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Abstract

Feature encoding has been extensively studied for the task of visual action recog-
nition (VAR). The recently proposed super vector-based encoding methods, such as the
Vector of Locally Aggregated Descriptors (VLAD) and the Fisher Vector (FV), have
significantly improved the recognition performance. Despite of the success, they still
struggle with the superfluous information that presents during the training stage, which
makes the methods computationally expensive when applied to a large number of ex-
tracted features. In order to address such challenge, this paper proposes a Saliency-
Informed Spatio-Temporal VLAD (SST-VLAD) approach which selects the extracted
features corresponding to small amount of videos in the data set by considering both
the spatial and temporal video-wise saliency scores; and the same extension principle
has also been applied to the FV approach. The experimental results indicate that the
proposed feature encoding scheme consistently outperforms the existing ones with sig-
nificantly lower computational cost.

1 Introduction
Visual Action Recognition (VAR) is a growing research field applicable to application areas
including human-computer interaction [22], video [26], motion analysis [17], clinical sci-
ence [29], pervasive health-care (e.g. fall detection) [4], sports analysis, and gaming amongst
others. Vector of Local Aggregated Descriptors (VLAD) and Fisher Vector (FV) are common
feature encoding methods and their efficacy has been proven by a multitude of tasks within
the computer vision domain[2, 4, 9, 13, 20, 24, 25, 27, 28, 29]. They attain high performance
for both first-person[29] and third-person action recognition tasks[4, 9, 13, 20, 25, 27].
VLAD is usually less computationally demanding than FV, but this comes with the cost
of often being less accurate in terms of classification precision. One downside of VLAD and
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FV is they do not consider any temporal information. Additionally, neither algorithm is able
to cope with the presence of redundancy that is embedded within the training datasets.

Action recognition suffers from many of the common challenges often seen in the field of
computer vision including background clutter, diverse lighting conditions, camera motion,
and occlusion [4, 29]. In particular, the camera motion problem is particularly associated
with egocentric action recognition [29]. Even relatively small movements can result in a
significant change in the background. In extreme cases, this can result in blurred video
frames or missing a part of the action which severely impacts the ability of the existing
classification approaches.

Superfluous information embedded within the action recognition data set can degrade the
quality of the generated code-book during feature encoding. For instance, if action recogni-
tion techniques are used to detect falls and one of the training videos is thirty seconds long
while the fall lasts only two seconds, then the majority of this video is not relevant to the task
at hand. This could negatively impact the final result. In order to lessen the computational
cost, extracted features are commonly subject to a random sub-sampling strategy [7] before
VLAD or FV feature encoding is applied. However, this strategy is sub-optimal due to the
uncertainty that it introduces.

In this work, a solution is identified which handles both of the aforementioned problems.
In particular, a family of feature encoding schemes are proposed on the basis of the calcu-
lation of video-wise spatio-temporal saliency scores. The redundancy is eliminated using
such schemes by only considering the video clips with the highest saliency and then extract
features for VLAD and FV feature encoding only from these ones. Because the features are
extracted only from the more apposite videos, there are fewer initial extracted features. This
leads to very efficient feature encoding with no need to introduce any random sub-sampling.

The framework of the propsoed appraoch is outlined in Figure 1. In this approach, the
spatial saliency and temporal saliency for each video are calculated first, which are then
combined to obtain a spatio-temporal score. From this, only the most salient videos are
selected for code-book generation so that the learned dictionary is more pertinent to the key
elements of the data set and the superfluous data are generally ignored.

The main contributions of this work are: 1) proposing two families of spatio-temporal
feature encoding schemes for both first- and third-person action recognition; 2) constructing
spatio-temporal video-wise saliency scores in order to help eliminate redundancy in the data
set and to speed up the code-book generation process; 3) conducting extensive experiments
on three different data sets with five different feature extraction methods. In no case did the
standard feature encoding methods outperform the proposed saliency-based ones according
to the experimentation, which demonstrates the power of the proposed approach.

2 Related Work
Super-vector based feature encodings such as VLAD [12] and FV [21] have been widely
employed in the context of VAR tasks [7, 20, 25, 27, 29]. VLAD essentially aggregates
the residuals between feature descriptors and visual words. However, VLAD is lacking
the ability to capture the temporal information during the encoding phase, Duta et al. [8]
proposed the Spatio-Temporal VLAD (ST-VLAD) for addressing this by incorporating the
VLAD with 3-D feature positions.

