhafa et al., 2007a). 

Important operators in GA are presented in Table 

3. To select a population from the population pool, 

many operators are available such as the roulette wheel 

and ranking. This study has implemented a tournament 

operator with value 3 as a selection operator. For 

crossover operator, the fitness-based operator is found 

as the best operator compared with m-point crossover 

and uniform crossover (Xhafa et al., 2007b). Finally, a 

Re-balanced operator is used as a mutation operator, 

which is considered better than random mutation. 

Experiments have been conducted using Intel® 

Core(TM) i7-3612QM CPU @ 2.10 GHz and 8G 

RAM. The grid computing simulator is developed using 

visual C#. The time given for each experiment is 90 sec 

(45 sec for each algorithm). This time restriction is a 

very important requirement to mimic the real 

environment for job scheduling in grid computing 

(Carretero et al., 2007; Xhafa and Duran, 2008). Each 

algorithm is executed 10 times in order to calculate the 

average values as well as to get the best run. The first 

column of each table represents the instance name with 

an abbreviation code: x-yyzz as follows: 

x represents the type of consistency; c means 

consistent, i means inconsistent and s means semi-

consistent. yy represents the heterogeneity of the tasks; 

hi means high and lo means low. zz represents the 

heterogeneity of the machines; hi means high and lo 

means low. 

 

For example: c_hilo means consistent environment, hi 

heterogeneity in tasks and low heterogeneity in 

machines. 

The results show that the proposed algorithm is 

able to reduce the makespan significantly on seven 

instances as illustrated in Table 4, which shows the best 

makespan values. 

Table 5 depicts the average values for makespan. 

The proposed algorithm is able to achieve good results 

on five instances. However, GA also performs well on 

four instances. 

The experiments show different performance for 

flowtime objective. The  AS  algorithm outperforms the
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Table 4: Best makespan values 

 GA AS ACS ACS+GA 

c_hihi 11215488.93 11210553.9 10794610.75 10533616.36 

c_hilo 182232.04 184701.33 179762.4 180289.84 
c_lohi 374685.96 367182.79 346838.43 345233.25 

c_lolo 6138.52 6224.75 6051.82 6001.86 

i_hihi 3995843.41 3946883.19 4066163.68 3924281.6 
i_hilo 91682.28 90968.26 93829 91709.93 

i_lohi 134151.08 133825.44 137176.54 134796.3 

i_lolo 3045.32 3140.97 3208.97 3164.29 
s_hihi 6223749.51 5991234.31 6119601.97 5854357.25 

s_hilo 120447.26 118988.3 120539.13 119123.89 

s_lohi 181155.5 176800.44 178584.84 172225.04 
s_lolo 4246.4 4296.32 4350.38 4225.71 

 
Table 5: Average makespan values 

 GA AS ACS ACS+GA 

c_hihi 11266455.65 11492186.36 10947366.92 10849427.27 
c_hilo 183264.856 186640.051 181434.422 180970.805 

c_lohi 375322.186 373766.649 353670.849 353882.764 

c_lolo 6152.468 6281.502 6120.002 6074.341 
i_hihi 4029108.699 4021032.464 4261681.833 4115442.339 

i_hilo 91682.28 92311.613 94832.7 93513.988 
i_lohi 135625.029 136721.893 144178.472 138746.886 

i_lolo 3051.006 3198.568 3279.985 3232.719 

s_hihi 6317823.165 6114693.995 6322969.763 6119177.625 
s_hilo 120664.355 121995.849 122440.437 120576.822 

s_lohi 181734.596 178990.539 181737.421 177965.139 

s_lolo 4249.935 4369.079 4399.443 4326.294 

 
Table 6: Best flowtime values 

 GA AS ACS ACS+GA 

c_hihi 175890174.2 170869481 167168928 167921346.2 

c_hilo 2885387.55 2839818.65 2839974.6 2855393.95 
c_lohi 5862262.04 5600439.31 5481314.05 5475878.29 

c_lolo 97154.47 95877 95871.53 94911.38 

i_hihi 63759167.63 60169758.16 64092691.04 62544930.6 
i_hilo 1461297.38 1403670.42 1451182.04 1463099.33 

i_lohi 2141505.91 2032456.42 2150374.03 2152416.88 

i_lolo 48547.9 48773.48 50707.62 50529.25 
s_hihi 98814397.03 90312215.73 95998535.04 92830865.83 

s_hilo 1909954.11 1832927.6 1893970.67 1891505.22 

s_lohi 2867157.87 2682621.46 2800124.77 2746952.11 
s_lolo 67508.13 65545.51 68232.02 67152.14 

 
Table 7: Average flowtime values 

 GA AS ACS ACS+GA 

c_hihi 176638718.7 174513587.9 171594188.4 171864310.1 
c_hilo 2893345.641 2866863.113 2865314.197 2867622.027 

c_lohi 5867869.085 5712409.208 5587489.199 5597133.705 

c_lolo 97298.915 96857.627 96697.087 96332.486 
i_hihi 64261850.79 61409716.3 66654183.7 65559896.86 

i_hilo 1461683.727 1422434.616 1489277.24 1492734.607 

i_lohi 2163840.832 2068376.494 2256605.345 2212084.909 
i_lolo 48579.506 49416.302 51606.347 51580.551 

s_hihi 99887497.75 92951306.33 98799209.66 97232283.39 

s_hilo 1915659.179 1867344.085 1934073.416 1917926.183 
s_lohi 2871564.91 2738879.14 2869869.222 2830359.079 

s_lolo 67548.438 67048.336 69185.328 68780.228 

 

other algorithms for the best and average flowtime 

values as shown in Table 6 and 7 respectively. This 

behavior is expected due to the contradiction between 

makespan and flowtime. 

In order to represent the performance of the 

proposed algorithm visually, a geometric mean is used 

to normalize the makespan and flowtime values of the 

12 instances (Izakian et al., 2009). Figure 2 displays the 

results of the proposed algorithm, which is the best 

among other algorithms for best makespan values. In 

addition, Fig. 3 shows the same for average makespan 

values. 

For the best and average flowtime values, Fig. 4 

and 5 present the geometric mean values of the 12 

instances respectively. The results show that the AS 

algorithm outperforms other algorithms. 
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Fig. 2: Geometric mean of best makespan for 12 instances. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Geometric mean of average makespan for 12 instances 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Geometric mean of best flowtime for 12 instances 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 5: Geometric mean of AVG flowtime for 12 instances 

 
CONCLUSION 

 

Job scheduling in grid computing system needs a 

metaheuristic algorithm to be solved efficiently. Due to 

the complexity of the problem, stand-alone algorithm is 

insufficient for some cases. However, hybrid 

metaheuristic algorithms perform better than stand-

alone algorithm in solving many combinatorial 

problems. This study has implemented a high level 

hybridization between ACS and GA to solve job 

scheduling in grid computing system. The results 

showed that the proposed algorithm outperforms other 

algorithms in terms of makespan reduction. Future 

work related to the proposed hybridization algorithm 

will focus on hybrid ACS with local search algorithms 

and the implementation of the hybrid algorithm in 

dynamic grid computing environment. 
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