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Jalāl ad-Dı̄n Muhammad Rūmı̄
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Abstract

Given the globalization trend and the continuous growth of international trade, logistics
management has firmly established as a critical business concern. An efficient logistics
management results in a significant reduction in operations cost and environmental impacts and
eventually improvement of competitive advantage and companies’ profitability. Efficient
warehousing and transportation systems provide substantial economic and service benefits to
both businesses and their end users. This dissertation discusses theory and practice of these
logistic management challenges from two perspectives: introducing integrated optimization, and
incorporating ecological concerns into problem formulation, thereby, making scientific and
industrial contributions.
The state-of-the-arts in warehouse management traditionally focused on either location
assignment or crane scheduling assuming the location assignments are given, while considering
some simplified assumptions. Therefore, there is a gap in aspects of exploiting an integrated
optimization approach. By studying crane scheduling operations in rail-rail transshipment
terminals, an approach to integrate container location assignment and crane scheduling is
established. The new insights obtained by such approach identified how integrated decision
making may benefit theory and practice. Moreover, realistic constraints were incorporated in the
scheduling crane operations problem in rail-rail transshipment terminals. The results show
potential gains obtained by implementing the proposed algorithm compared to typical
dispatching rules in rail-rail transshipment terminals.
The impacts of integrating the location assignment and crane scheduling is studied by
introducing a new problem, crane-operated warehouse scheduling problem (CWSP) and
comparing the proposed integrated approach to a sequential approach. First, a general model for
the CWSP is introduced, which may be easily adapted to other warehouses, land-side container
terminals or any other industry employing multiple gantry cranes for product handling. Second,
an efficient algorithm is introduced to solve real-world sized instances. Computational
experiments illustrate significant improvements are attainable when integrating location
assignment and crane scheduling. The effectiveness and versatility of the proposed approaches
are illustrated by extensive experiments upon sets of instances inspired by real-world platforms
such as a container terminal and a crane-operated warehouse.
Finally, the scope of this dissertation is extended to include green operations in transportation and
particularly in e-commerce delivery. The outcome of this research enables finding the most
profitable mode of operation while simultaneously limiting greenhouse emissions on realistic
problem instances. E-commerce delivery problem is introduced and solution approaches are
proposed to handle different ranges of instance size. The contributions of this research enable
practitioners to organize delivery from distribution center to the customer in an ecological
manner. In addition, simulating alternative delivery policies provided new insights about different
delivery time windows, collection point network and bundle deliveries. All instances and results
are publicly available to enable validation and encourage future research.
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Resumo

Dada a tendência da globalização e o crescimento contínuo do comércio internacional, a gestão
da logística estabeleceu-se firmemente como uma preocupação crítica dos negócios. Uma gestão
da logística eficiente resulta numa redução significativa do custo das operações, do impacto
ambiental e, eventualmente, numa maior competitividade e lucratividade das empresas. Os
sistemas eficientes de armazenamento e transporte fornecem benefícios econômicos e de serviço
substanciais para as empresas e seus utilizadores finais. Esta dissertação discute a teoria e a
prática destes desafios da gestão logística sobre duas perspetivas: introdução da otimização
integrada e incorporação de preocupações ecológicas na formulação dos problemas, deixando
assim, contribuições para a ciência e indústria.
O estado da arte sobre a gestão de armazéns foca tradicionalmente ou na atribuição de locais ou
no agendamento de guindastes, assumindo que as atribuições de locais eram dadas, considerando
algumas suposições simplificadas. Portanto, há uma lacuna na exploração de uma abordagem de
otimização integrada. Ao estudar as operações de agendamento de guindastes nos terminais de
transporte ferroviário, é estabelecida uma abordagem para integrar a atribuição da localização dos
contentores e respetivo agendamento de guindastes. As novas ideias obtidas por essa abordagem
identificaram como a tomada de decisão integrada pode beneficiar a teoria e a prática. Além
disso, restrições realistas foram incorporadas no problema do agendamento na operação dos
guindastes entre terminais de transbordo ferroviário. Os resultados mostram os potenciais ganhos
obtidos com a implementação do algoritmo proposto em comparação com as regras típicas no
despacho de terminais de transbordo ferroviário.
Os impactos da integração da atribuição de local e agendamento de guindaste são estudados
através da introdução de um novo problema, o problema de agendamento em armazéns operados
por guindaste (CWSP - crane-operated warehouse scheduling problem) e comparando a
abordagem integrada proposta com uma abordagem sequencial. Primeiro, é introduzido um
modelo geral para o CWSP, que pode ser facilmente adaptado a outros armazéns, terminais de
contentores terrestres ou qualquer outra indústria que utilize vários guindastes de pórtico para a
manipulação de produtos. Segundo, é introduzido um algoritmo eficiente para resolver instâncias
de tamanho real. Simulações computacionais ilustram as melhorias significativas possíveis ao
integrar a atribuição de local e o agendamento de guindastes. A eficácia e versatilidade das
abordagens propostas são ilustradas por extensas simulações em conjuntos de instâncias
inspiradas em dados reais de plataformas, como um terminal de contentores e um armazém
operado por guindaste.
Finalmente, o objetivo desta dissertação é estendido para incluir operações ecológicas no
transporte e, particularmente, na entrega de comércio eletrônico. O resultado desta investigação
permite encontrar o modo de operação mais lucrativo e, ao mesmo tempo, limitar a emissão de
gases com efeito de estufa em problemas reais. O problema de entrega de comércio eletrônico é
introduzido e abordagens de solução são propostas para lidar com instâncias de diferentes
tamanhos. As contribuições desta investigação permitem que os profissionais organizem a
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entrega desde o centro de distribuição até ao cliente de uma maneira ecológica. Além disso, a
simulação de políticas de entrega alternativas forneceu novas ideias sobre diferentes janelas de
tempo de entrega, rede de pontos de coleta e entregas de pacotes. Todas as instâncias e resultados
estão disponíveis ao público para permitir a validação e incentivar futuras investigações.
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Chapter 1

Motivation and overview

In the global economy, companies and organizations are seeking to develop innovative ways to

enhance their competitiveness. Those who are pioneer in logistics management are able to opti-

mize their operations and gain a significant competitive advantage, since logistic costs constitute

an important part of the overall production costs.

Logistics management is the process of planning, implementing, and controlling the efficient

flow and storage of goods, services, and related information from point of origin to the point of

consumption for the purpose of conforming to customer requirements. Conventionally, each com-

ponent of logistics management has been optimized separately and then connected sequentially in

decision chain. However, in current competitive business environment the importance of coordina-

tion and integration of decisions within a system have become conspicuous. Sequential approach

ignores the effect of decisions on one another and consequently results in sub-optimal solutions.

Whereas, integrated approach considers all the related decisions simultaneously and optimizes

jointly. Organizations are becoming increasingly aware of the impact of integrated optimization

approach on the efficiency of logistics management.

The efficiency of such decisions and operations is measured by different metrics such as

cost, response time, or by environmental footprint such as CO2 emissions. Recently, there has

been an increasing need for integrating environmentally sound choices into logistics management

research and practice. This expands the focus of efficiency from cost and time to also more

environmental friendly performances. It is generally perceived that concern for the environment

in logistics management promotes efficiency and helps to enhance environmental performance,

minimize waste and achieve cost savings. Eventually, environmental awareness is expected to

enhance the corporate image, competitive advantage and marketing exposure (Rao and Holt,

2005). Therefore, it is important for companies and organizations to take advantage of operations

research and optimization techniques to solve complex logistics problems to achieve higher

competitive advantages and enhance environmental performance at the same time.

This thesis is the result of problem-driven research motivated by the operational problems

arising in the e-commerce logistics. Increasing environmental awareness and the proliferation of
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2 Motivation and overview

e-commerce worldwide has created extreme competitive environment with great pressure towards

both operational and ecological efficiency on the players in this sector. An efficient warehouse

management, as well as a sustainable e-commerce delivery can enhance both the operational and

ecological efficiency significantly within e-commerce logistics management.

As shown in Figure 1.1, this thesis focuses on tackling some of the unresolved challenges

in warehouse scheduling and e-commerce delivery at the core of e-commerce logistics manage-

ment from two perspectives, namely, integrated decision making and sustainable decision making

(incorporating environmental issues into the problem formulation).

E-commerce Logistics 
Management

Integrated 
Decision Making 

E-commerce 
Delivery

Warehouse 
Scheduling

Sustainable 
Decision Making

Figure 1.1: Dissertation focus and framework

1. Warehouse scheduling accounts for a large part of logistics cost in e-commerce and ineffi-

ciency in warehouse scheduling causes substantial waste of resources as well as increase in

the number of damaged products.

Warehouse scheduling concerns efficient allocation of resources to receive, store, sort and

retrieve commodities and products to meet production planning and customer requirements.

Resources in a typical warehouse include labor, storage space, machinery and time. The

labor, storage space and machinery constitute a significant portion of logistics cost.

This dissertation focuses on crane-operated warehouses and industrial yards which employ

overhead cranes to move enormous products such as containers or steel coils. An integrated

decision-making approach is proposed to constitute breakthroughs in scientific and practical

grounds. Therefore, realistic constraints and features from real-world problems are consid-

ered when proposing new mathematical formulations and efficient solution approaches. Two

main industrial settings are considered to study warehouse scheduling within e-commerce

logistics:

(a) Rail-rail transshipment terminals (RRTT) where containers are transshipped between

multiple freight trains by gantry cranes. Despite the attention on operations in con-

tainer terminals and inter-model terminals, only few studies tackled decision problems

within RRTTs. Therefore, there remains several questions unexplored, specifically

questions about integrating decisions related to crane operations in RRTTs. This work
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aims to contribute to close this scientific gap, by considering the scheduling crane op-

erations problem including three decision problems (i) determining the load plan, (ii)

assigning container moves to cranes, and (iii) sequencing container moves per crane

while considering more realistic constraints.

(b) Crane-operated warehouses which employ overhead cranes to move enormous and

heavy products.

Given the two main decision making problems in warehouses; location assignment

problems and crane scheduling problems, this thesis, therefore, focuses on propos-

ing an efficient integrated approach addressing the two problems under one integrated

optimization problem. Then, the proposed integrated approach will be compared by

sequential decision making approach. The outcome of this study provides a general

setting which may be easily adapted to other warehouses, land-side container termi-

nals or any other industry employing multiple overhead cranes to handle products in

the storage area.

All the formulations and algorithms are to be tested using the instances inspired by real-

world warehouses or container terminals and should be extensible to other similar storage

yards or other industries facing similar problems.

2. E-commerce delivery in e-commerce logistics concerns decisions to move products and

inventory efficiently within the supply chain and eventually deliver to the end consumers.

Conventionally, the goal is to manage the transportation cost by minimizing the number of

employed vehicles, labor, as well as increasing the on-time delivery rate. There has been

a growing ecological concerns in e-commerce logistics management to develop sustain-

able delivery policies as transportation emissions represent a significant portion of global

emissions. The literature is however lacking studies exploring the most profitable trans-

portation policies while simultaneously minimizing ecological impact on realistic problem

instances. This thesis, therefore, attempts to address ecological impacts while maintaining

cost efficiency within e-commerce logistics management. This is done by introducing the

e-commerce delivery problem (EDP) which generalizes the vehicle routing problem. The

objective is minimizing operational costs and emissions, while in addition to traditional ve-

hicle routing objectives and constraints, it requires the selection of vehicle types (electrical

or otherwise), the determination of delivery dates and/or the merging of delivery points.

The contributions of this thesis are aligned in two main axes: i) theoretical and ii) practi-

cal grounds which includes both mathematical formulations and solution approaches. Proposed

mathematical formulations consider realistic features from real-world problems within industrial

crane-operated warehouses. Solution approaches explore efficient algorithms solving integrated

optimization problems to show the potential benefit of such algorithms in solving real-world prob-

lems. All the formulations and algorithms are tested against various datasets inspired by real-world

cases and should be extensible to other industries facing similar problems.
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The remainder of this chapter is structured as follows. Section 1.1 presents the research objec-

tives, and thesis structure is detailed in Section 1.2.

1.1. Research Objectives

This thesis is motivated by a set of operations research problems within industrial settings to

provide methods and solutions to support efficient and sustainable decision making in e-commerce

logistics management. The focused areas are i. efficiency in “Crane-operated warehouses" where

overhead cranes are employed to move products within the storage area and ii. sustainability in

“E-commerce deliveries" wherein e-commerce online orders must be delivered to the customers.

The proposed formulation and algorithms provide a general setting which may be easily adapted.

Therefore, other industries which share similar features with either crane-operated warehouses or

e-commerce deliveries may also take advantage of this thesis’s contributions.

The research objectives of this thesis are directly aligned with two challenges in e-commerce

logistics management:

O.1 Integrating operational decisions in warehouses and storage areas.

O.2 Limiting ecological impact of e-commerce deliveries while maintaining cost efficiency.

O.1 - Integrating operational decisions in industrial warehouses and storage areas.

In crane-operated warehouses, cranes move the products from input points to the storage area and

from storage area to output points. This includes a series of decisions: i. assigning the storage

locations to incoming products and those which must be relocated within the storage area. ii.

assigning cranes to move the products. iii. sequencing the moves for each crane’s schedule.

These operational problems conventionally are solved separately and sequentially. Due to

inter-related nature of such decisions, considering them integrated and solving them simultane-

ously results in potential improvements. To date, there has been a lack of research which assesses

the impact of integrating these sub-problems. This thesis pursues to investigate the impact of in-

tegrating these problems into one operational problem and develop efficient algorithms which are

able to solve real-world size problems.

To this end, following research thrusts have been defined:

O.1-1 Develop integrated mathematical modeling which considers realistic constraints

Due to the fast growing rate of handling operations in the storage areas, many industries are

employing multiple cranes operating simultaneously within the same storage area. Typically

in crane-operated warehouses, cranes cannot overtake each other, thereby it is important to

keep proper safety measures to avoid collisions. The goal of this research line is to develop

an integrated mathematical model which considers realistic constraints such as employing

multiple cranes while handling interference and keeping safety distances.
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O.1-2 Design and develop efficient algorithms

Despite the attention given to the modeling of location assignment and crane scheduling

problems, there is still work to be done in terms of solution procedures to a problem known

to be NP-hard. Such solution procedure would include metaheuristics to integrate location

assignment and crane scheduling decisions in storage areas. This would help companies

employing warehouses with overhead cranes or container terminals to achieve higher ef-

ficiency for the available capacity and resources. The outcome related to this objective is

efficient tools to solve this NP-hard problem for real-world size problems.

O.1-3 Analyzing the impact of weight parameters in integrated optimization approach

The objective function in integrated optimization approach is a weighted combination of

objective functions of multiple sub-problems. Therefore, it is very important to analyze the

impact of weight parameters on the solution space. By extensive simulations, this research

line aims at obtaining insights into the effects of adjusting the weight parameters.

O.2 - Limiting ecological impact of e-commerce deliveries while maintaining cost
efficiency.

Despite the increasing interest in green logistics, finding the most profitable mode of operation

while simultaneously limiting greenhouse emissions on realistic problem instances remains unex-

plored. This research objective attempts to answer following research questions:

i) How may one organize delivery from distribution center to the customer in an ecological

manner?

ii. Which operational shifts may reduce emission levels without incurring unacceptable costs?

iii) Which concessions related to delivery time windows or deviation from the delivery location

are acceptable for environmentally-conscious consumers?

To address these questions, the e-commerce delivery problem (EDP) is introduced to gener-

alize the vehicle routing problem. Its objective is to compose routes beginning and ending at the

depot and visiting each delivery location while simultaneously minimizing operational costs and

emissions. In addition to traditional vehicle routing objectives and constraints, the EDP requires

the selection of vehicle types (electrical or otherwise), the determination of delivery dates, and/or

the merging of delivery points.

To achieve this objective following steps are considered:

O.2-1 Identify the crucial operational features of e-commerce delivery and propose a mathemati-

cal formulation for the e-commerce delivery problem

The goal is to identify operational features to introduce an integer programming formulation

which incorporates vehicle-dependent transportation costs and emissions, driving times and

delivery times. By incorporating such operational features, the impact of alternative delivery
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strategies — such as the introduction of a heterogeneous fleet including electric vehicles,

relaxing delivery time windows, or aggregating delivery destinations — may be accurately

investigated.

O.2-2 Design and develop new solution approaches to tackle e-commerce delivery problem

Efficient and fast algorithms are required to solve real-world size instances of the EDP

within simulation environment. Therefore, this thesis aims at developing algorithms to

tackle the EDP. Efficient algorithms including both population-based and local search based

metaheuristics are introduced to enable simulations of various e-commerce delivery scenar-

ios. The case study data provided by e-commerce delivery carriers constitutes an unique

opportunity to explore the effects of the proposed policies.

1.2. Thesis structure

The main chapters of this thesis consist of a collection of papers that seek to answer the research

objectives defined in the previous section. Chapters 2 and 3 are aligned with the objectives pursued

in the O.1 - Integrating operational decisions in industrial warehouses and storage areas. Chapter 4

covers answers to the challenges identified for the O.2 - Limiting ecological impact of e-commerce

deliveries while maintaining cost efficiency.

This section overviews the main aspects covered and the most substantial contributions

associated with each of them.

Chapter 2 provides a broad literature review on rail-rail transshipment terminals (RRTT) and

classifies the decisions in RRTTs into four problems. RRTTs represent an emerging technology

in railway systems and freight transshipment terminals. The scheduling of crane operations

problem (SCOP) in RRTTs is further investigated. This problem includes decisions concerning

the positioning of containers on outbound trains (determining the load-plan), assigning container

moves to cranes while considering crane overlap areas, and sequencing each crane’s container

moves. A mixed integer programing formulation is proposed which integrates the decisions

in the SCOP and considers realistic constraints such as crane interference. In this problem

cranes have their own working area and a common working area is considered between two

neighboring cranes. The containers must be moved among the trains so that all containers with

same destination be placed on one train. Algorithms based on the biased random-key genetic

algorithm framework are detailed in this chapter. These algorithms are tested against on another

and typical dispatching rules on a set of instances generated inspired by a real terminal. Extensive

computational experiments performed to assess the performance of the proposed algorithms.

Following the work in Chapter 2, Chapter 3 considers integrating the location assignment

problem and crane scheduling in crane-operated warehouses. A new mathematical formulations

is proposed which considers location assignment and crane scheduling simultaneously. This
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model implements various realistic operational constraints such as multiple cranes working

simultaneously in the storage area and precedence constraints. Note that each crane can traverse

the entire storage area provided safety distances between all cranes are respected. Efficient local

search based metheuristics are developed and tested upon a set of instances inspired by insights

extracted from a relevant industrial case.

Chapter 4 pursues the sustainable decision making in e-commerce logistics, thereby, proposes

a general optimization approach to the e-commerce delivery problem, enabling the assessment of

various operational delivery policies on both costs and emissions. A mixed integer programming

formulation which considers both vehicle-dependent transportation costs and CO2 emissions

is proposed. Vehicle dependent cost includes labor costs, vehicle write off, fuel consumption,

insurance, and maintenance. The objective function also considers total distance traveled by

all vehicles and the number of vehicles required to satisfy all deliveries. Then three different

heuristics are proposed, two local search based and one population based metaheuristics. These

efficient heuristics enable simulation of various e-commerce delivery scenarios such as alternative

parcel delivery vehicles, collection points, carrier bundling and regional monopolies and reducing

the time required for delivering parcels.

Finally, Chapter 5 summarizes the work by presenting final conclusions and directions for

future research.

Part of the observations and results of this thesis have been already published in the following

peer reviewed journals and conferences (the contributions of this thesis author is described for

each paper):

1. Sam Heshmati, Túlio A.M. Toffolo, Wim Vancroonenburg, and Greet Vanden Berghe.

Crane-operated warehouses: Integrating location assignment and crane scheduling. Com-

puters & Industrial Engineering, 129:274–295, 2019. ISSN 0360-8352.

Contributions of thesis author: The author had the primary role in investigating the liter-

ature to form the study and research objectives. Mathematical formulations and heuristics

were developed and implemented by the author and contribution of other co-authors. In ad-

dition, the author was responsible for generating the instances, running all the experiments

and drafting the manuscript. The author enjoyed the consultation, advisory and editorial

support of the co-authors.

2. Sam Heshmati, Jannes Verstichel, Eline Esprit, and Greet Vanden Berghe. Alternative e-

commerce delivery policies. EURO Journal on Transportation and Logistics, 2018. ISSN

2192-4384.

Contributions of thesis author: A literature review to identify the research questions was

conducted by the author, followed by problem description and mathematical formulations.

The heuristic based on Genetic Algorithm (GA) was developed and implemented by the
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author. In addition, the experiments corresponding to the GA based heuristic, as well as the

discussions and a comparative analysis of all proposed algorithms were conducted by the

author. The author also participated in analyzing the alternative policies and drafting the

manuscript along with other co-authors.

3. Sam Heshmati, Zafeiris Kokkinogenis, Rosaldo J. F. Rossetti, Maria Antónia Carravilla, and

José Fernando Oliveira. An agent-based approach to schedule crane operations in rail-rail

transshipment terminals. In Raquel J. Fonseca, Gerhard-Wilhelm Weber, and João Telhada,

editors, Computational Management Science, pages 91–97, Cham, 2016. Springer Interna-

tional Publishing. ISBN 978-3-319-20430-7.

Contributions of thesis author: The author had the leading role in reviewing the literature,

forming the research objectives, developing the solution methods, running the experiments,

and drafting the manuscript. The author enjoyed the consultation, advisory, editorial support

of the co-authors.

* Sam Heshmati, Maria Antónia Carravilla, and José Fernando Oliveira. Scheduling crane

operations in rail-rail transshipment terminals. To be submitted to Journal of Scheduling.

Contributions of thesis author: The author had the primary role in conducting this re-

search and enjoyed the editorial and supervision of the co-authors.

In the spirit of reproducible science Kendall et al. (2016), whenever possible the source code

associated with elements of this thesis was made available online, together with all instance and

solution files.



Chapter 2

Scheduling Crane Operations in
Rail-Rail Transshipment Terminals

Rail-rail transshipment terminals represent an emerging technology in railway systems and freight

transshipment terminals. They aim to increase both transport frequency and the number of des-

tinations that are reached via rail networks. Rail-rail transshipment terminals play the hub role

in hub-and-spoke rail networks where containers are transshipped between multiple freight trains

by gantry cranes. This study investigates the scheduling of gantry crane operations problem in

rail-rail transshipment terminals. The scheduling of crane operations includes policies concerning

the positioning of containers on outbound trains (determining the load-plan), assigning container

moves to cranes while considering crane overlap areas, and sequencing each crane’s container

moves. The objective is to minimize total transshipment time and the number of containers left

behind on the yard. Algorithms based on the biased random-key genetic algorithm framework are

developed. The effectiveness and Robustness of the proposed algorithms are illustrated by exten-

sive experiments upon sets of instances inspired by real-world rail-rail transshipment terminals.

2.1. Introduction

Freight transshipment terminals in rail networks are special nodes where train loads are collected,

rearranged, intermediately stored, loaded, and picked up (Boysen et al., 2013). Despite rail sys-

tems have significant advantages over road network transportation, such as lower carbon footprints

and the avoidance of road congestion, the share of freight traffic handled by rail systems has de-

creased during the past 35 years (of the European Commiunities, 2007). A major obstacle asso-

ciated with freight terminals is the high fixed cost, meaning transportation is only profitable if on

large scales over long distances. Rail-rail transshipment terminals (RRTTs) represent an emerging

technology within freight transshipment terminals and railway systems (Macharis and Bontekon-

ing, 2004; Bontekoning et al., 2004). They are employed to increase transport frequencies and

number of destinations to be reached simultaneously, and offer more suitable operation times for

9



10 Scheduling Crane Operations in Rail-Rail Transshipment Terminals

shippers and customers at terminals with higher reliability, when compared to the conventional

shunting yards (Terminet-Consortium, 2001).

Maritime container terminals have received considerable attention in the academic literature,

(see Steenken et al. (2004) and Stahlbock and Voß (2008)), however, there are few studies focused

on RRTTs. The majority of the studies in RRTTs are focused on traditional classification yards,

where wagons are rearranged instead of containers being exchanged by the use of cranes (Boysen

et al., 2012a). Scheduling trains and rearranging them represent the primary problems associated

with this type of terminal (Dahlhaus et al., 2000; Hansmann and Zimmermann, 2008; He et al.,

2003).

The strategic level of decision-making in RRTTs primarily concerns policies about structural

and technical aspects (Rotter, 2004) in addition to the design of the terminal layout (Wiegmans

et al., 2007). In this study, we exclusively focus on RRTTs from an operational level. The op-

erational decision problems in RRTTs may be categorized into four categories: (i) Scheduling

the train process (STP), (ii) Scheduling crane operations (SCO), (iii) Positioning containers in the

yard, and (iv) Scheduling the shuttle cars.

“STP" contains three sub-problems: (i) Scheduling the service slots of trains, wherein the ob-

jective is to minimize the linear combination of both the number of delayed containers and the

number of split moves Boysen et al. (2011, 2012b). A split move occurs when a train’s assigned

container is in a different service slot. (ii) The assignment of each train to a parking position

is explored by considering both the vertical (assignment of trains to tracks) and horizontal park-

ing positions (parking position on the track) to minimize the makespan of train processing. A

mathematical model has been also presented for the train location problem and different heuristic

solution procedures are described and tested in Kellner et al. (2012). (iii) Assign a destination to

each train.

“SCO" includes the following sub-problems: (i) Determine container positions on outbound

trains (determining the load plan). Bostel and Dejax (1998) studied the sub-problem of deter-

mining the load plan by considering four scenarios, the most general objective being to minimize

the total container processing cost. Weight and length constraints of the wagons are not consid-

ered and each container may be placed anywhere on the train. This study employed a real dataset

from the French national railway company (SNCF). A similar problem concerns determining the

load plan for rail-road terminals where, in addition to the transshipment between multiple trains,

there is the possibility to transship containers between trains and trucks. Corry and Kozan (2008),

addressed this problem with two weighted objectives: minimizing train length, and minimizing

container processing time. (ii) Container moves assignments to cranes. Boysen et al. (2010) used

a dynamic programming procedure to solve the problem. The solutions were tested against typical

real-world policies with static assignment of equally sized working areas of cranes. Boysen and

Fliedner (2010), tackled a similar problem in rail-road terminals. Since each truck can move to the

working area of each crane, minimizing the number of indirect moves is an irrelevant objective for

rail-road terminals. Thus, they aimed at evenly distributing the total workload among all cranes.

(iii) Determine the sequence of container moves per crane. Martínez et al. (2004) studied the



2.1 Introduction 11

sequencing of container moves at Port-Bou in the border of France and Spain. The study con-

sidered four different rules for sequencing the container moves and the rules were compared by a

simulation model.

The problem of positioning containers in the yard is addressed with the objective of minimiz-

ing the crane rate, which is itself attained by minimizing the number of stacked containers and the

total distance of crane moves Jaehn (2012). A weighted linear combination of the two objectives

was used as objective function. The study assumes all the other sub-problems are already solved

and the cranes working areas are disjoint.

Another set of studies investigates combinations of decision problems in RRTTs. Alicke

(2005) formulated an optimization model composed of three sub-problems: assigning container

moves to cranes, determining the sequence of container moves per crane, and scheduling the shut-

tle cars. The overall problem was modeled as a constraint satisfaction problem and tested on the

German MegaHub in Hanover data set. Gonzalez et al. (2008) presented a mixed integer model

for determining the load-plan and the sequence of container moves per crane. Several constraints

related to container and wagon characteristics are considered. The objective is the same as in

Bostel and Dejax (1998): the minimization of the total number of container movements. The

approach is validated by using real-world data from a terminal in the Spanish–French border, the

Port-Bou Terminal. In another study, Souffriau et al. (2009) used a decomposition approach to

simultaneously assign the destinations to the trains, determine the load plan, and the sequence

of the transshipments. Three different types of containers and length restrictions for the wagons

are considered. The load plan was determined by minimizing the transportation cost of container

moves within a mixed integer model. The transshipments sequence was modeled as a resource-

constrained project scheduling problem and solved by a variable neighborhood search. Fedtke and

Boysen (2017) proposed a mathematical formulation for sequencing container moves per crane

and scheduling the shuttle cars simultaneously. They assumed container positions on outbound

trains is determined, thus, each container move is assumed to have a given start and destination

wagon. Their model did not consider overlapping working area for cranes, so that the yard as-

sumed to be partitioned into disjunct crane areas each operated by a dedicated crane. Therefor,

container moves assignment for cranes was not considered as each crane is operating in its own

dedicated area. Nossack et al. (2018) proposed a branch and cut algorithm for dual crane schedul-

ing in container terminals where cranes operating on different levels and may pass each other. Li

et al. (2019), considered scheduling a single crane in rail-road transshipment yards while assume

the destinations of the containers are given. The authors proposed a decomposition algorithm,

which decomposes the initial problem for a smaller set of jobs.

Literature on RRTTs is scarce, when compared with the attention given to container process-

ing (mainly in port terminals), inter-modal transportation, and railway systems. This work aims

to contribute to close this scientific gap, by considering the SCOP, one of the main problems in

RRTTs. In this paper the container transshipment process in RRTTs is analyzed from an opera-

tional point of view. Three decision problems (i) determining the load plan, (ii) assigning container

moves to cranes, and (iii) sequencing container moves per crane are considered in a yard where
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two neighboring cranes have overlapping working area. The objective is to minimize the total

transshipment time while loading as many containers as possible on outbound trains. Efficient

algorithms are proposed to solve the integrated problem, using genetic algorithms and customized

heuristics to decode the solutions.

The remainder of the paper is organized as follows. Following, a detailed problem description

and a mathematical formulation are presented in Sections 2.2 and 2.3, respectively. Genetic al-

gorithms, with different encoding schemes, are proposed in Section 2.4. Section 2.5 contains the

computational experiments, where the performance of the algorithms is tested. Finally, conclu-

sions and future research directions are summarized in Section 2.6.

2.2. Problem definition

A typical RRTT consists of a number of parallel tracks, multiple semi-automated or automated

rail mounted gantry cranes, and a buffer lane along the entire length of the terminal, with shuttle

cars deployed to deliver containers along the terminal. A schematic view of a RRTT is depicted

in Figure 2.1. Containers are transshipped between multiple trains by cranes without the need to

move wagons (unlike shunting yards). Cranes have limits on their operation areas, i.e. generally a

crane can not work on the whole terminal. Consequently, multiple cranes work in parallel to cover

the entire yard. In this setting cranes have their own working area which overlap with the working

area of neighboring cranes.

Storage area

Buffer lane
Main track

Cranes
Figure 2.1: A schematic rail-rail transshipment terminal

The SCOP is an operational problem that must be solved for each train service slot in a RRTT.

