
Research Journal of Applied Sciences, Engineering and Technology 11(7): 806-816, 2015

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: June 14, 2015 Accepted: July 8, 2015 Published: November 05, 2015

Corresponding Author: Mustafa Muwafak Alobaedy, School of Computing, College of Art and Sciences, Universiti Utara

Malaysia, 06010 Sintok, Kedah, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

806

Research Article
Hybrid Ant Colony System and Genetic Algorithm Approach for Scheduling of Jobs in

Computational Grid

Mustafa Muwafak Alobaedy and Ku Ruhana Ku-Mahamud
School of Computing, College of Art and Sciences, Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia

Abstract: Metaheuristic algorithms have been used to solve scheduling problems in grid computing. However,
stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study
proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid
computing. The proposed approach is based on a high level hybridization. The proposed hybrid approach is
evaluated using the static benchmark problems known as ETC matrix. Experimental results show that the proposed
hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average
makespan values.

Keywords: Hybrid metaheuristic algorithm, job scheduling, static grid computing

INTRODUCTION

Grid computing technology is considered as an

intelligent multi-level platform that provides a wide
range of services (Kołodziej and Khan, 2012). Grid
computing is defined as “geographically distributed
computers, linked through the Internet in a grid-like
manner and are used to create virtual supercomputers of
vast amount of computing capacity able to solve
complex problems from e-Science in less time than
known before” (Xhafa and Abraham, 2010). Another
definition for grid computing is “a form of distributed
computing that coordinates and provides the facility of
resource sharing over various geographical locations”
(Rajni and Chana, 2013). From these definitions, grid
computing could be defined as a technology of
connecting various resources distributed in different
locations with the aim to provide various services.

Grid systems evolve from existing technology such
as distributed computing, web service and the Internet
(Magoules et al., 2009). Grid systems are classified as
modern High Performance Distributed Systems
(HPDSs) along with clusters and cloud systems
(Kolodziej, 2012). However, there are crucial
characteristics which differ between them, such as
scale, network type, administrative domain, resources
structure and security (Hsu et al., 2011; Kołodziej
et al., 2014; Montes et al., 2012).

There are many different types of grid systems,
such as:

• Sensor grid, which is based on sharing sensor
resources in a sensor network (Li and Li, 2014)

• Campus grid, which is implemented in campus

environments in order to facilitate unified access to

the distributed and heterogeneous resources such as

clusters, storage and scientific instruments (Bose

et al., 2004)

• Data grid, which is mainly designed to provide

data-intensive applications that need to access,

transfer and modify massive data stored in

distributed storage resources (Venugopal et al.,

2006)

• Desktop grid, another important type of grid

developed to connect Personal Computers (PCs)

with large-scale networks using the Internet or any

other high-speed connection media (Kolodziej,

2012)

• Utility grid, which is based on providing
computing services to the users or organizations in
return for regular payment (Babafemi et al., 2013;
Garg et al., 2009).

Grid system has been utilized in various fields,

such as the high energy physics grid in Japan
(Sakamoto, 2007), molecular systems using grid
environment (Costantini et al., 2014), multi-physics
coupled applications using Batch Grid (Murugavel
et al., 2011), Enzyme Design Process using University
of California Grid (Wang et al., 2011), medical
informatics using GridR environment which is based on
embedding R software into grid framework (Wegener
et al., 2009), processing of scientific knowledge using
high performance grid computing by means of natural
language processing and text mining (Jeong et al.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42983950?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

807

2014), Climate Simulations for Europe and India
regions based on grid computing environment (Cozzini
et al., 2014), 3D electrophoresis coupled problem
simulation based on Asynchronous grid computing
environment (Chau et al., 2013), high-resolution
agricultural systems modelling using grid computing
and parallel processing (Zhao et al., 2013), services for
neuroimaging analysis using Intelligent grid based on
neuGRID project (Richard et al., 2013), The Earth
System Grid Federation (ESGF) which is based on
nodes that are geographically distributed around the
world (Cinquini et al., 2012) and chemistry experiment
tools based on PL-Grid environment (Eilmes et al.,
2014).

One of the main components in grid computing

systems is the Resource Management System (RMS)

which is required in providing and sharing the resources

efficiently in the grid environment (Czerwinski et al.,

2012; Siddiqui and Fahringer, 2005). RMS could be

implemented with one or multiple resource

management nodes called Resource Manager (RM) (Qu

et al., 2005). Resource management in grid computing

is a challenging task due to the heterogeneous,

dynamic, autonomous and ephemeral grid resources (Li

and Li, 2012). RMS has several services, such as Grid

Information Services (GIS), monitoring the status of

tasks and environment, resource scheduler, resource

reservation, accounting and reporting (Czerwinski

et al., 2012; Abraham et al., 2000). The scheduler has

the main influence in grid computing performance

(Amiri et al., 2014). The scheduler’s responsibility is to

map the submitted jobs from users to the suitable and

available resources (Qureshi et al., 2014). The

efficiency of the scheduler depends on the implemented

scheduling algorithm. Scheduling could be done using

simple algorithms such as greedy or random approach.

However, using more sophisticated algorithms will

enhance the scheduler’s efficiency, which in turn will

enhance the grid performance in general.

Scheduling of jobs in grid computing is known as

an NP-complete problem due to the complexity and

intractable nature of the problem (Burkimsher et al.,

2013; Prajapati and Shah, 2014), which could be solved

using metaheuristic algorithms. These types of

algorithms have the ability to find near optimal solution

in reasonable time compared to optimal solution in a

very long processing time (Xhafa et al., 2011a).

Metaheuristic algorithms, such as Tabu Search (TS),

Genetic Algorithm (GA) and Ant Colony Optimization

(ACO), show very promising performance to solve

various types of scheduling problems (Zapfel et al.,

2010). However, hybridizing two or more algorithms

show better performance than applying a stand-alone

algorithm (Kolodziej, 2012). This is due to the ability

of the hybrid approach to skip from local minima, using

more options available in the algorithms used for the

hybridization. Hybrid approaches between ACO and

GA have been studied in Chaari et al. (2012) and Al-

Mahmud and Akhand (2014). These hybridized

approaches are different from the proposed hybridized

approach in this study. The Ant System (AS), which is

a variant of ACO, has been used in Chaari et al. (2012)

and Al-Mahmud and Akhand (2014) to solve robot path

planning and university class scheduling respectively.

In this study, the Ant Colony System (ACS), which is

another variant of ACO, is used to solve job scheduling

in static grid computing environment.

