75 research outputs found

    Saliency-Informed Spatio-Temporal Vector of Locally Aggregated Descriptors and Fisher Vector for Visual Action Recognition

    Get PDF
    Feature encoding has been extensively studied for the task of visual action recognition (VAR). The recently proposed super vector-based encoding methods, such as the Vector of Locally Aggregated Descriptors (VLAD) and the Fisher Vector (FV), have significantly improved the recognition performance. Despite of the success, they still struggle with the superfluous information that presents during the training stage, which makes the methods computationally expensive when applied to a large number of extracted features. In order to address such challenge, this paper proposes a Saliency-Informed Spatio-Temporal VLAD (SST-VLAD) approach which selects the extracted features corresponding to small amount of videos in the data set by considering both the spatial and temporal video-wise saliency scores; and the same extension principle has also been applied to the FV approach. The experimental results indicate that the proposed feature encoding scheme consistently outperforms the existing ones with significantly lower computational cost

    Enhanced Gradient-Based Local Feature Descriptors by Saliency Map for Egocentric Action Recognition

    Get PDF
    Egocentric video analysis is an important tool in healthcare that serves a variety of purposes, such as memory aid systems and physical rehabilitation, and feature extraction is an indispensable process for such analysis. Local feature descriptors have been widely applied due to their simple implementation and reasonable efficiency and performance in applications. This paper proposes an enhanced spatial and temporal local feature descriptor extraction method to boost the performance of action classification. The approach allows local feature descriptors to take advantage of saliency maps, which provide insights into visual attention. The effectiveness of the proposed method was validated and evaluated by a comparative study, whose results demonstrated an improved accuracy of around 2%

    Gaze-Informed egocentric action recognition for memory aid systems

    Get PDF
    Egocentric action recognition has been intensively studied in the fields of computer vision and clinical science with applications in pervasive health-care. The majority of the existing egocentric action recognition techniques utilize the features extracted from either the entire contents or the regions of interest in video frames as the inputs of action classifiers. The former might suffer from moving backgrounds or irrelevant foregrounds usually associated with egocentric action videos, while the latter may be impaired by the mismatch between the calculated and the ground truth regions of interest. This paper proposes a new gaze-informed feature extraction approach, by which the features are extracted from the regions around the gaze points and thus representing the genuine regions of interest from a first person of view. The activity of daily life can then be classified based only on the identified regions using the extracted gaze-informed features. The proposed approach has been further applied to a memory support system for people with poor memory, such as those with Amnesia or dementia, and their carers. The experimental results demonstrate the efficacy of the proposed approach in egocentric action recognition and thus the potential of the memory support tool in health care

    Egocentric Vision-based Action Recognition: A survey

    Get PDF
    [EN] The egocentric action recognition EAR field has recently increased its popularity due to the affordable and lightweight wearable cameras available nowadays such as GoPro and similars. Therefore, the amount of egocentric data generated has increased, triggering the interest in the understanding of egocentric videos. More specifically, the recognition of actions in egocentric videos has gained popularity due to the challenge that it poses: the wild movement of the camera and the lack of context make it hard to recognise actions with a performance similar to that of third-person vision solutions. This has ignited the research interest on the field and, nowadays, many public datasets and competitions can be found in both the machine learning and the computer vision communities. In this survey, we aim to analyse the literature on egocentric vision methods and algorithms. For that, we propose a taxonomy to divide the literature into various categories with subcategories, contributing a more fine-grained classification of the available methods. We also provide a review of the zero-shot approaches used by the EAR community, a methodology that could help to transfer EAR algorithms to real-world applications. Finally, we summarise the datasets used by researchers in the literature.We gratefully acknowledge the support of the Basque Govern-ment's Department of Education for the predoctoral funding of the first author. This work has been supported by the Spanish Government under the FuturAAL-Context project (RTI2018-101045-B-C21) and by the Basque Government under the Deustek project (IT-1078-16-D)

    Re-identifying people in the crowd

    Get PDF
    Developing an automated surveillance system is of great interest for various reasons including forensic and security applications. In the case of a network of surveillance cameras with non-overlapping fields of view, person detection and tracking alone are insufficient to track a subject of interest across the network. In this case, instances of a person captured in one camera view need to be retrieved among a gallery of different people, in other camera views. This vision problem is commonly known as person re-identification (re-id). Cross-view instances of pedestrians exhibit varied levels of illumination, viewpoint, and pose variations which makes the problem very challenging. Despite recent progress towards improving accuracy, existing systems suffer from low applicability to real-world scenarios. This is mainly caused by the need for large amounts of annotated data from pairwise camera views to be available for training. Given the difficulty of obtaining such data and annotating it, this thesis aims to bring the person re-id problem a step closer to real-world deployment. In the first contribution, the single-shot protocol, where each individual is represented by a pair of images that need to be matched, is considered. Following the extensive annotation of four datasets for six attributes, an evaluation of the most widely used feature extraction schemes is conducted. The results reveal two high-performing descriptors among those evaluated, and show illumination variation to have the most impact on re-id accuracy. Motivated by the wide availability of videos from surveillance cameras and the additional visual and temporal information they provide, video-based person re-id is then investigated, and a su-pervised system is developed. This is achieved by improving and extending the best performing image-based person descriptor into three dimensions and combining it with distance metric learn-ing. The system obtained achieves state-of-the-art results on two widely used datasets. Given the cost and difficulty of obtaining labelled data from pairwise cameras in a network to train the model, an unsupervised video-based person re-id method is also developed. It is based on a set-based distance measure that leverages rank vectors to estimate the similarity scores between person tracklets. The proposed system outperforms other unsupervised methods by a large margin on two datasets while competing with deep learning methods on another large-scale dataset

    Facial Expression Analysis under Partial Occlusion: A Survey

    Full text link
    Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 02-Nov-2017

    The role of time in video understanding

    Get PDF

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary
    • …
    corecore