There are numerous ways to extract the features for VLAD and FV encoding schemes.
Dalal and Triggs [5] proposed Histograms of Oriented Gradients (HOG) to capture the spatial
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Figure 1: A visualisation of the proposition. The most relevant videos in the data set are
selected which results in fewer extracted features thus feature encoding can be performed
with less computational cost.

or static appearance information of human actions, Duta et al. [7] introduced Histograms of
Motion Gradients (HMG) which conducts simple temporal derivative prior to the HOG pro-
cess, Laptev et al. combined HOG with optical flow (HOF) [16] to aggregate 2D optical flow
responses, Dalal et al. [6] introduced Motion Boundary Histograms (MBH) which remove
constant motion to handle camera motion by calculating horizontal and vertical derivatives
on the calculated optical flow from HOF separately (i.e. MBHx and MBHy). Zuo et al. [29]
developed gaze-informed counterparts to the aforementioned features to be employed for
recognising first-person actions.

Compared with FV, VLAD ignores the complementary high-order statistics of the ex-
tracted feature descriptors, [18] proposed high-order VLAD that works jointly with the su-
pervised dictionary learning. FV usually achieves better precision than VLAD, [19] con-
structed stacked FV with more semantic information extracted using a hierarchical structure.
However, practically, in the case when coping with large-scale visual action recognition
data sets, it is usually not affordable to use all the extracted features for code-book genera-
tion. Thus, randomly selecting a small portion of feature descriptors is a possible solution
[7]. However, random down-sampling cannot guarantee to provide a representative sample
because uncertainty is introduced during this random selection. In order to avoid this, all
generated features must be used which may result in longer experimental (including feature
encoding) time despite the more competitive performance.

Though intensive efforts have been made to enhance the performance of feature repre-
sentations, one significant challenge which is still a long way from being solved is the large
computational cost. At present, the aforementioned random down-sampling strategy is com-
monly used. In this paper, two families of extensions of VLAD and FV are proposed to
reduce the computational cost in a more deterministic fashion while guaranteeing the classi-
fication performance. More specifically, the concept of saliency is used to guide the process
of selecting the most important and discriminative videos within the data set for code-book
generation in the encoding phase.

3 Saliency-Informed Spatio-Temporal Feature Encoding
The framework of the proposed saliency-informed spatio-temporal feature encoding schemes
is visualised in Figure 2.
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Figure 2: The framework of Saliency-informed Spatio-Temporal (SST) feature encodings
for visual action recognition.

3.1 VLAD and FV: A Revisit
Generally, VLAD starts with the calculation of centroids in the feature space using k-means
clustering algorithm, which is followed by the aggregation of features using the calculated
centroids. This results in encoded features of dimension k× d, where k is the number of
centroids (i.e. visual words) and d is the dimensionality of the encoded feature vector. There-
fore, VLAD can be viewed as a simplified non-probabilistic version of FV, and thus VLAD
is practically faster but with relatively poor performance.

The code-book generation method used in VLAD [12] is k-means. Given a set of pre-
processed local featuresF = { f1, . . . , fn}where n is the number of local features (i.e. number
of videos in visual action recognition), fi with 1 ≤ i ≤ n denotes the i-th local feature. Let
C be the set of k clusters, C = {c1, . . . ,ck}, c j with 1 ≤ j ≤ k is a prototype associated with
the j-th cluster. The k-means algorithm generates the clusters via the following objective
function:

min
{ψi j ,c j}

n

∑
i=1

k

∑
j=1

ψi j‖ fi− c j‖2
2, (1)

where ψi j is a Boolean indicator variable setting to either 1 (when local descriptor fi is as-
signed to cluster j) or 0 (otherwise). In VLAD, the k-means algorithm transforms each local
feature descriptor from the feature space to code-word by performing such a hard assign-
ment.

