
Empirical characterization and
modeling of power consumption and

energy aware scheduling in data centers
Tesis de Maestría en Informática

Jonathan Muraña

Programa de Posgrado en Informática - PEDECIBA
Universidad de la República

Montevideo – Uruguay
Octubre de 2019

Empirical characterization and
modeling of power consumption and

energy aware scheduling in data centers
Tesis de Maestría en Informática

Jonathan Muraña

Tesis de Maestría presentada al Programa de
Posgrado en Informática - PEDECIBA , de la
Universidad de la República, como parte de los
requisitos necesarios para la obtención del título de
Magíster en .

Director:
Ph.D. Prof. Sergio Nesmachnow

Montevideo – Uruguay
Octubre de 2019

Muraña, Jonathan
Empirical characterization and modeling of power

consumption and energy aware scheduling in data centers
/ Jonathan Muraña. - Montevideo: Universidad de la
República,

XI, 111 p.: il.; 29, 7cm.
Director:
Sergio Nesmachnow
Tesis de Maestría – Universidad de la República,

Programa en Informática - PEDECIBA , 2019.
Referencias bibliográficas: p. 102 – 111.
1. computación verde , 2. eficiencia energética ,

3. multinúcleos, 4. modelos de energía, 5. simulación
de computación en la nube. I. Nesmachnow, Sergio, .
II. Universidad de la República, Programa de Posgrado en
Informática - PEDECIBA . III. Título.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Prof. Pablo Rodríguez Bocca

Prof. Bernabé Dorronsoro

Prof. Esteban Mocskos

Montevideo – Uruguay
Octubre de 2019

iv

ABSTRACT

Energy-efficient management is key in modern data centers in order to re-
duce operational cost and environmental contamination. Energy management
and renewable energy utilization are strategies to optimize energy consumption
in high-performance computing. In any case, understanding the power con-
sumption behavior of physical servers in datacenter is fundamental to imple-
ment energy-aware policies effectively. These policies should deal with possible
performance degradation of applications to ensure quality of service.

This thesis presents an empirical evaluation of power consumption for scien-
tific computing applications in multicore systems. Three types of applications
are studied, in single and combined executions on Intel and AMD servers, for
evaluating the overall power consumption of each application. The main re-
sults indicate that power consumption behavior has a strong dependency with
the type of application. Additional performance analysis shows that the best
load of the server regarding energy efficiency depends on the type of the appli-
cations, with efficiency decreasing in heavily loaded situations. These results
allow formulating models to characterize applications according to power con-
sumption, efficiency, and resource sharing, which provide useful information
for resource management and scheduling policies. Several scheduling strategies
are evaluated using the proposed energy model over realistic scientific comput-
ing workloads. Results confirm that strategies that maximize host utilization
provide the best energy efficiency.

Keywords:
green computing, energy efficiency, multicores, energy model, cloud
simulation.

v

List of Figures

2.1 Graphical representation of the R-squared components 14

4.1 Workflow of proposed methodology 23
4.2 Power monitoring setup . 29
4.3 CPU-bound benchmark, UL of 37.5% 30
4.4 CPU- and memory-bound benchmarks combined, UL of (25%,

50%). 31
4.5 CPU-, memory-, and disk-bound benchmarks combined, UL of

(25%,25%,50%). 32
4.6 Procedure for energy data extraction 35
4.7 Procedure for performance data extraction 39

5.1 EC comparison for the CPU-bound benchmark on AMD and
Intel hosts . 47

5.2 PC difference between of CPU-bound and memory-bound ex-
periments . 49

5.3 EC comparison for the memory-bound benchmark on AMD and
Intel hosts . 49

5.4 EC comparison for the disk-bound benchmark on AMD and
Intel hosts . 51

5.5 Combined CPU- and memory-bound EC on AMD host 52
5.6 Combined CPU- and memory-bound EC on Intel host 54
5.7 Combined CPU- and disk-bound EC on AMD host 55
5.8 Combined CPU- and disk-bound EC on Intel host 56
5.9 Combined memory- and disk-bound EC on AMD host 57
5.10 Combined memory- and disk-bound EC on Intel host 58
5.11 Makespan comparison for the CPU-bound benchmark on AMD

and Intel hosts . 60

vi

5.12 Makespan comparison for the memory-bound benchmark on
AMD and Intel hosts . 61

5.13 Makespan comparison for the disk-bound benchmark on AMD
and Intel hosts . 62

6.1 EC models for CPU-bound workloads 68
6.2 EC models for memory-bound workloads 70
6.3 EC models for disk-bound workloads 71
6.4 Quadratic PC models for combined CPU-memory workloads . 73
6.5 Quadratic PC models for combined CPU-disk workloads . . . 75
6.6 Quadratic PC models for combined memory-disk workloads . 76
6.7 Performance models for CPU-bound workloads 80
6.8 Performance models for memory-bound workloads 82
6.9 Performance models for disk-bound workloads 83
6.10 Scheduling approach . 87
6.11 Percentage improvements in energy consumption over RR using

AMD PC model . 94
6.12 Percentage improvements in energy consumption over RR using

Intel PC model . 94

7.1 Fisrt page of the conference article 99
7.2 Fisrt page of the journal article 100

vii

List of Tables

3.1 Summary of the related work 20

4.1 Specification of servers used in experiments 28
4.2 Example of content of PC dataframes 36
4.3 Example of content of benchmark execution dataframes, in the

reading stage . 37
4.4 Example of content of benchmark execution dataframes, in the

pre-proccesing stage . 38
4.5 Example of dataframe containing the PC of benchmark execu-

tions, in the crossing stage . 39
4.6 Example of dataframe containing PC of benchmark executions,

in the results stage. 39
4.7 Example of dataframe containing performance of benchmark

executions, in reading stage 41
4.8 Example of dataframe containing performance of benchmark

executions, in the results stage 41

5.1 PC and EC results for the CPU-bound benchmark on AMD
and Intel hosts. 46

5.2 PC and EC results for the memory-bound benchmark on AMD
and Intel hosts . 48

5.3 PC and EC results for the disk-bound benchmark on AMD and
Intel hosts . 50

5.4 PC and EC results for the CPU- and memory-bound bench-
marks combined on AMD host 51

5.5 PC and EC results for the CPU- and memory-bound bench-
marks combined on Intel host 53

viii

5.6 PC and EC results for the CPU- and disk-bound benchmarks
combined on AMD host . 54

5.7 PC and EC results for the CPU- and disk-bound benchmarks
combined on Intel host . 55

5.8 PC and EC results for the memory- and disk-bound benchmarks
combined on AMD host . 56

5.9 PC and EC results for the memory- and disk-bound benchmarks
combined on Intel host . 57

5.10 PC and EC results for the CPU-, memory- and disk-bound
benchmarks combined . 58

5.11 Makespan results for the CPU-bound benchmark on AMD and
Intel hosts . 59

5.12 Makespan results for the memory-bound benchmark on AMD
and Intel hosts . 60

5.13 Makespan results for the disk-bound benchmark on AMD and
Intel hosts . 62

5.14 Efficiency for different ULs on AMD and Intel hosts 63

6.1 Statistics of EC models for CPU-bound workloads 69
6.2 Statistics of EC models for memory-bound workloads 70
6.3 Statistics of EC models for disk-bound workloads 72
6.4 Statistics of PC models for combined CPU-memory workloads 74
6.5 Statistics of PC models for combined CPU-disk workloads . . 75
6.6 Statistics of PC models for combined memory-disk workloads 77
6.7 Statistics of PC models for combined CPU-memory-disk work-

loads . 79
6.8 Statistics of performance models for CPU-bound workloads . 81
6.9 Statistics of performance models for memory-bound workloads 82
6.10 Statistics of performance models for disk-bound workloads . . 84
6.11 Total energy consumption of the studied scheduling strategies

using the AMD energy model 90
6.12 Total energy consumption of the studied scheduling strategies

using the Intel energy model 91
6.13 GAPs over RR of each scheduling strategies on AMD host . . 92
6.14 GAPs over RR of the scheduling strategies on Intel host . . . 93

ix

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Energy efficiency in data centers 6
2.1 Data centers and energy efficiency 6

2.1.1 Data centers and energy context 6
2.1.2 Toward energy efficiency in data centers 8

2.2 Modeling high-end multicore servers 9
2.2.1 Power consumption modeling 9
2.2.2 Performance modeling 11
2.2.3 Evaluating the quality of power consumption and per-

formance models . 12
2.3 Energy-aware scheduling . 13

3 Related Work 16
3.1 Power characterization and energy-aware scheduling review . 16
3.2 Cloud simulation tools . 19
3.3 Summary . 20

4 Methodology for power consumption and performance evalu-
ation 22
4.1 Energy optimization workflow 22
4.2 Power characterization . 24

4.2.1 General overview . 24
4.2.2 Benchmarks for power consumption characterization . 25
4.2.3 Multicore hosts and power monitoring setup 27

x

4.2.4 Design of experiments 29
4.3 Processing data under reproducible/replicable research

paradigm . 32
4.3.1 Reproducible and replicable research by using Jupyter

Notebook and Pandas 32
4.3.2 Extraction of useful information from raw data 35
4.3.3 Building models using Python libraries for analysis of

scientific data . 42

5 Power and performance evaluation results 45
5.1 Results of executions . 45

5.1.1 Idle power consumption evaluation 45
5.1.2 Results of single benchmark executions 46
5.1.3 Results of combined benchmark executions 51

5.2 Performance evaluation . 59
5.3 Energy efficiency analysis . 63
5.4 Concluding remarks . 64

6 Models construction and simulation results 66
6.1 Power consumption models construction 66

6.1.1 An insight of the proposed power consumption models 67
6.1.2 EC models considering a single resource 67
6.1.3 PC models considering two resources 72
6.1.4 PC models considering three resources 77

6.2 Performance models construction 80
6.3 Schedulers evaluation . 84

6.3.1 Energy model implementation 84
6.3.2 Simulation details . 85
6.3.3 Workloads description 85
6.3.4 Scheduling heuristics 86
6.3.5 Simulation results . 89

7 Conclusions and future work 96
7.1 Conclusions . 96
7.2 Future work . 100

Bibliography 102

xi

Chapter 1

Introduction

Data centers are key infrastructures for developing and executing industrial
and scientific applications. In the last decade, data centers have become highly
popular for providing storage, computing power, hosting, middleware software,
and other information technology services, available to researchers with ubiqui-
tous access (Buyya et al., 2013). However, energy efficiency of data centers has
become one of the main concerns in recent years, having a significant impact
on monetary cost, environment, and guarantees for service-level agreements
(SLA) (Dayarathna et al., 2016).

The main sources of power consumption in data centers are the compu-
tational resources and the cooling system (Nesmachnow et al., 2015). Re-
garding power consumption of the computational resources, several techniques
for hardware and software optimization can be applied to improve energy ef-
ficiency. For example, software characterization techniques (Anghel et al.,
2016), which are applied to determine features that are useful to analyze the
software behavior. This behavior analysis is an input to analyze and improve
power consumption (Brandolese et al., 2011).

Energy consumption models are useful synthetic tools for studying and
analyzing diverse issues related to energy efficiency of computing infrastruc-
tures, e.g., by predicting the power consumption of its components for a given
workload. Information resulting from the analysis is often used by decision-
makers to take technical, monetary, or environmental decisions regarding the
computing infrastructure. Energy models are based in the relation between
power consumption and resource utilization and can be classified as hardware-
or software-centric (Dayarathna et al., 2016).

1

Models that follow complex approaches, i.e., by modeling the contribution
of every hardware component and/or using machine learning methods for pre-
diction are accurate, but they demand significant design and implementation
effort. On the other hand, simple models, i.e., just based on overall server
consumption and CPU utilization, demand significantly lower design and im-
plementation effort, and can produce fairly accurate results. In the review of
related work, the use of simple models has been predominant, especially until
2013 (see, for example Dayarathna et al. (2016) and Kurowski et al. (2013)).

Simulations are widely utilized for evaluating performance and energy mod-
els, schedule techniques, and others features of the execution of scientific work-
loads on real infrastructures (Hernández et al., 2014). Simulators allow assess-
ing the evaluation of different alternative models and algorithms over realistic
scenarios that capture the main features of nowadays computing infrastruc-
tures and applications. Using simulations, identical scenarios can be executed
several times in order to perform statistical analysis. Moreover, simulators
avoid the direct utilization of expensive hardware, allow a significant reduc-
tion in the execution time of the experiments (e.g., it is possible to simulate
years of infrastructure utilization in just a few hours), and also permit consid-
ering a large number of scenarios, among other advantages (Bak et al., 2011).
Due to the aforementioned reasons, cloud simulation is a key component of the
research in the area. Many cloud simulators with different characteristics and
specializations have been proposed in the literature (Malhotra and Jain, 2013).
CloudSim is a simulation toolkit widely used in the literature. This tool allows
modeling and simulating cloud computing infrastructures, provisioning envi-
ronments, and applications (Calheiros et al., 2011). In this thesis, a custom
version of CloudSim (Armenta-Cano et al., 2017) is extended by including new
energy models, built considering the empirical power consumption evaluation,
and different allocation policies.

In this line of work, this thesis focuses on the characterization of power
consumption for applications over nowadays multicore hardware used in sci-
entific computing platforms. Such characterization is useful for studying and
understanding energy efficiency in data centers and for designing energy effi-
cient scheduling strategies. Three synthetic benchmarks are studied over two
physical servers from a real High Performance Computing (HPC) platform,
registering their power consumption with a power meter device. Furthermore,
the experimental analysis studies the power consumption of different applica-

2

tions sharing a computing resource via simultaneous execution. The proposed
study is very relevant for nowadays data centers and HPC infrastructures that
execute many applications, with an associated impact on both the energy ef-
ficiency and the quality of service (QoS) offered to the users of the platform.
Furthermore, new energy models are built by applying polynomial regression
on the empirical data. The new models are applied in simulation of data cen-
ters operation for predicting the power consumption and several scheduling
strategies are evaluated in simulations performed considering real servers and
scientific computing workloads.

The initial questions that have guided the research include the following:
What is the relationship between the server load and its power consumption?
Is power consumption different if the task is intensive in different computing
resources? In that case, is it possible to save energy by executing tasks in
the same server? What type of task is it convenient to execute together? To
what extent is it possible to combine tasks without losing energy efficiency due
to performance degradation caused by resource usage conflicts? What is the
behaviour of the power consumption at the critical utilization level (about 100
% of server capacity)?

This thesis focuses on answering the aforementioned questions using an
empirical approach. The experiments are designed to cover the domain of the
problem and gather relevant information to process it in later stages using
appropriate computational techniques.

The main contributions of this thesis are:

1. A cutting-edge review of related works regarding power characteriza-
tion, modeling, and energy-aware scheduling in cloud computing and
supercomputing systems. Also, a thorough review of available cloud
simulation tools considering advantages and disadvantages of each one,
is presented.

2. An empirical study of power consumption using benchmarks of the three
main computing resources that most contribute to power consumption
utilization (CPU, memory, and disk). The study considers computing
resource isolated and combined, and different levels of server load. Two
high-end multi-core servers (AMD and Intel architectures) are analyzed.

3. An empirical study of performance degradation in multi-core servers re-
garding the server load and the computing resource type. This informa-

3

tion is key in order to obtain scheduling strategies that provide accurate
trade-off between power consumption and quality of service.

4. Several energy models built from experimental power consumption data
using supervised computational intelligence techniques. Each model con-
siders AMD and Intel architectures. Also, relevant metrics to asses the
quality of each model are presented.

5. Energy evaluation through simulations for six scheduling strategies using
realistic workloads.

6. The research follows the reproducible/replicable paradigm by using a
Jupyter Notebook that shows in a clear and understandable manner the
data processing from raw data. Notebooks are widely-used for sharing
well-documented source code that can be executed easily. The repro-
ducible/replicable paradigm allows to reduce errors and add new ex-
periments data quickly. Also, the results and claims can be verified or
extended by other researchers.

All research included in this thesis were published in two articles: a con-
ference article and a special issue article in a journal. Next, each article is
presented with a description of its content:

• Muraña et al. (2018) presented at Latin American High Performance
Computing Conference, included the empirical analysis of power con-
sumption in multicores. The study considered two high-end servers
(AMD and Intel architectures) and benchmarks intensive in different
computing resources. A performance measuring complemented the en-
ergy experiments.

• Muraña et al. (2019) published in Cluster Computing journal. The power
and performance characterization study of the previous article were com-
plemented with analytical models of power consumption and simulation
results of scheduling algorithms. All results in this publication are pub-
licly available to be verified from raw data through an ancillary Jupyter
Notebook document available online.

Part of the research was performed in collaboration with Centro de Investi-
gacion Cientifica y de Educacion Superior de Ensenada in Mexico (CICESE).
The main concepts of this research were discussed in collaboration. Also,
methodologies, artifacts, and state-of-the-art reports were exchanged mainly

4

in early phases of the research. Some articles published by CICESE in relation
to this collaboration were Armenta-Cano et al. (2017) and Galaviz-Alejos et al.
(2018).

Two additional articles were published by the author of this manuscript in
related areas (scheduling and QoS in HPC systems) in the beginning of the
research.

• Muraña et al. (2014) presented at 2014 XL Latin American Computing
Conference (CLEI) included the application of a parallel evolutionary al-
gorithm for solving a scheduling problem in cluster infrastructures. Two
objectives were considered for optimization: makespan and tardiness. In
addition, scheduling problems in heterogeneous computing and parallel
evolutionary techniques were reviewed.

• Nesmachnow and Muraña (2014) presented at III ALIO/EURO Work-
shop on Applied Combinatorial Optimization included a comparison of an
evolutionary algorithm based in linear aggregation and a multi-objective
evolutionary algorithm to solve a scheduling problem in heterogeneous
computing systems considering QoS objectives.

The thesis is organized as follows. Chapter 2 presents the motivation of
the research and the main concepts of energy consumption/utilization in data
centers. Chapter 3 reviews related works on energy characterization in mul-
ticores and simulators for energy-aware data centers. Chapter 4 presents the
route map of the research. The different stages, their inputs and outcomes
are introduced. Also, the proposed methodology for energy characterization,
the benchmarks, and the physical setup for experiments, are described. The
experimental evaluation of power consumption and performance of different
benchmarks, is reported and discussed in Chapter 5. Chapter 6 describes the
details of the power consumption models and performance models, built us-
ing polynomial regression. These models quality is assessed and compared
by utilization of relevant metrics. In adition, several scheduling strategies for
data centers, based on well-known heuristic are presented. The strategies were
compared according to its energy efficiency through a simulation tool, using
realistic workloads. Finally, the conclusions and main lines for future work are
formulated in Chapter 7.

5

Chapter 2

Energy efficiency in data centers

This chapter describes the problem addressed, and the context and motivation
of this research. Section 2.1 introduces energy efficiency as one of the key issues
in data centers. The main characteristics of power consumption models and
performance models in high-end server are presented in Section 2.2. Finally,
Section 2.3 describes the scheduling problem in computing infrastructures, in
particular, scheduling oriented to minimize power consumption.

2.1 Data centers and energy efficiency

This section presents an insight of energy efficiency in data centers. Sub-
section 2.1.1 describes the role of data centers today and why energy is an
important concern. Also, details about the electricity market and the role of
data centers are explained. Later, the section presents a general breakdown of
data center power consumption. Well-known techniques oriented to improve
data centers energy efficiency are described in Subsection 2.1.2.

2.1.1 Data centers and energy context

Nowadays, data centers are key components of IT services. Most of entertain-
ment, scientific, and enterprise applications use data centers as background
layer (Buyya et al., 2013). The current configuration of the IT industry, with
a large-scale computational such as a backbone, has been driven by the in-
crease of mobile users, software as a service as a business model, big data and
IoT expansion, among others (Shi et al., 2016).

6

Cloud computing is a well established IT paradigm, where computing re-
sources (storage, computing power, etc.) are created on-demand, in ubiquitous
manner. The development of high-capacity networks and virtualization tech-
nologies has been key for the success of cloud computing (Buyya et al., 2013).
Cloud data centers are large scale computational infrastructures that provides
the hardware and software support for the cloud.

Cloud computing is a main paradigm in industry right now, and by 2021
94 % of the workload processed in data centers will be processed in cloud data
center (Cisco Systems, 2016). The migration from the traditional data centers
to cloud data centers indicates that the coupling between the logical and phys-
ical servers decreases. Energy efficiency techniques based on scheduling and
reallocation acquire relevance in an scenario of complete virtualization, since
they can be applied with less effort and cost than in a traditional scenario.

Data centers are big consumers of electricity. An average-sized data cen-
ter consumes the same power of 25000 households (Beloglazov et al., 2012).
Furthermore, in 2016, data centers worldwide consumed around of 3% of the
whole electricity and this consumption will double every four years (Danilak,
2017). Due to this high consumption and its projection, the energy concerns
of data centers and its environmental implications (Bawden, 2016) make data
center energy management a current issue addressed by scientific research,
government, and industry (Rong et al., 2016; Shehabi et al., 2016; Gao, 2014;
Google LLC, 2019a).

The complexity of the electric power industry is increasingly driven by
smart grids and emerging transportation technologies such as electric cars. In
addition, the growing supply of renewable energy and the variation of its avail-
ability contribute to this complexity. Although the complexity makes more
difficult power system planning, it also presents new business opportunities for
large electricity consumers or groups of small electricity consumers to play dif-
ferent roles in the electricity market (Gungor et al., 2011; Moreno et al., 2012).
One of these roles is to maintain the balance of supply and demand, increas-
ing the power consumption when the supply of electricity is greater than the
demand or reducing the power consumption when the demand is greater than
the supply. The demand response agent (for example, the data center) must
be able to reduce the power consumption of its operation (for example, by de-
ferring jobs) or increase its power consumption for a given period of time. This
role is important in modern power grids, since it avoids discarding electricity

7

and also avoids the monetary cost of replacing damaged electrical equipment
due to overload. The power management of data centers is a fundamental step
for strategies to play these roles.

Two main operational components account for most power consumption of
data centers: i) operation of the technological infrastructure (servers, network,
storage, etc.) and ii) operation of the cooling system and other physical re-
sources (Nesmachnow et al., 2014; Rong et al., 2016). Both sources of power
consumption are related because more power is required for the cooling system
when servers operate at full capacity. Servers represent a significant percent-
age of data center power consumption and the variability of their power con-
sumption in different load levels allows implementing specific techniques for
energy saving. This research focuses on reducing the power consumption of
data centers due to operation of the technological infrastructure, by applying
intelligent management of computing resources according to the main features
of incoming workloads and applications.

In summary, the data centers are important users of the electricity net-
work and for this reason their energy policies can have a high impact on the
environment and a high monetary cost. Efficient energy management is key
to minimize the environmental impact and to reduce monetary costs, and it
is the first step to insert the data center into the electricity market, playing a
more important role than that of a simple consumer.

