

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Price, Will

Title:
The role of time in video understanding

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

The Role of Time in Video Understanding

By

WILL PRICE

Department of Computer Science
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

OCTOBER 2021

Word count: 68,583

ABSTRACT

T ime plays an integral role in video understanding, from disambiguating gestures like
“swipe left” from “swipe right” to being the dimension over which activity unfolds. It is thus
of great importance to leverage information across time in an effective manner to build

successful systems for video understanding. By exploring time from three different perspectives,
this thesis sheds light on which parts of video are informative, how label symmetries can be used
to reduce the need for so much training data, and how activities can be explicitly modeled in the
representation of video.

Whilst symmetries in data have been well exploited for data augmentation purposes, the
relationships among the labels used to supervise models have seen less attention. Both temporal
and spatial relationships between fine-grained action labels are explored for the purposes of data
augmentation and zero-shot learning.

The dominant approach for applying deep learning methods to video for recognition has been
to sample a sequence of frames at regular intervals as input. However, not all frames are made
equal; some contain less information than others or are redundant to frames already sampled.
This thesis presents a method used to quantify the importance of frames from the perspective of
a trained model.

A variety of models have been proposed for video recognition that model temporal rela-
tionships in different ways, but direct comparison has often been difficult due to differences
in evaluation protocol. A benchmark study of these common models on the EPIC-KITCHENS
dataset under a common evaluation protocol is presented to assess the relative merits of each
one.

One of the challenges faced in the video understanding community is the difficulty of scaling
models up to longer video. A novel representation of video is proposed that explicitly models
observed activities within a video up to a point in time to enable efficient processing of subsequent
video. Additionally, a self-supervised pre-training procedure is introduced to bootstrap the model
from long unlabelled videos.

i

ACKNOWLEDGEMENTS

For mum and dad.

This thesis would not have been possible without the wonderful support of my adviser
Professor Dima Damen. Dima’s encouragement and support has been instrumental in the
completion of this work. Thank you Dima for believing in me when I struggled to. I’ll miss

our interesting discussions on research.

I’m very grateful to all the lovely people in the VILab who have made my time there an enjoyable
one. In particular, I’d like to thank Mike, Davide, and Hazel for being wonderful friends and lab
mates who supported me throughout this endeavour. Without you three it would have been a
much lonelier journey. Thank you Jonny for your great support when we were both looking for
jobs together. I’m sure the practice we gave one another propelled us into positions we might not
have otherwise got! Thank you Sasha for showing me that there was more to life than work.

And to my family, thank you for all your support in its many forms. From putting up with my
moaning to my many enjoyable respites in the country to financial support. The stable base
you’ve provided with me in life has enabled me to reach far further than would have otherwise
been possible. Thank you for everything.

iii

LIST OF PUBLICATIONS

Some parts of the work presented in this thesis have been published in the following papers and

preprints:

i) Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,

Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael

Wray. Scaling Egocentric Vision: The EPIC-Kitchens Dataset. In European Conference

on Computer Vision (ECCV) 2018;

ii) Will Price, Dima Damen. Retro-Actions: Learning ‘Close’ by Time-reversing ‘Open’
Videos. In International Conference on Computer Vision Workshop (ICCVW) 2018;

iii) Will Price, Dima Damen. An Evaluation of Action Recognition Models on EPIC-
Kitchens. In arXiv 2019;

iv) Will Price, Dima Damen. Play Fair: Frame Contributions in Video Models. In Asian

Conference on Computer Vision (ACCV) 2020;

v) Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,

Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael

Wray. The EPIC-Kitchens Dataset: Collection, Challenges and Baselines. In IEEE

Transactions on Pattern Analysis and Machine Learning (TPAMI) 2020;

vi) Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kaza-

kos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael Wray.

Rescaling Egocentric Vision. In The International Journal of Computer Vision (IJCV) 2021

v

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: .. DATE: ..

vii

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xi

List of Abbreviations xv

List of Symbols xxi

1 Introduction 1
1.1 Thesis overview . 3

2 Background 5
2.1 Video Understanding Datasets . 5

2.1.1 A brief history of datasets for video action recognition 5

2.1.2 Third-person action video datasets . 10

2.1.3 First-person action video datasets . 13

2.2 Video Understanding Models . 19

2.2.1 A very brief history of models for video action recognition 19

2.2.2 Input modalities . 22

2.2.3 Before deep learning . 25

2.2.4 2D CNNs . 27

2.2.5 3D CNNs . 32

2.2.6 Two-stream networks . 37

2.2.7 Feature flow . 42

2.2.8 Factorised spatio-temporal modelling . 44

2.2.9 Attention and Transformers . 49

2.2.10 Long-term temporal modelling . 51

2.2.11 Higher-level modelling: objects and actors . 54

2.2.12 Efficient video understanding . 56

2.3 Time in video understanding . 56

2.3.1 The role of datasets in temporal modelling 57

2.3.2 Time as a training signal . 59

2.4 Works related to video unweaving . 63

2.5 Model analysis . 67

2.5.1 Instance-centric understanding: Attribution 68

viii

TABLE OF CONTENTS

2.5.2 Network-centric understanding . 80

2.6 Conclusion . 81

3 Comparing models for action recognition on EPIC-KITCHENS 83
3.1 Models . 83

3.2 Experiments on EPIC-KITCHENS-55 . 84

3.2.1 Experimental details . 85

3.2.2 Results . 86

3.3 Experiments on EPIC-KITCHENS-100 . 91

3.3.1 Experimental details . 92

3.3.2 Results . 92

3.4 Conclusion . 96

4 Label-altering transforms 97
4.1 Label-altering video transforms . 99

4.2 Experimental details . 103

4.3 Time reversal perception study . 103

4.3.1 A human’s perspective . 103

4.3.2 A model’s perspective . 107

4.4 Horizontal-flipping model perception study . 108

4.5 Applications of label-altering transforms . 110

4.5.1 Zero-shot learning . 111

4.5.2 Data augmentation . 116

4.6 Inferring class transforms from model responses . 117

4.7 Data loading issue . 122

4.8 Conclusion . 124

5 Attributing frames in video recognition 127
5.1 Element attribution and the Shapley value . 129

5.2 Supporting variable-length sequences . 133

5.3 A tractable approach for computing ESVs . 135

5.4 Experiments . 138

5.4.1 Experimental setup . 138

5.4.2 Validating ESVs . 140

5.4.3 Understanding ESVs . 144

5.4.4 ESV approximation evaluation . 152

5.4.5 Computational cost . 153

5.4.6 Exploring ESVs . 153

5.5 Conclusion . 156

ix

TABLE OF CONTENTS

6 Unweaving video 159
6.1 Unweaving stories . 161

6.1.1 Problem description . 161

6.1.2 Thread bank . 162

6.1.3 Neural controller . 163

6.1.4 Training . 164

6.2 Obtaining stories . 165

6.2.1 Synthetic stories . 166

6.2.2 Activity-story annotation . 167

6.3 Experiments . 170

6.3.1 Baselines . 170

6.3.2 Metrics . 171

6.3.3 Experimental details . 174

6.3.4 Results . 175

6.3.5 Ablation studies . 180

6.4 Conclusion . 181

7 Conclusion 185

A Additional material regarding label-altering transforms 189

B Supporting proofs for the element Shapley value 191
B.1 Shapley value expectation forms . 191

B.1.1 Single expectation form . 191

B.1.2 Conditional expectation form . 192

B.2 Recursive definition of variable-length input model 193

B.3 Linearity of Shapley values . 195

Glossary 199

Bibliography 201

x

LIST OF TABLES

TABLE Page

2.1 Action recognition dataset statistics . 8

2.2 Comparison of different attribution methods . 70

3.1 Comparison of model complexity . 85

3.2 EPIC-KITCHENS-55 model performance comparison 86

3.3 Effect of action prior on action prediction task in EPIC-KITCHENS-55 91

3.4 EPIC-KITCHENS-100 model performance comparison 93

3.5 Analysis of the effects of different pretraining for EPIC-KITCHENS-100 using TSM. 95

4.1 Label-altering transform class-category counts for different video transforms 102

4.2 Number of novel-generating classes and examples for the subsets of Something-

Something and Jester . 111

4.3 Results of zero-shot learning using label-altering transform-generated examples . . . 112

4.4 Results of using Label-altering transform for data-augmentation 117

4.5 Comparison of top-1 accuracy on Something-Something data-augmentation experi-

ments when training with input data laid out in the TCHW or CTHW format 123

4.6 Comparison of top-1 accuracy on Something-Something zero-shot experiments when

training with input data laid out in the TCHW or CTHW format 123

5.1 Runtime analysis of computing exact and approximate element Shapley values 155

6.1 EPIC-KITCHENS activity-story dataset statistics . 170

6.2 Quantitative evaluation of UnweaveNet on the EPIC-KITCHENS activity-story test set176

6.3 UnweaveNet abalation studies . 180
LIST OF FIGURES

FIGURE Page

2.1 A sample of frames taken from different kitchens in the EPIC-KITCHENS dataset . 14

2.2 EPIC-KITCHENS annotation pipeline . 18

2.3 Different input modalities for models for action recognition 22

2.4 Overview of dense trajectory feature descriptor formation 26

2.5 Temporal segment network operation . 28

2.6 Temporal relational network operation . 31

xi

LIST OF FIGURES

3.1 EPIC-KITCHENS-55 fusion model confusion on top-20 most frequent classes 88

3.2 Examples demonstrating the prediction differences between TRN, TSM and TSN on

videos from EPIC-KITCHENS-55 . 90

3.3 Performance of M-TRN and TSM on the seen-kitchens test-set of EPIC-KITCHENS-55

when varying number of frames . 91

3.4 EPIC-KITCHENS test-of-time results . 94

3.5 Data scaling effects on task performance of EPIC-KITCHENS-100 94

3.6 EPIC-KITCHENS-100 environmental robustness results. 95

4.1 The label-altering behaviour of time reversal (open vs. close) 97

4.2 The different effects of time reversal on action classes 98

4.3 Demonstration of the additional effects that can be had by combining label-altering

transforms . 102

4.4 UI used to perform the human perception study of time-reversed videos 104

4.5 Time-reversed video human perception study results (Jester) 105

4.6 Time-reversed video human perception study results (Something-Something) 106

4.7 Time-reversed video model perception study . 108

4.8 Appearance of right and left handed (counter-)clockwise hand turns 109

4.9 Horizontally-flipped video model perception study . 110

4.10 Confusion between novel-generating and zero-shot classes from models trained with

supervision from label-altering transform for zero-shot recognition 114

4.11 Qualitative results from a model trained for zero-shot learning using LAT supervision 115

4.12 Examples of the Γ and Ω matrices used in the class-transform discovery process . . . 118

4.13 Evaluation of discovered class-transforms (confusion matrices) 120

4.14 Study on the robustness of hyperparameters in the class transform discovery process 121

4.15 Hyperparameter search for λ and α using simple validation class-transform 122

4.16 Effect of different video data layouts on the input to a TRN backbone 123

5.1 An example demonstrating that not all frames are equally valuable for recognising

actions. 127

5.2 An overview of element attribution using the element Shapley value 128

5.3 The impact of feature redundancy on marginal contributions 131

5.4 TRN and TSN validation accuracy by number of frames input to the model 139

5.5 The effects on model performance when removing frames in order of their element

Shapley values vs. alternate frame removal methods . 140

5.6 A comparison of element attribution methods on example sequences 142

5.7 Pearson correlation between attribution methods . 143

5.8 The effects on model performance when removing frames in order of their attribution

values produced by the element Shapley value, Grad-CAM, and Integrated Gradients 144

xii

LIST OF FIGURES

5.9 The percentage of supporting frames for correctly/incorrectly classified examples . . . 145

5.10 The percentage of examples where the frame, by its position in the sequence, is the

most supporting/distracting . 145

5.11 Comparing the percentage of videos where φc
i >φc

j . 146

5.12 Comparing the percentage of videos where φc
i > φc

j on a per-class basis where the

models value frames from the same position similarly 148

5.13 Comparing the percentage of videos where φc
i > φc

j on a per-class basis where the

models value frames from the same position differently. 149

5.14 The distribution of marginal contributions at each scale for TRN and TSN 150

5.15 Demonstration that increasing the number of frames fed to the model decreases the

percentage of supporting frames . 150

5.16 Element Shapley value temporal stability analysis . 151

5.17 Qualitative examples of class-contrastive element Shapley values 152

5.18 Quantitative evaluation of the approximation of element Shapley values on a TRN

model. 154

5.19 Qualitative example of approximated element Shapley values computed for all frames

in a long video . 155

5.20 Demonstration of the interactive element Shapley value dashboard on the Something-

something dataset . 156

5.21 Demonstration of the interactive element Shapley value dashboard on the EPIC-

KITCHENS dataset . 157

6.1 Example storyline depicting the switches between activities during a morning break-

fast routine . 159

6.2 Comparison between unweaving, event segmentation, and unsupervised action seg-

mentation . 160

6.3 UnweaveNet architecture overview . 163

6.4 Decision decision scenarios faced by UnweaveNet during the unweaving process . . . 165

6.5 The synthetic story construction process . 166

6.6 Synthetic story example . 167

6.7 Story Unweaving annotation tool (pre-interaction) . 168

6.8 Story Unweaving annotation tool (post-interaction) . 168

6.9 Activity-story example . 169

6.10 Qualitative examples of UnweaveNet’s ability to unweave stories 177

6.11 Teacher-forcing accuracy of UnweaveNet compared to baselines 177

6.12 Additional qualitative examples of UnweaveNet’s ability to unweave stories 178

6.13 Qualitative example of UnweaveNet’s capabilities in unweaving a longer video 179

6.14 Qualitative examples demonstrating failure modes of UnweaveNet 179

6.15 Performance on each type of decision scenario as the scenario loss weights are varied 181

xiii

LIST OF FIGURES

A.1 Time-reversed video model perception study on Something-Something (extended) . . 189

xiv

LIST OF ABBREVIATIONS

2SCNN Two-stream CNN.

ABM Approximated Bilinear Module.

ACRN Actor-Centric Relational Network.

AMT Amazon Mechanical Turk.

AoT Arrow of Time.

bLVNet Big Little Video Network.

BN Batch Normalisation.

C3D Convolutional 3D.

CNN Convolutional Neural Network.

CT Class Transform.

DPC Dense Predictive Coding.

DT Dense Trajectories.

EBP Excitation Backprop.

ECO Efficient Convolutional Network.

EK EPIC-KITCHENS.

EK100 EPIC-KITCHENS-100.

EK55 EPIC-KITCHENS-55.

ESV Element Shapley value.

FSTCN Factorized Spatio-Temporal Convolutional Network.

FLOPS FLoating point Operations Per Second.

FN False negatives.

FP False positives.

xv

LIST OF ABBREVIATIONS

fps Frames per Second.

GAP Global Average Pooling.

GPU Graphical Processing Unit.

Grad-CAM Gradient Class Activation Mapping.

GRU Gated Recurrent Unit.

GSN Gate-Shift Network.

GTEA Georgia Tech Egocentric Activities.

HF Horizontal Flip.

HMDB-51 Human Movie Database 51.

HMM Hidden Markov Model.

HOF Histogram of Optical Flow.

HOG Histogram of Oriented Gradients.

HOG3D Histogram of Oriented Gradients 3D.

I3D Inflated 3D Convolutional Network.

iDT Improved Dense Trajectories.

IG Integrated Gradients.

IoU Intersection of Union.

kNN k Nearest Neighbours.

LAD Least Absolute Deviance.

LAT Label-Altering Transform.

LGSS Local-to-Global Scene Segmentation.

LPT Label-Preserving Transform.

LR Learning rate.

LRP Layer-wise Relevance Propagation.

xvi

LIST OF ABBREVIATIONS

LSTM Long Short Term Memory.

LT Label Transform.

M-TRN Multi-scale Temporal Relational Network.

mAP mean Average Precision.

MBH Motion-Boundary Histogram.

MLP Multi-layer Perceptron.

MS Many-Shot.

NG Novel-Generating.

NLP Natural Language Processing.

ORN Object-Relational Network.

P3D Pseudo-3D.

PoS Part of Speech.

R(2+1)D R(2+1)D.

RANSAC RANdom SAmple Consensus.

ReLU Rectified Linear Unit.

RGB Red Green Blue (Colour model).

RGB-diff Difference between RGB frames.

RI Rand Index.

RISE Random Input Sampling for Explanation.

RNN Recurrent Neural Network.

ROAR RemOve And Retrain.

RoI Region of Interest.

S3D Separable 3D.

SGD Stochastic Gradient Descent.

xvii

LIST OF ABBREVIATIONS

SIFT Scale-Invariant Feature Transform.

SSAN Separable Self-Attention Network.

STIN Spatio-Temporal Interaction Network.

STIP Space-Time Interest Points.

STM SpatioTemporal and Motion Module.

SURF Speeded Up Robust Feature.

SVM Support Vector Machine.

TADN Time-Aligned DenseNet.

TAM Temporal Aggregation Module.

TDN Temporal Difference Network.

TEINet Temporal Enhancement-and-Interaction Network.

TFA Teacher-Forcing Accuracy.

TGM Temporal Gaussian Mixture.

TIN Temporal Interlacing Network.

TN True negatives.

TP True positives.

TPN Temporal Pyramid Network.

TR Time Reversal.

TRN Temporal Relational Network.

TSM Temporal Shift Module.

TSN Temporal Segment Network.

TV-L1 Total-Variation-L1.

UCF-101 UCF-101.

UI User Interface.

ViT Vision Transformer.

xviii

LIST OF ABBREVIATIONS

VLAD Vector of Locally Aggregated Descriptors.

VLOG Video blog.

VTN Video Transformer Network.

X3D Expand 3D.

ZS Zero-Shot.

xix

LIST OF SYMBOLS

LABEL-ALTERING TRANSFORMS (CHAPTER 4)

Notation Description

Y The set of classes in a dataset.
YI ⊆Y The set of invariant classes in the dataset.
YE ⊆Y The set of equivariant classes in the dataset.
YN ⊆Y The set of novel-generating class in the dataset.
y ∈Y A class in the set of dataset classes.
V A set of videos.
Vy ⊆V The set of videos labelled with class y.
V zs

y The set of videos labelled with class y that are generated from a label-altering transform T.
V aug

y ⊇VY The set of videos labelled with class y that come from V or are generated from a label-
altering transform T.

V̂y ⊇VY The set of videos labelled with class y that come from V that were correctly classified by f̂ .
v ∈V A video from the set of videos.
f A oracle video labelling function that takes a video and produces it’s true label.
f̂ A model trained for classification, to approximate f .
T A video transform mapping from one video to another.
TLP A label-preserving video transform.
TLA A label-altering video transform.
TY A class transform, which describes how the label of a video changes when a corresponding

video transform T is applied.
T̂Y Automatically extracted class-transform from a model’s response .
Λ(y) ∈ [0,1] Recall of class y.
Γ(y, y′) : [0,1] The number of correctly classified examples of y that were classified as y′ when T was

applied.
Ω(y, y′) : [0,1] A symmetric version of Γ.
λ Recall threshold for extracting an invariant class mapping.
α Recall threshold for extracting an equivariant class mapping.

xxi

LIST OF SYMBOLS

ATTRIBUTING FRAMES IN VIDEO RECOGNITION (CHAPTER 5)

Notation Description

X = (xi)n
i=1 An ordered sequence comprised of n elements. In the experiments xi is a

frame and X is a video.
xi ∈ X An element from the sequence X .
X ′ ⊆ X A subsequence of X , at times this is constrained to be a proper subset

(X ′ ⊂ X). Check surrounding context for constraints.
f (X) A model that operates on a sequence X and produces a vector of class scores.
fc(X) The score for class c produced when the model f is evaluated on the se-

quence X .
fc(;) The score for class c when there is no input. In the experiments, the class

prior, obtained from the empirical distribution over the training set is chosen
to represent this.

fgt(X) The ground truth class score.
fpt(X) The predicted class score.
fcc(X)= fgt(X)− f pt(X) The difference between ground truth and predicted class score.
f s(X), f s :Rs×D →RC A single-scale model mapping from a sequence of length s where each

element has dimension D to a vector of class scores.
f ms(X)= Es

[
EX ′|s[f s(X ′)]

]
A multi-scale model built from a set of single scale models.

s The scale of model or size of a subsequence.
∆c

i (X ′)= fc(X ′∪ {xi})− fc(X ′) The marginal contribution of xi on the subsequence X ′ providing that
xi 6∈ X ′.

φc
i =

∑
X ′⊆X\{xi} w(X ′)∆c

i (X ′) The element Shapley value for xi with respect to class c.
w(X ′)= (|X |−|X ′|−1)!|X ′|!

|X |! The weighting factor used in the element Shapley value definition.
φ̂c

i Approximated element Shapley value computed via algorithm 1.
δi =φgt

i −φpt
i The difference in Element Shapley Value computed with respect to the

ground-truth and predicted class.

UNWEAVING VIDEO (CHAPTER 6)

Notation Description

t ∈N+ Time, used to index v and other time-based structures.
T ∈N+ The total number of clips comprising the input story v.
v = (vt ∈RC)T

t=1 A video story composed of T clips.
ṽt ∈RE The contextualised representation of the clip vt at time t.
V i

t A subset of clips comprising thread i up to time t in the story.
V i A subset of clips from v comprising thread i.
C The dimensionality of clip features.
D The dimensionality of thread features.
E The dimensionality of the embedding space into which clip and thread

features are projected.
zi

t ∈RD The representation of thread i at time t.

xxii

Notation Description

z∗ ∈RD The initial representation of all threads. Used in φupdate when creating a
new thread representation.

z̃1:n̂t
t ∈RE The contextualised representations of threads 1–n̂t at time t.

z̃n̂t+1
t ∈RE The contextualised representation of the new thread token [NT] at time t.
ψclip :RC →RE The function used to embed clips into a space where they are compared to

threads.
ψthread :RD →RE The function used to embed threads into a space where they are compared

to clips.
ψtran :R(N̂t+1)×E →R(N̂t+1)×E A transformer that takes in the output of ψclip and ψthread and [NT] to ŷt.
[NT] ∈RE A latent variable that is fed to ψtran and used in computing the logit that

determines how likely vt is to start a new thread.
l t ∈RN̂t+1 =φselect(vt, zt) The similarity of clip vt to each thread i in the thread bank zt and a score

for the clip starting a new thread.
lNT] ∈R A latent threshold used to determine whether a clip starts a new thread

in φlinear
select .

yt ∈ {1..(Nt +1)} The ground-truth clip decision.
ŷt ∈ {1..(N̂t +1)} The index of the thread to which vt will be added, produced by φselect.
pt ∈ [0,1]N̂t+1 The probabilities for the clip decision.
αS The weight used in the focal loss for scenario S.
γ The focal hyperparameter of the focal loss.
τ The temperature of the softmax.
N The ground-truth number of threads in the story.
nt The ground-truth number of threads present up to time t.
n̂t The number of detected threads up to time t.
φupdate :RC ×RD →RD A recurrent function used to update a thread representation zt given a

clip vt.
φselect :RC ×RN̂t×D → [0,1]N̂t+1 The neural controller that determine which thread in the thread bank zt,

if any, the clip vt should be added to.
φlinear

select An implementation of φselect that uses ψclip, ψthread, and yNT to determine
ŷt.

φtran
select An implementation of φselect that uses ψclip, ψthread, ψtran, and [NT] to

determine ŷt.
(mi)n

i=1 Each mi specifies how many clips comprise thread i in a synthetic story.
q ∈NT+ An ordered sequence of thread indices.
q̃ ∈NT+ A shuffled sequence of thread indices. Used to determine the ordering of

threads’ clips in a synthetic story.

xxiii

C
H

A
P

T
E

R

1
INTRODUCTION

From searching a large collection of videos via a textual description, to pinpointing where

in a video a specific event happens, automated video understanding enables many ap-

plications widely in use today. Tasks such as these require the computer vision models

solving them to make use of signals in time. Time is the factor separating video from a mere

collection of images; it is over time that actions unfold and that their effects become apparent. A

better understanding of the role time plays in tasks like these leads to insight into the behaviour

and limitations of current models, helping to progress the field. Whilst the role of time within

video understanding is not a new topic of study, previous works in the field predominantly focus

on new ways of modelling time or making use of time as a learning signal in self-supervision. This

thesis contributes new investigations into time’s role in video, along both existing and previously

unexplored directions.

Of the tasks making use of video in computer vision, action recognition, the task of determin-

ing the sole action depicted in a short clip, remains a foundation upon which many advances in

video understanding have been made. Whilst trivial for a human, this elemental task still poses

significant challenges for current models. It is the simplest widely-studied video task where time

typically matters, and thus acts as the primary scenario for the investigations conducted within

this thesis.

Within the action recognition community, there is a general assumption that reasoning

across time is important to recognise actions. This has driven much of the research on model

development through new ways of temporal modelling [130, 170, 245, 252, 257, 285]. However, not

pausing to analyse how these models behave and what signals they use to perform classification

can lead to drawing incorrect conclusions. For example, early work on deep learning for action

recognition investigated the use of recurrent neural networks (RNNs) to model the temporal

evolution of video [110, 136]. These approaches appeared to be comparable or worse than using

simpler pooling methods to integrate information from multiple frames, suggesting that RNNs

weren’t a good method for temporal modelling. Thus they fell by the wayside as the community

investigated other means for temporal modelling. However, it transpired that a lot of the datasets

used in action recognition, such as UCF-101 and Kinetics, don’t require temporal reasoning to

1

CHAPTER 1. INTRODUCTION

achieve good performance on them. For example, training a time-sensitive model on shuffled

frames was shown to perform no worse than when training on unmanipulated video on the UCF-

101 dataset [257]. A similar conclusion was reached for Kinetics by testing a time-sensitive model

on time-reversed videos and observing no drop in performance [252]. Thus improvements on

these widely used benchmarks don’t necessarily indicate progress in temporal modelling. When

tested on a dataset designed to require temporal reasoning [178], models using RNNs greatly

outperformed simple pooling approaches [219], contradicting the earlier results in the field. This

sequence of events illustrates the need to probe our models and datasets and understand their

limitations in order to come to the right conclusions.