METAHEURISTIC ALGORITHM FOR NP

PROBLEMS

In computational grid systems, scheduler is an

important component for resource management.

Scheduler algorithm has the responsibility to schedule

jobs efficiently (Amiri et al., 2014). Job scheduling is

known as an NP-complete problem which needs

metaheuristic algorithms to be solved (Folino and

Mastroianni, 2010). One of the best metaheuristic

algorithms in the field of optimization is ACO. ACO is

considered as a swarm intelligence algorithm which

mimics the behaviours of real biological ants. ACO is

implemented to solve various problems, such as routing

(Wang et al., 2013), scheduling (Neto and Filho, 2013)

and classification (Michelakos et al., 2011). Many

studies have implemented and enhanced ACO for job

scheduling in grid computing. An ACO approach for

job scheduling in grid system in Kant et al. (2010)

proposed two types of ants, namely the red and black

ants for the purpose of sharing the search load. The

performance of this algorithm was compared with Min-

Min algorithm presented in Liu et al. (2009) and first

come first serve algorithm. Experimental results show

that this algorithm outperforms the other two

algorithms.

A study presented by Chang et al. (2009) proposed

the Balanced ACO (BACO) algorithm for job

scheduling in grid. The proposed algorithm is based on

the basic ideas from the ACO algorithm. Each ant in the

system represents a job in the grid systems. In addition,

the pheromone value represents the weight for a

resource in the grid system. Higher weight means that

the resource has a better computing capability. The

study also considered the bandwidth speed availability

between the scheduler and resource. This algorithm has

been implemented in the Taiwan UniGrid which

consists of more than 20 campuses. The experimental

results show that the BACO algorithm outperforms the

improved ACO in Yan et al. (2005), fastest processor to

largest task first (Menasce et al., 1995) and Sufferage

(Silva et al., 2003).

A hybrid ACO approach (HACO) for job

scheduling in grid computing proposed in Nithya et al.

(2011) has integrated the heuristic information to make

the algorithm converge faster to the solution. The

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

808

experiments conducted have used the benchmark model

known as Expected Time to Compute (ETC) model

presented in Braun et al. (2001). The performance of

HACO was compared with ACO in terms of makespan

criterion. Empirical results show that HACO

outperforms the existing ACO algorithm.

A successful variant of ACO algorithm for job

scheduling in computational grid presented in Kumar

and Sumathi (2011) is known as the ant colony system

developed by Dorigo and Gambardella (1997). ACS

algorithm enhances ant system in three phases: first, the

exploration mechanism becomes stronger due to the

implementation of the aggressive rule. Second, only the

ant who found the best solution is allowed to deposit

the pheromone trail to the arcs which belong to that

solution. Third, the evaporation process will be applied

only to the arcs used by ants to increase the exploration

of alternative arcs (Dorigo and Stutzle, 2004).
Besides ACO-based algorithm, there are many

other algorithms that have been successfully applied to
solve optimization problems. One of these algorithms is
GA, which is a metaheuristic algorithm that imitates the
principle of genetic process in living organisms
(Sivanandam and Deepa, 2008). GA mimics the
evolutionary process by applying selection,
recombination and mutation to generate solutions from
the search space. Genetic algorithm is a well-known
algorithm to solve various types of combinatorial
optimization problems. Enhanced Genetic-based
scheduling for grid computing is proposed in Kołodziej
et al. (2011b). The authors presented an implementation
of Hierarchic Genetic Strategy (HGS) for job
scheduling in dynamic computational grid environment.
HGS has the ability to search the solution space
concurrently using various evolutionary processes. The
study focused on bi-objective optimization specifically,
makespan and flow time simultaneously which have
been optimized. Experiments were conducted under
heterogeneous, large scale and dynamic environments
using the grid simulator. HGS was tested with static and
dynamic grid computing environment. The experiment
with static environment is based on the ETC matrix
model presented by Ali et al. (2000a) and for dynamic
environment, the authors used a simulator presented by
Xhafa and Carretero (2009). HGS was also compared
with two other GA-based schedulers presented in Braun
et al. (2001) and Carretero et al. (2007). The results
show that HGS outperforms the other GA-based
schedulers. However, it is not known how HGS will
perform against other metaheuristic algorithms, since
only GA-based algorithms were used for comparison.

A study presented by Xhafa et al. (2011c) proposed
a hybrid approach between GA and TS for independent
batch job scheduling in grid computing. The hybrid
algorithm aims to optimize the makespan and flowtime
as a bio-objective scheduling problem. In addition, the
authors proposed hierarchical and simultaneous
approaches for optimizing makespan and flowtime.

Two types of hybridization were provided, namely low
and high level hybridization which are known as
GA(TS) and GA+TS algorithms. The experiments
conducted have considered static and dynamic grid
computing environment using HyperSim-G simulator
developed by Xhafa et al. (2007a). The proposed
algorithms were compared with GA presented by
Carretero et al. (2007) and TS presented by Xhafa et al.
(2009a). Experimental results show that the proposed
hybrid algorithms outperform the other stand-alone
algorithms in terms of makespan criterion. However, in
terms of flowtime criterion, GA and TS stand-alone
algorithms outperform the proposed hybrid algorithm.
Such a contradiction is normal for job scheduling in
grid computing. In spite of the limitation on the
experiments and benchmarking problem, the study has
clearly illustrated the implementation of the hybrid
algorithms.

Kim et al. (2013) applied Artificial Bee Colony
(ABC) for job scheduling in computational grid. The
authors proposed Binary ABC (BABC), Efficient
Binary Artificial Bee Colony (EBABC1) and flexible
ranking strategy (EBABC2) algorithms. The study
aimed to minimize the makespan criterion for job
scheduling in grid computing. The experiments were
conducted using a series of benchmark problems
defined in Liu et al. (2010). The proposed algorithms
were compared with genetic algorithm, simulated
algorithm and particle swarm optimization algorithm.
In terms of makespan criterion, EBABC1 and EBABC2
algorithms achieved the best results among all other
algorithms with superior performance for EBABC2.

Nayak et al. (2012) proposed an algorithm which

combined the merits of genetic algorithm and bacterial

foraging optimization algorithm called Genetic

Bacterial Foraging (GBF). The proposed algorithm

implemented a dynamic mutation as presented in

Michalewicz (1996) and crossover operator developed

by Michalewicz (1999). The aim of the study is to

reduce the execution time as a cost function. The

experiment was conducted using a dynamic

environment generated with a simulator developed by

the authors. The proposed algorithm was compared

with Bacterial Foraging Optimization (BFO) algorithm.