2.1.2 Toward energy efficiency in data centers

Four main issues can be identified in order to increase energy efficiency of data
centers (Rong et al., 2016): i) high-performance computing, which includes a
set of software-centered techniques such as server/processor resources schedul-
ing, network optimization, and compiler optimization ii) low-power servers,
which includes energy optimization of hardware components, iii) energy conser-
vation of computer rooms, and iv) utilization of renewable energy. This work
mainly addresses issue i), and more specifically the server resources schedul-
ing. However, the gathered characteristics of servers power consumption can
be used to tackle the other issues too.

One of the predominant techniques in the literature to reduce servers power
consumption is to scale the voltage and frequency of the CPU, i.e., dynamic
voltage and frequency scaling (DVFS) (Le Sueur and Heiser, 2010). DVFS con-

8

sists of decreasing or increasing the voltage and frequency of the CPU circuits.
This way, the processing speed of the CPU decreases, consuming less energy
than the normal state. The disadvantage of this decrease is the performance
degradation. However, considering the tasks requirements, this degradation
could be negligible. DVFS can be applied controlled by hardware or software
(Mishra and Tripathi, 2014; Gade et al., 2015; Zhang and Hoffmann, 2016).

Another predominant technique in the literature to reduce the power con-
sumption of servers is the energy-aware scheduling or relocation of tasks or
virtual machines (Kaur and Chana, 2016; Fernandes et al., 2016; Chen et al.,
2015). These techniques aim at consolidating tasks or virtual machines in
the same server, in order to reduce the number of servers on idle state (i.e.
turned-on server without load).

The downside of energy-aware policies is the degradation of QoS (Bel-
oglazov et al., 2012). As mentioned above, the application of DFVS techniques
or server overload due to the task reallocation can slow down tasks and pro-
voke SLA violations. Considering both energy and performance objectives is
mandatory in order to find appropriate trade-offs in the design of management
policies. The first step to understand the power consumption of a server is to
build a power model that synthesize the information of the power consumption
phenomenon. Next section presents an insight into power consumption models
of multi-core servers.

2.2 Modeling high-end multicore servers
This section introduces the concepts of power consumption modeling and per-
formance modeling in high-end multicore servers. Subsection 2.2.1 presents a
breakdown of the overall power consumption of a server. In particular, the
model version implemented in this thesis is discussed. Performance models
are presented in Subsection 2.2.2. Finally, Subsection 2.2.3 describes relevant
metrics to assess the proposed models.

2.2.1 Power consumption modeling

Power consumption models allow predicting the power consumption of a given
host when executing tasks. Such prediction is useful for several proposals,
for example, for analyzing the energy efficiency of computing facilities via

9

simulations. Power consumption of high-end servers that usually operate on
data centers is broadly described by Equation 2.1 (Chen et al., 2013). This is
the simplest approach to be considering regarding to the modeling of power
consumption of a server. In the model, two components are identified: one
component is static (Pfix) and the other is variable (Pvar).

Pserver = Pfix + Pvar (2.1)

The static component Pfix is the minimum power necessary to keep the the
host operative. The static power is necessary because servers are composed
by CMOS circuits, which need a minimum amount of energy to keep their
state. The variable power Pvar corresponds to the power consumption of the
execution of the tasks.

The model presented in Equation 2.1 is extended in Equation 2.2. In this
case, Pfix is renamed as Pidle (i.e., the server power consumption without
load), and Pvar is represented by the difference between the maximum power
consumption of the system (Ppeak) and the minimum (Pidle), multiplied by a
function of the utilization (f(u)). The function f(u) describes the relationship
between utilization and power consumption. The variable u is the current
utilization of the server (Beloglazov et al., 2010; Chen et al., 2013).

Pserver = Pidle + (Ppeak − Pidle)f(u) (2.2)

Several variables, such as server design and architecture, server utilization,
and application type are related with the terms on Equation 2.2, and one of
the main objectives of this thesis is to study this relationship.

Most of power consumption of servers corresponds to the CPU. However,
power consumption of other computing resources (memory, disk, network) are
not negligible. Feng et al. (2005) presented the following results in this regard,
for server executing a memory-bound benchmark: 35% of the total server con-
sumption corresponds to CPU, 16% to physical memory, and 7% to disk. The
rest is consumed by power supply, network interface and other components.

It is possible to build highly accurate power consumption models, taking
into account the type of computing resources in which the tasks are inten-
sive. Equation 2.3 shows a server power model where uCPU is the percentage
of server capacity executing workload categorized as CPU-intensive, umem is
the percentage of server capacity executing workload categorized as memory-

10

intensive, and so on for each resource in the model.

Pserver = Pidle + (Ppeak − Pidle)f(uCPU , umem, udisk, unet, . . .) (2.3)

According to the literature reviewed, power consumption models can be
classified on three categories: static, where the consumption of the host is a
constant value; dynamic, where the value of the power consumption depends of
the utilization level of the host; and application specific, where the consumption
is associated to the characteristics of each application (Kurowski et al., 2013).
Models with higher complexity can be built considering the competition for
computing resources between those applications running at the same time in
a host (Gao et al., 2014).

The power consumption models presented in this work are within the ap-
plication specific type. Also, the competition for computing resources is con-
sidered. Models are built for estimating the overall power consumption as a
function of the utilization of the host and type of workload executed (CPU,
memory, or disk intensive). Models are built from experimental data of power
consumption measurements in real hardware. This approach allows to consider
the holistic behavior of the power consumption, which depends on multiple
factors (chip design, voltage, cooling system, etc.). The experimental data is
processed with data science tools and used as training information for machine
learning modeling. Machine learning is a state-of-the-art technique driven by
the exponential increase of data in the last decade and it is widely used for
construction of statistical models (Bishop, 2006; Marsland, 2011; Bottou et al.,
2018).

2.2.2 Performance modeling

Energy aware policies are in conflict with QoS (Beloglazov et al., 2012). Due to
this conflict, it is necessary to complement the power consumption study with
a performance analysis oriented to understand the QoS degradation caused by
energy saving decisions. The complete information about power consumption
and performance allows establishing service levels in the data centers, with
different profiles such as energy efficiency levels, optimum levels, and levels
with high benefits of performance. Performance models allows predicting how

11

host load and job resource requirements affect performance metrics. Relevant
performance metrics are the response time, the throughput, and the number
of jobs in the system (Harchol-Balter, 2013). In addition, makespan (total
completion time of the tasks of the scheduling) and tardiness (sum of the
time when the tasks of the scheduling are executed after their deadline) are
relevant metrics regarding to performance and QoS analysis (Muraña et al.,
2014). The performance study in this thesis corresponds to the analysis of the
degradation of multicores features when increasing the use of the cores, consid-
ering workloads intensive in different computing resources. Equation 2.4 shows
the relationship between the completion time of batch tasks (i.e., tasks where
user interaction is not required once processing begins) and the utilization
percentage of the multicore system.

CT (b1, ..., bn) = f(n)× CT (b1) (2.4)

In Equation 2.4, CT (b1, ..., bn) is the completion time of n batch tasks
(i.e. the makespan of the tasks set) and CT (b1) is the completion time in
the minimum utilization percentage, i.e, one batch task executing alone in the
server, using one core. The function f(n) is the coefficient of the relation (it
is greater than one). The empirical study reported in Section 5.2 corresponds
to the model presented in Equation 2.4. Since the batch tasks studied in this
research executes in one core with exclusivity, it is expected low degradation of
the system when increasing the load. However, the access to shared resources
as memory and disk causes degradation due to the competition (Dick and
Mao, 2010; Zhuravlev et al., 2010). For this reason, it is important to consider
different type of task when building the model.

2.2.3 Evaluating the quality of power consumption and
performance models

Two relevant metrics to assess the quality of statistical models were applied
to analyze the results: coefficient of determination (R-squared or R2) and
adjusted R-squared (R̄2). Both metrics evaluate the forecasting capabilities of
the studied model (i.e., prediction of future values in a given temporal series).
R̄2 is an extension of R2 proposed to avoid spurious increasing when using a

12

larger number of independent variables (Theil, 1961).
Figure 2.1 shows the intuitive idea of R2, identifying two components:

first SStot (Subfigure 2.1a), defined as the total sum of squared distance be-
tween each point of the data set and the average model; Second SSres (Sub-
figure 2.1b), defined as the sum of squared distance between each point of the
data set and the evaluated model. Equation 2.5 and Equation 2.6 present SStot

and SStot, where n is the sample size, yi are the measured values and ȳ is the
average model.

SStot =
i=n∑
i=1

(yi − ȳ) (2.5)

SSres =
i=n∑
i=1

(yi − fi) (2.6)

R2, defined by Equation 2.7, express the improvement of the evaluated
model regarding to the average model. In order to penalize the improvement
of R2 when the number variables increase, metric R̄2, is defined by Equation2.8,
where p is the number of independent variables.

R2 = 1− SSres

SStot

(2.7)

R̄2 = 1− (1−R2)
n− 1

n− p− 1
(2.8)

2.3 Energy-aware scheduling
Scheduling in computing systems refers to assigning tasks to computing units
following some criteria (minimized execution time, minimized energy consump-
tion, etc.)(El-Rewini et al., 1994; Pinedo, 2016).

As in any other discipline, inadequate scheduling in the computer sys-
tem can cause delays, waste of resources and a high monetary cost. In
addition, in realistic scenarios, well-designed scheduling requires significant
effort, since these are, in general, computationally complex problems (non-

13

0 1 2 3 4 5

3.2

3.4

3.6

X

Y

(a) SStot

0 1 2 3 4 5

3.2

3.4

3.6

X

Y

(b) SSres

Figure 2.1: Graphical representation of the R-squared components

polynomial). Due to this complexity, scheduling problems are usually ad-
dressed using heuristic, meta-heuristic and ad-hoc solutions.

The aforementioned concepts make computing system scheduling a widely
addressed problem by scientific community (Jiang et al., 2007; Zhan et al.,
2015).

Energy-aware scheduling in computing system is the application of schedul-
ing techniques to reduce energy consumption. The formulation of the energy
optimization problem, without considering QoS, is to find a schedule that min-
imizes the value Etot of the expression presented in Equation 2.9. Etot is the
total energy required to complete the tasks execution. There are N computing
units (servers) and M tasks to be assigned. The function e corresponds to the
energy consumed by task j executing in server i.

Etot =
N∑
i=1

M∑
j=1

e(i, j) (2.9)

In non-preemptive scheduling problems (Sousa and Wolsey, 1992), such as
the one addressed in this thesis, function e of a task has a non-zero value only
in one server within a schedule (this is, a task is assigned only to one server).
The function e depends on several factors, such as the server, the task, and
moreover, it depends on the characteristics of the current load of the server.

The same energy-aware scheduling problem is illustrated by Equation 2.10,
this time, from the point of view of the servers power consumption. This server
approach simplifies the coding of the simulation and is the one used in the case

14

study presented in Section 6.3. The function ui is the utilization percentage
of the server i at time t and function Pi is the instant power consumption of
server i. T is the duration of the scheduling period.

N∑
i=1

∫ t=T

t=0

Pi(ui(t)) (2.10)

Equation 2.11. corresponds to the discretization of the time T in K intervals
of time, in which the utilization servers is constant. The duration of the time
k is dk. This way, to know the total energy consumption of a schedule, it is
necessary to know Pi and the utilization percentage of each server in each time
k.

K∑
k=0

N∑
i=1

Pi(uki)× dk (2.11)

As mentioned in previous sections, power consumption function depends
on the type of task. For this reason, the value uki corresponds to a vector of
the form [uCPU , umem, udisk, ...].

15

Chapter 3

Related Work

This chapter presents the review the related literature. Section 3.1 presents the
revised works related to characterization and modeling of power consumption
of servers and energy-aware scheduling. Then, Section 3.2 presents a compre-
hensive review of the state-of-art in relation to cloud simulation tools. Finally,
Section 3.3 summarizes the reviewed works and presents the conclusions of the
analysis.

3.1 Power characterization and energy-aware
scheduling review

Iturriaga et al. (2014) studied the multiobjective optimization problem to opti-
mize power consumption and execution time in heterogeneous computers sys-
tems, considering uncertainty. Specific versions of well-known heuristic were
proposed for scheduling on realistic scenarios, applying the power consumption
model defined in Nesmachnow et al. (2013) and considering only CPU-bound
workloads. A model for uncertainty on power consumption was determined
through empirical evaluations using three CPU-bound benchmarks. Regard-
ing scheduling results, online heuristics computed better schedules than offline
approaches. Results also confirmed that uncertainty has a significant impact
on the accuracy of the scheduling algorithms. The power consumption behav-
ior of CPU-bound benchmarks shown by Iturriaga et al. (2014) is consistent
with the one reported in our research. Moreover, we propose a fully empirical
power consumption characterization, also considering two additional types of
benchmarks: memory bound and disk bound.

16

Srikantaiah et al. (2008) studied workload consolidation strategies for en-
ergy optimization in cloud computing systems. An empirical study of the
relationship between power consumption, performance, and resource utiliza-
tion was presented. The experiments were executed on four physical servers
connected to a power meter to track the power consumption, and resource
utilization was monitored using the Xperf toolkit. Only two resources were
considered in the study: processor and disk. The performance degraded for
high levels of disk utilization, and variations in CPU usage did not result in
significant performance variations. Energy results were presented in terms
of power consumption per transaction, resources utilization, and performance
degradation. Results also showed that power consumption per transaction is
more sensitive to CPU utilization than disk utilization. The authors proposed
a heuristic method to solve a modified bin packing problem where the servers
are bins and the computing resources are bin dimensions. Results reported
for small scenarios showed that power consumption of the solutions computed
by the heuristic is about 5% from the optimal solution. The tolerance for
performance degradation was 20%.

Du Bois et al. (2011) presented a framework for creating workloads with
specific features, applied to compare energy efficiency in commercial systems.
CPU-bound, memory-bound, and disk-bound benchmarks were executed on
a power monitoring setup composed of an oscilloscope connected to the host
and a logging machine to persist the data. Two commercial systems were
studied: a high-end with AMD processors and a low-end with Intel processors.
Benchmarks were executed independently, isolating the power consumption
of each resource. Results confirmed that energy efficiency depends on the
workload type. Comparatively, the high-end system had better results for the
CPU-bound workload, the low-end system was better for disk-bound, and both
had similar efficiency for the memory-bound workload. Our work complements
this approach by including a study of the power consumption behavior when
executing different types of tasks simultaneously on specific architectures for
high performance computing.

Feng et al. (2005) evaluated the energy efficiency of a high-end distributed
system, with focus on scientific workloads. The authors proposed a power
monitoring setup that allows isolating the power consumption of CPU, mem-
ory, and disk. The experimental analysis studied single node executions and
distributed executions. In the single node experiments, results of executing a

17

memory-bound benchmark showed that the total power consumption is dis-
tributed as follow: 35% corresponds to CPU, 16% to physical memory, and
7% to disk. The rest is consumed by the power supply, fans, network, and
other components. Idle state represented 66% of the total power consump-
tion. In distributed experiments, benchmarks that are intensive in more than
one computing resource were studied. Results showed that energy efficiency
increased with the number of nodes used for execution.

Kurowski et al. (2013) presented a data center simulator that allows spec-
ifying various energy models and management policies. Three types of the-
oretical energy models are proposed: i) static approach, which considers a
unique power value by processing unit; ii) dynamic approach, which considers
power levels, representing the usage of the processing unit; and iii) application
specific approach, which considers usage of application resources to determine
the power consumption. Simulation results were compared with empirical
measurements over real hardware to validate the theoretical energy models in
arbitrary scenarios. All models obtained accurate results (error was less than
10% with respect to empirical measurements), and the dynamic approach was
the most precise.

Langer et al. (2015) studied energy efficiency of low voltage operations in
manycore chips. Two scientific applications were considered for benchmarking
over a multicore simulator. The performance model considered for a chip was
S = ak(

∑
fi) + bk, where S are the instructions per cycle, fi is the i-th core

frequency and ak,bk are constants that depend on k, the number of cores in the
chip. A similar model is used for power consumption. Across 25 different chips,
an optimization method based on integer linear programming achieved 26% in
energy savings regarding to the power consumption of the faster configuration.

There are different opinions in the related literature about the importance
of network power consumption. On the one hand, Feng et al. (2005) measured
the power consumption of each computing resource in isolated manner using
different scientific computing benchmarks, and network turned to be in the
fourth place in terms of power consumption, behind CPU, memory, and disk.
Moreover, a recent survey by Dayarathna et al. (2016) presented a graphic
distribution of power usage by components, based on results from the analysis
of a Google data center by Barroso et al. (2013), where network power con-
sumption is behind the other computing resources. A comparison between two
Intel hosts (with Xeon and Atom processors), based on results from Malladi

18

et al. (2012), showed that the network power consumption is less than CPU,
memory, and disk consumption. On the other hand, Totoni et al. (2013) pre-
sented a runtime power management for saving energy by turning on/off not
used or underutilized links during the execution of applications. The authors
justified the relevance of the study, regarding the power consumption of the
system, based on the use of low frequency many cores in computing systems
and the complexity of network design nowadays. However, the study was not
specifically aimed at analyzing scientific workloads.

3.2 Cloud simulation tools
Kurowski et al. (2013) proposed DCworms, an event-driven data center simu-

lator written in Java, which allows defining performance models, energy mod-
els, and scheduling polices. DCworms is built using GSSIM, a Grid simulator
by Bak et al. (2011). Among other features, GSSIM allows simulating a vari-
ety of entities and distributed architectures. Regarding to power consumption,
GSSIM provides several energy models classified in static, resource load and
application specific. In the third type of model, the user can specify energy
profiles that allow modeling the type of application and the type of resource.
Energy information is logged for analyzing the simulation.

Calheiros et al. (2011) introduced CloudSim, a cloud simulator developed
in Java. Among the main advantages of CloudSim are the virtualization layer,
which allows defining an abstraction of different execution environments of the
applications in virtual machines, and the support provided for implementing
federated clouds, which allows modeling large distributed systems. The simu-
lator provides functions for implementing custom energy models. In addition,
new scheduling polices can be included, for instance the strategies oriented to
optimize the power consumption developed in our work. The total power con-
sumption of a simulation can be used to compare the efficiency of scheduling
policies.

Kliazovich et al. (2010) presented GreenCloud, a simulator oriented to
energy-aware data centers. The GreenCloud design allows measuring the
power consumption of each component of the infrastructure (host, switch, etc)
in a detailed manner. A set of energy efficiency strategies are provided, includ-
ing DVSF and dynamic shutdown of the computing components. These Green-
Cloud characteristics allow implementing fine-grained energy-aware scheduling

19

strategies.
Núñez et al. (2012) introduced Icancloud, a Cloud Simulator which allows

reproducing Amazon EC2 instances types. Also, it is able to customize the
VM brokering due to the flexible design of the hypervisor model. The hosts
can be single core or multicore, and the software is able to simulate long time
periods (years). Regarding storage, local devices, NFS, and parallel storage
can be simulated.

3.3 Summary
Table 3.1 summarizes the related work reviewed, including a description of the
main characteristics of the work.

Power characterization and energy-aware scheduling
reference description
Iturriaga et al. (2014) Studied the power consumption of several CPU-bound benchmarks.
Nesmachnow et al. (2013) Definition of a power consumption model only CPU-bound workloads..

Srikantaiah et al. (2008)
Studied of the relationship between power consumption, performance, and resource utilization.
Proposed an heuristic to solve energy-aware scheduling problem as a modified
bin packing problem.

Du Bois et al. (2011)
Studied the power consumption of CPU-, memory-, and disk-bound benchmarks using a
hardware-centered power monitoring setup. Included a comparison between high- and low-end
servers.

Feng et al. (2005) Proposed a power monitoring setup to evaluate the energy efficiency of a high-end distributed
system. The setup allowed isolating the power consumption of CPU, memory, and disk.

Kurowski et al. (2013) Evaluated an energy-aware scheduler by comparing with empirical results over real hardware.
Results showed an error lower than 10 % with respect to the empirical measurements.

Langer et al. (2015) Studied energy efficiency of low voltage operations in manycore chips, considering scientific
applications.

Cloud simulation tools
reference description

Kurowski et al. (2013) Proposed DCworms, including as main features the ability of defining performance models,
energy models, and scheduling polices. Also, the energy information is logged.

Calheiros et al. (2011)
Introduced CloudSim, including as main features a virtualization layer, functions for
implementing custom energy models, and the ability of including fine-grained energy-aware
scheduling strategies.

Kliazovich et al. (2010) Presented GreenCloud, including as main feature a detailed power measurement of each
component (hosts, switches, etc)

Núñez et al. (2012) Introduced Icancloud, including as main features a customizable VM brokering, simulations
of long periods, and the ability to define single or multi-core host.

Table 3.1: Summary of the related work

Several works in literature have focused on modeling and characterizing
power consumption of scientific applications. However, to the best of our
knowledge, there is no empirical research focused on the inter-relationship
between power consumption and CPU, memory, and disk utilization. Also,
there is no experimental analysis of critical levels of resource utilization (close

20

to 100%) and its impact on power consumption and performance. This thesis
contributes to this line of research, proposing an empirical analysis for both
issues mentioned above.

The review allows identifying several desirable features of the available
cloud simulators that are useful for the analysis reported in this thesis, includ-
ing support for virtualization, single and multicore hosts, distributed systems,
energy and performance models available, scheduling policies available, ease
of use, and flexible customization. CloudSim includes many of the aforemen-
tioned useful characteristics and also has a detailed documentation. For these
reasons, we selected CloudSim as the simulator to use in the power consump-
tion evaluation reported in this thesis.

21

Chapter 4

Methodology for power
consumption and performance
evaluation

This chapter describes the proposed methodology for the study of power con-
sumption. Section 4.1 presents the workflow that describes the energy opti-
mization process of data centers operation, addressed in this thesis. The section
also describes the goal of each step of the workflow. Section 4.2 introduces a
general description of power characterization and the experiments details such
as benchmarks, hosts and design decisions. Finally, Section 4.3 describes the
reproducible/replicable research paradigm and the software tools used in this
thesis to follow it. The section also presents an exhaustive description of the
data extraction and modeling.