It determines position of each container on outbound trains (load plan), assigns container moves

to cranes and finally sequences the transshipment of containers for each crane. The objective is to

minimize the total container transshipment time while simultaneously loading as many containers

as possible onto the trains. The quality of each solution is obtained by Equation 2.1, where, Cmax

is total transshipment time, and Enc represents total size of the containers which were not able to

fit on outbound trains.This is a weighted linear combination of the total transshipment time and
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the cost of assigning a container to the yard, proportional to containers size, where ω0 and ω1 are

weights defining the relative importance of the terms.

E = ω0 Cmax +ω1 Enc (2.1)

Scheduling trains service slot is considered to be a previous planing step and therefore it is

assumed that a list of trains, in a service slot, and both destination and parking track of each train

are supplied as input data. Transshipment operations concern the movement of a container by a

crane, beginning from the position where the container is currently located (either on a train or at

the yard) and ending at the container’s final position (either on a train or at the yard). The term

"operation" is employed in this chapter to indicate transshipment operation for simplicity.

Yards in RRTTs consist of a number of parallel tracks and a storage area. The yard length is

mapped to a horizontal coordinate axis which are ordered from left to right. Trains are composed

of a set of wagons with varying capacities, which can hold more than one container. The wagon

capacity is defined as a length. Each wagon is associated with a horizontal coordinate hw which

indicates the location of wagon w along the yard.

A set of cranes are employed to transship containers between trains or the yard. Cranes in the

yards cannot overtake each other when operating, since they share tracks along the yard. The yard

is divided into partitions, with each partition representing the working area of a single crane. The

working area of two neighboring cranes may overlap. It is necessary to ensure that the cranes do

not collide while working in such overlapping areas. This is achieved by blocking the overlapping

area for one crane when another crane enters it. Therefore, when one crane is working inside the

overlapping area, the other must either work outside of it or remain idle until the first one leaves the

area. Therefore, large overlapping areas potentially result in long idle times. Crane movements are

asymmetric in distance, since there is an unloaded crane movement connecting two loaded moves.

Containers are located on specific train wagons, with each container having a specific desti-

nation and size (length). The width is equal for all containers (and wagons) and may therefore

be ignored for SCO planning purposes. A container may be placed on a wagon if the wagon’s

capacity is equal to or greater than the container’s size.

Based on the origin and destination of a transshipment, a container may be transshipped from

one train to another train by direct or indirect moves. Figure 2.2 illustrates these two types of

container movements. When the origin and destination wagon of a transshipment are in the same

crane’s working area, the container is handled once and only by one crane. This type of move-

ment is called a direct move. Indirect moves occur when the origin and destination wagons of a

container are in the working area of different cranes.

To execute an indirect move, a crane in starting area puts the container in the buffer lane, where

the container is transferred to the second crane’s area by a ground vehicle. Then the second crane

processes the container from the buffer lane to its final position. In an indirect move the container

is handled more than once, implying an extra pick-up and drop and a dependency upon the buffer

lane.
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Sorter 

track1 

track2 

Crane’s	working	area	

(a) Direct move

Sorter 

track1 

track2 

working	area	crane2	working	area	crane1	

(b) Indirect move

Figure 2.2: Direct move versus indirect move (adapted from Kellner et al. (2012)).

A transshipment may only be carried out when the container’s final position on the outbound

train is free. Whenever a container blocks the final position of another, precedence for container

moves must be established.

2.3. Continuous-time model for the SCOP

An integrated continuous-time model for the SCOP was developed including location assignment

for containers on outbound trains, crane assignment for each transshipment operation, and the

sequencing of these operations on each crane. Crane activities and container handling are realisti-

cally modeled.

This model is based on the models proposed in Li et al. (2012) and Heshmati et al. (2019).

The model proposed in Li et al. (2012) deals with cranes in container terminals and considers

only the scheduling of crane operations. It does not include the decisions regarding where to

put the containers on the yard. As there are trucks bring/taking the containers, right in front

of the storage/retrieval row, the cranes are not moving during an operation and so there are not

conflicting moves and the duration of the operations is fixed and equal. Another difference is that

in this model there are no separate working zones for cranes, i.e. cranes can move along the yard,

which is a different setting for the working zones of the cranes. The model proposed in Heshmati

et al. (2019) concerns operations in crane-operated warehouses. The cranes, in this problem, can

move along the yard at the same time by respecting a safety distance to avoid collisions.

The model now proposed is applied in a train terminal context, and the setting of the crane

zones is different. In fact the cranes move during the operations and therefore conflicting moves

exist and have to be modeled to be avoided. This model also decides where to put the containers

on the outgoing trains. Capacity constraints are also considered for the wagons, but just with one

level of container storage.

Table 2.1 summarizes the notation employed in the formulation.
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Table 2.1: Notations
Indices

w,v : wagons;
i, j : operations;

c,c′ : cranes;
Sets

O : Set of transshipment operations;
Ow : Set of transshipment operations which have wagon w as origin;
W : Set of wagons;
Wi : Set of wagons on the destination train of operation i’s container;
C : Set of cranes;
Ci : Set of cranes that can execute operation i, Ci ⊂ C ;

Parameters
NC : number of cranes in the yard;
ηc : order of crane c in the yard, 0 < ηc < NC;

H−cc′ : left margin of common area between cranes c and c′;
H+

cc′ : right margin of common area between cranes c and c′;
qi : size of the container in operation i;

hw : horizontal coordinate of wagon w
twv : traveling time of a crane from wagon w to wagon v;
lw : initial load (occupied length) of wagon w;
fw : capacity (length) of wagon w;
bi : origin wagon of operation i;
ei : destination wagon of operation i;
M : a large number;

Decision variables
xiw : is equal to 1 if wagon w is assigned as destination for operation i, and zero otherwise;
yic : is equal to 1 if operation i is handled by crane c, and zero otherwise;
si : is the start time of the transshipment operation i, a non-negative variable;

oi jcc′ : is equal to 1 if operations i and j are conflicting in the common working area of cranes c and c′, and zero otherwise;
ni j : is equal to 1 if s j is greater than the end time of operation i, and zero otherwise;

mi jw : is equal to 1 if wagon w is destination of operation i and operation i is carried out before operation j, and zero otherwise;
Auxiliary variables

di : duration of operation i;
gic jc′ : required waiting time between two conflicting operation i handled by crane c and operation j handled by crane c′;

h−i : horizontal coordinate of the left wagon of operation i’s destination;
h+i : horizontal coordinate of the right wagon of operation i’s destination;

oa
icc′ : binary variable equal to 1 if right wagon of operation i is to the right of left margin of common area between

cranes c and c′ and 0 otherwise;
ob

icc′ : binary variable equal to 1 if right wagon of operation i is to the left of right margin of common area betwenn
cranes c and c′ and 0 otherwise;

oc
icc′ : binary variable equal to 1 if left wagon of operation i is to the right of left margin of common area between

cranes c and c′ and 0 otherwise;
od

icc′ : binary variable equal to 1 if left wagon of opeartion i is to the left of right margin of common area betwenn
cranes c and c′ and 0 otherwise;

2.3.1 Objective function

The objective is to transship containers between the train as fast as possible with minimum number

containers left on the yard.

Minimize ω0 Cmax +ω1 ∑
i∈O

qixiyard (2.2)

Objective function (2.2) minimizes a linear combination of total transshipment time and the cost of

assigning a container to the yard, proportional to its size, where ω0 and ω1 are weights indicating

the relative importance of total transshipment time and total size of the containers assigned to yard,

respectively.
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2.3.2 Constraints

This section presents the SCOP’s constraints, organized in four categories: location assignment

for containers, container move assignment to cranes, identifying conflicting operations, and start

time of consecutive operations.

2.3.2.1 Location assignment for containers

The following set of constraints concern location (wagon) assignment to a container in destination

train.

∑
w∈Wi

xiw = 1 ∀i ∈ O (2.3)

mi jw ≥ xiw +ni j−1 ∀w ∈W , i, j ∈ O : i 6= j (2.4)

mi jw ≤ xiw ∀w ∈W , i, j ∈ O : i 6= j (2.5)

mi jw ≤ ni j ∀w ∈W , i, j ∈ O : i 6= j (2.6)

lw + qixiw− ∑
j∈Ow

q jn ji + ∑
j∈(O−Ow)

q jm jiw ≤ fw ∀w ∈W , i ∈ O (2.7)

Constraints 2.3 ensure that exactly one wagon from Wi is assigned to the container of operation

i. Let Wi represent the set of wagons in train which has the same destination as operation i’s

container. The set Wi consists of wagons with the following conditions: the wagons are located

in the destination train, and the wagons must be within the same crane working area of the origin

wagon. If the origin wagon is in the common working area of two cranes then Wi consists of

destination train wagons in working are of either cranes. Constraints (2.4) - (2.6) determine the

value of variable mi jw which is equal to 1 if wagon w is destination of operation i and operation i is

carried out before operation j. Constraints (2.7) ensure that the capacity of the wagons is respected

after each operation.

2.3.2.2 Container move assignment to cranes

∑
c∈Ci

yic = 1 ∀i ∈ O (2.8)

si +di ≥ s j−ni jM ∀i, j ∈ O : i 6= j (2.9)

si +di ≤ s j +(1−ni j)M ∀i, j ∈ O : i 6= j (2.10)

y jc ≤ 1+ni j +n ji− yic ∀i, j ∈ O : i 6= j,c ∈ C (2.11)

Constraints (2.8) assure that each operation is assigned to exactly one crane. Constraints (2.9) and

(2.10) determine the value of variable ni j, whereby if ni j + n ji = 0 operations i and j overlap in

time. Constraints (2.11) state that a crane can handle one operation at a time, and if operations i

and j are handled by the same crane, then their operation times must not overlap.
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2.3.2.3 Identifying conflicting operations

Each operation has an origin and destination wagon, the wagon with greater h coordinate is called

right wagon and the other one left wagon, regardless if it is origin or destination wagon.

h−i = ∑
w∈Wi:hw<hbi

hwxiw + ∑
w∈Wi:hw>hbi

hbixiw ∀i ∈ O (2.12)

h+i = ∑
w∈Wi:hw<hbi

hbixiw + ∑
w∈Wi:hw>hbi

hwxiw ∀i ∈ O (2.13)

The horizontal coordinate of the left wagon of transshipment operation i (h−i ) and the right

wagon of transshipment operation i (h+i ) are calculated by equations (2.12) and (2.13) respectively.

Given a set of operations O , any two operations i and j occurring within the common working

area of two cranes pose an additional challenge given that only one crane may exist in this area at

any time. Such operations are considered conflicting with one another (oi jcc′ = 1).

h+i ≤ H−cc′+oa
icc′M ∀i ∈ O,c,c′ ∈ C (2.14)

h+i ≥ H+
cc′−ob

icc′M ∀i ∈ O,c,c′ ∈ C (2.15)

h−i ≤ H−cc′+oc
icc′M ∀i ∈ O,c,c′ ∈ C (2.16)

h−i ≥ H+
cc′−od

icc′M ∀i ∈ O,c,c′ ∈ C (2.17)

oi jcc′ ≥ oa
icc′+ob

icc′+oc
jcc′+od

jcc′−3 ∀i, j ∈ O : i 6= j;c,c′ ∈ C : c 6= c′ (2.18)

oi jcc′ ≥ oa
jcc′+ob

jcc′+oc
icc′+od

icc′−3 ∀i, j ∈ O : i 6= j;c,c′ ∈ C : c 6= c′ (2.19)

Binary variables oa
icc′ , ob

icc′ , oc
icc′ , and od

icc′ are used to assess conflicting operations. Constraints

(2.14) - (2.17) determine the value of these auxiliary variables. Constraints (2.18) and (2.19)

guarantee that if the right wagon of one operation and the left wagon of another are simultaneously

inside the common area, they are considered conflicting operations (oi jcc′ = 1).

Figure 2.3 presents an example where two operations i and j with origins in the common area

of cranes c and c′. These two operations cannot be carried out at the same time since two cranes

cannot be present in the common area. The correspondent values of variables oa
icc′ , ob

icc′ , oc
icc′ , od

icc′

and of oi jcc′ are presented in the figure.

Common area

j i

c′ c

oijcc'  = 1

 = 1!"
#$$′�

 = 0!b
#$$′�

 = 1!c
#$$′�

 = 1!d
#$$′�

 = 1!"
j$$′�

 = 1!b
j$$′�

 = 0!c
j$$′�

 = 1!d
j$$′�

Figure 2.3: An example of two conflicting operations.
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2.3.2.4 Start time of consecutive operations

Duration of operations depend on chosen destination wagon, hence constraints (2.20) are em-

ployed to set operations’ duration.

di = ∑
w∈Wi

tbiwxiw ∀i ∈ O (2.20)

Cranes are able to handle one container at a time, therefore to execute the operations one by

one cranes require ample time to execute one operation and then move to the origin wagon of

the next operation. If operation j is scheduled after i, and both operations are handled by same

crane (yic = 1, y jc = 1, and ni j = 1), constraints (2.21) ensure that start time of operation j is after

operation i is finished (si + di), plus the time crane c needs to travel from destination of i to j’s

origin (ti j).

s j ≥ si +di + teib j − (3− yic− y jc−ni j)M ∀i, j ∈ O : i 6= j,c ∈ C (2.21)

s j ≥ si +gic jc′− (3− yic− y jc′−oi jcc′+n ji)M ∀i, j ∈ O : i 6= j,c,c′ ∈ C : c 6= c′ (2.22)

Constraints (2.22) set the start time of two operations handled by different cranes. Start times

of non-conflicting operations assigned to different cranes are independent from each other. How-

ever, start time of conflicting operations must be set in such a way that only one crane be present in

common areas at any time. Assume two conflicting operations i and j are handled by neighboring

cranes c and c′ respectively, (yic = y jc′ = oi jcc′ = 1). If operation j is scheduled after i (ni j = 1,

n ji = 0), then s j, must be after start time of i, si, plus additional waiting time to ensure only one

crane is present in the common area (gic jc′).

There are four cases to consider when calculating gantry time, gic jc′ , depending on operation

j’s origin and cranes’ location relative to each other. Assume crane c is located to the right of

crane c′ (ηc′ < ηc) and operation i’s destination, ei, is located inside the common area between

cranes c and c′. In this case gantry time, gic jc′ , must be greater than operation i’s duration plus

crane c’s traveling time from operation i’s destination, ei, towards out of common area, H+
cc′ , plus

the time that c′ needs to travel from the left-hand border to b j, tb jH−cc′
.

If operation i’s destination, ei, is located out of common area, then gic jc′ , equals crane c’s

traveling time from origin of operation i, bi, to common area’s right border, H+
cc′ , plus traveling

time of crane c′ from left border to operation j’s origin, tb jH−cc′
. Constraints (2.23) are employed to

find gic jc′ when crane c is to the right of crane c′ (ηc′ < ηc) and operation j’s origin is outside of

common area (hb j > H−cc′).
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gic jc′ ≥ ∑
w∈Wi:hw<H+

cc′

(tbiw + twH+
cc′
)xiw + ∑

w∈Wi:hw>H+
cc′

(tbiH+
cc′

xiw) + tb jH−cc′

∀i, j ∈ O : i 6= j,hb j > H−cc′ c,c′ ∈ C : ηc′ < ηc (2.23)

Constraints (2.24) set gantry time, gic jc′ , for two conflicting operations i and j, when crane c

is the right neighbor of crane c′, operation j’s origin locates out of common area (b j < H−cc′) and

operation i starts before j (n ji = 0). If destination of operation i is located in the common area,

gic jc′ equals i’s duration plus the time crane c′ requires to leave the common area (traveling time of

crane c from i’s destination to right border of common area), plus traveling time of crane c′ from

left border of common area to j’s origin, gic jc′ ≥ di + teiH+
cc′
+ tH−cc′b j

. If destination of operation i is

located out of common area, gic jc′ equals traveling time of crane c from i;’s origin to right border

of common area plus traveling time of crane c′ from left border of common area to j’s origin,

gic jc′ ≥ tbiH+
cc′
+ tH−cc′b j

.

gic jc′ ≥ ∑
w∈Wi:hw<H+

cc′

(tbiw + twH+
cc′
)xiw + ∑

w∈Wi:hw>H+
cc′

(tbiH+
cc′

xiw) − tb jH−cc′

∀i, j ∈ O : i 6= j,hb j < H−cc′ c,c′ ∈ C : ηc′ < ηc (2.24)

Constraints (2.25) are employed to calculate gantry time, gic jc′ , for two conflicting operations

i and j, when crane c′ is to the right of crane c′, operation j’s origin is inside of common area

(b j < H+
cc′) and operation i starts before j (n ji = 0).

gic jc′ ≥ ∑
w∈Wi:hw<H−cc′

tbiH−cc′
xiw + ∑

w∈Wi:hw>H−cc′

(tbiw + twH−cc′
)xiw + tb jH+

cc′

∀i, j ∈ O : i 6= j,hb j < H+
cc′ c,c′ ∈ C : ηc′ > ηc (2.25)

Constraints (2.26) set gantry time, gic jc′ , for two conflicting operations i and j, when crane c

is the left neighbor of crane c′, operation j’s origin locates out of common area (b j > H+
cc′) and

operation i starts before j (n ji = 0).

gic jc′ ≥ ∑
w∈Wi:hw<H−cc′

tbiH−cc′
xiw + ∑

w∈Wi:hw>H−cc′

(tbiw + twH−cc′
)xiw − tb jH+

cc′

∀i, j ∈ O : i 6= j,hb j > H+
cc′ c,c′ ∈ C : ηc′ > ηc (2.26)

To calculate gic jc′ there are eight combinatorial scenarios based on the position of b j and ei,

and cranes’ position in relation to each other, which are addressed in eqs. (2.23) to (2.26).
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Table 2.2 summarizes the eight cases that can arise when calculating gic jc′ by depicting a

schematic view of each situation.

Table 2.2: Eight scenarios to calculate gic jc′ .

Conditions Schematic view of the case Constraints

ηc′ < ηc

Common	area	

j	 i	

C’	 C	

(2.23)

b j > H−cc′
ei < H+

cc′

ηc′ < ηc

Common	area	

j	 i	

C’	 C	

b j > H−cc′
ei > H+

cc′

ηc′ < ηc

Common	area	

j	 i	

C’	 C	

(2.24)

b j < H−cc′
ei > H+

cc′

ηc′ < ηc

Common	area	

j	 i	

C’	 C	

b j < H−cc′
ei < H+

cc′

ηc′ > ηc

Common	area	

i	 j	

C	 C’	

(2.25)

b j < H+
cc′

ei > H−cc′

ηc′ > ηc

Common	area	

i	 j	

C	 C’	

b j < H+
cc′

ei < H−cc′

ηc′ > ηc

Common	area	

i	 j	

C	 C’	

(2.26)

b j > H+
cc′

ei > H−cc′

ηc′ > ηc

Common	area	

i	 j	

C	 C’	

b j > H+
cc′

ei < H−cc′

Cmax ≥ si +di ∀i ∈ O (2.27)

Constraints (2.27) guarantee that Cmax is greater than the end time of all operations.

The SCOP may be reduced to the Sequential Ordering Problem (SOP) as a special case of

the sequencing container moves with one crane and known operations destination. Hence, the

SCOP is at least as hard as the SOP which is proven to be a N P-hard (Montemanni et al., 2009).

Therefore, the SCOP is also N P-hard.



2.4 Algorithms 21

2.4. Algorithms

Efficient heuristic procedures are required for solving the SCOP instances of real-world size. This

study presents efficient algorithms based on the biased random-key genetic algorithm (BRKGA),

namely 2NG and NGH algorithms. Both the 2NG and NGH algorithms are based on the BRKGA,

however they employ different solution representations. This enables further investigations of so-

lution representation. Application of the BRKGA is inspired by successful approaches in the liter-

ature. Numerous studies employed the BRKGA for combinatorial problems including scheduling

problems (Gonçalves and Resende, 2011).

The BRKGA is a variant of the random-key genetic algorithms. It builds on the concept

of “general-purpose metaheuristic”. A solution is represented by a chromosome which in the

BRKGA a chromosome consists of a vector of real numbers in [0,1) called genes Toso and Re-

sende (2014). There is a clear division between the algorithm’s problem-independent and problem-

dependent parts in this framework. The problem-independent part includes the algorithm’s evo-

lutionary engine which includes population, selection, recombination and mutation. Whereas,

algorithm’s problem-dependent part includes chromosome representation, a decoder and evalua-

tion function. It decodes a chromosome into a solution, and then evaluates the solution and returns

its evaluation to the problem-independent part.

The remainder of this section details the problem-dependent part of the algorithms.

2.4.1 2NG algorithm

This section presents chromosome representation and decoder of 2NG algorithm.

Each chromosome of 2NG algorithm is composed of 2n genes, where n is the number of

operations (containers that must be transshipped), i.e.,

Chromosome =

gene1, ...,genen︸ ︷︷ ︸
OS

,genen+1, ...,gene2n︸ ︷︷ ︸
OD


The first n genes are employed to obtain operations sequence (OS), whereas the next n genes

are employed to generate the operations’ destination (OD). Therefore, there are two genes asso-

ciated to each operation i, genei to indicate the OS and genei+n to obtain the OD. A decoder is

employed to generate a solution from a chromosome, Algorithm 1 details 2NG decoder. Before

decoding a chromosome, a list χ of (operation, gene, gene)-tuples must be generated. Each tuple

in this list consists of an operation and its associated OS and OD genes, respectively. The output

of decoder is a list, L , of (operation, wagon, crane)-tuples which for each operation, i, indicates

its destination (wagon) and a crane to handle it.

First, 2NG decoder sorts the list χ by OS genes in ascending order to get the operations

sequence (Line 3), so order of sorted tuples indicates the sequence of the operations. Then for

each tuple, t, a list of feasible wagons of operation i, Wi, is created. A feasible wagon is one with

enough capacity to fit container of operation i and located in a train with container’s destination
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(Line 5). The assigned wagon to operation i is (bm× (genei+n)c+1)th wagon in Wi, where m is

the size of Wi and genei+n is OD gene of operation i. If there is no feasible wagon for operation

i then its container will be placed on the yard (Lines 7 – 11). The yard is modeled as a wagon

with infinite container capacity. Whenever a crane moves a container of an operation i to the yard

does not move along the horizontal axis, therefore, horizontal coordinate of yard is set equal to

horizontal coordinate of origin wagon of operation i, (hyard = hbi).

Let set Cw indicate the cranes which can operate over wagon w. If w locates in a overlap area

then |Cw| = 2, otherwise |Cw| = 1. Based on the origin and destination wagon of an operation

there are three cases to consider when assigning a crane to handle it. First, when both the origin

Algorithm 1: 2NG chromosome decoder
Input: Ordered list χ of tuples {operation, gene, gene}

1 L ← emptylist
2 I ← emptylist
3 χ ← sorted list χ by OS genes ascending.
4 foreach tuple (i,gi,gi+n) ∈ χ do
5 Wi← list of feasible wagons of operation i
6 m← |Wi|
7 if m = 0 then
8 wagon wi← yard

9 else
10 index← bm(gi+n)c+1
11 wagon wi←Wi[index] // ei← wi

12 set C← Cbi ∩Cei

13 if |C|= 1 then
14 crane ci←C[0]

15 else if |C|= 2 then
// Cbi ∩Cei = {c,c′} and ηc′ = ηc +1 if hbi +hei < H−cc′+H+

cc′ then
16 crane ci← c // The crane on the left (crane c) is

assigned to operation i

17 else
18 crane ci← c′ // The crane on the right (crane c′) is

assigned to operation i

19 else
20 New operation j
21 wagon w j← ei

22 b j← yard // operation j’s origin is yard and hyard = hw j

23 crane c j← c ∈ Cw j

24 wagon wi← yard
25 crane ci← c ∈ Cbi

26 insert ( j,w j,c j) to I

27 insert (i,wi,ci) to L

28 return L , I
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and destination wagons are in the working area of one crane (|Cbi ∩Cei |= 1), then the respective

crane carries out the operation (Lines 13 – 14). The second case is when an operation’s origin and

destination wagons are both in the overlap area of two cranes c and c′ (Cbi∩Cei = {c,c′} and ηc′ =

ηc +1), hence both cranes are able to handle the operation (Line 15). Operation i will be assigned

to crane c on the left (ηc < ηc′) if the average of h coordinates of origin (hbi) and destination (hei),

is to the left of overlap area (hbi +hei < H−cc′+H+
cc′) (Line 16), otherwise crane c′ on the right side

of the overlap area is assigned to handle operation i (Line 18). The third case occurs when the

operation is an indirect move (|Cbi ∩Cei |= 0) (Line 19). In this situation two cranes and the buffer

lane are necessarily involved in the operation. The crane in the origin area moves the container

to the buffer lane where a ground vehicle is waiting to move the container to the destination area,

and finally the crane in destination area moves the container from the ground vehicle to its final

position.

Each indirect move imposes an additional operation to the crane schedules. 2NG chromosome

decoder breaks the original operation i into two operations by generating a new operation j to

represent the last segment of indirect move (Line 20) and modifying operation i to represent the

first segment of indirect move. First, it sets the origin, destination and a crane to handle operation

j (Lines 21–23), then destination of operation i is modified to yard (Line 24). After assigning a

crane to handle operation i (Line 25), then the tuple comprised of operation j, its destination (w j),

and the crane to handle it (c j) is inserted to list I to be inserted in the cranes schedule later (Line

26). Finally, operation i, its destination and crane are inserted in the list L (Line 27).

The extra operation j resulted by indirect move should be inserted into the schedule of the crane

which executes the last segment of the indirect move (from buffer lane to the outbound train). The

last segment of an indirect move may only be executed after a ground vehicle delivers the container

to the second crane’s working area. Operation j is inserted into the crane schedule by a local best

fit search algorithm. The local best fit search, checks the certain range of transshipments after the

container is available and inserts the movement into the best-fitting place in the crane schedule.

Through the dynamics of the genetic algorithm, the system learns the relationship between

random-key vectors and solutions with good objective function values by feeding the quality of

the solutions (chromosomes) back into the evolutionary process (problem independent part of the

algorithm). The fitness function is computed by equation (2.1).

2.4.2 NGH algorithm

The NGH algorithm employs genetic algorithm to obtain operation sequence and a heuristic for

assigning destination of operations. The chromosomes in the NGH algorithm have n genes, where

n is the number of operation that must be carried out.

Chromosome =

gene1, ...,genen︸ ︷︷ ︸
OS


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Each gene is associated with an operation and the genes are employed to obtain sequence of

operations. Algorithm 2 details the NGH chromosome decoder.

Determination of operations’ sequence and crane assignment to execute the operations in the

NGH algorithm are similar to the 2NG algorithm. Whereas, the NGH employs a greedy heuristic

to assign destination wagon to operations. Equation (2.28) is employed as a greedy criterion to

define an auxiliary cost, D(i,w), for assigning wagons w to operations i.

D(i,w) = ω0 tbiw +ω1 R(i,w) (2.28)

Algorithm 2: NGH chromosome decoder
Input: Ordered list χ of tuples {operation, gene, gene}

1 L ← emptylist
2 I ← emptylist
3 χ ← sorted list χ by OS genes ascending.
4 foreach tuple (i,gi,gi+n) ∈ χ do
5 Wi← list of feasible wagons of operation i
6 m← |Wi|
7 if m = 0 then
8 wagon wi← yard

9 else
10 wagon wi← w ∈Wi which has minimum D(i,w)// greedy criterion:

D(i,w)

11 set C← Cbi ∩Cei

12 if |C|= 1 then
13 crane ci←C[0]

14 else if |C|= 2 then
// Cbi ∩Cei = {c,c′} and ηc′ = ηc +1 if hbi +hei < H−cc′+H+

cc′ then
15 crane ci← c // The crane on the left (crane c) is

assigned to operation i

16 else
17 crane ci← c′ // The crane on the right (crane c′) is

assigned to operation i

18 else
19 New operation j
20 wagon w j← ei

21 b j← yard // operation j’s origin is yard and hyard = hw j

22 crane c j← c ∈ Cw j

23 wagon wi← yard
24 crane ci← c ∈ Cbi

25 insert ( j,w j,c j) to I

26 insert (i,wi,ci) to L

27 return L , I
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ω0 and ω1 are the coefficients employed in objective function (2.2), R(i,w) is wasted space of

in wagon w when assigned to operation i. R(i,w) equals zero if capacity of wagon w after moving

operation’s i container, liw, is greater than size of the smallest container remained to be scheduled.

If liw is smaller than the size of all other containers, it is considered as wasted space.

R(i,w) =

{
0 if liw ≥ size of the smallest container

liw if liw < size of the smallest container
(2.29)

Similar to the 2NG, output of the NGH algorithm is list L which includes the sequence, crane

and destination of operations and list I which contains extra operations resulted by indirect move.

The operations listed in list I should be inserted into the cranes’ schedules. A local best fit search

algorithm is employed to insert these operations into the respected cranes. Note the last segment of

an indirect move may only be executed after a ground vehicle delivers the container to the second

crane’s working area.

2.5. Computational experiments

The primary goal of the computational experiments is to validate the approach under various prob-

lem settings, thereby demonstrating the flexibility and robustness of the algorithms. To achieve

this goal proposed algorithms are compared against a heuristic based on dispatching rules em-

ployed commonly in transshipment terminals. Secondly, the proposed algorithms are compared

against one another to test the different solution representations.

This section is organized into three parts. First a set of benchmark instances inspired by a

real-world terminal is introduced to enable validation and analysis of the algorithms and also

encourage the other researchers in the field to compete with the proposed solution method (Section

2.5.1). The comparison of the algorithms 2NG, NGH and a heuristic based on dispatching rules is

presented in Section 2.5.2, followed by a discussion on the weights of the objective function (see

Equation (2.1)) in addition to an analysis of the instances’ attributes in Section 2.5.3.

2.5.1 Instances

A set of instances is selected and modified from the literature (Souffriau et al., 2009) to be em-

ployed as SCOP instances. These instances are important and valid since they are inspired by a

real-world terminal and by minor modifications are applicable to current research. The modified

instances are employed to tune the algorithms. Then, a set of 45 instances is generated based on

those from literature to carry out additional computational experiments. The new instances are

generated so that with a certain number of operations there would be instances with various load

factors which enable observing the impact of the load factor and number of operations on the

performance of the algorithms.

The instances are generated inspired by a terminal with eight track, a yard and two cranes. The

attributes of the generated instances are the following:
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• Number of trains = 5;

• Number of tracks = 8;

• Number of cranes = 2 (working area of each crane is 60% of the yard, results in 20%

overlap);

• Number of wagons in each train = 20;

• Wagon types: Two types of wagons are considered with sizes 60ft and 80ft long;

• Container sizes: Three sizes of containers are considered: small: 20ft, medium: 30ft, and

large: 40ft. These are the most common sizes of containers in the industry.

• Train load factors: The load factor is defined as the total container length divided by the

total train length. Nine levels of load factor are considered: [0.1, 0.2, . . . 0.9] with a step of

0.1, where 0.1 means trains are rather empty while 0.9 indicates trains are rather full.

• Number of operations: The benchmark set includes instances with nine levels of the number

of operations from 17 to 255.