For FV, Gaussian Mixture Models (GMM) are used to convert the local feature set to
the code-word by performing soft assignment for each local feature. Suppose L clusters are
required, denote the parameters of the GMM, uλ , by λ = {wl ,µl ,Σl ; l = 1, . . . ,L} where wl
is the mixture weight, µl is the mean vector and Σl is the covariance matrix. Then

uλ (x) =
L

∑
l=1

wlul(x), (2)

where ul is the Gaussian l.
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These approaches are sub-optimal for action recognition as they do not incorporate any
temporal information. Additionally, a certain degree of redundancy is inherent in most real-
world visual action recognition data sets. Encoding features based on this redundancy is
computationally wasteful and reduces performance. Moreover, when computing these super-
vectors, the most frequent method employed to extract features to be encoded relies on a
random down-sampling strategy. This method may not guarantee that the randomly selected
features are capable of providing discriminative and continuous motion clues for later stages
of the pipeline, i.e. feature encoding and classification.

3.2 Saliency-Informed ST-VLAD and ST-FV
In this section, the proposed approach is introduced which aims to address the aforemen-
tioned redundancy and uncertainty by specifically determining the key videos from which to
extract features for code-book generation.

3.2.1 Saliency-Informed Key Video Determination

The proposed approach utilises spatio-temporal video-wise saliency maps to inform and
guide the process of code-book generation during feature encoding. To generate the saliency
maps, the image signature [11] is used due to its computational efficiency. Motion informa-
tion is also captured via optical flow (e.g. Lukas-Kanade [3], Horn-Schunck [10]) or a simple
temporal derivative. The optical flow calculation returns complex-valued vectors whereby
the real and imaginary components can be considered separately in determining the temporal
saliency score.

For a video, V , consisting of N frames {F1, . . . ,FN} the temporal derivative is computed
as

F ′ = Fi−Fi−1, (3)

where i = 2, . . . ,N.
To obtain the saliency maps, the videos are firstly converted from the RGB space to LAB

space. Given a video in LAB space, V , consisting of N frames, {F1, . . . ,FN}, across the L,
A, and B colour channels, the video signature V is calculated:

V =
N

∑
n=1

W

∑
w=1

H

∑
h=1

κg ∗

[
1
3 ∑

c∈{L,A,B}
IDCT(sign(DCT(Fc

i )))

]◦2 , (4)

where [·]◦
2

denotes the Hadamard power of order two, κg is the Gaussian kernel, DCT(·)
is the Discrete Cosine Transform, IDCT(·) is its inverse form, and sign(·) maps positive
numbers to +1 and negative numbers to −1.

The motion information is also incorporated in a similar way. the motion information V ′

of a video V is obtained by applying either Eq. (3) or optical flow calculation methods such
as Lucas-Kanade or Horn-Schunck. V ′ consists of N − 1 motion images, {F ′1, . . . ,F ′N−1},
across the L, A, and B colour channels. The motion signatureM is proposed:

M=
N−1

∑
n=1

W

∑
w=1

H

∑
h=1

κg ∗

[
1
3 ∑

c∈{L,A,B}
IDCT(sign(DCT(F ′ci )))

]◦2 . (5)
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Finally, a weight, α is introduced, to give the spatial saliency (i.e. video signature)
more importance than the temporal saliency (i.e. motion signature) in calculating the overall
saliency score, S:

S = αV+(1−α)M. (6)

In the experiments, it is empirically determined that α = 0.75 provides optimal perfor-
mance. Once a saliency score for each video has been calculated, only the videos within the
top 30% are considered for feature encoding.

4 Experiments

4.1 Data Sets and Settings
Three visual action recognition data sets were chosen for evaluating the proposed SST-
VLAD and SST-FV families of feature encoding schemes. (a) UNN-GazeEAR data set
[29] is an egocentric and interactive action recognition data set that consists of five action
categories, each of which includes ten video clips and each of which is with different time
durations ranging from 2 to 11 seconds. (b) UNN-6 data sets1 [4] which comprises of two
sub-sets: colour (namely UNN6_Color) and infra-red (i.e. UNN6_IR). These data sets are
third-person fall and similar daily activity action data sets that contain six classes of human
actions with six videos per class. For comparison purposes, the two categories of local fea-
tures are adopted, including (HOG, HMG, HOF, MBHx, and MBHy), and their gaze-region-
of-interest based counterparts. All the experiments were carried out using a HP workstation
with Intel R© Xeon

TM
E5-1630 v4 CPU @ 3.70 GHz with 64 GB RAMs.

!"#
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Figure 3: Sample frames from video sequences of (a) UNN-GazeEAR with GROI prepro-
cessed, (b) UNN-6 Colour, and (c) UNN-6 Infrared data sets.