4.1 Energy optimization workflow

Several steps are identified in the process of obtain efficient energy-aware poli-
cies with QoS trade-off (Dayarathna et al., 2016). Figure 4.1 shows the work-
flow that includes these steps and its relations. Although the steps are related,
their outcomes can be used independently, for instance, conclusions obtained
in the power characterization step can be applied in future modeling works
or directly as input of scheduling heuristics design. Power characterization
step aims at analyzing the behaviour of power consumption in different load
conditions and computing resource usage. Performance characterization step

22

studies the system degradation under the same conditions described for the
power consumption characterization. Both characterization steps are totally
empirical and their outputs are: i) numeric measurements data, i.e., raw in-
formation that is the main input for applying machines learning techniques in
modeling stages and ii) graphics and observations used for extracting patterns
that can lead to the development of scheduling heuristics.

power
charac-

terization

performance
charac-

terization

power
model

performance
model

energy-
aware

scheduling
simulation

Figure 4.1: Workflow of proposed methodology

In modeling steps, the experimental data is adjusted to functions in order to
predict future values. The obtained functions allow synthesizing the behaviour
of the registered phenomenon (in this case, power consumption and perfor-
mance of the benchmarks) in a simpler expression. Energy-aware scheduling
step consists in design scheduling strategies aimed at reducing power consump-
tion. For the design, well-known heuristic strategies applied in scheduling
problems (Min-Min, Max-Min, etc.) are complemented with information ex-
tracted from characterization step, in order to build new heuristics. The last
step of the optimization process corresponds to the simulation, and it allows
to evaluate and compare the scheduling strategies. Simulation is an impor-
tant tool in complex optimisation scenarios like data center scheduling, and
it is widely-used in research area. The use of simulation tools instead of ad
hoc software to evaluate scheduling strategies saves time because of the reuse

23

of algorithms from the research community and avoids possible errors in the
implementation.

4.2 Power characterization

This section describes the general design of the power characterization ex-
periments. Subsection 4.2.1 presents an overview of power and performance
characterization. Subsection 4.2.2 describes the benchmarks considered in the
study and Subsection 4.2.3 introduces the details of the hardware used in the
experiments. Then, Subsection 4.2.4 presents a thorough description of experi-
ments design, and defines relevant nomenclature for the rest of the manuscript.

4.2.1 General overview

The experiments design was oriented to characterize the power consumption
of the most important computing resources from the point of view of energy
efficiency: CPU, memory and disk (Barroso et al., 2013; Du Bois et al., 2011;
Feng et al., 2005; Iturriaga et al., 2014; Malladi et al., 2012). The importance
of network power consumption has increased in the last years, mainly in mod-
ern data centers that offer distributed services, which heavily rely on network
communications (Zhang and Ansari, 2015; Guo et al., 2016). However, net-
work power consumption analysis was not included in the characterization, due
to two main reasons: i) scientific computing applications in multicore architec-
tures, on which the study of this thesis is centered, do not necessarily have a
great use of the network. In these applications, the multithreaded paradigm al-
lows solving complex scientific computing problems, without using the network
extensively, since they mainly apply shared memory communication methods
and ii) the complexity of the experiments, since to performing measures of
network power consumption implies the consideration of several components
such as switches, network interfaces, network topology, and cards, etc. Fur-
thermore, the relevance of network power consumption is subject of debate, as
we already acknowledged in the review of related literature in Section 3.1.

The main goal of the analysis was studying the holistic behavior of the
power consumption of a host, considering the following elements, which are
correlated: the utilization level of each resource; the total utilization level of
the host; and the types of resources involved. In consequence, experiments were

24

designed to execute synthetic benchmarks that make intensive utilization of
different computing resources, which allow capturing the features of different
scientific computing applications in multicore computers. Benchmarks were
executed in both isolated and combined manner, at different levels of resource
utilization. Analyzing the power consumption of hosts at levels close to maxi-
mum utilization (100%) has received low consideration in related bibliography,
thus it is included as one of the main relevant issues to study. Thus, all type
of experiments performed consider the critic level of utilization.

Since the downside of reducing energy consumption is the degradation of
system performance, it is necessary to complement the characterization of en-
ergy consumption with performance experiments. In addition to the relation-
ship between system load and power consumption, the relationship between
system load and execution time is studied. This way, it is possible to make
trade-off decisions according to the context demand, such as energy prices,
service levels, etc. In performance experiments, the same benchmarks were
executed with a fixed computational effort as stopping criterion, instead of
the wall-time considered in power consumption experiments. For example, the
criterion for stopping the CPU-intensive benchmark is when the loop counter
to find prime numbers is greater than 20000.

4.2.2 Benchmarks for power consumption characteriza-
tion

Simple benchmarks (i. e., benchmarks that are intensive in a single com-
puter resource) were used for the analysis, in line with several articles re-
viewed in the literature related to the evaluation of power consumption. For
example, Iturriaga et al. (2014) considered a power consumption evaluation
of LINPACK (Dongarra, 1988), a well-known CPU-intensive benchmark used
for ranking supercomputers of the TOP500 list. The same benchmark were
used by Kurowski et al. (2013), together with Abinit (Gonze et al., 2009),
a software to calculate properties of material within density functional the-
ory (which can be CPU or memory intensive depending on the configuration
of parameters), NAMD (Phillips et al., 2005), a CPU-intensive software for
biomolecular system simulation, and CPUBURN (Nielsen, 2012), a software
that allows stressing the CPU. The approach that uses simple benchmarks was
followed since analysis is oriented to characterize power consumption regarding

25

the utilization of each computing resource, both isolated and when combining
the utilization of several resources. For this reason, specific programs with in-
tensive utilization of each one of the three studied computing resources (CPU,
memory, disk) were needed. The chosen synthetic benchmarks allow isolating
the utilization of each resource, in order to perform the characterization.

A set of benchmarks included in the Sysbench toolkit (Kopytov, 2017) were
used in the analysis and characterization of power consumption. Sysbench is
a cross-platform software written in C that provides CPU, memory, and disk
intensive benchmarks for performance evaluation. The components used in
the experiments include a CPU-bound benchmark, a memory-bound bench-
mark, and a disk-bound benchmark. The main details of each benchmark are
described next.

CPU-bound benchmark. The CPU-bound benchmark is an algorithm that
calculates π(n) (the prime counting function) using a backtracking method.
The algorithm in the benchmark includes loops, square root, and module op-
erations, as described in Algorithm 1.

Algorithm 1 CPU-bound benchmark program
1: c← 3
2: while c < MaxPrime do
3: t← sqrt(c)
4: l← 2
5: while l < t do
6: if c (mod t) = 0 then
7: break
8: end if
9: if l > t = 0 then

10: n← n+ 1
11: end if
12: l← l + 1
13: end while
14: c← c+ 1
15: end while
16: return n

Memory-bound benchmark. The memory-bound benchmark is a program
that executes write operations in memory, as described in Algorithm 2, where
the buf variable is an array of integers. The cells of the array are overwritten
with the value of tmp until the last position of the array, i.e., the value of the
end variable.

26

Algorithm 2 Memory-bound benchmark program
1: while buf < end do
2: ∗buf ← tmp
3: buf ← buf + 1
4: end while

Disk-bound benchmark. The disk-bound benchmark is a program that read-
s/writes content in files. Read or write requests are generated randomly and
executed until a given number of requests (MaxReqs) is reached, as described
in Algorithm 3.

Algorithm 3 Disk-bound benchmark program
1: while ReqCount < MaxReqs do
2: Req ← generate_rnd_request()
3: if is_read(Req) then
4: read(Req.file)
5: end if
6: if is_write(Req) then
7: write(Req.file)
8: end if
9: ReqsCount++

10: end while

4.2.3 Multicore hosts and power monitoring setup

Experiments were performed on high-end servers from Cluster FING, the
HPC and scientific computing platform from Universidad de la República,
Uruguay (Nesmachnow, 2010). Two hosts were chosen according to their fea-
tures and availability: HP Proliant DL385 G7 server (2 AMD Opteron 6172
CPUs, 12 cores each, 72 GB RAM), and HP Proliant DL380 G9 server (2
Intel Xeon E5-2643v3 CPUs, 12 cores each, 128 GB RAM). The considered
hardware testbed covers the two most important architectures for high-end
computers and high performance computing data centers nowadays. Table 4.1
presents the specification of both hosts.

To measure the power consumption of a server, two approaches are found in
literature: software-based metering (i.e., in-band) and hardware-based meter-
ing (i.e., out-of-band) (Dayarathna et al., 2016; Grant et al., 2017). Software-
based meters estimate the power consumption of some server components by
consulting internal counters (Isci and Martonosi, 2003). An example of a

27

feature host server
AMD Intel

model name AMD Opteron
Processor 6172

Intel Xeon
CPU E5-2643 v3

architecture x86_64 86_64
cores 24 24
CPU frequency 2.1 GHz 3.4 GHz
threads per core 1 1
cores per socket 12 12
sockets 2 2
NUMA nodes 4 2
total memory 70 GB 126 GB

Table 4.1: Specification of servers used in experiments

software-based meter is likwid (Treibig et al., 2010), which reads the counter
Running Average Power Limit (RAPL) of Intel architectures. On the one
hand, software-based approaches have low cost and high scalability and, on
the other hand, the power measurement is an estimate and is partial, since
the CPU counters do not consider the consumption of server components such
as fans, motherboard and others. Besides, counters and sensors are not avail-
able in many high-end server models, so the software-based approaches are
restricted to one group of servers. Hardware-based approaches (Rashti et al.,
2015; Laros et al., 2013) (the server is connected to an external power meter,
which is connected to the power outlet) have the advantage that the power
measurement is independent of the server model. Also, since the total energy
consumption is considered, the measurements are accurate. On the downside
of hardware-based approaches, the economic cost is greater than the measure-
ment of the software and can not be scaled, since including a new host for
power monitoring involves buying and installing new power meters. In ad-
dition, power meters installation is not possible if physical access to the IT
equipment is restricted.

Because this thesis focuses on the overall power consumption of the server
and studies its holistic behavior, the use of external power meters is more
appropriate than software-based meters. Figure 4.2 presents the power mon-
itoring setup applied in the research developed in this thesis. The presented
setup allows reducing the measurements noise, since the processing that is not

28

related to the benchmark executions (polling, log writing, etc.), is executed in
an external machine.

Figure 4.2: Power monitoring setup

The applied setup is similar to the one used in related works (Iturriaga
et al., 2014; Du Bois et al., 2011; Srikantaiah et al., 2008). Benchmarks were
executed in a host connected to the power source via a Power Distribution
Unit (PDU) to register the instant power consumption. The PDU used is
CyberPower PDU20SWHVIEC8FNET model. The PDU allows accessing the
power consumption indicators through a web service. In an secondary machine,
a polling demon logged data for post-processing. The complete description of
the post-processing is presented in Section 4.3.2.

4.2.4 Design of experiments

In order to consider the general remarks of the key steps in the design of ex-
periments suggested by Cox and Reid (2000), the design of the experiments
in this thesis is a consequence of initial questions about the factors that af-
fect the host PC of multi-cores (see Introduction 1). In the experiments, the
average power consumption (PC) of each host was computed considering the
measures obtained in 20 independent executions of each benchmark (in sin-
gle benchmark experiments) or combination of benchmarks (in the combined
benchmarks experiments), to obtain statistically significant values. Average
and standard deviation of PC are reported for each benchmark in the exper-
imental analysis. The average idle power consumption (IC), i.e., the average

29

consumption of the host when it is not executing any workload, is computed
considering the measures for 20 independent executions of a program with null
operations. Both PC and IC are used to to compute the effective consumption
(EC) for a given benchmark or workload as EC = PC − IC.

In order to consider an incremental approach to the experiment design that
facilitates understanding, the experiments are described in three stages: single
experiments, combined experiments and performance experiments. The stages
are described in the next paragraphs.

First stage: single benchmarks. In a first set of experiments, benchmarks
were evaluated isolated (i.e., independently from each other, analyzing only
one resource). Utilization level (UL) is defined as the percentage of processors
being used regarding the total number of processors in the host. Eight ULs
were considered for single benchmark experiments: 12%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5%, and 100%. Figure 4.4 shows an example of 37.5% UL:
the host has 24 processors of which 9 execute instances of the CPU-bound
benchmark. The remaining processors are in idle state.

Figure 4.3: CPU-bound benchmark, UL of 37.5%

Second stage: combined benchmarks. In a second stage, the simulta-
neous execution of benchmarks was evaluated, analyzing several combinations
of resource utilization at the same time. Two and three benchmarks were
executed together in different ULs. In this case, UL is a vector where each
entry represents the percentage of processors being used by each type of bench-
mark considered in the study (CPU-bound, memory-bound, and disk-bound,
in that order). The chosen ULs were (25%,25%), (25%,50%), (25%,75%),

30

(50%,25%), (50%,50%), (75%,25%) in pair executions, and (25%,25%,25%),
(25%,25%,50%), (25%,50%,25%), (50%,25%,25%) in triple executions. The
considered ULs cover the domain of possible combinations with a suitable gran-
ularity. Figure 4.4 shows CPU-bound and memory-bound executing together
with UL (25%,50%) and Figure 4.5 shows the three benchmarks executing
combined with UL (25%,25%,50%).

Each instance of the memory-bound benchmark was configured to use
(100/N) percent of the available memory, where N is the number of pro-
cessors of the host. This configuration allows using 100% of the memory in
full utilization mode. Each instance of the disk benchmark was configured to
use 4 GB of disk size in AMD experiments and 2 GB of disk size in Intel ex-
periments. These disk sizes were chosen taking into account the available disk
capacity in each host. Instances were executed and monitored for 60 seconds.
These duration allows ensuring the steady state of the benchmark execution,
avoiding biasing the measurements to the initialization stages.

Figure 4.4: CPU- and memory-bound benchmarks combined, UL of (25%, 50%).

Third stage: performance evaluation. Finally, the impact on perfor-
mance was analyzed. One of the most relevant metrics in performance analysis
of applications is the makespan, defined as the time spent from the moment
when the first task in a batch or bag of tasks begins execution to the mo-
ment when the last task is completed (Leung et al., 2004). In performance
evaluation experiments, the makespan when executing multiple applications
at the same time is compared with the makespan of single executions. In all
cases, the average makespan values computed over 20 independent executions

31

Figure 4.5: CPU-, memory-, and disk-bound benchmarks combined, UL of
(25%,25%,50%).

of each benchmark or combination of benchmarks are reported, in order to
provide statistical significance.

4.3 Processing data under reproducible/repli-
cable research paradigm

This section describes the reproducible/replicable paradigm and its applica-
tion to the research of this thesis. Also, the section presents an exhaustive
description of the data processing and the models construction. Subsection
4.3.1 presents the definition of the main concepts of the paradigm and the mo-
tivation for its application. Subsection 4.3.2 presents a detailed description of
the procedure of data processing, from the raw data to understandable tables
and graphics. Finally, the details of models implementation using Python are
presented in Section 4.3.3.

4.3.1 Reproducible and replicable research by using
Jupyter Notebook and Pandas

Nowadays, reproducibility/replicability are fundamental characteristics in all
scientific research areas (Patil et al., 2016; Repko, 2008). There are different
definitions of these terms in literature (Plesser, 2018; Goodman et al., 2016).
In this thesis, these concepts are defined as follows, based on guidelines of
Association for Computing Machinery, Artifact Review and Badging (ACM,
2018).

32

Replicability: a study is replicable if the same measurements can be ob-
tained with the same experimental setup by different researchers.

Reproducibility: a study is reproducible if the same measurements can
be obtained with different experimental setup by different researchers.

The main ideas behind reproducible and replicable concepts are trans-
parency and trust on research claims. Also, reproducible/replicable research
allows bug detection and improvement by pairs. In addition, the clarity in
the auxiliary artifacts of the research (raw data, scripts, etc.) allows a quick
correction of errors and a collaborative work. In this thesis, in order to follow
the paradigm of reproducible and replicable research, all raw data, processing
tools, and processed results are provided for verification by researchers and
practitioners. The design decisions are explained and the process of analysis
is clearly documented. The published Jupyter Notebook allows reproducing
the whole data processing and modeling, making easy correcting errors as well
as extending the research by considering new experimental data and/or new
models.

Jupyter Notebook (Jupyter Community; Kluyver et al., 2016) is a web
application that allows integrating live programming code and documentation
in markdown format. The combination of code and styled text is a powerful
tool for presenting and sharing research results. Important industries such as
Google and IBM have developed projects similar to Jupyter, especially oriented
to data science applications. (Google LLC, 2019b; IBM, 2019).

The use of Jupyter Notebook and the transparency of the data process-
ing are important contributions of the reported research, since the repro-
ducible/replicable approach is not found often in related research areas (Beg-
ley, 2013). The complete data processing and modeling is publicly available in
a Jupyter Notebook published in https://www.fing.edu.uy/~jmurana/msc.

The general description of the data processing tasks documented in the
Jupyter Notebook are enumerated below.

1. Collect logs, clean data, and correct formats: log files, collected from log
machine and hosts, are read and loaded on data structures. The data
is cleaned by removing inconsistencies and parsed to appropriate data

33

https://www.fing.edu.uy/~jmurana/msc

types (e.g., a timestamp from string format to date format).
2. Combining information: the information of different sources is combined

to obtain the required measurements.
3. Results analysis and plotting data: results are processed and analyzed

to recognize patterns in order to characterize the power consumption.
4. Modeling and evaluation of the models: energy models are generated

from data structures using linear and polynomial regression. The models
are evaluated using statistical tests.

The data processing was preformed using Pandas (McKinney, 2011) and
NumPy (Oliphant, 2006), among other Python libraries for the analysis of
scientific data, which are oriented to high performance and ease to use.

Python is an open-source, interpreted, programming language oriented
to readability and high performance (Oliphant, 2007). Python is a general-
proposed language, however, it usage in data science applications has been
notorious in the last years and it has becomes in de facto programming lan-
guage in research areas related to artificial intelligence, big data, Internet of
Things, among other edge technologies (Millman and Aivazis, 2011). Several
programming paradigms, including object oriented, imperative, procedural,
and functional are supported by Python. Also, the language provides pow-
erful methods for list manipulation and an extensive standard library that
provides potent modules to solve problems in a few lines of code. For the
aforementioned characteristics, Python allows high productivity and mainte-
nance.

Pandas is a Python data analysis library (McKinney, 2011). Pandas pro-
vides structures and tools for data analysis and modeling. The main structure
of the library is the dataframe, which allows manipulating indexed data by
rows and columns. Complex indexing, such as multi-columns, are handled
too. The data can be loaded into a dataframe (or written to) directly from
file in format CSV, XML, and others. The library also provides intelligent
handling of missing data. Aggregation, merging, and joining are other oper-
ations supported by Pandas. In addition, it is possible to plot the content
of dataframes content, which in combination with the integrated plotting of
Jupyter Notebooks, allows a quick and intuitive visualization of the results.

34

4.3.2 Extraction of useful information from raw data

In order to accomplish with the aforementioned characteristics of a repro-
ducible research, this subsection presents an exhaustive description of the en-
ergy and performance data processing.

Energy data extraction procedure The procedure applied to transform
the raw data obtained from the experiments into useful information, described
in Figure 4.6, it is implemented using Pandas library (McKinney, 2011) .

reading
power con-
sumption

logs

reading
start

and end
benchmark
execution

crossing
data

sources

pre-
processing

data

show
results

Figure 4.6: Procedure for energy data extraction

The procedure of data extraction involves the consolidation of two data
sources, which correspond to the first two stages: reading of power con-
sumption logs (written in the logging machine) and reading of start and end
of benchmark executions (written in hosts). By comparing the datetime of
records from both sources, the energy consumed by the execution of a bench-
mark is computed. The rest of the stages are: pre-processing data, crossing
data sources, and show results.

Reading power consumption logs. The information is obtained by
polling every second the power meter and logging the instant power mea-
sured in a text file. An example of the format of the power consumption logs
is presented in Listing 4.1. The relevant fields for measuring power consump-
tion are datetime and instant power (P(W)). These fields are loaded in Pandas
dataframes in this stage.

35

| datet ime | timestamp | I (amps) |P(W) | F(mm/dd/aaaa) |H(hh/mm/ s s)
| Device Load (amps) | Bank 1 Load (amps) | Bank 2 Load (amps) |P(W/VA)
| Power f a c t o r | Peak Load (W) | Date Peak Load | Time Peak Load |E(KWh)
| Date s i n c e E| Time s i n c e E| Voltage (V) | Frecuency (Hz) |

|2016−08−30 0 0 : 0 0 : 0 0 | 1 4 7 2 5 2 6 0 0 0 . 4 7 | 0 . 8 4 | 1 8 2 | 0 8 / 3 0 / 2 0 1 6 | 0 2 : 5 4 : 3 7
| 0 . 8 4 | 0 . 8 4 | 0 . 0 0 | 1 8 2 / 1 9 2
| 0 . 9 4 7 | 1 . 8 2 | 0 2 / 0 7 / 2 0 1 6 | 1 6 : 0 8 : 3 9 | 1 1 2 0 . 5
| 1 2 / 1 6 / 2 0 1 5 | 1 2 : 0 8 : 3 0 | 2 2 9 . 0 | 5 0 . 0 |

|2016−08−30 0 0 : 0 0 : 0 1 | 1 4 7 2 5 2 6 0 0 1 . 6 5 | 0 . 8 5 | 1 8 3 | 0 8 / 3 0 / 2 0 1 6 | 0 2 : 5 4 : 3 8
| 0 . 8 5 | 0 . 8 5 | 0 . 0 0 | 1 8 3 / 1 9 5
| 0 . 9 3 8 | 1 . 8 2 | 0 2 / 0 7 / 2 0 1 6 | 1 6 : 0 8 : 3 9 | 1 1 2 0 . 5
| 1 2 / 1 6 / 2 0 1 5 | 1 2 : 0 8 : 3 0 | 2 2 9 . 0 | 5 0 . 0 |

Listing 4.1: Sample lines on the energy log file

Table 4.2 shows the structure of the power consumption dataframe and an
example of its content.

datetime P(W)
2016-09-08 00:00:00 186
2016-09-08 00:00:01 184
2016-09-08 00:00:02 184
2016-09-08 00:00:03 184
2016-09-08 00:00:05 184

Table 4.2: Example of content of PC dataframes

Reading start and end of benchmark executions. When a benchmark
execution begins or ends, an empty text file is created. The file name contains
the following information:

• Experiment id: is a code that summarizes the benchmark used (CPU,
memory, or disk), type of experiment (single or combined), and the uti-
lization level.

• Execution id: is an identifier that allows relating a file with one particular
benchmark execution.

• Datetime: is the field that stores the timestamp of the file creation, i.e.,
the time when a benchmark execution starts or ends.

36

• Start or end flag: this flag indicates whether the text file corresponds to
the beginning or end of the execution. The possible values of the flag
are ini or end.