2.5.2 Comparison of proposed algorithms and the baseline

To validate the approach under various problem settings and test the performance of the pro-

posed solution approach, both algorithms are compared against one another and also to a greedy

constructive heuristic inspired by dispatching rules common in rail-rail transshipment terminals.

Algorithm 3 details the greedy constructive SCOP (DR) algorithm. The DR algorithm starts by

selecting a random operation i (Line 2), then assigns the nearest available wagon to operation i

(Lines 4 – 5). The nearest crane to origin of operation i (bi) is assigned to carried out operation i

(Line 6). Then, (i,ei,c)-tuple will be inserted to the list L (Line 7) which the sequence of tuples

in it indicates the sequence of operations. Next operation will be the which its origin is nearest to

destination of operation i (Line 10).

All algorithms presented in the previous section were implemented in C++, compiled using

a gcc compiler and run on an Intelr processor with a clock speed of 2.40 GHz and 4.00 GB of

RAM, under Linux operating system.

The irace package (López-Ibáñez et al., 2016) which implements the iterated racing for au-

tomatic algorithm configuration is employed to tune the algorithms. The configuration of tuned

parameters is obtained by running the irace with the budget of 2000 runs. Table 2.3 details the

parameters, their role, type, range and value per algorithm, obtained by irace.

The objective function (2.1) is a weighted sum of the total transshipment time and total size

of non-allocated containers (Enc), where ω0 and ω1 reflect the relative importance of Cmax and

Enc, respectively. Given the importance of minimizing the number of containers remaining in the

terminal due to limited capacity of the terminals and delivery time of the containers, minimizing

the number of containers remaining in the terminal is more important than total transshipment
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Algorithm 3: Greedy constructive SCOP (DR) algorithm

1 L ← empty list // or empty ordered set
2 operation i← random operation in O
// select a random operation from the list of operations O

3 while O is not empty do
4 Wi← list of feasible wagons of operation i
5 ei← the nearest available wagon in Wi to the origin of operation i
6 c← nearest crane to bi // greedy criterion: nearest crane to the

origin of operation i is selected
7 insert (i,ei,c) to L
8 remove o from O
9 if (O is not empty) then

10 operation i← the operation which its origin is the nearest to the current location
of the crane (ei)

11 return list of tuples L

Table 2.3: Tuning parameters by irace package

Parameter Role Type Range
Value

2NG NGH
γ = p

n p is population size and n is chromosome length integer (1, 100) 20 54
max_g Maximum number of generation integer (200, 3000) 464 2128
pe Size of elite population real (0.10, 0.25) 0.124 0.127
pm Size of mutant population real (0.02, 0.20) 0.088 0.134
ρe Elite allele inheritance probability real (0.60, 0.90) 0.687 0.627

time. Hence, throughout this paper it is assumed that ω0 = 1 and ω1 = 100. However, it is also

necessary to study the impact of weight parameters. A discussion on the impact of the weights

follows in Section 2.5.3.

Results of the computational experiments are presented in Table 2.4, averaged over the values

of ten runs with different random seeds, showing the total number of containers (#C), the number

of operations (#O), the load factor (LF), the objective value (Ob j), the total transshipment time

(Cmax), the total size of non-allocated containers (Enc), and the cpu time for each instance and

algorithm.

Table 2.4: Summary of the computational results for the three algorithms

Ins. #C # O LF
DR algorithm 2NG algorithm NGH algorithm

Ob j Cmax Enc Ob j Cmax Enc cpu Ob j Cmax Enc cpu

1_17 29 17 0.1 806.0 806.0 0 710.6 710.6 0 8.5 771.0 771.0 0 11.3
2_17 58 17 0.2 880.0 880.0 0 667.3 667.3 0 8.7 675.0 675.0 0 10.9
3_17 82 17 0.3 837.0 837.0 0 717.0 717.0 0 8.6 787.0 787.0 0 10.4
4_17 116 17 0.4 1417.0 1417.0 0 911.2 911.2 0 8.3 927.0 927.0 0 9.6
5_17 138 17 0.5 2625.0 2625.0 0 1275.0 1275.0 0 8.7 1283.5 1283.5 0 9.4
6_17 170 17 0.6 1915.0 1915.0 0 1166.8 1166.8 0 8.0 1283.5 1283.5 0 8.9
7_17 199 17 0.7 2636.0 2636.0 0 1300.5 1300.5 0 6.9 1336.0 1336.0 0 8.2
8_17 214 17 0.8 10594.0 3594.0 70 7653.3 1653.3 60 5.5 7782.5 1782.5 60 5.8

(continued on next page)
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Ins. #C # O LF
DR algorithm 2NGalgorithm NGH algorithm

Ob j Cmax Enc Ob j Cmax Enc cpu Ob j Cmax Enc cpu

9_17 255 17 0.9 25942.0 2942.0 230 19518.6 2518.6 170 9.0 19595.0 2595.0 170 7.5

2_42 58 42 0.2 2912.1 2912.1 0 1360.0 1360.0 0 65.7 1398.0 1398.0 0 58.7
3_42 82 42 0.3 3730.1 3730.1 0 1878.8 1878.8 0 57.7 1376.0 1376.0 0 56.1
4_42 116 42 0.4 2713.1 2713.1 0 1843.1 1843.1 0 61.8 1753.0 1753.0 0 53.5
5_42 138 42 0.5 2515.0 2515.0 0 1983.1 1983.1 0 54.1 2014.0 2014.0 0 49.8
6_42 170 42 0.6 3693.0 3693.0 0 2743.2 2743.2 0 63.6 2683.0 2683.0 0 47.2
7_42 199 42 0.7 6581.1 6581.1 0 3488.4 3488.4 0 48.6 2961.0 2961.0 0 42.3
8_42 214 42 0.8 18044.2 8044.2 100 7209.2 5209.2 20 55.4 6557.0 4557.0 20 32.9
9_42 255 42 0.9 48382.0 7382.0 410 22944.4 6944.4 160 54.1 23133.3 7133.3 160 86.7

3_62 82 62 0.3 4925.1 4925.1 0 2356.0 2356.0 0 140.7 1635.0 1635.0 0 122.3
4_62 116 62 0.4 3731.1 3731.1 0 3096.0 3096.0 0 155.7 1968.0 1968.0 0 112.9
5_62 138 62 0.5 6325.1 6325.1 0 3464.0 3464.0 0 145.5 2516.0 2516.0 0 107.4
6_62 170 62 0.6 4879.2 4879.2 0 4156.0 4156.0 0 164.0 3256.0 3256.0 0 104.1
7_62 199 62 0.7 7209.2 7209.2 0 4472.0 4472.0 0 127.4 3466.0 3466.0 0 94.6
8_62 214 62 0.8 23776.2 16776.2 70 9896.0 7896.0 20 170.3 7826.0 5826.0 20 92.4
9_62 255 62 0.9 56926.1 7926.1 490 28390.0 11390.0 170 147.7 27427.4 10427.4 170 155.8

4_85 116 85 0.4 3938.1 3938.1 0 3262.7 3262.7 0 281.0 2410.0 2410.0 0 217.0
5_85 138 85 0.5 5073.2 5073.2 0 4338.0 4338.0 0 355.8 2922.0 2922.0 0 227.9
6_85 170 85 0.6 9013.2 9013.2 0 5482.0 5482.0 0 327.7 3548.0 3548.0 0 247.6
7_85 199 85 0.7 11279.1 11279.1 0 7434.0 7434.0 0 302.2 3889.8 3889.8 0 239.0
8_85 214 85 0.8 27029.5 13029.5 140 9241.2 9241.2 0 314.3 6697.0 6697.0 0 174.8
9_85 255 85 0.9 83638.4 17638.4 660 35269.6 22169.6 131 368.9 33285.3 16285.3 170 253.0

5_97 138 97 0.5 6042.2 6042.2 0 5046.1 5046.1 0 390.4 3011.0 3011.0 0 275.1
6_97 170 97 0.6 10324.2 10324.2 0 7434.3 7434.3 0 339.4 4511.0 4511.0 0 321.2
7_97 199 97 0.7 15641.4 15641.4 0 8017.0 8017.0 0 320.4 4866.0 4866.0 0 322.8
8_97 214 97 0.8 34039.5 16039.5 180 13530.6 13530.6 0 370.8 8072.0 8072.0 0 291.3
9_97 255 97 0.9 100170.5 32170.5 680 39603.3 22503.3 171 373.9 36977.0 19977.0 170 287.2

6_127 170 127 0.6 12569.1 12569.1 0 11320.1 11320.1 0 407.3 5894.0 5894.0 0 375.0
7_127 199 127 0.7 18066.7 15066.7 30 11925.3 11925.3 0 420.2 6321.0 6321.0 0 381.0
8_127 214 127 0.8 60197.5 19197.5 410 31570.3 31570.3 0 486.5 12149.0 12149.0 0 411.9
9_127 255 127 0.9 108976.1 22976.1 860 49632.2 22632.2 270 513.8 45822.2 17822.2 280 386.6

7_148 199 148 0.7 54232.5 39232.5 150 11609.0 11609.0 0 551.1 6794.0 6794.0 0 434.8
8_148 214 148 0.8 53374.5 29374.5 240 23674.2 23674.2 0 554.6 10933.0 10933.0 0 401.2
9_148 255 148 0.9 115920.4 25920.4 900 57329.3 34329.3 230 667.4 43261.8 20261.8 230 492.9

8_166 214 166 0.8 56558.2 25558.2 310 43324.9 40324.9 30 873.3 19496.0 16496.0 30 594.5
9_166 255 166 0.9 113711.1 31711.1 820 52064.8 27964.8 241 896.7 42945.8 19945.8 230 579.7

9_202 255 202 0.9 138805.1 32805.1 1060 62184.2 26184.2 360 1336.3 59329.0 23329.0 360 650.4

The results show the 2NG algorithm outperforms the other algorithms when the number of

operations is low (#O = 17), as the number of operations increases the 2NG algorithm no longer

outperforms the other algorithms and it competes with the NGH when the #O = 42. However for

larger instances (#O≥ 62) the NGH outperform the other algorithms. Although the 2NG performs

best for small instances, considering the size of real-world instances the NGH represent the best

option for solving real-world size instances.

Figure 2.4 illustrates how both proposed algorithms improve the performance of the DR

heuristic. The horizontal axis details the number of operations. The improvements over the DR

are, represented on the vertical axis. The improvements are averaged over all instances with equal
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number of operations. For small instances (#O = 17), the 2NG algorithm yields highest improve-
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Figure 2.4: Average improvement of proposed algorithms over greedy heuristic based on dispatching rules
(DR).

ment over the DR. By growing the number of operations the NGH results in higher improvement

(#O≥ 42), it reaches to the highest average improvement, 76%, for instances sized #O = 148. The

results show algorithms 2NG and NGH improved the DR in average 40% and 52%, respectively.

2.5.3 Insights and discussion

The impact of weight parameters ω0 and ω1 on the objective function is investigated by testing

three algorithms (2NG, NGH and DR) over instance “9_166". The selected instance has trains

90% full of containers (load factor = 0.9) and high number of operations (#O = 166) which is able

to represent the contrast of the both parts of the objective function Cmax and Enc (for instances with

lower load factor Enc is not significant as there will be ample space to put all the containers on

the outbound train). Following experiments illustrate the impact of adjusting ω1 in the range of

(0,1, ...,1E+5) incrementing exponentially while ω0 is set to 1.

For ω1 = 0 the algorithms only optimize the transshipment time as the objective function

equals to Cmax and for ω1 = 1E+5 the algorithms are optimizing the size of non-allocated contain-

ers as ω1Enc is relatively much larger than ω0Cmax.

Figures 2.5, 2.6, and 2.7 illustrate the behavior of the 2NG, NGH and DR algorithms with

respect to Cmax, Enc, and total cost.
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Figure 2.5: Impact of adjusting ω1 on Cmax.

The Cmax value grows by increasing ω1 (Figure 2.5) for both proposed algorithms, when ω1 =

1000 the 2NG goes above the DR (yields higher Cmax) while the NGH remains below the DR for

all values of ω1.
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Figure 2.6: Impact of adjusting ω1 on Enc.

Figure 2.6 shows how Enc decreases by increasing ω1. Note that for ω1 ≥ 100, Enc remains

constant for both proposed algorithms.

Figure 2.7 illustrates the changes of objective function by increasing the value of ω1. It is

evident that by increasing ω1 total cost increases and for large values of ω1 (ω1 ≥ 1000), the 2NG
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Figure 2.7: Impact of adjusting ω1 on total cost.

and NGH yield similar total cost, since both have equal Enc (see Figure 2.7). It is worth mentioning

that NGH shows the lowest total cost for all values of ω1.

To better illustrate the trade off between Cmax and Enc, parameter α is defined. Equation (2.30)

defines the value of α , where minC is the minimum value of Cmax obtained by all algorithms when

ω1 = 0, and minEnc is the minimum value of Enc when ω1 = 1E+5.

α =
Cmax

minC
+

Enc

minEnc
(2.30)
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Figure 2.8: Impact of adjusting ω1 on total cost.

Figure 2.8 shows how α varies for the algorithms 2NG, NGH, and DR for different values

of ω1. The values used for parameters minC and minEnc are 4837.6 (obtained by NGH‖ω1 = 0)

and 230 (obtained by NGH‖ω1 = 1E+4 and 2NG‖ω1 = 1E+5) respectively. The minimum value

of α = 4.52 is obtained when ω1 = 100 by the NGH algorithm. Theoretically, the minimum

value that α can get equals 2 (when cmax = minC and Enc = minEnc), however in practice it is not
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achievable since having one objective minimized (either cmax or Enc) requires compromise on the

other objective.

Figure 2.9 illustrates the average cpu time of the both algorithms when varying the number of

operations. It highlights how, for the NGH algorithm, the computational time increases linearly

when increasing the number of operations.
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Figure 2.9: Average solution time of algorithms.

Finally, impact of the overlap area’s size upon total transshipment time (Cmax) is examined.

The size of overlap area (SOA) is the percentage of the yard shared between two cranes. Three

sets of instances are employed: low, medium, and high load factor, each set includes three in-

stances. Figures 2.10, 2.11, and 2.12 depict the relative Cmax value of NGH for SOA varying from

0% to 50% with increasing step of 10% for instances with low, medium, and high load factor, re-

spectively. The relative Cmax value is defined as the ratio of Cmax for different SOA to the minimum

Cmax of all SOAs.
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Figure 2.10: Impact of SOA on low load factor instances.

The results indicate that when the number of transshipments is low (#T = 17), SOA does not

have a significant impact on the performance of the cranes. However when the yard is heavily

loaded (load factor = 90%), SOA ≥ 40% results in higher Cmax. In this situation (high load
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Figure 2.11: Impact of SOA on medium load factor instances.
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Figure 2.12: Impact of SOA on high load factor instances.

factor and low number of transshipments), reducing the SOA reduces the idle time of cranes,

and eventually improves the Cmax. For instances with low and medium load factor (Figures 2.10

and 2.11), there is not a significant difference in the Cmax. In cases of instances with high load

factor (Figure 2.12), when the SOA is very small (SOA = 10%) or very large (SOA = 50%), Cmax

increases significantly by almost 20%. By contrast, one can conclude that SCA = 20% results in

a better trade-off between the idle time of cranes and the number of indirect moves for instances

with high load factor and large number of transshipments.

2.6. Conclusions

This section proposed a new approach to solve the scheduling crane operations problem in rail-

rail transshipment terminals. In this approach wagon assignment for containers, assignment of

container move operations to cranes and sequencing operations per crane were considered simul-

taniously and addressed jointly.

Two different algorithms, namely the 2NG and NGH based on the biased random key genetic

algorithm (BRKGA) were proposed. Each algorithm builds on a different chromosome (solution
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representation). The 2NG with 2n genes and the NGH with n genes for each chromosome where

n is the number of operations.

The algorithms’ performance and robustness were tested by comparing them against an al-

gorithm based on dispatching rules and also against one another. A set of 45 instances generated

inspired by real terminal. The results show that proposed algorithms 2NG and NGH improved dis-

patching rules by 43% and 57% in average respectively, which indicates that there is a significant

room to improve the common performance in the terminals. Comparing the proposed algorithms

against one another show the NGH algorithm outperforms the 2NG algorithm for medium and

large instances, while the 2NG algorithm yields a better solutions for small instances (#O = 17).

The experiments also indicate that for instances with low and medium load factor, the size of

overlap area has no significant impact on total transshipment time, whereas, to achieve better

transshipment times, the size of overlap area should be around 20%.

Future research directions that may be explored include addressing related crane operation

scheduling problems that exist within rail-road transshipment terminals which serve as the in-

terface between two separate modes of transportation. In these terminals gantry cranes span all

tracks, storage areas and truck lanes, thereby enabling the transshipment of containers between

multiple trains, storage areas and trucks. Effectively scheduling crane operations, as demonstrated

in this paper, has an important impact on the day-to-day operation of such terminals.



Chapter 3

Crane-operated warehouse scheduling:
Integrating location assignment and
crane scheduling

Crane-operated warehouses constitute an essential asset for the many industries which must tem-

porarily store products on their way from manufacturers to consumers. Such warehouses are

a practical necessity rather than an explicitly desired service and they introduce significant op-

erational costs which should be minimized. The problem addressed by the current paper, the

Crane-operated Warehouse Scheduling Problem (CWSP), concerns the location assignment of in-

put products and the scheduling of cranes for product movement in such warehouses. Several con-

straints are associated with the problem, for example certain products should not be stored close

to each other (due perhaps to a difference in temperature or aroma) and cranes must respect oper-

ational safety distances between each other in order to prevent dangerous collisions. The present

paper explores a novel methodology which combines these two decisions – location assignment

and crane scheduling - instead of solving them sequentially. In addition to mathematical formula-

tions for location assignment and crane scheduling, both an integrated mathematical formulation

and a fast heuristic are presented for the CWSP. The quality of the mathematical formulation and

the heuristic are compared against the conventional sequential approaches. Experimentation upon

an extensive range of instances show significantly improved results are attainable when integrat-

ing location assignment and crane scheduling, despite some (expected) increase in computational

time.

3.1. Introduction

Warehouses constitute a form of infrastructure commonly employed by manufacturers, whole-

salers and retailers to store goods not only during the production process but also during their

35
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distribution. Warehouse efficiency therefore plays a crucial role in global economy. Their effi-

ciency enhances the capacity of supply chains, providing significant economic and service bene-

fits to both businesses and end users. Reducing storage and handling costs, increasing warehouse

capacity and improving the timeliness of deliveries are essential to further sustaining and strength-

ening supply chains. The present study focuses on the first aspect, in particular in Crane-operated

warehouses.

The term ‘Craned-operated warehouse’ refers to a type of warehouse or storage area which

employs any type of overhead crane such as rubber-tired gantry cranes (RTGCs) or rail mounted

gantry cranes (RMGCs). Overhead cranes are commonly used in industrial warehouses where the

stored products are rather heavy and large-sized in nature (examples of which include steel coils,

large pallets of goods, . . . ) or in container terminals where containers are temporarily stored in

stacks before being transferred to their next destinations. The Crane-operated Warehouse Schedul-

ing Problem (CWSP) studied throughout this paper concerns the optimization of both where to

store products and the crane operations which are necessary to do so in warehouses which employ

such overhead cranes. A warehouse typically consists of a set of input and output points which

are located in the periphery of a storage area. Products are stored subject to a range of operational

constraints and a set of cranes are employed for handling operations. In many cases, cranes cannot

overtake each other (such as when they are operating on the same pair of rails), thereby necessitat-

ing proper safety measures to avoid collisions. The CWSP as such is composed of two constituent

optimization problems, namely:

i) The Location Assignment Problem (LAP): assigning the storage locations to incoming prod-

ucts and those which must be relocated within the storage area.

ii) The Crane Scheduling Problem (CSP): scheduling the cranes’ operations.

The objective is to minimize both total storage cost and tardiness of crane operations.

The CWSP is conventionally split into the two aforementioned sub-problems – the LAP and

CSP - which are solved sequentially. First, the LAP is solved and the resulting storage locations

for incoming/relocated products are fixed. Next, the CSP is solved to determine the best schedule

for the handling operations. To date, there has been a considerable lack of research which assesses

the impact of integrating these two sub-problems.

Container terminals represent one specific real-world application where the CWSP is encoun-

tered. Given the continuously increasing volume of containers being handled in terminals world-

wide, which places significant pressure on terminals’ infrastructure and operations, it is unsurpris-

ing that there exists a vast body of container terminal literature relevant to the problem.

The majority of studies related to the LAP involve optimization problems in container termi-

nals such as the re-handling problem (Jovanovic and Voß, 2014; Ku and Arthanari, 2016) and the

container stacking problem (Zhang et al., 2014; Gharehgozli et al., 2014). The re-handling prob-

lem concerns removing containers from stacks to enable a given set of container retrievals where

the objective is to minimize the number of moves. Studies addressing the container stacking prob-

lem mostly focus on minimizing reshuffling, namely those unproductive moves required to gain
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access to a desired container which is blocked (Chen and Lu, 2012; Boysen and Emde, 2016).

Other objectives include minimizing travelling distance, wasted space, or estimated retrieval cost

(Park et al., 2011).

The objective function of the LAP in the present study derives itself directly from operational

practices found in production industries and differs from objective functions found in references

related to container terminals. It includes cost terms related to storing a product in a specific loca-

tion and others related to storing certain products adjacent to one another. The former cost terms

are used to model the retrieval costs (specified as a distance from an output point), while the latter

model operational constraints of production industries which seek to avoid storing certain products

in close proximity. For instance, companies may wish to avoid storing aromatic products next to

each other or may require hot products to be stored away from those which have already cooled

down. While companies may often disallow such neighbouring location assignments altogether,

in situations of high storage occupancy it may not always be feasible to do so. Addressing such

situations as soft constraints, penalized as costs in the objective function, enables the necessary

modelling flexibility and avoids infeasibility.

Many studies address the CSP independent from the LAP, considering the LAP’s solution as

a fixed input. The most relevant references to the present study are those focused on schedul-

ing multiple cranes. For single crane scheduling, interested readers are referred to the survey by

Boysen and Stephan (2016). Due to the increasing necessity to accelerate handling operations in

warehouses, many recent papers have focused on scheduling multiple cranes operating simulta-

neously within the same storage area. Dorndorf and Schneider (2010) studied a container yard

in which a pair of cranes operates on the same rails with another larger crane operating above

them (cross-over crane) on its own pair of rails. Each of the two smaller cranes has its own dis-

tinct working area to avoid collisions. Given independent and mutually-exclusive working areas

and the presence of a separate cross-over crane, crane interference does not pose a problem in

such yards. By contrast, Li et al. (2009) considered a container terminal which employs multiple

cranes that may interfere with one another. They proposed a discrete-time MIP model for the

problem and a heuristic to solve it. Li et al. (2012) extended Li et al. (2009)’s work by proposing

a continuous time MIP model capable of handling instances with a higher number of storage and

retrieval requests. Wu et al. (2015) also considered a container terminal with multiple cranes, as Li

et al. (2009, 2012), and proposed a polynomial time heuristic to solve their optimization problem.

These studies are particularly interesting with regard to how they model the scheduling of multiple

cranes operating in storage areas with inter-crane interference. However a noteworthy and signifi-

cant difference with respect to the present work lies in how within all the aforementioned studies

containers are delivered. This means cranes remain static at the stacking piles and do not move

during handling operations. Consequently, the duration of all operations can be assumed to be

equal. This simplifies modeling the problem by enforcing equal time durations for all operations.

In a general setting, however, input and output may occur anywhere around the storage area and

cranes move over that storage area while handling products. Gharehgozli et al. (2017) investigated

a set of rules and their influence on the effect of temporary locations in a so-called handshake
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area which facilitates container handover between cranes. The paper presented some managerial

insights on the size, location, and number of such handshake areas.

Gharehgozli et al. (2015) attempted to integrate location assignment and crane scheduling

problems in a container terminal, wherein the water-side crane performs all requests which must

be stacked or retrieved from the water-side, and land-side operations are carried out similarly by

a land-side crane. However a significant limitation to their model is that storage and retrieval

requests are already assigned to cranes in advance. Moreover, the model was designed for only

one land-side and one water-side crane, and thus cannot accommodate cases with more than two

cranes, or cases where both cranes may handle requests from anywhere throughout the storage

area.

In practice, warehouse managers are becoming increasingly aware that warehouse efficiency

may be bolstered by exploiting an integrated optimization approach, where location assignment

and crane scheduling decisions are simultaneously taken into consideration and jointly optimized

(Darvish and Coelho, 2018). The literature is however lacking studies that investigate this. The

present research, therefore, focuses on this integrated approach of handling the CWSP. It provides

a general setting which may be easily adapted to other warehouses, land-side container terminals

or any other industry employing multiple gantry cranes for product handling.

Mathematical formulations and heuristics are developed and tested upon a set of instances

which are randomly-generated using probability distributions and insights extracted from a rele-

vant industrial case. Results are compared against those obtained with a heuristic based on the

dispatching rules and manual strategies employed in practice. The findings from this compu-

tational study reveal the significant benefits of combining the LAP and CSP when solving the

CWSP.

The remainder of the paper is structured as follows. Section 3.2 provides a detailed problem

definition of the CWSP. Section 3.3 presents mathematical formulations for the LAP and the CSP,

and also formulates the CWSP by means of a continuous-time mixed integer programming model

which considers realistic constraints. Section 3.4 presents a heuristic algorithm for solving the

LAP, CSP and CWSP. Computational experiments and a comparative algorithmic performance

analysis are detailed throughout Section 3.5. Finally, Section 3.6 summarizes the paper’s primary

findings and discusses possible future research directions.

3.2. Problem definition

Throughout this study, a crane-operated warehouse is considered which consists of a storage area

within which products are placed. The storage area is composed of locations, with each loca-

tion storing at most one product. A set of special locations representing input/output (I/O) points

around the storage area is defined where input requests originate and output requests must be de-

livered. Each I/O point either originates input or collects output requests which must be processed

by their due time.

Each request consists of a product that must be moved. Requests are divided into two sets:
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• Input requests (RI): requests which require location assignment. RI consists of requests

for products at an input point requiring transfer to the yard or products that must be moved

within the yard to enable cranes to access locations, located beneath them, associated with

output requests;

• Output requests (RO): requests consisting of products within the yard requiring transfer to

an output point.

Set R represents the union of the two sets: R = RI ∪RO. A release time and due time are

associated with each request, defining when the product is available for transfer and when it is due

to be transferred.

The set of available locations L consists of locations that are already free or will become free

during the scheduling horizon when their stored product has been moved. This includes the origin

location of the output requests and those requests which move products inside the yard. L excludes

locations which store products that will not be moved during the scheduling horizon. Following

convention, the storage area length is mapped to a horizontal coordinate axis. A horizontal coor-

dinate hl is associated with each individual location l ∈ L. The horizontal coordinates in the yard

are ordered from left to right. A product may be stored in a location above ground level, stacked

on another product. Therefore, in addition to its horizontal and lateral coordinates, a location l is

also defined by its level above the ground. To be able to store a product in a location above ground

level, all locations beneath the product must be occupied by other products. Therefore, in addition

to its horizontal and lateral coordinates, a location l is also defined by its level above the ground.

To be able to store a product in a location above ground level, all locations beneath the product

must be occupied by other products. Cranes are employed to execute input and output requests.

A set of available, identical cranes C is defined, each being capable of handling one request at a

time. Cranes are mounted on a pair of rails along the horizontal axis, and are ordered and indexed

from left to right in the storage area. Additionally, cranes have no predefined working areas, the

only restriction being that they cannot cross and that a safety distance must be respected between

neighbouring cranes while moving throughout the storage area. This study assumes that cranes

can reach all locations.

Figure 3.1 illustrates a top-view of a crane-operated storage area in which the gray border

represents the input/output points. Three cranes are ordered from left to right and operate across

the storage area. Note that the safety distance must be respected and therefore, cranes cannot pass

over each other.

The CWSP consists of two optimzation problems, the LAP and the CSP. The LAP’s objective

is to minimize the total storage cost of input requests. The storage cost for a product is defined

in terms of an assignment in the neighbourhood of other products in the storage area. The total

storage cost includes the cost, summed over all input requests, of assigning an input request to a

location in the storage area (pre-calculated and corresponding with the distance to neighbouring

products which will not move during the scheduling horizon) and the cost of assigning two input

requests in neighbouring locations.
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Crane

Location(s)

I/O point

Safety 
distance

Crane 1 Crane 2 Crane 3

Figure 3.1: Top view of a warehouse employing three cranes.

The CSP consists of deciding when and by which crane each request will be executed, while

respecting precedence constraints and constraints concerning safety distances. Precedence con-

straints may be predetermined or introduced during location assignment. Predetermined prece-

dence constraints follow from when a product is stacked on top of a product associated with an

output request, the top product must be removed first after which the output request may be ex-

ecuted. Precedence constraints introduced during location assignment follow from assigning an

input request to the location of a request originated within the yard (either input or output) or as-

signing two input requests on top of each other. The objective is to minimize total tardiness of all

requests. A request’s tardiness equals the difference between its completion time and due time if

positive, or zero otherwise.

The combined problem of solving both the LAP and CSP simultaneously is referred to as the

CWSP. The objective of the CWSP is to minimize the weighted linear expression presented in

Equation (3.1), where α and β are weights defining the relative importance of the terms, while

ELA and ECS correspond to total storage cost and total tardiness, respectively.

Total cost = α ·ELA +β ·ECS (3.1)

3.3. Mathematical formulation

This section presents mathematical formulations for the LAP (Section 3.3.1) and CSP (Section

3.3.2), followed by a formulation for the CWSP (Section 3.3.3) which considers the LAP and CSP

simultaneously.
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Table 3.1: Notations for the LAP formulation

Sets:
R : set of all requests

RI : set of input requests, RI ⊆R
L : set of available locations, those locations that are currently empty or

will become empty due to product movements.
Ul : set of all available locations underneath location l, Ul ⊂ L
Nl : set of all neighbouring locations of location l, Nl ⊂ L

Parameters:
ωi j : storage cost of assigning request i to a neighbouring location of product

associated with request j
γil : storage cost of assigning request i to location l
bi : origin location of request i

Decision variables:
xil : binary variable equal to 1 if request i is assigned to location l and 0 otherwise
zi j : binary variable equal to 1 if request i is assigned to a neighbouring location of

request j’s destination and 0 otherwise

3.3.1 Location assignment problem

Formulation FLA concerns the assignment of destination locations to input requests. Table 3.1

summarizes the notation employed for the LAP formulation.