The experiment results show that the proposed GBF

algorithm outperforms BFO algorithm. However, the

experiment scenario was very small, using only four

resources and five tasks. Therefore, more studies are

required to understand the behavior of Bacterial

Foraging Optimization algorithm.
Rajni and Chana (2013) conducted a study on

Bacterial Foraging Optimization (BFO) algorithm for
resource scheduling on computational grid systems.
The study aimed to optimize makespan and cost values
by considering Resource Provisioning (RP) units
adopted from Aron and Chana (2012). The proposed
approach was implemented using the GridSim
simulator developed by Buyya and Murshed (2002).

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

809

The experiments were conducted by generating a
workload using a model defined in Lublin and Feitelson
(2003) and the expected time to compute the model
presented in Ali et al. (2000b). The authors compared
the proposed algorithm with genetic algorithm,
simulated annealing and GA-TS algorithms. The
experiment results show that the proposed BFO
algorithm outperforms other algorithms in terms of
makespan and cost values for both low and high
machine heterogeneity benchmark problems. In
addition, the results show that the Coefficient of
Variation (CV) of the proposed algorithm is in the
range 0-2%, which confirms the stability of the
proposed algorithm.

A comparison of four metaheuristic algorithms for
task scheduling in computational grid system was
presented by Meihong et al. (2010). The algorithms
used in their study for comparison are genetic
algorithm, ant colony optimization algorithm, particle
swarm optimization algorithm and simulated annealing
algorithms. The evaluation criteria are makespan and
mean response time. The authors conducted
experiments using static environment. The results show
that the PSO algorithm has the best performance among
the other algorithms. However, the experiments were
conducted using very small scenarios (5 users and 3
resources). Therefore, the robustness of the compared
algorithms is not proven. In addition, only classical
versions of the algorithms are used, while enhanced
versions are better in terms of performance. In order to
obtain a clear picture about which metaheuristic is
better, more investigations and experiments are
required using a known benchmark such as the one
presented in Braun et al. (2001).

Izakian et al. (2010) proposed a discrete particle
swarm optimization for job scheduling in grid
computing. Their approach aims to minimize the
makespan and flowtime simultaneously in grid
computing. In their study, they provided two
representations for mapping between problem solution
and PSO particle. The first representation used a direct
encoding that is a vector with the size equal to the
number of tasks. Each element in the vector represents
the machine number. The second representation used a
binary matrix size of (jobs number * machines
number). The matrix was represented with values of
either 0 or 1. The benchmark problem used to evaluate
the proposed algorithm is based on the expected time to
compute the model presented by Braun et al. (2001).
The proposed algorithm was compared with GA, ACO,
PSO and Fuzzy PSO algorithms. The experiment results
show that the proposed algorithm achieved good results
in makespan reduction, while for flowtime, the
algorithm performed the worst. Although the study
aims to minimize makespan and flowtime, the
contradiction is clear between them such that the
algorithm could not reduce both of them
simultaneously. This contradiction is mentioned by
Xhafa and Abraham (2010) in grid computing as well.

In general, the proposed algorithm performs better than
other algorithms.

Another study using fuzzy particle swarm

optimization for job scheduling in grid computing has

been proposed in Liu et al. (2010). In their algorithm,

they extended the velocity and position of particles

from the real vectors to fuzzy matrices. The advantages

of using fuzzy matrices in PSO are the speed of

convergence and the increase of the ability to find a

faster and feasible solution. The study used the

makespan criterion to measure the algorithm’s

performance. The performance of the proposed

algorithm was compared with genetic algorithm and

simulated annealing algorithm. The experiment results

show that the proposed algorithm outperforms the other

algorithms especially in terms of execution time.

However, the study did not use a common benchmark

in order to evaluate the proposed algorithm with other

approaches. In addition, only genetic algorithm and

simulated annealing algorithms were used for

comparison, which are also not enough to give a

complete picture.

Proposed ACS+GA for job scheduling: Hybridization

is a term which refers to the approach that combines

two or more algorithms in order to achieve a result

which is not achievable using a stand-alone approach

(Xhafa et al., 2009b). Algorithms could be fully or

partially hybridized to be able to get the best features of

the combined algorithms. There are two levels of

hybridization between algorithms, namely high level

and low level (Xhafa et al., 2011c). In high level, which

is also called loosely coupled hybridization, each

algorithm preserves its identity. In other words, each

algorithm operates fully in the hybridized approach.

This type of hybridization can be seen as a chain of

algorithm execution (�������ℎ	
 → �������ℎ	 →⋯ → �������ℎ	�). This execution can be further

looped into a certain number of iterations until the

termination condition is satisfied. Through the

algorithm execution, the output solution is passed from �������ℎ	
 to �������ℎ	 and so on. In low level

hybridization, also known as strongly coupled, the

algorithms interchange their inner procedures. The level

of hybridization reflects the degree of inner exchange

among the hybridized algorithms. In low level

hybridization, one of the algorithms is the main

algorithm, which calls other algorithms at any time of

execution (depending on the hybridization design). The

low level hybridization algorithm could be presented

as �������ℎ	
(�������ℎ). In this representation, �������ℎ	
 is the main algorithm and �������ℎ	 is

the subordinated algorithm (Jourdan et al., 2009; Xhafa

et al., 2011b).

This study implements a high level hybridization

approach, namely ACS+GA. ACS will start first for a

specific time and after ACS finishes execution, GA will

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

810

Fig. 1: ACS+GA (high level) pseudocode

start to enhance the solution found by ACS. In other

words, the solution found by ACS will be a part of the

initial populations of GA.

For ACS implementation, the heuristic information

needs to be defined. For static environment, heuristic �

value is calculated from the ��� 	�����using {1 / (����� + �����)} where ����� represents the expected

time to compute ��!" �on 	�#ℎ�$% & and ����� is the

previous load assigned to 	�#ℎ�$% & (Ku-Mahamud

and Alobaedy, 2012). Longer computing time and more

loads will produce a smaller heuristic value, which will

make the probability of selecting this machine smaller

and vice versa. The probability of ant " to map ��!" �
to 	�#ℎ�$% & is calculated by:

P��()*+ = -argmax3[���]. [�]78, if < ≤ <0;
@, Otherwise; G (1)

where, ��� is the pheromone value, � is the heuristic

value, H is a parameter which determines the relative

influence of the heuristic information, < is a random

variable uniformly distributed between [0, 1], <0 (0 ≤<0 ≤ 1) is a parameter which determines the

exploration/exploitation rate and @ is a random variable

selected according to the probability given by Eq. (2)

with I = 1 (Dorigo and Stutzle, 2004):

 P��()*J = [KLM]N.[O]P
Q [KLM]N.[O]PRMST (2)

For GA algorithm implementation, the output from

the ACS algorithm will be a part of the initial

population of GA. The solution will be in the form of a

vector. The index of each element represents the task

number, while the value of the vector element

represents the machine number assigned to it.