In the aforementioned experiment [252], a model’s sensitivity to temporal ordering was

assessed by measuring the change in a model’s performance when testing it on time-reversed

videos. Whilst such an experiment might show that a model is sensitive to the temporal order

of frames, it doesn’t expose why the model’s performance drops. One might presume that this

performance drop is due a fundamental difference between forward-time and reverse-time videos.

This is the belief that has previously been held in the community [99, 222, 250]. Chapter 4

challenges this, finding that some actions produce natural looking video when time-reversed. This

is explored through a perception study on time-reversed videos, aiming to determine whether a

time-sensitive model views time-reversed videos in the same way as a human. Not only do some

time-reversed actions appear natural, but some exhibit a change in their label (such as an ‘open’

becoming a ‘close’ and vice versa). This motivates the introduction of a framework, label-altering

transforms, for describing such effects. These types of transforms are explored as a means of

generating new examples of training data for the purposes of data augmentation and zero-shot

learning.

Whilst the exploration of a model’s response to time-reversal gives insight into its behaviour

on videos as a whole, it doesn’t reveal the parts of the video that contribute to the model’s

understanding. The next work in this thesis addresses this question through the introduction of

element attribution, the problem of determining how each frame in a video contributes to the

response produced by a model. This is closely related to the more general problem of feature

attribution, which has been widely studied [64, 155, 188, 203]. However, methods for feature

attribution tend to suffer from issues [273, 347] caused by tackling the more general problem,

such as assuming independence between features [188], or using out-of-distribution examples to

probe the model [203]. A method is developed to perform element attribution, that doesn’t suffer

either of these issues and is used to analyse the behaviour of two contemporary models, each

employing a different form of temporal modelling.

The works discussed up until now probe models to understand their relationship with time.

However, the models studied produce black-box representations of video. But, as widely noted in

the machine learning community, black-boxes don’t engender trust in systems. The final work

(chapter 6) takes a different route to address this concern, proposing a structured representation

2

1.1. THESIS OVERVIEW

of video that explicitly models the depicted activities. This work tackles a new problem, video

unweaving, that views video as the result of weaving together multiple activities. The model that

produces this structured representation aims to undo this, unweaving the video back into the

threads of activity that comprise it.

1.1 Thesis overview

Chapter 2 thoroughly surveys the literature on works investigating time in video understanding,

with particular focus on those relevant to this thesis. Additionally, the chapter provides a thorough

review of feature attribution methods, relevant to element attribution (introduced in chapter 5).

Chapter 3 investigates contemporary models for action recognition on the EPIC-KITCHENS

dataset (which I contributed to collecting and benchmarking) with particular attention given to

the relative merits of different approaches to temporal modelling. This study provides insights

into the challenges of action recognition on the dataset and the necessity for models to learn

temporal relationships.

Chapter 4 studies the effects of time-reversal on hand gestures and simple human object inter-

actions, demonstrating that some actions can be time-reversed to produce natural looking videos.

Such behaviour is formalised through the new concept of label-altering transforms. A method

to discover the relationships between classes under the effects of a label-altering transform is

proposed and experimentally evaluated across two datasets. Additionally, these observations

suggest the possibility of using label-altering transforms to generate additional training data of

examples. This is experimentally assessed for two applications: data-augmentation and zero-shot

learning.

Chapter 5 introduces element attribution, the problem of quantifying the contribution of each

frame in a video to a specified output of a trained model. A principled approach, the element

Shapley value, is introduced to solve this, making use of a foundational result from cooperative

game theory. In contrast to more general approaches for attribution, the element Shapley value

does not make the assumption that the inputs to the model are uncorrelated nor does it make

use of out-of-distribution examples to analyse the model.

Chapter 6 introduces a new structured representation of video that explicitly models the

activities depicted within. A neural controller builds this representation whilst processing video

online by tracking the evolution of ongoing activities and discovering new activities as they

begin. The model is trained to ‘unweave’ video depicting multiple, possibly interleaved, activities

into separate threads. This is accomplished by first pretraining the model using a novel form

of self-supervision leveraging long untrimmed videos containing multiple activities and then

finetuning the model on a small dataset of videos that have been manually unwoven.

Chapter 7 closes the thesis with a reflection on the research conducted and the avenues for

future work.

3

C
H

A
P

T
E

R

2
BACKGROUND

This chapter provides an overview of the work that this thesis builds upon. Section 2.1

focuses on the datasets proposed for action recognition, the primary video-understanding

task investigated in this thesis. Understanding of the datasets for action recognition

helps give context for section 2.2, which reviews video classification models. Video classification,

particularly action recognition, has been the most-commonly used task for training and eval-

uating models for video understanding. Training models using supervision from labels is both

costly and, in certain cases, can result in models that don’t leverage temporal signals, instead

recognising actions based on appearance features alone. Subsequently, a number of works have

considered leveraging the properties of time to train models without manual labels to learn a

video representation. Works related to these topics are reviewed in section 2.3. Section 2.4 covers

works related to video unweaving, a new problem proposed in chapter 6. Section 2.5 surveys

works on explaining trained model which is revisited in the development of the Element Shapley

value, a technique for assessing the importance of each frame in a video in chapter 5.

2.1 Video Understanding Datasets

Throughout this thesis, a number of action recognition datasets are used for training and

evaluation purposes. This section introduces them and other common datasets in the field. First,

section 2.1.1 gives a brief history of the major datasets over the last 20 years to provide a context

to understand the detailed description of each dataset that follows in sections 2.1.2 and 2.1.3.

The EPIC-KITCHENS datasets [216, 316] are covered in more detail than the other datasets, as

I am part of the team that collected these.

2.1.1 A brief history of datasets for video action recognition

Early works for action recognition made use of datasets like KTH [29] (2004) and Weizmann [31]

(2005). Both of these datasets demonstrate simple human movements (walking, running, jumping)

from a fixed 3rd-person viewpoint without a cluttered background. Many works [31, 36, 41] took

5

CHAPTER 2. BACKGROUND

advantage of their simplicity, designing methods that segmented foreground (the person) from

background. These datasets were small (under 1000 videos) with few classes (10 or less). The

Hollywood dataset [47] (2008) introduced a much more challenging set up, using films as a source

of action examples. Shortly after, egocentric action recognition datasets started to appear [44,

69, 75, 78], introducing the additional challenge of fast camera motion and different viewpoint.

Two datasets of general human activity have been particularly influential: HMDB-51 [70] (2011)

and UCF-101 [80] (2013). Both of these dataset collected footage from internet sources (e.g.

YouTube, Vimeo, public video archives) and had a much larger number of action classes, 51 and

101 respectively, than prior datasets. With this increase in the number of classes, diversity in

recording equipment and viewpoint, these datasets proved much harder than those before and

became the benchmark for comparing models.

In 2014, Karpathy et al. [94] introduced the Sports-1M dataset, with three orders of magnitude

more footage than UCF-101 (the largest dataset at the time). In contrast to previous works which

annotated videos manually, Sports-1M used an entirely automated approach for labelling, using

the text metadata associated with YouTube videos to tag videos with one or more of 487 classes.

Whilst the scale of the dataset made it attractive, few labs had the resources to train on it. The

lack of manual verification of label accuracy also meant that the dataset was quite noisy (i.e.

there are mislabelled videos). Despite this, the dataset was still used, especially for pre-training,

up until the introduction of other large datasets with better quality control like Kinetics [183].

ActivityNet [115] (2015) used crowd-sourcing to annotate a very large (850 hours, 20k videos)

collection of untrimmed videos of human actions sourced from internet videos across 200 classes.

Whilst ActivityNet is much larger than UCF-101 and HMDB-51, methods for action recognition

have mostly stuck to evaluating on these smaller datasets of trimmed videos. Though it is worth

noting that ActivityNet has become a standard benchmark for temporal action localisation/action

detection (the task of finding and localising all actions in a video).

In 2016, Sigurdsson et al. [158] introduced Charades, a dataset aiming to capture the mundane

aspect of daily life rather than the more interesting parts that are typically captured in internet-

sourced video. They took a novel approach to data collection, asking crowd-workers to write

scripts for other crowd-workers to act out.

In 2017, Kay et al. [183] introduced the Kinetics dataset, the most influential dataset since

UCF-101 and HMDB-51. Kinetics was an order of magnitude larger (306k videos) than the

other well-curated datasets at the time. It was also significantly more challenging due to its

large number of diverse classes (400). Since its introduction, Kinetics has been the foundation

of modern action recognition model design, being used for pre-training whilst also serving as a

benchmark dataset in its own right. Since then, Kinetics has been ‘topped-up’ multiple times,

increasing the number of classes and videos per class [213, 263, 345]. One issue with Kinetics is

that many of its classes are quite easily distinguished by appearance features alone [252, 374].

In the same year, the Something-Something dataset was introduced [177], designed to help

6

2.1. VIDEO UNDERSTANDING DATASETS

support the training and evaluation of models that can recognise human-object interactions

independent of the appearance of the objects being interacted with. This was achieved by asking

crowd workers to act out and record a templated action description, e.g. ‘putting [something] on

top of [something]’, where the [something] placeholders were replaced by the crowd worker with

objects they had to hand. Subsequently, examples of ‘putting [something] on top of [something]’

would exhibit a wide variety of objects being placed on top of others. Additionally, the authors

chose classes that would require temporal reasoning to distinguish between, e.g. ‘pretending to

put [something] on top of [something]’ vs. ‘putting [something] on top of [something]’. Since the

introduction of Something-Something, its use has been steadily increasing as researchers have

realised that Kinetics does not adequately test the temporal modelling capabilities of models [252,

374].

In 2018, our team introduced EPIC-KITCHENS [216], the largest-scale egocentric dataset to

date, capturing participant’s actions in their home kitchens. Prior to this, available egocentric

datasets [44, 75, 91, 120] had been very small (the largest, GTEA Gaze+ only containing 5k action

instances). In contrast, EPIC-KITCHENS contains 39k action instances over 55 hours of footage.

Rather than following in the footsteps of most other kitchen datasets, which were recorded in

a lab [44, 75, 84, 154], participants were given a head-mounted camera and asked to record all

actions they performed in their home kitchen over a 3 day period in order to capture more natural

footage. An extension [316] was collected in 2020, increasing the number of actions to 90k and

the number of hours of footage to 100.

At the same time at the first release of EPIC-KITCHENS, Li et al. [230] introduced Diving48,

a dataset of 48 diving actions that aims to be minimally biased towards object, scene, and

appearance representations.

In 2020, Shao et al. [342] collected FineGym, a dataset of gymnastic actions with 530 action

classes and 33k instances. Like Diving48, FineGym was carefully collected to avoid appearance

biases and has many actions that need to be distinguished through motion. The gymnastic actions

are organised into a three-level hierarchy where the finest level is shown to need models with

strong temporal modelling capabilities in order to perform well.

A summary of the properties of these and other common datasets for action recognition

throughout the last 20 years are presented in table 2.1.

7

CHAPTER 2. BACKGROUND
Ta

bl
e

2.
1:

A
ct

io
n

re
co

gn
it

io
n

da
ta

se
t

st
at

is
ti

cs
.T

he
da

ta
se

ts
ar

e
or

ga
ni

se
d

fir
st

by
ca

te
go

ry
an

d
th

en
by

ye
ar

of
in

tr
od

uc
ti

on
.

D
at

as
et

s
th

at
ha

ve
ha

d
m

ul
ti

pl
e

re
le

as
es

ha
ve

be
en

gr
ou

pe
d

to
ge

th
er

to
ea

se
co

m
pa

ri
so

n.
T

hi
rd

-p
er

so
n

da
ta

se
ts

ar
e

se
pa

ra
te

d
fr

om

fir
st

-p
er

so
n

da
ta

se
ts

by
a

ho
ri

zo
nt

al
ru

le
.A

bb
re

vi
at

io
ns

:T
em

po
ra

lL
oc

al
is

at
io

n
la

be
ls

(T
L

),
M

ul
ti

pl
e

L
ab

el
s

pe
r

cl
ip

(M
L

),
F

in
e-

gr
ai

ne
d

(F
G

).
D

at
as

et
s

th
at

ar
e

ve
ry

fin
e-

gr
ai

ne
d

ar
e

in
di

ca
te

d
w

it
h

3
3

.†
:d

at
as

et
s

th
at

sp
lit

ac
ti

on
s

in
to

ve
rb

s
an

d
no

un
s

ar
e

co
ns

id
er

ed
to

ha
ve

tw
o

le
ve

ls
of

hi
er

ar
ch

y
(t

he
ve

rb
al

on
e,

an
d

ve
rb

+n
ou

n)
.

D
at

as
et

Ye
ar

V
ie

w
T

L
M

L
D

om
ai

n
#

V
id

eo
s

#
A

ct
io

ns
#

C
la

ss
es

A
vg

vi
de

o
du

ra
ti

on
F

G
H

ie
ra

rc
hy

le
ve

ls
D

es
cr

ip
ti

on

K
T

H
[2

9]
20

04
3r

d
M

ov
em

en
t

60
0

2.
4k

6
4s

3
1

O
ut

si
de

hu
m

an
m

ov
em

en
t

ac
ti

on
s.

W
ei

zm
an

n
[3

1]
20

05
3r

d
M

ov
em

en
t

90
90

10
-

3
1

O
ut

si
de

hu
m

an
m

ov
em

en
t

ac
ti

on
s.

H
ol

ly
w

oo
d

[4
7]

20
08

3r
d

F
ilm

47
7

66
3

8
17

s
7

1
M

ix
of

hi
gh

an
d

lo
w

le
ve

lh
um

an
ac

ti
on

s
fr

om
fil

m
s.

H
ol

ly
w

oo
d2

[5
5]

20
09

3r
d

F
ilm

69
3.

7k
12

20
s

7
1

M
ix

of
hi

gh
an

d
lo

w
le

ve
lh

um
an

ac
ti

on
s

fr
om

fil
m

s.
H

M
D

B
-5

1
[7

0]
20

11
3r

d
M

ix
ed

6.
8k

6.
8k

51
m

in
1s

7
2

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

U
C

F
10

1
[8

0]
20

13
3r

d
M

ix
ed

13
.3

k
13

.3
k

10
1

7s
7

3
In

te
rn

et
-s

ou
rc

ed
ge

ne
ra

lh
um

an
ac

ti
on

s.
K

in
et

ic
s-

40
0

[1
83

]
20

17
3r

d
M

ix
ed

30
6k

30
6k

40
0

10
s

7
2

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

K
in

et
ic

s-
60

0
[2

13
]

20
18

3r
d

M
ix

ed
49

6k
49

6k
60

0
10

s
7

1
In

te
rn

et
-s

ou
rc

ed
ge

ne
ra

lh
um

an
ac

ti
on

s.
K

in
et

ic
s-

70
0

[2
63

]
20

19
3r

d
M

ix
ed

65
0k

65
0k

70
0

10
s

7
1

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

K
in

et
ic

s-
70

0-
20

20
[3

45
]

20
20

3r
d

M
ix

ed
64

8k
64

8k
70

0
10

s
7

1
In

te
rn

et
-s

ou
rc

ed
ge

ne
ra

lh
um

an
ac

ti
on

s.
H

A
C

S-
C

lip
s

[3
09

]
20

17
3r

d
M

ix
ed

50
4k

1.
5M

20
0

2s
7

1
In

te
rn

et
-s

ou
rc

ed
ge

ne
ra

lh
um

an
ac

ti
on

s.
M

om
en

ts
in

T
im

e
[2

88
]

20
19

3r
d

M
ix

ed
1.

02
M

1.
02

M
33

9
3s

7
1

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

M
ul

ti
M

om
en

ts
in

T
im

e
[3

35
]

20
19

3r
d

3
M

ix
ed

1.
02

M
2.

01
M

31
3

3s
7

1
In

te
rn

et
-s

ou
rc

ed
ge

ne
ra

lh
um

an
ac

ti
on

s.
A

V
A

[2
24

]
20

17
3r

d
3

3
F

ilm
43

0
1.

58
M

80
90

0s
7

1
D

en
se

ly
an

no
ta

te
d

hu
m

an
ac

ti
on

s
fr

om
fil

m
s.

A
V

A
-K

in
et

ic
s

[3
28

]
20

20
3r

d
3

M
ix

ed
23

9k
23

9k
80

10
s

7
1

D
en

se
ly

an
no

ta
te

d
hu

m
an

ac
ti

on
s

us
in

g
th

e
sa

m
e

cl
as

se
s

an
d

pr
ot

oc
ol

as
A

V
A

,b
ut

on
a

su
bs

et
of

th
e

K
in

et
ic

s-
40

0
da

ta
se

t.
50

Sa
la

ds
[8

4]
20

13
3r

d
3

K
it

ch
en

50
3.

0k
52

17
s

3
3

2
50

sa
la

ds
pr

ep
ar

ed
in

la
b

en
vi

ro
nm

en
t

sh
ot

w
it

h
bi

rd
s-

ey
e

vi
ew

.
M

P
II

C
oo

ki
ng

[7
9]

20
12

3r
d

3
K

it
ch

en
44

5.
6k

65
68

16
s

3
1

K
it

ch
en

ac
ti

vi
ti

es
in

la
b

en
vi

ro
nm

en
t

sh
ot

fr
om

ab
ov

e.
M

P
II

C
oo

ki
ng

II
[1

54
]

20
15

3r
d

3
K

it
ch

en
27

3
14

.1
k

88
35

9s
3

3
2

K
it

ch
en

ac
ti

vi
ti

es
in

la
b

en
vi

ro
nm

en
t

sh
ot

fr
om

ab
ov

e.
B

re
ak

fa
st

[9
5]

20
14

3r
d

3
K

it
ch

en
43

3
11

.3
k

50
11

5s
3

3
2

K
it

ch
en

ac
ti

vi
ti

es
in

ho
m

e
en

vi
ro

nm
en

t
w

it
h

m
ul

ti
pl

e
ca

m
er

a
vi

ew
s.

A
ct

iv
it

yN
et

[1
15

]
20

15
3r

d
3

3
M

ix
ed

19
.9

k
23

.0
k

20
0

11
6s

7
4

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

C
ha

ra
de

s
[2

00
]

20
16

3r
d

3
3

H
om

e
9.

8k
66

.5
k

15
7

30
s

3
1

C
ro

w
d-

so
ur

ce
d

hu
m

an
ac

ti
vi

ti
es

ta
ki

ng
pl

ac
e

in
si

de
.

C
ha

ra
de

s-
E

go
[2

40
]

20
18

1s
t+

3r
d

3
3

H
om

e
4k

68
.5

k
15

7
31

.2
s

3
1

C
ro

w
d-

so
ur

ce
d

hu
m

an
ac

ti
vi

ti
es

ta
ki

ng
pl

ac
e

in
si

de
w

it
h

jo
in

t
1s

t
an

d
3r

d
pe

rs
on

vi
ew

s.
Sp

or
ts

-1
M

[9
4]

20
14

3r
d

3
Sp

or
ts

1.
1M

1.
1M

48
7

33
6s

7
1

In
te

rn
et

-m
in

ed
sp

or
ts

ac
ti

on
s

w
it

ho
ut

ve
ri

fic
at

io
n.

Yo
uT

ub
e-

8M
[1

38
]

20
16

3r
d

3
M

ix
ed

8.
3M

8.
3M

48
00

23
0s

7
1

In
te

rn
et

-s
ou

rc
ed

ge
ne

ra
lh

um
an

ac
ti

on
s.

H
V

U
[3

17
]

20
20

3r
d

3
M

ix
ed

57
2k

1.
5M

31
42

up
to

10
s

7
2

In
te

rn
et

-s
ou

rc
ed

vi
de

os
an

no
ta

te
d

w
it

h
ac

ti
on

s,
co

nc
ep

ts
,s

ce
ne

s,
ev

en
ts

,a
nd

at
tr

ib
ut

es
.

So
m

et
hi

ng
-s

om
et

hi
ng

-v
1

[1
78

]
20

17
M

ix
ed

M
ix

ed
10

8k
10

8k
17

4
4s

3
3

3
C

ro
w

d-
so

ur
ce

d
lo

w
-l

ev
el

hu
m

an
-o

bj
ec

t
in

te
ra

ct
io

ns
.

So
m

et
hi

ng
-s

om
et

hi
ng

-v
2

[2
23

]
20

18
M

ix
ed

M
ix

ed
22

1k
22

1k
17

4
4s

3
3

3
C

ro
w

d-
so

ur
ce

d
lo

w
-l

ev
el

hu
m

an
-o

bj
ec

t
in

te
ra

ct
io

ns
.

So
m

et
hi

ng
-E

ls
e

[3
34

]
20

19
M

ix
ed

M
ix

ed
22

1k
22

0k
17

4
4s

3
1

So
m

et
hi

ng
-s

om
et

hi
ng

v2
an

no
ta

te
d

w
it

h
ob

je
ct

an
d

ha
nd

bo
un

di
ng

bo
xe

s.
Je

st
er

[2
87

]
20

18
3r

d
H

om
e

14
8k

14
8k

27
3s

3
1

W
eb

ca
m

fo
ot

ag
e

of
ha

nd
ge

st
ur

es
.

D
iv

in
g4

8
[2

30
]

20
18

3r
d

D
iv

in
g

18
.4

k
18

.4
k

48
4.

4s
3

3
6

C
om

pe
ti

ti
ve

sp
or

ts
di

vi
ng

ac
ti

on
s.

F
in

eG
ym

[3
42

]
20

20
3r

d
3

G
ym

na
st

ic
s

30
5

32
.7

k
53

0
83

56
s

3
3

3
C

om
pe

ti
ti

ve
gy

m
na

st
ic

ac
ti

on
s

w
it

h
m

ul
ti

-l
ev

el
te

m
po

ra
ll

oc
al

is
at

io
n.

8

2.1. VIDEO UNDERSTANDING DATASETS

Ta
bl

e
2.

1
co

nt
in

ue
d.

D
at

as
et

Ye
ar

V
ie

w
T

L
M

L
D

om
ai

n
#

V
id

eo
s

#
A

ct
io

ns
#

C
la

ss
es

A
vg

vi
de

o
du

ra
ti

on
F

G
H

ie
ra

rc
hy

le
ve

ls
D

es
cr

ip
ti

on

C
A

T
E

R
[3

22
]

20
19

3r
d

3
3

O
bj

ec
t

m
ov

em
en

ts
11

.0
k

M
ix

ed
14

/3
01

12
.5

s
3

3
2

Sy
nt

he
ti

c
ob

je
ct

in
te

ra
ct

io
ns

w
it

h
an

d
w

it
ho

ut
ca

m
er

a
m

ot
io

n.

C
M

U
-M

M
A

C
[4

4]
20

09
1s

t+
3r

d
K

it
ch

en
16

51
6

29
27

2s
3

1
M

ul
ti

-v
ie

w
+

se
ns

or
co

ok
in

g
ac

ti
on

s
in

la
b

en
vi

ro
nm

en
t(

w
it

h
m

ot
io

n
ca

pt
ur

e)
.

A
D

L
[7

8]
20

12
1s

t
3

K
it

ch
en

20
43

6
18

18
00

s
7

4
K

it
ch

en
ac

ti
vi

ti
es

in
ho

m
e

en
vi

ro
nm

en
t

w
it

h
w

id
e-

an
gl

e
ch

es
t-

m
ou

nt
ed

ca
m

-
er

a.
G

T
E

A
[6

9]
20

11
1s

t
K

it
ch

en
28

52
5

71
74

.3
s

3
3

2†
K

it
ch

en
ac

ti
vi

ti
es

in
la

b
en

vi
ro

nm
en

t
w

it
h

he
ad

-m
ou

nt
ed

ca
m

er
a.

G
T

E
A

G
A

ZE
[7

5]
20

12
1s

t
K

it
ch

en
17

33
1

40
12

7s
3

3
2†

K
it

ch
en

ac
ti

vi
ti

es
in

la
b

en
vi

ro
nm

en
t

w
it

h
he

ad
-m

ou
nt

ed
ca

m
er

a
w

it
h

ga
ze

tr
ac

ki
ng

.
G

T
E

A
G

A
ZE

+
[7

5]
20

12
1s

t
K

it
ch

en
37

5k
44

97
s

3
3

2†
K

it
ch

en
ac

ti
vi

ti
es

in
la

b
en

vi
ro

nm
en

t
w

it
h

he
ad

-m
ou

nt
ed

ca
m

er
a

w
it

h
ga

ze
tr

ac
ki

ng
.

E
G

T
E

A
G

A
ZE

+
[2

29
]

20
18

1s
t

K
it

ch
en

86
10

.3
k

10
6

12
14

s
3

3
2†

K
it

ch
en

ac
ti

vi
ti

es
in

la
b

en
vi

ro
nm

en
t

w
it

h
he

ad
-m

ou
nt

ed
ca

m
er

a
w

it
h

ga
ze

tr
ac

ki
ng

.
B

E
O

ID
[9

1,
16

2]
20

14
1s

t
In

do
or

64
76

4
34

68
s

3
3

2†
Si

m
pl

e
fin

e-
gr

ai
ne

d
hu

m
an

ob
je

ct
-i

nt
er

ac
ti

on
s

fr
om

he
ad

-m
ou

nt
ed

ca
m

er
a.

E
P

IC
-K

IT
C

H
E

N
S-

55
[2

16
]

20
18

1s
t

K
it

ch
en

43
2

39
.4

k
27

47
45

5s
3

2†
K

it
ch

en
ac

ti
vi

ti
es

in
ho

m
e

en
vi

ro
nm

en
t

w
it

h
he

ad
-m

ou
nt

ed
vi

ew
.