FLA



min ∑
i∈RI

∑
l∈L

γilxil + ∑
i∈RI

∑
j∈RI

ωi jzi j

s.t. ∑
l∈L:l 6=bi

xil = 1 ∀ i ∈RI

∑
i∈RI

xil ≤ 1 ∀ l ∈ L

xil ≤ ∑
j∈RI

x jk ∀ i ∈RI, l ∈ L, k ∈Ul

xil + x jk ≤ 1+ zi j ∀ i, j ∈RI, l ∈ L, k ∈ Nl

xil ∈ {0,1} ∀ i ∈RI, l ∈ L

zi j ∈ {0,1} ∀ i, j ∈RI,

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Objective function (3.2) minimizes the total storage cost. The storage cost is divided into

two parts: the cost of assigning request i to location l and the cost of assigning requests i and

j ∈RI in each other’s neighbourhood, denoted by ωi j and γil respectively. Constraints (3.3) and

(3.4) are classic assignment constraints ensuring exactly one location is assigned to each input

request and that each location receives, at most, a single request, respectively. Constraints (3.3)

also prevent assigning input requests to their origin locations. If request i represents a product

that must be moved within the yard to access a product below, other input requests may use bi as

their destination, after the product below bi has been moved. Constraints (5) force all available

locations underneath location l ∈ L to have an input request assigned, thus ensuring that no product

is stacked atop an empty location. It is sufficient to assure there is an input request assigned to
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each available location k ∈ Ul , since the products not associated with any requests will not be

moved during the scheduling horizon. Constraints (3.6) set the value of zi j to 1 if requests i and

j are placed in neighbouring locations and 0 otherwise. Constraints (3.7) and (3.8) state variables

xil and zi j are binary.

Following the LAP, precedence constraints may be implied when input requests are assigned

to the origin locations of output requests or when two input requests are assigned to locations

where one is on top of the other. The outcome of the LAP (destination location for input requests)

along with the set of precedence requests is the input for the CSP.

3.3.2 Crane scheduling problem

Formulation FCS models the CSP which considers the crane assignment for requests and the

sequencing of requests per crane. FCS implements various realistic operational constraints such

as multiple cranes working simultaneously in the storage area and precedence constraints. Note

that each crane can traverse the entire storage area provided safety distances between all cranes

are respected. This means that a crane may move beyond the storage area boundary to provide

space for another crane to access storage location at or close to the area’s perimeter.

The continuous-time formulation for the CSP presented in this paper was inspired by Li

et al. (2012), who showed that for the CSP with multiple cranes this formulation significantly

reduced the model’s size and enabled larger instances to be solved compared to a discrete-time

formulation for the same problem. Recall from Section 3.1 that Li et al. (2012) considered the

CSP in a container terminal where containers were brought directly in front of the stacking pile.

As a consequence, cranes do not move along the rails when moving a product. They instead

move products laterally (along the crane beam). However, in a general setting of crane-operated

warehouses the cranes move along the storage area to reach the respective input/output point

during their operations. Conflicting requests and variable operation durations are consequently

inevitable. The model presented in the following section accounts for this additional complexity.

Table 3.2 summarizes the notation employed to formulate the CSP.

The constraints of FCS are organised into three categories: (i) request assignments for cranes,

(ii) handling conflicting requests and, finally, (iii) setting the requests’ starting times.

(i) Request assignments for cranes

Constraints (3.9) ensure that exactly one crane is assigned to each request. Constraints (3.10) and

(3.11) determine the value of variable ni j which must be 1 if request i finishes before the starting

time of request j and 0 otherwise.
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Table 3.2: Notations for the CSP formulation

Sets:
RO : set of output requests, RO ⊆R

Γi : set of requests that must be executed before request i, Γi ⊆R
C : set of cranes

Parameters:
sdcc′ : safety distance required between cranes c and c′

stcc′ : time required by a crane to travel the safety distance between cranes c and c′

ML : yard length + ∑c∈C sdc(c+1)
MT : large number, 2 × required time for a crane to travel the yard length × number of requests
ηc : order of crane c in the storage yard, 0≤ ηc < NC
di : duration of request i
bi : origin location of request i
ei : destination location of request i
ri : release time of request i
τi : due time of request i
hl : horizontal coordinate of location l, denoting the coordinate along the rails

h−i : horizontal coordinate of the leftmost location of request i’s trajectory
h+i : horizontal coordinate of the rightmost location of request i’s trajectory

gic jc′ : required waiting time between the start time of request i by crane c and the start time of request j
by crane c′ (due to possible conflicts)

tlk : time required by a crane to travel from location l to location k
oa

i j : equal to 1 if trajectory of request i is to the left of request j’s trajectory and 0 otherwise

Decision variables:
yic : binary variable equal to 1 if request i is handled by crane c and 0 otherwise
si : continuous variable indicating the start time of request i
δi : continuous variable indicating the tardiness of request i

Auxiliary variables:
ni j : binary variable equal to 1 if request i finishes before the start time of request j and 0 otherwise
qi j : binary variable equal to 1 if request i begins before the start time of request j and 0 otherwise
oi j : binary variable equal to 1 if requests i and j are conflicting and 0 otherwise
ob

i j : binary variable equal to 1 if the crane assigned to request i is to the right of the crane assigned to request j
and 0 otherwise.

oc
i j : binary variable equal to 1 if the distance between h−i and h+j is less than the safety distance required between

cranes handling them and 0 otherwise
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∑
c∈C

yic = 1 ∀i ∈R (3.9)

si +di ≥ s j−MT ni j ∀i, j ∈R : i 6= j (3.10)

si +di ≤ s j +(1−ni j)MT ∀i, j ∈R : i 6= j (3.11)

Each crane may move only one product at a time. When two requests are scheduled within

overlapping times (ni j = n ji = 0), they must be assigned to different cranes. Figure 3.2 presents

two cases involving requests i and j where the horizontal axis represents time (t). In the first

case, s j (starting time of j) is larger than si and smaller than si +di (finishing time of i), and thus

ni j = n ji = 0 (time overlapping requests). In the second case, request j is executed after request i

is finished and, therefore, ni j = 1 and n ji = 0 (non-overlapping moves).

t t

sj sj +dj

si si +di

request j

request i

nij = nji = 0 nij = 1, nji = 0

sj sj +dj

si si +di

Figure 3.2: An example of overlapping and non-overlapping requests with respect to time.

Constraints (3.12) prevent the assignment of time-overlapping requests to the same crane.

yic + y jc ≤ 1+ni j +n ji ∀i, j ∈R : i 6= j,∀c ∈ C (3.12)

(ii) Handling conflicting requests

Cranes cannot pass each other and must respect a safety distance to avoid collision. The physical

constraints due to non-crossing and safety requirements of cranes pose a significant challenge.

If simultaneously executing requests i and j violates the safety distance, then these requests are

conflicting and must be scheduled at different times. When this situation occurs, binary auxiliary

variable oi j is set to 1, indicating requests i and j are conflicting.

To assist in identifying conflicting requests, the minimum horizontal coordinate (h−i ) and max-

imum horizontal coordinate (h+i ) of a request i are employed and are independent of the requests

movement direction. Since the origin and destination locations of requests are given by the loca-

tion assignment, values h−i = min(hbi ,hei) and h+i = max(hbi ,hei) are easy to pre-compute.

Requests assigned to different cranes may be conflicting depending on their minimum and

maximum horizontal coordinates and on the position of the assigned cranes. Given two requests

i and j handled by cranes c and c′ respectively and a required safety distance sdcc′ , two different
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situations are possible. The first situation arises when the cranes must pass each other to handle the

requests whereas the second situation occurs when there is insufficient space for them to respect

the safety distance and handle the requests.

Figure 3.3 illustrates trajectories of two requests i and j as well as of cranes c and c′. Two cases

may be considered for these two requests. In the first case where crane c is assigned to request

i and crane c′ to request j, (yic = y jc′ = 1), the allocation is such that no conflict occurs. In the

second scenario, however, inverting the crane assignments (yic′ = y jc = 1) renders the simultaneous

handling of requests impossible, given that cranes cannot pass each other therefore, requests i and

j are conflicting, and starting times si and s j must be different.

j

i

sdcc'

Crane chi
− hi

+ hj
+hj

− hCrane c'

sdcc'

Figure 3.3: Conflicting requests due to crane assignments.

Parameter oa
i j and auxiliary variable ob

i j identify conflicting requests due to cranes requiring

to pass each other. oa
i j indicates whether the trajectory of request i is completely to the left of j’s

trajectory, such that h+i < h−j ⇒ oa
i j = 1. Constraints (3.13) are employed to define the values of

ob
i j, which equals 1 if the crane assigned to request i is to the right of the crane assigned to request

j, ob
i j = 1.

∑
c∈C

ηc y jc ≥ ∑
c∈C

ηc yic−|C | ·ob
i j ∀i, j ∈R : i 6= j (3.13)

Whenever both oa
i j and ob

i j equal one, i’s trajectory is to the left of j’s trajectory while i’s

crane is to the right of j’s crane, resulting in a conflict. Constraints (3.14) force oi j to take a

value of 1 whenever oa
i j = ob

i j = 1. Likewise, Constraints (3.15) force oi j to take value 1 whenever

oa
ji = ob

ji = 1. When request i is conflicting with request j, then request j is conflicting with request

i, implying oi j = o ji.

oi j ≥ oa
i j +ob

i j−1 ∀i, j ∈R (3.14)

oi j ≥ oa
ji +ob

ji−1 ∀i, j ∈R (3.15)
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Another cause of request conflict concerns the safety distance between cranes. Figure 3.4 illus-

trates the trajectory of two requests i and j and cranes c and c′. Requests i and j are conflicting as

there is insufficient space for the cranes to begin handling the requests while respecting the safety

distance (h−i −h+j < sdcc′). Given the position of the requests’ minimum and maximum horizontal

coordinates, they are conflicting and the cranes cannot begin executing them simultaneously.

h

i

hi
− hi

+

j

hj
+hj

−

sdcc '

Crane cCrane c′

Figure 3.4: Conflicting requests with overlapping trajectories.

Auxiliary binary variables oc
i j are introduced to identify such conflict. Constraints (3.16) de-

termine the value of oc
i j. Whenever i and j are handled by cranes c and c′ (yic = y jc′ = 1 or

yic′ = y jc = 1), the maximum value for yic + yic′ + y jc + y jc′ equals two and therefore, Constraints

(3.16) ensure oc
i j equals one whenever the minimum horizontal coordinate of i, h−i , conflicts with

the maximum horizontal coordinate of j, h+j , and 0 otherwise (h−i −h+j < sdcc′ ⇒ oc
i j = 1).

h−i −h+j ≥ sdcc′− (2− yic− yic′− y jc− y jc′+oc
i j)ML ∀i, j ∈R : i 6= j,c,c′ ∈ C : c 6= c′

(3.16)

Whenever both oc
i j and oc

ji equal one, a conflict is detected. Constraints (3.17) force oi j (and

o ji) to take a value of 1 whenever oc
i j = oc

ji = 1.

oi j ≥ oc
i j +oc

ji−1 ∀i, j ∈R : i 6= j (3.17)

(iii) Setting the requests’ starting times

A crane can handle one request at a time, therefore, to execute two consecutive requests, a crane

requires sufficient time to finish executing the first request and then travel from its destination to

the second request’s origin.

If two requests i and j are handled by a single crane c, (yic = y jc = 1), i and j must be han-

dled one at a time (ni j = 1 or n ji = 1). Assume request j is executed after finishing i (ni j = 1).

Constraints (3.18) ensure starting time s j is greater than or equal to the sum of i’s finishing time
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(si +di) and the time required by the crane to travel from i’s destination to j’s origin (teib j ). Con-

straints (3.18) hold when yic+y jc+ni j = 3 (requests are handled by a single crane and j is executed

after finishing i),⇒ s j ≥ si +di + teib j .

s j ≥ si +di + teib j − (3− yic− y jc−ni j)MT ∀i, j ∈R, i 6= j,∀c ∈ C (3.18)

The starting time of two requests handled by different cranes depends on whether they are

conflicting or not. When the cranes’ trajectories while handling two requests are not conflicting,

then the requests’ starting times do not influence each other. However, if the two requests are

conflicting, a waiting time must be applied between starting the requests. gic jc′ denotes the required

waiting time between request i handled by crane c and request j handled by crane c′. The value of

gic jc′ depends upon the position of the cranes involved and on their movement direction resulting

in three different cases reflected by Equations (3.19), (3.20) and (3.21).

The first case (Figure 3.5(a)) occurs when yic = y jc′ = 1, crane c is to the left of c′, ηc < ηc′ and

i’s destination is to the right of j’s origin, hei > hb j . In such situation crane c′ cannot immediately

begin executing j after the starting time of i, and must instead wait for c to finish i, di, plus the time

c requires to travel from i’s destination to j’s origin, teib j . Therefore the waiting time of crane c′

to execute request j is di + teib j . Another situation which results in the same value for gic jc′ occurs

when crane c is to the right of c′, ηc > ηc′ and i’s destination is to the left of j’s origin, hei < hb j

(Figure 3.5(b) ). Figure 3.5 presents these situations both resulting in gic jc′ = di + teib j . The value

j

i

Crane c Crane c'

sdcc' sdcc'

(a) hei > hb j ,ηc < ηc′

Crane c'

j

i

Crane c

sdcc' sdcc'

(b) hei < hb j ,ηc > ηc′

Figure 3.5: Two conditions which result in gic jc′ = di + teib j .

of gic jc′ is determined by Equations (3.19).

gic jc′ = di + teib j ∀i ∈R,

{
j ∈R : hei > hb j ,∀c,c′ ∈ C : ηc < ηc′

j ∈R : hei < hb j ,∀c,c′ ∈ C : ηc > ηc′
(3.19)

Conflicts may also occur when crane c′ does not necessarily need to wait until the end of

request i. Figure 3.6 illustrates examples where crane c′ may begin executing request j, teib j time



48 Crane-operated warehouse scheduling: Integrating location assignment and crane scheduling

units before concluding request i. Such value for gic jc′ guarantees that by the time crane c finishes

executing request i, crane c′’s distance to crane c exceeds sdcc′ .

i

j

Crane c Crane c'

sdcc' sdcc'

(a) hbi < hei < hb j , ηc < ηc′

j

i

Crane cCrane c'

sdcc'

(b) hb j < hei < hbi , ηc > ηc′

Figure 3.6: Two conditions which result in gic jc′ = di− teib j .

Equations 3.20 define the conditions for gic jc′ = di− teib j .

gic jc′ = di− teib j ∀i ∈R,

{
j ∈R : hbi < hei < hb j ,∀c,c′ ∈ C : ηc < ηc′

j ∈R : hb j < hei < hbi ,∀c,c′ ∈ C : ηc > ηc′
(3.20)

Figure 3.7 presents two other scenarios which influence the value of gic jc′ . The first scenario

occurs when crane c is to the left and c′ is to the right, ηc < ηc′ , and the destination of request i is

to the left of j’s origin, hei < hb j and hei < hbi , or when crane c′ is to the left of c, ηc > ηc′ , and the

destination of i is to the right of j’s origin, hei > hb j and hei > hbi . In these cases gic jc′ is equal to

the travel time from i’s to j’s origin, tbib j .

i

j

Crane c Crane c'

sdcc' sdcc'

(a) hei < hb j , hei < hbi , ηc < ηc′

j

i

Crane c' Crane c

sdcc'sdcc'

(b) hei > hb j , hei > hbi , ηc > ηc′

Figure 3.7: Two conditions which result in gic jc′ = tbib j .

When i is an output request and the conditions presented in Figure 3.7 are satisfied,

Equations (3.21) determine the value of gic jc′ .

gic jc′ = tbib j ∀i ∈R,

{
j ∈R : hei < hb j , hei < hbi , ∀c,c′ ∈ C : ηc < ηc′

j ∈R : hei > hb j , hei > hbi , ∀c,c′ ∈ C : ηc > ηc′
(3.21)
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Constraints (3.22) and (3.23) define the value of variable qi j which must equal 1 if request i

begins before j’s starting time and 0 otherwise.

si ≥ s j−MT qi j ∀i, j ∈R : i 6= j (3.22)

si ≤ s j +(1−qi j)MT ∀i, j ∈R : i 6= j (3.23)

Assume requests i and j are handled by two separate cranes, c and c′. If the requests are not

conflicting, i’s starting time does not influence j’s, since the requests are assigned to different

cranes. If, however, the requests are conflicting, then the starting time of j must consider i’s

starting time coupled with the position and direction of both cranes. Constraints (3.24) coordinate

the starting times of consecutive requests if the following conditions are satisfied: (i) two different

cranes (c and c′) are assigned to execute requests i and j, yic = y jc′ = 1, (ii) the requests are

conflicting, oi j = 1, and (iii) request j begins after request i, qi j = 1.

s j ≥ si +gic jc′+ stcc′− (4− yic− y jc′−oi j−qi j)MT ∀i, j ∈R,c,c′ ∈ C , i 6= j,c 6= c′ (3.24)

When the three conditions are satisfied, then request j must begin after the starting time of i

plus the waiting time required between requests i and j (gic jc′) and the time required for a crane to

travel the safety distance between c and c′ (stcc′).

Constraints (3.25) ensure the starting time of request i occurs after its release time ri.

si ≥ ri ∀i ∈R (3.25)

When products are stacked on top of each other and the bottom one should be moved, the

requests associated with the top products must precede those associated with products situated

on the lower levels. A set of precedence constraints, Γi, indicates the set of requests which must

precede i. Constraints (26) specify these precedence relations and state that request i may only

begin after all its preceding requests are finished.

si ≥ s j +d j ∀i ∈R, j ∈ Γi (3.26)

The tardiness associated with request i is denoted by δi ≥ 0. Constraints (3.27) set the delay

of each request to be at least the request’s finishing time (si +di) minus its due time, τi.

δi ≥ si +di− τi ∀i ∈R (3.27)

All variables, except si (starting time of request i) and δi (tardiness of request i), are binary:
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yic ∈ {0,1} ∀i ∈R,c ∈ C (3.28)

ni j,qi j,oi j,oa
i j,o

b
i j,o

c
i j ∈ {0,1} ∀i, j ∈R : i 6= j (3.29)

si,δi ≥ 0 ∀i ∈R (3.30)

The CSP formulation is given by FCS, where the objective function (3.31) minimises the

tardiness of all requests.

FCS

min. ∑
i∈R

δi

s.t. (3.9)− (3.30)

(3.31)

3.3.3 Integrated formulation for crane-operated warehouse scheduling problems

This section introduces an integrated continuous-time formulation for the CWSP (FCWS) which

considers the location assignment for input requests, the crane assignment for all requests, and

the sequencing of the requests per crane. FCWS includes all constraints associated with the LAP

and CSP plus some additional constraints. Since the input requests’ destinations are undefined

(whereas for the CSP, they are determined by first solving the LAP), the following parameters in

FCS become variables in FCWS: h−i , h+i , di and ei for all requests i ∈RI and oa
i j when at least one

of requests i and j is an input request. Note that since these variables are defined only for input

requests, the definitions in Table 3.2 remain valid for output requests.

Additional constraints are required to assist in identifying the conflicting requests. Equations

(3.32) and (3.33) are employed to obtain h−i and h+i for request i ∈RI , respectively. Constraints

(3.34) are employed to define the values of oa
i j.

h−i = ∑
l∈L:hl≤hbi

hl xil + ∑
l∈L:hl>hbi

hbi xil ∀i ∈RI (3.32)

h+i = ∑
l∈L:hl≤hbi

hbi xil + ∑
l∈L:hl>hbi

hl xil ∀i ∈RI (3.33)

h+i ≥ h−j −ML ·oa
i j ∀i, j ∈R : i 6= j (3.34)

Output requests have a fixed duration, while input requests’ durations depend on the chosen

destination. Constraints (3.35) are employed to compute the duration of input requests.

di = ∑
l∈L

tbil xil ∀i ∈RI (3.35)

As the destinations of input requests are decision variables, setting the value of gic jc′ when

request i is an input request requires additional constraints. Equations (3.36) define the value of
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gic jc′ when crane c handling request i is to the left of crane c′ which handles request j. When

hei < hb j and hei < hbi then gic jc′ = tbib j as in Constraints (3.21), if hei < hb j and hei > hbi then

gic jc′ = di−teib j as in Constraints (3.20), and finally hei > hb j then gic jc′ = di+teib j as in Constraints

(3.19).

gic jc′ = ∑
l∈L:hl<hb j ,hl<hbi

tbib j xil + ∑
l∈L:hl<hb j ,hl>hbi

(di− teib j) xil + ∑
l∈L:hl>hb j

(di + teib j) xil

∀i ∈RI, j ∈R,∀c,c′ ∈ C : ηc < ηc′ (3.36)

Similarly, Equations (3.37) set the value of gic jc′ for input requests in case crane c handling

request i is to the right of crane c′ which handles request j.

gic jc′ = ∑
l∈L:hl<hb j

(di + teib j) xil + ∑
l∈L:hl>hb j ,hl<hbi

(di− teib j) xil + ∑
l∈L:hl>hb j ,hl>hbi

tbib j xil

∀i ∈RI, j ∈R,∀c,c′ ∈ C : ηc > ηc′ (3.37)

In case of output requests, as their destinations are given, the value of gic jc′ is obtained in a

similar way as in FC S . Constraints (3.38), (3.39) and (3.40) are modified based on Constraints

(3.19), (3.20) and (3.21) respectively to set gic jc′ for request i ∈RO and request j ∈R.

gic jc′ = tbib j ∀i ∈RO,

{
j ∈R : hei < hbi ,hei < hb j ,∀c,c′ ∈ C : ηc < ηc′

j ∈R : hbi < hei ,hb j < hei ,∀c,c′ ∈ C : ηc > ηc′
(3.38)

gic jc′ = di− teib j ∀i ∈RO,

{
j ∈R : hbi < hei < hb j ,∀c,c′ ∈ C : ηc < ηc′

j ∈R : hbi > hei > hb j ,∀c,c′ ∈ C : ηc > ηc′
(3.39)

gic jc′ = di + teib j ∀i ∈RO,

{
j ∈R : hei > hb j ,∀c,c′ ∈ C : ηc < ηc′

j ∈R : hei < hb j ,∀c,c′ ∈ C : ηc > ηc′
(3.40)

Another set of additional constraints is required due to implied precedence constraints during

the location assignment. Constraints (3.41) assert that if an input request is assigned atop another

input request, the bottom request is placed first. Constraints (3.42) ensure j is moved after i if it

has been assigned to i’s origin location.

ni j ≥ x jl + xik−1 ∀i, j ∈RI : i 6= j, l ∈ L,k ∈Ul (3.41)

ni j ≥ x jbi ∀i ∈R, j ∈RI (3.42)

The objective function is a weighted linear combination of the LAP’s objectives (Equation

(3.2)) and those of the CSP (Equation (3.31)). The CWSP formulation is given by FCWS:
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FCWS


min. α

(
∑

i∈RI
∑
l∈L

γilxil + ∑
i∈RI

∑
j∈RI

ωi jzi j

)
+β ∑

i∈R
δi

s.t. (3.3)− (3.12), (3.16)− (3.18), (3.22)− (3.30), (3.32)− (3.42)

(3.43)

The CWSP is a complex problem that generalizes the Sequential Ordering Problem (SOP)

(Escudero, 1988), which represents a special case of the CWSP scheduling component with a

single crane and fixed request destinations. Consequently, the CWSP is considered at least as hard

as the SOP. Given the SOP is known to be N P-hard (Montemanni et al., 2009), by consequence,

CWSP is an N P-hard problem.

3.4. Heuristic approach

A local search based algorithm is proposed consisting of constructive and improvement phases

for solving the CWSP. During both phases, an indirect solution representation capable of reduc-

ing the search space is employed (Section 3.4.1). All the algorithm’s components are explained

throughout the following sections. The constructive phase (3.4.2 ) consists of a greedy construc-

tive heuristic inspired by a set of dispatching rules. During the improvement phase (3.4.3) a Late

Acceptance Hill Climbing (LAHC) meta-heuristic (Burke and Bykov, 2017) is employed which

considers several neighbourhood structures (3.4.4). Figure 3.8 presents a general overview of the

proposed algorithm.
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Figure 3.8: General overview of the heuristic approach

3.4.1 Solution representation

The local search-based algorithm considers an indirect solution representation. Each solution is

represented by a list L of (request, location, crane)-tuples. The actual schedule is produced by a

decoder which utilizes both the ordering of requests, the locations and crane assignments included

in list L .

The decoder is also employed to evaluate solutions by computing their storage cost and total

tardiness. Whereas the total tardiness can be obtained by applying Equation (3.2), computing the

total tardiness is less straightforward. It requires all requests’ starting times, which determine on

the requests’ execution order in L in such a way that all conflict-related constraints are satisfied.

The decoder is presented by Algorithm 4. For each tuple (i,ei,c) in L , request i has its starting

time si initialized as its release time (lines 1-2). If crane c was previously assigned to another

request, the starting time si is set to be after the execution of the crane’s previous request plus

the time required for the crane to begin executing request i (lines 3-5). To handle conflicts with

requests assigned to other cranes, the algorithm loops over the schedule of all other cranes from

end to beginning (lines 6-8). In case request i conflicts with a request k of crane c′’s schedule, si is

set to be at least sk+gkc′ic+stcc′ (lines 9-10), where gkc′ic is the waiting time defined in Section 3.3.
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Once the algorithm finds a conflicting request k in crane c′’s schedule, it is unnecessary to proceed

checking, as all other requests assigned to c′ are scheduled earlier than k. The algorithm then

moves on to the next crane, if any remain. Therefore, the decoder will execute only O(|R|× |C |)
operations in the best case. Since in most applications the number of cranes |C| may be fixed as

a constant, in the best case the decoder runs in linear time. In the worst case, however, O(|R|2)
operations may be required by the decoder. After the schedules of all cranes are checked, the

minimum value for si is calculated and the algorithm includes request i into crane c’s schedule

(lines 12). Once all starting times are computed, the tardiness can be easily calculated employing

Equations (3.27) and (3.31).

One of the advantages of the indirect solution representation proposed is that it prevents the

generation of a class of unattractive solutions which include avoidable idle times between oper-

ations. Indeed, given that the indirect representation is no more than a sequence, the decoder

will produce a left-active schedule which is always better than alternative schedules based on this

sequence, but which include idle times.

Moreover, the indirect solution is simple to modify, requiring only a few verifications to guar-

antee feasibility. Its main disadvantage lies in the additional O(|R|2) operations required for de-

coding and evaluating solutions.

3.4.2 Constructive heuristic

An initial solution is constructed by a greedy algorithm which applies a set of dispatching rules.

Algorithm 5 details this procedure. A directed acyclic graph is considered where nodes represent

requests and arcs directing from ri to r j indicate precedence constraints (ri must precede r j). In this

graph, requests are first sorted topologically. By sorting the directed acyclic graph topologically,

Algorithm 4: Decoding an indirect solution
Input: Ordered list L of tuples {request, location, crane}

1 foreach tuple (i,ei,c) ∈L do
2 si← ri // minimum starting time si is the release time ri

3 if crane c’s schedule is not empty then
4 j← last request in crane c’s schedule
5 si← max(si , s j +d j + te jbi) // si must consider when crane c is

available at position bi

6 foreach crane c′ ∈ C ,c′ 6= c do
7 let schedule S−1 be the reverse of crane c′’s schedule
8 foreach request k ∈ S−1 do
9 if request i conflicts with request k then

10 si← max(si , sk +gkc′ic + stcc′) // si must also take
conflicting moves into account

11 break foreach-loop

12 add request i (ending at location ei) into crane c’s schedule
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for every directed arc (ri,r j), ri precedes r j in the ordering ensuring that the precedence constraints

are respected. Requests within the same topological level are sorted by their release times. This

strategy defines the initial ordering of the requests (line 1). The solution is initialized as an empty

list (line 2) and, afterwards, two steps are applied for each request (lines 3-6). First, the available

location which has the lowest storage cost is assigned to input requests (lines 4-5). Note that output

requests have preassigned locations and therefore do not require such an assignment. In the second

step, requests are assigned to the nearest available crane (line 6). Both the requests’ starting times

and the cost of the solution corresponding with L are computed employing the decoder presented

in Algorithm 4.

Algorithm 5: Constructive CWSP algorithm

1 R← list of requests sorted topologically and chronologically
2 L ← empty list // or empty ordered set
3 foreach request i ∈ R do
4 if i ∈RI then // checking whether request i is an input request

(these requests require assigning a location)
5 ei← the nearest available location to the origin of input request i

6 c← nearest crane to bi // greedy criterion: nearest crane to the
origin of request i is selected

7 insert (i,ei,c) to L

8 return list of tuples L

3.4.3 Late Acceptance Hill Climbing

The LAHC meta-heuristic represents an extension of the greedy hill-climbing algorithm which

compares the candidate solution against the solution which was ‘current’ l iterations before. Con-

sequently, the meta-heuristic permits the acceptance of worsening solutions, thus avoiding local

optima. This study employs the LAHC meta-heuristic presented in Algorithm 6 which requires

the following arguments: (i) initial solution s0, (ii) parameter l, (iii) set of neighbourhoods N ,

(iv) maximum number of iterations without improvement itmax and (v) timeout, which indicates

the runtime of LAHC.

The LAHC meta-heuristic maintains a fixed-length list v containing objective function values

of the solutions visited during the last l iterations. Initially, all v elements are set to the initial

solution’s objective value, given by f (s0) (line 1). Next, current solution s, best solution s∗ and

index i are initialized (lines 2-3). At each iteration a new candidate solution s′ is generated by

applying a randomly generated move from a randomly selected neighbourhood to the current

solution s (lines 5-6). The candidate solution’s objective value, f (s′), is compared against vi and

the current solution’s value f (s) (line 7). s′ is accepted (line 12) to replace the current solution if its

objective value is less than or equal to vi or f (s). If the candidate solution s′ has a better objective

value than the best solution s∗ generated thus far, it replaces s∗ (lines 13-14). If the objective value

of s′ is greater than vi or f (s), the number of iterations without improvement, it, increments by
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Algorithm 6: Late acceptance hill climbing algorithm
Input: Initial solution s0, list size l, set of neighbourhoods N , maximum number of

consecutive iterations without improvement itmax, and runtime limit timeout
1 vi← f (s0) ∀ i ∈ {0, ..., l−1}
2 s∗← s← s0
3 i← it← 0
4 while it < itmax and elapsed time < timeout do
5 Select a random neighbourhood N ∈N
6 s′← random neighbour solution m ∈ N(s)
7 if f (s′)≤ vi or f (s′)≤ f (s) then
8 if f (s′)< f (s) then
9 it← 0

10 else
11 it← it +1

12 s← s′

13 if f (s′)< f (s∗) then
14 s∗← s

15 else
16 it← it +1

17 vi← f (s)
18 i← (i+1) mod l

19 return s∗

one (lines 15-16). Finally, vi and i are updated: vi ← f (s) (replacing the oldest value), and i is

set to point to the next position of list l (lines 17-18). Note that i acts as a cyclic pointer. This

iterative process repeats until the elapsed time reaches timeout or the number of iterations without

improvement reaches itmax. The latter criterion prevents the heuristic from continuing the search

in situations whre no more improvements are generated during a long period of time. Finally, the

best solution obtained is then returned (line 19).