Therefore, the vector size is equal to the total number of

tasks and the values in each element will be any value

of non-negative integer number in the range of (0 to m-

1), where m is the total number of machines in the grid.

Figure 1 depicts the pseudocode of the proposed

algorithm.

Problem formulation: The problem in job scheduling

for grid computing is known as a multi-objective

problem due to the various criteria in computational

grid such as makespan, flowtime, load balancing,

utilization, matching proximity, turnaround time, total

weighted completion time and average weighted

response time (Xhafa and Abraham, 2008). In this

study, two criteria are implemented, namely makespan

and flowtime, with the priority to makespan as the main

optimization objective. Makespan metric measures the

general productivity of grid computing. The best

scheduling algorithm is the one that can produce a

small value of makespan, which means that the

algorithm is able to map tasks to machines in a good

and efficient way. Therefore, the objective in this study

is to minimize the makespan. Makespan is defined as

the time when the last task finishes execution, formally

defined as:

 	�$�	�U����$ �V 	�"%!W�$: 	�$ Y� ∈ [\]^_3	��� ∈`abcd�8 (3)

where, Y#ℎ%� is the set of all possible schedules, @�e!

is the set of all jobs to be scheduled and d� denotes the

time when task & finalizes (Xhafa and Abraham, 2008).

Flowtime is the second criteria used in this study which

refers to the response time to the user submissions of

task executions. Flowtime is defined as the sum of

finalization time of all tasks, formally defined as:

 V��f��	%: 	�$ Y� ∈ [\]^_3Q d�� ∈`abc 8 (4)

These criteria could conflict with each other since

limited resources could be the bottleneck of the system

(Xhafa and Abraham, 2008).

In order to test the proposed algorithm, a suitable

benchmark is required to reflect the robustness of the

algorithm. The benchmark should reflect the

environment attributes such as resources and jobs

heterogeneity. The considered benchmark for static grid

computing is based on the successful model known as

ETC to generate benchmarks on grid computing

introduced by Braun et al. (2001). This model is widely

accepted by researchers to be used for job scheduling in

 Procedure ACS+GA

 Initialize the number of ants $;

 Initialize parameters and pheromone trails;

 While (Termination condition not met) Do

 For i = 1 to $ Do

 Construct new solution;

 Apply local pheromone update;

 End For

 Apply pheromone evaporation;

 Apply Global pheromone update

Update best found solution !∗;

End while;

// Genetic algorithm start here;

Initialize population (P);

Add (best found solution from ACS to P);

Evaluate (P);

While (termination condition not met)

 ij ← Select (P);

 Crossover (ij);
 Mutate (ij);
 Evaluate (ij);
 P ← Replace (ij ∪ P);

End While;

Return the best solution;

End procedure;

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

811

Table 1: ACS parameter values

Run time Beta Evaporation rate No of ants q

45second 8 0.6 10 0.9

Table 2: GA parameter values

Run time Population size Intermediate size Crossover rate Mutation rate

45second 10 6 0.9 0.4

Table 3: GA implemented operators

Elitism Selection operator Crossover operator Mutation operator

True Tournament = 3 Fitness based Re-balanced

grid (Braun et al., 2001; Garg et al., 2010; Kolodziej

et al., 2011a, 2011b; Ritchie and Levine, 2004). The

benchmark defines a matrix called Expected Time to

Compute. Each row in the ��� [�, &] matrix contains

the expected time to compute task [�] on machine [&].
Therefore, ETC has $ ∗ 	 entries where $ represents

the number of tasks and 	 represents the number of

machines. ETC matrix is again defined using three

metrics, namely task heterogeneity, machine

heterogeneity and consistency. Task heterogeneity

measures the variance in execution time among tasks

while machine heterogeneity measures the variance in

machine speed among machines. The heterogeneity of

tasks and machines is represented with two values of

“high” and “low” respectively. In addition, the ETC

matrix captures other possible features of a real

heterogeneous computing system using three more

metrics to measure the consistencies, namely consistent,

inconsistent and semi-consistent. The ETC matrix is

considered consistent whenever a machine �� executes a

task �� faster than another machine �+, therefore,

machine �� will execute all other tasks faster than

machine �+. ETC matrix is considered inconsistent

when a machine �� could execute some tasks faster than

machine �+ and some others slower. Finally, the semi-

consistent ETC matrix is an inconsistent matrix which

has a consistent submatrix of specific size. Combining

all these matrices will generate 12 distinct types of

possible ETC matrix (Braun et al., 2001).

EXPERIMENTS AND RESULTS

Metaheuristic algorithms, such as ACS and GA,

have many parameters that need to be tuned. The values

of the parameters need a lot of tuning in order to

achieve the desired performance (Zapfel et al., 2010).

Therefore, the best values have been adopted from the

literature. In this experiment, the parameter values for

ACS and GA are selected based on the recommended

values from Dorigo and Stutzle (2004) and Xhafa et al.

(2007b) respectively. Table 1 presents the parameter

values for the ACS algorithm.

Table 2 shows the parameter values for GA. The

total population size of GA is set to 10, while the

selected population size as an intermediate population

is set to 6. The probability to operate a crossover

operation is 0.9, while the probability to operate a

mutation operation is 0.4 (Xhafa et al., 2007a).

Important operators in GA are presented in Table

3. To select a population from the population pool,

many operators are available such as the roulette wheel

and ranking. This study has implemented a tournament

operator with value 3 as a selection operator. For

crossover operator, the fitness-based operator is found

as the best operator compared with m-point crossover

and uniform crossover (Xhafa et al., 2007b). Finally, a

Re-balanced operator is used as a mutation operator,

which is considered better than random mutation.

