Scientific Workflow Scheduling for Cloud Computing Environments

Abstract

The scheduling of workflow applications consists of assigning their tasks to computer resources to fulfill a final goal such as minimizing total workflow execution time. For this reason, workflow scheduling plays a crucial role in efficiently running experiments. Workflows often have many discrete tasks and the number of different task distributions possible and consequent time required to evaluate each configuration quickly becomes prohibitively large. A proper solution to the scheduling problem requires the analysis of tasks and resources, production of an accurate environment model and, most importantly, the adaptation of optimization techniques. This study is a major step toward solving the scheduling problem by not only addressing these issues but also optimizing the runtime and reducing monetary cost, two of the most important variables. This study proposes three scheduling algorithms capable of answering key issues to solve the scheduling problem. Firstly, it unveils BaRRS, a scheduling solution that exploits parallelism and optimizes runtime and monetary cost. Secondly, it proposes GA-ETI, a scheduler capable of returning the number of resources that a given workflow requires for execution. Finally, it describes PSO-DS, a scheduler based on particle swarm optimization to efficiently schedule large workflows. To test the algorithms, five well-known benchmarks are selected that represent different scientific applications. The experiments found the novel algorithms solutions substantially improve efficiency, reducing makespan by 11% to 78%. The proposed frameworks open a path for building a complete system that encompasses the capabilities of a workflow manager, scheduler, and a cloud resource broker in order to offer scientists a single tool to run computationally intensive applications

    Similar works