3.4.4 Neighbourhood structures

Ten neighbourhoods were developed to explore the CWSP’s solution space. The neighbourhoods

are grouped into two categories: (i) Location assignment and (ii) Crane scheduling neighbour-

hoods. All ten neighbourhoods operate over the list of tuples L and therefore modify only the

indirect solution. Infeasible solutions may be obtained by applying some of these neighbourhood

operators to a solution. For instance, both assigning a product atop an empty location and ig-

noring the precedence constraints when changing the requests’ order result in infeasibility. Such

infeasible solutions are discarded during the search.

The ten neighbourhoods are detailed as follows.

Location assignment neighbourhoods
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– Location Re-assignment (LR): a random input request is selected and its destination location

is replaced with another randomly selected available location.

– Location Swap (LS): two random input requests are selected and their destination locations

are swapped.

– Greedy Location Assignment (GLA): a set of input requests is randomly selected and their

location assignments are removed. Then, all possible locations are considered and the re-

quests are greedily assigned to the lowest-cost location.

Crane scheduling neighbourhoods

– Crane Re-assignment (CR): a set of three requests is selected randomly and all crane assign-

ment combinations are enumerated. The resulting solution is the one with the best quality

among the enumerated solutions.

– Order Swap (OS): two requests are randomly selected and their tuples are swapped, chang-

ing their execution order.

– Random Insertion (RI): a random tuple is removed and re-inserted into a random position

in the list.

– Random Best Insertion (RBI): a request is randomly selected and its tuple is inserted into

the lowest-cost position within the assigned crane’s schedule. Note that this neighbourhood

requires O(|R|) operations to identify the lowest-cost position.

– Nearest Location Assignment (NLA): a set of input requests is randomly selected and their

location assignments are removed. Then, all possible locations are considered and each

request is greedily assigned to the location nearest to its origin.

This neighbourhood is employed as a crane scheduling neighborhood since it reduces the

duration of requests and, as a consequence, reduces the potential risk of generating conflict-

ing requests.

– Best Order Permutation (BOP): a range of requests in a crane’s schedule is randomly se-

lected; their tuples are subsequently removed and the best permutation of the selected tuples,

determined by enumeration, is inserted into the list.

This neighbourhood has exponential complexity and therefore the range must be limited to

prevent prohibitive runtimes.

– Moving Best Order Permutation (MBOP): This neighbourhood begins from the first tuple in

the list L and executes the BOP move within a range of three tuples. The procedure moves

forward in L by one tuple and executes the BOP move for next three tuples. It ends after

|L |−2 iterations by executing the BOP move for the last three tuples in the list.
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3.5. Computational study

This section investigates the impact of integrating the location assignment and crane scheduling

problems. The performance of both the formulations and heuristic are assessed across different

scenarios: sequential and integrated.

The sequential approach, on the one hand, solves two problems. It begins by solving the LAP,

after which the assignments obtained are fixed when solving the CSP. The integrated approach, on

the other hand, solves only one large problem: the CWSP.

Table 3.3: Summary of sequential and integrated approaches

Formulations

LAHC

Objective Function Neighbourhoods

Sequential approach
FLA Equation (2) LR, LS, GLA
FCS Equation (33) CR, OS, RI, RBI, BOP, MBOP

Integrated approach FCWS Equation (44) LR, LS, GLA, CR, OS, RI,
RBI, NLA, BOP, MBOP

Table 3.3 summarizes the formulations, objective functions and neighbourhood structures em-

ployed by each approach. The sequential approach employs formulations FLA and FCS to solve

the LAP and CSP, respectively. It also utilizes Equation (3.2) and location assignment neighbour-

hoods to address the LAP heuristically. To solve the CSP by LAHC, the sequential approach em-

ploys Equation (3.31) and crane scheduling neighbourhoods. Whereas, the integrated approach

solves formulation FCWS and considers Equation (3.43) and all the neighbourhoods when em-

ploying LAHC. Table 3.3 summarizes the objective functions and neighbourhoods employed in

the heuristic approaches to both the sequential and integrated problems.

The remainder of this section is organized as follows. First Section 3.5.1 presents the set

of benchmark instances considered throughout the experiments. The comparison of the sequen-

tial and integrated approaches by employing the MIP formulations is presented in Section 3.5.2,

while Section 3.5.3 presents the results of the sequential and integrated approaches employing the

heuristic. Finally, Section 3.5.4 presents a discussion on the weights α and β employed within the

objective function (see Equation (3.1)) in addition to an analysis of the instances.

3.5.1 Instances

A set of benchmark instances was generated in correspondance with the data obtained from a

real-world warehouse. These instances are available online1 to enable transparent comparison of

the proposed formulations and algorithms. Four characteristics were considered for the instance

generation:

1CWSP data instances, solutions & validator available at https://bitbucket.org/Sam-Hes/cwsp/.
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Number of requests: the benchmark set includes instances with five levels denoting the num-

ber of requests: 10, 20, 30, 50 and 70.

Storage size: the dataset considers three storage sizes. Small size storage areas have 250

(10× 25) locations per level. Medium size storage areas have 525 (15× 35) locations per level

and large storage areas 1000 (20× 50) locations per level. A large storage area may have up to

5000 locations. Based on the data obtained from the real-world problem, a realistic storage area

contains approximately 3000 locations.

Maximum stacking level: this limit is imposed for each storage area depending on various

criteria such as the product type and safety requirements. Three stacking levels are considered:

one, three and five levels, where one denotes the ground level.

Storage load: this value is defined as a percentage indicating the initial occupancy level of the

storage area. Three load factor values are considered: 30%, 50% and 70%.

The value of each attribute is reflected in the instance name, which indicates, from left to right:

(i) number of requests, (ii) storage size, represented by the letters s, m and l signifying small,

medium and large, respectively, (iii) maximum stacking level, and (iv) storage load. Instance

name 50s_1_30, for example, indicates an instance with 50 requests, a small yard, maximum

stacking level 1, and storage load equal to 30%.

Release times were generated according to a Poisson distribution with a fixed “average fre-

quency" within the scheduling horizon. The scheduling horizon is computed by multiplying “Num-

ber of requests" by “average frequency". Due times were calculated as the sum of a request’s

“release time" and its “time window", wherein the “time window" was generated according to a

log-normal distribution.

The number of yard products is calculated based on the yard size and yard load. For each

stored product a location in the yard is randomly selected.

The storage cost of assigning an input request to a neighbouring location of any product is gen-

erated according to a uniform distribution. The cranes’ travel times are measured by the Cheby-

chev distance (the maximum of the lateral and longitudinal distance). It is assumed that the lateral

and longitudinal speed of the cranes is identical, and thus the travel time may be substituted by the

Chebychev distance. Table 4 summarizes the parameters of the distributions used in the instance

generator.

Table 3.4: Instance generator distributions and parameters

Instance Parameter Distribution Distribution Parameter

Release time Poisson mean = 26.5

Time windows Log normal mean = 0.0666 * storage area’s length
standard deviation = 0.1 * storage area’s width

Stored product location Uniform range = locations in the storage area

Storage cost Uniform range = [0, 50)
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The cranes are initially lined-up according to the required safety distance. The crane’s travel

speed is set to one time unit per horizontal coordinate.

3.5.2 Comparison of sequential and integrated approaches by MIP formulations

In the sequential approach, the LAP completely disregards the possible impact of attaining good

solutions for the CSP. The integrated approach, however, enables a trade-off between the LAP

and the CSP by setting different values for their corresponding weights α and β in the objective

function, Equation (3.1). Two settings are considered: (i) α >> β , making the integrated approach

put the highest priority to the LAP. This enables determining the benefit of an integrated approach

over the sequential approach where both primarily focus on optimizing the storage cost. (ii) α = β ,

which considers equal importance for storage cost and delays.

The mathematical formulations were solved by Gurobi Optimizer 7.5 and run on an Intel®

Xeon® CPU E5-2650 v2 @ 2.6GHz with one hour runtime limit. Table 3.5 reports the results

obtained by solving the sequential (FLA +FCS) and integrated (FCWS) formulations. The results

of unsolved instances (no integer solution found within the runtime limit) are excluded from the

table for brevity. Location assignment evaluation (ELA), crane scheduling evaluation (ECS) and

total weighted cost (Eτ ), both when α = β and α >> β , are compared. Emboldened numbers in-

dicate that optimal solutions were obtained. When both the LAP and CSP are solved to optimality

only Eτ is emboldened.

Table 3.5: Computational results obtained by solving the mathematical formulations (considered scenarios:
α = 100000, β = 1 (α >> β ) and α = β = 0.50).

Instance
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) ELA ECS Eτ ELA ECS Eτ

10s_1_30 0 267.03 2.670E+02 133.51 0 55.13 5.513E+01 1 51.53 26.26
10m_1_30 0 478.41 4.784E+02 239.20 0 37.62 3.762E+01 0 37.62 18.81
10l_1_30 0 515.69 5.157E+02 257.84 0 76.82 7.682E+01 0 76.82 38.41
10s_1_50 0 229.25 2.293E+02 114.63 0 123.93 1.239E+02 11 78.92 44.96
10m_1_50 0 219.18 2.192E+02 109.59 0 56.45 5.645E+01 7 40.07 23.53
10l_1_50 0 447.85 4.479E+02 223.92 0 44.49 4.449E+01 4 32.49 18.24
10s_1_70 132 186.97 1.320E+07 159.49 132 135.97 1.320E+07 156 59.25 107.62
10m_1_70 48 348.86 4.800E+06 198.43 48 449.55 4.800E+06 86 185.92 135.96
10l_1_70 11 271.44 1.100E+06 141.22 11 148.17 1.100E+06 25 73.78 49.39
10s_3_30 13 352.10 1.300E+06 182.55 13 179.72 1.300E+06 49 76.07 62.53
10m_3_30 1 354.66 1.004E+05 177.83 1 107.51 1.001E+05 9 70.37 39.68
10l_3_30 0 295.28 2.953E+02 147.64 0 79.51 7.951E+01 - - -
10s_3_50 53 317.77 5.300E+06 185.39 53 201.77 5.300E+06 64 109.83 86.91
10m_3_50 31 409.77 3.100E+06 220.39 31 332.35 3.100E+06 41 126.77 83.88
10l_3_50 9 454.43 9.005E+05 231.72 9 145.71 9.001E+05 12 85.91 48.95
10s_3_70 130 392.07 1.300E+07 187.73 130 279.13 1.300E+07 190 102.40 146.20
10m_3_70 64 433.66 6.400E+06 248.83 64 492.57 6.400E+06 93 77.90 85.45
10l_3_70 98 441.02 9.800E+06 269.51 98 566.37 9.800E+06 134 118.11 126.05
10s_5_30 18 322.97 1.800E+06 170.48 18 182.53 1.800E+06 35 93.23 64.11
10m_5_30 653 477.18 6.530E+07 565.09 9 275.46 9.002E+05 24 76.36 50.18
10l_5_30 464 457.64 4.640E+07 460.82 6 244.62 6.002E+05 16 206.88 111.44
10s_5_50 66 435.57 6.600E+06 250.79 66 292.55 6.600E+06 - - -
10m_5_50 25 - - - 25 294.46 2.500E+06 42 196.59 119.30

(continued on next page)
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Computational results obtained by solving the mathematical formulations (continued).

Instance
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) ELA ECS Eτ ELA ECS Eτ

10l_5_50 13 602.07 1.301E+06 307.54 13 159.11 1.300E+06 21 82.93 51.96
10s_5_70 83 247.93 8.300E+06 165.64 83 247.93 8.300E+06 100 91.85 95.92
10m_5_70 59 419.26 5.900E+06 239.13 59 263.06 5.900E+06 75 211.27 143.13
10l_5_70 43 541.38 4.301E+06 292.19 43 418.37 4.300E+06 51 87.02 69.01

20s_1_30 0 1221.04 1.221E+03 610.52 0 160.38 1.603E+02 - - -
20m_1_30 0 1821.80 1.822E+03 910.90 0 225.29 2.252E+02 1 235.90 118.45
20l_1_30 0 2171.42 2.171E+03 1085.71 0 198.40 1.984E+02 0 261.18 130.59
20s_1_50 4 1412.59 4.014E+05 708.30 4 425.09 4.004E+02 - - -
20m_1_50 0 1373.24 1.373E+03 686.21 0 445.37 4.453E+02 9 351.42 180.21
20l_1_50 0 1851.12 1.851E+03 925.56 0 155.85 1.558E+02 8 118.23 63.11
20s_1_70 448 801.34 4.480E+07 624.67 448 692.26 4.480E+07 480 196.16 338.08
20m_1_70 241 2396.80 2.410E+07 1318.90 241 1287.71 2.410E+07 333 640.11 486.55
20l_1_70 77 1210.96 7.701E+06 643.98 77 758.37 7.700E+06 88 337.18 212.59
20s_3_30 54 1328.04 5.401E+06 691.02 - - - - - -
20m_3_30 995 2031.35 9.950E+07 1513.18 15 740.32 1.500E+06 64 676.63 370.31
20l_3_30 648 - - - 0 277.50 2.775E+02 37 417.42 227.21
20s_3_50 168 1434.26 1.680E+07 799.13 - - - - - -
20m_3_50 99 2203.80 9.902E+06 1151.40 - - - 181 366.17 273.58
20l_3_50 1344 1852.22 1.344E+08 1598.11 45 1123.48 4.501E+06 49 578.48 313.74
20s_3_70 423 1552.35 4.230E+07 987.67 424 2902.26 4.240E+07 528 390.82 459.41
20m_3_70 168 1491.69 1.680E+07 829.84 168 1407.24 1.680E+07 - - -
20l_3_70 274 2989.96 2.740E+07 1631.98 - - - - - -
20s_5_30 923 939.96 9.230E+07 931.48 68 1630.26 6.801E+06 - - -
20m_5_30 886 - - - 43 2017.09 4.302E+06 - - -
20s_5_50 1527 1051.42 1.527E+08 1289.21 - - - - - -
20m_5_50 1450 - - - 87 2062.80 8.702E+06 - - -
20s_5_70 330 1499.62 3.300E+07 914.81 - - - - - -
20m_5_70 249 1435.31 2.490E+07 842.15 385 1738.69 3.850E+07 - - -
20l_5_70 129 - - - - - - 158 812.23 485.11

30s_1_30 0 3495.86 3.496E+03 1747.93 0 668.80 6.688E+02 - - -
30m_1_30 0 4501.77 4.502E+03 2250.88 0 921.33 9.213E+02 - - -
30l_1_30 0 4911.02 4.911E+03 2455.51 0 634.49 6.344E+02 - - -
30s_1_50 98 3299.06 9.803E+06 1698.53 98 1303.66 9.801E+06 210 729.63 469.81
30m_1_50 19 3742.17 1.904E+06 1880.58 19 2616.36 1.902E+06 75 1880.72 977.86
30l_1_50 0 4683.93 4.684E+03 2737.80 0 724.51 7.245E+02 - - -
30s_1_70 934 2416.98 9.340E+07 1675.49 937 2667.16 9.370E+07 - - -
30m_1_70 544 5919.16 5.441E+07 3231.58 554 3078.50 5.540E+07 631 2046.16 1338.58
30l_1_70 249 3310.89 2.490E+07 1779.94 - - - 268 1623.10 945.55
30s_3_30 1585 2858.33 1.585E+08 2221.66 - - - - - -
30s_3_50 330 3643.15 3.300E+07 1986.57 - - - - - -
30s_3_70 821 3058.59 8.210E+07 1939.79 840 3613.93 8.400E+07 - - -
30m_3_70 371 3394.37 3.710E+07 1882.68 - - - - - -
30l_3_70 2589 - - - - - - 684 9339.08 5019.04
30s_5_70 756 4492.94 7.560E+07 2624.47 - - - - - -

50s_1_30 0 16686.92 1.669E+04 8343.46 - - - - - -
50m_1_30 0 17645.35 1.765E+04 8822.67 0 8264.20 8.264E+03 - - -
50s_1_50 401 12290.55 4.011E+07 6345.77 - - - - - -
50m_1_50 250 13869.28 2.501E+07 7059.64 - - - - - -
50l_1_50 11 15907.70 1.116E+06 7959.35 - - - 146 9867.24 5006.62
50s_1_70 1743 11544.01 1.743E+08 6643.50 1772 6898.15 1.772E+08 2370 4006.59 3188.29

(continued on next page)
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Computational results obtained by solving the mathematical formulations (continued).

Instance
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) ELA ECS Eτ ELA ECS Eτ

50m_1_70 1017 19637.64 1.017E+08 10327.32 - - - - - -
50l_1_70 599 20988.08 5.992E+07 10793.54 - - - - - -
50s_3_70 3904 12233.50 3.904E+08 8068.75 - - - - - -

70s_1_30 67 19600.96 6.720E+06 9833.98 - - - - - -
70s_1_50 1436 20060.26 1.436E+08 10748.13 - - - - - -
70s_1_70 3225 16797.21 3.225E+08 10011.10 - - - - - -
70m_1_70 2023 29211.91 2.023E+08 15617.45 - - - - - -
70l_1_70 1332 41511.74 1.332E+08 21421.87 - - - - - -

The results indicate that the sequential approach yields better LAP solutions for only five in-

stances, 20m_5_70, 30s_1_70, 30m_1_70, 30s_3_70 and 50s_1_70. This can be explained

by the observation that in these two cases, none of the alternative approaches finds an optimal

solution. For the remaining instances, the value of ELA obtained by FCWS(α >> β ) is better

than or equal to the value of ELA obtained by FLA +FCS, while FCWS(α >> β ) always finds a

better crane scheduling solution. However, FCWS(α >> β ) was only able to find feasible solu-

tions for two large instances (number of requests greater than 50). FCWS(α >> β ) may change

location assignments and is therefore able to find better crane scheduling while still achieving the

same quality of location assignments. This shows how by integrating the LAP and the CSP, better

location assignments and crane schedules are achievable. Generating better crane schedules by

FCWS(α >> β ) may require compromises with respect to computational runtimes. The results

show that FCWS(α >> β ) tends to take more time to achieve optima for small instances. However

for larger instances both approaches take the entire runtime.

When α is equal to β , it is evident that the ELA values obtained by FLA + FCS and

FCWS(α >> β ) are lower than those obtained by FCWS(α = β ). However, Eτ is significantly

lower in FCWS(α = β ) than in FLA +FCS(α = β ). Although FCWS(α >> β ) is capable of

finding good crane schedules while achieving high quality location assignments, the ECS obtained

by FCWS(α = β ) is lower. There are only two instances, 20l_3_30 and 20l_1_30, where

FCWS(α >> β ) achieved both better location assignments and crane scheduling within the avail-

able runtime. For the remaining instances, FCS(α = β ) compromises as regards location assign-

ment to achieve better crane schedules. The number of instances solved to optimality decreases as

the number of requests grows.

The detailed table of results including the optimality gap and computation time (cpu) of both

approaches is presented in the Appendix (Table 3.A.1).

3.5.3 Comparison of sequential and integrated approaches by the proposed heuris-
tics

The heuristic was implemented in C++11. All experiments were executed for maximum 300 sec-

onds or maximum 10,000 consecutive iterations without improvement for all 135 instances. The
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heuristic’s parameters were tuned using the irace R-package which implements the iterated rac-

ing procedure for automatic algorithm configuration (López-Ibáñez et al., 2016) with a budget of

4,000 runs. The purpose of irace is to automate the task of configuring an optimization algorithm’s

parameters. It generates and tests a sample of parameter configurations for a given optimization

algorithm on a set of instances. When sufficient statistical evidence is collected (by means of a

Friedman test) that a certain parameter configuration is outperformed by others, it is discarded so

as to focus on the remaining configurations. The best-performing configurations are reported.

Table 3.6 summarizes the parameters by their role, type, range and tuned values for both

approaches (sequential and integrated).

Table 3.6: Tuning parameters by irace package

Parameter Role Type Range
irace results

integrated sequential

lcws
Size of the late acceptance list for CWSP LAHC

number of requests integer (10, 250) 30 -

llap
Size of the late acceptance list for LAP LAHC

number of requests integer (10, 250) - 234

lcsp
Size of the late acceptance list for CSP LAHC

number of requests integer (10, 250) - 79

plr Weight of using LR neighbourhood real (0.0, 1.0) 0.63 0.75
pls Weight of using LS neighbourhood real (0.0, 1.0) 0.45 0.52
pgla Weight of using GLA neighbourhood real (0.0, 1.0) 0.59 0.14
pcr Weight of using CR neighbourhood real (0.0, 1.0) 0.99 0.83
pos Weight of using OS neighbourhood real (0.0, 1.0) 0.02 0.08
pri Weight of using RI neighbourhood real (0.0, 1.0) 0.11 0.30
prbi Weight of using RBI neighbourhood real (0.0, 1.0) 0.75 0.84
pnla Weight of using NLA neighbourhood real (0.0, 1.0) 0.73 -
pbop Weight of using BOP neighbourhood real (0.0, 1.0) 0.14 0.31
pmbo Weight of using MBOP neighbourhood real (0.0, 1.0) 0.06 0.29

Table 3.7 reports the results of the three heuristics when the values of α and β are equal to

0.5 (α = β = 0.5). The location assignment evaluation (ELA), crane scheduling evaluation (ECS)

and total cost (Eτ ) obtained by the three heuristics are compared. The heuristic was run five times

with different random seeds, and the average of these results is reported. The improvement of

the integrated and sequential heuristics over the constructive heuristic (G), the upper bound (UB)

defined as the best feasible solution obtained by either the sequential or integrated formulation,

and the relative optimality gap (gap) and the computational times (cpu) are reported. The opti-

mality gap is measured by comparing Eτ obtained by the integrated heuristic and the lower bound

generated by the mathematical formulations. The gaps may be relatively large as the lower bounds

are weak due to employing large numbers (ML and MT ) in the mathematical formulations. When

FCWS(α = β ) was unable to find a lower bound due to an out-of-memory error, OOM is reported.

Emboldened numbers indicate that optimum solutions were obtained.

The results show how the integrated heuristics find high quality solutions and are able to find

optimum solutions for the small instances in a short amount of time. There are only two instances
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10s_1_70 and 10m_1_70 where the integrated heuristic was unable to find the optimum solu-

tion. Nevertheless, the optimality gaps are only 1.1% and 5.5%, respectively. There are instances

for which the sequential heuristic finds better solutions than the optimum obtained by FLA+FCS.

The explanation for these interesting results lies in how the sequential heuristic finds location

assignments which enable better crane scheduling.
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Table 3.7: Computational results of Constructive, Sequential and Integrated heuristics (α = β = 0.5)

Instance
Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

10s_1_30 0 108.0 54.0 0 59.9 30.0 3.1 44.5 1 51.5 26.3 2.8 51.4 0.0 26.3 26.3
10m_1_30 0 234.1 117.1 0 37.6 18.8 5.4 83.9 0 37.6 18.8 3.6 83.9 0.0 18.8 18.8
10l_1_30 0 384.0 192.0 0 79.8 39.9 10.5 79.2 0 76.8 38.4 14.2 80.0 0.0 38.4 38.4
10s_1_50 0 235.8 117.9 0 137.9 69.0 3.6 41.5 11 78.9 45.0 2.9 61.9 0.0 45.0 45.0
10m_1_50 0 366.8 183.4 0 96.3 48.1 6.9 73.8 7 40.1 23.5 5.2 87.2 0.0 23.5 23.5
10l_1_50 0 350.4 175.2 0 45.4 22.7 12.8 87.0 1 35.5 18.2 5.0 89.6 0.0 18.2 18.2
10s_1_70 180 767.9 474.0 132 158.4 145.2 4.8 69.4 150 67.7 108.8 3.9 77.0 1.1 107.6 107.6
10m_1_70 48 1031.6 539.8 48 405.8 226.9 9.6 58.0 80 207.7 143.9 5.1 73.3 5.5 136.0 136.0
10l_1_70 11 843.8 427.4 11 166.1 88.5 12.8 79.3 25 73.8 49.4 12.2 88.4 0.0 49.4 49.4
10s_3_30 13 324.8 168.9 13 230.8 121.9 6.4 27.8 29 108.9 68.9 4.2 59.2 41.5 62.5 40.3
10m_3_30 1 400.8 200.9 1 178.2 89.6 31.3 55.4 6 76.4 41.2 8.3 79.5 81.1 39.7 7.8
10l_3_30 0 700.8 350.4 0 98.5 49.3 24.6 85.9 3 60.3 31.7 14.3 91.0 78.2 147.6 6.9
10s_3_50 58 538.0 298.0 55 238.0 146.5 16.4 50.8 73 98.0 85.5 5.2 71.3 48.6 86.9 43.9
10m_3_50 68 686.9 377.4 31 237.5 134.2 29.7 64.4 36 88.5 62.2 17.6 83.5 73.9 83.9 16.2
10l_3_50 9 1181.3 595.2 9 258.0 133.5 38.0 77.6 12 85.9 49.0 23.9 91.8 0.0 49.0 49.0
10s_3_70 150 1309.0 729.5 130 363.3 246.7 21.1 66.2 182 72.5 127.2 22.7 82.6 29.2 146.2 90.0
10m_3_70 64 1210.5 637.2 64 273.8 168.9 20.1 73.5 79 104.8 91.9 11.1 85.6 26.3 85.5 67.7
10l_3_70 106 697.3 401.7 106 175.5 140.7 67.3 65.0 115 83.2 99.1 34.7 75.3 42.9 126.1 56.5
10s_5_30 18 509.4 263.7 18 195.5 106.8 16.7 59.5 36 94.2 65.1 16.4 75.3 66.8 64.1 21.6
10m_5_30 9 972.4 490.7 9 372.8 190.9 23.1 61.1 29 66.8 47.9 11.1 90.2 77.5 50.2 10.8
10l_5_30 6 988.0 497.0 6 417.5 211.7 43.7 57.4 18 95.1 56.6 30.0 88.6 70.6 111.4 16.6
10s_5_50 66 717.0 391.5 66 288.8 177.4 16.2 54.7 74 112.2 93.1 19.5 76.2 54.5 250.8 42.3
10m_5_50 91 619.3 355.1 25 420.3 222.6 35.2 37.3 36 134.7 85.4 37.5 76.0 81.7 119.3 15.6
10l_5_50 13 772.0 392.5 13 199.3 106.1 52.2 73.0 19 85.1 52.1 47.6 86.7 56.3 52.0 22.8
10s_5_70 89 374.7 231.9 89 171.9 130.5 37.2 43.7 100 91.9 95.9 16.4 58.6 32.4 95.9 64.9
10m_5_70 59 1270.5 664.7 59 307.0 183.0 80.4 72.5 76 141.2 108.6 51.1 83.7 72.2 143.1 30.2
10l_5_70 44 1426.0 735.0 44 304.8 174.4 91.1 76.3 47 78.2 62.6 64.4 91.5 22.1 69.0 48.8

20s_1_30 0 358.9 179.4 0 190.5 95.2 8.3 46.9 1 152.7 76.8 5.3 57.2 63.0 610.5 28.4
20m_1_30 0 854.5 427.2 0 243.9 122.0 150.1 71.5 10 202.0 106.0 8.8 75.2 83.1 118.5 17.9
20l_1_30 0 2741.4 1370.7 0 205.4 102.7 21.3 92.5 0 195.2 97.6 19.0 92.9 67.5 130.6 31.7
20s_1_50 4 1652.1 828.1 4 540.7 272.3 50.3 67.1 31 249.5 140.3 13.8 83.1 74.9 708.3 35.2

(continued on next page)
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Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance
Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

20m_1_50 0 1556.1 778.1 0 467.9 233.9 71.9 69.9 23 272.5 147.7 13.4 81.0 88.4 180.2 17.2
20l_1_50 0 904.6 452.3 0 185.7 92.9 22.8 79.5 5 117.6 61.3 17.6 86.4 93.4 63.1 4.0
20s_1_70 550 2862.2 1706.1 448 629.7 538.8 17.7 68.4 473 202.7 337.8 10.5 80.2 30.0 338.1 236.6
20m_1_70 258 4543.9 2401.0 244 1345.9 794.9 87.5 66.9 341 466.8 403.9 20.0 83.2 63.6 486.6 147.1
20l_1_70 77 3110.3 1593.6 77 726.1 401.5 150.4 74.8 99 233.7 166.4 25.0 89.6 61.1 212.6 64.7
20s_3_30 100 2680.3 1390.1 54 957.0 505.5 21.1 63.6 92 203.3 147.7 20.4 89.4 79.6 691.0 30.1
20m_3_30 15 2364.1 1189.6 15 818.8 416.9 45.4 65.0 66 327.2 196.6 38.5 83.5 90.5 370.3 18.7
20l_3_30 0 2033.1 1016.6 0 307.8 153.9 50.5 84.9 34 153.0 93.5 145.5 90.8 92.2 227.2 7.3
20s_3_50 225 1467.3 846.1 159 1485.1 822.0 37.6 2.8 198 362.3 280.1 20.6 66.9 79.0 799.1 58.8
20m_3_50 130 3485.8 1807.9 97 1523.4 810.2 54.5 55.2 103 522.0 312.5 73.7 82.7 90.2 273.6 30.7
20l_3_50 45 4481.3 2263.1 45 840.6 442.8 150.2 80.4 74 156.2 115.1 79.0 94.9 73.7 313.7 30.3
20s_3_70 543 5436.3 2989.6 432 815.0 623.5 27.2 79.1 476 268.0 372.0 28.5 87.6 45.5 459.4 202.8
20m_3_70 197 4097.8 2147.4 181 1341.3 761.1 150.2 64.6 187 392.5 289.8 39.2 86.5 72.9 829.8 78.5
20l_3_70 307 3384.8 1845.9 274 1583.9 929.0 152.5 49.7 323 259.8 291.4 110.3 84.2 65.1 1632.0 101.8
20s_5_30 80 2458.7 1269.4 64 731.3 397.6 24.6 68.7 86 329.6 207.8 42.5 83.6 88.4 931.5 24.0
20m_5_30 37 2977.7 1507.3 37 1041.4 539.2 150.1 64.2 63 263.9 163.5 41.3 89.2 88.0 - 19.5
20l_5_30 30 3035.3 1532.6 30 814.3 422.1 151.7 72.5 56 275.9 165.9 70.6 89.2 - - OOM
20s_5_50 210 2552.3 1381.1 194 1164.5 679.2 47.0 50.8 220 273.9 246.9 36.0 82.1 80.4 1289.2 48.4
20m_5_50 192 2472.6 1332.3 82 1343.0 712.5 94.2 46.5 113 549.4 331.2 151.6 75.1 - - OOM
20l_5_50 108 2848.3 1478.1 65 1441.4 753.2 153.9 49.0 90 249.4 169.7 158.6 88.5 - - OOM
20s_5_70 390 3077.3 1733.6 310 1637.3 973.6 47.7 43.8 395 428.7 411.9 73.4 76.2 75.5 914.8 100.8
20m_5_70 325 4904.8 2614.9 248 1530.8 889.4 127.0 66.0 282 655.0 468.5 116.7 82.1 87.1 842.2 60.6
20l_5_70 130 5138.0 2634.0 123 1317.5 720.3 173.6 72.7 157 300.0 228.5 150.8 91.3 77.4 485.1 51.7