In the feature extraction phase, the block size is set to 4-by-4 spatial pixels by 6 frames
and the frame sampling rate (FSR) is valued as 6 frames. Then, in the pre-processing
stage, the extracted local features are pre-processed by RootSIFT [1] normalisation tech-
nique which is followed by reducing the features to 72 dimensions using PCA. In the post-
processing stage, the power normalisation plus `2 normalisation (PN`2) is used to further
normalisation the encoded features, in which the power parameter is set to 0.5. The number

1http://computing.northumbria.ac.uk/staff/FGPD3/unn6-2017/
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UNN-GazeEAR GROI-HOG GROI-HMG GROI-HOF GROI-MBHx GROI-MBHy
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

VLAD 90.36 91.58 94.10 91.16 90.12 91.72 91.24 89.88 92.08 90.40 91.84 91.46 89.50 92.16 93.48

SST-VLAD

TD 90.40 92.80 94.92 92.14 91.12 93.20 91.32 90.48 92.20 90.98 92.62 92.28 90.84 92.98 94.30
LK-R 92.14 92.38 94.12 91.90 92.02 92.74 92.08 90.20 92.24 91.26 91.98 91.88 90.60 94.22 94.02
LK-I 92.04 93.04 95.30 91.78 92.44 92.84 91.38 90.30 93.30 90.46 92.26 93.40 91.74 93.44 94.80
HS-R 92.10 92.30 94.68 91.86 91.86 92.46 93.44 90.06 92.38 90.96 93.92 92.06 89.72 94.72 94.06
HS-I 92.72 92.56 94.48 92.32 92.48 93.00 91.58 92.70 93.00 92.28 93.12 92.72 90.40 92.48 94.62

FV 93.30 94.44 96.46 91.00 92.78 94.96 90.20 93.06 91.94 88.10 88.74 91.18 88.24 90.46 91.86

SST-FV

TD 94.52 94.94 96.88 92.36 94.78 96.40 90.74 93.08 92.78 90.24 89.64 92.42 92.44 92.70 93.06
LK-R 94.04 94.74 96.68 91.06 95.10 95.28 90.78 94.98 93.26 89.70 92.18 92.06 90.56 91.40 92.74
LK-I 93.50 95.24 96.76 91.20 93.68 95.90 92.00 93.54 92.70 89.88 90.94 92.12 90.38 92.72 93.66
HS-R 93.88 95.12 96.50 92.70 94.12 95.84 91.84 93.20 92.72 90.24 89.00 92.12 88.98 91.84 93.14
HS-I 94.48 95.44 96.66 92.44 94.84 95.80 92.62 94.16 93.64 90.78 91.94 93.76 90.28 90.94 93.38

10 30 50 70 90 110 130
Mean Encoding Time (s)

8 

16

32

#
of

vi
su

al
wo

rd
s VLAD

SST-VLAD (TD)

SST-VLAD (LKR)

SST-VLAD (LKI)

SST-VLAD (HSR)

SST-VLAD (HSI)

FV

SST-FV (TD)

SST-FV (LKR)

SST-FV (LKI)

SST-FV (HSR)

SST-FV (HSI)

Table 1: UNN-GazeEAR - Accuracy generated by varying the number of visual words in
different feature encoding schemes. The best performance is marked in green while the
worst performance is marked in red. The grey region demonstrates the difference between
the standard FV and VLAD encoding and the worst results obtained by the proposed method.

of nodes in the hidden layer of the neural network is 20. Due to more competitive perfor-
mance, the Horn-Schunck method is particularly adopted in HOF, MBHx, and MBHy for
optical flow calculation in the feature extraction stage [25].

For VLAD, the feature encoding time reported here includes the time to perform the
k-means algorithm and the hard assignment. For Fisher vectors, it encompasses the GMM
clustering and soft assignment. The performance of the proposed encoding schemes was
evaluated with different dictionary sizes of 8, 16, and 32 to ensure that the findings are
consistent. The relatively small sizes of the data sets used mean they are not suitable for
evaluation on longer dictionaries.

The accuracy reported throughout this section is generated by performing each experi-
ment one hundred times and then obtaining the mean of these experiments. Overall, with
five different feature extraction approaches, five methods to calculate temporal saliency and
three different dictionary sizes, 150 results are presented for each data set to thoroughly test
the proposed method and demonstrate its efficacy.