Listing 4.2 shows an example of file names of benchmark executions. The
characters underscore (_) and period (.) are used for separating the fields
described above.

c1f1l2525_20160912235624996_2016 | 09 | 12 −23 : 56 : 25 : 001 . i n i
c1f1l2525_20160912235624996_2016 | 09 | 12 −23 : 57 : 39 : 230 . end
c1l12y5_20170227195601835_2017 | 02 | 27 −19 : 56 : 01 : 841 . i n i
c1l12y5_20170227195601835_2017 | 02 | 27 −19 : 57 : 02 : 197 . end
c1l25_20170227205014281_2017 | 02 | 27 −20 : 50 : 14 : 287 . i n i

Listing 4.2: Sample file names of benchmark executions

In this stage, the file names are loaded in dataframes and merged according
to their execution id. This way, each row of the dataframes corresponds to one
benchmark execution and it contains the timestamp of the begin and the end
of the execution. Table 4.3 shows the structure of the power consumption
dataframe and an example of its content. Column exp is the experiment id.
The example corresponds to the first five rows of single execution on Intel host.

exp execution id start datetime end datetime
c1l100 ..8816 2017-02-27 21:57:18 2017-02-27 21:58:21

m2l87y5 ..1724 2017-02-28 17:27:21 2017-02-28 17:28:20
m2l12y5 ..0025 2017-02-28 14:01:30 2017-02-28 14:01:56

c1l25 ..7249 2017-02-27 18:00:07 2017-02-27 18:01:07
m2l100 ..0127 2017-02-28 18:24:00 2017-02-28 18:25:06

Table 4.3: Example of content of benchmark execution dataframes, in the reading
stage

Pre-processing data. Before combining the dataframes that contains the
benchmark executions information with the dataframes that contains the
power consumption information, it is necessary to execute the following opera-
tions over the benchmark executions dataframes, to facilitate the visualization
and the analysis. These operations include:

• Splitting the experiment code into benchmark cod and utilization level.
• Adding the offset of seconds between host and logging machine.

37

• Assigning variables with idle power consumption.

The difference of the system time between the host and the logging machine
is calculated at the beginning of each experiment. This way, data is adjusted
with the corresponding offset. Table 4.4 shows an example of dataframe con-
taining the output of pre-processing stage. Column exp is the experiments
code and column bk is the benchmark code.

exp bk UL execution id start datetime end datetime
c1l100 c1 100 ..8816 17-02-27 21:57:18 17-02-27 21:58:21
m2l87y5 m2 87.5 ..1724 17-02-28 17:27:21 17-02-28 17:28:20
m2l12y5 m2 12.5 ..0025 17-02-28 14:01:30 17-02-28 14:01:56
c1l25 c1 25 ..7249 17-02-27 18:00:07 17-02-27 18:01:07
m2l100 m2 100 ..0127 17-02-28 18:24:00 17-02-28 18:25:06

Table 4.4: Example of content of benchmark execution dataframes, in the pre-
proccesing stage

The variables AMD_IDLE_PC and INTEL_IDLE_PC, which store the
idle power consumption of each host respectively, are assigned at this stage for
use in the calculation of effective energy consumption.

Crossing data sources. After collecting data from each source and per-
forming pre-processing operations, it is necessary to cross the information in
order to obtain the power consumption of each benchmark executions. For
each experiment id, that corresponds to the combination benchmark, the type
of experiment (i.e. single or combined), and the utilization level, 20 inde-
pendent executions are performed. The result of this stage are dataframes
grouped by the type of experiment and host, where thier rows correspond to
benchmark executions and their power consumption, calculated as the average
of the power registered in the logging machine while the benchmark is exe-
cuting. Table 4.5 presents an example of Pandas dataframe with the power
consumption information of benchmark executions on one host. Column exp
is the experiments code, column bk is the benchmark code, and column exe
is execution id. These particular example corresponds to the dataframe that
contains the data of single experiments and Intel host.

Show results. At the end of the processing, the results of benchmark exe-
cutions are showed grouped by benchmark code, UL and host, and applying

38

exp bk UL exe start datetime. end datetime. P(W)
c1l100 c1 100 ..8816 17-02-27 21:57:18 17-02-27 21:58:21 194.3
m2l87y5 m2 87.5 ..1724 17-02-28 17:27:21 17-02-28 17:28:20 242.1
m2l12y5 m2 12.5 ..0025 17-02-28 14:01:30 17-02-28 14:01:56 132.7
c1l25 c1 25 ..7249 17-02-27 18:00:07 17-02-27 18:01:07 134.7
m2l100 m2 100 ..0127 17-02-28 18:24:00 17-02-28 18:25:06 235.5

Table 4.5: Example of dataframe containing the PC of benchmark executions, in
the crossing stage

average operation of P(W) column, to obtain the mean value of the indepen-
dent executions. Table 4.6 presents an example of the power consumption of
single experiments of CPU, memory and disk intensive benchmarks, in both
AMD and Intel hosts.

UL AMD CPU AMD mem AMD dk Intel CPU Intel mem. Intel dk
12.5 194.4 215.5 188.1 121.6 125.9 67.5
25 205.0 238.7 189.3 136.6 156.3 68.0

37.5 215.1 257.7 189.5 142.5 178.7 67.7
50 225.1 272.3 189.3 152.8 191.8 68.9

62.5 235.5 278.5 189.9 163.2 213.0 70.5

Table 4.6: Example of dataframe containing PC of benchmark executions, in the
results stage.

Performance data extraction procedure Data of performance experi-
ments also are processed using Pandas. In this case, there is only one data
source. Figure 4.7 presents the procedure data processing pipeline for perfor-
mance experiments.

start and
end files of
executions

processing show
results

Figure 4.7: Procedure for performance data extraction

In performance experiments, the same benchmarks without time limit are
executed, at different utilization levels. This procedure allows determining
how the load affects the performance for each type of benchmark. Only single
experiments are considered.

39

Start and end files of executions. When a benchmark execution begins
or ends, a text file is created, containing the following information in its name:

• Experiment id: an identifier that resumes the benchmark utilized (CPU,
memory o disk), the modality (single or combined) and the utilization
level.

• Execution id: An identification of the particular execution. An execution
consists of several benchmark instances and an instance is executed in
only one core. The number of benchmark instances depends on the
corresponding utilization level.

• Instance id: an identification of a benchmark instance in the execution.
• Datetime: the timestamp of the file creation.
• Begin or end flag: a flag that indicates whether is the beginning or the

end of the execution.

An example of the format of file names of benchmark instance executions
is showed in Listing 4.3. The characters underscore (_) and period (.) are
used for separating the fields described above.

c1ntl12y5_20170302122631609_20170302122631614 \
_2017 | 03 | 02 −12 : 26 : 31 : 620 . i n i
f1ntl75_20170207025026035_20170207025027159 \
_2017 | 02 | 07 −03 : 24 : 19 : 119 . end
m2ntl50_20170131043902686_20170131043903301 \
_2017 | 01 | 31 −04 : 39 : 03 : 306 . i n i
f1ntl87y5_20170207194619767_20170207194621197 \
_2017 | 02 | 07 −20 : 24 : 19 : 705 . end
c1ntl87y5_20170130030621714_20170130030621819 \
_2017 | 01 | 30 −03 : 07 : 06 : 187 . end

Listing 4.3: Sample file names of benchmark instance executions

In this stage, the file names are loaded in the dataframes and merged
according to the instance id. Each row of the dataframes corresponds to one
benchmark instance and it contains the timestamp of the begin and the end of
the execution. In addition, the duration of the instance execution is inferred
from the timestamps and added as a new column of the dataframe. Table 4.7
shows an example of the dataframe content. Column exp is the experiments
code, column bk is the benchmark code, column exe is execution id, column
ins in the instance id, column start dt is the start datetime, and column end

40

dt is the end datetime. The example shows the first five rows of the dataframe
that corresponds to AMD host.

exp bk UL exe ins start dt end dt duration
f1ntl75 f1 75.0 ..6035 ..7159 ..02:50:27 ..03:24:19 2032
m2ntl50 m2 50.0 ..2686 ..3301 ..04:39:03 ..04:41:54 171
f1ntl87y5 f1 87.5 ..9767 ..1197 ..19:46:21 ..20:24:19 2278
c1ntl87y5 c1 87.5 ..1714 ..1819 ..03:06:21 ..03:07:06 45
c1ntl100 c1 100 ..5919 ..8152 ..03:14:08 ..03:14:52 44

Table 4.7: Example of dataframe containing performance of benchmark executions,
in reading stage

Processing. In this stage, the performance execution data is processed by
applying the following operations on the dataframe, to obtain the metric of
makespan: The rows are grouped by benchmark, UL, host and execution id,
applying the maximum function as the grouping criterion. In this way, the
value obtained in the duration column is the makespan of the execution. Later,
the rows of the resulting dataframe are grouped by benchmark, UL and host,
with the average function as the grouping criterion. The final result of the
duration column is the average makespan of the experiments for each host,
benchmark and UL. In the final dataframe the duration column is renamed as
makespan.

Show results of performance experiments At the end of the processing,
the results of benchmark executions are reported. Table 4.8 presents the five
first row of the result dataframe that contains the makespan of CPU, memory
and disk intensive benchmarks on both host at all utilization levels.

UL AMD CPU AMD mem AMD dk Intel CPU Intel mem Intel dk
12.5 44.4 90.2 234.7 35.8 34.6 36.0
25 44.9 136.8 547.7 30.4 26.6 74.0

37.5 45.0 179.8 839.4 36.2 41.1 114.7
50 45.0 220.8 1397.8 30.8 41.8 154.5

62.5 45.0 259.1 1644.0 29.5 67.5 195.9

Table 4.8: Example of dataframe containing performance of benchmark executions,
in the results stage

41

4.3.3 Building models using Python libraries for analy-
sis of scientific data

Models were built using scientific Python libraries for supervised machine
learning techniques. The input of modeling step is the output of data extrac-
tion step, described above. The applied methodology allows an easy and fast
error correction. Also, models can be adjusted varying parameters or adding
new experimental information. Through Jupyter Notebook tool, published at
https://www.fing.edu.uy/~jmurana/msc, is able to obtain an ordered docu-
mentation of the process.

The models were implemented using statsmodels (Seabold and Perktold,
2010), a library for statistical and econometric analysis. The library allows
indicating methods (OLS, IRLS, etc.), variable dependencies and domain. The
output of the library is a function that adjusts a set of values, considering
the specified parameters. In this research, models functions were generated
using ordinary least squared (OLS) and linear, quadratic an cubic dependency.
This configuration were used for models with one, two and three independent
variables as function domain.

Listing 4.4 shows a snipped of Python code used for modeling construc-
tion, where energy_data is a dataframe with columns UL and power. These
columns corresponds to the previous processing described in Subsection 4.3.2.
Parameter formula corresponds to the dependency written in R language style
(R Core Team, 2018) (in this example, linear dependency between domain and
co-domain is indicated).

import pandas as pd
import s ta t smode l s . formula . ap i as smf

model = smf . o l s (formula=’ power␣~␣UL ’ , data=energy_data) . f i t ()

Listing 4.4: Model construction example using statsmodel library

In Listing 4.5, the model is used for predicting values in the considered
domain, i.e., the interval [0,100]). Later, the obtained values are plotted. The
output of plottings are presented and analyzed for each case in Chapter 6.

42

https://www.fing.edu.uy/~jmurana/msc

import matp lo t l i b . pyplot as p l t

domain = pd . DataFrame ({ ’UL ’ : [0 , 100] })
co_domain = model . p r e d i c t (domain)
p l t . p l o t (domain , co_domain)

Listing 4.5: statsmodel usage example

The modeling library provides the method summary(), which allows to
easily obtain model statistics for validating and comparison. The usage and
output of summary() is showed in Listing 4.6.

pr in t (model . summary ())

OLS Regres s ion Resu l t s
===
Dep . Var iab le : power R−squared : 0 .999
Model : OLS Adj . R−squared : 0 .999
Method : Least Squares F−s t a t i s t i c : 9523 .
Date : Wed, 09 Jan 2019 Prob (F−s t a t i s t i c) : 7 .80 e−11
Time : 09 : 31 : 29 Log−Like l ihood : −6.9237
No . Observat ions : 8 AIC : 17 .85
Df Res idua l s : 6 BIC : 18 .01
Df Model : 1
Covariance Type : nonrobust
===

c o e f std e r r t P>| t | [0 . 0 2 5 0 . 9 7 5]
−−−
I n t e r c e p t 184.9822 0 .517 357.593 0 .000 183.716 186.248
UL 0.7998 0 .008 97 .588 0 .000 0 .780 0 .820
===
Omnibus : 0 .257 Durbin−Watson : 1 .129
Prob (Omnibus) : 0 .879 Jarque−Bera (JB) : 0 .211
Skew : 0 .258 Prob (JB) : 0 .900
Kurtos i s : 2 .394 Cond . No . 139 .

===

Listing 4.6: statsmodel library stats usage and output example

In performance models, the modeling procedure is similar to energy ones.
In this case, the dependent variable is the makespan instead of the power con-

43

sumption. Listing 4.7 shows an example of code of cubic dependency between
UL and makespan.

import numpy as np

model = smf . o l s (formula =’makespan ~ UL + np . power (UL, 2) + \
np . power (UL, 3) ’ , data=performance_data) . f i t ()

Listing 4.7: Performance model construction using statsmodel library

44

Chapter 5

Power and performance
evaluation results

This chapter reports and discuses the results of power consumption and perfor-
mance evaluation for AMD and Intel architectures. Section 5.1 presents tables
and graphics of results of benchmark executions, which are executed single and
combined in order to obtain power measurement. Also, the observed behavior
of each execution is discussed. Section 5.2 presents and discusses the results of
performance evaluation. Finally, Section 5.3 presents a efficiency study, that
combines results of power consumption and performance evaluation.

5.1 Results of executions
This section presents the results obtained in experiments that studied the
power consumption. Details of idle power consumption evaluation are pre-
sented in Subsection 5.1.1. Subsection 5.1.2 shows and discusses the results
of the power consumption evaluation considering benchmarks execution inde-
pendently. Then, the results of combined benchmark executions are presented
in Subsection 5.1.3.

5.1.1 Idle power consumption evaluation

The average idle power consumption in both AMD and Intel hosts was cal-
culated by performing 20 independent executions of a null program, i.e, a
program that executes a sleep function for 60 seconds. The number of inde-
pendent executions was chosen to obtain results with statistical validity. The

45

average values obtained for idle power consumption (± standard deviation)
were 183.4±1.3 W for the AMD host and 57.0±0.9 Watts for the Intel host.
These average values are considered as the idle power consumption, of the cor-
responding host, in all the experiments reported in this section. For example,
if the measured overall consumption of one experiment in Intel host was 200
Watts, the effective power consumption of the experiment was calculated as
200 Watts less 57 Watts, this is, 143 Watts.

5.1.2 Results of single benchmark executions

CPU-bound benchmark. Table 5.1 reports PC and EC values for the
CPU-bound benchmark for Intel and AMD hosts. The PC is reported as the
average more less the standard deviation of the independent executions of the
experiment. The PC results indicate that the AMD host demands more power
than the Intel host for CPU-bound workload. The PC difference between
hosts is approximately 73 Watts, which signify that the AMD host consumes
approximately 60% more power than the Intel host. However, it is not possible
conclude about the hosts energy efficiency without a performance analysis.

According to peak PC reported by Table 5.1 (264.1 Watts on AMD and
194.6 Watts, that occurs at UL 100%), the IC represents the 69% on AMD
and 29% on Intel, of the maximum power consumption.

Table 5.1: PC and EC results for the CPU-bound benchmark on AMD and Intel
hosts.

AMD Intel

UL PC EC UL PC EC
12.5% 194.4±0.5 11.0 12.5% 121.6±1.7 64.6
25.0% 205.0±0.7 21.6 25.0% 136.6±2.0 79.6
37.5% 215.1±0.5 31.7 37.5% 142.5±2.1 85.5
50.0% 225.1±0.8 41.7 50.0% 152.8±2.9 95.8
62.5% 235.5±1.6 52.1 62.5% 163.2±2.7 106.2
75.0% 246.0±1.4 62.6 75.0% 175.8±1.8 118.8
87.5% 254.7±1.0 71.3 87.5% 185.8±2.3 128.8

100.0% 264.1±1.8 80.7 100.0% 194.6±4.3 137.6

Figure 5.1 presents a graphic comparison of EC values in both hosts, which
shows an average EC difference of 56 Watts between Intel and AMD hosts for

46

all ULs. However, this difference is not relevant in order to evaluate which
of both host consumes more power, because the absolute value of EC is not
representative of the overall power consumption of the host. In the proposed
graphic analysis, the relevant indicator is the variation of EC regarding the
utilization level and also the difference (of the EC variation) between hosts
(i.e., a comparison of its derivatives). The almost linear behavior of EC in
Figure 5.1 indicates that power consumption is proportional to the UL. Fur-
thermore, curves for Intel and AMD are almost parallel, indicating that the
power consumption of CPU-bound applications has a similar behavior in both
hosts. EC on Intel host shows a remarkable increase when moving from 0 to
12.5% UL, which is not observed for the other ULs. This increase is explained
by the dynamic handling of chip power, awaking, or increasing voltage of its
components according to usage demand, which is notorious on Intel architec-
ture. In critic UL (%100), it is not observed any different behavior regarding
the power consumption, which allows concluding that in CPU-bound work-
loads, resource conflict does not implies an increase in power consumption.

0 12.5 25 37.5 50 62.5 75 87.5 100
0

20

40

60

80

100

120

140

160

UL (%)

EC
(W

)

AMD
Intel

Figure 5.1: EC comparison for the CPU-bound benchmark on AMD and Intel
hosts

47

Memory-bound benchmark. Table 5.2 reports the PC and EC values for
the memory-bound benchmark for Intel and AMD hosts. The comparison
between PC values of memory experiments and the CPU (presented above)
allows concluding that memory use has impact in power consumption, because
at same level and host, the power consumption of memory experiments is
greater than CPU experiments. As seen in the CPU experiments, the AMD
host consumes more power than Intel. The biggest difference in PC (89.6
Watts) occurs at the minimum UL (12%) and the lowest (45.7 Watts) occurs
at 100%, indicating that Intel has an efficient management of the energy with
respect to the use memory.
Table 5.2: PC and EC results for the memory-bound benchmark on AMD and
Intel hosts

AMD Intel

UL PC EC UL PC EC
12.5% 215.5±1.8 32.1 12.5% 125.9±6.4 68.9
25.0% 238.7±1.1 55.3 25.0% 156.3±4.8 99.3
37.5% 257.7±1.9 74.3 37.5% 178.7±4.8 121.7
50.0% 272.3±2.7 88.9 50.0% 191.8±6.8 134.8
62.5% 278.5±6.4 95.1 62.5% 213.0±3.9 156.0
75.0% 279.9±5.9 96.5 75.0% 225.1±5.4 168.1
87.5% 290.8±5.6 107.4 87.5% 239.2±4.0 182.2

100.0% 294.7±3.0 111.3 100.0% 249.0±9.3 192.0

In order to analyze the PC difference between CPU and memory bound
workload, Figure 5.2 presents ∆PC, defined as the additional percentage of
power that memory experiments consumes regarding CPU experiments (i.e,
∆PC = (PCMEM−PCCPU)×100/PCCPU). Since the CPU-bound benchmark
is designed to consume more CPU cycles than the memory-bound benchmark,
∆PC is related to the power consumption of the memory usage. The graphic
comparison of ∆PC allows observing a remarkable increase of ∆PC on Intel
at medium and high ULs, when compared with low UL of the same host. On
AMD, there is not a notorious ∆PC increment. This difference between hosts
suggests that the power management on Intel architecture is better than on
AMD architecture, since the power consumption increases according to the
percentage of used memory (the percentage of the system memory used by the
benchmark is equal to the UL, for example, 50% of the host total memory is
used at UL 50%).

48

12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%
0

5

10

15

20

25

30

10.9

16.4

19.8
21

18.3

13.8 14.2
11.6

3.5

14.4

25.4 25.5

30.5
28 28.7 28

UL

∆
PC

(%
)

AMD Intel
Figure 5.2: PC difference between of CPU-bound and memory-bound experiments

Figure 5.3 presents a graphic comparison of the EC values in both hosts.
Results show a significant increase of EC with regard to CPU-bound executions
for all ULs (104% for the AMD host and 36% for the Intel host, on average).

0 12.5 25 37.5 50 62.5 75 87.5 100
0

30

60

90

120

150

180

210

UL (%)

EC
(W

)

AMD
Intel

Figure 5.3: EC comparison for the memory-bound benchmark on AMD and Intel
hosts

49

A logarithmic behavior is observed for both PC and EC, which does not
occur in CPU-bound case. This behavior may be mainly due to the bottleneck
in the access to the main memory that reduces the CPU usage. No signifi-
cant increase is detected on high/critical ULs, possibly by effective resource
contention by the operating system for solving conflicts over access to shared
resources.

Disk-bound benchmark. Table 5.3 reports PC and EC values for the disk-
bound benchmark. The PC is almost constant and notoriously less than CPU
and memory experiments.

Table 5.3: PC and EC results for the disk-bound benchmark on AMD and Intel
hosts

AMD Intel

UL PC EC UL PC EC
12.5% 188.1±0.4 4.7 12.5% 67.5±0.9 10.5
25.0% 189.3±0.5 5.9 25.0% 68.0±0.6 11.0
37.5% 189.5±0.6 6.1 37.5% 67.7±0.6 10.7
50.0% 189.3±0.3 5.9 50.0% 68.9±0.7 11.9
62.5% 189.3±0.3 6.5 62.5% 70.5±0.7 13.5
75.0% 190.1±0.4 6.7 75.0% 70.7±0.8 13.7
87.5% 190.7±1.6 7.3 87.5% 71.7±0.6 14.7

100.0% 190.4±0.6 7.0 100.0% 72.4±1.0 15.4

Figure 5.4 presents a comparison of EC values in both hosts. The maximum
EC variation through ULs is 4W in Intel and 2W in AMD. These low power
variation indicate that disk usage has low impact in power consumption in
comparison with CPU and memory.

50

0 12.5 25 37.5 50 62.5 75 87.5 100
0

2

4

6

8

10

12

14

16

18

UL (%)

EC
(W

)

AMD
Intel

Figure 5.4: EC comparison for the disk-bound benchmark on AMD and Intel hosts

5.1.3 Results of combined benchmark executions

CPU- and memory-bound benchmarks. Table 5.4 reports PC and EC
for the simultaneous execution of the CPU- and memory-bound benchmarks
on AMD host. The results shows that the peak PC on AMD is 312.7 Watts
and it occurs at UL (25%,75%). This peak is the maximum PC on AMD host
registered considering all experiments in this research, indicating that the IC
on AMD (183.4 Watts) represents 59% of the total PC of the host.

Table 5.4: PC and EC results for the CPU- and memory-bound benchmarks com-
bined on AMD host

UL PC EC ∆EC(CPU,memory)
(25%,25%) 259.4±2.7 76.0 = 0.77
(25%,50%) 290.3±1.6 106.9 ↓ 3.59
(25%,75%) 312.7±3.3 129.3 ↑ -11.30
(50%,25%) 277.1±2.2 93.7 ↓ 3.21
(50%,50%) 310.3±2.6 126.9 ↓ 3.69
(75%,25%) 295.8±6.6 112.4 ↓ 5.53

51

Symbol ↑ indicates that the EC of the combined benchmarks is higher
than the sum of the ECs of each benchmark executed independently, i.e., the
combined execution is less efficient than the independent execution. Symbol
↓ indicates the opposite, that is, the combined execution is more efficient.
Symbol = indicates that the values are equal, considering a threshold of 1
W of difference. Column ∆EC reports the difference between the EC of the
combined execution and the sum of the EC of the independent executions (in
Watts).