30s_1_30 0 1777.2 888.6 0 447.0 223.5 28.0 74.8 19 309.4 164.2 29.8 81.5 88.0 1747.9 19.7
30m_1_30 0 2025.8 1012.9 0 617.2 308.6 38.0 69.5 10 448.1 229.1 36.5 77.4 88.3 2250.9 26.8
30l_1_30 0 6808.6 3404.3 0 348.5 174.3 47.3 94.9 4 334.3 169.1 46.1 95.0 85.7 2455.5 24.2
30s_1_50 113 4217.1 2165.0 104 1659.9 882.0 38.6 59.3 124 515.4 319.7 33.2 85.2 79.0 469.8 67.2
30m_1_50 52 4486.5 2269.2 19 2101.4 1060.2 59.4 53.3 122 576.2 349.1 62.5 84.6 93.8 977.9 21.6
30l_1_50 7 2601.7 1304.3 2 532.6 267.3 150.0 79.5 20 243.7 131.8 57.0 89.9 89.4 2737.8 13.9
30s_1_70 1121 6534.2 3827.6 974 1801.1 1387.6 130.9 63.7 979 465.7 722.3 24.3 81.1 93.9 1675.5 43.8
30m_1_70 616 9826.3 5221.1 575 2593.5 1584.3 150.6 69.7 752 717.7 734.8 52.9 85.9 60.0 1338.6 294.2

(continued on next page)
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Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance
Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

30l_1_70 287 7409.5 3848.2 249 1790.4 1019.7 93.5 73.5 280 316.8 298.4 73.8 92.2 53.7 945.6 138.1
30s_3_30 173 5440.2 2806.6 132 2694.2 1413.1 39.7 49.7 182 531.6 356.8 93.9 87.3 89.6 2221.7 37.0
30m_3_30 59 5332.9 2695.9 59 2340.1 1199.5 87.3 55.5 196 665.9 431.0 100.6 84.0 - - OOM
30l_3_30 35 3494.1 1764.5 12 1365.2 688.6 219.5 61.0 47 282.5 164.7 148.0 90.7 - - OOM
30s_3_50 414 4759.2 2586.6 313 3123.0 1718.0 39.8 33.6 351 630.9 490.9 76.1 81.0 - 1986.6 OOM
30m_3_50 234 8504.2 4369.1 215 4333.2 2274.1 150.8 48.0 415 949.6 682.3 110.4 84.4 - - OOM
30l_3_50 115 9105.0 4610.0 115 3623.0 1869.0 150.3 59.5 152 429.5 290.7 300.0 93.7 - - OOM
30s_3_70 1075 10665.2 5870.1 835 3733.2 2284.1 65.0 61.1 935 797.1 866.0 79.8 85.2 65.2 1939.8 301.1
30m_3_70 408 10669.2 5538.6 355 3102.6 1728.8 160.8 68.8 449 897.8 673.4 126.0 87.8 80.6 1882.7 130.8
30l_3_70 630 11675.3 6152.7 526 4479.5 2502.8 177.6 59.3 599 657.2 628.1 226.3 89.8 84.5 5019.0 97.4
30s_5_30 193 5631.7 2912.3 170 1765.5 967.7 150.7 66.8 199 788.4 493.7 73.4 83.0 - - OOM
30m_5_30 92 8734.2 4413.1 92 2131.7 1111.8 162.5 74.8 110 616.2 363.1 133.4 91.8 - - OOM
30l_5_30 61 6883.5 3472.3 61 1500.8 780.9 217.6 77.5 101 545.0 323.0 180.1 90.7 - - OOM
30s_5_50 391 7790.2 4090.6 340 4467.2 2403.6 83.4 41.2 448 846.6 647.3 135.9 84.2 90.6 - 61.0
30m_5_50 275 6811.0 3543.0 164 5079.2 2621.6 154.4 26.0 220 1121.1 670.5 300.0 81.1 - - OOM
30l_5_50 246 10671.6 5458.8 158 3113.9 1635.9 246.4 70.0 212 464.1 338.1 300.0 93.8 - - OOM
30s_5_70 925 8077.2 4501.1 605 3442.2 2023.6 88.6 55.0 805 1182.9 993.9 135.2 77.9 84.0 2624.5 158.7
30m_5_70 654 9369.2 5011.6 528 4248.2 2388.1 190.3 52.3 596 1537.4 1066.7 259.9 78.7 - - OOM
30l_5_70 262 10267.7 5264.8 262 4647.1 2454.5 150.5 53.4 302 660.7 481.3 300.0 90.9 - - OOM

50s_1_30 2 8556.2 4279.1 0 3348.4 1674.2 113.0 60.9 93 1188.1 640.5 170.4 85.0 89.6 8343.5 66.5
50m_1_30 0 9082.2 4541.1 0 2185.7 1092.9 150.2 75.9 83 1502.5 792.7 130.0 82.5 92.8 8822.7 56.7
50l_1_30 0 22949.0 11474.5 0 1881.2 940.6 150.5 91.8 5 1478.0 741.5 191.0 93.5 - - OOM
50s_1_50 601 17726.0 9163.5 394 4512.3 2453.2 159.5 73.2 744 1162.0 953.0 249.5 89.6 79.1 6345.8 198.9
50m_1_50 161 15745.8 7953.4 116 7850.4 3983.2 159.6 49.9 422 2410.4 1416.2 272.4 82.2 94.1 7059.6 83.0
50l_1_50 39 14297.6 7168.3 13 6219.1 3116.1 183.4 56.5 85 1107.8 596.4 270.4 91.7 91.4 5006.6 51.1
50s_1_70 1954 17341.6 9647.8 1821 9377.2 5599.1 152.3 42.0 1928 1237.8 1582.9 189.4 83.6 49.7 3188.3 796.8
50m_1_70 1179 24878.6 13028.8 1002 14598.5 7800.3 151.8 40.1 1258 3164.2 2211.1 300.0 83.0 76.8 10327.3 513.7
50l_1_70 711 25748.3 13229.7 589 7576.5 4082.7 165.6 69.1 678 1234.7 956.4 284.9 92.8 67.5 10793.5 311.1
50s_3_30 394 17075.2 8734.6 276 13931.2 7103.6 209.8 18.7 421 2773.2 1597.1 226.4 81.7 - - OOM
50m_3_30 266 22043.1 11154.6 127 14950.5 7538.8 168.8 32.4 349 3295.0 1822.0 300.0 83.7 - - OOM
50l_3_30 131 18198.4 9164.7 53 10866.7 5459.9 234.4 40.4 162 1585.0 873.5 300.0 90.5 - - OOM

(continued on next page)
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Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance
Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

50s_3_50 858 18143.2 9500.6 657 11256.2 5956.6 168.5 37.3 836 3095.3 1965.7 256.7 79.3 93.2 - 133.4
50m_3_50 533 27830.5 14181.8 512 18231.5 9371.8 153.7 33.9 1146 4392.9 2769.4 300.0 80.5 - - OOM
50l_3_50 286 30411.5 15348.8 261 13002.6 6631.8 300.0 56.8 409 2629.2 1519.1 300.0 90.1 - - OOM
50s_3_70 2107 29275.2 15691.1 1702 12482.2 7092.1 156.3 54.8 2075 2676.2 2375.6 300.0 84.9 76.2 8068.8 564.4
50m_3_70 1111 27175.5 14143.3 894 17357.5 9125.8 154.9 35.5 1536 5780.3 3658.2 300.0 74.1 - - OOM
50l_3_70 1276 43016.4 22146.2 1175 19921.1 10548.1 157.8 52.4 1588 6316.4 3952.2 300.0 82.2 - - OOM
50s_5_30 575 18402.2 9488.6 375 11178.2 5776.6 258.3 39.1 606 3060.0 1833.0 300.0 80.7 - - OOM
50m_5_30 346 36127.5 18236.8 265 17397.6 8831.3 154.2 51.6 590 6258.6 3424.3 300.0 81.2 - - OOM
50l_5_30 162 25689.1 12925.5 162 10541.8 5351.9 151.5 58.6 373 2566.4 1469.7 300.0 88.6 - - OOM
50s_5_50 1370 19335.2 10352.6 1107 15368.2 8237.6 172.5 20.4 1565 4222.2 2893.6 300.0 72.0 - - OOM
50m_5_50 462 26708.5 13585.3 352 16759.5 8555.8 254.6 37.0 789 5450.7 3119.9 300.0 77.0 - - OOM
50l_5_50 469 37730.4 19099.7 343 19026.3 9684.7 155.5 49.3 481 4269.1 2375.1 300.0 87.6 - - OOM
50s_5_70 2139 23310.9 12725.0 1771 13313.9 7542.5 190.0 40.7 2467 4499.9 3483.5 300.0 72.6 - - OOM
50m_5_70 1813 29448.5 15630.8 1450 21269.5 11359.8 200.0 27.3 2203 10097.7 6150.4 300.0 60.7 - - OOM
50l_5_70 683 35730.4 18206.7 683 21014.4 10848.7 154.5 40.4 965 8154.3 4559.7 300.0 75.0 - - OOM

70s_1_30 219 20333.6 10276.3 71 20307.0 10189.0 158.7 0.8 612 3768.6 2190.3 300.0 78.7 96.3 9834.0 80.5
70m_1_30 0 20330.8 10165.4 0 5340.7 2670.3 150.4 73.7 94 3047.8 1570.9 300.0 84.5 - - OOM
70l_1_30 0 40020.2 20010.1 0 364.9 3182.4 151.4 84.1 13 2863.9 1438.4 300.0 92.8 - - OOM
70s_1_50 1554 36856.8 19205.4 1157 11944.0 6550.5 178.3 65.9 2077 3952.7 3014.8 300.0 84.3 85.2 10748.1 447.7
70m_1_50 559 34213.5 17386.2 466 25316.2 12891.1 155.1 25.9 1491 8227.0 4859.0 300.0 72.1 96.2 - 185.9
70l_1_50 277 40254.4 20265.7 123 18342.6 9232.8 230.5 54.4 397 2683.7 1540.4 300.0 92.4 - - OOM
70s_1_70 3760 37919.9 20840.0 3154 15801.4 9477.7 168.5 54.5 3627 3968.3 3797.7 300.0 81.8 64.0 10011.1 1366.7
70m_1_70 2132 50231.3 26181.6 1926 33423.5 17674.7 157.0 32.5 3026 8293.4 5659.7 300.0 78.4 84.1 15617.5 898.4
70l_1_70 1427 55031.2 28229.1 1231 21957.1 11594.1 198.1 58.9 2378 6132.0 4255.0 300.0 84.9 86.5 21421.9 575.7
70s_3_30 884 33551.0 17217.5 587 21845.0 11216.0 285.6 34.9 1050 6344.0 3697.0 300.0 78.5 - - OOM
70m_3_30 472 38405.1 19438.6 374 33120.1 16747.1 300.0 13.8 843 11464.7 6153.9 300.0 68.3 - - OOM
70l_3_30 263 38437.7 19350.3 141 36134.7 18137.8 251.9 6.3 357 7241.7 3799.4 300.0 80.4 - - OOM
70s_3_50 1511 42315.0 21913.0 1186 19875.0 10530.5 216.1 51.9 1717 7041.0 4379.0 300.0 80.0 - - OOM
70m_3_50 988 46579.1 23783.6 820 37096.1 18958.1 204.6 20.3 1699 12155.5 6927.3 300.0 70.9 - - OOM
70l_3_50 656 64629.5 32642.8 582 41251.4 20916.7 160.7 35.9 1257 12773.1 7015.0 300.0 78.5 - - OOM
70s_3_70 3647 47892.0 25769.5 3127 24973.0 14050.0 163.2 45.5 4032 6907.0 5469.5 300.0 78.8 - - OOM

(continued on next page)
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Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance
Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

70m_3_70 2089 56892.1 29490.6 1570 32673.1 17121.6 276.9 41.9 3061 13535.0 8298.0 300.0 71.9 - - OOM
70l_3_70 2057 70640.2 36348.6 1873 51255.7 26564.4 300.0 26.9 2278 18493.8 10385.9 300.0 71.4 - - OOM
70s_5_30 1162 34009.0 17585.5 816 22656.0 11736.0 300.0 33.3 1411 7709.0 4560.0 300.0 74.1 - - OOM
70m_5_30 624 73034.1 36829.1 532 37281.1 18906.6 300.0 48.7 931 12688.8 6809.9 300.0 81.5 - - OOM
70l_5_30 414 65472.1 32943.0 322 40266.3 20294.2 160.1 38.4 641 14891.1 7766.0 300.0 76.4 - - OOM
70s_5_50 2265 41174.0 21719.5 1840 25715.0 13777.5 169.6 36.6 2536 9337.0 5936.5 300.0 72.7 - - OOM
70m_5_50 850 53458.1 27154.1 751 30716.1 15733.6 160.5 42.1 986 14888.3 7937.2 300.0 70.8 - - OOM
70l_5_50 739 58429.7 29584.4 626 38672.4 19649.2 300.0 33.6 1089 16691.6 8890.3 300.0 69.9 - - OOM
70s_5_70 3568 39905.7 21736.9 2765 26061.7 14413.4 178.4 33.7 3506 10957.7 7231.9 300.0 66.7 - - OOM
70m_5_70 2882 62550.1 32716.1 2473 41072.1 21772.6 241.2 33.4 3281 19893.1 11587.1 300.0 64.6 - - OOM
70l_5_70 1332 72718.7 37025.4 1162 54057.5 27609.8 300.0 25.4 1753 23893.8 12823.4 300.0 65.4 - - OOM
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Figure 3.9 illustrates how the integrated heuristic may improve over the constructive heuristic.

The instances are grouped by their number of requests and storage sizes. The horizontal axis

represents the instance categories while the vertical axis corresponds to the improvement over

constructive heuristics. The results are averaged over each category and demonstrate that the

improvement over the constructive heuristic is, on average, 82% over all instances. Given that the

constructive heuristic reflects common operational dispatching rules, the potential performance

increase is large.
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Figure 3.9: Comparison of the constructive and integrated heuristic’s performance

3.5.4 Weight parameters and instance analysis

Section 3.5.2 already briefly touched on the impact of the weight parameters α and β . In this

section, the effect of adjusting these weight parameters is further investigated. Both a small

(10s_1_70) and large (50m_1_50) instance were selected to illustrate the weight parameters’

effect. Figure 3.10 presents the impact of adjusting α and β for both the small (Figure 3.10(a),

solved by FLA+FCS and FCWS), and the large instance (Figure 3.10(b)), solved by the sequential

and integrated heuristic. The figure illustrates the LAP (ELA), CSP (ECS) and weighted objec-

tive function (Eτ ) values obtained by the integrated approach as well as the Eτ obtained by the

sequential approach.

The weight parameters in the sequential approach do not impact upon the optimization process

as the two sub-problems are solved separately. Sequential ELA and ECS are constant for all values

of α and β . Therefore Eτ(α,β ) is a linear function.

As illustrated for
β

α
= 0:

integrated Eτ = sequential Eτ = integrated ELA = sequential ELA

By increasing
β

α
, the integrated ELA increases while the integrated ECS decreases. Interestingly

the integrated Eτ is always lower than the sequential Eτ and by increasing
β

α
the gap between the

integrated and sequential Eτ increases.
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(a) Instance 10s_1_70 solved by the mathematical formulation
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(b) Instance 50m_1_50 solved by the heuristic

Figure 3.10: Impact of the weight parameters’ ratio.

Figure 3.11 demonstrates how different attributes of instances may impact the improvement

of the sequential and integrated heuristic over the constructive heuristic. Figure 3.11(a) represents

the average Eτ obtained by the constructive, sequential and integrated heuristic with respect to

the stacking level. By increasing the maximum stacking level, the relative improvement over the

solution obtained by the constructive heuristic decreases. By increasing the storage size from small

to large (Figure 3.11(b)), the sequential and integrated heuristics improve the initial solution from

44% to 47% and from 78% to 81% respectively. Figure 3.11(d), meanwhile, illustrates how the

load factor does not significantly influence the algorithms’ improvement over the initial solution.
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(a) Averaged cost over stacking level
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(b) Averaged cost over storage size
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(c) Averaged cost over number of requests
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(d) Averaged cost over load factor
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Figure 3.11: Instance attributes analysis by the constructive, sequential and integrated heuristic
when α = β .

3.6. Conclusion

This paper investigated the impact of integrating a location assignment problem (LAP) and a crane

scheduling problem (CSP) in crane-operated warehouses by introducing the integrated Crane-

operated Warehouse Scheduling Problem (CWSP). The CWSP assigns a storage location to input

requests, assigns a crane to execute each request and decides how the set of requests must be

sequenced per crane in such a way that the total storage cost and tardiness is minimized. Mixed

Integer Programming (MIP) formulations for the LAP and CSP were presented in addition to a

continuous-time MIP formulation which integrates both the LAP and CSP. This model considers

realistic crane interactions in the storage area where cranes cannot pass each other and must keep

a safety distance. Furthermore, a meta-heuristic based on Late Acceptance Hill Climbing (LAHC)

was developed to overcome the limited scaling ability of solving the mathematical formulations

by MIP solvers. In addition, 135 instances with various problem specifications were generated to

enable validation and encourage future research.

A comprehensive computational study revealed how integrating the LAP and the CSP may lead

to 48% improvement for the CSP while keeping the same level of quality for the LAP solutions.

Subsequently, the results showed that by integrating the LAP and CSP into one problem, there

is a significant reduction in the total weighted objective of 62%. Furthermore, the benefit of the
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integrated heuristic over the MIP formulation was shown, where better solutions for both medium

and large size instances were obtained compared to solving the MIP formulation on the respective

instances. Additionally, a simulation of a real-world automated warehouse shows a significant

potential for minimizing the storage cost and tardiness of the requests, when comparing the new

procedures with typical dispatching rules.

In conclusion, integrating location assignment and crane scheduling coordinates the resources

in automated warehouses or container terminals more effectively and eventually leads to efficiently

storing the products or containers in the storage areas as well as minimizing the tardiness of the

input and output requests.

Several interesting avenues exist to build upon this study in future research. Further solution

approaches may be considered and investigated. Particularly, exact solution approaches would be a

valuable contribution which may include proposing efficient lower bounding methods. Due to the

nature of operations in automated warehouses, other research directions may focus on exploring

the development of robust scheduling models which consider uncertain requests’ arrival times.
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Appendix

3.A. Detailed computational results

Table 3.A.1 presents detailed computational results obtained by the mathematical formulations.

gapla% (location assignment gap) and gapcs% (crane scheduling gap) indicate the gap obtained

by FLA and FCS, respectively, when solving the problem sequentially. gap% denotes the gap

obtained by FAWS.
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Table 3.A.1: Detailed computational results obtained by mathematical formulations

Ins.
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) gapla% gapcs% cpu ELA ECS Eτ gap% cpu ELA ECS Eτ gap% cpu

10s_1_30 0 267.03 2.670E+02 133.51 0.00 0.00 107.28 0 55.13 5.513E+01 0.00 49.79 1 51.53 26.26 0.00 170.92
10m_1_30 0 478.41 4.784E+02 239.20 0.00 0.00 604.05 0 37.62 3.762E+01 0.00 60.78 0 37.62 18.81 0.00 513.46
10l_1_30 0 515.69 5.157E+02 257.84 0.00 0.00 302.12 0 76.82 7.682E+01 0.00 195.32 0 76.82 38.41 0.00 2044.59
10s_1_50 0 229.25 2.293E+02 114.63 0.00 0.00 67.69 0 123.93 1.239E+02 0.00 311.87 11 78.92 44.96 0.00 1009.35
10m_1_50 0 219.18 2.192E+02 109.59 0.00 0.00 360.00 0 56.45 5.645E+01 0.00 91.66 7 40.07 23.53 0.00 475.39
10l_1_50 0 447.85 4.479E+02 223.92 0.00 0.00 164.24 0 44.49 4.449E+01 0.00 97.42 4 32.49 18.24 0.00 187.29
10s_1_70 132 186.97 1.320E+07 159.49 0.00 0.00 115.83 132 135.97 1.320E+07 0.00 11.06 156 59.25 107.62 0.00 1227.04
10m_1_70 48 348.86 4.800E+06 198.43 0.00 0.00 121.24 48 449.55 4.800E+06 0.00 11.09 86 185.92 135.96 0.00 3290.77
10l_1_70 11 271.44 1.100E+06 141.22 0.00 0.00 155.79 11 148.17 1.100E+06 0.00 27.31 25 73.78 49.39 0.00 613.51
10s_3_30 13 352.10 1.300E+06 182.55 0.00 0.00 442.41 13 179.72 1.300E+06 0.00 119.08 49 76.07 62.53 35.51 3600.00
10m_3_30 1 354.66 1.004E+05 177.83 0.00 0.00 1254.72 1 107.51 1.001E+05 0.00 3600.00 9 70.37 39.68 80.35 3600.00
10l_3_30 0 295.28 2.953E+02 147.64 0.00 0.00 746.32 0 79.51 7.951E+01 0.00 2387.71 - - - - 3600.00
10s_3_50 53 317.77 5.300E+06 185.39 0.00 0.00 879.75 53 201.77 5.300E+06 0.00 3535.55 64 109.83 86.91 49.46 3600.00
10m_3_50 31 409.77 3.100E+06 220.39 0.00 0.00 911.50 31 332.35 3.100E+06 0.00 303.92 41 126.77 83.88 80.67 3600.00
10l_3_50 9 454.43 9.005E+05 231.72 0.00 0.00 1056.12 9 145.71 9.001E+05 0.00 467.58 12 85.91 48.95 0.00 2366.16
10s_3_70 130 392.07 1.300E+07 187.73 0.00 0.00 187.72 130 279.13 1.300E+07 0.00 217.53 190 102.40 146.20 38.42 3600.00
10m_3_70 64 433.66 6.400E+06 248.83 0.00 0.00 212.35 64 492.57 6.400E+06 0.00 92.46 93 77.90 85.45 20.80 3600.00
10l_3_70 98 441.02 9.800E+06 269.51 0.00 0.00 574.97 98 566.37 9.800E+06 0.00 502.12 134 118.11 126.05 55.16 3600.00
10s_5_30 18 322.97 1.800E+06 170.48 0.00 0.00 2714.13 18 182.53 1.800E+06 0.00 3600.00 35 93.23 64.11 66.30 3600.00
10m_5_30 653 477.18 6.530E+07 565.09 100.00 0.00 3224.10 9 275.46 9.002E+05 0.01 3600.00 24 76.36 50.18 78.51 3600.00
10l_5_30 464 457.64 4.640E+07 460.82 100.00 0.00 2845.26 6 244.62 6.002E+05 0.00 3600.00 16 206.88 111.44 85.09 3600.00
10s_5_50 66 435.57 6.600E+06 250.79 0.00 0.00 2300.19 66 292.55 6.600E+06 6.82 3600.00 - - - - 3600.00
10m_5_50 25 - - - 0.00 - 3600.00 25 294.46 2.500E+06 42.16 3600.00 42 196.59 119.30 86.90 3600.00
10l_5_50 13 602.07 1.301E+06 307.54 0.00 0.00 2306.55 13 159.11 1.300E+06 0.00 3391.92 21 82.93 51.96 56.24 3600.00
10s_5_70 83 247.93 8.300E+06 165.64 0.00 0.00 197.83 83 247.93 8.300E+06 0.00 176.25 100 91.85 95.92 32.34 3600.00
10m_5_70 59 419.26 5.900E+06 239.13 0.00 0.00 1313.89 59 263.06 5.900E+06 0.00 3600.00 75 211.27 143.13 78.93 3600.00
10l_5_70 43 541.38 4.301E+06 292.19 0.00 0.00 1755.06 43 418.37 4.300E+06 0.00 1223.19 51 87.02 69.01 29.27 3600.00

20s_1_30 0 1221.04 1.221E+03 610.52 0.00 0.00 1970.28 0 160.38 1.603E+02 35.40 3600.00 - - - - 3600.00
20m_1_30 0 1821.80 1.822E+03 910.90 0.00 0.00 2098.25 0 225.29 2.252E+02 37.60 3600.00 1 235.90 118.45 84.91 3600.00
20l_1_30 0 2171.42 2.171E+03 1085.71 0.00 0.00 2425.32 0 198.40 1.984E+02 0.00 3420.09 0 261.18 130.59 75.71 3600.00

(continued on next page)
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Detailed computational results obtained by mathematical formulations (continued)

Ins.
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) gapla% gapcs% cpu ELA ECS Eτ gap% cpu ELA ECS Eτ gap% cpu

20s_1_50 4 1412.59 4.014E+05 708.30 0.00 0.00 1898.00 4 425.09 4.004E+02 0.09 3600.00 - - - - 3600.00
20m_1_50 0 1373.24 1.373E+03 686.21 0.00 0.00 1967.59 0 445.37 4.453E+02 85.75 3600.00 9 351.42 180.21 90.47 3600.00
20l_1_50 0 1851.12 1.851E+03 925.56 0.00 0.00 2205.82 0 155.85 1.558E+02 0.00 3600.00 8 118.23 63.11 93.63 3600.00
20s_1_70 448 801.34 4.480E+07 624.67 0.00 0.00 2062.93 448 692.26 4.480E+07 0.00 2151.22 480 196.16 338.08 30.03 3600.00
20m_1_70 241 2396.80 2.410E+07 1318.90 0.00 0.00 1948.97 241 1287.71 2.410E+07 0.00 1295.57 333 640.11 486.55 69.77 3600.00
20l_1_70 77 1210.96 7.701E+06 643.98 0.00 0.00 2020.08 77 758.37 7.700E+06 0.00 358.51 88 337.18 212.59 69.57 3600.00
20s_3_30 54 1328.04 5.401E+06 691.02 77.77 80.41 3600.00 - - - - 3600.00 - - - - 3600.00
20m_3_30 995 2031.35 9.950E+07 1513.18 100.00 60.03 3600.00 15 740.32 1.500E+06 0.04 3600.00 64 676.63 370.31 94.94 3600.00
20l_3_30 648 - - - 100.00 - 3600.00 0 277.50 2.775E+02 47.91 3600.00 37 417.42 227.21 96.77 3600.00
20s_3_50 168 1434.26 1.680E+07 799.13 58.53 73.01 3600.00 - - - - 3600.00 - - - - 3600.00
20m_3_50 99 2203.80 9.902E+06 1151.40 82.82 87.74 3600.00 - - - - 3600.00 181 366.17 273.58 88.77 3600.00
20l_3_50 1344 1852.22 1.344E+08 1598.11 99.62 49.66 3600.00 45 1123.48 4.501E+06 66.67 3600.00 49 578.48 313.74 90.35 3600.00
20s_3_70 423 1552.35 4.230E+07 987.67 14.42 59.01 3600.00 424 2902.26 4.240E+07 14.62 3600.00 528 390.82 459.41 55.85 3600.00
20m_3_70 168 1491.69 1.680E+07 829.84 0.00 76.80 3600.00 168 1407.24 1.680E+07 11.31 3600.00 - - - - 3600.00
20l_3_70 274 2989.96 2.740E+07 1631.98 44.16 81.51 3600.00 - - - - 3600.00 - - - - 3600.00
20s_5_30 923 939.96 9.230E+07 931.48 99.89 42.39 3600.00 68 1630.26 6.801E+06 95.45 3600.00 - - - - 3600.00
20m_5_30 886 - - - 100.00 - 3600.00 43 2017.09 4.302E+06 98.66 3600.00 - - - - 3600.00
20s_5_50 1527 1051.42 1.527E+08 1289.21 99.21 34.04 3600.00 - - - - 3600.00 - - - - 3600.00
20m_5_50 1450 - - - 99.72 - 3600.00 87 2062.80 8.702E+06 88.24 3600.00 - - - - 3600.00
20s_5_70 330 1499.62 3.300E+07 914.81 59.09 70.46 3600.00 - - - - 3600.00 - - - - 3600.00
20m_5_70 249 1435.31 2.490E+07 842.15 83.93 76.39 3600.00 385 1738.69 3.850E+07 78.95 3600.00 - - - - 3600.00
20l_5_70 129 - - - 82.17 - 3600.00 - - - - 3600.00 158 812.23 485.11 89.34 3600.00

30s_1_30 0 3495.86 3.496E+03 1747.93 0.00 0.00 2214.11 0 668.80 6.688E+02 91.89 3600.00 - - - - 3600.00
30m_1_30 0 4501.77 4.502E+03 2250.88 0.00 0.00 2554.77 0 921.33 9.213E+02 90.25 3600.00 - - - - 3600.00
30l_1_30 0 4911.02 4.911E+03 2455.51 0.00 94.73 3600.00 0 634.49 6.344E+02 80.19 3600.00 - - - - 3600.00
30s_1_50 98 3299.06 9.803E+06 1698.53 0.00 0.00 3401.45 98 1303.66 9.801E+06 11.74 3600.00 210 729.63 469.81 85.70 3600.00
30m_1_50 19 3742.17 1.904E+06 1880.58 100.00 95.28 3600.00 19 2616.36 1.902E+06 99.99 3600.00 75 1880.72 977.86 97.79 3600.00
30l_1_50 0 4683.93 4.684E+03 2737.80 0.00 0.00 2737.80 0 724.51 7.245E+02 94.12 3600.00 - - - - 3600.00
30s_1_70 934 2416.98 9.340E+07 1675.49 10.38 66.61 3600.00 937 2667.16 9.370E+07 11.20 3600.00 - - - - 3600.00
30m_1_70 544 5919.16 5.441E+07 3231.58 8.63 87.56 3600.00 554 3078.50 5.540E+07 10.29 3600.00 631 2046.16 1338.58 78.02 3600.00
30l_1_70 249 3310.89 2.490E+07 1779.94 0.00 0.00 2641.01 - - - - 3600.00 268 1623.10 945.55 85.39 3600.00

(continued on next page)
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Detailed computational results obtained by mathematical formulations (continued)

Ins.
FLA +FCS FAWS (α >> β ) FAWS (α = β )

ELA ECS Eτ (α >> β ) Eτ (α = β ) gapla% gapcs% cpu ELA ECS Eτ gap% cpu ELA ECS Eτ gap% cpu

30s_3_30 1585 2858.33 1.585E+08 2221.66 99.74 59.80 3600.00 - - - - 3600.00 - - - - 3600.00
30s_3_50 330 3643.15 3.300E+07 1986.57 70.00 84.45 3600.00 - - - - 3600.00 - - - - 3600.00
30s_3_70 821 3058.59 8.210E+07 1939.79 18.27 69.32 3600.00 840 3613.93 8.400E+07 19.35 3600.00 - - - - 3600.00
30m_3_70 371 3394.37 3.710E+07 1882.68 39.35 84.73 3600.00 - - - - 3600.00 - - - - 3600.00
30l_3_70 2589 - - - 97.29 - 3600.00 - - - - 3600.00 684 9339.08 5019.04 98.06 3600.00
30s_5_70 756 4492.94 7.560E+07 2624.47 85.58 80.18 3600.00 - - - - 3600.00 - - - - 3600.00

50s_1_30 0 16686.92 1.669E+04 8343.46 0.00 0.00 2892.64 - - - - 3600.00 - - - - 3600.00
50m_1_30 0 17645.35 1.765E+04 8822.67 0.00 97.98 3600.00 0 8264.20 8.264E+03 98.38 3600.00 - - - - 3600.00
50s_1_50 401 12290.55 4.011E+07 6345.77 34.41 93.74 3600.00 - - - - 3600.00 - - - - 3600.00
50m_1_50 250 13869.28 2.501E+07 7059.64 84.40 95.04 3600.00 - - - - 3600.00 - - - - 3600.00
50l_1_50 11 15907.70 1.116E+06 7959.35 90.90 97.80 3600.00 - - - - 3600.00 146 9867.24 5006.62 98.98 3600.00
50s_1_70 1743 11544.01 1.743E+08 6643.50 16.40 83.19 3600.00 1772 6898.15 1.772E+08 17.77 3600.00 2370 4006.59 3188.29 75.01 3600.00
50m_1_70 1017 19637.64 1.017E+08 10327.32 14.06 92.16 3600.00 - - - - 3600.00 - - - - 3600.00
50l_1_70 599 20988.08 5.992E+07 10793.54 12.18 95.38 3600.00 - - - - 3600.00 - - - - 3600.00
50s_3_70 3904 12233.50 3.904E+08 8068.75 78.32 72.48 3600.00 - - - - 3600.00 - - - - 3600.00

70s_1_30 67 19600.96 6.720E+06 9833.98 100.00 96.20 3600.00 - - - - 3600.00 - - - - 3600.00
70s_1_50 1436 20060.26 1.436E+08 10748.13 48.11 90.22 3600.00 - - - - 3600.00 - - - - 3600.00
70s_1_70 3225 16797.21 3.225E+08 10011.10 18.63 80.97 3600.00 - - - - 3600.00 - - - - 3600.00
70m_1_70 2023 29211.91 2.023E+08 15617.45 19.37 90.92 3600.00 - - - - 3600.00 - - - - 3600.00
70l_1_70 1332 41511.74 1.332E+08 21421.87 20.79 95.56 3600.00 - - - - 3600.00 - - - - 3600.00



Chapter 4

Alternative e-commerce delivery
policies
A case study concerning the effects on
carbon emissions

Contemporary shopping habits are undergoing rapid change, with more and more consumers pur-

chasing goods online. The rapid growth of the online retail sector provides great opportunities

for both wholesalers and transporters in servicing this newly-emergent type of customer. With

both consumers and corporations acutely aware of the environmental impact of business activities,

one of the most relevant research questions is how to organize the operations of an e-commerce

delivery business while simultaneously minimizing its environmental impact.