E
P

IC
-K

IT
C

H
E

N
S-

10
0

[3
16

]
20

20
1s

t
K

it
ch

en
70

0
90

.0
k

40
53

51
4s

3
3

2†
K

it
ch

en
ac

ti
vi

ti
es

in
ho

m
e

en
vi

ro
nm

en
t

w
it

h
he

ad
-m

ou
nt

ed
vi

ew
.

9

CHAPTER 2. BACKGROUND

2.1.2 Third-person action video datasets

This subsection covers seminal third-person action recognition datasets and those used in this

thesis in more detail, specifically what contribution they made over the previous existing datasets.

2.1.2.1 HMDB-51 (2011) [70]

This is perhaps the earliest video action dataset to greatly increase the number of videos and

classes over those previously available [29, 55].1 Videos were collected by asking a group of

students to search a wide variety of sources, such as films and online video repositories (Prelinger

archive, YouTube, Google Videos), and annotate segments representing a single unambiguous

human action within the videos they found. The students were not provided with a list of action

classes before hand. From these videos, 51 classes were obtained, each with a minimum of 101

examples. Action classes were then grouped into 5 general categories: general facial actions (4

classes), facial actions with object manipulation (3 classes), general body movements (19 classes),

body movements with object interactions (18 classes), and body movements for human interaction

(7 classes). Additional metadata is provided for each clip, indicating the presence of camera

motion, body parts visible, and number of people involved in actions to support error analysis of

models.

2.1.2.2 UCF-101 (2012) [80]

UCF-101 is a dataset for general human action recognition collected from internet sources,

released shortly after the introduction of HMDB-51. This dataset contained 101 different action

classes across 5 different categories: human-object interactions (20 classes), human-human

interaction (5 classes), body motion (16 classes), playing musical instruments (10 classes), and

sports (50 classes). The videos were sourced from YouTube, but the collection protocol is not

documented. At double the size of HMDB-51 in both number of classes and examples, one might

expect it to be a harder challenge. However, UCF-101 is a solved dataset (top-ranking methods

achieve 98% [170, 363]) yet models still haven’t saturated performance on HMDB-51 (the best

performing model as of writing achieves 84% [363]).

2.1.2.3 Sports-1M (2014) [94]

Sports-1M was collected in an effort to provide large-scale data to train models for video under-

standing. 487 sport actions were defined in a hierarchy and used to harvest videos from YouTube

based on their description and tags. Videos were automatically annotated based on the keywords

used to search for them (around 5% of videos are tagged with multiple classes). No manual

verification of actions was performed, making the dataset rather noisy. Sports-1M has mostly

1Although UCF-50 [83] was in fact of a similar size, and made available a year earlier.

10

2.1. VIDEO UNDERSTANDING DATASETS

been used for pretraining video models [130, 204], but has seen little use since the introduction

of Kinetics.

2.1.2.4 ActivityNet (2015) [115]

ActivityNet is a large-scale (850 hours) dataset of untrimmed videos of general human actions

sourced from internet videos. The collection process, inspired by ImageNet [53], used in this

dataset has since become fairly standard for internet-sourced datasets: i) a set of action classes

associated with keywords are defined, ii) candidate videos are harvested based on keyword

searching, iii) these are then verified to contain the action associated with the keyword (using

crowd-sourced labour), iv) temporal bounds of the action are annotated (using crowd-sourced

labour). In ActivityNet, the videos can contain multiple actions (though they only have 1.41

actions/video on average). To evaluate models, the mean average precision (mAP), a measure

of retrieval performance [77, p305], is used, casting the problem as retrieving the correct set of

activity labels for the video.

2.1.2.5 Charades (2016, 2018) [158, 240]

Charades aimed to capture video footage of routine tasks representing daily activities in the home

which the authors note is not particularly abundant on YouTube. The data collection was split

into three phases. In the first phase, a script was written for someone to carry out in the second

phase, which would then be annotated with actions in the third phase. To guide the collection

of scripts, a collection of 40 objects, 30 action verbs, and 15 different types of room were chosen.

Crowd workers were then presented with the names of 5 random objects, 5 random action verbs,

and type of room in the home and asked to write a script for someone to act out combining 2 of

the verbs and 2 of the objects in the specified room. Other crowd workers were then asked to

record a 30s video acting out the script.

Charades-Ego (2018) was collected as a follow-up to Charades, asking crowd workers to

obtain first and third person recordings of the same script (about 70% of which were taken from

Charades, the rest were collected using the same protocol). However, as synchronised camera

setups aren’t easy or cheap to obtain, the crowd workers were asked to record themselves twice:

once from the third person and once again from the first person (so the views aren’t aligned nor

depict exactly the same events).

2.1.2.6 Kinetics (2017–2020) [183, 213, 263, 345]

Kinetics is one of the largest well curated general human action recognition datasets to date.

The dataset was originally proposed in 2017 in combination with the I3D network (described in

section 2.2.6). Whilst both were ground-breaking contributions, Kinetics has outlasted I3D. In

its original form, Kinetics (now referred to as Kinetics-400 to differentiate it from the ‘top-up’

11

CHAPTER 2. BACKGROUND

successors) was formed of 306k videos across 400 action classes grouped into 38 non-exclusive

categories. In a similar vein to HMDB-51 and UCF-101, Kinetics covers a broad range of high-

level human activities. The collection process is similar to that used for ImageNet [53]. First a set

of action classes were defined (taking inspiration from previous datasets [70, 80, 88, 115, 160])

as well as taking suggestions from crowd-workers who took part in the dataset effort. Next a

keyword search was used to obtain video candidates from YouTube. A set of human action image

classifiers were trained using data from search-image pairs obtained from Google images. These

classifiers were used to localise the top-2 most confident locations of actions within the candidate

video. 10s clips were cropped from the video about these locations and presented to crowd workers

who were asked to verify the action does occur. Clips were annotated 5 times and at least 3

workers had to confirm that the action occurred for it to be included in the dataset. When dealing

with a large number of classes, it can be challenging to make sure they don’t overlap. To guard

against this, the authors trained video action classifiers throughout their collection process and

looked at the top confusion amongst classes to find those that should be merged.

One issue plaguing the use of Kinetics has been the removal of videos from YouTube, effectively

causing the dataset to decay over time. To help address this issue, the authors have offered ‘top-

ups’ of the dataset, running the data collection process again, adding videos to classes whose

previous examples have been removed. In addition to this, they have increased the number of

classes twice, from 400→ 600 and 600→ 700, yielding Kinetics-600 [213], Kinetics-700 [263], and

Kinetics-700-2020 [345]. 2

2.1.2.7 Something-Something (2017–2018) [178, 223]

Something-Something is a dataset of low-level human object-interactions recorded from a mix

of third-person and first-person viewpoints that aims to capture actions independent of object

appearance. The dataset was collected by asking crowd workers to act out human-object interac-

tions that did not specify the objects to be used. After recording the video, the worker would be

asked to note down which objects they used. For example, a worker would be presented with the

video description ‘putting [something] on top of [something]’, they were then allowed to choose

which objects they would use (the ‘something’s). In total, 174 human-object interaction templates

were defined and grouped by similarity in an effort to encourage crowd-workers to perform very

similar actions using the same object (e.g. ‘poking [something] so that it falls over’ vs. ‘poking

[something] so lightly that it doesn’t or almost doesn’t move’). Videos were then manually checked

for correctness. Train and test splits were defined by assigning worker’s videos to either train or

test, but not both.

Materzynska et al. [334] extended the dataset annotations with 17.0M hand and object

bounding boxes. They also define a new train/validation split designed to address object bias

2Kinetics is now stored and available from the Common Visual Data Foundation now making the dataset more
accessible and less resistant to decay over time https://github.com/cvdfoundation/kinetics-dataset.

12

https://github.com/cvdfoundation/kinetics-dataset

2.1. VIDEO UNDERSTANDING DATASETS

in the original dataset split. The test and validation sets are constructed so that the videos in

validation depict actions being performed with objects that have not been used for that action

during training. This achieved by splitting the actions and objects into two disjoint subsets of

equal size. The objects are split into groups A and B and the action classes into groups 1 and 2.

The training set is then defined as 1A+2B where 1A refers to the set of videos that are labelled

with an action from group 1 that are performed using objects only in group A. The validation set

is defined as 1B+2A. Action recognition on this split is called compositional action recognition to

distinguish it from the original split.

2.1.2.8 Jester (2019) [287]

Jester is a dataset of people performing 27 gestures (e.g. ‘thumb up’, ‘zooming in with full hand’,

‘shaking hand’) recorded from webcams. It was recorded by the same company as Something-

Something and followed a very similar data collection protocol (crowd-sourced video collection).

2.1.2.9 CATER (2019) [322]

Girdhar and Ramanan [322] built a synthetic dataset that cannot be solved by scene or object

recognition for debugging video understanding models. They adapted the CLEVR [182] dataset,

originally proposed for static visual question answering, into the temporal domain by generating

videos. Videos in CATER are composed of multiple geometric objects (cube, cylinder, cone, ball)

rearranging themselves at regular intervals. Since the videos are procedurally generated, any

number of them can be obtained, although the authors release 11k videos (5.5k with camera

motion, 5.5k without). Multiple tasks are defined on these videos: i) atomic action recognition:

recognise the movement undergone by a specific object in a scene (14 classes). ii) compositional

action recognition: recognise three object movements that happen one after the other and their

corresponding relationships (301 classes). iii) snitch localisation: a golden ball, the snitch, moves

around the scene and is contained by a cone at some point, occluding the snitch. The cone can

then move around and the task is to determine where the snitch finally ends up in the scene

(posed as a 36-way classification problem).

2.1.3 First-person action video datasets

The following datasets are recorded from a 1st-person, also known as egocentric, perspective.

These types of videos pose additional challenges over those shot from the 3rd-person such as

high-levels of camera motion.

2.1.3.1 GTEA (2011, 2012, 2017) [69, 75]

The GTEA series of egocentric kitchen activities datasets capture multiple participants making

meals (sometimes by following recipes) in a lab kitchen. The first version, GTEA [69], asked 4

13

CHAPTER 2. BACKGROUND

Figure 2.1: A sample of frames taken from different kitchens in the EPIC-KITCHENS dataset.

participants to each record the preparation of 4 different types of sandwiches and 3 different

drinks using a GoPro. The videos were annotated with fine-grained actions formed of a verb and

one or more nouns (e.g. “take:cup”, “stir:spoon,cup”).

In the next dataset, GTEA Gaze [75], videos were recorded using Tobii eye-tracking glasses

in order to collect gaze data. Participants were asked to prepare a meal (exactly what was left up

to the participant) using ingredients and tools given to them. Typically they made sandwiches.

Actions were labelled in the same manner as in GTEA.

Following this, GTEA Gaze+[75] used SMI eye-tracking glasses to record a similar dataset

collected across 10 participants. This time, participants were given recipes to follow (North

American breakfast, afternoon snack, pizza, turkey sandwich, Greek salad, pasta salad, cheese

burger). Actions were labelled in the same manner as in GTEA. Li et al. [229] later extended this

by adding another 22 participants.

2.1.3.2 EPIC-KITCHENS (2018, 2020) [216, 316]

The collection of the EPIC-KITCHENS dataset was initiated due to the lack of sufficiently large

egocentric action recognition datasets. At the time of collection, the largest available was GTEA

Gaze+ [75] with only 5k action instances (see table 2.1 for details on the size of other egocentric

dataset available at the time). At publication (in both 2018 for the initial release and 2020 for

the follow-up release), EPIC-KITCHENS was the largest egocentric action recognition dataset to

date in both the number of actions (39k in 2018 and 90k in 2020) and the duration of footage (55

hours in 2018 and 100 hours in 2020).

I was involved in the collection of this dataset, specifically the following parts:

i) Data pipeline: I developed the pipeline that stitched all the steps of the data collection process

together. This took in all the manual annotations and produced metadata for each of the tasks

(action recognition and object detection).

ii) Action recognition challenge: I was responsible for defining the evaluation metrics for the

action recognition challenge, selecting and running the baselines, building and hosting the

public leaderboard3, reviewing and rating participant submissions in 2019 and 2020.

3EPIC-KITCHENS action recognition challenges: https://competitions.codalab.org/competitions/20115
and https://competitions.codalab.org/competitions/25923

14

https://competitions.codalab.org/competitions/20115
https://competitions.codalab.org/competitions/25923

2.1. VIDEO UNDERSTANDING DATASETS

First a high-level outline of the dataset collection procedure is presented, and then the individual

steps are detailed.

Dataset collection outline The EPIC-KITCHENS collection procedure was designed to

yield a large collection of videos that contained many actions whilst minimising the cost of

participation (both in time and effort). To realise these attributes, participants were asked to

capture everything they did in their kitchens over a 2–4 day period without any modification

to their usual behaviours thus minimising the effort required to participate. The kitchen was

chosen as they are ubiquitous and the activities performed within typically are diverse and rich

in human-object interactions, unlike those performed in other common spaces widely available to

people such as the living room or office. Other datasets [75, 79, 229] that have made use of the

kitchen as a source of action recordings typically have asked participants to follow set recipes,

increasing the inconvenience to participants. Some of these datasets have been recorded in lab

environments which don’t capture the diversity of kitchens in the wild and further increase

the inconvenience to participants. Following recording their actions, the participants were then

asked to narrate the actions they had performed whilst watching back their recorded footage. The

narrations were then converted from audio to text via a manual transcription process performed

by crowd-workers. These narrations also gave a rough moment-in-time indication of where the

each action occurred which was used to guide the crowd-sourced temporal annotation process. An

NLP pipeline was developed to extract the verbs and nouns from the textual narrations. These

were then manually clustered to give a set of verb and noun classes forming the labels of the

action annotations.

Obtaining videos The first version of the dataset, EPIC-KITCHENS-55 (EK55) [216], was

collected from April 2017–November 2017 by 32 participants across 4 countries. Participants

were given a GoPro Hero 4/5 head mounted camera and asked to start recording their activities

every time they entered a kitchen and terminate the recording upon exiting the kitchen. EK55

consisted of 55 hours of 1080p footage at 60FPS over 432 sessions. A sample of frames from

different kitchens present in the dataset can be seen in figure 2.1, demonstrating the variety of

viewpoints, kitchens, actions, and lighting conditions in the dataset.

New data was collected for the second version of the dataset by 16 of the original participants

from EK55 and an additional 5 new participants whose footage, combined with the EK55, was

released as EPIC-KITCHENS-100 (EK100). For the extension, the GoPro Hero 4/5 were switched

out for a later model, the GoPro Hero 7, and video stabilisation was enabled. The videos were

recorded at 50fps, to avoid light flickering caused by the interaction between the camera recording

at 60fps and lights being run from 50Hz electricity.4

4The 60fps recordings in 50Hz electrical environments caused issues when computing optical flow as the brightness
between adjacent frames varied violating the fundamental assumption of optical flow: that the brightness of the same
physical point is constant across frames.

15

CHAPTER 2. BACKGROUND

Action Narration After a participant had completed recording kitchen footage they were

asked to watch their collected videos whilst simultaneously narrating the actions they had

performed in their native language. The motivation for asking participants to narrate in their

natural language was to ease their task and to reduce the number of actions they missed due

to searching for a specific word in a language foreign to them. These audio descriptions of the

performed actions formed the first stage of our annotation pipeline. In 2018, participants were

asked to narrate the actions they had performed as they watched the video at 1x speed. After

collecting the data, it was found that this resulted in narrations being missed for actions during

particularly action dense episodes. This was remedied in the 2nd version of the dataset by the

development of an annotation interface that paused the video as the participant was narrating

an action. Furthermore, the new interface allowed participants to go back and review their work

easily, unlike the previous approach.

Narration transcription Video narration recordings in 2018 consisted of one long audio file,

these were first segmented into action narrations by using silence detection and further manual

refinement. The narration recordings from the 2nd version of the dataset were already split per

action thanks to the new annotation interface that had been developed. Each action narration

was transcribed to text by crowd workers on Amazon Mechanical Turk (AMT) and translated if

the narration language was not English. In the second version of the dataset, the transcription

interface was improved by adding frames sampled from the video around the time the action

occurred to provide a visual context to help disambiguate homonyms (e.g. ‘flour’ vs. ‘flower’).

Three annotators transcribed each action description.

Narration translation When a participant had narrated in their native language, the narra-

tions would be transcribed to that language. However, later in the pipeline it was necessary to

have a single language to describe the performed actions, thus all non-English narrations were

translated to English. This was performed on Amazon Mechanical Turk at the same time and by

the same workers who transcribed the narrations.

Temporal bound annotation A sequence of up to 10 consecutive action narrations were then

provided to crowd workers who were asked to annotate the corresponding temporal bounds (start

and stop time) in the video. By virtue of the audio narrations being recorded simultaneously to

watching the video, the time stamps of each action description gave a coarse temporal localisation

of the action within the video. This enabled bounding the temporal window in each video in which

workers would have to search for the actions. Four workers annotated the temporal bounds of

each action and a consensus was formed from them.

Extracting action labels from transcribed narrations To obtain the verbs and the nouns

from each action description, parts-of-speech (PoS) tagging software was used. A few choices were

16

2.1. VIDEO UNDERSTANDING DATASETS

evaluated: Stanford CoreNLP [98]5, Stanford parser6 (a dependency network based tagger [26])

and spaCy7 by measuring the number of nouns and verbs extracted for each action description

as a rough proxy of PoS tagging performance. spaCy’s neural network based tagging models

proved superior to both CoreNLP and Stanford NLP’s taggers for the constrained sentence format.

In addition to parts-of-speech, syntactic dependencies were also used to extract prepositional

information to augment the verbs (e.g. ‘put-down’ in ‘put <noun> down’).

Before being able to obtain an action label, the verbs/nouns had to be clustered so that those

with the same meaning were given the same label (e.g. ‘put’ and ‘place’ should be labelled as

the same action). A variety of automated methods were investigated, but in the end a manual

approach was taken where the clusters were iteratively refined until a consensus was formed.

Tying it all together An automated data pipeline was built to take the output from all

manual steps and run all the automated steps necessary to produce the final metadata files used

for evaluating submissions on the leaderboard and released for training models (depicted in

figure 2.2).

Train/test split For EK55, two test sets were defined: out of the 32 participants, 4 were selected

to be part of the unseen kitchens test set and the other 28 were then split 80:20 into the training

set and the seen kitchens test set. For EK100, a single test split was defined that was composed

of a mix of seen and unseen participants from the new footage. The test sets from EK55 were

merged into one and became an official validation set.

The action recognition challenge is covered in chapter 3, where a study of common models for

action recognition on both versions of the dataset are provided.

5https://stanfordnlp.github.io/CoreNLP/
6https://nlp.stanford.edu/software/lex-parser.shtml
7https://spacy.io/

17

https://stanfordnlp.github.io/CoreNLP/
https://nlp.stanford.edu/software/lex-parser.shtml
https://spacy.io/

CHAPTER 2. BACKGROUND

P01_01,open door,0:00:00,0:00:03
P01_01,turn on l ight,0:00:04,0:00:06
P01_01,close door,0:00:07,0:00:09,
.. .

P01_01.csv

P01_02,take plate,00:00:05.07,00:00:06.84
P01_02,open bin,00:00:08.61,00:00:09.28
P01_02,throw leftovers into bin,00:00:10.13,00:00:18.1
.. .

P01_02.csv

...

P02_01,walk to sink,00:00:02.31,00:00:04.01
P02_01,put plate,00:00:04.25,00:00:06.06
P02_01,put plate on the side,00:00:06.16,00:00:07.59
...

P02_01.csv

P02_02,open the bin,00:00:02.16,00:00:03.93
P02_02,pick up the bag,00:00:04.46,00:00:06.83
P02_02,tie the bag,00:00:05.19,00:00:08.47
...

P02_02.csv

...

...

Part of speech
tagging

verb_id,class_key,verbs
0,take,"['take', 'grab', 'pick', ...,]"
1,put,"['put', 'pose', 'put-away', ...,]"
2,open,"['open', 'unzip', 'open-up']"
...

verb_classes.csv

noun_id,class_key,nouns
0,Nothing,['Nothing']
1,pan,"['pan', 'pan:sauce', ...,]"
2,pan:dust,"['pan:dust', 'dustpan']"
3,tap,"['tap', 'tap:water', ...,]"

noun_classes.csv

Part of Speech
clustering

Annotation
Validation

Train/test
splitting

Count
Many shot classes

verb_class,verb
1,put
0,take
4,wash
...

many_shot_verbs.csv

noun_class,noun
3,tap
4,plate
8,cupboard
...

many_shot_nouns.csv

uid,participant_id,video_id,narration,start_timestamp,stop_timestamp,start_frame,stop_frame,verb,verb_class,noun,noun_class,all_nouns,all_noun_c lasses
0,P01,P01_01,open door,00:00:00.14,00:00:03.37,8,202,open,2,door,8,['door'],[8]
1,P01,P01_01,turn on light,00:00:04.37,00:00:06.17,262,370,turn-on,12,light,113,['light'],[113]
2,P01,P01_01,close door,00:00:06.98,00:00:09.49,418,569,close,3,door,8,['door'],[8]

train_labels.csv

[same structure as train_labels.csv]
...

test_s1_labels.csv

[same structure as train_labels.csv]
...

test_s2_labels.csv

Test
Sanitization

[same structure as train_labels.csv]
...

invalid_labels.csv

uid,participant_id,video_id,start_timestamp,stop_timestamp,start_frame,stop_frame
1924,P01,P01_11,00:00:00.00,00:00:01.89,1,113
1925,P01,P01_11,00:00:01.56,00:00:02.45,93,147
1926,P01,P01_11,00:00:02.97,00:00:13.79,178,827

test_s1_timestamps.csv

[same structure as test_s1_timestamps.csv]
...

test_s2_labels.csv

P01_01,open door,0:00:00,0:00:03
P01_01,turn on l ight,0:00:04,0:00:06
P01_01,close door,0:00:07,0:00:09,
.. .

P01_01.csv

P01_02,take plate,00:00:05.07,00:00:06.84
P01_02,open bin,00:00:08.61,00:00:09.28
P01_02,throw leftovers into bin,00:00:10.13,00:00:18.1
.. .

P01_02.csv

...

P02_01,walk to sink,00:00:02.31,00:00:04.01
P02_01,put plate,00:00:04.25,00:00:06.06
P02_01,put plate on the side,00:00:06.16,00:00:07.59
...

P02_01.csv

P02_02,open the bin,00:00:02.16,00:00:03.93
P02_02,pick up the bag,00:00:04.46,00:00:06.83
P02_02,tie the bag,00:00:05.19,00:00:08.47
...

P02_02.csv

...

...

Part of speech
tagging

verb_id,class_key,verbs
0,take,"['take', 'grab', 'pick', ...,]"
1,put,"['put', 'pose', 'put-away', ...,]"
2,open,"['open', 'unzip', 'open-up']"
...

verb_classes.csv

noun_id,class_key,nouns
0,Nothing,['Nothing']
1,pan,"['pan', 'pan:sauce', ...,]"
2,pan:dust,"['pan:dust', 'dustpan']"
3,tap,"['tap', 'tap:water', ...,]"

noun_classes.csv

Part of Speech
clustering

Annotation
Validation

Train/test
splitting

Count
Many shot classes

verb_class,verb
1,put
0,take
4,wash
...

many_shot_verbs.csv

noun_class,noun
3,tap
4,plate
8,cupboard
...

many_shot_nouns.csv

uid,participant_id,video_id,narration,start_timestamp,stop_timestamp,start_frame,stop_frame,verb,verb_class,noun,noun_class,all_nouns,all_noun_c lasses
0,P01,P01_01,open door,00:00:00.14,00:00:03.37,8,202,open,2,door,8,['door'],[8]
1,P01,P01_01,turn on light,00:00:04.37,00:00:06.17,262,370,turn-on,12,light,113,['light'],[113]
2,P01,P01_01,close door,00:00:06.98,00:00:09.49,418,569,close,3,door,8,['door'],[8]

train_labels.csv

[same structure as train_labels.csv]
...

test_s1_labels.csv

[same structure as train_labels.csv]
...

test_s2_labels.csv

Test
Sanitization

[same structure as train_labels.csv]
...

invalid_labels.csv

uid,participant_id,video_id,start_timestamp,stop_timestamp,start_frame,stop_frame
1924,P01,P01_11,00:00:00.00,00:00:01.89,1,113
1925,P01,P01_11,00:00:01.56,00:00:02.45,93,147
1926,P01,P01_11,00:00:02.97,00:00:13.79,178,827

test_s1_timestamps.csv

[same structure as test_s1_timestamps.csv]
...

test_s2_labels.csv

Figure 2.2: EPIC-KITCHENS annotation pipeline. Flow chart of the automated parted of the
EPIC-KITCHENS annotation pipeline used to process the output of the manual steps through to
the released versions of the annotations.

18

2.2. VIDEO UNDERSTANDING MODELS

2.2 Video Understanding Models

This section examines prior work on designing models for video understanding, specifically for

action recognition. In recent years, the volume of models proposed for video understanding has

exploded. Even restricting the focus to models for action recognition fails to sufficiently reduce

the number to allow a comprehensive treatment. Instead, this section introduces the main ideas

used in models for action recognition, giving more attention to both influential works and those

that directly relate to the later chapters of this thesis.

This section is organised as follows. Section 2.2.1 opens with a brief, and very high level,

overview of the history of models for action recognition to give a sense of the major milestones

within the community. Section 2.2.2 then introduces the different types of input derived from video

that are typically used by models. Section 2.2.3 gives a brief discussion of the major approaches for

action recognition before deep learning became the dominant approach. Section 2.2.4 studies the

use of 2D Convolutional neural networks (CNNs) for action recognition, followed by section 2.2.5

on 3D CNNs. Section 2.2.6 surveys works using the two-stream approach, where two different

branches of the network operate over different types of input (typically one uses optical flow and

the other RGB). Section 2.2.7 then looks at approaches to modelling the evolution of features

over time within CNNs beyond 3D convolution. Section 2.2.8 studies the techniques used to

factorise spatio-temporal modelling into decoupled spatial and temporal modelling towards easier

optimisation and improved model performance. Section 2.2.9 surveys the use of transformers and

self-attention within video understanding models which represent the current state of the art

for action recognition as of writing. Section 2.2.10 looks at approaches to expand the temporal

view of contemporary models from the just a few seconds to tens of seconds or even minutes.