Experiments have been conducted using Intel®

Core(TM) i7-3612QM CPU @ 2.10 GHz and 8G

RAM. The grid computing simulator is developed using

visual C#. The time given for each experiment is 90 sec

(45 sec for each algorithm). This time restriction is a

very important requirement to mimic the real

environment for job scheduling in grid computing

(Carretero et al., 2007; Xhafa and Duran, 2008). Each

algorithm is executed 10 times in order to calculate the

average values as well as to get the best run. The first

column of each table represents the instance name with

an abbreviation code: x-yyzz as follows:

x represents the type of consistency; c means

consistent, i means inconsistent and s means semi-

consistent. yy represents the heterogeneity of the tasks;

hi means high and lo means low. zz represents the

heterogeneity of the machines; hi means high and lo

means low.

For example: c_hilo means consistent environment, hi

heterogeneity in tasks and low heterogeneity in

machines.

The results show that the proposed algorithm is

able to reduce the makespan significantly on seven

instances as illustrated in Table 4, which shows the best

makespan values.

Table 5 depicts the average values for makespan.

The proposed algorithm is able to achieve good results

on five instances. However, GA also performs well on

four instances.

The experiments show different performance for

flowtime objective. The AS algorithm outperforms the

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

812

Table 4: Best makespan values

 GA AS ACS ACS+GA

c_hihi 11215488.93 11210553.9 10794610.75 10533616.36

c_hilo 182232.04 184701.33 179762.4 180289.84
c_lohi 374685.96 367182.79 346838.43 345233.25

c_lolo 6138.52 6224.75 6051.82 6001.86

i_hihi 3995843.41 3946883.19 4066163.68 3924281.6
i_hilo 91682.28 90968.26 93829 91709.93

i_lohi 134151.08 133825.44 137176.54 134796.3

i_lolo 3045.32 3140.97 3208.97 3164.29
s_hihi 6223749.51 5991234.31 6119601.97 5854357.25

s_hilo 120447.26 118988.3 120539.13 119123.89

s_lohi 181155.5 176800.44 178584.84 172225.04
s_lolo 4246.4 4296.32 4350.38 4225.71

Table 5: Average makespan values

 GA AS ACS ACS+GA

c_hihi 11266455.65 11492186.36 10947366.92 10849427.27
c_hilo 183264.856 186640.051 181434.422 180970.805

c_lohi 375322.186 373766.649 353670.849 353882.764

c_lolo 6152.468 6281.502 6120.002 6074.341
i_hihi 4029108.699 4021032.464 4261681.833 4115442.339

i_hilo 91682.28 92311.613 94832.7 93513.988
i_lohi 135625.029 136721.893 144178.472 138746.886

i_lolo 3051.006 3198.568 3279.985 3232.719

s_hihi 6317823.165 6114693.995 6322969.763 6119177.625
s_hilo 120664.355 121995.849 122440.437 120576.822

s_lohi 181734.596 178990.539 181737.421 177965.139

s_lolo 4249.935 4369.079 4399.443 4326.294

Table 6: Best flowtime values

 GA AS ACS ACS+GA

c_hihi 175890174.2 170869481 167168928 167921346.2

c_hilo 2885387.55 2839818.65 2839974.6 2855393.95
c_lohi 5862262.04 5600439.31 5481314.05 5475878.29

c_lolo 97154.47 95877 95871.53 94911.38

i_hihi 63759167.63 60169758.16 64092691.04 62544930.6
i_hilo 1461297.38 1403670.42 1451182.04 1463099.33

i_lohi 2141505.91 2032456.42 2150374.03 2152416.88

i_lolo 48547.9 48773.48 50707.62 50529.25
s_hihi 98814397.03 90312215.73 95998535.04 92830865.83

s_hilo 1909954.11 1832927.6 1893970.67 1891505.22

s_lohi 2867157.87 2682621.46 2800124.77 2746952.11
s_lolo 67508.13 65545.51 68232.02 67152.14

Table 7: Average flowtime values

 GA AS ACS ACS+GA

c_hihi 176638718.7 174513587.9 171594188.4 171864310.1
c_hilo 2893345.641 2866863.113 2865314.197 2867622.027

c_lohi 5867869.085 5712409.208 5587489.199 5597133.705

c_lolo 97298.915 96857.627 96697.087 96332.486
i_hihi 64261850.79 61409716.3 66654183.7 65559896.86

i_hilo 1461683.727 1422434.616 1489277.24 1492734.607

i_lohi 2163840.832 2068376.494 2256605.345 2212084.909
i_lolo 48579.506 49416.302 51606.347 51580.551

s_hihi 99887497.75 92951306.33 98799209.66 97232283.39

s_hilo 1915659.179 1867344.085 1934073.416 1917926.183
s_lohi 2871564.91 2738879.14 2869869.222 2830359.079

s_lolo 67548.438 67048.336 69185.328 68780.228

other algorithms for the best and average flowtime

values as shown in Table 6 and 7 respectively. This

behavior is expected due to the contradiction between

makespan and flowtime.

In order to represent the performance of the

proposed algorithm visually, a geometric mean is used

to normalize the makespan and flowtime values of the

12 instances (Izakian et al., 2009). Figure 2 displays the

results of the proposed algorithm, which is the best

among other algorithms for best makespan values. In

addition, Fig. 3 shows the same for average makespan

values.

For the best and average flowtime values, Fig. 4

and 5 present the geometric mean values of the 12

instances respectively. The results show that the AS

algorithm outperforms other algorithms.

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

813

Fig. 2: Geometric mean of best makespan for 12 instances.

Fig. 3: Geometric mean of average makespan for 12 instances

Fig. 4: Geometric mean of best flowtime for 12 instances

Fig. 5: Geometric mean of AVG flowtime for 12 instances

CONCLUSION

Job scheduling in grid computing system needs a

metaheuristic algorithm to be solved efficiently. Due to

the complexity of the problem, stand-alone algorithm is

insufficient for some cases. However, hybrid

metaheuristic algorithms perform better than stand-

alone algorithm in solving many combinatorial

problems. This study has implemented a high level

hybridization between ACS and GA to solve job

scheduling in grid computing system. The results

showed that the proposed algorithm outperforms other

algorithms in terms of makespan reduction. Future

work related to the proposed hybridization algorithm

will focus on hybrid ACS with local search algorithms

and the implementation of the hybrid algorithm in

dynamic grid computing environment.

ACKNOWLEDGMENT

The authors wish to thank the Ministry of Higher

Education Malaysia for funding this study under the
Fundamental Research Grant Scheme, S/O codes 12819
and 11980 and RIMC, Universiti Utara Malaysia,
Kedah, for the administration of this study.