The present paper addresses the e-commerce delivery problem, a mathematical formulation

and fast heuristics which enable the simulation of various e-commerce delivery scenarios. The

effects of the scenarios regarding more environmentally friendly e-commerce concerns are tested

upon real-world data. In particular, the impact of new green(er) technology (such as electric

bicycles and cars), aggregated collection points, carrier bundling and changing delivery times is

investigated.

The obtained results are suitable for implementation at an organizational or operational level

within both e-commerce delivery companies and transporters.

4.1. Introduction

There is an ongoing shift from the traditional, physical shopping environment towards online

shopping. With annual online purchasing growth estimated at roughly 10% within Europe, it is

not difficult to imagine a near future where online shopping overtakes in-store sales and becomes

the new normal. Wholesalers promise the fast delivery of products to customers, however the

logistical process itself is organized by road couriers and transporters. While offering a high level
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of comfort to individual customers, e-commerce delivery practices represent a considerable source

of greenhouse emissions. Additionally, urban areas are particularly vulnerable to complicating

factors such as traffic congestion due to their high density of both residential and commercial

destinations. The rapid growth of online shopping, or e-commerce, correlates with important

environmental and societal challenges imposed by governments and environmentally-conscious

consumers, namely: how one may operationally organize e-commerce deliveries such that their

environmental impact is minimal; and how to simultaneously satisfy customer demands while

minimizing transportation costs. Indeed, online wholesalers and transporters are eager to discover

viable answers to these questions.

Many businesses have adopted a consumer direct (CD) model, which permits customers to

purchase goods online and have them delivered directly to their addresses. Duin et al. (2007)

provide an auctioning model which assigns orders to providers in a cost and punctuality-driven en-

vironment. Orders arrive dynamically, requiring flexibility concerning their insertion into routes.

Campbell and Savelsbergh (2006) detailed various incentive policies, encouraging companies to

pursue home deliveries. They presented the home delivery problem with time slot incentives,

where customers select a delivery time slot based upon the associated monetary benefits being

offered by the company. However, the environmental impact of such policies was not studied.

Bektaş and Laporte (2011) introduced an extension of the vehicle routing problem with time

windows (VRPTW), the pollution routing problem (PRP), the objective of which is to minimize

a cost function composed of emission costs, fuel costs and driver costs. The study concluded

that the cost of working hours dominates the emission cost. Demir et al. (2012) also studied the

PRP and proposed an ALNS algorithm with a specialized speed optimization component capable

of computing optimal speeds on a given path. Çağrı Koç et al. (2014) extended the PRP by

considering a heterogeneous fleet which only contained internal combustion commercial vehicles

(ICCVs). They conducted experiments on instances from the literature and discovered that using a

heterogeneous fleet without speed optimization reduces operational costs by a greater degree than

when employing a homogeneous fleet with speed optimization.

Employing a homogeneous fleet of electrical vehicles was considered by Schneider et al.

(2014) during their E-VRPTW study (the addition of ‘E’ signifying ‘Electrical’). The objective

of the E-VRPTW is to minimize the distances traveled by electric commercial vehicles (ECVs).

Schneider et al. (2014) presented a mixed integer programming (MIP) model and metaheuristics

to solve their generated instances. Goeke and Schneider (2015) studied E-VRPTWMF, an ex-

tension of E-VRPTW where two vehicle types were considered as a mixed-fleet (MF): ECVs and

conventional ICCVs. This study proposed a more realistic energy consumption model for ECVs

based on individual vehicle mass, speed and the terrain’s gradient. Three different minimization

objectives were considered: distance traveled; the sum of vehicle propulsion and labor cost; and

battery replacement cost. All experiments were conducted upon randomly generated instances.

Desaulniers et al. (2016) study the E-VRPTW with time windows, given an unlimited fleet of

identical ECVs. They particularly focus on the electric vehicles’ limited autonomy and investigate

variants where vehicles may recharge once, several times, partially or fully during the course of a
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route.

In recent years, green logistics has received increasing interest due to growing environmental

concerns by citizens and governments. Roberti and Wen (2016) address the Electric Traveling

Salesman Problem with Time Windows (ET-SPTW) which considers the limited capacity of exist-

ing electric vehicle batteries, thereby acknowledging the need for intermediate stops at recharging

stations. Heuristics were developed and tested on generated instances. El-Berishy and Scholz-

Reiter (2016) considered a homogeneous fleet with a single depot VRP. They proposed a two stage

stochastic model where the delivery speed and emissions are uncertain. The first stage generates

optimum routes; the second stage minimizes emissions by regulated vehicles’ speed. Koç and

Karaoglan (2016) addressed the green-VRP by considering a homogeneous fleet, limited driving

range and refueling infrastructure. They developed a branch and cut algorithm and tested it upon

a benchmark set with twenty customers. Leggieri and Haouari (2017) solved the green-VRP by

integer programming and outperform Koç and Karaoglan (2016)’s algorithm. Shao et al. (2016)

focus on avoiding congestion while investigating distribution strategies. Ehmke et al. (2016) mod-

eled expected emissions costs as a function of the time at which the vehicle begins traveling an

arc and its load while traversing some arc. They did not factor in waiting times. Huang et al.

(2017) considered path selection in time-dependent vehicle routing problems (TDVRP-PF) where

any arc between two customer nodes represents multiple paths. A homogeneous fleet of vehicles

was considered to minimize fuel consumption and vehicle depreciation cost. Huang et al. (2017)

modelled the TDVRP–PF both under deterministic and stochastic traffic conditions and generated

instances based on Beijing’s road network. Muñoz-Villamizar et al. (2017) investigated, similar to

the present paper, both the delivery cost and environmental impact of employing a homogeneous

ECV fleet in an urban environment. They modeled a multi-depot vehicle routing problem (MD-

VRP) and experimented with real-world data obtained from a transportation network in Bogotá,

Colombia.

Several successful approaches within the VRP literature proposed various types of popula-

tion based evolutionary algorithms to address different variants of the problem. Nagata et al.

(2010) and Koç et al. (2015) presented a hybrid genetic algorithm for the VRP with time win-

dows. Tasan and Gen (2012) employed a genetic algorithm for the VRP with simultaneous

pick-up and deliveries. Meanwhile, Vidal et al. (2012) developed an evolutionary algorithm which

combines population-based evolutionary search and neighborhood-based metaheuristics to address

three VRPs: multi-depot, periodic and the multi-depot periodic with capacitated vehicles. Vidal

et al. (2013), presented a hybrid genetic search with diversity control for a large class of time-

constrained vehicle routing problems. All referenced studies conducted extensive computational

experiments on academic benchmark instances. The experimental results showed that the pro-

posed algorithms achieved high quality solutions which encourage the usage of population-based

evolutionary algorithms to address variants of the VRP.

Furthermore, there exist several survey papers within the field which highlight various aspects

of green logistics and the incorporation of environmental issues into combinatorial optimization

problems. Such papers most commonly focus on the vehicle routing problem (Dekker et al., 2012;
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Demir et al., 2014; Lin et al., 2014).

Despite the valuable contributions made by the aforementioned studies, finding the most prof-

itable mode of operation while simultaneously limiting greenhouse emissions on realistic problem

instances remains unexplored. This subject may be addressed using three fundamental research

questions: i) How may one organize delivery from distribution center to the customer in an eco-

logical manner? ii) Which operational shifts may reduce emission levels without incurring un-

acceptable costs? iii) Which concessions related to delivery time windows or deviation from the

delivery location are acceptable for environmentally-conscious consumers?

The present paper investigates the e-commerce delivery problem (EDP) from an operational

perspective. The EDP generalizes the vehicle routing problem, wherein orders must be delivered

to customers. Its objective is to compose routes beginning and ending at the depot and visiting each

delivery location while simultaneously minimizing operational costs and emissions. In addition

to traditional vehicle routing objectives and constraints, the EDP requires the selection of vehicle

types (electrical or otherwise), the determination of delivery dates and/or the merging of delivery

points.

An integer programming formulation which incorporates vehicle-dependent transportation

costs and greenhouse emissions, driving times and delivery times is introduced in Section 4.2.

By incorporating such factors, the impact of alternative delivery strategies - such as the intro-

duction of a heterogeneous fleet including electric vehicles, relaxing delivery time windows, or

aggregating delivery destinations - may be accurately investigated. New delivery strategies are

subsequently presented during Section 4.3 and applied to real-world data provided by e-commerce

delivery transporters. The availability of real-world data provides a unique opportunity to explore

the effects of the proposed policies. A set of fast heuristics enabling the simulation of various

e-commerce delivery scenarios is presented in Section 4.4. The performance of the proposed al-

gorithms are analyzed followed by extensive simulations which enable the assessment of both the

environmental and financial impact of such strategies. Experimental results (Section 4.5) reveal

the interesting and often counter-intuitive effects of adjusting operations. The lack of research in

mixed-fleet EDP means these results will likely have an immediate impact upon online businesses

and will potentially contribute to more sustainable e-commerce delivery practices.

4.2. Problem statement

The EDP consists of three major components: depots, vehicles and parcels. A depot is a location

from which parcels must be delivered to their associated destinations. Each depot has a set of

vehicle types P where each individual vehicle type p is associated with the following parameters:

i) number of available vehicles, mp, ii) maximum traveling duration, Tp, iii) energy capacity, Rp,

detailing the fuel, battery, or energy capacity of the vehicle type.

A parcel has three properties: a delivery window, origin depot and destination location. The

delivery window consists of the earliest and latest possible delivery dates. The overall problem

may be decomposed into a separate subproblem for each depot. Parcels with the same origin depot
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and destination location may be bundled into one multi-drop parcel provided their time windows

are identical. Each sub-problem is thus represented by an ordered list of multi-drop parcels, a

depot and a mixed vehicle fleet of fixed size which delivers the parcels.

The EDP is often defined as an open vehicle routing problem (Li et al., 2007). By contrast,

this paper assumes the transporter owns the vehicles employed for delivery - be they bicycles,

cars, vans or trucks. Drivers are required to return their vehicle to the depot after concluding their

deliveries, a requirement contributing to the driver’s total working time.

The EDP is formulated as a mixed integer program (FEDP) inspired by the research of Goeke

and Schneider (2015) for E-VRPTWMF where two vehicles types were considered with the possi-

bility of recharging at certain stations. While FEDP incorporates multiple vehicle types, it ignores

both vehicle recharging and time windows. The EDP considers a single autonomous trip per ve-

hicle. Additionally, assuming high level decision-making, the time windows are as long as the

scheduling horizon. Consequently, time windows do not impact upon a manager’s decision. Time

windows for e-commerce deliveries are generally one week long, while in the EDP the decision

horizon is one day. Therefore, the FEDP formulation does not explicitly take time windows into

consideration but rather aggregates all deliveries to the same destination into a single multi-drop

parcel. Whereas regular single-drop deliveries take td time, multi-drop deliveries take tb time for

each additional parcel. Furthermore, vehicle capacity is considered sufficiently large to ignore

capacity constraints.

The EDP is defined on a complete directed graph, G = (V,A) where vertices 0 and N + 1

correspond to the depot, while V0,N+1 = {v1, ...,vN} represents the set of delivery points. The

model proposed by Goeke and Schneider (2015) considers two vehicle types: ECVs and ICCVs.

Given EDPs require the possibility of choosing between various vehicle types (electric vehicles,

bikes, vans, trucks), a decision variable xp
i j indicates whether or not arc i j is traveled by a vehicle

of type p. Given the generally light weight parcels in e-commerce, the cost of traveling an arc is

assumed independent of the vehicle’s load.

The proposed model aggregates all parcels requiring delivery to the same address during pre-

processing into a single delivery. The demand of vertex i, qi, represents the number of parcels

requiring delivery to vertex i. Service time at vertex i ∈ V0,N+1, si, may be obtained by Equation

(4.1), where td and tb represent single and multi drop time, respectively.

si = td +(qi−1) tb (4.1)

Table 4.2.1 summarizes the notation employed throughout the paper.
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Table 4.2.1: Notations for the EDP formulations

0,N +1 : Depot vertices;
V : Set of all vertices;
A : Set of arcs = {(i, j)|i, j ∈V, i 6= j};

V0 : Set of vertices excluding 0, V0 = {v1, ...,vN+1};
VN+1 : Set of vertices excluding N+1, VN+1 = {v0, ...,vN};

V0,N+1 : Set of delivery vertices, V0,N+1 = {v1, ...,vN};
P : Set of vehicle types;

M : A big number;
di j : Distance between vertices i and j;
td : Single drop time;
tb : Multi drop time;
t p
i j : Travel time between vertices i and j by vehicle type p ∈ P;

mp : Number of available vehicles of type p ∈ P;
Rp : Fuel, battery or energy capacity of vehicle type p ∈ P;
Tp : Maximum tour duration of vehicle type p ∈ P;
gp

i j : Fuel, battery or energy consumption of vehicle type p ∈ P between vertices i and j;
hp : Fuel, battery or energy consumption per time unit while vehicle type p ∈ P is idle;
qi : Demand of vertex i;
si : Service time at vertex i (s0,sN+1 = 0);
rp

i : Auxiliary variable indicating energy level of vehicle type p at vertex i;
τi : Auxiliary variable for arrival time at vertex i;

xp
i j : Binary decision variable indicating if arc (i, j) ∈ A is traveled by vehicle type p.

∑
j∈V0

∑
p∈P

xp
i j = 1 ∀ i ∈V0,N+1 (4.2)

∑
j∈VN+1

xp
i j− ∑

j∈V0

xp
ji = 0 ∀ i ∈V, p ∈ P (4.3)

∑
j∈V0,N+1

xp
0 j ≤ mp ∀ p ∈ P (4.4)

τi + ∑
p∈P

(si + t p
i j) xp

i j−M (1−∑
p∈P

xp
i j)≤ τ j ∀ i ∈VN+1, j ∈V0 (4.5)

τi + si + t p
i,N+1 xp

i,N+1 ≤ Tp ∀ p ∈ P, i ∈V0 (4.6)

rp
i −hp.si.x

p
i j−gp

i j.x
p
i j +Rp (1− xp

i j)≥ rp
j ∀ i ∈V, j ∈VN+1, p ∈ P (4.7)

0≤ rp
i ≤ Rp ∀ i ∈V0,N+1, p ∈ P (4.8)

τi ≥ 0 ∀ i ∈V (4.9)

xp
i j ∈ {0,1} ∀ (i, j) ∈ A, p ∈ P (4.10)

Constraints (4.2) ensure each customer is followed by exactly one other customer in the route,

except for the depot vertices. Constraints (4.3) are flow conservation constraints guaranteeing

an equal number of incoming and outgoing arcs for each vertex. Constraints (4.4) express an

upper limit for the number of employed vehicles of each type. Auxiliary variable τi represents
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the vehicle’s arrival time at vertex i and Constraints (4.5) link the arrival times at vertices i and j.

Constraints (4.6) prevent each tour’s total time from exceeding the maximum traveling duration

of its vehicle type. Each tour’s total time is obtained by summing the arrival time to the last vertex

(l), τl , the service time of l, sl and the travel time from l to the depot, t p
lN+1. Auxiliary variable rp

i

represents the energy level of vehicle type p at vertex i. Constraints (4.7) set the energy level of

vehicle type p at vertex j considering the energy level at its previous vertex i. Constraints (4.8)

restrict the fuel, battery, or energy level of vehicle type p to be between zero and the maximum

vehicle capacity at each vertex i. Constraints (4.9) state variables xp
i j as binary.

The following Key Performance Indicators (KPIs) are considered during this study:

• CO2 emissions associated with a parcel’s delivery.

• Delivery cost.

• Total distance traveled by all vehicles.

• Number of vehicles required to satisfy all deliveries.

Operators wish to minimize the linear combination of these KPIs which results in the forma-

tion of the objective function, denoted as F in Equation (4.11). The term fe within this equation

denotes the total emission cost for parcel delivery, fl the routing cost of delivery, fd the total dis-

tance traveled by all vehicles and fv the total number of vehicles required to satisfy all deliveries.

fl , fd and fv denote internal KPIs whereas fe is called an external KPI. α , β , γ and δ are positive

coefficients weighting the objectives.

F = α fe +β fl + γ fd +δ fv, (4.11)

CO2 emissions are derived by summing both a vehicle’s travel and stationary (when ran idle)

fuel consumption and then multiplying this total by the amount of CO2 per fuel unit, cp
e (the

fuel unit may correspond to liter for diesel/gasoline, kilogram for CNG and kWh for electricity).

By always considering the average consumption of vehicles when they are either traveling or

stationary, their actual load at every stage of the route route may be ignored. gp
i j indicates the fuel

consumption of vehicle type p between vertices i and j, whereas hp denotes vehicle type p’s fuel

consumption per time unit while it is idle at service points.

fe = ∑
i∈V0

∑
j∈VN+1

∑
p∈P

cp
e . (gp

i j +hpsi) . xp
i j (4.12)

The delivery cost consists of labor costs and vehicle costs which include vehicle write off, fuel

consumption, insurance and maintenance. Parameters cd and cp
v denote driver wages per time unit
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and vehicle costs per kilometer for vehicle type p, respectively.

fl = ∑
i∈VN+1

∑
p∈P

cd (τi + si + t p
i,N+1) xp

i,N+1 + ∑
i∈VN+1

∑
j∈V0

∑
p∈P

cp
v . di j . xp

i j (4.13)

The total distance is the sum of the length of all routes. The distance between vertices i and j

is denoted by di j.

fd = ∑
i∈VN+1

∑
j∈V0

∑
p∈P

di j . xp
i j (4.14)

The number of vehicles required:

fv = ∑
p∈P

∑
j∈V0,N+1

xp
0 j (4.15)

A VRP instance may be considered an instance of the EDP with only one vehicle type and

hence be solved by any EDP algorithm. Thus, the EDP is at least as hard as the VRP which is

proven N P-hard (Lenstra and Kan, 1981). Therefore, exact approaches to the EDP, based on

a commercial integer programming solver, are unlikely to be applicable in real-life e-commerce

delivery routing due to their size, both from a financial and performance perspective.

4.3. E-commerce delivery policies

4.3.1 Alternative parcel delivery vehicles

The vast majority of current e-commerce parcels are delivered by diesel vans (Dekker et al., 2012).

While these vans have a low internal cost - they are cheap to buy, run and maintain - their external

cost is much greater in urban environments. Given the inefficiency of diesel engines for short

trips and slow start-stop traffic, CO2 and NOx emissions are considerable during city tours. Fur-

thermore, van engines are often left idle (rather than being shut off) during delivery, exacerbating

emission levels.

Despite alternative delivery technologies being widely available, the potential decrease in ex-

ternal cost is often outweighed by the perceived increase in internal cost. Higher purchase prices

and minimal difference in CO2 emissions often discourage companies to make the transition from

low-cost diesel vans to Compressed Natural Gas (CNG) vehicles. Similarly, the high purchase

price and smaller capacity of electric vans are considered economic deal-breakers for companies

considering the use of environmentally-friendly vehicles. In (sub)urban environments, however,

smaller vehicles are rarely an issue when the depot is located close to (or within) the city and only

minor changes must be made to the delivery company’s operations.

The impact of switching from diesel to CNG or electric vehicles is analyzed in greater detail

during Section 4.5.2.1.
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4.3.2 Collection points

Customers making purchases via e-commerce channels may have their goods delivered directly

to their home, to a chosen collection point, or they may even choose to retrieve goods themselves

at the company’s physical store. When a customer’s order exceeds a certain value, delivery fees

are often waived. While it is cheaper for both e-commerce stores and carriers to deliver goods to

a collection point or have them picked-up directly from the store, most online stores select home

delivery by default - rarely offering any financial motivation for customers to alter their delivery

method. Including more options or steps to the checkout process of online shopping significantly

decreases the conversion rate (item views to sales), which is the primary reason for not offering

alternative delivery options. An important downside associated with home delivery is that most

people are away from home during daytime hours, which is precisely when carriers also work.

This results in high delivery failure rates whereby couriers must attempt to deliver parcels two or

more times before the customer is at home to accept delivery. Not only is this very expensive for

the carrier, it is also very inconvenient for the customer since goods are delivered far later than

anticipated.

It is highly plausible that, given some small financial incentive, many customers would choose

to have their goods delivered to a collection point rather than at home. Customers are consequently

able to collect their purchases at the time most convenient for them while simultaneously being

financially rewarded for this decision. From the web shop and carrier’s perspectives, this decision

is also beneficial since they are able to ship and deliver parcels at a lower cost and no longer run

the risk and cost of having multiple failed deliveries.

The impact of relocating a portion of all parcels to collection points on both internal and

external costs is discussed in Section 4.5.2.2.

4.3.3 Carrier bundling and regional monopolies

In practice, different carriers often deliver parcels to the same street on the same day. Instinctively,

one would perhaps consider this situation inefficient and conclude that it would be better to offer

a monopoly to a single carrier on such streets in urban centers.

Rural regions, on the other hand, often have so few parcels to be delivered that it becomes

very expensive for carriers to deploy or maintain activities in such areas. In this situation, regional

monopolies could likely increase the density of parcels for a single carrier and thereby engender a

profit margin as opposed to several different carriers generating losses in the region. This higher

parcel density also translates into decreased emissions per parcel, thus decreasing the external

cost.

The effects of enforcing regional monopolies is investigated within several scenarios in Section

4.5.2.3.
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4.3.4 Delivery times

The vast majority of e-commerce parcels are delivered directly to the customer’s door. While the

time spent traveling from the van to the customer’s door is rather small, the time spent waiting

at the customer’s door after ringing the door bell easily increases average parcel delivery times

to 3-4 minutes. This waiting time represents a significant proportion of the total delivery cost.

Furthermore, many e-commerce products are packaged in boxes much larger than the product

itself with the result being that carriers are mostly storing and delivering empty space to customers

throughout the country. There are two logical ways of reducing long waiting times for carriers:

i. Transitioning from home delivery to collection points (see Section 4.3.2), or

ii. Reducing the amount of empty space in e-commerce parcels, thus enabling more parcels to

be delivered via mailboxes.

The impact of reducing the time required for delivering parcels is investigated in Section

4.5.2.4.

4.4. Algorithms for policy simulation

Efficient algorithms are required when solving EDPs in practice. Therefore, designing easy-to-

implement fast heuristics within a simulation environment is essential.

Two constructive algorithms which generate initial solutions for the EDP are presented along-

side a ruin and recreate (R&R) local search which is to be employed in combination with these

constructive algorithms. Given the academic merit of genetic algorithms for VRP problems, one

is proposed based on the biased random key genetic algorithm (BRKGA). Descriptions of the

solution encoding and decoding heuristics, evolutionary process and fitness function are provided.

4.4.1 Constructive heuristics

A Cheapest Insertion (CI) heuristic is applied to generate an initial EDP solution.

The heuristic creates a feasible solution for each depot by iterating over its parcel list and

assigning each parcel to a delivery route. The cost of inserting each parcel at all possible positions

in existing routes and of creating a new route is computed. The latter cost is obtained by inserting

an available vehicle with lowest possible emissions. Subsequently each parcel is inserted at the

lowest cost position in the route.

Once all parcels have been included in this schedule, the CI heuristic is complete and a feasible

solution for the EDP is available.

Figure 4.4.1 visualizes the cheapest insertion procedure. The first parcel in the depot’s list

is assigned to a new route in Figure 4.1(a). Figure 4.1(b) illustrates how the second parcel is

assigned. The cost of creating a new route for the second parcel alone (Cost 3) is compared

against the cost increase when inserting it at all possible positions in the existing route. Thus the

lowest cost option (b3) is selected. The last parcel’s assignment is depicted in Figure 4.1(c) where,
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Cost: 2Cost: 2

(a) First parcel assignment

(1) (2)

Cost: 5Cost: 2

Cost: 3

Cost: 4Cost: 4 Cost: 3Cost: 3

(3)

(b) Second parcel assignment

Cost: 7Cost: 3

Cost: 4

Cost: 8Cost: 8

(1) (2)

(c) Last parcel assignment

Figure 4.4.1: CI constructive heuristic example for three parcels and one depot.

similarly, the cost increase of creating a new route (Cost 4) is compared against the best possible

insertion in the existing route. Note that only two possibilities are represented in the figure. The

solution constructed in this example thus employs two vehicles and its cost amounts to 7.

The primary advantage of this heuristic is its capability of quickly generating solutions for

even the largest instances. One noteworthy disadvantage is, however, that the algorithm produces

solutions located in local optima which may prove very difficult to escape from. The combination

of standard diesel vans and electric vehicles proved challenging for the heuristic since electric

vehicles are slightly cheaper to operate and have much lower emissions than diesel vans, whereas

their range is very limited. This results in solutions where the first few parcels are loaded into the

available electric vehicles, while all those remaining are loaded into diesel vans. Such solutions

are far from efficient and therefore an alternative algorithm is proposed.

Cost: 5Cost: 2

Cost: 3

Cost: 2Cost: 2 Cost: 9Cost: 2

Cost: 3
Cost: 4

Figure 4.4.2: One Route Per Parcel constructive heuristic example.
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The second constructive algorithm is the One Route Per Parcel heuristic (1RPP). This heuristic

creates a solution by simply assigning each parcel to an individual delivery route. Figure 4.4.2

depicts 1RPP and clearly, although theoretically possible, its solutions incur extremely high costs.

The advantage of this constructive heuristic, however, is that its resulting solution is not biased

in any way and thus enables local search algorithms to efficiently alter the solution and find good

quality solutions without prematurely converging to local optima.

4.4.2 Ruin and recreate local search

A ruin and recreate local search heuristic (Schrimpf et al., 2000; Pisinger and Ropke, 2007) is

employed in combination with the aforementioned constructive heuristics. The R&R heuristic

iteratively increases solution quality by randomly selecting a route and removing it from the so-

lution. The removed route’s parcels are re-added to the solution via CI, possibly after ordering

these parcels in some way (such as decreasing distance from the depot) (Christiaens and Van-

den Berghe, 2016). When a new solution is associated with a lower cost than the current best

solution it replaces the latter, otherwise a different route is selected to be ruined.

After a specified number of iterations without any cost reduction, the number of routes to

ruin is increased. The R&R heuristic ends after a predefined number of non-improving iterations,

either when the number of ruined routes reaches the total number of routes in the solution or when

a global iteration limit is reached.

4.4.3 Genetic algorithm

An evolutionary algorithm, based upon the BRKGA, is proposed to identify the number of routes,

types of vehicles and parcel delivery order. BRKGA represents a variant of random-key genetic

algorithms in which the initial population is composed of random-key vectors, with each vector’s

key being a real number sampled uniformly from the interval [0, 1). More information concerning

the evolutionary process of BRKGA is provided by Gonçalves and Resende (2011).

A solution consists of a number of routes, each of which is associated with a vehicle type

and parcel delivery order. This approach employs an indirect solution representation since direct

solutions would be complex to represent and manipulate during the evolutionary process. A chro-

mosome encodes a solution as a vector of random keys. Each chromosome is composed of n+1

genes, where n equals the number of parcels requiring delivery.

Chromosome =

gene0︸ ︷︷ ︸
#routes

,gene1, ...,genen︸ ︷︷ ︸
Parcels

.

The first gene (gene0) identifies the number of routes per depot while the remaining genes are

parcel genes, each corresponding to a single parcel. Parcel genes are employed to assign their

associated parcel to a route. Chromosomes are employed by the decoder when building a CFO
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solution. The number of routes required per depot is denoted as r and decoded via:

r =
⌊

1
gene0

⌋
(4.16)

The decoding, or mapping, of each chromosome’s last n genes into r routes is achieved by

first dividing the [0,1) interval into r sections where each section constitutes a route. Parcel pi is

assigned to route r j if the value of genei lies within section j. The route index for parcels i= 1, ...,n

is generated using the following expression:

parcel’s route index i = bgenei× rc (4.17)

Once the parcels are assigned to the routes, the sequence of parcel deliveries per route is

obtained by the greedy nearest neighbor (NN) algorithm which selects the nearest undelivered

parcel as the next delivery parcel. This quickly results in a sub-optimal route, followed by a local

search employing the 2-opt move (Croes, 1958). Each chromosome’s quality is measured by the

fitness function described in Equation (4.11), which feeds back into the evolutionary process.

4.5. Experiments and discussion

The experimental section is subdivided into three parts. The first compares the proposed algo-

rithms, the second analyzes several existing and alternative real-world data policies and the third

highlights the insights gained via experimentation.