4.2 The Effect of Various Motion Calculation based Key Videos
Determination

The quantitative results are presented in Tables 1, 2 and 3. For intuitive comparison between
the different methods of calculating temporal saliency, the lowest score (red) and highest
score (green) are highlighted for each dictionary size and feature extraction method. It can
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UNN6: Color Set HOG HMG HOF MBHx MBHy
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

VLAD 88.39 90.03 90.78 88.03 89.00 87.83 82.50 86.11 88.56 89.42 90.53 89.11 88.39 85.75 87.81

SST-VLAD

TD 93.97 93.28 92.39 88.89 89.92 89.89 86.39 88.53 89.78 91.31 90.69 90.58 89.28 86.81 88.33
LK-R 93.58 93.00 91.92 89.06 89.53 88.94 83.64 87.56 88.89 90.22 91.42 90.03 88.75 85.97 88.75
LK-I 93.83 92.08 93.11 88.58 89.08 89.36 83.97 87.42 88.94 90.61 90.75 90.47 88.64 87.14 88.42
HS-R 93.31 92.89 93.11 89.86 89.22 89.42 83.94 87.94 89.28 90.44 90.56 90.25 88.56 87.06 88.53
HS-I 93.36 91.00 93.00 88.47 89.61 89.33 84.36 87.78 89.33 90.19 90.78 90.03 88.75 88.06 88.69

FV 91.39 88.92 90.78 91.56 91.81 92.19 83.56 90.19 89.22 92.72 91.67 91.67 92.64 92.11 90.78

SST-FV

TD 92.00 91.75 92.83 93.11 92.42 92.36 86.83 91.33 90.47 92.81 92.56 92.64 92.94 92.92 92.75
LK-R 93.31 93.92 92.11 93.36 93.50 92.97 87.14 91.67 90.47 92.92 92.64 92.61 92.97 92.64 92.31
LK-I 93.14 92.89 93.61 92.39 92.50 92.83 85.94 91.31 89.92 93.42 92.39 91.81 92.81 92.19 92.08
HS-R 93.19 93.53 93.14 92.67 92.53 92.53 87.64 90.56 91.92 92.78 92.75 92.50 93.11 92.75 92.44
HS-I 92.78 93.53 93.19 92.25 92.61 93.14 89.58 91.19 91.64 92.81 91.92 91.69 92.97 92.83 91.94

10 30 50 70 90 110 130
Mean Encoding Time (s)

8 

16

32

#
of

vi
su

al
wo

rd
s VLAD

SST-VLAD (TD)

SST-VLAD (LKR)

SST-VLAD (LKI)

SST-VLAD (HSR)

SST-VLAD (HSI)

FV

SST-FV (TD)

SST-FV (LKR)

SST-FV (LKI)

SST-FV (HSR)

SST-FV (HSI)

Table 2: UNN6_Color Set - Accuracy generated by varying the number of visual words
in different feature encoding schemes. The best performance is marked in green while the
worst performance is marked in red. The grey region demonstrates the difference between
the standard FV and VLAD encoding and the worst results obtained by the proposed method.

be seen clearly that in all cases, the ordinary VLAD and FV have the weakest performance
whilst no temporal saliency calculation method stands out as definitively outperforming the
others.

The left and centre figures below each table show the mean accuracy of each of the six
encoding methods across all different feature extraction approaches. The rightmost figure
below each table shows the mean encoding time for each method across all feature extraction
techniques. The eliminated redundancy in the data set significantly improves the efficiency
of the code-book generation. In most cases, the process is approximately twice as fast as the
standard VLAD and FV.

The averaged results across all different feature extraction techniques and dictionary
lengths are presented in Table 4 to facilitate the comparison. No temporal saliency cal-
culation technique stands out by a significant margin but the imaginary component of Horn-
Schunck performs strongest in three of the six tasks and has competitive performance in the
remaining three.