REFERENCES

Abraham, A., R. Buyya and B. Nath, 2000. Nature’s

heuristics for scheduling jobs on computational
grids. Proceeding of the 8th IEEE International
Conference on Advanced Computing and
Communications. New York, pp: 45-52.

Ali, S.S., H.J. Siegel, M. Maheswaran, D. Hensgen and
W. Lafayette, 2000a. Task execution time
modeling for heterogeneous computing systems.
Proceeding of the 9th Heterogeneous Computing
Workshop Cancun, pp: 185-199.

Ali, S., H.J. Siegel, M. Maheswaran, D. Hensgen and S.
Ali, 2000b. Representing task and machine
heterogeneities for heterogeneous computing
systems. Tamkang J. Sci. Eng., 3(3): 195-207.

Al-Mahmud and M.A.H. Akhand, 2014. ACO with GA
operators for solving university class scheduling
problem with flexible preferences. Proceeding of
the International Conference on Informatics,
Electronics and Vision. Dhaka, pp: 1-6.

Amiri, E., H. Keshavarz, N. Ohshima and S. Komaki,

2014. Resource allocation in grid: A review. Proc.

Soc. Behav. Sci., 129(1): 436-440.

Aron, R. and I. Chana, 2012. Formal QoS policy based

grid resource provisioning framework. J. Grid

Comput., 10(2): 249-264.

Babafemi, O., M. Sanjay and M. Adigun, 2013.

Towards developing grid-based portals for e-

commerce on-demand services on a utility

computing platform. IERI Proc., 4(1): 81-87.

Bose, A., B. Wickman, C. Wood and A. Arbor, 2004.

MARS: A metascheduler for distributed resources

in campus grids. Proceeding of the 5th IEEE/ACM

International Workshop on Grid Computing. Los

Alamitos, pp: 110-118.

166000

165000

164000

163000

162000

161000

160000

159000
GA AS ACS ACS+GA

168500

168000

167500

167000

166500

164500

164000

163500
GA AS ACS ACS+GA

166000

165500

165000

2640000

2620000

2600000

2580000

GA AS ACS ACS+GA

2560000

2540000

2520000

2500000

2480000

2460000

2660000

2640000

2620000

2600000

GA AS ACS ACS+GA

2580000

2560000

2540000

2520000

2500000

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

814

Braun, T.D., H.J. Siegel, N. Beck, L.L. Boloni, M.

Maheswaran, A.I. Reuther and R.F. Freund, 2001.

A comparison of eleven static heuristics for

mapping a class of independent tasks onto

heterogeneous distributed computing systems. J.

Parallel Distr. Com., 61(6): 810-837.

Burkimsher, A., I. Bate and L.S. Indrusiak, 2013. A

survey of scheduling metrics and an improved

ordering policy for list schedulers operating on

workloads with dependencies and a wide variation

in execution times. Future Gener. Comp. Sy.,

29(8): 2009-2025.

Buyya, R. and M. Murshed, 2002. GridSim: A toolkit

for the modeling and simulation of distributed

resource management and scheduling for grid

computing. Concurr. Comp-Pract. E., 14(13):

1175-1220.

Carretero, J., F. Xhafa and A. Abraham, 2007. Genetic

algorithm based schedulers for grid computing

systems. Int. J. Innov. Comput. I., 3(6): 1-19.

Chaari, I., A. Koubaa, H. Bennaceur, S. Trigui and K.

Al-Shalfan, 2012. SmartPATH: A hybrid ACO-GA

algorithm for robot path planning. Proceeding of

the IEEE Congress on Evolutionary Computation.

Brisbane, pp: 1-8.

Chang, R., J. Chang and P.S. Lin, 2009. An ant

algorithm for balanced job scheduling in grids.

Future Gener. Comp. Sy., 25(1): 20-27.

Chau, M., T. Garcia and P. Spiteri, 2013. Asynchronous

grid computing for the simulation of the 3D

electrophoresis coupled problem. Adv. Eng.

Softw., 60-61(1): 111-121.

Cinquini, L., D. Crichton, C. Mattmann, J. Harney, G.

Shipman, F. Wang and R. Schweitzer, 2012. The

earth system grid federation: An open

infrastructure for access to distributed geospatial

data. Proceeding of the 8th International

Conference on E-Science. Chicago, pp: 1-10.

Costantini, A., O. Gervasi, F. Zollo and L. Caprini,

2014. User interaction and data management for

large scale grid applications. J. Grid Comput.,

12(3): 485-497.

Cozzini, S., D. Vaddi, S. Goel, F. De Giorgi and S.K.

Dash, 2014. Regional climate simulations on EU-

India grid infrastructures: Methodologies and

performance. J. Grid Comput., 12: 303-320.

Czerwinski, D., S. Przylucki and P. Matejczuk, 2012.

Resource management in grid systems. Proceeding

of the 19th International Conference on Computer

Networks. Szczyrk, pp: 101-110.

Dorigo, M. and L.M. Gambardella, 1997. Ant colonies

for the travelling salesman problem. BioSystems,

43(2): 73-81.

Dorigo, M. and T. Stutzle, 2004. Ant Colony

Optimization. MIT Press, Cambridge, Mass.

Eilmes, A., M. Sterzel, T. Szepieniec, J. Kocot, K.
Noga and M. Golik, 2014. Comprehensive Support
for Chemistry Computations in PL-grid
Infrastructure. In: Bubak, M., J. Kitowski and K.
Wiatr (Eds.), eScience on Distributed Computing
Infrastructure: Achievements of PLGrid Plus
Domain-specific Services and Tools. Springer,
International Publishing, Switzerland, pp: 250-262.

Folino, G. and C. Mastroianni, 2010. Special section:
Bio-inspired algorithms for distributed systems.
Future Gener. Comp. Sy., 26(6): 835-837.

Garg, S.K., R. Buyya and H.J. Siegel, 2009. Scheduling
parallel applications on utility grids: Time and cost
trade-off management. Proceeding of the 32nd
Australasian Conference on Computer Science.
Wellington, pp: 151-160.

Garg, S.K., R. Buyya and H.J. Siegel, 2010. Time and
cost trade-off management for scheduling parallel
applications on utility grids. Future Gener. Comp.
Sy., 26(8): 1344-1355.

Hsu, C., K. Huang and F. Wang, 2011. Online

scheduling of workflow applications in grid

environments. Future Gener. Comp. Sy., 27(6):

860-870.

Izakian, H., A. Abraham and V. Snsel, 2009.

Performance comparison of six efficient pure

heuristics for scheduling meta-tasks on

heterogeneous distributed environments. Neural

Netw. World, 6(9): 695-711.