All experiments were performed on instances based on real-world data from e-commerce de-

livery carriers which details their activities for between two and six months and their regional

size which ranges from a single (sub)urban environment to an area of over 30,000 km2. The

data contains over one million parcels, specifies each parcel’s earliest and latest delivery date, the

parcel’s origin depot and finally its delivery address. Furthermore, real-world vehicle character-

istics (cost per kilometer, fuel consumption, range, driver wages) for different vehicle types were

also provided by the e-commerce delivery carriers, thereby enabling a highly accurate simulation

of the EDP’s KPIs. Due to confidentiality and privacy issues, publishing the data in its original

form is prohibited. A selection of real-world data was anonymized and posted online1, enabling

a transparent comparison of the proposed algorithms and also encouraging other researchers to

compete with the proposed solution methods. All the destination of parcels and collection points

are randomized within a radius of approximately 7 meters and depot locations are randomized

within a radius of approximately 1 kilometer. Vehicle characteristics were also randomized via a

confidential conversion-factor. Three sets of instances were thus generated: rural, suburban and

urban.

1https://benchmark.gent.cs.kuleuven.be/hdp/

https://benchmark.gent.cs.kuleuven.be/hdp/
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Real-world data was applied for the alternative policies since it was deemed important to pro-

vide results on unaltered data from e-commerce delivery carriers. Consequently, only the disclo-

sure of aggregated information is possible for these experiments. However, this information cer-

tainly suffices for the purpose of the experiments. In addition to the aggregated results, instance

size and primary vehicle characteristics are also supplied for each simulation thereby providing

further insight regarding each scenario.

4.5.1 Algorithm analysis

The CI and R&R algorithms were implemented in Java, while the genetic algorithm was imple-

mented via the BRKGA library in C++ 11. All experiments were executed on an Intel® Xeon®

CPU E5-2640 v3 @ 2.6GHz processor.

CI, BRKGA, CI + R&R and 1RPP + R&R were tested on three sets of instances: rural (R),

urban (U) and suburban (S) instances. Experiments based on 1RPP without any improvement

phase would certainly be uncompetitive and are therefore not considered. The 16 small instances

ranging from 3 to 76 parcels correspond to the rural instances. The urban instances, meanwhile,

correspond to five medium-sized instances ranging from 594 to 886 parcels. Finally, suburban

instances are represented by five large instances ranging from 3743 to 5529 parcels.

Three fleet types are employed for rural instances: diesel (D), CNG (C) and mixed (M). Electric

vehicles (E) are not employed given that some delivery points lie beyond their range. Unlike

rural areas, delivery points in suburban and urban areas are close to the depot, thus enabling the

utilization of electric vehicles in such regions.

Equation (4.11) is employed as evaluation function in all experiments. For simplicity purposes

α , β , γ and δ are set to 1.

Given all algorithms’ stochastic behavior, all reported computational results presented in this

paper are based on five runs per instance. Figure 4.5.1 compares the algorithms’ results obtained

for rural instances employing diesel, CNG and mixed vehicles, respectively.

The horizontal axes represent the instances and the employed fleet (R0D, for example, rep-

resents rural instance number 0 addressed with diesel vehicles). Emissions, represented on the

vertical axis, are the most relevant KPI for this particular study, while also being demonstrative of

the trend among all other KPIs and therefore constitutes an accurate indicator of solution quality.
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(a) Algorithmic performance on rural instances with diesel vehicles.
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(b) Algorithmic performance on rural instances with CNG vehicles.
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(c) Algorithmic performance on rural instances with mixed vehicles.

Figure 4.5.1: Algorithmic performance with respect to the emissions KPI on the rural (R) instances, as-
suming (a) diesel (D), (b) CNG (C) and (c) mixed (M) vehicles.
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Table 4.5.1 compares the proposed algorithms in terms of number of best and worst solutions

attained. The four algorithms yield solutions of identical quality for 24 out of the 48 instances.

No significant performance difference between the four algorithms is noticeable with respect to

the rural instances. BRKGA does however provide the most frequent occurrence of best solutions

and least frequent occurrence of worst solutions with respect to this emissions KPI.

Table 4.5.1: Comparison of algorithm performance with respect to emissions - rural instances

CI BRKGA CI + R&R 1RPP + R&R

Number of best solutions 4 11 9 10
Number of worst solutions 14 3 3 9
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Figure 4.5.2: Algorithmic performance with respect to the emissions KPI on the urban instances.

Figure 4.5.2 illustrates the algorithmic performance on urban instances. As the number of

parcels is higher for urban than for rural instances, the BRKGA algorithm no longer clearly out-

performs the other algorithms and instead competes with 1RPP + R&R for the first place.

Figures 4.5.3 and 4.5.4 detail suburban instance results in terms of emissions and computa-

tional time, respectively.

Figure 4.5.3 is useful insofar as illustrating how the straightforward CI, as expected, exhibits

the highest emission levels for almost all instances. BRKGA achieves better results, particularly

for rural (academic-sized) instances. Finally, R&R achieves the lowest emission levels for all in-

stances. Figure 4.5.4, meanwhile, presents computation time on a logarithmic scale, clearly illus-

trating how CI is (by far) the fastest-performing algorithm, with R&R taking longer and BRKGA

coming in third.

In essence, while BRKGA performs best for academic-sized instances, it requires considerable

computational time to reach high quality solutions for real-world instances. Due to this scaling

issue, CI represents the only viable option when tackling larger real-world instances containing

up to one million parcels. Indeed, while CI’s emission levels are the highest among these three

algorithms, its results are most comparable to those implied by historical data sourced from the

companies.
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Figure 4.5.3: Algorithmic performance with respect to the emissions KPI on the suburban instances.

Figure 4.5.4: Algorithm performance with respect to computation time

Tables 4.A.1, 4.A.2 and 4.A.3 detail the results of the four algorithms – CI, BRKGA, CI +

R&R and 1RPP + R&R – with respect to vehicle type (VT), number of parcels (#P), distance

per parcel (Dis), emissions per parcel (Em), cost (e), number of routes (#R) and execution time

(seconds).

4.5.2 Alternative policies analysis

This section simulates the proposed alternative parcel delivery policies on real-world e-commerce

delivery data. Due to confidentiality issues, only aggregated results are presented. The size of the

real-world instances makes CI the most appropriate algorithm for simulating scenarios enabling to

investigate the impact of ECO vehicles on parcel delivery (Section 4.5.2.1), the impact of a shift

from home deliveries to collection point retrievals (Section 4.5.2.2) and alternative delivery poli-

cies (Section 4.5.2.4). The instances employed to study the regional carrier monopolies (Section
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4.5.2.3) are much smaller, which enables the application of the best performing algorithm in terms

of quality, namely 1RPP + R&R.

4.5.2.1 Impact of ECO vehicles on parcel delivery

Three types of fuel were considered for these experiments: Diesel, CNG and Electricity (E). To

enable an interesting comparison between the different fuel types and corresponding vehicles,

drivers are assumed to have three primary tasks: load the van at the depot, deliver the parcels and

debrief at the depot (such as reporting undelivered or refused parcels). Vehicle characteristics are

defined for each fuel type in Table 4.5.2 under the assumptions that the maximum working time

for a parcel delivery driver is ten hours per day and the process of both loading and debriefing

takes approximately one hour in total.

Two electric vehicle types are defined: E-single which has a maximum tour duration of 9

hours, allowing for a single route per vehicle per day and an alternative E-double vehicle with a

maximum tour duration of 4 hours, resulting in two routes per vehicle per day. E-double vehicles

employ quick chargers at the depot capable of charging the battery up to 80% in one hour, thereby

enabling the execution of up to two routes per day. The quick-charge duration is equivalent to

the time required to debrief for the first route and load parcels for the second. Both CNG and E-

vehicles employ start-stop technology, meaning their engines are switched off and zero emissions

temporarily occur while the driver is outside the vehicle. Start-stop technology is optional for

diesel vehicles and therefore a comparison is made between scenarios with and without start-stop

technology.

Table 4.5.2: Vehicle properties for the ECO vehicle experiments.

Diesel Diesel S/S CNG S/S E-single E-double
Speed 30 km/h 30 km/h 30 km/h 30 km/h 30 km/h
Range a 300 km 300 km 300 km 140 km 112 km
Max route time 9 h 9 h 9 h 9 h 4 h
Routes per day 1 1 1 1 2
Start/Stop no yes yes yes yes
CO2 emission b 3140 g/l 3140 g/l 2532 g/kg 278 g/kWh 278 g/kWh

aRanges for the Diesel, Diesel S/S, and CNG vehicles are adjusted to reflect the limits imposed by vehicle speed
and maximum route time.

bElectric vehicles do not produce emissions while driving, but the reported emissions are those corresponding to the
production of the required electricity, assuming the average values reported by the EU (European Commission, 2011).

The effect of employing ECO vehicles for parcel delivery is simulated for a large (sub)urban

area, with the depot located at the edge of the city center. 47,000 parcels require delivery over a

period of two months and the maximum distance between depot and parcel destination is 18 km.

All parcels are delivered by a standard diesel van unequipped with start-stop technology in the

reference scenario and this is compared against scenarios employing ECO vehicles.

Figure 4.5.5 summarizes the results for ECO-vehicle simulations. The chart demonstrates how

applying start-stop technology during parcel delivery results in considerable emission decreases.
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Figure 4.5.5: Percentual gain (vertical) of employing ECO vehicles on the different KPIs (horizontal).

Applying start-stop technology has no significant influence on other KPIs. Fuel costs, for example,

represent such a small cost share that the decrease in fuel consumption results in no significant total

cost reduction. When switching to CNG vehicles, CO2 emissions decrease even further, while

total costs remain stable. Furthermore, NOx emissions are practically reduced to zero. Switching

to CNG vehicles may therefore prove ecologically worthwhile for carriers. When employing E-

double vehicles performing two routes per day with quick-charge technology, small decreases in

the cost KPI are noticeable. There are, however, 25% more vehicles required to deliver the parcels,

rendering them undesirable from a practical and investment perspective. When considering the E-

single vehicles, however, a completely different result is obtained. The cost KPI is significantly

reduced compared to the diesel van scenario and all parcels are delivered using an equal number of

vehicles. Therefore, employing electric vehicles is both economically and ecologically worthwhile

for carriers operating within urban environments.

4.5.2.2 Impact of a shift from home deliveries to collection point retrievals

Data concerning delivery parcels in an urban area over a period of two months was employed

to accurately investigate the effects of transitioning from home deliveries to collection point re-

trievals. Approximately 28,000 parcels were delivered over this two month period with between

60 and 1,000 delivered on any single day. Characteristics of the vehicles employed are those of a

standard diesel van running at 30 km/h, as detailed in Table 4.5.2.

An existing network of 24 collection points was utilized with all original delivery addresses

within 3 kilometers of their collection point for the simulation. By contrast, all parcels are deliv-

ered to their original destination in the reference scenario. 10 - 100% of the parcels are randomly

moved from their original destination to the nearest collection point.

Figure 4.5.6 illustrates the decrease in emissions when delivering varying percentages of

parcels to collection points. Emission costs decrease by 0.3 to 78% when utilizing a dense collec-

tion point network. Internal KPIs ( fl , fd and fv) demonstrate a similar reduction, as indicated by
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Figure 4.5.6: Influence of the percentage of parcels delivered at collection points (horizontal) on emissions
(vertical).

Figure 4.5.7.
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Figure 4.5.7: Influence of the percentage of parcels delivered at collection points (horizontal) on three KPIs
(vertical).

It is noteworthy that the reimbursement of collection point personnel is not included in the cost

computation and the actual cost decrease will, therefore, be somewhat lower.

4.5.2.3 Regional carrier monopolies: (sub)urban vs. rural

Two different regions were considered when simulating the effect of regional carrier monopolies.

Region 1 is a medium-sized city and its surrounding suburban environment with 25,000 parcels

requiring delivery over a period of one month, corresponding to a high parcel density. Parcel and

depot data from two carriers was obtained, while only depot information was obtained from a

third carrier for this region. The first two carriers have depots at the edge of the considered region,
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whereas the third’s is centrally located. In the reference scenario, Carriers 1 and 2 deliver parcels

from their respective depots. Characteristics of the vehicles employed are those of a standard

diesel van running at 30 km/h ((Sub)urban) and 50 km/h (Rural), as described in Table 4.5.3, and

the algorithm applied is 1RPP + R&R heuristic.

Table 4.5.3: Vehicle properties for the default diesel van.

City Rural
Speed (diesel van) 30 km/h 50 km/h
Rangea 300 km 500 km
Max route time 10 h
CO2 emission 3140 g/l
Stop duration 4 minutes
MultiStop duration 0.4 minutes per parcel

aThe vehicle’s range is adjusted to reflect the speed limits and maximum route duration.

Figure 4.5.8 summarizes Region 1’s results when all parcels are delivered by either Carrier

1, Carrier 2 or Carrier 3 in a monopoly scenario. Beware that all parcels’ origins are assumed to

be the monopoly holder’s depot. Only one small advantage is to be made from assigning carrier

monopolies in this type of dense region, with cost decreases of between 4% and 7%. All carriers’

delivery routes appear to already be saturated and there is little advantage insofar as including

additional parcels in their workload. Moving the depot from the region’s edge to a central location

(Carrier 3) results in greater KPI improvements, with a cost decrease of 14%, mainly due to the

decrease in distance traveled per parcel. It may, however, still be questioned whether this decrease

in delivery cost sufficiently compensates for the probable increase in costs and complexity in the

long run since parcels must be redistributed outside current carrier logistic flows.
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Figure 4.5.8: Relative delivery costs in case of an urban carrier monopoly (either Carrier 1, 2 or 3), com-
pared to the situation where all three carriers have a share.

Region 2 is more rural with a total of 150 parcels requiring delivery over a period of five

weeks, corresponding to a (very) low parcel density. Parcel and depot data was obtained from only
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one single major carrier operating in this region. For investigating the effect of multiple carriers

in the region, the delivery data have been divided into five sets. Subsequently, these sets have

been assigned to separate fictitious carriers, thus mimicking the effect of five carriers operating

simultaneously within the region. All parcels are assumed to be delivered within one week, albeit

on their original delivery day of the week. In the reference scenario, parcels are delivered by five

carriers independently. Four different scenarios simulate the impact of a rural carrier monopoly.

The resulting costs and emissions are compared against the reference scenario.

Characteristics of the employed vehicles are those of a standard diesel van running at 50 km/h,

as described in Table 4.5.3. Given how rural regions demand long travel distances per parcel, these

are valid assumptions when compared against the 30 km/h for (sub)urban regions.
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Figure 4.5.9: Relative KPIs in a rural carrier scenario where two, three, four or five carriers are merged into
a monopoly, relfecting increasing delivery density. The reference scenario reflects all five carriers having
their share.

Figure 4.5.9 summarizes the results of scenarios in which all activities of two, three, four or

five carriers are merged into a monopoly home delivery. The results are compared against the

reference scenario where all five carriers conduct their delivery share in the region.

By contrast to the results obtained in the (sub)urban region, the benefits of enforcing a regional

carrier monopoly are considerable. Decreases in emissions, costs, required vehicles and distance

per parcel of up to 80% were observed, while the average route duration increased from 4h40 to

almost 8h, thereby highlighting the capability of operating far more efficient routes when under

increasing density conditions.

Compared to urban deliveries, however, a monopolist’s absolute rural delivery costs remain

almost twice as high while the distance per parcel increases threefold, illustrating how low density

regions prove commercially challenging even under monopoly conditions.
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4.5.2.4 Alternative delivery policies

Impact of reduced service time and start-stop technology

The following experiments concern simulating the impact of reducing the time required to deliver

a parcel to its destination (service time) and the application of start-stop technology during parcel

delivery. 47,000 parcels are delivered by the default diesel van with a service time of 4 minutes

for the reference scenario. The simulation scenarios, meanwhile, consider service times of 1 to

5 minutes and for each service time duration the influence of applying start-stop technology is

investigated.

Several interesting conclusions may be extrapolated from the results presented in Figure

4.5.10. First and foremost, applying start-stop technology significantly reduces emissions dur-

ing parcel delivery. Emissions are reduced by almost 40% for the base case (represented by the

black line) where the service time is 4 minutes when switching off the engine during parcel deliv-

ery instead of letting the engine run idle (represented by the red line). Secondly, the graph clearly

illustrates how service time must be halved to two minutes in order to obtain the same emission re-

ductions as those obtained by applying start-stop technology when service time equals 4 minutes.

Thus, from a purely ecological point of view, the application of start-stop technology represents

a simple and immediate benefit since it is much easier to implement than delivery policy changes

which halve service time.
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Figure 4.5.10: Influence of service times (horizontal (min)) and start-stop technology (startstop) on emis-
sions (vertical). The reference scenario considers 4 minutes service time for standard vehicles without
start-stop technology.

Figure 4.5.11, by contrast, visualizes the influence of start-stop technology and service time

upon delivery costs. Given that the application of start-stop technology only affects total fuel

cost (which is marginal compared to the driver’s wage cost), it is unsurprising that the application

of start-stop technology has only a negligible influence upon delivery costs. Therefore, from

an economic perspective it may be a difficult decision concerning whether or not investing in

additional start-stop technology for new vehicles is worthwhile. Much greater cost reductions
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are obtained by reducing service time. Indeed, with high driver wage costs, any reduction in

service time should incur significant delivery cost savings. These results demonstrate the need to

further investigate the effects on service times by reducing parcel sizes and thereby increasing the

percentage of parcels deliverable by mailbox.
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Figure 4.5.11: Influence of service times (horizontal (min)) and start-stop technology (startstop) on delivery
cost (vertical). The reference scenario considers 4 minutes service time for standard vehicles without start-
stop technology.

Impact of increased time windows

The following experiments simulate the impact of increasing time windows for parcel delivery in

an urban environment. Default diesel vans with a 4 minute service time are employed to deliver

over 47,000 parcels. The simulation investigates the impact of lengthening parcel delivery time

windows from one to four days for 20%, 40% and 60% of the parcels.

Figure 4.5.12 presents the results, where the horizontal axis corresponds to the three scenario

categories (20%, 40% and 60%) and the vertical axis details the level of emissions relative to

the reference scenario (no extended time windows). The figure illustrates how increasing time

windows does not yield the expected benefits. Indeed, increasing the time windows for 60% of

the parcels by four days only results in emission decreases of 7%. Additionally, a time window

increase for 20% of the parcels by two, three or four days result in similar emission decreases. A

careful analysis of the results revealed that the real routes are densely loaded with deliveries. Re-

gardless of any time window flexibilities, the most restrictive constraint appears to be the drivers’

working time limits.
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Figure 4.5.12: Impact of increased delivery time windows on emissions. The horizontal axis indicates the
portion of deliveries with increased time windows and the vertical axis presents relative emissions. The
reference scenario indicates emissions for the original time windows.

4.5.3 Discussion and insights

This paper’s primary objective was to investigate the most profitable mode of e-commerce delivery

operations, and it sought to reduce CO2 emissions while satisfying customer service expectations.

Computational experiments provided several insights which may be summarized as follows:

1. Contrary to intuition, regional carrier monopolies do not increase delivery efficiency, except

in regions with very low parcel density.

2. Delivering parcels to a collection point instead of customers’ homes significantly decreases

both external (emissions) and internal costs (delivery cost, service time, fleet size). More-

over, customers collect their order at a delivery point whenever it proves convenient. This

represents an indirect benefit for the transporter (no additional waiting times, no failed de-

liveries).

3. Significant benefits are obtained in all scenarios when the percentage of bundled deliveries

is increased. Indeed, the number of orders requiring delivery to one point does not linearly

increase service time at this destination.

4. Reducing delivery duration has the greatest impact on total cost, as expected, since it short-

ens the drivers’ working time. For instance, if a customer is not at home, the driver must

first wait for some time before writing a delivery notice.

5. Extending time windows does not yield the expected benefit, the primary reason being that

most tours are saturated and cost reductions are marginal when compared against driver

costs or those generated by to-the-door delivery.
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4.6. Conclusion

The paper proposed a general optimization approach to the e-commerce delivery problem, en-

abling the assessment of various operational delivery policies on both costs and emissions. A

mixed integer programming formulation, heuristic approaches and several delivery policies were

presented. Computational results were obtained by applying the presented heuristics to a selection

of anonymized real-world data gathered from e-commerce delivery transporters.

Interestingly, experimental results often proved counter-intuitive. For example, while one

might assume that extending delivery time windows would reduce both costs and emissions, results

indicate that such relaxations result in little or no profit. Given high personnel costs, one would

have also assumed that reducing the driving time would be beneficial. Instead, it appears that, es-

pecially in urban areas, reducing delivery time potentially contributes more significantly towards

cost and emission reductions than reducing the actual driving time. Results reveal how emission

costs are decreased by up to 78% when utilizing a dense collection point network and by up to

80% when enforcing a regional carrier monopoly in rural areas. Another important observation

is that switching off vehicle engines during individual parcel delivery reduces the environmental

impact considerably.

Several interesting avenues exist for future research. Recently, many companies in the United

States and India have begun implementing a crowd-shipping strategy (Archetti et al., 2016). By

employing crowd-shipping, distributors ask customers who are collecting their orders to deliver

those of other customers on their return journey in exchange for certain incentives. From a policy

point of view, the environmental impact of integrating crowd-shipping into policies such as deliv-

ering to collection points or carrier bundling on home deliveries is worth exploring. This paper

researches the impact of a few new policies, but many more remain to be investigated. Other

research directions may focus on the realistic modeling of certain vehicle processes, such as en-

ergy consumption or CO2 emissions. The vehicles’ capacity constraints may represent yet another

important issue that should be further investigated.
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Chapter 5

Conclusions and future research

This dissertation investigated theory and practice of challenges within e-commerce logistics man-

agement from two perspective: efficiency and sustainability, thereby, making scientific, social and

industrial contributions.

On the efficiency in e-commerce logistics, integration of decisions in warehouse scheduling

was investigated. The majority of studies in warehouse scheduling focus on introducing new

solution approaches for particular problem variations of either location assignment or solely crane

scheduling. Therefore, important aspects of integrated optimization in warehouse scheduling are

neglected, regarding both theoretical and practical aspects. Chapters 2 and 3 are dedicated to

the integrated decision making in warehouse scheduling proposing new formulations and efficient

solution approaches, each with considering realistic constraints. Specifically, Chapter 2 considers

the Scheduling Crane Operations Problem (SCOP) in rail-rail transshipments terminals. There

are two particular characteristics of the SCOP that had not been studied. i) The cranes operate

side by side in their own designated working area and between two neighbouring cranes there is

an overlap working area in which only one of the two cranes may be present, and ii) Unlike the

container terminals there is no input or output points for containers. The containers are located

on the trains and must be moved among them, which means moving a container from its position

to its destination train opens room to move other containers. Chapter 3 introduced the integrated

Crane-operated Warehouse Scheduling Problem (CWSP) to investigate the impact of integrating

a location assignment problem (LAP) and a crane scheduling problem (CSP) in crane-operated

warehouses. The CWSP, considers a different setting than in Chapter 2 in which the cranes move

along the storage area to reach the respective input/output point during their operations. This

means cranes can traverse the entire storage area provided safety distances between all cranes

are respected. The new theoretical insights in this dissertation enable a deeper and more realistic

understanding of scheduling problems in warehouses and container terminals, and have potential

impact in the way such problems will be tackled in the future. Decision support systems, for

example, could integrate location assignment and crane scheduling in a framework to efficiently

find optimal solutions. The practical contributions directly impact the industry by facilitating

practitioners towards applying academic results.
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Furthermore, this dissertation studied the effects of alternative policies on carbon emissions

in e-commerce deliveries. Despite valuable contributions in literature, there were unanswered

questions regarding sustainable e-commerce deliveries. Chapter 4 explores sustainable decision

making in e-commerce delivery and introduced an optimization approach to enable the assessment

of various operational alternative delivery policies on both operations costs and ecological impact.

The outcome of this research enables the assessment of various operational delivery policies on

both costs and emissions.

It is worth mentioning that the formulations and solutions approaches developed in this thesis

may be applied to other problems which share similar challenges as e-commerce logistics with a

limited effort. Section 5.1 overviews the main conclusions and contributions of this dissertation,

followed by ongoing and future research in Section 5.2.

5.1. Conclusions

This thesis started by focusing on warehouse scheduling in the RRTT. An in depth study of the

existing challenges in RRTTs to classify the operational problems is conducted which resulted in

a new classification of the problems in RRTTs which integrates different existing sub-problems

into four integrated problems.

Then, a new mathematical formulation that employs continuous variables to represent the time

was presented. This formulation enabled incorporating realistic constraints within the RRTT.

Finally, on the solution approach front for the SCOP new heuristics based on genetic algorithm

were designed to minimize the total transshipment time and number of containers remaining on the

yard. The proposed algorithms are able to solve the integrated SCOP in a yard with multiple cranes

with overlapping working areas and buffer lines which employ ground transportation. Extensive

experiments show how proposed algorithms improve solutions compare to typical dispatching

rules by at least 43%. The insights also illustrate when trains’ load factor is not high, the size of

overlap area has no significant impact on total transshipment time.

More than proposing valid formulations and solution approaches to the warehouse scheduling

in the RRTT, the thesis have enriched the line of research dedicated to include integrated decision

making in warehouse scheduling. In addition, a set of instances designed and published to encour-

age future research in the field. The set of instances is inspired from a real-world RRTT which

considers different characteristics of the problem.

The results of the aforementioned contributions are two research papers:

• Sam Heshmati, Zafeiris Kokkinogenis, Rosaldo J. F. Rossetti, Maria Antónia Carravilla, and

José Fernando Oliveira. An agent-based approach to schedule crane operations in rail-rail

transshipment terminals. In Raquel J. Fonseca, Gerhard-Wilhelm Weber, and João Telhada,

editors, Computational Management Science, pages 91–97, Cham, 2016. Springer Interna-

tional Publishing. ISBN 978-3-319-20430-7
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• Sam Heshmati, Maria Antónia Carravilla, and José Fernando Oliveira. Scheduling Crane

Operations in Rail-Rail Transshipment Terminals to be submitted to Journal of Scheduling.

Inspired by the SCOP in RRTT, new setting of storage yard was considered. In crane-operated

warehouses the cranes can move along the storage yard and they don’t have dedicated working

area, and there are input output point around the yard. New time-continuous mathematical for-

mulation was presented which incorporates the cranes’ movement considering the safety distance

for both the integrated and sequential approaches. An efficient solution approach was developed

based on the LAHC.

The results revealed a significant potential to minimize the storage cost and crane utilization,

by simulating real-world cases and comparing the new approaches with typical dispatching rules.

This work enriches the warehouse scheduling field by incorporating realistic constraints and in-

troducing new mathematical formulations and solution approaches. Most or at least part of the

challenges faced by the crane-operated warehouses are common to other storage areas which em-

ploy overhead cranes, thus the formulations and solutions approaches developed in these chapters

may be applied to other problems with a limited effort. Hence, outcome of these chapters are ap-

plicable in smart warehouses, storage areas or container terminals where employ overhead cranes

to move the products or containers with different crane settings. The aforementioned contributions

are included in following research paper:

• Sam Heshmati, Túlio A.M. Toffolo, Wim Vancroonenburg, and Greet Vanden Berghe.

Crane-operated warehouses: Integrating location assignment and crane scheduling. Com-

puters & Industrial Engineering, 129:274–295, 2019. ISSN 0360-8352

Regarding sustainable decision making in e-commerce logistics, the EDP was presented. Ex-

tensive simulations employing proposed solution approaches and real-world data resulted in valu-

able insights. The insights of this work contributes directly to the e-commerce and parcel delivery

industry. There was some counter intuitive findings such as extending delivery time windows result

in little or no profit. Results reveal how emissions are reduced when utilizing a dense collection

point network and also when enforcing a regional carrier monopoly in rural areas. Another im-

portant observation is that switching off vehicle engines during individual parcel delivery reduces

the environmental impact considerably. To summarize, the contributions of this section include

introducing the e-commerce delivery problem (EDP) and proposing efficient algorithms to solve

different size instances from academic size to real-world size ones (up to 3 million parcels). As

well as, presenting insights to find the most profitable mode of e-commerce delivery while re-

ducing ecological impact and satisfying customer service expectations by providing a simulation

framework to enable decision makers in industry evaluate alternative delivery policies. The results

of the aforementioned contributions have been published in the following venue:

• Sam Heshmati, Jannes Verstichel, Eline Esprit, and Greet Vanden Berghe. Alternative e-

commerce delivery policies. EURO Journal on Transportation and Logistics, 2018. ISSN

2192-4384
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5.2. Future research

Considering the rapid development of information technology and advanced manufacturing tech-

nology, to enhance productivity and cope with the increasing demand, the logistics management is

being transferred from digital to intelligent. This thesis proposed integrated optimization approach

in crane-operated warehouses by considering realistic constraints in a deterministic and central-

ized framework. There are several interesting avenues of future research which may be considered

and investigated. There are many scenarios that require to find a good schedule when there are

uncertainties in requests’ arrival times or any other sort of incomplete data in storage areas. Due to

nature of operations in crane-operated warehouses an important research direction may include on-

line scheduling or stochastic online scheduling (Vredeveld, 2012) to consider such uncertainties.

Another approach to crane-operated warehouse scheduling problem may include distributed opti-

mization approaches. With the advent of edge computing (Shi et al., 2016) that allows real-time

distributed processing of large scale data, distributed computing and distributed decision mak-

ing are becoming more realistic. The goal of distributed optimization is to solve an optimization

problem where the objective function is formed by summation of local objective functions, and

each processing node has access only to one local objective function. Distributed optimization

approaches, with the ability to perform parallel computations, would have valuable contributions,

both in terms of solution speed and the maximum problem size that can be addressed. By emerg-

ing smart manufacturing where real time decision making, uncertainty, and large-scale demand

come hand in hand, approaches which employ integrated optimization, stochastic online schedul-

ing and distributed optimization simultaneously may be beneficial. Furthermore, exact solution

approaches would be a relevant contribution which may include proposing efficient lower bound

methods.

With respect to alternative e-commerce delivery policies, future research may include both

more realistic modeling of the problem and integrating new e-commerce technologies and innova-

tions into environmental policies. To model the problem more realistically, considering certain ve-

hicle processes, such as energy consumption or CO2 emissions would be a valuable contribution.

The vehicles’ capacity constraints may represent yet another important issue that should be fur-

ther investigated. Integrating crowd-shipping as a newly emerged innovation within e-commerce

industry into policies such as delivering to collection points or carrier bundling on home deliveries

is worth exploring.



References

Knut Alicke. Modeling and optimization of the intermodal terminal mega hub. In Hans-Otto
Günther and KapHwan Kim, editors, Container Terminals and Automated Transport Systems,
pages 307–323. Springer Berlin Heidelberg, 2005.

Claudia Archetti, Martin Savelsbergh, and Maria Grazia Speranza. The vehicle routing problem
with occasional drivers. European Journal of Operational Research, 254(2):472–480, 2016.
ISSN 0377-2217.
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