128 research outputs found

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    A Comparison of Priority Rules for Non-passing Automated Stacking Cranes

    Get PDF
    A recent trend in container ports is to operate dual non-passing Automated Storage Cranes (ASCs) that collaborate to serve storage and retrieval requests from opposite ends of a storage block. Since the ASCs are unable to pass each other, there is an exchange zone that serves as a temporary storage location so that one crane can start a request and leave it to the other crane to complete it. In this study, twelve priority rules are introduced and evaluated to determine which rule minimizes the total makespan for serving all requests, given the sequence in which each ASC will serve the requests. Preliminary results from 12 randomly generated experiments indicate that the priority rules favoring the crane furthest away from the origin of the next request (LonOri) and the longest individual completion times (LonTot) outperformed all other rules in terms of the average percent difference with the best found solution and in terms of the percent of times the priority rule yield the best found solution. Also, combining priority rules AdvFun and LonRem yields the best makespan in 11 of the 12 (91.67%) problem instances tested. Results of this study transcend container ports as it is applicable to any material handling system composed of non-passing MHE and that has pickup/deposit points at the ends of the system

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    A reclaimer scheduling problem arising in coal stockyard management

    Full text link
    We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.Comment: 26 page

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research
    • …
    corecore