Izakian, H., B.T. Ladani, A. Abraham and V. Snasel,

2010. A discrete particle swarm optimization

approach for grid job scheduling. Int. J. Innov.

Comput. I., 6(9): 1-15.

Jeong, C.H., Y.S. Choi, H.W. Chun, S.K. Song, H.

Jung, S. Lee and S.P. Choi, 2014. Grid-based

framework for high-performance processing of

scientific knowledge. Multimed. Tools Appl.,

71(2): 783-798.

Jourdan, L., M. Basseur and E.G. Talbi, 2009.

Hybridizing exact methods and metaheuristics: A

taxonomy. Eur. J. Oper. Res., 199(3): 620-629.

Kant, A., A. Sharma, S. Agarwal and S. Chandra, 2010.

An ACO approach to job scheduling in grid

environment. Proceeding of the 1st International

Conference on Swarm, Evolutionary and Memetic

Computing. Chennai, pp: 286-295.

Kim, S.S., J.H. Byeon, H. Liu, A. Abraham and S.

McLoone, 2013. Optimal job scheduling in grid

computing using efficient binary artificial bee

colony optimization. Soft Comput., 17(5): 867-882.

Kolodziej, J., 2012. Evolutionary Hierarchical Multi-

criteria Metaheuristics for Scheduling in Large-

scale Grid Systems. Springer, New York.

Kołodziej, J. and S.U. Khan, 2012. Multi-level

hierarchic genetic-based scheduling of independent

jobs in dynamic heterogeneous grid environment.

Inform. Sciences, 214(1): 1-19.

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

815

Kolodziej, J., S.U. Khan and F. Xhafa, 2011a. Genetic

algorithms for energy-aware scheduling in

computational grids. Proceeding of the

International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing. Barcelona, pp:

17-24.

Kołodziej, J., F. Xhafa and J. Kolodziej, 2011b.
Enhancing the genetic-based scheduling in
computational grids by a structured hierarchical
population. Future Gener. Comp. Sy., 27(8):
1035-1046.

Kołodziej, J., S.U. Khan, L. Wang, M. Kisiel-
Dorohinicki, S.A. Madani, E. Niewiadomska-
Szynkiewicz and C.Z. Xu, 2014. Security, energy
and performance-aware resource allocation
mechanisms for computational grids. Future Gener.
Comp. Sy., 31(1): 77-92.

Ku-Mahamud, K.R. and M.M. Alobaedy, 2012. New
heuristic function in ant colony system for job
scheduling in grid computing. Proceeding of the
17th International Conference on Applied
Mathematics. Montreux, pp: 47-52.

Kumar, E.S. and A. Sumathi, 2011. EACS approach for
grid workflow scheduling in a computational grid.
Proceeding of the 1st International Conference on
Computational Intelligence and Information
Technology. Pune, 250: 276-280.

Li, C. and L. Li, 2012. Design and implementation of
economics-based resource management system in
ad hoc grid. Adv. Eng. Softw., 45(1): 281-291.

Li, C. and L. Li, 2014. Sensor grid resource
management: Model and implementation issues.
ISA T., 53(4): 1261-1267.

Liu, H., A. Abraham and A.E. Hassanien, 2010.
Scheduling jobs on computational grids using a
fuzzy particle swarm optimization algorithm.
Future Gener. Comp. Sy., 26(8): 1336-1343.

Liu, K., J. Chen, H. Jin and Y. Yang, 2009. A min-min
average algorithm for scheduling transaction-
intensive grid workflows. Proceeding of the 7th
Australasian Symposium on Grid Computing and
e-Research. Wellington, pp: 41-48.

Lublin, U. and D.G. Feitelson, 2003. The workload on
parallel supercomputers: modeling the
characteristics of rigid jobs. J. Parallel Distr. Com.,
63(11): 1105-1122.

Magoules, F., I. Pan, K.A. Tan and A. Kumar, 2009.
Introduction to Grid Computing. CRC Press, Boca
Raton.

Meihong, W., Z. Wenhua, M. Wang and W. Zeng,
2010. A comparison of four popular heuristics for
task scheduling problem in computational grid.
Proceeding of the 6th International Conference on
Wireless Communications Networking and Mobile
Computing. Chengdu, pp: 1-4.

Menasce, D.A., D. Saha, S.C.D.S. Porto, V.A.F.
Almeida and S.K. Tripathi, 1995. Static and
dynamic processor scheduling disciplines in
heterogeneous parallel architectures. J. Parallel
Distr. Com., 28(1): 1-18.

Michalewicz, Z., 1996. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag,
Heidelberg.

Michalewicz, Z., 1999. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag,
New York.

Michelakos, I., N. Mallios, E. Papageorgiou and M.
Vassilakopoulos, 2011. Ant Colony Optimization
and Data Mining. In: Bessis, N. and F. Xhafa
(Eds.), Next Generation Data Technologies for
Collective Computational Intelligence. Springer,
Heidelberg, pp: 31-60.

Montes, J., A. Sanchez and M.S. Perez, 2012. Riding
out the storm: How to deal with the complexity of
grid and cloud management. J. Grid Comput.,
10(3): 349-366.

Murugavel, S.S., S.S. Vadhiyar and R.S. Nanjundiah,
2011. Adaptive executions of multi-physics
coupled applications on batch grids. J. Grid
Comput., 9(4): 455-478.

Nayak, S.K., S.K. Padhy, S.P. Panigrahi, S. Kumari and
S. Prasada, 2012. A novel algorithm for dynamic
task scheduling. Future Gener. Comp. Sy., 28(5):
709-717.

Neto, R.F.T. and M.G. Filho, 2013. Literature review
regarding ant colony optimization applied to
scheduling problems: Guidelines for
implementation and directions for future research.
Eng. Appl. Artif. Intell., 26(1): 150-161.

Nithya, L.M., T. Nadu and A. Shanmugam, 2011.
Scheduling in computational grid with a new
hybrid ant colony optimization algorithm. Eur. J.
Sci. Res., 62(2): 273-281.

Prajapati, H.B. and V.A. Shah, 2014. Scheduling in grid
computing environment. Proceeding of the 4th
International Conference on Advanced Computing
and Communication Technologies. Rohtak, pp:
315-324.

Qu, Y., C. Lin, Y. Li and Z. Shan, 2005. Survivability
analysis of grid resource management system
topology. Proceeding of the 4th International
Conference on Grid and Cooperative Computing.
Beijing, pp: 738-743.