The ∆EC values reported in Table 5.4 shows that the combined execution
on AMD host allows reduce the EC compared to independent executions. In
UL with high memory use, the independent executions presents lower EC
values that combined.

The 3D graph on Figure 5.5 presents the EC values of the combined
execution of CPU and memory on AMD host. The color scale of the graph
allows observing that the dark sectors, which correspond to a high EC, are
accentuated near the memory axis.

0
20

40
60

0

50

0

50

100

UL CPU (%)UL memory (%)

EC
(W

)

0

20

40

60

80

100

120

Figure 5.5: Combined CPU- and memory-bound EC on AMD host

52

Table 5.5 reports PC and EC for the simultaneous execution of the CPU-
and memory-bound benchmarks on Intel host. The peak PC (255.3 Watts)
corresponds to UL (50%,50%), thus, the IC of the Intel host represents the
22% of the overall PC. The low percentage of IC is due to Intel host reduces
the IC when the host is not used (at UL almost 0%), however, in other ULs
the IC increases (as is observed and discussed in Section 5.1, a significant in-
crement of PC occurs in the first UL, which does not occurs in later ULs). The
combined executions of CPU and memory benchmarks in Intel host achieve
the best results with regard to EC in pair combined experiments. In this case,
a significant gain (around 47 Watts) is observed for all ULs. The highest gain
occurs when CPU use is low and memory use is low, simultaneously.

Table 5.5: PC and EC results for the CPU- and memory-bound benchmarks com-
bined on Intel host

UL PC EC ∆EC(CPU,memory)
(25%,25%) 178.2±5.0 121.2 ↓ 57.65
(25%,50%) 226.2±3.6 169.2 ↓ 45.10
(25%,75%) 254.5±5.6 197.5 ↓ 50.08
(50%,25%) 199.9±3.5 142.9 ↓ 52.23
(50%,50%) 255.3±3.2 198.3 ↓ 32.28
(75%,25%) 225.0±3.2 168.0 ↓ 50.09

The 3D graph on Figure 5.6 presents the EC values of the combined ex-
ecution of CPU and memory on AMD host. The graph allows observing the
difference in derivative of UL 0 and the other ULs and the dark sectors near
memory axis.

Results of combined CPU and memory benchmarks show that for Intel
host, the combined executions reduce EC compared to independent execu-
tions. In AMD host, however, the combined executions of these types of
benchmarks have not such notorious improvement when compared with single
executions.

53

0
20

40
60

0

50

0

100

200

UL CPU (%)UL memory (%)

EC
(W

)

0

50

100

150

200

250

Figure 5.6: Combined CPU- and memory-bound EC on Intel host

CPU- and disk-bound benchmarks. Table 5.6 reports PC and EC val-
ues for the simultaneous execution of the CPU- and disk-bound benchmarks
on AMD host. ∆EC values indicate that the combined execution has not a
significant gain or loss regarding independent execution.

Table 5.6: PC and EC results for the CPU- and disk-bound benchmarks combined
on AMD host

UL PC EC ∆EC(CPU,disk)
(25%,25%) 210.0±1.1 26.6 = 0.83
(25%,50%) 211.5±1.3 28.1 = -0.67
(25%,75%) 212.4±1.2 29.0 = -0.71
(50%,25%) 229.8±2.6 46.4 ↓ 1.14
(50%,50%) 234.3±4.9 50.9 ↑ -3.38
(75%,25%) 248.4±3.5 65.0 ↓ 3.49

The 3D graph on Figure 5.7 presents EC values on AMD host, for different
combinations of CPU and disk ULs. The graph shows that EC values only
change significantly in the direction of the CPU axis, which indicates that the
disk-bound load has not significant impact on EC.

Table 5.7 reports PC and EC values for the simultaneous execution of the

54

0
20

40
60

0

50

0

20

40

60

UL CPU (%)UL disk (%)

EC
(W

)

0

10

20

30

40

50

60

Figure 5.7: Combined CPU- and disk-bound EC on AMD host

CPU- and disk-bound benchmarks on Intel host. Results show an average
gain of 10 Watts of combination regarding to independent execution. The
maximum gain is 13.06 Watts and it occurs at UL (25%,75%).

Table 5.7: PC and EC results for the CPU- and disk-bound benchmarks combined
on Intel host

UL PC EC ∆EC(CPU,disk)
(25%,25%) 136.4±2.3 79.4 ↓ 11.19
(25%,50%) 139.0±1.9 82.0 ↓ 9.40
(25%,75%) 137.2±3.2 80.2 ↓ 13.06
(50%,25%) 154.2±2.6 97.2 ↓ 9.64
(50%,50%) 156.5±2.8 99.5 ↓ 8.19
(75%,25%) 177.8±2.9 120.8 ↓ 8.96

The 3D graph on Figure 5.8 presents EC values on Intel host, for different
combinations of CPU and disk ULs. A similar result to the one obtained in
AMD is observed, as EC changes significantly only in CPU axis direction. The
aforementioned remarkable EC increase when moving from 0 to the next UL
is notorious on CPU axis direction, but not on disk axis direction. This results
indicate that the increment is related to CPU use.

55

0
20

40
60

0
20

40
60

0

50

100

UL CPU (%)UL Disk (%)

EC
(W

)

0

20

40

60

80

100

120

Figure 5.8: Combined CPU- and disk-bound EC on Intel host

Memory- and disk-bound benchmarks. Table 5.8 reports PC and EC
values for the simultaneous execution of the memory- and disk-bound bench-
marks on AMD host. The combined executions consume less energy at ULs
(50%,25%) and (50%,50%), i.e., when memory-bound load is 50%. In the other
ULs, there are not significant improvements on power consumption.

Table 5.8: PC and EC results for the memory- and disk-bound benchmarks com-
bined on AMD host

UL PC EC ∆EC(memory,disk)
(25%,25%) 243.9±1.5 60.05 = 0.61
(25%,50%) 241.8±5.5 58.4 ↓ 2.81
(25%,75%) 245.9±2.0 62.5 = -0.54
(50%,25%) 268.2±9.1 84.8 ↓ 10.01
(50%,50%) 269.5±12.9 86.1 ↓ 8.71
(75%,25%) 287.0±4.0 103.6 ↑ -1.19

The 3D graph on Figure 5.9 presents EC values on AMD host for memory
and disk-bound benchmarks executing in combination. The graph allows ob-
serving the same behaviour noted in the analysis of Figure 5.8 regarding the
low increment of EC in disk axis direction, which confirms the almost negligible
power consumption of disk-bound benchmark.

56

0
20

40
60

0
20

40
60

0

50

100

UL memory (%)UL disk (%)

EC
(W

)

0

20

40

60

80

100

Figure 5.9: Combined memory- and disk-bound EC on AMD host

Table 5.9 reports PC and EC values for the simultaneous execution of
the memory- and disk-bound benchmarks on Intel host. The results show that
single executions consume less EC than combined, except for those experiments
with high load of the memory-bound benchmark.

Table 5.9: PC and EC results for the memory- and disk-bound benchmarks com-
bined on Intel host

UL PC EC ∆EC(memory,disk)
(25%,25%) 174.1±8.3 117.1 ↑ -6.70
(25%,50%) 176.2±5.9 119.2 ↑ -8.01
(25%,75%) 172.0±7.6 115.0 ↑ -2.00
(50%,25%) 206.4±6.0 149.4 ↑ -3.66
(50%,50%) 208.6±4.2 151.6 ↑ -4.93
(75%,25%) 228.5±5.0 171.5 ↓ 7.51

The 3D graph on Figure 5.10 presents EC values on Intel host for memory
and disk-bound benchmarks executing in combination. A similar results to
the one obtained in AMD is observed, where the disk-bound benchmark has
not impact in EC.

57

0
20

40
60

0
20

40
60

0

50

100

UL memory (%)UL disk (%)

EC
(W

)

0

20

40

60

80

100

Figure 5.10: Combined memory- and disk-bound EC on Intel host

CPU-, memory-, and disk-bound benchmarks. Table 5.10 reports the
PC and EC values obtained when executing the CPU-, memory- and disk-
bound benchmarks combined, on AMD and Intel hosts.

Table 5.10: PC and EC results for the CPU-, memory- and disk-bound benchmarks
combined

UL AMD Intel
(CPU,mem.,disk) PC EC PC EC

(25%,25%,25%) 266.3±4.5 82.9 = 177.4±4.1 120.4 ↓
(25%,25%,50%) 266.9±4.7 83.5 = 178.7±3.5 121.7 ↓
(25%,50%,25%) 303.2±3.3 119.8 ↑ 220.9±5.5 163.9 ↓
(50%,25%,25%) 288.1±1.7 104.7 ↑ 195.0±5.0 138.0 ↓

Results in Table 5.10 show that the combined execution on the AMD
host has a higher EC compared to their independent execution in ULs
(25%,50%,25%) and (50%,25%,25%). This behavior indicates that the three-
combined execution is not efficient for high load of CPU-bound and memory-
bound benchmarks. However, on Intel host, combined executions reduce EC
compared to independent executions for all ULs. For independent executions
on Intel host, the difference on PC between consecutive ULs is larger at the
first UL (12.5%). Because of this difference, combined executions achieve bet-
ter efficiency regarding independent execution on Intel host.

58

.

5.2 Performance evaluation
This section presents a performance evaluation which complements the power
consumption study, providing insight into how ULs affect performance. Both
studies together (power consumption and performance degradation) allow find-
ing the optimum UL regarding to energy efficiency for each host and type of
benchmark. The details of the performance experiments design were presented
in Section 4.2.

Table 5.11 reports the makespan of the CPU-bound benchmark for AMD
and Intel host. Since the makespan does not present significant variations,
increasing the UL of CPU-bound benchmark does not impact the completion
time, which is due to the absence of resource competition. However, both
hosts present a slight degradation for UL 100%, possibly due to conflicts with
operating system processes.

Table 5.11: Makespan results for the CPU-bound benchmark on AMD and Intel
hosts

AMD Intel

UL makespan UL makespan
12.5% 44.4±0.5 12.5% 35.8±8.6
25.0% 44.9±0.4 25.0% 30.4±5.7
37.5% 45.0±0.0 37.5% 36.2±9.7
50.0% 45.0±0.0 50.0% 30.8±3.7
62.5% 45.0±0.0 62.5% 29.5±0.6
75.0% 45.0±0.0 75.0% 29.9±0.8
87.5% 45.0±0.0 87.5% 34.0±9.4
100.0% 50.5±4.5 100.0% 47.4±11.0

Figure 5.11 presents a graphic comparison of EC values for both hosts. The
graph shows that the AMD host presents less variation of makespan through
UL than Intel host. Since the experiments consist of executing the same bench-
mark with the same computational effort, it is possible to conclude that Intel
host has a better performance than AMD host with respect to the CPU-bound
workload. Considering the average makespan for all ULs, the Intel host is
roughly 25% faster than the AMD host.

59

0 12.5 25 37.5 50 62.5 75 87.5 100
0

20

40

60

UL (%)

m
ak

es
pa

n
(s

)
AMD
Intel

Figure 5.11: Makespan comparison for the CPU-bound benchmark on AMD and
Intel hosts

Table 5.12 reports the makespan of the memory-bound benchmark for both
AMD and Intel host.

Table 5.12: Makespan results for the memory-bound benchmark on AMD and
Intel hosts

AMD Intel

UL makespan UL makespan
12.5% 90.2±4.7 12.5% 34.6±4.7
25.0% 136.8±7.4 25.0% 26.6±0.9
37.5% 179.8±14.2 37.5% 41.1±2.2
50.0% 220.8±12.3 50.0% 41.8±1.1
62.5% 259.1±12.9 62.5% 67.5±4.3
75.0% 326.7±11.4 75.0% 62.2±1.7
87.5% 408.2±14.6 87.5% 74.5±1.5
100.0% 490.6±16.2 100.0% 82.5±2.0

Results in Table 5.12 demonstrate that performance degrades in AMD.
There is a gap of 400 seconds between the lowest and the highest UL. For Intel
the difference is only 48 seconds. The difference in gaps is possibly explained

60

by the specific memory features of each host, such as cache size and transfer
speed: the Intel host processor has a significantly larger L3 cache size than
the AMD host processor (20MB vs 12MB) and a faster bus clock speed (4.800
MHz vs 3.200 MHz).

Figure 5.12 presents a graphic comparison of makespan for both hosts.
The graph shows an increment of derivative on AMD host from UL 62.5 %,
indicating the increasing of performance degradation at highest ULs.

0 12.5 25 37.5 50 62.5 75 87.5 100
0

50
100
150
200
250
300
350
400
450
500
550

UL (%)

m
ak

es
pa

n
(s

)

AMD
Intel

Figure 5.12: Makespan comparison for the memory-bound benchmark on AMD
and Intel hosts

Table 5.13 reports the makespan of the disk-bound benchmark for AMD
and Intel hosts at different ULs. The disk-bound case presents a significant
degradation in performance when increasing UL when compared with other
benchmarks, because concurrency has a bigger impact in the disk access than
memory access and CPU access. On AMD host, the makespan of the maximum
UL (100.0%) is approximately 11 times the makespan of the first UL (12.5%),
and on Intel the makespan of the maximum UL (100.0%) is approximately 9
times the makespan of the first UL (12.5%).

61

Table 5.13: Makespan results for the disk-bound benchmark on AMD and Intel
hosts

AMD Intel

UL makespan UL makespan
12.5% 234.7±5.0 12.5% 36.0±0.9
25.0% 547.7±29.0 25.0% 74.0±1.5
37.5% 839.4±29.2 37.5% 114.7±2.4
50.0% 1397.8±184.5 50.0% 154.5±3.2
62.5% 1644.0±184.9 62.5% 195.9±3.8
75.0% 2006.3±182.7 75.0% 239.0±5.1
87.5% 2514.9±367.8 87.5% 279.1±25.8
100.0% 2571.5±147.2 100.0% 313.6±4.0

Figure 5.13 presents a graphic comparison of makespan for both hosts.
The graph shows that the derivative is approximately constant in both hosts,
indicating that the degradation vary proportionally with the UL, mainly on
Intel host.

0 12.5 25 37.5 50 62.5 75 87.5 100
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

UL (%)

m
ak

es
pa

n
(s

)

AMD
Intel

Figure 5.13: Makespan comparison for the disk-bound benchmark on AMD and
Intel hosts

62

5.3 Energy efficiency analysis
This section analyzes the energy efficiency from the collected measurements.
The energy efficiency metric defined in Equation 5.1 allows comparing the
PC results for different ULs and hosts, while taking into account the execution
time of an application. The lower the metric value, the higher energy efficiency
of the host (lower power consumption and lower makespan).

eff =
PC ×makespan

number of instances× 3600
(5.1)

Table 5.14 reports the average energy efficiency for all ULs and both hosts.
The minimum eff value for a given host and type of benchmark, which indicates
the more efficient UL, is presented in bold font.

Table 5.14: Efficiency for different ULs on AMD and Intel hosts

UL AMD Intel

CPU mem. disk CPU mem. disk
12.5% 0.798 1.800 4.090 0.403 0.403 0.225
25.0% 0.426 1.510 4.800 0.192 0.192 0.233
37.5% 0.299 1.430 4.910 0.159 0.227 0.240
50.0% 0.234 1.390 6.130 0.109 0.185 0.246
62.5% 0.196 1.340 5.780 0.089 0.266 0.256
75.0% 0.171 1.410 5.890 0.081 0.216 0.265
87.5% 0.152 1.570 6.340 0.083 0.236 0.265

100.0% 0.154 1.670 5.670 0.107 0.238 0.263

Results from the study indicate that the CPU-bound benchmark is more ef-
ficient at high ULs, the memory-bound benchmark is more efficient at medium
ULs, and the disk-bound benchmark is more efficient at low ULs. These re-
sults hold for both hosts. Overall, Intel host is more efficient than AMD for all
ULs and all types of benchmarks. This observation is coherent with reported
comparison of these processors (CPUBOSS, 2014), where Intel host processor
is presented as 10 times more efficient than AMD host processor. However, the
energy analysis of this thesis is more comprehensive with respect the factors
involved in the power consumption , because it considers more components of
each host, not only the processor.

Finally, the high-critic UL (100%) is less efficient than the high-medium UL
(87.5%) in all cases, except for disk-bound benchmark executions. For disk-

63

bound benchmarks there are small variations on the PC values between ULs.
Thus, the proposed efficiency metric improves when the number of instances
increase.

5.4 Concluding remarks
The empirical study presented in this chapter was aimed at extracting the
characteristics of the power consumption of multi-cores and their relationship
with the type of workload, considering all the components involved holistically.

The single executions allowed concluding that the EC vary in different ways
in dependency with the computing resource considered. In particular, the re-
sults showed that the EC is directly proportional to the UL in the CPU-bound
workload. For the memory-bound workload, the single executions showed a
deceleration in EC variation as the UL increases.

The combined execution of different types of benchmarks indicated that it is
possible to gain EC with respect single executions, by the consolidation of task,
taking advantage of the optimum UL (regarding EC) of computing resources.
The results of two combined executions showed a remarkable gain in Intel
host, where the difference in EC reached 57.65 Watts at UL (25%,25%). This
gain represents the 32% of the EC of single executions. The three combined
executions presented a EC gain on Intel host for all ULs regarding to single
executions. However, on AMD host the EC is equal at (25 %, 25 %,25 %) and
at (25 %, 25 %,50 %), and it is greater than EC of single executions at (50 %,
25 %,25 %) and at (25 %, 50 %,25 %).

On the one hand, the performance analysis showed that the CPU-bound
workload did not degraded as the UL increases. On the other hand, results
showed performance degradation of memory-bound workload and disk-bound
workload, specially in AMD host.

The energy efficiency study, which combines results of power consumption
and performance experiments, showed that the optimum UL depends on the
type of workload: CPU-bound workload presented best efficiency at high UL,
memory-bound workload at medium UL, and disk-bound workload at low UL.
The difference between host efficiency observed in results was consistent with
the published specifications of the hosts.

The numerical results of the presented power characterization can be used
to build power consumption models. In addition, it is possible to consider

64

the conclusions of the analysis as a guide to develop energy-aware scheduling
strategies based on heuristics. The Chapter 6 presents the proposed power co-
sumption models, several scheduling strategies, and the simulations performed
for their evaluation.

65

Chapter 6

Models construction and
simulation results

This chapter presents the utilization of power and performance characteriza-
tion results, by building a wide variety of models, which are used in simu-
lations to evaluate energy aware scheduling strategies. Section 6.1 presents
several power consumption models built for independent and combined type
of experiments. Then, Section 6.2 presents models built from data of per-
formance evaluation. Finally, Section 6.3 presents the details and results of
the performed simulations to evaluate scheduling strategies according to their
energy benefits.

6.1 Power consumption models construction

This section presents the proposed power consumption models, obtained by
applying polynomial regression over the power characterization results. Sub-
section 6.1.1 presents an insight about the proposed power consumption mod-
els. Subsection 6.1.2 introduces the power consumption models constructed
from independently experiments. Then, Subsection 6.1.3 presents the power
consumption models constructed from two combined resource experiments.
Finally, Subsection 6.1.4 presents the power consumption models constructed
from three combined resource experiments.

66

6.1.1 An insight of the proposed power consumption
models

The models of power consumption proposed in this thesis are versions of spe-
cific application models. In these versions, the applications are partitioned
into equivalence classes according their bounding computing resource (two ap-
plications are of the same class if they are intensive in the same computing
resource). The identified variables that affect the energy consumption are:
the computer resource involved, the load of the computer resource, and the
total load of the host. All these variables are synthesized in the definition of
UL. Equation 6.1 shows the general form of the power consumption models
built, where xn is the percentage of each resource running in the host and ϵ is
the power consumption estimated by the model. The expression x1, x2, ..., xn

corresponds to the definition of UL.

f(x1, x2, ..., xn)→ ϵ, x ∈ [0, 100] ∧ ϵ ∈ IR (6.1)

The models presented below seek the form of the function f(x1, x2, ..., xn)

in each type of experiments performed in this thesis, which are: executions
independent , combined executions of two computing resources, and combined
executions of three computing resources. The models built from independent
executions focused in the effective consumption (EC) because it contains more
synthetic information than power overall power consumption (PC), since PC
is just EC plus a constant. The models built from combined executions were
build for PC.

6.1.2 EC models considering a single resource

The models introduced in this subsection consider each computing resources
individually. In this case, the proposed equation for the power consumption
models (Equation 6.1) is instantiated as shown by the Equation 6.2, where the
domain of function f(x) has only one dimension.

f(x)→ ϵ, x ∈ [0, 100] ∧ ϵ ∈ IR (6.2)

To construct the energy models, the experimental data were adjusted by
polynomial regression (Peckov, 2012). In order to compare different models,
four formulas for function f(x) were considered: linear, piece-wise, quadratic,

67

and cubic. Two intervals were considered for the piece-wise model: [0,50] and
[50,100]. The computing resources considered were CPU, memory and disk.

Graphs in Figure 6.1 present the four EC models for CPU-bound workload,
on both AMD and Intel hosts. Graph legends show the equations for each
curve, where x is the independent variable, i.e. the UL introduced in Section
4.2. The ancillary variable x′, used in piece-wise model (Figure 6.1b), is zero
when x < 50 and x− 50 in other case.

0 20 40 60 80 100

0

50

100

150

UL(%)

EC
(W

)

[AMD] 1.582 + 0.8× x

[Intel] 55.621 + 0.827× x

(a) Linear

0 20 40 60 80 100

0

50

100

150

UL(%)

EC
(W

)

[AMD] 0.639 + 0.831× x− 0.053× x′

[Intel] 56.36 + 0.802× x+ 0.042× x′

(b) Piecewise

0 20 40 60 80 100

0

50

100

150

UL(%)

EC
(W

)

[AMD] 0.03772 + 0.8739× x− 6.590× 10−4 × x2

[Intel] 55.72 + 0.8218× x+ 4.228× 10−5 × x2

(c) Quadratic

0 20 40 60 80 100

0

50

100

150

UL(%)

EC
(W

)

[AMD] 1.1 + 0.78× x+ 0.0012× x2 − 1.1× 10−5 × x3

[Intel] 56 + 0.83× x− 2.1× 10−4 × x2 + 1.5× 10−6 × x3

(d) Cubic
Figure 6.1: EC models for CPU-bound workloads

68

A linear behavior of the models is observed. Besides, models with degree
greater than one (i.e., quadratic and cubic) have no-linear coefficients close to
zero, which indicates the linear dependency too. Both hosts have a similar rate
of increase. For example, in linear models, the angular coefficient is 0.8 in AMD
host and 0.827 in Intel host. This similarity indicates that the proportional
dependency between UL and EC is independent of the architecture, for CPU-
bound workloads.