Section 2.2.11 discusses works that extract structured representation from video, such as people

and objects and then perform modelling across these features. Finally, section 2.2.12 closes the

section on works that look at how video models can be made more efficient.

2.2.1 A very brief history of models for video action recognition

Excluding this section, the rest of the section 2.2 groups papers by topic rather than presenting a

chronological history. This section instead aims to give the reader a historical grounding of the

major events in architecture development for video action recognition to help provide context for

the more detailed exposition of the different types of models.

Video action recognition has long been of interest to the computer vision community. Early

approaches [23, 38, 42, 46, 73, 85], predating the popularisation of deep learning, typically

followed the same framework: designing a feature representation of localised spatio-temporal

patches, aggregating these local features across the entire video, and then learning an action

classifier on top of the video-level representation. A few pioneering works [40, 41, 61, 65, 68] had

attempted to use CNNs using 3D convolutions prior to the success of AlexNet [76] on the ImageNet

19

CHAPTER 2. BACKGROUND

image recognition challenge [124], but they struggled to surpass the performance of the classical

hand-crafted feature pipeline. The lack of success at that time can be attributed to a few factors:

i) some methods didn’t learn the model weights end-to-end [41, 61, 71], which hampered their

performance; ii) other methods that did learn the weights end-to-end [65, 68, 71] weren’t trained

on sufficiently large datasets (instead using datasets like KTH [31] or TRECVID-2008 [49]).

Following AlexNet’s success, the computer vision community went to work applying CNNs

to many other problems, including action recognition. In 2014, Karpathy et al. [94] explored

adapting an existing CNN architecture for video understanding tasks, applying the model to

RGB video. In the same paper, the authors also introduced Sports-1M (see section 2.1.2.3 for

further details), then to become the standard dataset to pretrain video models. At the same time,

Simonyan and Zisserman [101] proposed a different style of CNN, the two-stream CNN (2SCNN),

which has been extremely influential. The idea was to have two separate network streams: one

stream operating on a single RGB frame to learn the appearance of an action and another stream

operating on a stack of dense optical flow fields to model the motion, independent of appearance.

Many later works adopted this two-stream approach as it typically improves the performance

over just a single RGB network alone, albeit at the cost of computing optical flow and doubling

the number of FLOPS due to the additional network.

In 2015, Tran et al. [130] popularised the use of 3D CNNs by achieving good results on

UCF-101, albeit still below that of the best performing hand-crafted feature of the time, improved

Dense Trajectories (iDT) [85]. Yue-Hei Ng et al. [136] explored different feature fusion strategies

for aggregating information across time. They also investigated temporal modelling by applying

an LSTM on frame features extracted by a CNN backbone. Concurrently, Donahue et al. [110]

also performed similar experiments, using an LSTM on top of CNNs.

In 2016, Wang et al. [159] introduced Temporal Segment Networks (TSNs), an extension

of 2SCNN that expanded the model’s temporal receptive field. In TSN, videos are split into a

number of segments from which an RGB frame or a stack of optical flow fields are drawn. These

are then fed to their respective network stream to produce class predictions per segment. The

per-segment class scores are fused across segments, then across modalities to give a final score for

the video. This approach boosted top-1 accuracy by 1.5% on UCF-101 (93.5% vs. 92.0%). Whilst

the improvement might seem modest, the difference between TSN and 2SCNN was demonstrated

to be much greater on other datasets like EPIC-KITCHENS-55 [216] (20.5% vs. 13.2% top-1

action accuracy) .

In 2017, Carreira and Zisserman [170] made two major contributions to the action recogni-

tion community: the introduction of Kinetics-400, a high-quality dataset for action recognition

containing 305k video across 400 classes, and the introduction of a two-stream 3D CNN called

I3D. I3D used kernel inflation (a strategy originally proposed by Feichtenhofer et al. [139]) to

make use of 2D CNN network weights pretrained on image tasks. This strategy has since become

standard, allowing researchers to take state of the art 2D CNNs and use their image pretrained

20

2.2. VIDEO UNDERSTANDING MODELS

weights for action recognition. I3D achieved 98% accuracy on UCF-101, essentially solving action

recognition on that dataset. In the same year, Wang et al. [249] introduced non-local networks, a

3D CNN with a new neural network block inspired by non-local means [32]. The non-local block

can be added to any existing 3D CNN to give the network long-term spatio-temporal modelling

capabilities, though at quite a high additional computational cost. In their experiments, they

added the non-local block to an I3D-style model and observed a 1.6% increase in top-1 accuracy

(76.0% vs. 74.4%) on Kinetics-400.

In 2018, Xie et al. [252] and Tran et al. [245] both demonstrated the benefit of factorising

spatio-temporal convolution into a sequence of 2D spatial convolutions and 1D temporal con-

volutions, proposing S3D and R(2+1)D respectively. This was motivated by a need to reduce

the computational complexity of large 3D CNNs and to help reduce overfitting. At the same

time, Zhou et al. [257] introduced the Temporal Relational Network (TRN), an adaptation of the

relation network [196], to perform temporal modelling over frame features. This work evaluated

TRN on the Something-Something dataset [178], proposed a year earlier (2017), whose classes

required temporal reasoning to be distinguishable. TRN was shown to be vastly superior to TSN

on this dataset (31.0% vs. 18.5% top-1 accuracy), demonstrating the necessity of inter-segment

temporal modelling for fine-grained action classification.

In 2019, Lin et al. [285] introduced the Temporal Shift Module (TSM), a module that can

be added to any 2D CNN to endow it with temporal modelling capabilities at no additional

computational cost. The Temporal Shift Module shifts a portion of channels across time following

a 2D convolution so that subsequent 2D convolutions will be integrating information across

multiple time-steps. This works surprisingly well, beating TRN and I3D on Something-Something-

v1 (52.6% vs. 38.9% vs. 41.6% top-1 accuracy). Concurrently, Feichtenhofer et al. [268] introduced

SlowFast networks, a new type of two-stream 3D CNN operating on RGB frames alone. Instead

of a spatial and temporal stream, SlowFast has a slow stream and a fast stream. The slow stream

operates at a higher spatial resolution and a lower frame rate and the fast stream operates at a

lower spatial resolution and higher frame rate with a reduced number of convolutional kernels.

SlowFast performs considerably better than R(2+1)D on Kinetics-400 (79.8% vs. 72.0% top-1

accuracy) and outperforms models using both RGB and optical flow.

In 2020, Feichtenhofer [319] introduced Expand 3D (X3D), a new class of 3D CNN archi-

tectures designed through a coordinate descent [134] architecture search. At a quarter of the

FLOPS and parameters of the largest SlowFast model, X3D-XL equals SlowFast’s performance

on Kinetics-600.

In 2021, at the time of writing this thesis, transformer networks [205] seem to be making

in-roads into the action recognition community. Three concurrent works [358, 359, 367] all explore

adapting the Vision Transformer (ViT) [362] to video for action recognition. These models take

more resources than X3D whilst achieving a similar performance, though notably without using

any CNNs. This in someways is quite remarkable given that convolution is a strong inductive

21

CHAPTER 2. BACKGROUND

prior that helps avoid overfitting. Pretraining on large image datasets like ImageNet [53] helps

bootstrap the representation with strong spatial features. Whilst these are just the first wave of

transformer models without CNNs, it is likely in future that the transformer architecture will

supplant CNNs for action recognition.

2.2.2 Input modalities

Video offers a variety of modalities that can be used as inputs to models performing action

recognition: RGB frames, optical flow, audio, and video-compressed features (I-frames, block

motion vectors, and RGB residuals). This section briefly covers these, discussing what they are,

and how they are used. Figure 2.3 shows what each of these modalities look like for the same

video. The vast majority of methods use RGB frames, sometimes with optical flow, although this

supplementary modality is becoming less common now that modern architectures have been able

to close the gap between models operating over RGB only vs. those using both modalities [268].

RGB frames Dynamic image

Optical flow (TV-L1) Audio (mel-scaled spectrogram)

Compressed video features
u

v

residual

I-frame

u

v

u

v

u

v

Figure 2.3: Different input modalities for models for action recognition: RGB frames
(top-left) are most frequently used. Dense optical flow fields (bottom-left) are also often used
in conjunction with RGB. Dynamic images (center-top) compress a full video’s motion into a
single RGB image. Audio (center-bottom) can also be used to support action recognition networks,
typically it is processed into a mel-scaled spectrogram first. Compressed video features (right)
offer a computationally cheaper alternative to optical flow through block motion vectors and
inter-frame residuals. The video presented comes from the Something-Something dataset [178].

RGB Most commonly RGB has been used as the primary input modality to models for action

recognition. RGB frames are stacked into a 4D tensor T×H×W×3 where T,H,W are the number

of frames, and height and width in pixels respectively, which is then processed by the model.

Sometimes each frame is processed individually and deeper parts of the model perform temporal

aggregation across the frames [110, 159, 222, 257, 258] or the network performs temporal

modelling throughout [130, 170, 204, 225, 245, 252, 319].

22

2.2. VIDEO UNDERSTANDING MODELS

Optical flow Optical flow describes the apparent motion exhibited in a video. Let ut,vt ∈RH×W

be the horizontal and vertical components of the dense optical flow field describing the motion

between frames at time t and t+1, then the physical point projected onto the 2D image plane at

(x, y) in frame t is mapped by (u(t,x,y),v(t,x,y)) to the projection of the same physical point in the

frame at t+1.

Optical flow is often used in conjunction with RGB, typically in a two-stream network set-

up [101] where one stream operates on RGB frames and the other stream on optical flow fields.

The most common approach, pioneered by Simonyan and Zisserman [101], is to extract a dense

optical flow field, split this into the horizontal and vertical components and alternatingly stack

these in the channel dimension to produce a 3D tensor of shape H×W ×2T. Mean subtraction is

usually employed in an effort to approximately remove global camera motion [101].

A variety of algorithms for computing dense optical flow fields have been used, with TV-

L1 [82] being the most popular. Two other algorithms have also seen use: Brox’s algorithm [27]

(marginally quicker than TV-L1, but worse quality [166]) and Farnebäck’s algorithm [22] (quicker

than both TV-L1 and Brox’s algorithm, but less accurate than both [246]). As CNNs have been

applied to the problem of learning optical flow [111, 181, 350], so too have their outputs been

used to feed temporal streams for action recognition [220, 239, 311]. Interestingly, the classical

approaches, like TV-L1, lead to higher performance for action recognition [220]. Since the optical

flow estimation networks are trainable end-to-end, they can be finetuned indirectly when their

output is fed into a network trained for action recognition operating on the optical flow they

produce [220, 311]. This is not a common approach as video models are already ‘heavyweight’

(i.e. they take up most of the resources on the GPUs) leaving insufficient space for an auxiliary

optical flow estimation network.

Audio Recently, a variety of works have taken to using audio as an additional modality.

Typically this has been for self-supervised pre-training via audio-visual alignment [209, 236,

254]. But audio has also seen use in supporting action recognition [279, 354], the idea being

that when occlusions occur in the video, audio can help reveal what is occurring. This can be

particularly effective in egocentric video where occlusions happen frequently. Additionally, audio

has also been used as a lightweight way of previewing the video to determine where to apply a

heavy-weight visual model [321].

The most common approach to using audio is to convert it into a spectrogram [209, 254, 279,

354], treating it as an image, and to process it with a common 2D CNN.

Compressed motion features Video are typically stored in compressed form, encoded via a

codec like H.264 [63], HEVC [105], VP9 [81], or similar. These codecs split video up into multiple

separate components through the compression process that are reassembled during decoding

to produce RGB frames. During the encoding process, every so often an I-frame is produced, in

which a full JPEG-compressed image is stored. Frames subsequent to an I-frame are encoded by

23

CHAPTER 2. BACKGROUND

splitting the frame into a number of blocks and computing their motion from the I-frame. The

remaining difference is then stored as an RGB residual.

Since most models for action recognition require RGB frames, compressed videos need to

be decoded into a stream of frames to be used for classification. This is undesirable for several

reasons: i) decoding the video is computationally expensive and adds to the already high com-

putational cost required for training video models; ii) the decoded RGB frames take up a large

amount of memory; iii) if optical flow is being used, a coarse approximation is already present

within the encoded video through the block motion vectors, which can be used as a substitute.

A number of works [166, 246, 251, 296] consider using the components of compressed video

directly, rather than decoding the video first. Zhang et al. [166] were the first to suggest using

I-frames (key-frames) and block-motion vectors to feed a two-stream network. Wu et al. [251]

build upon this, additionally using the RGB residuals to feed another stream. Shou et al. [296]

extend the work of Wu et al. [251] by trying to reconstruct high-resolution optical flow from

the compressed motion features in order to improve performance over operating on the raw

block-motion vectors alone. This modality is still relatively niche as it results in lower accuracy

compared to using RGB and optical flow.

Dynamic images One other type of representation that can be used as input for a model is

called a dynamic image. The concept of a dynamic image is to embed the motion information of

a video into a single RGB image. Fernando et al. [112] proposed the specific formulation given

below, however the concept of embedding motion information into an image dates back much

earlier to work by Bobick and Davis [14]. This modality is rarely used, but it is covered since it

is related to temporal modelling. A dynamic image is constructed from a video v ∈RT×H×W×3 by

first computing a cumulative average of v: ṽt = 1
t
∑T

i=1 vt and then optimising an SVM to learn

the ordering of the components of ṽ using the RankSVM formulation [20]. The weight vector of

the SVM has the same number of components as a frame, and can be reshaped into an image and

used as input to a model, this is the dynamic image.

Sampling strategies Up to now, the different modalities that are used as inputs to models

have been described, but how they are sampled from the video has not. There are two main

approaches to frame sampling: sparse and dense.

In sparse sampling, the typical approach, pioneered by Wang et al. [159], is to split the video

into n equally sized segments. A single network input is sampled from each segment, be it an

RGB frame, or a stack of optical flow fields. The process differs between training and inference.

During training, a model input is randomly selected from each segment to provide as much

variety in the data as possible (in order to avoid overfitting and improve generalisation). During

inference, a model input is formed from the center of each segment. This type of sampling is

typically used for training non-3D CNNs.

24

2.2. VIDEO UNDERSTANDING MODELS

In dense sampling, frames are sampled at a regular interval, usually with a very short time

gap between them (typically a fraction of second). This is the standard approach for training 3D

CNNs whose performance suffers when sparse sampling is used instead. Typically the number of

frames sampled from the video is fixed and don’t cover the full duration of the video. This set

of frames is commonly referred to as a clip in the literature. During training, a random clip is

sampled from each video. During testing, a fixed number of clips are sampled to cover as much of

the video as possible, each is processed by the model independently and the scores are averaged

to produce a video-level score.

2.2.3 Before deep learning

Prior to the deep learning revolution, methods for action recognition typically used hand-crafted

features which were used to train a classifier. This process can be further broken down into

several stages:

i) Interest point sampling: spatio-temporal points within video are selected to build a descriptor

around (though some methods densely sample points). Examples for sparsely sampling points

include the 3D Harris spatio-temporal corner detector [35] (also known as Space-Time Interest

Points (STIP)) and Speeded Up Robust Feature (SURF) [37].

ii) Building a feature descriptor: for each point, a descriptor is built to represent space and

time locally. Examples include Histogram of Oriented Gradients (HOG) [33], Histogram of

Optical Flow (HOF) [38], Motion-Boundary Histogram (MBH) [38], and Histogram of Oriented

Gradients 3D (HOG3D) [46].

iii) Feature encoding/aggregation: descriptors are pre-processed in order to reduce their dimen-

sionality and/or improve the performance of the downstream classifier. Examples include

bag-of-words [25], Vector of Locally Aggregated Descriptors (VLAD) [60] and the Fisher

kernel [62].

iv) Action classification: a classifier is learnt on the output of the previous stage. Examples include

SVM [35], kNN [21], HMMs [19], and random forests [66].

A representative example of this pipeline was proposed by Klaeser et al. [46] which introduced

HOG3D, an extension of the Histogram of Oriented Gradients (HOG) to the spatio-temporal

domain. Points of interest across the video are selected using a spatio-temporal version [35] of

the Harris corner detector [9]. Each point is represented via a HOG3D descriptor which locally

captures the spatio-temporal gradients at different scales. A video-level representation is built by

25

CHAPTER 2. BACKGROUND

Figure 2.4: Overview of Dense Trajectories (DT) feature descriptor formation: Points
are sampled at regular intervals across multiple scales (left) and tracked using a dense optical
flow field (middle) for up to L frames to produce trajectories (tracking for longer can result
in trajectories suffering from drift). HOG, HOF, and MBH descriptors are produced around
each trajectory. A video-level representation is obtained by aggregating features using either a
bag-of-words of the Fisher kernel [62]. Figure by Wang et al. [73].

aggregating the point descriptors as a bag-of-words8. This video-level descriptor is then used to

train an SVM using a χ2 kernel.

Most works proposed improvements on different parts of this pipeline: selecting spatio-

temporal points [34, 35, 50], the local feature representation [38, 42, 47, 73, 85], the feature

encoding [19, 85, 86], and the classifier [21, 45, 48].

Before closing, the last hand-crafted feature approach to beat CNNs, improved Dense Tra-

jectories (iDT) [85], will be discussed. iDT is an extension of Dense Trajectories (DT) [73], which

tracks densely sampled points at multiple spatial scales along motion trajectories extracted via

a dense optical flow algorithm. In both DT and iDT, trajectories are summarised via multiple

feature descriptors: HOG [33] to capture local appearance, Histogram of Optical Flow [38] to

capture local motion, and Motion-Boundary Histogram [38] to capture 2nd-order motion, helping

to compensate for camera motion. A graphical depiction of how these descriptors are formed is

presented in figure 2.4. Improved Dense Trajectories extends Dense Trajectories in two ways:

better dealing with camera motion and improving the feature aggregation strategy. The quality

of the HOF and MBH descriptors suffers under camera motion; in order to compensate for this,

the authors propose computing the optical flow between rectified frames (i.e. camera motion is

corrected before computing optical flow). This is achieved by computing a homography between

adjacent frames by using the correspondence between interest points in each frame computed

by random sample consensus (RANSAC) [7] (to avoid outliers). SURF [37] interest points and a

sparse set of points chosen from the dense optical flow field points that are good to track [11] are

used in the matching. Humans are excluded from the video during the homography estimation

as feature matches across frames are often (incorrectly) considered inliers by RANSAC. This is

8A bag-of-words is a feature aggregation strategy that uses a code-book of vectors, each known as a word, to which
each feature is assigned. The bag-of-words representation is the vector where each element corresponds to the number
of features assigned to each word.

26

2.2. VIDEO UNDERSTANDING MODELS

accomplished by running a human detector on frames and filtering out the interest points lying

within the resulting human bounding boxes. This improves the quality of the HOF and MBH

descriptors for classification. An SVM with a χ2 kernel is then trained on the aggregated features

to perform action classification.

More details on pre-deep learning method for action recognition can be found in the compre-

hensive review by Kang and Wildes [145].

2.2.4 2D CNNs

This section covers works that use 2D CNNs for video action recognition. These are CNNs that

contain only 2D convolutions, although the line between these and factorised 3D CNNs can

sometimes be a little blurry.9 For use in action recognition, the typical approach has been to add

an additional layer of temporal pooling or modelling on top of the 2D CNN.

Single frame action recognition The simplest approach using a 2D CNN is to sample a

single frame from the video and directly train the model to classify the depicted action. A variety

of works [94, 101, 159, 245, 252, 257] have investigated this throughout the years with different

architectures (typically as a baseline for other more sophisticated approaches). During inference,

multiple frames are sampled from the video and processed by the network to produce action

scores on a per-frame basis. These are then averaged to give a video-level action classification.

Surprisingly, on some datasets this is quite effective. For example, on Kinetics-400, Xie et al.

[252] train a 2D CNN that achieves 67.0% top-1 accuracy vs. 71.1% for a 3D CNN with a

comparable architecture. This is more a comment on the dataset than the model, as on more

temporally sophisticated datasets like Something-Something-v1, the gap is much larger: 34.4%

top-1 accuracy for a 2D CNN vs. 45.8% for a comparable 3D CNN. This point will further

elaborated in section 2.3.1.

Multiple frame action recognition with pooling A simple extension to the single-frame

network approach to bring the training process into alignment with the inference process. Wang

et al. [159] proposed this method as part of the Temporal Segment Network (TSN). In training,

multiple frames are sampled from the same video, instead of just one, and the model’s predictions

are averaged to produce a video-level score on which the loss is applied (graphically depicted in

figure 2.5). This enables the network weights to adapt to the fact that information from multiple

frames will be present, rather than optimising for single-frame action recognition. Consequently,

the model can learn to be less confident in its predictions on less informative frames which results

in improved video-level performance.

9For example, when the temporal shift module [285] is added to a 2D CNN, it effectively converts it into a
restricted form of 3D CNN, despite not being implemented with any 3D convolution operations. A common theme in
the literature has been for researchers to brand their method as a 2D CNN, regardless of the fact that the operations
they introduce can be construed as approximating a (sometimes restricted form of) 3D convolutional kernel.

27

CHAPTER 2. BACKGROUND

1 2 3 4 5 6 7 8

Time

2 5 8

2D
CNN

2D
CNN

2D
CNN

action prediction

Figure 2.5: Temporal Segment Network (TSN) operation: first the video is split into a
predefined number of segments, and a single frame is sampled from each of segment. Each frame
is processed by a 2D CNN (which shares weights across frames) to produce action scores. The
action scores produced for each frame are averaged, yielding the final score for the full video. This
process occurs both during training and inference.

2.2.4.1 Temporal pooling

Early works investigated temporal pooling as a way of combining information across time, though

this approach fails to enable learning ordering of events within a video. Yue-Hei Ng et al. [136]

examined four different approaches to pooling in a 2D CNN which they evaluated on Sports-1M:

i) Convolutional pooling: first the frame features are max pooled across time to produce a

single feature map retaining its spatial dimensions. This is then processed by a set of 2D

convolutional layers.

ii) Late pooling: first the frame features extracted by a stack of 2D convolutions are processed by

a several stacked linear layers (whose weights are shared across time) and then max pooled.

iii) Slow pooling: max pooling is applied across time within a local window, followed by 2D

convolution, followed by further max pooling to completely remove the time dimension from

the features.

iv) Local pooling: max pooling is applied across time within a local window, followed by multiple

2D convolutional layers. A linear layer then processes the features concatenated across time.

Of these, convolutional pooling worked best (71.1% top-1 accuracy), followed by local pooling

(70.4%). Both slow pooling and late pooling performed poorly in comparison (69.7% and 67.5%

respectively).

28

2.2. VIDEO UNDERSTANDING MODELS

2.2.4.2 Post-spatial temporal-modelling

Averaging scores or max pooling features across time doesn’t give the model the ability to

distinguish ordering of events; if the input video was played in reverse the model would produce

the same output as the forward-time version. Many models [110, 126, 136, 219, 222, 231, 257,

258, 299] alleviate this issue by adding a sub-network to aggregate information across time in

way that is sensitive to the temporal ordering, such as an RNN [110, 126, 136, 219, 231, 299],

temporal relational network [257], DenseNet [222], 3D CNN [258, 274], transformer [370], among

others. This is accomplished by removing the classification layer from the 2D CNN that processes

each frame, so that it produces a feature map or vector per frame. The difference between the

two is that a feature map retains some spatial dimensions, whereas a feature vector collapses the

spatial dimensions, typically via global average pooling. The frame features are then fed into a

sub-network that aggregates the information across time and produces the final action scores. A

few of these works will be described in detail to give a sense of the approach.

Convolutions (2015–2019) Yue-Hei Ng et al. [136] investigated using a single temporal 1D

convolution layer to fuse information across time. This was evaluated on Sports-1M but failed to

beat more simplistic feature fusion strategies. This was probably due to not stacking multiple

temporal convolutions and a limited need for temporal modelling to solve action recognition on

Sports-1M.

Wei et al. [250] stack intermediate frame-features in the channel dimension and further

process them by 2D convolutions. They explore this architecture in a self-supervised setting in

which they try to detect whether videos are played forwards or backwards.

Zolfaghari et al. [258] introduced the efficient convolutional network (ECO) which extracts

features maps for each frame using a 2D CNN backbone and then performs spatio-temporal

reasoning with a 3D CNN sub-network. This works effectively as demonstrated by the results on

Something-Something-v1 (46.4% top-1 accuracy), though this uses a large ensemble of 4 networks

processing 16, 20, 24, and 32 frames respectively. Unfortunately the authors do not report results

in a non-ensembled form so it is hard to determine how effective 3D convolution is for aggregation

vs. the benefits due to ensembling multiple networks.

More recently, Hussein et al. [274] proposed a deep multi-scale dilated convolutional net-

work, called Timeception, to aggregate information across frames features. Dilated convolution

increases the receptive field of a convolution without any increase in the number of parameters in

the convolution kernel. This is done by spacing out the sampling points of the convolution itself

(this is known as the dilation factor). Timeception introduces an Inception-like [129] block which

applies multiple dilated convolutions, each with different dilation factors, in parallel. This model

was designed to deal with minute-long actions, and so cannot be feasibly trained end-to-end.