Qureshi, M.B., M.M. Dehnavi, N. Min-Allah, M.S.
Qureshi, H. Hussain, I. Rentifis and A.Y. Zomaya,
2014. Survey on grid resource allocation
mechanisms. J. Grid Comput., 12(2): 399-441.

Rajni and I. Chana, 2013. Bacterial foraging based
hyper-heuristic for resource scheduling in grid
computing. Future Gener. Comp. Sy., 29(3):
751-762.

Richard, M., I. Habib, A. Anjum, K. Munir, A.
Branson, P. Bloodsworth and S.L. Kiani, 2013.
Intelligent grid enabled services for neuroimaging
analysis. J. Neurocomput., 122(1): 88-99.

Ritchie, G. and J. Levine, 2004. A hybrid ant algorithm
for scheduling independent jobs in heterogeneous
computing environments. Proceeding of the 23rd
Workshop of the UK Planning and Scheduling
Special Interest Group. Cork, pp: 1-7.

Res. J. Appl. Sci. Eng. Technol., 11(7): 806-816, 2015

816

Sakamoto, H., 2007. Data grid deployment for high

energy physics in Japan. Comput. Phys. Commun.,

177(1-2): 239-242.

Siddiqui, M. and T. Fahringer, 2005. GridARM:

Askalon’s grid resource management system.

Proceeding of the European Grid Conference.

Amsterdam, pp: 122-131.

Silva, D.P. da, W. Cirne and F.V. Brasileiro, 2003.

Trading cycles for information: Using replication

to schedule bag-of-tasks applications on

computational grids. Proceeding of the 9th

International Euro-Par Conference on Parallel

Processing. Klagenfurt, pp: 169-180.

Sivanandam, S.N. and S.N. Deepa, 2008. Introduction

to Genetic Algorithms. Vol. 2. Springer,

Heidelberg.

Venugopal, S., R. Buyya and K. Ramamohanarao,

2006. A taxonomy of data grids for distributed data

sharing, management and processing. ACM

Comput. Surv., 38(1): 3-es.

Wang, J., P. Korambath, S. Kim, S. Johnson, K. Jin, D.

Crawl and K.N. Houk, 2011. Facilitating e-Science

Discovery Using Scientific Workflows on the Grid.

In: Yang, X., L. Wang and W. Jie (Eds.), Guide to

e-Science. Springer, London, pp: 353-382.

Wang, Y., J. Zhang, Y. Zhao, J. Wang and W. Gu,

2013. ACO-based routing and spectrum allocation

in flexible bandwidth networks. Photonic Netw.

Commun., 25(3): 135-143.

Wegener, D., T. Sengstag, S. Sfakianakis, S. Ruping

and A. Assi, 2009. GridR: An R-based tool for

scientific data analysis in grid environments.

Future Gener. Comp. Sy., 25(4): 481-488.

Xhafa, F. and A. Abraham, 2008. Meta-Heuristics for

Grid Scheduling Problems. In: Xhafa, F. and A.

Abraham (Eds.), Metaheuristics for Scheduling in

Distributed Computing Environments. Heidelberg,

Springer, pp: 1-37.

Xhafa, F. and B. Duran, 2008. Parallel Memetic

Algorithms for Independent Job Scheduling in

Computational Grids. In: Cotta, C. and J. van

Hemert (Eds.), Recent Advances in Evolutionary

Computation for Combinatorial Optimization.

Springer, Heidelberg, pp: 219-239.

Xhafa, F. and J. Carretero, 2009. Experimental Study of

GA-Based Schedulers in Dynamic Distributed

Computing Environments. In: Alba, E., C. Blum,

P. Isasi, C. Leon and J.A. Gomez (Eds.),

Optimization Techniques for Solving Complex

Problems. Wiley, Hoboken, N.J., pp: 423-441.

Xhafa, F. and A. Abraham, 2010. Computational

models and heuristic methods for grid scheduling

problems. Future Gener. Comp. Sy., 26(4): 608-

621.

Xhafa, F., J. Carretero, L. Barolli and A. Durresi,

2007a. Requirements for an event-based simulation

package for grid systems. J. Interconnect. Netw.,

8(2): 163-178.

Xhafa, F., L. Barolli and A. Durresi, 2007b. An

experimental study on genetic algorithms for

resource allocation on grid systems. J.

Interconnect. Netw., 8(4): 427-443.

Xhafa, F., J. Carretero, B.B. Dorronsoro and E. Alba,

2009a. A tabu search algorithm for scheduling

independent jobs in computational grids. Comput.

Inform., 28(2): 237-250.

Xhafa, F., J.A. Gonzalez, K.P. Dahal and A. Abraham,

2009b. A GA(TS) hybrid algorithm for scheduling

in computational grids. Proceeding of the 4th

International Conference on Hybrid Artificial

Intelligence Systems. Salamanca, pp: 285-292.

Xhafa, F., B. Duran and J. Kolodziej, 2011a. On

exploitation vs exploration of solution space for

grid scheduling. Proceeding of the 3rd International

Conference on Intelligent Networking and

Collaborative Systems. Fukuoka, pp: 164-171.

Xhafa, F., J. Kolodziej, L. Barolli and A. Fundo, 2011b.

A GA+TS hybrid algorithm for independent batch

scheduling in computational grids. Proceeding of

the 14th International Conference on Network-

Based Information Systems. Tirana, pp: 229-235.

Xhafa, F., J. Kolodziej, L. Barolli, V. Kolici, R. Miho

and M. Takizawa, 2011c. Evaluation of

hybridization of GA and TS algorithms for

independent batch scheduling in computational

grids. Proceeding of the International Conference

on P2P, Parallel, Grid, Cloud and Internet

Computing. Barcelona, pp: 148-155.

Yan, H.U.I., X. Shen, X. Li and M. Wu, 2005. An

improved ant algorithm for job scheduling in grid

computing. Proceeding of the 4th International

Conference on Machine Learning and Cybernetics.

Guangzhou, pp: 2957-2961.

Zapfel, G., R. Braune and M. Bogl, 2010. Metaheuristic

Search Concepts a Tutorial with Applications to

Production and Logistics. Springer, Heidelberg.

Zhao, G., B.A. Bryan, D. King, Z. Luo, E. Wang, U.

Bende-Michl and Q. Yu, 2013. Large-scale, high-

resolution agricultural systems modeling using a

hybrid approach combining grid computing and

parallel processing. Environ. Modell. Softw.,

41(1): 231-238.