Table 6.1 reports the comparison of R2 and R̄2 metrics for EC of CPU-
bound workloads on both AMD and Intel hosts. All models present statis-
tic values close to one, which indicates an acceptable fit to the data. How-
ever, quadratic and cubic models achieve a minor improvement over other
approaches on AMD host. Piecewise model is the best for Intel host. AMD
models show a better fit to the data than Intel models.

Table 6.1: Statistics of EC models for CPU-bound workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.99937 0.99927 0.99584 0.99514
Piecewise 0.99964 0.99950 0.99599 0.99439
Quadratic 0.99979 9.99971 0.99584 0.99417

Cubic 0.99986 0.99976 0.99584 0.99272

Graphs in Figure 6.2 show models of the EC for the memory-bound work-
load on both AMD and Intel host. By comparing the angular coefficients of
linear model it is possible to conclude that the EC on Intel increases faster
than AMD, by a factor of 1.6 (1.368/0.846). The piece-wise graph for AMD
(Figure 6.2b) shows a noticeable decrease of the first derivative in UL 50%,
possibly due to the degradation of the performance caused by the waits in the
access to memory, which implies less use of memory and, consequently, less
consumption of energy.

Table 6.2 reports the comparison of R2 and R̄2 metrics for EC models of
memory-bound workload on both AMD and Intel hosts. The results indicate
that cubic models achieves the best fit on AMD host as well as on Intel host.
Piece-wise models present significant improvement regarding linear models on
both AMD and Intel hosts.

69

0 20 40 60 80 100

0

50

100

150

200

UL(%)

EC
(W

)

[AMD] 35.038 + 0.846× x

[Intel] 63.433 + 1.368× x

(a) Linear

0 20 40 60 80 100

0

50

100

150

200

UL(%)

EC
(W

)
[AMD] 16.012 + 1.480× x− 1.065× x′

[Intel] 50.131 + 1.811× x− 0.745× x′

(b) Piecewise

0 20 40 60 80 100

0

50

100

150

200

UL(%)

EC
(W

)

[AMD] 11.269 + 1.987× x− 0.010× x2

[Intel] 44.277 + 2.287× x− 0.008× x2

(c) Quadratic

0 20 40 60 80 100

0

50

100

150

200

UL(%)

EC
(W

)

[AMD] −3.761 + 3.238× x− 0.03637× x2 + 1.555× 10−4 × x3

[Intel] 36.89 + 2.902× x− 0.02107× x2 + 7.644× 10−5 × x3

(d) Cubic

Figure 6.2: EC models for memory-bound workloads
Table 6.2: Statistics of EC models for memory-bound workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.90313 0.90310 0.97490 0.97072
Piecewise 0.99252 0.98952 0.99294 0.99011
Quadratic 0.98430 0.97802 0.99666 0.99533

Cubic 0.99483 0.99096 0.99772 0.99600

70

Graphs in Figure 6.3 present the EC models for the disk-bound workload,
considered independently, on both AMD and Intel hosts. The angular coef-
ficient of the linear models, which is close to zero, indicates that the EC is
almost constant for disk-bound workload. Despite the constant behavior, a
small increase is observed on Intel host, which does not occur on AMD host.

0 20 40 60 80 100

0

5

10

15

20

UL(%)

EC
(W

)

[AMD] 4.907 + 0.024× x

[Intel] 9.297 + 0.060× x

(a) Linear

0 20 40 60 80 100

0

5

10

15

20

UL(%)

EC
(W

)

[AMD] 4.701 + 0.031× x− 0.012× x′

[Intel] 9.849 + 0.042 ∗ x+ 0.031× x′

(b) Piecewise

0 20 40 60 80 100

0

5

10

15

20

UL(%)

EC
(W

)

[AMD] 4.457 + 4.553× 10−2 × x− 1.921× 10−4 × x2

[Intel] 9.911 + 3.056× 10−2 × x+ 2.621× 10−4 × x2

(c) Quadratic

0 20 40 60 80 100

0

5

10

15

20

UL(%)

EC
(W

)

[AMD] 4.162 + 70.11× x− 7.077× 10−4 × x2 + 3.055× 10−6 × x3

[Intel] 11.2− 0.0765× x+ 2.506× 10−3 × x2 − 1.33× 10−5 × x3

(d) Cubic

Figure 6.3: EC models for disk-bound workloads

71

Table 6.3 reports the comparison of R2 and R̄2 metrics of EC models of
the disk-bound workload on both host. The results show that cubic models
achieve the best fit regarding other approaches on both hosts. In this case, the
models for Intel host present metrics values close to one, indicating a better
fit to experimental data than on AMD host.

Table 6.3: Statistics of EC models for disk-bound workloads

AMD Intel

Model R2 R̄2 R2 R̄2

Linear 0.84465 0.81875 0.94454 0.93530
Piecewise 0.85695 0.79973 0.96016 0.94423
Quadratic 0.87968 0.83016 0.95579 0.93811

Cubic 0.88344 0.79602 0.97179 0.95063

6.1.3 PC models considering two resources

In real systems, is usual to find several types of applications executing together
in the same host. Moreover, the study presented in Chapter 5 indicates that it
is possible to have an energy reduction in combined executions (possibly due to
the use of the computing resources at optimal energy levels). This subsection
considers models with two computing resource types as domain. For each pair
of computing resources considered in the power characterization study of this
thesis (i.e., CPU-memory, CPU-disk, and memory-disk), two two-dimensional
models were constructed from the experimental data: a linear regression and
a quadratic regression. The other approaches were not considered because
the complexity introduced by the amount of terms of its equations, and also
considering the high quality achieved by linear and quadratic approach. Equa-
tion 6.3 shows the linear PC models for combined CPU-memory experiments
on AMD host and Equation 6.4 shows the same model on Intel host. Variable
α is the UL of CPU-bound workload and β is the UL of memory-bound work-
load. Constructed models assume that the host has a minimum load, different
to zero. The equations of the models indicate for both hosts that an increase
in the memory-bound UL (i.e., variable β) has greater impact on PC than the
same increase in the CPU-bound UL (i.e., variable α), since the coefficient of
β is greater than the coefficient of α. Also, the model for Intel host increases
faster than AMD models on both directions (CPU and memory).

72

PCAMD = 0.71923× α + 1.17596× β + 201.69767 (6.3)

PCIntel = 0.89041× α + 1.51675× β + 115.52924 (6.4)

Figure 6.4a presents the quadratic regression model built from combined
experiments of PC measurements on AMD host, for CPU and memory bound
workloads executing together. Figure 6.4b shows the quadratic regression
model on Intel host.

0 20 40 60 80 100

0

50

100

200

250

300

UL CPU (%)UL memory (%)

PC
(W

)

191.22728 + 0.65870× x+ 2.11943× y + 0.00331× x× y + 0.00069× x2 − 0.01112× y2

200

220

240

260

280

300

(a) AMD

0 20 40 60 80 100

0

50

100

200

UL CPU (%)UL memory (%)

PC
(W

)

116.09724 + 0.73349× x+ 1.72632× y + 0.00786× x× y + 0.00043× x2 − 0.00388× y2

150

200

250

(b) Intel

Figure 6.4: Quadratic PC models for combined CPU-memory workloads

Graphs legends show the equations for each curve, where variable x is the

73

CPU-bound workload UL and y is the memory-bound workload UL.
Table 6.4 presents the statistics of combined CPU and memory bound

power consumption models. Results indicate that the quadratic model achieves
a better fit to the data. The improvements of the quadratic approach over the
linear approach is more notorious on AMD host than on Intel host.

Table 6.4: Statistics of PC models for combined CPU-memory workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.83832 0.80892 0.94252 0.93207
Quadratic 0.99156 0.98629 0.99423 0.99062

Equation 6.5 shows the linear PC models for combined CPU-disk experi-
ments on AMD host and Equation 6.6 shows the same model on Intel host.
Variable α is the UL of CPU-bound workload and variable γ is the UL of disk-
bound workload. The coefficient of variable γ is almost zero, which indicates
that the increase of disk-bound workload does not impact on PC.

PCAMD = 0.80309× α + 0.07151× γ + 186.30660 (6.5)

PCIntel = 1.24615× α− 0.05342× γ + 88.88702 (6.6)

Figure 6.5a presents the quadratic regression model built from combined
experiments of PC measurements on AMD host, for CPU and disk-intensive
application executing together. Figure 6.5b shows the quadratic regression
model on Intel host. Graphs legends show the equations for each curve, where
variable x corresponds to the CPU workload UL and variable y corresponds
to the disk workload UL. The almost zero absolute value of non-linear coeffi-
cients (i.e. coefficients of variables x2 and y2) of AMD model indicate a linear
behaviour of PC.

Table 6.5 presents the statistics of combined CPU and disk-bound models.
The results indicate that the quadratic model achieves a better fit to the data
in both host. However, the linear model in AMD achieves a R-squared metric
similar to that of the quadratic model, which confirms the observation about
the linear behaviour of PC of combined CPU-disk bound workload on AMD.

74

0 20 40 60 80 100

0

50

100

200

250

UL CPU (%)UL disk (%)

PC
(W

)

185.53086 + 0.81697× x− 0.13433× y + 0.00115× x× y − 0.00032× x2 − 0.00090× y2

180

200

220

240

260

(a) AMD

0 20 40 60 80 100

0

50

100

100

150

UL CPU (%)UL disk (%)

PC
(W

)

82.59147 + 2.10859× x− 0.34114× y + 0.00549× x× y − 0.01078× x2 + 0.00275× y2

80

100

120

140

160

180

(b) Intel

Figure 6.5: Quadratic PC models for combined CPU-disk workloads

Table 6.5: Statistics of PC models for combined CPU-disk workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.99337 0.99216 0.8797 0.85783
Quadratic 0.99885 0.99814 0.96578 0.94439

Equation 6.7 shows the linear models for combined memory-disk experi-
ments on AMD host and Equation 6.8 shows the same model on Intel host.

75

The variable β is the UL of memory-bound workload and γ is the UL of disk-
bound workload. The coefficient of β indicates that the Intel model increase
faster than AMD model when memory UL increases and the coefficient of γ
indicates that disk-bound workload has not impact on PC of both hosts.

PC = 1.11686× β − 0.03832× γ + 204.40903 (6.7)

PC = 1.50079× β + 0.03613× γ + 99.70075 (6.8)

Figure 6.6a presents the quadratic regression model built from combined
experiments of power consumption measurements on AMD host, for memory
and disk intensive workloads executing together.

0 20 40 60 80 100

0

50

100

200

250

300

UL CPU (%)UL disk (%)

PC
(W

)

193.79456 + 2.07529× x− 0.11013× y + 0.00267× x× y − 0.01118× x2 + 0.00094× y2

200

220

240

260

280

(a) AMD

0 20 40 60 80 100

0

50

100

100

200

UL CPU (%)UL disk (%)

PC
(W

)

81.97649 + 3.32256× x− 0.16404× y + 0.01575× x× y − 0.02326× x2 + 0.00053× y2

100

150

200

(b) Intel

Figure 6.6: Quadratic PC models for combined memory-disk workloads

76

Figure 6.6b shows the quadratic regression model on Intel host, for mem-
ory and disk intensive workloads executing together. Graphs legends show
curves equations, where variable x corresponds to the memory workload UL
and variable y corresponds to the disk workload UL.

Table 6.6 presents the statistics of PC models of combined memory and
disk intensive. The results indicate that the quadratic model achieves better
fit to the data in both host.

Table 6.6: Statistics of PC models for combined memory-disk workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.89327 0.87387 0.66066 0.59896
Quadratic 0.99061 0.98475 0.96316 0.94014

6.1.4 PC models considering three resources

This subsection presents the most complete PC models proposed in this thesis,
since they considers in a a combination of the three computational resources
analyzed. The three-dimensional models built are classified in three types:

• Linear combination of the best independent models.
• Linear regression from three combined experiments of power consump-

tion measurements.
• Cubic regression from three combined experiments of power consumption

measurements.

The proposed models are described in the following paragraphs.
Linear combination of the best independent models. In the linear combi-

nation approach, the independent models presented in Subsection 6.1.2 are
combined in order to build a three-dimensional model that considers the three
type of workloads (CPU-bound, memory-bound, and disk-bound) as domain.
Only the best independent model according statistics, was chosen between the
four models built for each type of resource and host (which were reported in
Tables 6.1, 6.2, 6.3).

Equation 6.9 presents the model of PC built applying the linear combina-
tion for CPU, memory and disk workload for AMD host, based on the best

77

independent models. Since the independent models correspond to the EC
modeling, the host IC is added in the PC models.

PCAMD = 0.78× α + 1.2× 10−3 × α2 − 1.124× 10−5 × α3

+3.238× β − 3.637× 10−2 × β2 + 1.555× 10−4 × β3

+7.011× 10−2 × γ − 7.077× 10−4 × γ2 + 3.055× 10−6 × γ3

+((1.124− 3.761 + 3.055× 10−6)/3) + 183.4

(6.9)

Equation 6.10 presents the model of PC built applying the linear combina-
tion for Intel host for CPU, memory, and disk workload. The ancillary variable
α′ is zero when α < 50 and α− 50 in other case.

PCINTEL = 0.802× α + 0.042× α′

+2.902× β − 2.107× 10−2 × β2 + 7.644× 10−5 × β3

−7.645× 10−2 × γ + 2.506× 10−3 × γ2 − 1.330× 10−5 × γ3

+((56.362 + 36.89 + 11.20)/3) + 57

(6.10)

In both equations, α is the percentage of CPU-bound workload, β is the
percentage of memory-bound workload, and γ is the percentage of disk-bound
workload. The linear combination models assume that CPU-bound, memory-
bound and disk-bound jobs arrive to the host (to be processed) with equal
probability (0.33).

Linear regression from three combined experiments: In this approach, the
models are constructed by fitting the data collected in three combined exper-
iments of power measurements to a linear function, using the least squares
method.

Equation 6.11 presents the linear model built from data of combined ex-
periments of three on AMD host. The coefficients of the model indicate that
the memory-bound workload is the one that most affects the PC.

PCAMD = 186.82096 + 0.86923× α + 1.97285× β + 0.17123× γ (6.11)

Equation 6.12 presents the linear model built from data of three combined
experiments on Intel host. On Intel host, the memory-bound workload is also
the most important in terms of PC, since the model has its greatest growth in
the direction of the variable β.

78

PCINTEL = 102.65586 + 1.01680× α + 2.12789× β − 0.16982× γ (6.12)

Cubic regression from three combined experiments: In the case of the cubic
regression application, the models are constructed by fitting the data collected
in three combined experiments of power measurements to a cubic function,
using the least squares method.

Equation 6.13 presents the cubic model built from data of three combined
experiments on AMD host.

PCAMD = 0.00139 + 0.01735× α + 0.01738× β + 0.01734× γ

+0.14433× α× β + 0.14420× α× γ + 0.14429× β × γ

+0.28924× α2 + 0.28970× β2 + 0.28905× γ2 − 0.00643× α2β

−0.00971× α2 × γ − 0.01113× β2 × α− 0.01206× β2 × γ

−0.00784× γ2 × β − 0.00549× γ2 × β + 0.01189× α× β × γ

+0.00152× α3 + 0.00366× β3 + 0.00052× γ3

(6.13)

Equation 6.14 presents the cubic model built from data of three combined
experiments on Intel host.

PCINTEL = 0.00090 + 0.01129× α + 0.01130× β + 0.01123× γ

+0.09400× α× β + 0.09367× α× γ + 0.09375× β × γ

+0.18814× α2 + 0.18844× β2 + 0.18710× γ2 − 0.00123× α2 × β

−0.00943× α2 × γ − 0.00437× β2 × α− 0.01043× β2 × γ

+0.00132× γ2 × β + 0.00346× γ2 × β − 0.00232× α× β × γ

+0.00120× α3 + 0.00245× β3 − 0.00315× γ3

(6.14)

Table 6.7 reports the comparison of R2 and R̄2 metrics of PC models (linear
and cubic) for combined CPU-memory-disk on both hosts.

Table 6.7: Statistics of PC models for combined CPU-memory-disk workloads

AMD Intel
Linear 0.98793266 0.981899 0.75077941 0.62616912
Cubic 1 1 1 1

79

6.2 Performance models construction
This section introduces the performance models built from experimental re-
sults, presented in Section 5.2. In this case, the makespan reported by the
performance experiments is adjusted using the least squares to linear, piece-
wise, quadratic, and cubic functions. As in the models of power consumption,
the interval considered for the piece-wise model were [0,50] and [50,100].

Figure 6.7 presents the performance models for CPU-bound workloads on
both AMD and Intel hosts.

0 20 40 60 80 100

0

20

40

60

UL(%)

m
ak

es
pa

n(
s)

[AMD] 43.23793 + 0.04184× x

[Intel] 30.02500 + 0.07467× x

(a) Linear

0 20 40 60 80 100

0

20

40

60

UL(%)

m
ak

es
pa

n(
s)

[AMD] 44.932− 0.0147× x+ 0.0949× x′

[Intel] 38.134− 0.196× x+ 0.454× x′

(b) Piecewise

0 20 40 60 80 100

0

20

40

60

UL(%)

m
ak

es
pa

n(
s)

[AMD] 46.271− 0.104× x+ 0.00129× x2

[Intel] 43.132− 0.554× x+ 0.00559× x2

(c) Quadratic

0 20 40 60 80 100

0

20

40

60

UL(%)

m
ak

es
pa

n(
s)

[AMD] 40.959 + 0.338× x− 0.00798× x2 + 0.00005× x3

[Intel] 29.207 + 0.605× x− 0.0187× x2 + 0.00014× x3

(d) Cubic

Figure 6.7: Performance models for CPU-bound workloads

80

Graphs legends show equations of each curve, where x is the independent
variable, i.e. the utilization level UL introduced in Section 4.2.4. The ancillary
variable x′, used in piece-wise model (Figure 6.1b), is zero when x < 50 and
x − 50 in other case. The angular coefficient of linear model is almost zero,
which indicates that the makespan of the CPU-bound workload is not affected
by the UL of the host.

In addition, the fact that the same benchmark is used on both hosts indi-
cates that Intel host is approximately 13% faster than AMD host, considering
the CPU-bound workload.

Table 6.8 reports the comparison of R2 and R̄2 metrics for performance
models of the CPU-bound workload on both AMD and Intel hosts. In this case,
cubic models achieve the best fit on both hosts, having notorious improvements
regarding to the other approaches.

Table 6.8: Statistics of performance models for CPU-bound workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.40798 0.30931 0.14784 0.0058097
Piecewise 0.53887 0.35441 0.48883 0.28436
Quadratic 0.65197 0.51276 0.66616 0.53263

Cubic 0.89498 0.81622 0.85611 0.74819

Figure 6.8 presents the performance models for the memory-bound work-
load on both AMD and Intel hosts. The comparison of the angular coefficient
of linear models indicates that indicate that makespan on the AMD host in-
creases approximately seven times faster than on Intel host.

Table 6.9 reports the comparison of R2 and R̄2 metrics for performance
models of the memory-bound workload on both AMD and Intel hosts. Results
indicate that the cubic model achieves the best fit on both hosts. On AMD
host, the models are better fitted to the data than on Intel host, particularly
for the piece-wise, quadratic, and cubic approach. In addition, the piece-model
presents a better fit to the data than the quadratic model on Intel host.

81

0 20 40 60 80 100

0

100

200

300

400

500

UL(%)

m
ak

es
pa

n(
s)

[AMD] 15.463 + 4.419× x

[Intel] 18.257 + 0.632× x

(a) Linear

0 20 40 60 80 100

0

100

200

300

400

500

UL(%)

m
ak

es
pa

n(
s)

[AMD] 58.413 + 2.987× x+ 2.405× x′

[Intel] 23.38636 + 0.461× x+ 0.287× x′

(b) Piecewise

0 20 40 60 80 100

0

100

200

300

400

500

UL(%)

m
ak

es
pa

n(
s)

[AMD] 77.275 + 1.452× x+ 0.0264× x2

[Intel] 24.047 + 0.355× x+ 0.00247× x2

(c) Quadratic

0 20 40 60 80 100

0

100

200

300

400

500

UL(%)

m
ak

es
pa

n(
s)

[AMD] 39.500 + 4.596× x− 0.0396× x2 + 0.00039× x3

[Intel] 40.204− 0.990× x+ 0.0307× x2 − 0.00017× x3

(d) Cubic
Figure 6.8: Performance models for memory-bound workloads

Table 6.9: Statistics of performance models for memory-bound workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.97447 0.97022 0.89682 0.87963
Piecewise 0.99248 0.98947 0.90836 0.8717
Quadratic 0.99617 0.99464 0.90538 0.86753

Cubic 0.9988 0.9979 0.927 0.87224

82

Figure 6.9 presents the performance models for the disk-bound workload
on both AMD and Intel hosts. The angular coefficient of the linear models
indicates that the increase of the makespan on AMD is nine times faster than
the increase of the makespan on Intel host, that is, the degradation of the
performance as the level of utilization increases is nine times greater.

0 20 40 60 80 100

0

1,000

2,000

3,000

UL(%)

m
ak

es
pa

n(
s)

[AMD] −134.42262 + 28.51537 ∗ x

[Intel] −5.32857 + 3.22095 ∗ x

(a) Linear

0 20 40 60 80 100

0

1,000

2,000

UL(%)

m
ak

es
pa

n(
s)

[AMD] −199.32348 + 30.67873 ∗ x− 3.63445 ∗ (x− 50)*
[Intel] −5.16364 + 3.21545 ∗ x+ 0.00924 ∗ (x− 50)*

(b) Piecewise

0 20 40 60 80 100

0

1,000

2,000

UL(%)

m
ak

es
pa

n(
s)

[AMD] −227.32143 + 32.97451 ∗ x− 0.039644 ∗ x2

[Intel] −6.42679 + 3.27367 ∗ x− 0.00047 ∗ x2

(c) Quadratic

0 20 40 60 80 100

0

1,000

2,000

UL(%)

m
ak

es
pa

n(
s)

[AMD] 70.88690 + 8.15394× x+ 0.48087× x2 − 0.00308× x3

[Intel] 3.08571 + 2.48192× x+ 0.01614× x2 − 0.00010× x3

(d) Cubic

Figure 6.9: Performance models for disk-bound workloads

Table 6.10 shows R2 and R̄2 comparison for performance models of disk-

83

bound workload on both AMD and Intel hosts. Results indicate that cubic
models achieve the best fit on both hosts.