29

CHAPTER 2. BACKGROUND

Recurrent Neural Networks (RNNs, 2015–2018) Yue-Hei Ng et al. [136] introduce a deep

LSTM that models the temporal evolution of the video. A classification loss is applied on the

output at each time-step of the LSTM during training and a weighted mean of the action scores

across all frames is used to provide a video-level score. The model is trained end-to-end. Donahue

et al. [110] propose a very similar model that also uses a deep LSTM to aggregate frame features

produced by a 2D CNN backbone and is also trained end-to-end. Li et al. [231] maintains the

spatial structure of the video frames by replacing the typical linear layers of the LSTM with

convolutional layers instead, feeding in feature maps from the 2D CNN. They also gate the

input to the LSTM using an attention matrix conditioned on the current input and last hidden

state. They demonstrate that the convolutional variant is superior to the original LSTM for

action recognition on both UCF-101 and HMDB-51. Dwibedi et al. [219] explore aggregating

information across time using a GRU (a simplified version of the LSTM which merges the hidden

and output states) on Something-Something-v1. They explore two versions of the GRU, one that

operates on vectors, and a convolutional variant operating on feature maps. They demonstrate

the convolutional variant to be much superior to the original (43.7% vs. 35.4% top-1 action

accuracy). Their findings offered empirical evidence that RNN aggregation could still be an

effective method for action recognition where temporal reasoning matters. Works prior to this had

mostly dismissed aggregating temporal information using RNNs in favour of 3D CNNs, but the

introduction of fine-grained datasets like Something-Something that require temporal reasoning

made researchers reconsider this.

Actions as Transformations (2015) Wang et al. [160] model actions as a set of transforma-

tions between precondition states and the subsequent effect states. Vector frame features are

extracted from the beginning and end of the video to represent the precondition and effect state

respectively. A set of latent matrices, one per action, represent the transformations. Learning is

conducted by trying to minimise the difference between the precondition state transformed by

the ground-truth action’s transform matrix and the effect state whilst simultaneously trying to

maximise the distance to all other action’s predicted effect states. Compared to an RGB baseline,

modelling actions as transformations results in a +2.4% gain on UCF-101 (80.8% vs. 78.4%),

however this improvement is lessened when applied to a model taking in optical flow, where the

improvement is +0.8% (87.8% vs. 87.0%).

Temporal Relational Network (TRN, 2018) Zhou et al. [257] introduce TRN, an adaptation

of the relational network [196] for learning temporal relations between frames. Features are

extracted for each frame and processed by a set of MLPs. There are a total of n MLPs, one for each

scale at which temporal relations are computed, ranging from 2-frame relations to (n+1)-frame

relations. An MLP dealing with m-frame relations takes in a vector built by concatenating m

frame features and produces class scores. Importantly, the frame features are always ordered

when they are concatenated. To illustrate the point, consider concatenating features f1, f3, f5

30

2.2. VIDEO UNDERSTANDING MODELS

1 2 3 4 5 6 7 8

Time

2D
CNN

2D
CNN

2D
CNN

2D
CNN
2D

CNN

action prediction

Figure 2.6: Temporal Relational Network (TRN) operation: Frames are sampled and
propagated through a 2D CNN backbone in the same way as for TSN, however frame-level
features (coloured rectangles) are extracted rather than scores. A set of MLPs (g2, g3, g4) are
applied to a sample of concatenated frame features to learn temporal relations where each MLP
deals with a different length subsequence. Each MLP produces class scores, which are summed
to produce a final video-level score.

corresponding to frames 1, 3, and 5 respectively. The features would be concatenated like so:

[f1; f3; f5] (here [x; y] denotes concatenating x and y together). It would be invalid to feed the

MLP with [f3; f1; f5] as this disrupts the natural ordering of the frames. For each scale, a number

of m-frame tuples are sampled and processed by the m-frame MLP. The results are aggregated

across samples and scales by summing the scores together to produce video-level action scores. A

graphical depiction of the model’s data flow is given in figure 2.6.

Time-aligned DenseNet (2018) Ghodrati et al. [222] use a DenseNet [180] to aggregate frame

features across time. In a DenseNet, each successive layer takes the output of all previous layers

in an effort to ease gradient flow in deep networks. In this paper, a DenseNet is constructed so

that each layer corresponds to a single time-step. At each layer, the input is composed of the

concatenation of all previous layers’ outputs and the frame feature for the current time-step.

This means that the next layer’s 2D convolution is able to correlate events across time. The final

layer’s output is then fed into a classification layer to produce class scores. The model improves

over C3D on the Something-Something-v1 dataset (30.4% vs. 28.2% top-1 accuracy), but falls

short of TRN’s performance (34.4%).

31

CHAPTER 2. BACKGROUND

Temporal Pyramid Network (2020) Yang et al. [355] introduce the Temporal Pyramid

Network (TPN), a model that extracts spatial features at multiple scales from different layers in

a 2D CNN. These are then passed through convolutions with different strides to bring all the

features to the same spatial resolution. Another set of convolutions and temporal max pooling

are applied to get features at the same spatial resolution but at different temporal scales in order

to model actions at different temporal resolutions. These features are then fused across temporal

scales in both a top-down and bottom-up fashion and concatenated to feed a linear layer which

produces logits for classification.

Video Transformer Network (2021) Neimark et al. [370] apply a transformer [205] to learn

temporal relations across frame features. The transformer architecture is permutation-invariant,

so in order to allow the model learn to use the ordering of the frames, a positional encoding is

added to each frame. This consists of a learnt embedding vector for each time position that is

added to the corresponding frame feature before input to the transformer. However, unfortunately

the model is only evaluated on Kinetics-400, which can be solved without temporal modelling,

using appearance features alone. Their experiments demonstrate this, achieving 78.8% top-1

accuracy on shuffled frames vs. 78.4% on naturally ordered frames during inference, illustrating

that not only has the learnt positional encoding not been effective, but that shuffling frames

actually improves performance.

In a similar set-up, Arnab et al. [358] extract spatial features using a ViT [362] transformer

model instead of a 2D CNN and use an additional transformer to perform temporal modelling

across frames (they call this a ‘factorised encoder’). Notably, this performs very well on both

Something-Something-v2 (65.4% top-1 accuracy) and EK100 (44.0% top-1 action accuracy, outper-

forming the previous state-of-the art SlowFast [268]). This approach is covered in more detail in

section 2.2.9.

2.2.5 3D CNNs

3D CNNs take a video clip as input, represented as a spatio-temporal 4D tensor of shape T ×H×
W ×C representing the number of frames, height, width, and number of channels respectively.

This is in contrast to a 2D CNN which operate on a single frame represented as a 3D tensor

of shape H ×W ×C. The 4D kernels within the convolutional layers of a 3D CNN learn to

detect correlations across space, time, and channels jointly. When trained for action recognition,

the kernels are optimised to extract features that enable discriminating between actions. 3D

CNNs have more parameters compared to their 2D counterparts due to the additional temporal

dimension in their kernels. Early on, 3D CNNs weren’t as successful as two-stream models

(reviewed in section 2.2.6), but later, with the introduction of larger datasets like Kinetics, they

were shown to excel at action recognition. This section doesn’t include works on factorised 3D

32

2.2. VIDEO UNDERSTANDING MODELS

CNNs; as there are such a wide variety of them, they are separately reviewed in section 2.2.8,

along with other approaches to factorised spatio-temporal modelling.

Kim’s 3D CNN (2007) Kim et al. [41] introduce the first attempt at using a 3D CNN for action

recognition. They first extract a spatio-temporal silhouette of the action [36], which is processed

by 3D Gabor filters [1] and then fed into a 3D CNN. The output feature maps from the CNN are

then used as input to a weighted fuzzy min-max neural network [28] used to classify the action.

Ji’s 3D CNN (2010) Ji et al. [61] introduce a 3D CNN that operates on both grey-scale and RGB

video. Beyond the first layer, the network is trained end-to-end using SGD with momentum unlike

Kim et al. [41] which uses a form of Hebbian learning. Their network has 3 convolutional layers,

interleaved with pooling layers, followed by a fully connected layer to aggregate information

across spatial locations. Whilst very shallow by today’s standards, its structure is representative

of more modern CNNs. The input video is first pre-processed to extract human-centered crops

which are stacked over time to form the network’s input. The weights of the first layer of the

CNN are fixed and set to process the input to produce a gray-scale image, optical flow, and image

gradients.

Baccouche’s 3D CNN (2011) Baccouche et al. [68] propose the first 3D CNN trained fully

end-to-end, including the first layer. The learnt model outperforms the CNN proposed by Ji et al.

[61] despite having over 15x fewer parameters, demonstrating the power of end-to-end learning.

They also explore learning an LSTM on top of the features extracted by the (pre-trained) 3D

CNN to aggregate information across multiple temporal windows. They find that this gives an

additional boost over the simpler majority-voting consensus used to produce a single classification

from the 3D CNN (94.4% vs. 91.0% top-1 accuracy on KTH).

Karpathy’s 3D CNN (2014) Karpathy et al. [94] investigate a variety of architectures, one of

which is a 3D CNN (termed the ‘slow fusion’ variant in their paper) composed of 5 convolutional

layers and 2 fully connected layers. They find this variant to be the most effective out of a

variety of different strategies that don’t incorporate 3D convolution, or only at the first layer, on

Sports-1M. They finetune their network on UCF-101 achieving 65.4% top-1 accuracy.

Convolutional 3D (C3D, 2015) Tran et al. [130] introduce the first competitive 3D CNN

architecture, composed of 8 convolutional and 2 fully connected layers and trained on Sports-1M.

Rather than fine-tuning the model on UCF-101, the authors extract features and train a linear

SVM. This performs better than the spatial-stream of a 2SCNN [100] and a 2D CNN+LSTM [110]

(82.3% vs. 72.6% vs. 71.1% top-1 accuracy). However, it does not perform as well as the full

two-stream network which achieves 88.0%.

33

CHAPTER 2. BACKGROUND

Long-term Convolutions (LTC, 2016) Varol et al. [246] investigate the effect of training 3D

CNNs with longer clips. They experiment with a relatively simple 3D CNN architecture composed

of 5 3D convolutional layers with 3×3×3 kernels followed by 3 fully connected layers. They

construct 2 variants of the network: a 16f network taking in 16 frames of dimensions 112×112,

and a 60f network taking in 60 frames of dimensions 58×58. The reduction in spatial dimension

in the 60f network compared to the 16f network is so that the number of parameters between the

networks is comparable. The 16f network achieves 48.4% accuracy on UCF-101 when trained on

RGB frames alone, whereas the 60f network achieves a +8.6% increase (57.0%). When comparing

the networks trained on optical flow, the 16f network scores 66.8% and the 60f network 74.8%.

These results indicate that training on longer clips is beneficial for action recognition.

Inflated 3D Convolutions (I3D, 2017) Carreira and Zisserman [170] collected a new large

scale dataset, Kinetics [183] and introduce a new 3D CNN called the Inflated 3D Convolu-

tional Network (I3D). Like the 2SCNN [101], I3D has two-streams, both instances of the BN-

Inception [117] architecture, one for optical flow and one for RGB. Both streams benefit from

ImageNet pretraining through a process called kernel inflation which bootstraps a 3D convolu-

tional kernels from a 2D one (originally proposed by Feichtenhofer et al. [139]). This is done by

copying the 2D kernel weights over the temporal dimension and dividing their values by 1/T

where T is the temporal extent of the kernel. This yields a 3D kernel that outputs the same value

as the corresponding 2D kernel it was constructed from when run on a video composed of a static

image. The benefit of using inflated 2D kernels pretrained on ImageNet vs. training from scratch

is evaluated on Kinetics and is found to yield a 2-3% increase in top-1 accuracy for the RGB,

optical flow and two-stream variants of the model. I3D is evaluated against 3 other models: an

LSTM atop of a frame-wise CNN feature extractor; an earlier 3D CNN, C3D; the two-stream

CNN; and a two-stream CNN fused by a 3D CNN on top of the features extracted by the streams

over the entire video. All architectures are based on BN-Inception except C3D and are trained

end-to-end. They find that I3D exceeds the performance of all other models on all modalities

(RGB, flow, RGB+flow) across 3 datasets: UCF-101, HMDB-51, and miniKinetics (a subset of the

full Kinetics dataset). One of the most interesting experiments trains an RGB I3D on Kinetics

or miniKinetics then finetunes on HMDB-51, the performance difference is very large: 74.8%

(Kinetics pretraining) vs. 66.4% (miniKinetics pretraining) indicating the importance of large

datasets for effectively training 3D CNNs.

3D ResNets (2017–2018) Hara et al. [225] investigate the feasibility of training very deep

3D CNNs on a variety of action recognition datasets. Their experiments were mostly based on a

3D version of the popular 2D CNN architecture ResNet [142], though they did also experiment

adapting other popular 2D image CNNs into 3D CNNs [143, 163, 180, 206]. They found that only

Kinetics-400 was sufficiently large to train these deep models, and that UCF-101, HMDB-51, and

34

2.2. VIDEO UNDERSTANDING MODELS

ActivityNet were too small to even train a 3D ResNet-18 from scratch. Additionally, they showed

the feasibility of training up to 200 layer 3D ResNets on Kinetics-400 without overfitting.

A year earlier, Tran et al. [204] also investigated 3D ResNets, performing a manual archi-

tecture search using UCF-101 towards this goal. Due to their choice of dataset, most of their

conclusions are due to the limited dataset size and the resulting overfitting effects instead of

being attributable to the network design choices. The results by Hara et al. [225] empirically

refuted many of the claims of Tran et al. [204] when training on a much larger dataset.

Channel-separated networks (CSN, 2019) Recall that in a 3D convolution, the kernels

are 4D and of shape T ′ × H′ ×W ′ ×Cin, thus they have a large number of parameters and

learn to jointly model correlations across space, time, and channels. Subsequently, they are

very prone to overfitting. A number of approaches have considered mitigating this issue by

factorising the kernels, although this has typically been by splitting a 3D convolution into a 2D

spatial convolution and 1D temporal convolution (this is covered in detail in section 2.2.8). In

contrast, Tran et al. [301] explore factorising the kernel into one part that learns spatio-temporal

correlations on a per-channel basis and another that learns channel correlations. They call

these types of convolutions ‘channel-separated’, although they are better known in the image

understanding community as depth-wise separable convolutions [171]. The name ‘depth-wise

separable’ comes from viewing a 2D convolution kernel as a 3D volume: this decomposition

effectively splits the kernel into a Kronecker product between a 1D kernel in the depth (channel)

dimension and a 2D kernel in the spatial dimensions. The term ‘channel-separated’ merely

generalises this concept to any ND convolution operation.

Channel-separated convolution is implemented using two operations (explained in the context

of a 3D CNN): a convolution with kernels of shape 1×1×1×Cin to learn channel correlations,

followed by a convolution with kernels of shape T ′×H′×W ′×1 where there is a separate kernel

for each input channel (this is an extreme form of group convolution [76] where the number

of groups are set to the number of input channels). Reducing the number of groups in the 2nd

convolution operation performs a less extreme factorisation of the kernel, allowing for joint

modelling of correlations across both space-time and the channel dimensions.

Tran et al. [301] find full 3D convolution outperforms the channel-separated variant at

shallower depths (65.3% vs. 64.6% top-1 accuracy on Kinetics-400 for ResNet-26). However, as

the depth increases, the channel-separated variants exceed the performance of the non-factorised

variant (71.8% vs. 70.6% for ResNet-101). Not only do the deep channel-separated networks

achieve better accuracy, but they have considerably fewer parameters and a largely reduced

computational cost.

Along the same lines, Jiang et al. [276] use channel-separated 1D temporal convolution in

their STM network and find it slightly outperforms the normal, non-channel-separated, variety

(47.7% vs. 46.9% top-1 accuracy on Something-Something). Li et al. [329] also use channel-

separated 3D convolutions, but their kernels are restricted to cover increasingly large temporal

35

CHAPTER 2. BACKGROUND

windows. Similarly, Fan et al. [266] a Temporal Aggregation Module (TAM) which is actually a

form of channel-separated 1D temporal convolution despite not being presented as such.

X3D (2020) Feichtenhofer [319] performs a neural architecture search using coordinate des-

cent [134] to search for an effective family of spatio-temporal 3D CNNs. A network template

based on a 3D ResNet is designed, which is parameterised by a number of expansion factors. Each

expansion factor grows the network in some dimension (temporal resolution, duration of input,

spatial resolution, depth of network, number of channels). The coordinate descent algorithm oper-

ates by selecting the best expansion factor to expand at each step in the optimisation. Each step

starts from the current configuration of expansion parameters, and trains a set of models, each of

which differs from the base configuration in only one dimension, whose value is doubled. Out of

the candidate configurations, the one that yields the best accuracy/computational-cost trade-off

is selected as the new configuration and the process is repeated. The optimisation continues

until a pre-defined computational budget is exceed, at which point the best configuration that

didn’t exceed the budget is selected. The architecture search is performed on Kinetics-400 and the

architecture configuration starts as a 2D network taking in a single frame. The architectures that

are produced through the optimisation form a family that operate within different computational

budgets. Interestingly, despite the base architecture having very few channels, the search does

not choose to expand this until the 10th step of the optimisation process. This is in stark contrast

to many hand-designed models that typically have large channel dimensions. The resulting

networks exceed the previous state of the art on Kinetics-400, Kinetics-600, and Charades. Of

particularly note is the very high performance of the smaller models in the family which use

an order of magnitude fewer FLOPS and parameters against models that achieve a similar

performance.

Correlation Networks (CorrNet, 2020) Wang et al. [351] explore correlation as an alternative

to convolution. Typically, correlation has been used in works on optical flow [111] (particularly in

computing cost-volumes) and in image matching [87]. In its most constrained form, correlation

compares (by means of a dot product) a single voxel within a feature-map to all other voxels in a

local region of size T ′×K2. The output of the correlation for an input of size C×T ×H×W is of

size T ′×K ×K ×T ×H×W. The authors observe that the leading dimensions T ′×K ×K of the

output can be flattened to act as a channel dimension. After flattening the output, correlation can

be used in place of a convolution operation in a network. However, as the correlation operation is

non-parametric, a model using correlation instead of convolution is limited in its ability to learn

discriminative features for the task it is trained for. To address this, the authors propose using

a learnt filter w ∈RC×K×K to modulate the correlation operation. One additional problem with

replacing convolution with correlation is that the number of channels obtained via the correlation

operation is determined by the size of the local region in which it is applied. This is problematic as

replacing convolution with correlation results in a greatly decreased number of channels within

36

2.2. VIDEO UNDERSTANDING MODELS

the network, limiting it representational power. To mitigate this, the authors first split the input

along the channel dimension into multiple groups and then apply a learnable correlation to each

group separately, the results of which are concatenated. For G groups, this creates an output of

size G×T ′×K2, giving a way of controlling the number of channels produced by the layer and

thus its representational power. They replace the factorised spatio-temporal convolution in an

R(2+1)D (based on a ResNet-26) with a 2×7×7 learnable correlation to produce their proposed

CorrNet. This outperforms the baseline R(2+1)D on Something-Something-v1 by +2.4% (47.4% vs.

45.0% top-1 accuracy). They perform an ablation study to determine where the benefits in their

proposal come from. Without the learnable weights, the model achieves 46.5% (only -0.9% worse

than the learanable counterpart) . Without grouping of the input channels, the model achieves

46.1%.

This section surveyed the most influential 3D CNNs, however there is another thread to the

story of 3D CNNs in which spatio-temporal convolution is factorised into spatial convolution

followed by temporal convolution. These works are surveyed in section 2.2.8.

2.2.6 Two-stream networks

Two-stream networks have been one of the most popular architecture patterns for action recog-

nition following their introduction by Simonyan and Zisserman [101]. A two-stream network is

composed of two separate sub-networks: a spatial network and a temporal network. The spatial

network is tasked with learning to recognise actions from appearance, whereas the temporal

network aims to recognise actions from motion patterns. Each network produces action class

scores, and their results are averaged to yield an overall score.

It turns out that this framework is an effective means for boosting performance when applied

existing network architectures. For example, whilst 3D CNNs should be capable of extracting

motion patterns from RGB frames alone, adding an auxiliary 3D CNN operating on stacked

optical flow frames has been empirically shown to improve performance [170]. Since then, a

common theme in the community has been to propose a new network architecture which is then

applied in the two-stream framework to obtain state-of-the-art performance [159, 245, 252, 257,

258, 285].

The original 2SCNN [101] is composed of two relatively shallow VGG networks [89]. Its

spatial stream takes in a single RGB frame and is pretrained on ImageNet which dramatically

improves performance over training from scratch (72.8% vs. 52.3% top-1 accuracy on UCF-101).

The temporal network operates over a stack of optical flow fields. Both streams are trained

independently and are fused during inference by averaging their pre-softmax scores. Simonyan

and Zisserman [101] investigate how many optical flow fields to feed into the temporal stream,

finding a large improvement can be obtained by stacking multiple fields vs. feeding a single field

(80.4% top-1 accuracy on UCF-101 when using 5 fields as input vs. 73.9% for 1 field).

37

CHAPTER 2. BACKGROUND

What type of optical flow and how to feed it to the network? In the original two-stream

paper, Simonyan and Zisserman [101] investigates two ways of feeding optical flow to the temporal

stream. The first stacks optical flow fields computed between adjacent pairs of frames into a

tensor (this is the standard method now used). The second stacks the flow vectors along their

trajectories. The simpler approach, directly stacking of optical flow method works better than

trajectory stacking (81.0% vs. 80.2% on UCF-101). They also investigate mean subtraction as a

simplistic means of removing global motion, demonstrating this improves performance (81.0%

with vs. 79.9% without).

Varol et al. [246] investigate the impact of different optical flow algorithms (Farnebäck’s

flow [22] and Brox’s flow [27]) on the performance of a 3D CNN. On UCF-101 they find Brox

(79.6%) superior to Farnebäck (66.3%), though Farnebäck’s method is considerably faster than

Brox’s.

Sevilla-Lara et al. [239] investigate a variety of optical flow methods, both classical [51,

135] and those based on deep networks [111, 123, 194, 262]. They show the typical measure

of an optical flow method, end-point error (EPE), is not that highly correlated with action

recognition performance. However, they do find that EPE is well correlated with action recognition

performance in areas close to boundaries and with a high magnitude of motion. Of the investigated

methods, they find the large-displacement of optical flow method [51] achieves the highest

performance for action recognition.

Wang et al. [159] investigate using warped optical flow, originally proposed for the hand-

crafted improved dense-trajectory [85] representation. Warped optical flow aims to remove

the global motion due to camera movement by first computing a homography between frames,

rectifying the second and then computing optical flow. They find that warped flow actually

performs slightly worse than non-warped flow (86.9% vs. 87.2% top-1 accuracy on UCF-101).

Although the two networks trained on each modality separately can be combined to marginally

improve performance (87.8%).

Fusing the two streams An obvious extension to the two-stream network is to fuse informa-

tion across the streams and train them jointly. In the original two-stream paper, Simonyan and

Zisserman [101] investigate training the streams jointly, fusing information after the last fully

connected layer by concatenating the features, but they find this overfits on the small datasets

(UCF-101 and HMDB-51).

Feichtenhofer et al. [140] explore a variety of fusion methods (sum, max, concatenation,

convolution, and bilinear pooling [121]) to combine the streams at various points in the network.

In their first experiment, they fuse after the last convolutional layer in each stream. They find

sum, convolutional, and bilinear pooling fusion to work comparably, with max and concatenative

fusion performing worse. As convolutional pooling works slightly better than the next best option

(sum fusion), they choose this as their best fusion strategy and explore where to fuse in the

network. The find that fusing at the later layers performs better than in the earlier layers

38

2.2. VIDEO UNDERSTANDING MODELS

(82.3% top-1 accuracy on UCF-101 at ReLU2 in VGG-M-2048 [89] vs. 86.0% at ReLU5, the last

convolutional layer).

Feichtenhofer et al. [139] investigate fusing the temporal stream into the spatial stream, each

of which are instances of a factorised spatio-temporal 3D ResNet-50 (see section 2.2.8 for details

on the architecture). Their architecture, ST-ResNet, adds residual connections from the temporal

stream into the spatial stream within each network block. Compared to training the streams

separately and fusing their scores, the ST-ResNet improves +3.3% top-1 accuracy on UCF-101

(92.8% vs. 89.5%) and +5.0% on HMDB-51 (65.6% vs. 60.6%).

Feichtenhofer et al. [173] build on their earlier work, ST-ResNet [139], investigating different

fusion strategies between the temporal and spatial streams. They experiment with different

forms of sum and multiplicative fusion. They show that fusing the temporal stream into the

spatial performs better than vice versa (91.3% vs. 83.3% top-1 accuracy on UCF-101). Additionally,

they show it is critically important where the fusion occurs. If the streams are fused in a manner

that disrupts the function of the skip connection (which aims to improve the ease of optimising

deep networks), the model performance is severely reduced (from 90.6% to 75.2% for sum fusion

and 91.3% to 18.0% for multiplicative fusion). In these (bad) configurations, the temporal stream

is added before the skip connection. In contrast, the good configurations fuse within the residual

branch, leaving the skip connections intact.

Approximating optical flow using MPEG block motion Computing accurate optical flow is

typically a costly procedure, so a variety of works have investigated replacing it with alternatives.

One specific approach is to make use of the block motion vectors already present in modern

compressed video. Codecs like MPEG, H264, H265, VP9 all contain block-motion vectors. These

are like a very low resolution optical flow (with a typical resolution of 8×8 or 16×16) that are

used in the compression process.

Varol et al. [246] explore using block-motion vectors from MPEG videos as input to a 3D CNN,

though they find them to be substantially worse than even Farnebäck’s low computational cost

method for computing flow (63.8% vs. 71.3% top-1 accuracy on UCF-101).

Zhang et al. [166] also use block-motion vectors as input, although to a 2D CNN. They also

note a severe performance degradation using block-motion in place of optical flow (74.4% top-1

accuracy on UCF-101 for block motion vs. 81.6% using TV-L1). To bridge the performance gap,

they propose two methods of distilling knowledge from a network trained on optical flow to one

trained on block-motion vectors. The first is to initialise the network trained on block-motion

vectors with the parameters of the network trained on optical flow. This alone yields a large

improvement (78.2% vs. 74.4%). The next is to add an additional cross entropy loss that forces the

logits produced by the network operating on block-motion to mimic that of the network operating

on optical flow. Combined with the bootstrapped intialisation, the model achieves 79.3%, therefore

only dropping 2.3% accuracy compared to using TV-L1 optical flow.