5 Conclusion
Two potential challenges in visual action recognition have been identified in this paper which
arise when using a super-vector based feature encoding approach: 1) redundancy embedded
in the data set can weaken categorisation precision; 2) the large number of extracted features
result in inefficient feature embedding from the perspectives of space and time complexi-
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UNN6: IR Set HOG HMG HOF MBHx MBHy
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

VLAD 97.97 98.69 99.53 92.11 94.36 94.86 94.39 94.14 95.67 95.69 96.17 95.22 93.44 93.81 94.69

SST-VLAD

TD 99.31 99.00 99.83 94.78 94.86 96.19 96.56 95.42 96.56 96.97 97.39 95.72 94.89 94.22 96.19
LK-R 98.78 99.50 99.94 93.00 95.00 97.06 94.58 95.03 96.00 96.19 97.17 96.06 95.31 94.64 95.47
LK-I 98.81 99.75 99.83 92.44 97.53 96.44 96.58 95.47 95.86 97.19 97.42 95.47 93.58 94.83 95.81
HS-R 98.28 99.69 99.64 94.08 95.72 95.81 94.61 94.78 95.92 95.75 97.11 97.78 94.72 94.31 96.03
HS-I 98.92 99.64 99.83 93.08 96.17 97.08 95.50 95.67 96.78 97.28 97.81 97.08 94.31 94.83 95.83

FV 99.03 99.69 99.78 98.28 98.08 95.03 95.78 96.00 96.14 97.89 96.33 96.42 94.75 95.00 96.28

SST-FV

TD 99.69 99.94 99.89 98.56 99.03 96.28 96.75 96.53 97.31 99.00 97.94 98.47 96.14 95.53 97.00
LK-R 99.86 99.72 100.00 98.81 98.39 96.53 97.17 97.03 97.00 97.92 96.47 97.53 95.19 98.03 97.06
LK-I 99.92 99.78 100.00 98.47 98.28 97.89 96.61 97.31 96.44 98.08 98.47 97.11 96.22 96.11 97.50
HS-R 99.75 99.97 99.86 98.64 98.86 97.14 98.42 96.92 97.17 98.61 97.56 97.03 96.61 96.92 97.47
HS-I 99.78 99.92 99.86 98.64 98.75 96.22 96.47 97.00 96.31 99.19 97.53 96.81 95.53 96.03 97.72

10 30 50 70 90 110 130
Mean Encoding Time (s)

8 

16

32

#
of

vi
su

al
wo

rd
s VLAD

SST-VLAD (TD)

SST-VLAD (LKR)

SST-VLAD (LKI)

SST-VLAD (HSR)

SST-VLAD (HSI)

FV

SST-FV (TD)

SST-FV (LKR)

SST-FV (LKI)

SST-FV (HSR)

SST-FV (HSI)

Table 3: UNN6_IR Set - Accuracy generated by varying the number of visual words in
different feature encoding schemes. The best performance is marked in green while the
worst performance is marked in red. The grey region demonstrates the difference between
the standard FV and VLAD encoding and the worst results obtained by the proposed method.

ties. An salicency-based approach has therefore been proposed in this paper such that only
the most relevant videos via video-wise saliency are sampled in order to solve both of these
problems. The experiments demonstrated that video frames can be discriminated based upon
their spatio-temporal saliency score for first- and third-person action recognition scenarios,
which can significantly boost the performance of VLAD and FV whilst simultaneously mak-
ing the process considerably more efficient. In particular, it has been proven that focusing
primarily on videos which are sparsely packed with relevant information consistently leads
to better categorisation accuracy.

There is a comprehensive amount of future work in the form of extensions of these initial
proposal and experiments. The work can be further evaluated by applying the proposed

Overall Accuracy TD LK-R LK-I HS-R HS-I

SST-VLAD
UNN-GazeEAR 92.17 92.25 92.57 92.44 92.70
UNN6_Color 90.00 89.42 89.49 89.62 89.52
UNN6_IR 96.53 96.25 96.47 96.28 96.65

SST-FV
UNN-GazeEAR 93.13 92.97 92.95 92.75 93.41
UNN6_Color 91.98 92.30 91.95 92.27 92.27
UNN6_IR 97.87 97.78 97.88 98.06 97.72

Table 4: Mean results of different methods of calculating temporal saliency across all differ-
ent feature extraction techniques and code-book sizes on all the data sets employed in this
work. Bold results indicate highest performance on a particular data set.
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framework to more challenging, larger scale data sets such as UCF50 [23], UCF101 [14]
and HMDB51 [15]. Intuitively, decreasing the frame sampling rate (leads to more dense
video representations) will improve performance, though it will increase the time taken for
code-book generation. It is therefore interesting to explore using a spatio-temporal saliency
sliding window to extract the key segments of a video as a method to dispose of superfluous
data.
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