596 research outputs found

    Power Bounded Computing on Current & Emerging HPC Systems

    Get PDF
    Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets. We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency. Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems

    EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud

    Full text link
    Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced Computing and Applications, Journal of Science and Technology, Vietnamese Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    Empirical characterization and modeling of power consumption and energy aware scheduling in data centers

    Get PDF
    Energy-efficient management is key in modern data centers in order to reduce operational cost and environmental contamination. Energy management and renewable energy utilization are strategies to optimize energy consumption in high-performance computing. In any case, understanding the power consumption behavior of physical servers in datacenter is fundamental to implement energy-aware policies effectively. These policies should deal with possible performance degradation of applications to ensure quality of service. This thesis presents an empirical evaluation of power consumption for scientific computing applications in multicore systems. Three types of applications are studied, in single and combined executions on Intel and AMD servers, for evaluating the overall power consumption of each application. The main results indicate that power consumption behavior has a strong dependency with the type of application. Additional performance analysis shows that the best load of the server regarding energy efficiency depends on the type of the applications, with efficiency decreasing in heavily loaded situations. These results allow formulating models to characterize applications according to power consumption, efficiency, and resource sharing, which provide useful information for resource management and scheduling policies. Several scheduling strategies are evaluated using the proposed energy model over realistic scientific computing workloads. Results confirm that strategies that maximize host utilization provide the best energy efficiency.Agencia Nacional de Investigación e Innovación FSE_1_2017_1_14478
    • …
    corecore