39

CHAPTER 2. BACKGROUND

Wu et al. [251] leverage the block-motion vectors and the RGB residuals present in compressed

video in their CoViAR model. They train a 3-stream network with a stream for the full RGB

images present in I-frames, and two streams operating on RGB residuals and block-motion vectors

present in P-frames (see section 2.2.2 for details on I and P frames). To produce an input for the

temporal stream, they trace back from the last P-frame back to the starting I-frame, cumulatively

summing up the displacements along trajectories. This produces a stack of cumulatively summed

block-motion vectors. Similarly, the RGB residuals are also cumulatively summed up along the

block-motion trajectories. This accumulation strategy improves performance compared to directly

feeding the P-frame information to either the temporal or residual streams. For the temporal

stream, the accumulation procedure yields a +5.6% improvement in top-1 accuracy on UCF-101

(63.9% vs. 58.3%). The residual stream sees a more modest improvement of +0.9% (79.9% vs.

79.0%). Combining all modalities together yields 90.8% vs. 88.4% for the spatial stream alone.

Shou et al. [296] revisit the use of optical flow for improving the performance of a network

using compressed video features in their DMC-Net architecture. They propose a generator

network that takes in block-motion vectors and RGB residuals to produce an approximation of

optical flow. The output of this generator network is used to feed a standard 2D CNN (acting as

the temporal stream in a two-stream set up). This generator is trained both indirectly through

the action classification loss applied to the classification network and via an adversarial loss [92]

in which a discriminator network is trained to distinguish the approximated flow from TV-L1 flow.

DMC-Net improves +1.9% top-1 accuracy on UCF-101 compared to CoViAR [251] (the foundation

on which DMC-Net is based).

Optimising flow for action recognition Recently, many deep models [111, 123, 181, 194,

242, 262] have been proposed to learn optical flow. This opens up the possibility of training an

optical flow network feeding a temporal stream CNN for action recognition in an end-to-end

manner.

Ng et al. [234] are the first to investigate this approach. They use a FlowNet [111] to generate

optical flow which is fed to a ResNet-18 model to perform action classification. A baseline ResNet-

18 model taking in two frames achieves 51.3% top-1 accuracy on UCF-101 and 23.9% on HMDB-51.

Finetuning a FlowNet taking in two frames feeding a ResNet-18 achieves 69.6% on UCF-101 and

42.4% on HMDB-51. They also propose a variant of FlowNet they call ActionFlowNet-2F (2F for

2 frames) where a classification head is attached to the middle of the network which average

pools the bottleneck representation and feeds the result into a linear layer which outputs logits.

Their networks are trained with a loss that combines a standard classification loss with an L2

regression loss on the optical flow. They use EpicFlow [123] to generate pseudo-ground-truth for

use in optical flow loss term. This performs comparably to the finetuned FlowNet on 2 frames,

but as the number of frames is scaled up, it outperforms finetuned FlowNet (83.9% vs. 80.8% on

UCF-101 and 56.4% vs. 50.6%).

40

2.2. VIDEO UNDERSTANDING MODELS

Sevilla-Lara et al. [239] perform a similar experiment, finetuning SpyNet [194] or FlowNet [111]

for action recognition. However, unlike the work by Ng et al. [234], they freeze the temporal

stream, only adjusting the weights of the flow networks. They find this gives a modest boost in

performance on UCF-101 (81.5% vs. 80.9%).

Zhu et al. [311] explore a similar approach to that used by Ng et al. [234]. Except, rather

than using optical flow extracted by another model as pseudo-ground-truth, they actually learn

optical flow in a self-supervised manner through a reconstruction loss. They compare a variety

of training regimes. The first trains the optical flow estimation network and then holds it fixed

whilst training the classification network (83.8% top-1 accuracy on UCF-101). The next set up

trains both the optical flow estimation network and the classification network jointly only using a

classification loss (84.0%). The final set up is like the previous, except the optical flow loss terms

are retained (84.9%). Interestingly, when combining the temporal stream with an appearance

stream, the difference between the last two configurations is even larger (89.8% vs. 88.0%).

Fan et al. [220] unfolds the iterative variational optical flow algorithm TV-L1 [82] into a

sequence of network layers implementing the same operations. This has the benefit of greatly

improving the speed of computing optical flow due to the use of batching implemented in deep

learning frameworks [137, 290]. Their unrolled variant of TV-L1 achieves 55.6% vs. 56.0% for

the normal CPU implementation on HMDB-51 (their unrolled implementation uses far fewer

iterations than is typically used with the CPU implementation). The drop is a bit larger for

UCF-101: 83.5% vs. 85.1%. It’s important to note that this is a direct porting of the algorithm

into a sequence of unrolled layers without any parameters. The authors then make the layers

learnable by converting the convolutional parameters used to implement the image gradient

computation into latent variables that are adjusted during optimisation. These are initialised to

the same values that perform the TV-L1 algorithm. Training these parameters yields a +1.4%

increase on HMDB-51 and a +0.4% boost on UCF-101 compared to using flow computed using

the standard TV-L1 algorithm.

Piergiovanni and Ryoo [291] also explore implementing the TV-L1 algorithm as a sequence of

neural network layers. However, unlike Fan et al. [220] they share the same parameters across

iterations of the network that implements the inner loop of TV-L1. They test their approach on a

subset of Kinetics-400 containing 100k videos. First, they show that a baseline flow CNN achieves

35.4% top-1 accuracy on this subset. Using their trainable TV-L1 flow layers on the input of the

network boosts performance to 37.4%.

Dropping the flow stream for inference Whilst the models that use MPEG flow and the

network versions of TV-L1 help alleviate some of the objections to using optical flow, the two-

stream approach still requires two separate networks which greatly increases the number of

FLOPS and parameters.

Stroud et al. [346] introduce distilled 3D networks, an approach that tries to distil the

knowledge from the temporal stream into the spatial stream, so that during inference the

41

CHAPTER 2. BACKGROUND

temporal stream can be dispensed with. To do this, they simply add an L2 term to the RGB

stream’s loss to encourage its pre-softmax classification scores to match those of the pretrained

temporal stream. Surprisingly, this improves performance over a full two-stream network by

+1.9% in top-1 accuracy on a subset of the Kinetics-400 validation set (75.9% vs. 74.0%). Similar

improvements can be observed on UCF-101 (97.0% vs. 96.8%) and HMDB-51 (78.7% vs 75.9%).

SlowFast networks (2019) Feichtenhofer et al. [268] explore a new type of two-stream

architecture; one where both streams operate on RGB frames. Their idea is that one stream

captures spatial features by operating at a high spatial resolution and a low temporal resolution

(frame rate). The temporal stream can capture motion by operating at a low spatial resolution

and high temporal resolution. Their model without any cross-stream fusion achieves 72.6% top-1

accuracy on Kinetics-400. To fuse across the fast stream into the slow stream they use a strided

1D temporal convolution to reduce the temporal dimension to make the dimensions between

the fast stream compatible with the slow stream. This boosts performance by +2.1%. Their best

performing model using a ResNet-101 backbone with non-local blocks on RGB frames achieves

79.8% on Kinetics-400 compared with 73.9% for the two-stream R(2+1)D and 71.6% for the

two-stream I3D.

At the time of writing, the best performing models [358, 366, 369] on common datasets (Kinetics-

400, Something-Something-v2) have dispensed with optical flow, operating on RGB alone, thus

signalling the death of the optical flow based two-stream framework. This can only be seen as a

good thing as optical flow is slow to compute and makes it harder to deploy models on portable

devices due to the increased latency and computational cost. It remains to be seen whether the

two-stream framework will live on in a different guise, like that of the slow and fast pathways of

SlowFast [268] or whether the future will be single-stream only.

2.2.7 Feature flow

As optical flow has been such a successful input modality for models performing action recogni-

tion [101, 140, 170, 245, 252], researchers have considered whether the flow of network’s features

(or a coarse approximation of it) could be beneficial for action recognition [233, 243, 276, 291, 378].

Before describing these works, it is necessary to learn about different types of flow: Lagrangian

and Eulerian. They both consider the flow of a fluid but from different frames of reference. In

the Lagrangian perspective, the frame of reference is a particle in the fluid. In the Eulerian

perspective, the frame of reference is a fixed point in the space in which the fluid is moving.

Therefore Lagrangian flow measures the velocity of a particle whereas Eulerian flow measures

the velocity of the fluid passing through a point in the space. Optical flow is a type of Lagrangian

flow whereas computing the difference between pairs of frames or features across time is a type

of Eulerian flow.

42

2.2. VIDEO UNDERSTANDING MODELS

Ng and Davis [233] take the Eulerian perspective and propose a ‘difference stream’, a sub-

network operating on the difference between two adjacent RGB frames. The RGB frames are also

fed to an RGB stream where feature map differences across time are computed and fused into

the difference stream using summation (thereby computing Eulerian feature flow). Compared

to an RGB stream alone, this improves +4.4% top-1 accuracy on HMDB-51 (55.5% vs. 51.2%),

however it still underperforms a temporal stream alone that operates on optical flow (64.6%).

Wang et al. [378] also take an Eulerian perspective. They propose the Temporal Difference

Network (TDN) which uses two network blocks to capture short-term and long-term differences

across time. The short-term temporal difference module (S-TDM) computes the difference between

neighbouring pairs of RGB frames which are then downsampled, aggregated across a small

temporal window (5 frames in their implementation) by stacking in the channel dimension,

and processed by a convolutional layer. The output is then upsampled and fused with the

center RGB frame (fusing both spatial and motion features). The long-term temporal difference

module (L-TDM) is placed deeper into the network to compute feature flow and operates on

pairs of adjacent features xt and xt+1. Each feature xt is processed by a channel-separated

convolution (i.e. each kernel has shape k×k rather than k×k× c) producing x̂t in order to help

deal with spatial alignment issues between the features (this is more reminiscent of Lagrangian

flow). The difference between xt and x̂t+1 is then computed and processed by a set of multi-

scale 2D convolutions. Finally, the input features of this module are gated by its output using

element-wise multiplication. They compare their model to TSM [285] and TEINet [331] on

Something-Something-v2 and demonstrate improved performance (67.0% vs. 63.4% vs. 65.5%

top-1 accuracy).

Jiang et al. [276] propose a channel-wise motion module as part of their STM network

that computes a form of Eulerian feature flow. This operates very similarly to the L-TDM

module by Wang et al. [378], except it doesn’t perform a set of multi-scale convolutions after

computing feature differences. Additionally, STM uses 1D channel-wise temporal convolution

unlike TDN [378]. The STM marginally outperforms TSM on Something-Something-v2 (64.2% vs.

63.4% top-1 accuracy).

Sun et al. [243] propose the Optical-Flow guided Feature (OFF), a network layer inspired by

classical optical flow methods (which are a type of Lagrangian flow) that leverage the brightness

constancy assumption. The layer computes spatial derivatives in both the x and y directions

via a Sobel filter [102] and temporal gradients by subtracting the feature at time t+1 from

the feature at time t. These finite differences are combined through concatenation and passed

through ResNet blocks in an OFF branch that is applied to the intermediate outputs produced

by an RGB branch operating on neighbouring frames. The OFF branch places an OFF layer

at each point in the network where the spatial dimensionality is reduced in the RGB network.

The overall OFF network compares favourably to an RGB network alone (90.0% vs. 85.5% top-1

accuracy on UCF-101). However, ensembling the network with a flow stream operating on TV-L1

43

CHAPTER 2. BACKGROUND

further improves performance (95.1%) indicating that the OFF branch is not capturing the same

features that optical flow does.

Piergiovanni and Ryoo [291] investigate a neural adaptation of the TV-L1 algorithm for

computing optical flow. The TV-L1 algorithm is a variational method that iteratively refines an

estimate of the optical flow. Whilst the original TV-L1 algorithm has a number of parameters,

the authors optionally treat these as latent variables which are learnt as part of the network

optimisation. They compare using their TV-L1 flow layer at the input (to compute optical flow)

vs. within the network (to compute feature flow) finding the latter far superior (37.4% vs. 59.4%

top-1 accuracy on a 100k video Kinetics-400 subset). They also compare fixing the algorithm

parameters vs. relaxing them to latent variables which are then learnt. They show that learning

the parameters yields a consistent improvement of about +1% at higher iteration counts. At

lower iteration counts, it makes an even larger difference (e.g. for 10 iterations, the non-learnt

variant achieves 52.4% compared to 59.4% for the learnt variant). They also explore inserting

multiple instances of their trainable TV-L1 layer throughout a network in an effort to learn ‘flow

of flow’. This further boosts performance from 59.4% to 62.3% top-1 accuracy on the 100k video

Kinetics-400 subset. Finally, they show that their flow-of-flow approach can be used with R(2+1)D

to achieve 10x faster inference at higher performance than the original two-stream variant whilst

achieving higher performance (77.9% vs. 75.4% top-1 accuracy on Kinetics-400).

2.2.8 Factorised spatio-temporal modelling

Many works have investigated factorising spatio-temporal modelling into spatial and temporal

modelling at different levels of granularity. At one extreme is splitting the model into two parts,

one that performs spatial modelling and one that performs temporal modelling. Section 2.2.4.2

reviewed works that do this, using a 2D CNN for spatial modelling and a variety of methods for

temporal modelling. Another way of separating spatial and temporal modelling can be seen in the

works on two-stream networks, covered in section 2.2.6, where one stream deals with modelling

spatial appearance and the other with motion. This section reviews works that also factorise

spatio-temporal modelling in other ways.

Factorising network streams and blocks Sun et al. [128] introduce FSTCN, a relatively

shallow (10 layer) network that processes both RGB and the difference between pairs of RGB

frames (known as RGB-diff) in two parallel branches: one for modelling motion and one for mod-

elling appearance. Clips from both modalities are fed through a sequence of spatial convolution

layers. The features extracted from the RGB-diff clips are then fed into a branch consisting of

spatial convolutions followed by temporal convolutions. The features extracted from the RGB

frames are fed into a parallel branch that models appearance alone through spatial convolutions.

The outputs from both these branches are combined through concatenation and are then pro-

44

2.2. VIDEO UNDERSTANDING MODELS

cessed by a sequence of fully connected layers to produce class scores. They achieve performance

competitive with 2SCNN [101] on UCF-101 and HMDB-51.

More recently, Zolfaghari et al. [258] explore a similar technique in their ECO network. Their

ECO model is composed of a 2D CNN backbone whose features are then processed by two parallel

branches. One is a 2D CNN which performs temporal average pooling at the end to capture

appearance features. The other is a 3D CNN that aims to capture motion features. They also

propose a lighter model that doesn’t include a parallel 2D CNN branch which only performs

slightly worse on Something-Something-v1 than their full two-branch model (41.4% vs. 42.4%).

Similar to ECO, both Xie et al. [252] and Tran et al. [245] explore CNNs that have a mix

of 2D and 3D convolutions at different points in the network. Adopting the terminology of Xie

et al. [252], a top-heavy 3D CNN is one where the lower layers are all 2D convolutions and the

higher layers are 3D convolutions (like the light variant of ECO). A bottom-heavy 3D CNN is the

opposite, where the earlier layers are 3D convolutions and the later layers are 2D convolutions.

Xie et al. [252] find that the top-heavy variant of I3D is superior to bottom-heavy I3D not only

in top-1 accuracy on Kinetics-400 (78.0% for top-heavy vs. 76.5% for bottom-heavy) but also in

computational cost (58GFLOPS vs. 86GFLOPS). Interestingly, Tran et al. [245] find the two

styles are comparable (both the best top-heavy and bottom heavy achieve 65.1% top-1 accuracy

on Kinetics-400), although they experiment with a much smaller network in this study (ResNet-

18). This suggests that the network is limited by its capacity rather than the position of 3D

convolutions in the architecture.

Wang et al. [247] also propose a network that factorises appearance and motion modelling into

two parallel branches. However, unlike the previous works [128, 258] this is done at the network

block level and so occurs throughout the network rather than just once. Their network block,

SMART (Simultaneously Model Appearance and RelaTion), has two branches: an appearance

branch and a relation branch. The appearance branch performs a 2D convolution and the relation

branch performs a 3D convolution. This block is then used in place of 3D convolution within a

3D residual network. They replace the last 3D convolution in each residual block with a SMART

block. The results on an RGB-only network on Kinetics-400 demonstrate a +2.1% improvement

in top-1 accuracy (69.2% vs. 67.1%) compared to a normal 3D residual network. As the network is

also quite small (based on a 3D ResNet-18), they can also train it using the TSN input sampling

strategy which further boosts performance (70.7% with TSN vs. 69.2% without).

Zhu et al. [310] introduce the Approximated Bilinear Module (ABM), inspired by the bilinear

layer [121]. Bilinear layers aim to capture global pair-wise feature interactions through an

outer product between feature vectors a ∈ RC1 and b ∈ RC2 which is then combined by a learnt

weighting matrix w ∈ RCout×C1×C2 . The output y ∈ RCout of the bilinear layer is computed as

yk =∑
k,i, j w(k,i, j)aib j. Clearly w has a very large number of parameters, which makes this layer

susceptible to overfitting. The authors propose approximating this operation by factorising the

weight w(k,i, j) =
∑

r u(k,r) p(a)
(i,r) p

(b)
(j,r). Replacing the original bilinear operation with this factorised

45

CHAPTER 2. BACKGROUND

version yields the ABM. The authors explore a variety of ways of feeding temporal features

into their approximated bilinear module. The best of these takes features concatenated across 3

time-steps as input (this variant is called ABM-C). They experiment with two architectures, a

2D ResNet and an I3D, placing ABMs at regular positions throughout the network backbones.

Their ResNet model performs better than TSM on Something-Something-v1 (47.5% vs. 44.8%

top-1 accuracy) when using a single RGB stream.

Liu et al. [331] add motion-enhancement module and channel-wise 1D temporal convolution

at the beginning of each block in a 2D ResNet. The motion-enhancement module takes in two

frame features and collapses their spatial dimensions by global average pooling. It then computes

the difference between these features and passes them through a sigmoid layer which is used to

gate the earlier frame’s spatial features. This is somewhat similar to the squeeze-and-excitation

operation by Hu et al. [226], except the channel attention is conditioned on the difference between

frames rather than on a single frame. Their baseline 2D ResNet achieves 19.7% top-1 accuracy

on Something-Something-v1. This is boosted to 46.1% by incorporating the 1D channel-wise

temporal convolution and to 47.4% by the further addition of the motion-enhancement module.

Factorising 3D convolution There has been a lot of work in factorising 3D convolution into

consecutive spatial and temporal convolutional modelling. The most common way of doing so is

to split the 3D convolution’s kernel w : T×K ×K ×C into a spatial kernel wS : 1×K ×K ×C and a

temporal kernel wT : T ×1×1×C. The 3D convolution is then approximated by applying spatial

convolution with wS followed by temporal convolution with wT . This is not a true decomposition

as w cannot be represented as the Kronecker product between wS and wT since both capture

correlations in the channel dimension. If only one of the kernels captured channel correlations,

then it would be possible to represent w as a Kronecker product.

Feichtenhofer et al. [139] (2016) were the first to factorise 3D convolution, adapting a ResNet

by replacing the spatial convolutions within the blocks of a ResNet with factorised spatio-

temporal convolutions in the deeper layers. They call this architecture Spatio-Temporal ResNet

(ST-ResNet). This is used in a two-stream framework on both RGB and optical flow inputs. The

motion stream is fused into the spatial stream by sum fusion at each spatial scale. The model is

evaluated on UCF-101 and HMDB-51 and outperforms both the two-stream network [101] and

the two-stream convolutional fusion network [140] (93.5% vs. 89.5% vs. 92.5% top-1 accuracy for

UCF-101 and 66.4% vs. 60.6% vs. 65.4% top-1 accuracy for HMDB-51).

In a similar vein, Qiu et al. [192] introduce P3D (2017), which use similar adaptations

to ResNet blocks. They explore 3 different types of spatio-temporal decomposition. The first

type (P3D-A) performs a straightforward factorisation of a 3D convolution into a spatial 2D

convolution followed by a 1D temporal convolution . This is almost identical to the adaptation

made by Feichtenhofer et al. [139] in the later convolutional layers of their ST-ResNet. The

differences are that Feichtenhofer et al. [139] don’t keep the 1×1 channel-reducing convolutions

at the end of each block, the ordering of temporal and spatial convolutions is switched, and P3D

46

2.2. VIDEO UNDERSTANDING MODELS

does not use optical flow. The second type (P3D-B) performs a 2D spatial convolution and a 1D

temporal convolution in parallel, whose results are combined through sum fusion. Their final

type (P3D-C) performs spatial convolution, followed by temporal convolution in a residual branch.

They compare their results to a ResNet-50 2D CNN that is trained with single frames. Their

models are evaluated on UCF-101 by extracting features after pre-training on Sports-1M and

learning a linear SVM. Their P3D variants improve over the baseline ResNet-50 network from

80.8% to 83.7% for P3D-A, 82.8% for P3D-B, and 83.0% for P3D-C.

Tran et al. [245] (2018) also explore spatio-temporal factorisation of ResNets in an architecture

called R(2+1)D. This is very similar to P3D, except only one type of factorisation is used in R(2+1)D

(very similar to P3D-A). Unlike P3D, R(2+1)D is finetuned on UCF-101 and therefore achieves a

higher performance (93.6% vs. 88.6% top-1 accuracy both using Sports-1M pretraining). Using

Kinetics instead of Sports-1M for pretraining further boosts performance on UCF-101 (96.8%

vs. 93.6%). The authors also apply R(2+1)D in a two-stream framework; the results on UCF-101

are fairly comparable to RGB only (97.3% vs. 96.8%) but the two-stream set-up yields quite an

improvement on HMDB-51 (78.7% vs. 74.5%).

At the same time as R(2+1)D, Xie et al. [252] also investigated spatio-temporal factorisation

of 3D convolution. Though they use an I3D instead of a 3D ResNet. They perform an investigation

of the average magnitude of the kernel weights across the temporal dimension at different

layers in an I3D. They show that in the lower layers, the central component of the kernel has a

much larger norm than the rest of the kernel (i.e. these kernels are mainly dedicated to spatial

modelling). The deeper the layer, the more the norm of the components are uniform across the

temporal dimension of the kernel (i.e. deeper layers are learning spatio-temporal patterns). This

is particularly notable since the kernels in I3D are initialised by replicating 2D kernel weights

over time, so they begin with an equal magnitude at all time-offsets in the kernel. They then

convert the I3D architecture into a factorised spatio-temporal 3D CNN called S3D by replacing

the 3D convolutions with 2D spatial convolution followed by 1D temporal convolution (in exactly

the same manner as Tran et al. [245] do for R(2+1)D). This alone brings improvements over

I3D on Kinetics-400 (72.2% vs. 71.1% top-1 accuracy). They further improve on this by adding a

channel-gating mechanism (very similar to a spatio-temporal extension of the squeeze-and-excite

operation [226]) which first pools the input feature map over space and time, feeds this to a linear

layer whose output is then passed through a sigmoid and used to gate the channels in the input

feature. This is added after every 1D temporal convolution in the network and further boosts

performance (74.7% vs. 72.2% top-1 accuracy on Kinetics-400).

Zhao et al. [255] convolve features along their trajectories, extracted via optical flow, as

part of a factorised spatio-temporal 3D convolution block based on the S3D [252] architecture.

Their motivation is to adapt trajectory-pooling [132] for convolution. They aim to convolve over

the same physical 3D point across time. This is accomplished by using a type of deformable

convolution [172] which replaces the regular sampling grid with an irregular grid determined by

47

CHAPTER 2. BACKGROUND

the optical flow.10 They use a MotionNet [311] to extract optical flow. This is finetuned along with

the optimisation of the network performing action recognition. It performs marginally better

than the baseline S3D that they adapt on Kinetics-400 (77.8% vs. 76.9%).

Lin et al. [285] (2019) introduce a temporal-shift module that is inserted between consecutive

layers of 2D convolutions. A portion of the input feature-map’s channels (typically 1/4) are

shifted across time. One half are shifted forwards in time and the other are shifted backwards

in time. The subsequent layer’s 2D convolution will then incorporate information from 3 time-

steps. Surprisingly, this is actually equivalent to a restricted form of factorised spatio-temporal

convolution with a fixed kernel in the 1D temporal convolution. Not only is this simple to

implement, it also takes advantage of the highly optimised implementations of 2D convolution in

modern deep learning frameworks, and it performs exceptionally well (47.2% top-1 accuracy for

TSM modified ResNet-50 vs. 41.6% for an inflated 3D ResNet-50 on Something-Something-v1).

Sudhakaran et al. [348] introduce a gated-form of temporal-shift conditioned on the input fea-

tures. Compared to TSM, they achieve a +3.4% boost in top-1 accuracy on Something-Something-

v1 (50.6% vs. 47.2%), albeit with different backbones.

Given the success of the temporal shift module, recent works [318, 344] have investigated

learning the shifting component, effectively loosening the restrictions on the factorisation that

TSM implements.

Shao et al. [344] (2020) learn how far to shift the channels over time in their proposed

Temporal Interlacing Network (TIN). This is accomplished by learning a temporal offset t ∈ R
conditioned on the pooled input. As this is a real number and the frames are sampled at discrete

intervals, a way of interpolating between the time-steps is needed. Two feature maps are produced

by shifting the channels by btc and bt+1c time-steps, and then the final output is the result of

interpolating between the two using the fractional component of t. On top of this, the authors

add a form of self-attention (similar to the squeeze-and-excite operation [226]) to modulate the

channel-dimension of the time-shifted features. Compared to TSM, TIN improves performance

on Something-Something-v1 (47.0% vs. 44.8% top-1 accuracy).11

Concurrent work by Fan et al. [318] also investigates learning shifts, although they explore

shifting over all dimensions and not just time. Their proposed RubiksNet replaces the fixed

temporal shifts in TSM with a learnt spatio-temporal shift. Unlike Shao et al. [344], the shifts are

not conditioned on the input feature, but are instead learnt as latent parameters of the operation.