Table 6.10: Statistics of performance models for disk-bound workloads

AMD Intel
Model R2 R̄2 R2 R̄2

Linear 0.98768 0.98768 0.99958 0.99958
Piecewise 0.98868 0.98868 0.99958 0.99958
Quadratic 0.98887 0.98887 0.9996 0.9996

Cubic 0.99286 0.99286 0.99992 0.99992

6.3 Schedulers evaluation
This section describes the simulations performed for comparing different
scheduling strategies regarding energy efficiency. Subsection 6.3.1 explains
how the proposed models are implemented in a simulation tool. Then, Sub-
section 6.3.2 presents details of the simulation. Subsection 6.3.3 introduces the
workload for simulation, based on real traces of HPC infrastructures. Subsec-
tion 6.3.4 presents the strategies used in scheduling. Finally, Subsection 6.3.5
presents the results of simulation, comparing the energy consumption reported
by each considered strategy.

.

6.3.1 Energy model implementation

The proposed energy models were implemented in the version of Cloudsim
developed by CICESE. Cloudsim handles the following main entities: hosts,
which correspond to the physical host, virtual machines (VM), which are the
processing units and assigned to the hosts, and jobs, which correspond to the
workload. The jobs are assigned to the VMs to be processed.

Two Java classes were modified in Cloudsim: i) PowerModelJobType, lo-
cated in package cicese.cloudbus.cloudsim.power.models, which is used by
Cloudsim for scheduling tasks; and ii) PowerModelJobType located in package
cicese.cloudbus.cloudsim.util.power, which is applied for computing the to-
tal power consumption in a post-processing stage, using the simulation results.

84

In each Java class, the method getEnergy(double α,double β) was extended
to include the main features of each energy model developed in this thesis.
This method returns the current power consumption of a VM that executes
a task. The method getEnergy(double α,double β) was overrode to include
the empirical coefficients from the linear interpolation and the corresponding
value of IC for each host.

6.3.2 Simulation details

Two different power consumption models were considered, modeling multicore
hosts with AMD and Intel architectures (eight cores each), which correspond to
versions of the linear combination models presented on Equations 6.9 and 6.10.
Since the simulation only considered two type of workload (CPU-bound and
memory-bound), the term of variable γ (disk-bound workload) was eliminated
from the equations.

Thirty different workloads were considered in the evaluation for each ar-
chitecture, thus a total number of 60 simulations were performed (without
considering the independent executions of the stochastic algorithms). In order
to focus the simulations in the energy consumption study, some simplifications
were considered: i) the physical hosts within a same simulation are identical;
ii) only one VM is created per physical host, which can execute as many tasks
as cores available in the host; and iii) each job has only one task, so the terms
job and task both denote the atomic workload unit to schedule. These simpli-
fications are realistic in the context of scientific computing infrastructures, for
example Cluster FING (Nesmachnow, 2010).

During a simulation, N independent jobs arrive in different times (consid-
ering realistic distributions, see Subsection 6.3.3 for details) and the scheduler
must deliver the job to one VM from M active VMs. Each VM can execute
up to eight jobs at the same time and a job requires only one core to execute
(1/8 of the VM capacity). When all active VMs are full, a new VM is turned
on and this VM is considered active from that moment. It is assumed that a
VM always has enough memory, bandwidth, and disk to execute any job.

6.3.3 Workloads description

The workloads used for the experimental evaluation are based on traces of
real applications taken from HPC Parallel Workloads Archive executed on

85

parallel supercomputers, clusters, and grids. The workloads include traces
from DAS2-University of Amsterdam, DAS2–Delft University of Technology,
DAS2–Utrecht University, DAS2–Leiden University, Royal Institute of Tech-
nology (KTH), DAS2–Vrije University Amsterdam, High Performance Com-
puting Center North (HPC2N), Cornell Theory Cente (CTC), and (Los Alamos
National Laboratory) LANL. A detailed study of the workloads were presented
by Feitelson et al. (2014). The information included in these workloads allows
evaluating allocation strategies over real scenarios and applications.

Workloads are specified in a format that extends the Standard Work-
load Format (swf). The extended format, introduced by Armenta-Cano et al.
(2017), adds two new fields to the format: codec utilization and job type.

The fields of the extended swf format used in this thesis include:

• Job id: is the identifier of the job.
• Submitted time: is the arrival time of the job, in seconds. A job cannot

begin execution before its submitted time.
• Job length: is a measure of the needed resources to complete the job,

expressed in MIPS. When instantiated over a specific host, the duration
of the job is given by the quotient of the job length and the power
processing of the job (i.e., a job with length of 800 MIPS executing in a
core of 100 MIPS will execute for eight seconds).

• Codec utilization: this field represents the percentage of a VM defined
over the host that is requested to be used by a job. In the context of
this research, codec represents the number of cores required by a job.

• Job type: this field allows specifying the type of the job (CPU-bound,
memory-bound, disk-bound, or other relevant type). In the experiments
performed in this article, type 0 represents a CPU-bound job and type
1 represents a memory-bound job.

6.3.4 Scheduling heuristics

The scheduling strategies were compared in experiments performed considering
the two power consumption models over the 30 different workloads studied
(W01, W02, . . ., W30). Each workload accounts for one week of operation of a
real HPC platform, as described in subsection 6.3.3. The computing platform
simulated in the experiments is composed of 150 multicore hosts with eight
cores each.

86

An on-line scheduling approach is applied. On-line scheduling is a model in
which the scheduling decisions are taken immediately after a job arrives or is
released (Tchernykh et al., 2014). Although they are based on local and often
sub-optimal decisions, on-line schedulers provide some advantages over static
scheduling methods including a more realistic model of the user-system inter-
action and less information is needed to perform the resource assignment. In
addition, on-line schedulers demand less processing for the scheduling proce-
dure, which means less overhead. In the experiments reported in this section,
the destination VM is chosen by the cloud scheduler by applying a specific
strategy when a new job arrives to the system. Figure 6.10 illustrates the
scheduling approach used in simulations.

Figure 6.10: Scheduling approach

The proposed scheduling strategies hold a list of active VMs (the active
list), i.e., VMs that are currently executing jobs. Adding a VM to the active list
corresponds to turning on a physical host. A VM is capable of executing a job if
the number of free processors of the VM is greater than (or equal) the number
of processors that this job requires. Strategies are implemented using well-
know heuristics for scheduling problems. The proposed heuristics are oriented
to fulfill the followings goals: minimize the host utilization, maximize the host
utilization, balance the utilization, and minimize the power consumption of
each host.

The studied heuristics include:

• Random (RD). The purpose of the heuristic is to assign the jobs ran-

87

domly. The destination VM for an arriving job is selected randomly
from the list of active VMs, applying a uniform distribution.

• Round Robin (RR). The purpose of the heuristic is is to distribute equi-
tably the jobs between the VMs, in a rational order (Leung et al., 2004;
Silberschatz et al., 2012). The destination VM for an arriving job is
selected in circular order. VMs are considered ordered by VM identifier
and when the last active VM is assigned, the VM with identifier equal
to 0 is assigned again. Algorithm 4 explains the Round Robin strategy,
where vm_idx is the index of the VM where the last job was assigned.

Algorithm 4 Round Robin Strategy
1: first_vm_idx← vm_idx
2: assigned← false
3: repeat
4: vm← active_vm_list[vm_idx];
5: if is_capable(vm, arrived_job) then
6: assign(vm, arrived_job)
7: assigned← true
8: end if
9: vm_idx = vm_index+ 1 (mod size(active_vm_list))

10: until assigned or first_vm_idx = vm_idx

• First Fit (FF). The purpose of the heuristic is to assign jobs to the
first possible VM (El-Rewini et al., 1994). The destination VM for an
arriving job is the first VM in the active list with enough free resources
(in this thesis, cores) as requested by the arriving job. The active list is
considered to be ordered by VM identifier, ascendant.

• Minimum Energy (mE). The purpose of the heuristic is to assign jobs
to the possible VM that consumes less power, according to the current
assignment. The destination VM for an arriving job is the VM whose
corresponding host has the lowest energy consumption. Algorithm 5
explains the details of the mE strategy.

• Minimum Utilization (mU). The purpose of the heuristic is to assign jobs
to the possible VM that have the most resources available (in this thesis,
available cores). The destination VM for an arriving job is the VM of
the active list with the lowest percentage of utilization.

• Maximum Utilization (MU). The purpose of the heuristic is to assign
jobs to the possible VM that have the less resources available (in this

88

thesis, available cores). The destination VM for an arriving job is the
VM of the active list with the highest percentage of utilization.

Algorithm 5 Min. Energy Strategy
1: for all vm in active_vm_list do
2: if is_capable(vm, arrived_job) then
3: if is_not_asiigned(arrived_job) then
4: assign(vm, arrived_job)
5: else
6: if current_power_of_host(vm) <

current_power_of_host(assigned_vm_(job)) then
7: assign(vm, arrived_job)
8: end if
9: end if

10: end if
11: end for

6.3.5 Simulation results

Table 6.11 reports the power consumption values for each scheduling strategy
using the AMD energy model and Table 6.12 reports the power consumption
values for each scheduling strategy using the Intel energy model. All values on
the tables are reported in Watt per second (×108). All scheduling strategies
are deterministic, except for RD, which is non-deterministic. For RD, the
mean and standard deviation of power consumption values (calculated in 20
independent simulations performed for each workload) are reported.

Results in Tables 6.11 and 6.12 indicate that strategies that maximize the
utilization of hosts (i.e., MU and FF) achieved better energy efficiency. Con-
versely, lower efficiency is achieved when the utilization is minimized (mU).
Strategy mE, which is oriented to minimize the energy consumption also
achieved worse results. The fact that both utilization model and energy model
are linear explains the results for strategy Me, because minimizing energy cor-
responds to minimizing the utilization. Strategies that balance the utilization
(RR, RD) achieved intermediate results regarding the other reported strate-
gies.

89

Table 6.11: Total energy consumption of the studied scheduling strategies using
the AMD energy model

Workload RD FF RR MU mU mE
W1 1.47±0.03 1.29 1.51 1.28 1.73 1.66
W2 1.47±0.02 1.26 1.41 1.27 1.60 1.58
W3 1.92±0.02 1.73 1.88 1.72 2.04 2.06
W4 2.32±0.03 2.12 2.31 2.11 2.50 2.48
W5 2.08±0.03 1.91 2.06 1.87 2.37 2.34
W6 1.77±0.03 1.61 1.79 1.61 1.98 1.90
W7 1.70±0.04 1.53 1.86 1.55 1.98 1.95
W8 2.14±0.04 1.95 2.09 1.95 2.34 2.25
W9 2.19±0.02 2.02 2.17 2.01 2.29 2.29
W10 1.73±0.03 1.58 1.79 1.54 1.91 1.83
W11 2.22±0.03 2.00 2.21 1.99 2.52 2.43
W12 2.08±0.04 1.87 2.14 1.86 2.31 2.28
W13 2.25±0.04 2.05 2.37 2.02 2.65 2.59
W14 1.91±0.02 1.81 1.91 1.80 2.06 2.08
W15 2.23±0.03 2.05 2.23 2.05 2.38 2.36
W16 1.62±0.03 1.47 1.51 1.45 1.81 1.76
W17 1.89±0.03 1.69 1.85 1.67 2.13 2.08
W18 1.59±0.03 1.48 1.57 1.46 1.69 1.65
W19 2.01±0.03 1.85 2.06 1.87 2.24 2.20
W20 2.37±0.05 2.08 2.40 2.07 2.58 2.41
W21 2.35±0.05 1.99 2.37 1.99 2.76 2.66
W22 2.32±0.05 1.86 2.32 1.89 2.65 2.49
W23 1.51±0.02 1.39 1.50 1.40 1.66 1.62
W24 1.83±0.02 1.70 1.90 1.70 1.95 1.97
W25 1.92±0.03 1.74 1.96 1.69 2.06 2.04
W26 2.29±0.04 2.05 2.25 2.02 2.48 2.39
W27 1.97±0.03 1.82 2.08 1.81 2.29 2.19
W28 2.13±0.04 1.96 2.12 1.89 2.30 2.32
W29 2.72±0.05 2.47 2.73 2.47 3.08 3.06
W30 2.48±0.03 2.18 2.47 2.21 2.74 2.79

90

Table 6.12: Total energy consumption of the studied scheduling strategies using
the Intel energy model

Workload RD FF RR MU mU mE
W1 1.07±0.02 0.96 1.09 0.96 1.22 1.21
W2 1.07±0.01 0.94 1.04 0.95 1.15 1.11
W3 1.42±0.02 1.31 1.39 1.30 1.49 1.50
W4 1.66±0.01 1.55 1.66 1.54 1.77 1.76
W5 1.51±0.02 1.42 1.48 1.39 1.68 1.63
W6 1.26±0.02 1.16 1.27 1.16 1.38 1.35
W7 1.26±0.03 1.15 1.35 1.16 1.42 1.39
W8 1.57±0.01 1.46 1.54 1.46 1.69 1.62
W9 1.63±0.02 1.53 1.61 1.53 1.69 1.70
W10 1.27±0.02 1.18 1.30 1.16 1.37 1.34
W11 1.64±0.02 1.51 1.63 1.50 1.81 1.72
W12 1.54±0.02 1.42 1.58 1.41 1.68 1.66
W13 1.67±0.03 1.55 1.74 1.53 1.90 1.85
W14 1.45±0.02 1.39 1.45 1.38 1.54 1.55
W15 1.71±0.01 1.61 1.71 1.60 1.80 1.79
W16 1.19±0.02 1.11 1.10 1.10 1.30 1.29
W17 1.37±0.02 1.26 1.35 1.25 1.51 1.46
W18 1.18±0.01 1.11 1.17 1.11 1.24 1.24
W19 1.50±0.02 1.40 1.53 1.42 1.64 1.62
W20 1.71±0.03 1.54 1.73 1.54 1.83 1.85
W21 1.72±0.02 1.50 1.73 1.50 1.95 1.91
W22 1.66±0.02 1.40 1.66 1.41 1.86 1.77
W23 1.13±0.02 1.06 1.12 1.06 1.21 1.17
W24 1.37±0.01 1.30 1.42 1.29 1.45 1.45
W25 1.45±0.01 1.34 1.47 1.31 1.53 1.50
W26 1.71±0.02 1.57 1.69 1.55 1.83 1.75
W27 1.47±0.02 1.38 1.54 1.38 1.66 1.59
W28 1.56±0.02 1.46 1.55 1.42 1.66 1.67
W29 2.03±0.03 1.88 2.04 1.88 2.24 2.28
W30 1.86±0.02 1.68 1.86 1.70 2.02 2.04

A relevant analysis regarding energy efficient is the comparison of the best
schedulers against strategies that apply a Business-as-Usual approach, i.e.,
when energy efficiency is not considered to perform the job-to-resources allo-
cation. RR is one of the most widely used strategies for scheduling and it is
included as the default scheduler in popular resource managers such as Maui
and Condor Jackson et al. (2001). Maui and Condor is widely used by multi-

91

ple computational platform such as custer, data centers, distributed platforms,
among others.

The percent improvements (GAP) over RR of each proposed scheduling
strategies are reported in Table 6.13. The percent improvements (GAP) over
RR of each scheduling strategies are reported in Table 6.14.

Table 6.13: GAPs over RR of each scheduling strategies on AMD host

workload FF RD MU mU mE
W1 14.57% 2.65% 15.23% -14.57% -9.93%
W2 10.64% -4.26% 9.93% -13.48% -12.06%
W3 7.98% -2.13% 8.51% -8.51% -9.57%
W4 8.23% -0.43% 8.66% -8.23% -7.36%
W5 7.28% -0.97% 9.22% -15.05% -13.59%
W6 10.06% 1.12% 10.06% -10.61% -6.15%
W7 17.74% 8.60% 16.67% -6.45% -4.84%
W8 6.70% -2.39% 6.70% -11.96% -7.66%
W9 19.31% -8.42% -7.43% 0.50% -13.37%
W10 11.73% 3.35% 13.97% -6.70% -2.23%
W11 9.50% -0.45% 9.95% -14.03% -9.95%
W12 12.62% 2.80% 13.08% -7.94% -6.54%
W13 13.50% 5.06% 14.77% -11.81% -9.28%
W14 5.24% 0.00% 5.76% -7.85% -8.90%
W15 8.07% 0.00% 8.07% -6.73% -5.83%
W16 2.65% -7.28% 3.97% -19.87% -16.56%
W17 8.65% -2.16% 9.73% -15.14% -12.43%
W18 5.73% -1.27% 7.01% -7.64% -5.10%
W19 10.19% 2.43% 9.22% -8.74% -6.80%
W20 13.33% 1.25% 13.75% -7.50% -0.42%
W21 16.03% 0.84% 16.03% -16.46% -12.24%
W22 19.83% 0.00% 18.53% -14.22% -7.33%
W23 7.33% -0.67% 6.67% -10.67% -8.00%
W24 10.53% 3.68% 10.53% -2.63% -3.68%
W25 11.22% 2.04% 13.78% -5.10% -4.08%
W26 8.89% -1.78% 10.22% -10.22% -6.22%
W27 12.50% 5.29% 12.98% -10.10% -5.29%
W28 7.55% -0.47% 10.85% -8.49% -9.43%
W29 9.52% 0.37% 9.52% -12.82% -12.09%
W30 11.74% -0.40% 10.53% -10.93% -12.96%

average 10.63% 0.21% 10.22% -10.13% -8.33%

Results indicate that FF is able to improve over RR on 10.63% in AMD
and 8.07% in Intel. In turn, MU improves over RR on 0.22 (11%) in AMD

92

and 0.13 (8%) in Intel. For all workloads studied, AMD hosts consumed more
energy than Intel hosts. Moreover, if a performance model is added (with the
characteristics studied in subsection 5.2), it is expected that the difference is
even greater.

workload FF RD MU mU mE
W1 11.93% 1.83% 11.93% -11.93% -11.01%
W2 9.62% -2.88% 8.65% -10.58% -6.73%
W3 5.76% -2.16% 6.47% -7.19% -7.91%
W4 6.63% 0.00% 7.23% -6.63% -6.02%
W5 4.05% -2.03% 6.08% -13.51% -10.14%
W6 8.66% 0.79% 8.66% -8.66% -6.30%
W7 14.81% 6.67% 14.07% -5.19% -2.96%
W8 5.19% -1.95% 5.19% -9.74% -5.19%
W9 4.97% -1.24% 4.97% -4.97% -5.59%
W10 9.23% 2.31% 10.77% -5.38% -3.08%
W11 7.36% -0.61% 7.98% -11.04% -5.52%
W12 10.13% 2.53% 10.76% -6.33% -5.06%
W13 10.92% 4.02% 12.07% -9.20% -6.32%
W14 4.14% 0.00% 4.83% -6.21% -6.90%
W15 5.85% 0.00% 6.43% -5.26% -4.68%
W16 -0.91% -8.18% 0.00% -18.18% -17.27%
W17 6.67% -1.48% 7.41% -11.85% -8.15%
W18 5.13% -0.85% 5.13% -5.98% -5.98%
W19 8.50% 1.96% 7.19% -7.19% -5.88%
W20 10.98% 1.16% 10.98% -5.78% -6.94%
W21 13.29% 0.58% 13.29% -12.72% -10.40%
W22 15.66% 0.00% 15.06% -12.05% -6.63%
W23 5.36% -0.89% 5.36% -8.04% -4.46%
W24 8.45% 3.52% 9.15% -2.11% -2.11%
W25 8.84% 1.36% 10.88% -4.08% -2.04%
W26 7.10% -1.18% 8.28% -8.28% -3.55%
W27 10.39% 4.55% 10.39% -7.79% -3.25%
W28 5.81% -0.65% 8.39% -7.10% -7.74%
W29 7.84% 0.49% 7.84% -9.80% -11.76%
W30 9.68% 0.00% 8.60% -8.60% -9.68%

average 8.07% 0.26% 8.47% -8.38% -6.64%

Table 6.14: GAPs over RR of the scheduling strategies on Intel host

The improvements (GAP) of each scheduling over RR on AMD host are
graphically presented in Fig. 6.11.

93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

−20

−10

0

10

20

Workloads

G
A

P
ov

er
R

R
(%

)

FF RD MU mU mE

Figure 6.11: Percentage improvements in energy consumption over RR using AMD
PC model

The improvements (GAP) of each scheduling over RR on Intel host are
graphically presented in Fig. 6.12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

−20

−10

0

10

Workloads

G
A

P
ov

er
R

R
(%

)

FF RD MU mU mE

Figure 6.12: Percentage improvements in energy consumption over RR using Intel
PC model

94

Overall, the reported results indicate that energy models built from power
characterization and empirical data are important tools for the operation and
management of HPC and data center infrastructures. Energy models allow
evaluating energy-aware scheduling strategies with the main goal of reducing
power consumption in large computing platforms.

95

Chapter 7

Conclusions and future work

This closing chapter presents the conclusions resulting from the study, and
formulates the main lines of future work.

7.1 Conclusions

This thesis presented an empirical analysis of the energy consumption of syn-
thetic benchmarks in high-end multi-core servers. In addition, power con-
sumption models were constructed and used in simulations to evaluate several
energy-aware scheduling strategies.

In the last decade, data centers have become a fundamental part of com-
puters technology, since they are the backbone of the cloud, which is widely
used by industrial and scientific applications worldwide. Furthermore, data
centers are large consumers of energy, which implies a great challenge when
it comes to consciously manage energy consumption, in order to reduce the
environmental impact and the monetary costs. The first step towards achiev-
ing energy efficiency in data centers is to know the energy consumption of its
different components, in particular, the physical hosts.

In this thesis, an exhaustive study of the inter-relationship among the power
consumption of the main computing resources at different ULs was carried out
over AMD and Intel architectures. All experiments were performed applying
the reproducible research paradigm, which is not found often in this research
area. All data and processing tools are publicly available for verification and
extension by researchers. The experimental methodology consisted on execut-
ing synthetic benchmarks over high-end hosts connected to a PDU, considering

96

different ULs and combinations of benchmarks with the goal of characterizing
the power consumption of each computing resource (CPU, memory, and disk).
The operations performed by the benchmarks include mathematical functions
and read/write of main memory and disk.

The study was complemented with performance experiments. A total num-
ber of 144 experiments were performed: 96 experiments evaluating power con-
sumption and 48 evaluating performance. For each experiment, 20 independent
executions were performed. Results showed that in single executions, CPU uti-
lization has a linear relation with power consumption. Memory utilization has
significant impact on power consumption when compared to CPU usage, up to
157% more EC for AMD and 46% more EC for Intel. On the other hand, disk
usage presented low EC variation for all ULs. Combined executions are able to
reduce EC with regard to independent executions for CPU and disk combined
execution, taking advantage of the optimum UL of computing resources. The
results of two combined executions showed a remarkable energy reduction in
the Intel host (32% of the EC of single executions). Efficiency analysis showed
that different benchmarks performed more efficiently at different ULs: CPU at
high ULs, memory at medium ULs, and disk at low ULs. The critic UL (100%)
showed worse efficiency than high-medium UL (87.5%), except for disk.