They perform trilinear interpolation in a similar fashion to Shao et al. [344] to make the shifting

operations differentiable. As they shift all dimensions, there is no need for any 2D convolution any

more as it can be emulated by shifting channels across the spatial dimensions and processing the

shifted features by 1×1×1×c channel-wise convolution. On Something-Something-v2, RubiksNet

10This is different from the typical application of deformable convolution which actually learns the sampling grid
as a set of latent parameters.

11TIN is compared to earlier results for TSM. A later version of the TSM paper achieves 47.2% on Something-
Something-v1 due to better hyperparameters, it seems reasonable to expect TIN would also see improved performance
using these hyperparameters too.

48

2.2. VIDEO UNDERSTANDING MODELS

achieves 59.0% top-1 accuracy vs. 58.8% for TSM at half the GFLOPS. At comparable FLOPS

and number of parameters, TSM only obtains 49.3% accuracy.

Each of the shift operations described above can be interpreted as different parameterisation

of a 3D convolution. However, shifting is but one method for doing this.

Piergiovanni and Ryoo [293] (2019) parameterise a 1D channel-wise temporal convolution

with 1D Gaussians by learning a mean and variance for each kernel. A number of these kernels

are learnt and the outputs from each convolution are combined through a learnt weighted average.

Combined, these operations form a Temporal Gaussian Mixture (TGM) layer. A model is built

by stacking a number of TGM layers on top of one-another. The model is fed frames features

extracted from a frozen I3D and is tested on longer videos from Charades, achieving 22.3%

mAP compared to 17.2% for an I3D baseline. Piergiovanni et al. [292] perform an evolutionary

neural architecture search for small video networks. At each step, a variety of modifications are

considered, including replacing the type of spatio-temporal convolution with full 3D convolution,

2D spatial convolution followed by either 1D temporal convolution, or a TGM layer. They find the

evolved architectures make heavy use of the factorised variants at lower layers of the evolved

architectures, and that full 3D convolution is preferred at the deepest layers.

These works demonstrate the potential of constrained forms of factorised spatio-temporal

convolution.

2.2.9 Attention and Transformers

Whilst attention has seen regular use in computer vision to improve model performance [231],

it has not been a foundational operation on which models have been built. In contrast, an

architecture called the Transformer [205], introduced for language translation, uses attention

as a core operation and has been so successful as to become the de facto architecture in NLP.

Recently, transformers have started to see success in computer vision, including action recognition.

Transformers employ self-attention, a form of attention mechanism where the attention weights

are derived from the same inputs they are applied to. This section surveys early work using

self-attention as an additional operation to boost performance of CNNs and more recent work

where CNNs are completely with transformers.

Self-attention The attention mechanism proposed in the transformer [205] takes inspiration

from a dictionary where a set of keys are mapped one-to-one to a set of values. They propose a

soft version of a dictionary lookup where the dictionary is composed of a matrix of keys k ∈RN×Ck

and a corresponding matrix of values v ∈RN×Cv . Each row of the key matrix corresponds to the

same row in the value matrix. Together, the key and value matrices are often referred to as the

memory being queried. To use the dictionary, a query vector qi ∈RCk is compared against all the

keys in k to produce an attention vector ai ∈ [0,1]N . The attention vector ai is used to compute

a weighted sum of the values aiv which constitutes the retrieved value. Typically a number of

49

CHAPTER 2. BACKGROUND

queries are constructed and stacked into a matrix q to compute multiple look-ups in parallel.

Three linear layers are used to remap the inputs into queries, keys, and values respectively. A

popular usage of this attention mechanism is called self-attention where q,k,v are derived from

the same feature tensor.

Self-attention within CNNs Wang et al. [249] investigate using self-attention at multiple

points throughout a 2D ResNet (though they call it a non-local block). The spatio-temporal

features of shape T ×H ×W ×C are reshaped into THW ×C for input into the self-attention

operation. Compared to a 2D ResNet baseline, the addition of 10 self-attention blocks yields a

+2.5% increase in top-1 accuracy on Kinetics-400 (74.3% vs. 71.8%)

Guo et al. [364] investigate factorising space and time in self-attention. In a traditional self-

attention operation applied to spatio-temporal features, time and space are combined resulting

in a 2D tensor of shape THW ×C which is then fed into the self-attention operation. In contrast,

their factorised approach applies a spatial self-attention operation within each time-step followed

by a temporal self-attention. This change alone only yields a minor improvement over full spatio-

temporal self-attention (61.0% vs. 60.6% top-1 accuracy on Something-Something-v2). Though

they also introduce a parallel channel self-attention operation that boosts performance by another

1.3% over just factorised spatio-temporal self-attention operation (62.3% vs. 61.0%).

Transformers for action recognition Early work using transformers in video mostly focused

on the task of joint video and language modelling [286, 300] or to perform modelling on top of

spatial features [270]. These works used CNNs to produce visual features from video frames

to feed to a transformer. In contrast, recent works have investigated replacing CNNs with

transformers [358, 359, 367]. But why would this be desirable? One of the main attractions of

CNNs are their shift-invariance inductive bias that come from the use of convolutions.12 This

leverages the geometric grid structure of image and video to enable a great parameter reduction

making networks both more computationally efficient and less prone to overfitting. Transformers

throw this structure out, instead operating on sets of vectors. This is both good and bad—it is

good because transformers are a more general architecture, and CNNs might not necessarily

be the optimal model structure for the tasks that one aims to solve; it is bad because useful

invariances now have to be learnt from the data, making the transformer an architecture much

more prone to overfitting.

Naturally, it was just a matter of time before transformers were applied to video understand-

ing tasks. Multiple concurrent works [358, 359, 367] all explore extending ViT, an adaptation of

the transformer for images, to video for action recognition. However, this is computationally chal-

lenging as the self-attention operation has computational complexity quadratic in the number of

input tokens. This makes a direct application of ViT model to video difficult due to the additional

12Whilst convolution is shift-invariant, modern CNNs that make use of down-sampling methods typically break
shift-invariance [308].

50

2.2. VIDEO UNDERSTANDING MODELS

time dimension. Thus, these works explore factorising the attention part of the model to reduce

the computational cost (this is very similar to the works factorising the kernel in 3D convolu-

tions [192, 245, 252]). All works investigate splitting the self-attention block into two consecutive

blocks: one performing spatial attention within the frame and one performing temporal attention

across time at the same spatial location. Interestingly their results are conflicting: Bertasius

et al. [359] find this factorisation performs better than a joint spatio-temporal attention (78.0% vs.

77.4% top-1 accuracy on Kinetics-400); Li et al. [367] also find the factorisation superior (77.5% vs.

77.7% top-1 accuracy on Kinetics-400); whereas Arnab et al. [358] find the factorisation performs

worse (78.8% vs. 80.0% top-1 accuracy on Kinetics-400);

Besides this factorisation, Arnab et al. [358] also factorise the model at different levels of

granularity. At the coarsest grain, they split the entire network into two parts, they call this

a factorised encoder: one transformer performs spatial modelling on each frame to produce a

vector representation which is fed into another transformer that performs temporal modelling.

This performs better than the factorisation of the self-attention operation but worse than joint

spatio-temporal attention on Kinetics-400 (78.8% vs. 77.4% vs. 80.0% top-1 accuracy). Interest-

ingly though, the best results they report on Something-Something-v2 and EK100 both use the

factorised encoder. This conflicts with the past body of work suggesting that interleaving spatial

and temporal operations generally leads to better performance compared to performing spatial

and then temporal modelling separately. Neimark et al. [370] also study a similar set up as

the factorised encoding, achieving an almost identical performance (78.6% top-1 accuracy on

Kinetics-400)

Arnab et al. [358] also consider splitting up the heads in the multi-head version of self-

attention to perform spatial and temporal attention respectively. This performs the worst of all

their investigated factorisations (76.3% top-1 accuracy on Kinetics-400). Bertasius et al. [359]

explore different forms of attention in addition to the spatio-temporal factorisation. They also try

spatial only attention, sparse local and global attention, and axial attention [272]. All of these

perform worse than either joint or factorised spatio-temporal attention.

Liu et al. [369] adapt the Swin Transformer [368] to video for action recognition. The Swin

transformer splits the input image (or video) into a number of windows within which the self-

attention operation is applied. Even and odd layers use different windowing patterns which

enables information to flow across windows. Their best model pretrained on ImageNet-21k

dataset [53] achieves 84.9% on Kinetics-400 which beats the comparable ViViT model (81.3%). As

of writing, these are the best results on Kinetics-400, suggesting that transformers are on the

cusp of supplanting CNNs for large-scale action recognition.

2.2.10 Long-term temporal modelling

The works discussed up until now have dealt with short videos as scaling to longer videos is very

challenging due to computational challenges. Regardless, the following works attempt to tackle

51

CHAPTER 2. BACKGROUND

longer videos (between 30s–120s).

Long-term Feature Bank (LFB) Wu et al. [305] propose a long-term feature bank that

aims to support action recognition of a clip using its surrounding video context. The feature

bank consists of a set of object or person features (dependent on dataset) for each time-step

across a large temporal extent (up to 120s for AVA [224], 40s for EK55 [216], and 30s for

Charades [158]). A detector network is run at regular intervals across the video to produce a

set of candidate object/person bounding boxes. A pre-trained 3D CNN is applied to the video to

extract spatio-temporal features which are RoI-pooled [179] using the boxes from the detector to

obtain object/person features. To support action recognition, the feature bank is queried with a

‘short-term feature’ produced by a standard 3D CNN run on a clip. The idea being that the feature

bank will provide supporting information to that contained in the clip (e.g. an object is currently

being cut but it is obscured. 20s ago a lemon was taken from the fridge, so it is likely that the

thing being cut is a lemon). To query the feature bank, a variant of the transformer [205] is used

where the short-term feature is the query and a subset of the features within the feature bank

over a temporal window centered on the clip act as the memory. Both the original short-term

feature and the output of the lookup operation are concatenated and fed into a classifier to

produce the final model output. In training, both the 3D CNN that extracts short term features

and the transformer implementing the lookup operation are optimised. Though, the 3D CNN

used to extract the features that populate the feature bank remains frozen. On AVA, the addition

of the feature bank improves performance from 22.3% mAP to 25.5% (with 60s temporal support)

Similarly on EK55, the addition of feature bank improves top-1 accuracy on verbs from 49.8% to

51.7%, on nouns from 27.8% to 29.2%, and actions from 19.0% to 21.4%.

Timeception Hussein et al. [274] introduce Timeception, an architecture built from stacked

Timeception layers that each perform multi-scale channel-separated convolutions for action

recognition on longer videos. The Timeception layer first splits the input into a number of groups

along the channel dimension, feeding each group to a separate Timeception module. This module

is an adaptation of an Inception block [129] to the temporal domain. It is composed of a set of

channel-separated convolutions operating on the same input in parallel, each with different

kernel sizes (1, 3, 5, 7) to capture temporal patterns at different resolutions. The kernels are

either implemented using standard convolution (i.e. the kernel with a temporal extent of 7

time-steps consists of 7 weights) or via dilated convolution, where all kernels have 3 weights

that are spaced at different dilation factors (e.g. for a temporal extent of 7 time-steps, the kernel

has a dilation factor of 3). In addition to the convolutions, a temporal max-pooling operation

with a temporal window of 2 time-steps also operates in a parallel branch. The outputs of the

convolutions and max pooling are combined by concatenating them in the channel dimension

52

2.2. VIDEO UNDERSTANDING MODELS

and are channel-shuffled.13 Four Timeception layers are stacked to produce a network that take

spatial features extracted from a pre-trained CNN (either ResNet-152 or I3D). They explore

operating on sequences composed of up to 1024 frames using I3D or 128 frames for ResNet-152.

On Charades, Timeception boosts performance from 22.8% mAP to 31.6% using ResNet-152

and from 32.9% to 37.2% using I3D. A comparison is also performed between the different

configurations of the convolutions in the Timeception module (using full vs. dilated kernels),

however they find them to perform comparably. Additionally, they compare the benefit of looking

over longer temporal horizons using I3D, mAP improves from 33.9% using 256 frames, to 35.5%

using 512 frames to 37.2% using 1024 frames.

VideoGraph Hussein et al. [275] introduce VideoGraph, a model for representing minutes-long

video through a graph of latent concepts and their relationships. The graph’s nodes aim to capture

‘unit actions’, these are actions that are fairly short in nature (e.g. ‘fry egg’, ‘pour milk’) which can

be combined to form a longer activity (e.g. ‘prepare breakfast’). The edges between nodes aim to

relate unit actions in the context of a larger activity. The model begins by extracting features for

short (8 frame) clips using a pre-trained I3D. The graph is initially composed of a set of latent

node features y ∈RN×C. These are then processed by an attention mechanism which computes

the similarity between each clip xt ∈RC and each node yi ∈RC. A new representation zt ∈RC×N is

formed for each clip xt by weighting the node features y by their similarity values computed in

the previous step. Edges between the node-based clip representation z ∈RT×N×C are learnt using

two types of convolution. The first type is a channel-separated 1D temporal convolution that aims

to model the evolution of an unit-action over time. The second learns inter-node relationships

via node convolution, a 1D channel-separated convolution applied to the node dimension of z.

The resulting graph embedding from these operations is then processed by a linear layer to

produce class logits. VideoGraph achieves 69.5% mAP compared to 67.1% for Timeception on the

Breakfast dataset.

Collaborative Clip Memory Yang et al. [379] introduce a collaborative memory module that

aggregates information across multiple clips sampled from the same video during training. This

is in contrast to the standard approach of training a 3D CNN with a single clip from each video

per batch. First clip features xt ∈ RT×H×W×C are extracted by a 3D CNN. These are then used

to populate a fixed size memory m ∈ RC′×C′
. Clip-specific memories for each feature-map cell

are retrieved by computing the matrix product between a projection of the clip feature and the

memory. These are pooled over space and time and fed through a sigmoid layer and used to gate

the channels of the clip feature. In their experiments, they use 5 clips from each video. Their

memory module boost top-1 accuracy on Kinetics-400 from 75.5% to 76.8%.

13Channel shuffling is a computationally cheaper alternative to 1×1 convolutions for learning inter-channel
relationships. By shuffling the channels, the next set of (non-channel-separated) convolutions are responsible for
learning inter-channel relationships.

53

CHAPTER 2. BACKGROUND

2.2.11 Higher-level modelling: objects and actors

The models discussed so far (excluding long-term feature banks [305]) don’t explicitly represent

the humans or objects in the video they are processing. It is instead expected that the models are

able to extract these visual features if they are useful for action recognition. In contrast, another

body of works [210, 241, 248, 270, 334] explicitly detect humans and/or objects.

Space-Time Region Graphs Wang and Gupta [248] detect objects and people using a class-

agnostic detector trained on COCO [96]. A 3D CNN is used to extract clip features which are

RoI-pooled [179] to obtain features for each bounding box produced by the detector. These

features are used as nodes to form a spatio-temporal graph. Two types of edges are used in the

graph: similarity edges are formed by computing the similarity between node features, spatio-

temporal edges are created by measuring the IoU between bounding boxes in adjacent frames and

adding an edge if the IoU exceeds a threshold. The graph is then processed by a stack of graph

convolutions [184]. A final representation is obtained by pooling over the nodes and concatenating

this with the output of the 3D CNN. This representation is then fed to a linear layer to produce

logits. The whole network is trained end-to-end (including the 3D CNN). On Charades, their

model achieves 36.2% mAP compared to 31.8% for the 3D CNN alone.

Actor-Centric Relation Network Sun et al. [241] propose a similar network, but for spatio-

temporal action localisation. Their Actor-Centric Relational Network (ACRN) runs a person

detector and extracts RoI-pooled features from the output of a 3D CNN for each of them. Before

pooling, the features extracted from the 3D CNN have their temporal dimension removed by

means of a 1D temporal convolution. A relational network [196] is then used to compute the

relationship between the RoI-pooled people features and each spatial cell of the 3D CNN’s feature

map. This is equivalent to building a graph with two types of nodes, actor and feature-map

cell, and only building inter-type edges. The relationship features are organised spatially in the

same way as the feature-map and are processed by a 3×3 convolution to capture relationships

spanning multiple cells. These are then combined via global average pooling. The RoI-pooled actor

features are concatenated with the pooled relation features and fed to a classifier and bounding

box regressor to both classify and localise the action. The ACRN achieves 17.4% average precision

compared to for the baseline 3D CNN 15.5%.

Object Relation Network Baradel et al. [210] introduce the Object-Relational Network

(ORN), a model that detects objects and computes their relationships across space and time

to aid action recognition. A Mask-RCNN [179] trained on COCO [96] is used to detect objects

and extract masks in each frame in the input video. A feature for each object is produced by

concatenating the class scores over the COCO categories, a reduced representation of the mask,

and an RoI-pooled feature from a 3D CNN. For each time-step t, a random time-step in the future

54

2.2. VIDEO UNDERSTANDING MODELS

is sampled t′ ≥ t and the pair-wise object relationships across the frames are computed by a

relational network [196]. This step produces a feature per time-step, which are aggregated using

a GRU. Simultaneously, the 3D CNN features are spatially pooled to produce a feature vector

with a temporal and channel dimension. These are processed by an additional GRU to capture

how the visualises change over time. Both the object and video features coming from the GRUs

are fed into two separate linear layer to produce two sets of logits. These are then combined and

softmaxed to produce the final classification scores. Their model is compared against an inflated

ResNet 3D CNN. The ORN improves top-1 accuracy to 40.9% vs. 38.3% for the baseline on EK55,

37.5% vs. 35.0% on VLOG, and 32.1% vs. 31.3% on Something-Something.

Video Action Transformer Girdhar et al. [270] detect people and use a transformer network

to relate the person features to each cell in a spatio-temporal feature map for spatio-temporal

action localisation. Their model takes in a clip which is fed into a 3D CNN to produce a spatio-

temporal feature and whose center frame is run through a person detector to produce person

bounding boxes. The person bounding boxes are used to RoI-pool the 3D CNN features. A

transformer network [205] then processes the RoI-pooled people features and the spatio-temporal

feature map.14 The memory (keys and values) input to the transformer are derived from the cells

in the spatio-temporal feature produced by the 3D CNN and the people features act as queries.

The Video Action Transformer outperforms a 3D CNN baseline on AVA by +3.6% mAP (24.9% vs.

21.3%). Although it should be noted they use 300 person proposals from the detector to achieve

this performance, which must densely cover the input video.

Spatial-Temporal Interaction Networks Materzynska et al. [334] annotate object and hand

bounding-boxes on all of Something-Something-v2 which they use to train an object and hand

detector, later used to build a graph representation of objects over time. They detect hands and

objects in every frame in a video and associate them across time using a multi-object tracker.

These are represented by a composite feature oi, the concatenation of two types of representation:

a feature derived from an MLP applied to bounding box coordinates and an object-type embedding

(there are three of these: one for hands, one for a class-agnostic object, and one for a null object).

Unlike other works, there is no RoI-pooling to capture object appearance here. The model aims

to completely invariant to the object class and appearance (a somewhat dubious design choice—

object appearance is informative about the affordances offered by the object). A new feature ôi

is produced for each object i by relating it to the other objects j 6= i in the current frame. This

is done by feeding an MLP with the object feature oi and the average of all the other object

features o j. These enriched object features ôi are then connected across time using the object

tracks determined earlier. This is implemented by concatenating the features for object i across

time and using an MLP to produce a feature for the tubelet. A non-local block [249] is used to

14The transformer network actually can viewed as a form of graph neural network. See the review article by
Battaglia et al. [211] for more details.

55

CHAPTER 2. BACKGROUND

aggregate information across tubelets into a fixed size representation. They evaluate the model

on the Something-Something-v2 compositional action recognition task (see section 2.1.2.7 for

details). Their model achieves 37.2% top-1 accuracy, compared to 46.8% for a 3D CNN. When

they fuse the scores of their network with the 3D CNN they achieve 51.5%.

2.2.12 Efficient video understanding

Many models proposed for action recognition have been proposed on the grounds of their effi-

ciency [215, 258, 266, 276, 285, 318, 319, 357, 366]. Most of these involve careful architecture

design that make heavy use of 1×1 convolutions to reduce channel dimensions, channel-separated

temporal convolutions, grouped convolution, and shifting. Detailing these are out of the scope of

this thesis, however there are few works that leverage redundancy across time [266, 357], and

thus are considered within scope.

FASTER recurrent networks Zhu et al. [357] propose using a heavy-weight CNN to extract

rich features every k time-steps, producing representations for intermediate time-steps by

combining past time-steps’ features with the output from a light-weight CNN through a GRU.

They use a R(2+1)D-50 for their heavy-weight model and a ResNet-26 for the light-weight model,

both of which are frozen and used as feature extractors. Their framework demonstrates a good

performance increase over averaging the classification scores: 67.4% vs. 64.0% top-1 accuracy on

Kinetics-400 for 1 clip processed by the heavy-weight model followed by 15 clips processed by the

light-weight model.

bLVNet Fan et al. [266] are also inspired by the redundancy of frames in their proposed Big

Little Video Network (bLVNet). Their network uses an alternating pattern of heavy-weight (big)

and light-weight (little) CNNs to process even and odd frames. Unlike FASTER, the networks

aren’t completely separated, but fuse information across the big and little branches at regular

intervals. This model achieves 33.6% top-1 accuracy on Something-Something-v2 compared to

17.4% for TSN. This is further improved to 46.4% by adding an additional layer of long-range

temporal modelling via a Temporal Aggregation Module (TAM) to the network (see section 2.2.8

for details).

2.3 Time in video understanding

The majority of work on time in video understanding has been dedicated to designing models that

are able to capture temporal signals, which were reviewed in the previous section. This section

surveys works outside of architecture development that use or investigate temporal signals

in videos, particularly in the context of action recognition. Section 2.3.1 considers the role of

datasets in temporal modelling, critiquing popular datasets (UCF-101 and Kinetics) based on

56

2.3. TIME IN VIDEO UNDERSTANDING

others’ experiments demonstrating that static appearance alone is often sufficient to perform

well. Following this, works that aim to address this problem are discussed. Section 2.3.2 looks at

different ways of using time as a training signal through self-supervision.

2.3.1 The role of datasets in temporal modelling

The datasets used to train models for action recognition play a large role in whether models will

utilise temporal signals such as motion patterns and causal relationships to recognise actions. If

these datasets have biases in them that allow them to be solved through appearance alone, then

Static appearance bias in action recognition UCF-101 and Kinetics are prime examples

of datasets that are strongly biased towards appearance features, meaning that learning the

appearance of actions alone is sufficient to solve action recognition on these datasets. Something-

Something, Diving48, and FineGym don’t suffer such strong appearance bias and thus require

models to leverage temporal signals to perform well at action recognition. These claims have

been empirically validated across a variety of works which are explored next.

A common approach to test temporal sensitivity has been to shuffle or reverse frames and

see how the model’s performance changes. If the performance stays the same, the conclusion

is that the model doesn’t leverage temporal signals for classification, but if it drops then the

model does. Zhou et al. [257] compare two TRN models trained on videos with shuffled frames

vs. those that have not been manipulated on both Something-Something and UCF-101. They

find that performance is comparable on UCF-101 (81% → 80% top-1 accuracy) but a large drop

is observed on Something-Something-v1 (30%→20% top-1 accuracy). In a similar test, Xie et

al. [252] measure the performance drop of I3D on Something-Something-v1 and Kinetics-400

when the model is trained on forward-time video and tested on reverse-time video. There is no

performance difference between forward and reverse time videos on Kinetics-400, but there is a

very large drop on Something-Something-v1 (32.5%→15.2% top-1 accuracy). Sudhakaran et al.

[348] perform the same experiment on a GSN model and observe a similar drop in performance

on Something-Something-v1 (47.2%→15.4%).

Huang et al. [227] question what makes a video a video? They observe a great decrease in

performance when the input to a 3D CNN is swapped from a normal clip to one that consists of a

repeated single-frame (79%→54% for top-1 accuracy on UCF-101 and 47%→31% top-1 accuracy

for Kinetics-400). They hypothesise this is due to two factors: a change in the temporal input

distribution to the network and the removal of frames critical for recognition. They attempt to

more accurately assess the performance drop due to the removal of temporal information by

mitigating these two factors. To address the change in the temporal input distribution, they train

a generative model that takes in a single frame and produces a clip that aims to reproduce the

same feature responses in the network as the original video produces. Applying this generator

to uniformly sampled single frames reduces the performance gap between the full and single-

57

CHAPTER 2. BACKGROUND

frame clips considerably (79%→70% for UCF-101 and 47%→38% for Kinetics-400). However,

the generative model alone doesn’t address the issue of picking a bad frame from the video that

doesn’t contain sufficient information to recognise the action. To address this, they pick the

frame that causes the highest response in any class neuron after being fed through the temporal

generator. This further closes the gap to -6% for UCF-101 (79%→73%) and -5% for Kinetics

(47%→42%). These results demonstrate that the performance of the 3D network they analysed

on both UCF-101 and Kinetics can be mostly attributed to static appearance.

Li et al. [230] propose a measure of a dataset’s bias towards a given representation. This is

roughly the ratio between the best performance achieved by any model on that representation vs.

chance performance. Bias in this context isn’t necessarily bad; a dataset will be maximally biased

towards the representation needed to solve the task. They find both UCF-101 and Kinetics-400 to

suffer bias towards static appearance representations (testing object, scene, and people features).

Interestingly, HMDB-51 has lower bias towards static appearance representations than UCF-101,

which may explain why performance on that dataset hasn’t saturated yet.