Several statistical tools were applied to built a realistic power consumption
model for multicores. The models built provide a good fit to the empirical data
according to relevant metrics for statistical models, and they are useful tools
to assess the capabilities of scheduling strategies regarding energy efficiency.

In order to evaluate energy-aware scheduling strategies, a total of 60 dif-
ferent simulations were performed considering linear energy models for AMD
and Intel architectures and 30 realistic workloads based on traces of HPC
Parallel Workloads Archive executed on real computing infrastructures. The
simulation results showed that strategies which maximize the host utilization
achieves better results, notably improving over traditional Business-as-Usual
schedulers.

The research addressed by this thesis confirms that power consumption
models built from empirical data are a key tool for operation and manage-
ment of data center infrastructures. They allow evaluating different schedul-
ing strategies via simulations to provide accurate methods that account for
environmental and monetary savings.

97

Summarizing, the main contributions of the research reported in this thesis
are:

• A cutting-edge review of related works regarding power characterization,
modeling, energy-aware scheduling in cloud computing and supercom-
puting systems, and available cloud simulation tools.

• An empirical study of power consumption using benchmarks intensive on
the three main computing resources that most contribute to power con-
sumption utilization (CPU, memory, and disk), on two high-end multi-
core servers (AMD and Intel architectures).

• An empirical study of performance degradation in multi-core servers with
respect to the server load and the type of computing resource.

• Several energy models from experimental power data using supervised
computational intelligence techniques.

• Energy evaluation through simulations for six scheduling strategies using
realistic workloads.

• Reproducible/replicable research by using a Jupyter Notebook, showing
in a clear and understandable manner the data processing from raw data.

In the context of this thesis, a collaboration with the research group at
Centro de Investigación Científica y de Superior de Ensenada (CICESE) in
Mexico was established. The main concepts of this investigation were discussed
in the early stages of the investigation.

The research reported in this thesis resulted in two publications, which
address some of the topics included in this manuscript. The first publica-
tion was a conference article, entilted Power consumption characterization of
synthetic benchmarks in multicores, presented at Latin American High Per-
formance Computing Conference, held in Buenos Aires, Argentina, in 2018
(Muraña et al., 2018). The conference article was written in colaboration with
the researchers Sergio Nesmachnow and Santiago Iturriaga from Universidad
de la República, Uruguay, and with the resercher Andrei Tcherniykh, from
CICESE, Mexico. Figure 7.1 shows the first page of the conference article.

98

Figure 7.1: Fisrt page of the conference article

The second publication was a journal article, entilted Characterization,
modeling and scheduling of power consumption of scientific computing appli-
cations in multicores, published in Cluster Computing in 2019 (Muraña et al.,
2019). The journal article was written in colaboration with Sergio Nesmach-
now, Fermin Armenta (CICESE, Mexico), and Andrei Tcherniykh. Figure 7.2
shows the first page of the journal article.

99

Figure 7.2: Fisrt page of the journal article

7.2 Future work

The work presented in this thesis is the first step towards the construction
of an energy-efficiency management of datacenters, guided by computational
intelligence.

In order to extend the power and performance characterization, the main
lines for future work are related to including different benchmarks and real
scientific computing applications. Regarding benchmarks, network-bound and

100

GPU-based programs could be studied, mainly due to their relevance in mod-
ern datacenters and supercomputing infrastructures. The power characteriza-
tion of non-synthetic benchmarks and programs from different scientific fields
(e.g., molecular dynamics, quantum chemistry, computational fluid dynamics,
climate modeling, etc.) will provide a useful insight for developers and sci-
entist, which will certainly complement the analysis presented in this thesis.
Considering other high-end hosts with different chip designs is also a possi-
ble line for future work, in order to extend the hardware components on the
study. More complex energy models can also be considered, including features
of combined executions, and enhancing the planning capabilities by considering
resource utilization models, also derived from empirical data.

Extending the characterization of power consumption and building complex
models can lead to designing powerful scheduling strategies. These strategies
must consider energy and QoS together as an optimization objective, to meet
the requirements of modern supercomputing facilities.

101

Bibliography

ACM. Association for Computing Machinery. Artifact Review and Badg-
ing. https://www.acm.org/publications/policies/artifact-review-
badging, 2018. Online; accessed December 21 2018.

A. Anghel, L. Vasilescu, G. Mariani, R. Jongerius, and G. Dittmann. An
instrumentation approach for hardware-agnostic software characterization.
International Journal of Parallel Programming, 44(5):924–948, 2016.

F. Armenta-Cano, A. Tchernykh, J. Cortes-Mendoza, R. Yahyapour, A. Droz-
dov, P. Bouvry, D. Kliazovich, A. Avetisyan, and S. Nesmachnow. Min_c:
Heterogeneous concentration policy for energy-aware scheduling of jobs with
resource contention. Programming and Computer Software, 43(3):204–215,
2017.

S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, and J. Waglarz.
GSSIM–a tool for distributed computing experiments. Scientific Program-
ming, 19(4):231–251, 2011.

L. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1–154, 2013.

T. Bawden. Global warming: Data centres to consume three times as much
energy in next decade. https://www.independent.co.uk/environment/
global-warming-data-centres-to-consume-three-times-as-much-
energy-in-next-decade-experts-warn-a6830086.html, 2016. Online;
accessed January 14 2019.

C. Begley. Six red flags for suspect work. Nature, 497(7450):433–434, 2013.

102

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html

A. Beloglazov, R. Buyya, Y. Choon Lee, and A. Zomaya. A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems. Advances
in Computers, 82, 2010.

A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing.
Future Generation Computer Systems, 28:755 – 768, 2012.

C. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

C. Brandolese, S. Corbetta, and W. Fornaciari. Software energy estimation
based on statistical characterization of intermediate compilation code. In
International Symposium on Low Power Electronics and Design, pages 333–
338, 2011.

R. Buyya, C. Vecchiola, and S. Selvi. Mastering Cloud Computing: Founda-
tions and Applications Programming. Morgan Kaufmann, San Francisco,
CA, USA, 2013.

R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya. CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software: Practice and ex-
perience, 41(1):23–50, 2011.

F. Chen, J. Grundy, Y. Yang, J. Schneider, and Q. He. Experimental analysis
of task-based energy consumption in cloud computing systems. In Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance
Engineering, pages 295–306, 2013.

H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu. Towards energy-efficient
scheduling for real-time tasks under uncertain cloud computing environment.
Journal of Systems and Software, 99:20–35, 2015.

Cisco Systems. Cisco global cloud index: Forecast and methodology, 2015-
2020. White paper. Cisco Public, San Jose, 2016.

103

D. Cox and N. Reid. The theory of the design of experiments. Chapman and
Hall/CRC, 2000.

CPUBOSS. Intel Xeon E52643v3 vs AMD Opteron 6172 com-
parison. http://cpuboss.com/cpus/Intel-Xeon-E5-2643-v3-vs-AMD-
Opteron-6172, 2014. Online; accessed March 29 2018.

R. Danilak. Why energy is a big and rapidly growing problem for data centers.
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-
energy-is-a-big-and-rapidly-growing-problem-for-data-centers,
2017. Online; accessed January 14 2019.

M. Dayarathna, Y. Wen, and R. Fan. Data center energy consumption mod-
eling: A survey. IEEE Communications Surveys Tutorials, 18(1):732–794,
2016.

R. Dick and Z. Mao. Cache contention and application performance prediction
for multi-core systems. In IEEE International Symposium on Performance
Analysis of Systems Software, pages 76–86, 2010.

J. Dongarra. The linpack benchmark: An explanation. In Proceedings of the
1st International Conference on Supercomputing, pages 456–474, London,
UK, 1988. Springer-Verlag.

K. Du Bois, T. Schaeps, S. Polfliet, F. Ryckbosch, and L. Eeckhout. Sweep:
Evaluating computer system energy efficiency using synthetic workloads. In
6th International Conference on High Performance and Embedded Architec-
tures and Compilers, pages 159–166, 2011.

H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in Parallel and Distributed
Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

D. Feitelson, D. Tsafrir, and D. Krakov. Experience with using the parallel
workloads archive. Journal of Parallel and Distributed Computing, 74(10):
2967–2982, 2014.

X. Feng, R. Ge, and K. Cameron. Power and energy profiling of scientific
applications on distributed systems. In 19th IEEE International Parallel
and Distributed Processing Symposium, pages 34–44, 2005.

104

http://cpuboss.com/cpus/Intel-Xeon-E5-2643-v3-vs-AMD-Opteron-6172
http://cpuboss.com/cpus/Intel-Xeon-E5-2643-v3-vs-AMD-Opteron-6172
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers

F. Fernandes, D. Beserra, E. Moreno, B. Schulze, and R. Coelho. A virtual
machine scheduler based on CPU and I/O-bound features for energy-aware
in high performance computing clouds. Computers Electrical Engineering,
56:854 – 870, 2016.

S. Gade, H. Mondal, and S. Deb. A hardware and thermal analysis of DVFS in
a multi-core system with hybrid WNoC architecture. In 28th International
Conference on VLSI Design, pages 117–122, 2015.

L. Galaviz-Alejos, F. Armenta-Cano, A. Tchernykh, G. Radchenko, A. Droz-
dov, O. Sergiyenko, and R. Yahyapour. Bi-objective heterogeneous consoli-
dation in cloud computing. In High Performance Computing, pages 384–398,
Cham, 2018.

J. Gao. Machine learning applications for data center optimization. https:
//ai.google/research/pubs/pub42542, 2014. Online; accessed January 14
2019.

Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, and L. Liu. Service level agreement
based energy-efficient resource management in cloud data centers. Comput-
ers & Electrical Engineering, 40(5):1621–1633, 2014.

X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bottin, P. Boulanger,
F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese,
P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jol-
let, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida,
Y. Pouillon, T. Rangel, G. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent,
M. Verstraete, G. Zerah, and J. Zwanziger. ABINIT: First-principles ap-
proach to material and nanosystem properties. Computer Physics Commu-
nications, 180(12):2582 – 2615, 2009.

S. Goodman, D. Fanelli, and J. Ioannidis. What does research reproducibility
mean? Science Translational Medicine, 8:341ps12–341ps12, 2016.

Google LLC. Efficiency: How we do it. https://www.google.com/about/
datacenters/efficiency/internal, 2019a. Online; accessed January 14
2019.

Google LLC. Google Colab. https://colab.research.google.com/, 2019b.
Online; accessed April 2019.

105

https://ai.google/research/pubs/pub42542
https://ai.google/research/pubs/pub42542
https://www.google.com/about/datacenters/efficiency/internal
https://www.google.com/about/datacenters/efficiency/internal
https://colab.research.google.com/

R. Grant, J. Laros, M. Levenhagen, S. Olivier, K. Pedretti, L. Ward, and
A. Younge. Evaluating energy and power profiling techniques for HPC work-
loads. In Eighth International Green and Sustainable Computing Conference,
pages 1–8, 2017.

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. Hancke. Smart grid technologies: Communication technologies and stan-
dards. IEEE Transactions on Industrial Informatics, 7(4):529–539, 2011.

Z. Guo, S. Hui, Y. Xu, and H. Chao. Dynamic flow scheduling for power-
efficient data center networks. In IEEE/ACM 24th International Symposium
on Quality of Service, pages 1–10, 2016.

M. Harchol-Balter. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press, New York, USA,
1st edition, 2013.

S. Hernández, J. Fabra, P. Álvarez, and J. Ezpeleta. Simulation and realistic
workloads to support the meta-scheduling of scientific workflows. In Sim-
ulation and Modeling Methodologies, Technologies and Applications, pages
155–167, Cham, 2014.

IBM. IBM Watson Studio. https://www.ibm.com/cloud/watson-studio/,
2019. Online; accessed April 2019.

C. Isci and M. Martonosi. Runtime power monitoring in high-end proces-
sors: methodology and empirical data. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 93–104,
2003.

S. Iturriaga, S. García, and S. Nesmachnow. An empirical study of the robust-
ness of energy-aware schedulers for high performance computing systems
under uncertainty. In High Performance Computing, pages 143–157, Cham,
2014.

D. Jackson, Q. Snell, and M. Clement. Core algorithms of the Maui scheduler.
In Job Scheduling Strategies for Parallel Processing, pages 87–102, 2001.

C. Jiang, C. Wang, X. Liu, and Y. Zhao. A survey of job scheduling in grids.
In G. Dong, X. Lin, W. Wang, Y. Yang, and J. X. Yu, editors, Advances in
Data and Web Management, pages 419–427, 2007.

106

https://www.ibm.com/cloud/watson-studio/

Jupyter Community. Project jupyter. http://jupyter.org. Online; accessed
01 March 2018.

T. Kaur and I. Chana. Energy aware scheduling of deadline-constrained tasks
in cloud computing. Cluster Computing, 19(2):679–698, 2016.

D. Kliazovich, P. Bouvry, Y. Audzevich, and S. Khan. Greencloud: A packet-
level simulator of energy-aware cloud computing data centers. In IEEE
Global Telecommunications Conference, pages 1–5, 2010.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
and C. Willing. Jupyter notebooks: a publishing format for reproducible
computational workflows. In Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pages 87–90, 2016.

A. Kopytov. Sysbench repository. https://github.com/akopytov/sysbench,
2017. Online; accessed June 01 2017.

K. Kurowski, A. Oleksiak, W. Piątek, T. Piontek, A. Przybyszewski, and
J. Węglarz. DCworms–a tool for simulation of energy efficiency in distributed
computing infrastructures. Simulation Modelling Practice and Theory, 39:
135–151, 2013.

A. Langer, E. Totoni, U. Palekar, and L. Kalé. Energy-efficient computing
for HPC workloads on heterogeneous manycore chips. In Proceedings of the
6th International Workshop on Programming Models and Applications for
Multicores and Manycores, pages 11–19, 2015.

J. Laros, P. Pokorny, and D. DeBonis. PowerInsight - a commodity power
measurement capability. In International Green Computing Conference Pro-
ceedings, pages 1–6, 2013.

E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: The laws
of diminishing returns. In Proceedings of the international conference on
power aware computing and systems, pages 1–8, 2010.

J. Leung, L. Kelly, and J. Anderson. Handbook of scheduling: algorithms,
models, and performance analysis. CRC Press, Inc., Boca Raton, FL, USA,
2004.

107

http://jupyter.org
https://github.com/akopytov/sysbench

R. Malhotra and P. Jain. Study and comparison of various cloud simulators
available in the cloud computing. International Journal of Advanced Re-
search in Computer Science and Software Engineering, 3(9):347–350, 2013.

K. Malladi, F. Nothaft, K. Periyathambi, B. Lee, C. Kozyrakis, and
M. Horowitz. Towards energy-proportional datacenter memory with mobile
DRAM. In 39th Annual International Symposium on Computer Architec-
ture, pages 37–48, 2012.

S. Marsland. Machine learning: an algorithmic perspective. Chapman and
Hall/CRC, London, UK, 2011.

W. McKinney. pandas: a foundational python library for data analysis and
statistics. Python for High Performance and Scientific Computing, pages
1–9, 2011.

K. Millman and M. Aivazis. Python for scientists and engineers. Computing
in Science Engineering, 13(2):9–12, 2011.

A. Mishra and A. Tripathi. Energy efficient voltage scheduling for multi-
core processors with software controlled dynamic voltage scaling. Applied
Mathematical Modelling, 38(14):3456–3466, 2014.

B. Moreno, A. López, and M. García-Álvarez. The electricity prices in the
european union. the role of renewable energies and regulatory electric market
reforms. Energy, 48(1):307 – 313, 2012.

J. Muraña, S. Iturriaga, and S. Nesmachnow. A multiobjective evolutionary
algorithm for QoS-aware planning in heterogeneous computing systems. In
XL Latin American Computing Conference, pages 1–12, 2014.

J. Muraña, S. Nesmachnow, S. Iturriaga, and A. Tchernykh. Power consump-
tion characterization of synthetic benchmarks in multicores. In High Per-
formance Computing, pages 21–37, Cham, 2018.

J. Muraña, S. Nesmachnow, F. Armenta, and A. Tchernykh. Characteriza-
tion, modeling and scheduling of power consumption of scientific comput-
ing applications in multicores. Cluster Computing, 2019. URL https://
link.springer.com/article/10.1007/s10586-018-2882-8. Online first.

108

https://link.springer.com/article/10.1007/s10586-018-2882-8
https://link.springer.com/article/10.1007/s10586-018-2882-8

S. Nesmachnow. Computación científica de alto desempeño en la Facultad
de Ingeniería, Universidad de la República. Revista de la Asociación de
Ingenieros del Uruguay, 61(1):12–15, 2010. Text in Spanish.

S. Nesmachnow and J. Muraña. Multiobjective scheduling with service levels
in heterogeneous computing systems. In VIII ALIO/EURO Workshop on
Applied Combinatorial Optimization, 2014.

S. Nesmachnow, B. Dorronsoro, J. Pecero, and P. Bouvry. Energy-aware
scheduling on multicore heterogeneous grid computing systems. Journal of
Grid Computing, 11(4):653–680, 2013.

S. Nesmachnow, C. Perfumo, and Í. Goiri. Multiobjective energy-aware data-
center planning accounting for power consumption profiles. In High Perfor-
mance Computing, volume 485, pages 128–142. 2014.

S. Nesmachnow, C. Perfumo, and I. Goiri. Holistic multiobjective planning of
datacenters powered by renewable energy. Cluster Computing, 18(4):1379–
1397, 2015.

P. Nielsen. cpuburn. https://github.com/patrickmn/cpuburn, 2012. Online;
accessed April 2019.

A. Núñez, J. Vázquez-Poletti, A. Caminero, G. Castañé, J. Carretero, and
I. Llorente. ICanCloud: A flexible and scalable cloud infrastructure simula-
tor. Journal of Grid Computing, 10(1):185–209, 2012.

T. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing, USA, 2006.

T. Oliphant. Python for scientific computing. Computing in Science Engi-
neering, 9(3):10–20, 2007.

P. Patil, R. Peng, and J. Leek. A statistical definition for reproducibility
and replicability. bioRxiv, 2016. URL https://www.biorxiv.org/content/
early/2016/07/29/066803.full.pdf. Online; accessed December 21 2018.

A. Peckov. A Machine Learning Approach to Polynomial Regression. PhD
thesis, Jozef Stefan International Postgraduate School, Ljubljana, 2012.

J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics
with NAMD. Journal of Computational Chemistry, 26(16):1781–1802, 2005.

109

https://github.com/patrickmn/cpuburn
https://www.biorxiv.org/content/early/2016/07/29/066803.full.pdf
https://www.biorxiv.org/content/early/2016/07/29/066803.full.pdf

M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2016.

H. Plesser. Reproducibility vs. replicability: A brief history of a confused
terminology. Frontiers in Neuroinformatics, 11:76, 2018.

R Core Team. R: A Language and Environment for Statistical Computing,
2018. URL https://www.R-project.org. Online; accessed December 21
2018.

M. Rashti, G. Sabin, D. Vansickle, and B. Norris. WattProf: A flexible plat-
form for fine-grained HPC power profiling. In IEEE International Confer-
ence on Cluster Computing, pages 698–705, 2015.

A. Repko. Interdisciplinary research : process and theory. SAGE Publishing,
Los Angeles, USA, 2008.

H. Rong, H. Zhang, S. Xiao, C. Li, and C. Hu. Optimizing energy consumption
for data centers. Renewable and Sustainable Energy Reviews, 58:674 – 691,
2016.

S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling
with python. In 9th Python in Science Conference, 2010.

A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet,
N. Horner, I. Azevedo, and W. Lintner. United states data center energy
usage report. Technical report, Lawrence Berkeley National Laboratory, 06
2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.
Wiley Publishing, 9th edition, 2012.

J. Sousa and L. Wolsey. A time indexed formulation of non-preemptive single
machine scheduling problems. Mathematical programming, 54(1-3):353–367,
1992.

S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for cloud
computing. In Conference on Power Aware Computing and Systems, pages
1–5, 2008.

110

https://www.R-project.org

A. Tchernykh, L. Lozano, P. Bouvry, J. Pecero, U. Schwiegelshohn, and S. Nes-
machnow. Energy-aware online scheduling: Ensuring quality of service for
IaaS clouds. In International Conference on High Performance Computing
Simulation, pages 911–918, 2014.

H. Theil. Economic forecasts and policy. Amsterdam North-Holland Publishing
Company, 1961.

E. Totoni, N. Jain, and L. Kalé. Toward runtime power management of exas-
cale networks by on/off control of links. In IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum, pages 915–
922, 2013.

J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In 39th International
Conference on Parallel Processing Workshops, pages 207–216, 2010.

Z. Zhan, X. Liu, Y. Gong, J. Zhang, H. Chung, and Y. Li. Cloud comput-
ing resource scheduling and a survey of its evolutionary approaches. ACM
Computing Surveys, 47(4):63:1–63:33, 2015.

H. Zhang and H. Hoffmann. Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques. ACM SIGARCH
Computer Architecture News, 44(2):545–559, 2016.

Y. Zhang and N. Ansari. HERO: Hierarchical energy optimization for data
center networks. IEEE Systems Journal, 9(2):406–415, 2015.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource
contention in multicore processors via scheduling. In ACM Sigplan Notices,
volume 45, pages 129–142, 2010.

111

	List of Figures
	List of Tables
	Introduction
	Energy efficiency in data centers
	Data centers and energy efficiency
	Data centers and energy context
	Toward energy efficiency in data centers

	Modeling high-end multicore servers
	Power consumption modeling
	Performance modeling
	Evaluating the quality of power consumption and performance models

	Energy-aware scheduling

	Related Work
	Power characterization and energy-aware scheduling review
	Cloud simulation tools
	Summary

	Methodology for power consumption and performance evaluation
	Energy optimization workflow
	Power characterization
	General overview
	Benchmarks for power consumption characterization
	Multicore hosts and power monitoring setup
	Design of experiments

	Processing data under reproducible/replicable research paradigm
	Reproducible and replicable research by using Jupyter Notebook and Pandas
	Extraction of useful information from raw data
	Building models using Python libraries for analysis of scientific data

	Power and performance evaluation results
	Results of executions
	Idle power consumption evaluation
	Results of single benchmark executions
	Results of combined benchmark executions

	Performance evaluation
	Energy efficiency analysis
	Concluding remarks

	Models construction and simulation results
	Power consumption models construction
	An insight of the proposed power consumption models
	EC models considering a single resource
	PC models considering two resources
	PC models considering three resources

	Performance models construction
	Schedulers evaluation
	Energy model implementation
	Simulation details
	Workloads description
	Scheduling heuristics
	Simulation results

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