The works discussed in this section so far emphasise the need to use the right datasets for

training and evaluating models that aim to perform temporal modelling. If models for action

recognition are to avoid recognising actions by appearance biases, the datasets used to train them

need to: i) contain examples with sufficient diversity in appearance within each class; ii) contain

closely related classes.

Avoiding static appearance bias The remaining works discussed in this section aim to solve

some of the problems discussed previously. They aim to build datasets or benchmarks that assess

temporal modelling capabilities.

When building datasets, one needs to think about the relationship between classes within

the dataset, rather than in isolation. It is the interaction between classes that make them hard

to distinguish through appearance alone. The Something-Something dataset mostly gets this

right, they choose classes that are difficult to distinguish between across a variety of facets. They

want models to learn the concept of action completion, so they include ‘pretending’ classes where

the action is not completed in addition to classes where the action is completed. Unfortunately,

not all actions have a pretending variant. They also want models to learn fine distinctions, so

arrange classes into groups of very similar actions (e.g. ‘tilting [something] with [something] on it

until it falls off ’, ‘tilting [something] with [something]’, ‘tilting [something] with [something] on

it slightly so it doesn’t fall down’) and encourage crowd workers to record examples of actions

within these groups using the same objects and in the same environment.

Following their proposed measure of representation bias, Li et al. [230] introduce the Diving48

dataset that aims to be minimally biased towards static appearance features. They measure the

dataset’s representation bias to object, place, and people features and find it ranks low compared

to other datasets.

58

2.3. TIME IN VIDEO UNDERSTANDING

Sevilla-Lara et al. [374] propose a simple method for determining which classes in a dataset

require temporal reasoning. They shuffle frames of videos and ask crowd workers to recognise

the action. If the workers cannot recognise the action, then the class is deemed temporal. They

apply this process on Kinetics-400 and Something-Something-v1 and discover 32 and 18 temporal

classes respectively. A random sample of 50 of the remaining classes are then chosen to represent

‘static’ classes. They train an R(2+1)D on a subset of 40 of either the temporal or static classes.

They then freeze the network’s weights up until the last layer, and finetune two models on each

held-out test set of 10 classes. Interestingly, training on the temporal classes performs comparably

to training on the static classes on the static test set. However, on the temporal test set, the model

trained on the temporal classes greatly outperforms the model trained on the static classes.

Girdhar and Ramanan [322] introduce the CATER dataset (detailed in section 2.1.2.9 on

page 13) which consists of simple synthetic object movements with temporal relationships between

objects as the ‘action’ classes. Whilst not strictly an action dataset, it serves well as a means of

assessing the temporal modelling capabilities of networks since all properties of the generated

video can be controlled. An additional task requires models to output the final location of a

moving golden ball across a grid containing other moving objects which can potentially contain

the ball. This requires models to track objects under occlusion and reason about containment

relationships between objects in the scene.

Ghodrati et al. [222] design a 3 task benchmark aiming to quantify a model’s ability to

leverage temporal information. They propose 3 properties that any good video model should

have: i) sensitivity to temporal asymmetry: models should be able to tell if a video is played

forwards or backwards;15 ii) sensitivity to temporal continuity: models should learn that natural

videos are temporally smooth, iii) sensitivity to causality: models should be able to learn temporal

relationships between events, capturing causality. These properties are each assessed by a

different task. Arrow of time classification (described in more detail in the following section)

is used to assess sensitivity to temporal asymmetry; future frame selection is used to assess

sensitivity to temporal continuity; and action template classification (which is simply action

recognition on Something-Something) is used to assess sensitivity to causality. This benchmark

suite of tasks cannot be solved through static appearance and therefore serve as a more holistic

evaluation of a video understanding model beyond action recognition.

2.3.2 Time as a training signal

The previous section mainly focused on the supervised training of models for action recognition,

but there is an increasing trend to use self-supervision to learn rich features useful for a variety

of tasks, including action recognition [149, 174, 250, 260, 277]. By carefully choosing good self-

supervised tasks that require temporal modelling, training models that only leverage appearance

15Whether models should always be able to determine whether a video is played forward or backwards is challenged
in chapter 4 where time-reversed videos are used as realistic examples to train models.

59

CHAPTER 2. BACKGROUND

can be avoided. Video is particularly well suited to self-supervised learning as it contains many

signals (space, time, and audio) that can be used as learning signals. There is a very large body of

work on this topic, and to keep the section short, only works using temporal signals have been

included. However, as a pointer for interested readers, here are few suggested works on the use of

audio-video correspondence [169, 236, 254, 312, 313] and multi-modal contrastive learning [324,

339]. This section surveys works using temporal consistency, the Arrow of Time (AoT), cycle-

consistency across time, future prediction, and playback speed as means of supervision.

Learning temporal consistency The temporal consistency exhibited in video is a strong

signal that can be used for learning visual representations. One of the most popular forms of

self-supervision using temporal consistency has been a form of jigsaw puzzle. The idea is to

shuffle the frames [149, 174, 186, 212], clips [306], or spatio-temporal patches [260, 280] and

train a network to unshuffle the pieces, thereby learning what natural video looks like.

Another approach is to try to capture temporal progression in a latent space [108, 283, 327].

Agrawal et al. [108] and Knights et al. [327] both learn a visual representation by comparing two

frames in feature space. They supervise the distance between the two frames to be small if the

frames are temporally close, and large if they are not. Kukleva et al. [283] learn an embedding

space as an intermediate feature whilst regressing from a frame to the percentage of the video

that has elapsed. El-Nouby et al. [289] violate temporal coherence by skipping a portion of a video

and train a network to point where the skip occurred.

Alternatively, the fact that clips taken from the same video will be more related than those

from other videos can used as a training signal [108, 361, 371]. Qian et al. [371] use a noise-

contrastive objective [59] with carefully chosen data-augmentations to create different views

of the same video. They apply different spatial data augmentations to two clips from the same

videos to act as positive pairs and use clips from other videos as negatives. Dave et al. [361] also

use a noise-contrastive objective [59] in a more complex setup with two loss terms. A local-local

loss pushes two data-augmented views of the same clip together and views from other clips from

the same video apart. A global-local loss pushes together the representation of a high temporal

resolution short clip and the corresponding part of lower temporal-resolution long clip.

As temporal coherence implies that visuals do not change rapidly, Lai and Xie [284] use this

property to reconstruct a missing frame by pointing to parts of other frames that are used to

reassemble an approximation of it.

Learning to predict the future Learning to predict the future, conditioned on the current

state of the world, has also been used as a way of training models, both in discriminative [222]

and generative [264, 271, 323, 376] setups.

Ghodrati et al. [222] train a model to select the future frame out of a set of candidates that

include a number of distractor frames sampled from earlier parts of the video.

60

2.3. TIME IN VIDEO UNDERSTANDING

Han et al. [271] learn to predict the features of a future frame conditioned on the features of

a past frame using a noise-contrastive loss. The authors build upon this in their later work [323]

which learns to reconstruct the representation of a future frame from a linear combination

of latent prototypes. Suris et al. [376] extend Han et al.’s [271] method to take into account

the unpredictability of the future by embedding actions into a hyperbolic space in which the

geometry allows learning hierarchical representations. Their method allows the model to make

more precise predictions as the model becomes more confident. Diba et al. [264] predict future

frames by convolving the input frame with a kernel conditioned on the input frame.

Learning from time-reversed video Arrow of Time classification, the task of determining

whether a video is played forwards or backwards, has been proposed as a means to learn

video representations [99, 250] and also to assess the capacity of video understanding methods

to understand time [222]. These works closely relate to chapter 4 in which video reversal is

investigated as a means of transforming between action classes.

Pickup et al. [99] were the first to propose AoT classification on video. They collect a small

dataset, named TA-180, of 180 videos from YouTube, selected for their low-level cues that indicate

temporal direction (e.g. explosions, water splashes, gravity) whilst explicitly avoiding high-level

cues (e.g. people and cars usually travel forward). They demonstrate, using hand-crafted methods,

that it is possible to detect whether videos in this dataset are playing forward or backwards.

In their follow-up work, Wei et al. [250] use AoT classification as a means of self-supervision

to learn a video representation, using videos from Kinetics-400 without action labels. They use

a simple network architecture that extracts features from an optical flow input using a 2D

CNN. They apply this to multiple optical flow inputs derived from the same video and stack

the resulting features in the channel dimension. This intermediate feature is then processed by

further 2D convolutional layers, allowing the architecture to learn temporal patterns.

As in all self-supervised learning, they note the importance of determining whether there are

hidden signals leaking information about the AoT as the model can use these signals instead

of the content of the video to solve the task. They study three artificial signals that might leak

AoT information: black framing, camera motion and inter-frame coding. Black framing refers

to the black letter-box regions commonly found in videos. After compression it is possible that

non-zero image intensities in the black regions will cause AoT-dependent signals in the optical

flow. They test black-frame removal on UCF-101 observing a decrease from 98% to 90% in AoT

prediction indicating that black framing leaks some information about temporal signal. The effect

of camera motion is tested by first removing black framing then stabilising a subset of UCF101

videos, AoT prediction performance drops from 88% to 75% after removing the camera motion,

suggesting cinematic camera motions are not symmetric in time and thus are correlated with the

AoT. To investigate the effect of codecs employing inter-frame compression, the authors manually

collect videos from Vimeo that are shot in MJPEG, an extremely primitive codec composed of a

sequence of JPEG images unaffected by inter-frame coding. They re-encode the MJPEG media to

61

CHAPTER 2. BACKGROUND

h264, which does use inter-frame compression, and find that AoT classification performance is

consistent across both encodings of the dataset. They conclude that h264 encoded media can be

utilised without risk of the encoding leaking AoT information.

Finally they attempt to use AoT classification as a self-supervised pretraining for action recog-

nition and demonstrate 87.9% and 55.4% top-1 accuracy on UCF-101 and HMDB-51 respectively

after finetuning their pre-trained model. Of particular relevance to chapter 4 is their human

perception study of time-reversed videos on Kinetics, showing humans achieve a 20% error-rate

classifying a video’s AoT, thus demonstrating that a subset of the dataset contain realistic videos

when reversed.

Time-reversal has also been used to learn how to reverse changes in the environment. Nair

et al. [337] use time-reversal for training a robot arm to put two blocks together by observing these

blocks exploding apart in simulation. The blocks start in the goal state (i.e. they are together) and

an explosive force is applied to drive the blocks apart. The trajectories of the blocks are recorded.

These are used to train a visual model that learns to predict the reverse trajectories that can be

used by a robot to reconstruct the goal state.

Learning from cycle-consistency in time Cycle-consistency in time refers to a constraint

applied to the results of a reversible process that is applied first forwards in time and then

backwards or vice versa. Self-supervised tracking [303, 304, 325] is an illustrative example of

this concept. Consider tracking a patch in a video forward in time and then backwards in time. A

perfect tracker would end up in the same place as it began but a bad tracker would suffer drift

and end up in a different place to where it began. This error between the starting and ending

position of the tracked patch can be used in a loss to supervise a network. However, tracking is

not the only application in which cycle-consistency in time can be employed.

Dwibedi et al. [265] implicitly learn the correspondence between frames of two videos of the

same action through a cycle-consistency loss. They learn an embedding space of frames where the

trajectory of the two videos in the embedding space are compared. If the soft nearest-neighbour

of the frame i in video V1 is the frame j from video V2, then the cycle-consistency loss penalises

the case where the soft nearest neighbour of frame j from video V2 is not frame i in video V1.

Learning the natural speed of video Learning the speed at which a video is played [314,

326, 352, 356, 360] has recently been investigated for learning video representations. These

works change the speed of a video fed to a network which is then tasked with predicting how

the speed has been manipulated. Chen et al. [360] observe that this is sub-optimal as videos can

naturally be at different speeds. They instead propose a relative speed task, in which the same

video at two different speeds is compared. Some of these works [314, 352] use a cross entropy

loss to determine the speed up, whilst others [352, 356, 360] use a noise-contrastive loss to push

clips at different speeds from the same video together and everything else apart in an embedding

space. Jenni et al. [326] integrate speed classification in addition to distinguishing between videos

62

2.4. WORKS RELATED TO VIDEO UNWEAVING

that have been manipulated via other temporal transformations including time reversal and

frame skipping.

2.4 Works related to video unweaving

This section covers works related to activity-story unweaving, a new task proposed in chapter 6.

Event segmentation and boundary detection Event segmentation is the task of splitting

up a video into a sequence of discrete events without any labels. In their seminal work, Zacks et al.

[18] define an event as “a segment of time at a given location that is perceived by an observer to

have a beginning and an end”.

Aakur and Sarkar [259] propose a self-supervised method for detecting event boundaries

which is used to segment video into events. They train an LSTM that takes in a frame feature

extracted by a CNN at time t to predict the frame feature at time t+1. An event boundary

is detected when the prediction error of the future frame exceeds a dynamically-set threshold.

Specifically, the threshold is set to be 50% greater than the mean prediction error over the last

200ms.

Shou et al. [375] introduce a new dataset for supervised event-boundary detection, annotating

videos from Kinetics-400 [183] with event boundaries. The authors adapt and test a variety of

existing methods [144, 147, 217, 343] for supervised event-boundary detection. However, they

find that a simple binary classifier taking in two inputs, the average features extracted by a

2D CNN over 5 frames from before and after the candidate event boundary, outperforms all the

other methods by a large margin. The authors also explore detecting event boundaries using an

unsupervised method, PredictAbility, that measures the change in features about a candidate

boundary. Spatial features are extracted by a pretrained CNN for a number of frames before

and after a candidate boundary t. An error e(t) is computed by measuring the average squared

difference between the temporally-averaged spatial features. A classical blob detection algorithm

using the Laplacian of Gaussian (LoG) is then applied to the video’s error signal e(t). First, the

error signal is convolved with the LoG kernel to produce the signal L(t) = e(t)∗LoG(σ) whose

derivative L′(t) is computed. Event boundaries are then determined by the negative-to-positive

crossings in the signal L′(t).

Action segmentation and detection Activity/action segmentation and detection are both

tasks whose goal is to temporally localise actions within a video, though their problem formula-

tions are slightly different. In action segmentation [144, 185, 267, 283, 353, 373] the goal is to

assign an action label to every frame. In contrast, action detection [127, 156, 198, 293] produces a

number of segments of video, possibly overlapping, that each depict a single action; not all frames

in the video need to be labelled with an action as in segmentation. The gap between these tasks

can be reduced by introducing a ‘background’ class, fulfilling the same role as unlabelled frames

63

CHAPTER 2. BACKGROUND

in detection. While most efforts for both action segmentation and detection are supervised, a few

works have examined unsupervised segmentation through clustering [283, 373].

Kukleva et al. [283] propose an unsupervised method for segmenting video by learning a

temporal embedding of frames. Their approach is uses offline clustering and requires specification

of a number of clusters. First, they train an MLP to regress the position of a frame in the

video from which it originates. Intermediate features from the MLP are extracted and act

as the embedding of the frame. These embeddings are then clustered using k-means and a

multivariate Gaussian is fitted to each cluster. Next, clusters are temporally ordered by the

mean timestamp of their constituent frames. Finally, frames are reassigned to clusters using a

constrained optimisation that prevents non-adjacent frames from being assigned to the same

cluster. This has the effect of forcing each clusters to be made up of a contiguous sequence of

frames. However it also prevents the method from being able to discover multiple instances of

the same action. An extension of this method was proposed by VidalMata et al. [377] that uses

embedding from a model trained on future-frame feature prediction.

Sarfraz et al. [373] introduce TW-FINCH, an adaptation of the FINCH [294] clustering method

to segment videos in an unsupervised fashion. TW-FINCH performs an offline segmentation of

the video into a specified number of clusters. First, frame representations are produced using

pre-extracted features (both hand-crafted and neural network based). These are then used to

form a temporally-weighted distance graph where nodes represent frames and the edges between

nodes have weights determined by the feature dissimilarity of the frames, weighted by how

close the frames are to one another. From this distance graph, a binary 1-nearest-neighbour

graph is constructed, composed of a node per frame and with edges between pairs of nodes which

are closest to one-another in the distance graph. The connected components of the 1-nearest-

neighbour graph partition the video frames into a large number of clusters. A hierarchy of

clusters is obtained through an iterative approach that merges clusters based on average feature

similarity and temporal distance. This is performed repeatedly, applying the same clustering

algorithm on the merged cluster features and timestamps until the desired number of clusters is

reached.

Movie scene segmentation A variety of works tackle the problem of segmenting a movie into

scenes, which are composed of multiple shots (a continuous view through a single camera without

interruption), representing a coherent part of the overarching plot. This task can be seen as a

more abstract version of activity segmentation (segmenting scenes rather than activities). All

existing methods are offline and require specifying the number of scenes into which the movie

will be split. They all segment the movie into shots (a finer granularity of split than scenes) which

are then aggregated into scenes.

Early work by Yeung et al. [13] introduced the concept of a hierarchical scene transition graph

which splits a movie into acts, scenes, and shots. Shots, represented by a collection of low-level

visual feature descriptors, are grouped into scenes and acts using agglomerative clustering with

64

2.4. WORKS RELATED TO VIDEO UNWEAVING

a hard constraint that the shots can’t be too far apart. A graph is then built, where each node

represents a cluster of shots, and an edge between two nodes i, j is added if there exists a shot

in node i that directly precedes a shot in node j in the movie. Finally, the scene boundaries are

identified by finding the cut-edges of the graph. These are the edges that if removed result in

partitioning the graph into two disconnected sub-graphs. Sidiropoulos et al. [72] extend this

by integrating additional modalities into the scene transition graph, and propose a method

for reducing the number of hyperparameters necessary to produce the graph. Ercolessi et al.

[74] build on this work to ‘de-interlace’ the scenes in the movie by building multi-modal scene

descriptors and grouping scenes together via agglomerative clustering.

Cour et al. [43] use the screenplay and closed captions associated with a movie to break it

down into scenes and shots. They introduce the problem of shot threading to undo the common

scenario in which shots from 2 or more cameras are interleaved together. To illustrate the task,

consider a scene depicting a conversation between two people with the video chopping and

changing between two camera views as the active speaker switches. Shot threading undoes this

interleaving, linking shots from the same camera together. To solve this problem, they construct

models of shot orderings and shot appearance that are used in a maximum a posteriori objective

to split the scene into shot threads.

Tapaswi et al. [106] introduce a method for building a ‘StoryGraph’, a novel type of visual-

isation originally proposed by the web-comic xkcd [56]. A StoryGraph represents each character

in a TV episode as a line on a 2D chart. The horizontal axis is over time and the closeness

between lines denotes whether the characters are present together in the same shot or not. The

style of line changes to denote whether the character is on or off screen. The line begins at the

first presence of the character on screen and finishes at the last occurrence of the character

on screen. A multistage pipeline is used to construct this visualisation. The TV episode is first

segmented into shots, which are combined into shot threads and clustered into scenes through

an optimal dynamic programming approach. Faces are then tracked across shot threads and

face identities are extracted via a learnt classifier. Finally, the visualisation is built through a

layout optimisation algorithm. This work needs the number of scenes to be pre-specified, but does

suggest using the elbow method16 for automatically determining this, though their experiments

do not evaluate this set up.

More recently, Rao et al. [341] propose a supervised Local-to-Global Scene Segmentation

(LGSS) approach. They collect a large dataset MovieScenes containing 21k scene segments from

150 movies that are used to supervise their model. The movie is first split into shots, and a large

number of audio and visual features are extracted to represent each shot. These are then fed

into a network built from 1D temporal convolutional layers followed by a bidirectional LSTM

16The elbow method plots the percentage of variance (typically computed as the ratio of inter-cluster variance to
dataset variance) explained by the clustering against the number of clusters. The gain in the percentage of variance
explained will drop as the clustering starts to over-segment, giving an ‘elbow’ appearance to the plot. The location of
the elbow is the suggested number of clusters. The method is attributed to Thorndike [3]

65

CHAPTER 2. BACKGROUND

which outputs a binary score indicating whether the shot boundary is a scene boundary or not. To

obtain a specific number of scenes, the scene boundaries obtained by the network are aggregated

through a dynamic programming approach that merges similar scenes together.

Online clustering Unweaving videos can be viewed as a type of online clustering, where

the number of clusters is not known ahead of time, nor the number of elements to be clustered.

Online clustering is a challenging task that has seen little attention in the wider computer vision

literature, though some prior works do exist.

Kulshreshtha and Guha [228] investigate online clustering of faces in TV episodes. They

extract shots in an online fashion by measuring the difference in frames. For each shot, they

run a face detector on each frame within the shot and extract features using a pretrained CNN.

Face tracks are then created by connecting face bounding boxes across adjacent frames based

on their spatial overlap and similarity in feature descriptors. As the video is being processed,

the algorithm maintains a collection of faces from the previously processed shots. To determine

whether the face tracks in the current shot belong to a new face or an existing face, they measure

the feature similarity between the face tracks in the current shot and each existing face cluster.

If this exceeds a threshold, then the face track is merged into an existing cluster, otherwise a new

one is created.

Nagarajan et al. [336] introduce a method for extracting a topological map of a kitchen

environment from a first-person video. As part of their method, they perform a type of online

clustering of contiguous portions of video into ‘activity-centric zones’. These zones represent

physical regions in the kitchen that afford a certain set of actions. To accomplish this, the authors

train a Siamese network on pairs of video frames to determine whether those frames come from

the same zone or not. The training of this network is supervised using a heuristic: two frames

are considered from the same activity-centric zone if they are sufficiently close together in time

(within 15 frames of one-another) or if they have a shared background (if the frames share at least

10 inlier keypoints consistent with their estimated homography). Having trained the network,

it is then used to build a topological map, a graph consisting of one node per zone and edges

between zones that are visited one after another. Additionally, each node has a set of ‘visits’

associated with it. These are a contiguous portion of video that takes place in the same zone. The

map is constructed by processing the video sequentially, adding nodes and edges as new zones are

discovered. Initially, the graph starts with a single node with one visit containing the first frame.

For each subsequent frame f t, the Siamese network is used to determine the average similarity

between f t and the center frame of each visit fv. A node-level similarity score is produced by

averaging over the similarity to all visits assigned to the node. Finally, if the frame-to-node

similarity exceeds a threshold, the frame is added to the node (either extending a previous visit if

the previous frame exists in a visit of that node, or by starting a new visit). This method aims to

aggregate sequences of video (‘visits’) by location in the kitchen, rather than by the activity being

performed, which could span multiple locations (e.g. when throwing something a away).

66

2.5. MODEL ANALYSIS

Neural-network controlled machines There is extensive recent work on using neural

networks to control data structures [93, 114, 118, 146, 152, 165, 315] such as neural stacks [114,

118], neuro-symbolic stack machines [315], and neural Turing Machines [93, 164]. UnweaveNet

follows in this vein by using a neural controller to operate its thread bank. Some of these

works [93, 114] use soft operations, where the model performs all operations simultaneously at

each computation step with some weighting, whereas others [315] employ hard decisions as in

UnweaveNet. PtrNets [131] introduced an approach for applying neural networks to seq2seq

problems where the output sequence corresponds to locations in the input. Our φselect deals with

a similar problem, except that we need to consider which thread a clip belongs to and the number

of threads varies as the video is processed. UnweaveNet shares similarities with the Memory

Network framework [133], however we use an adjustable memory size to the number of threads.

Video parsing Probabilistic parsing of videos was proposed at the turn of the century [15,

16] with successful recent examples [340]. These efforts focus on parsing low-level actions into

high-level activities. Unweaving activities has some similarities to these parsing efforts but

unweaving is done online, without semantic grounding nor using a grammar.

Video summarisation Another related task is that of video summarisation [167, 189, 238,

278, 307], which aims to extract highlights that give a condensed overview of the video. Instead,

all parts of the video are considered equally important when unweaving an activity story into its

constituent activities.

2.5 Model analysis

This section surveys works related to the analysis of trained deep networks. Methods for under-

standing networks can be broadly grouped into two categories: instance-centric and network-

centric. Instance-centric methods aim to provide an understanding of the behaviour of the network

on a specific input. The main approach for instance-centric understanding is attribution,17 which

assigns a scalar value to each feature in an input representing its impact on the output of a spe-

cified neuron in a network. There are a plethora of methods for computing attributions, reviewed

in section 2.5.1. In contrast, network-centric methods aim to elucidate what the network, or a part

of it, has learnt, independent of a particular input. The most popular network-centric method is

activation maximisation, a technique for producing an input to a trained network that maximally

activates a specified neuron, typically in the classification layer, in order to understand which

input features it is triggered by. A review of network-centric methods is given in section 2.5.2.

17Attribution has been referred to under many different names including “saliency mapping” [100], “heat map-
ping” [109], and “attention mapping” [253].

67

CHAPTER 2. BACKGROUND

As this thesis’s contribution in the field of trained model understanding is on a new instance-

centric method, the element Shapley value (covered in chapter 5), only a brief review of network-

centric methods are given.

2.5.1 Instance-centric understanding: Attribution

Attribution methods take a model f :RD →RC, an input x :RD , and a specified neuron c in the

model f and produce attribution values a ∈RD where each component ai indicates the impact

each feature xi has on the output of the neuron fc(x). What is meant by “the impact xi has on

fc(x)” is dependent upon the attribution method, but commonly, higher values of |ai| mean that

xi affects the output more than a feature x j where |a j| < |ai|. A subset of attribution methods

give tighter constraints on the attribution values they produce, treating a as a breakdown of the

value fc(x) by the contribution of each feature in the input.

The way attribution methods are used to obtain an understanding of a model’s behaviour

on an input is best introduced through an illustrative example. Consider trying to understand

why an image classification network misclassifies an image of a cat as a dog. An attribution

method can be applied on the input with respect to the cat and dog class neurons to produce two

attribution maps adog and acat, both the same shape as the image x, indicating the contributions

of each pixel to the dog and cat neurons respectively. These attribution maps can be visualised

by applying a colour mapping to them and overlaying them on the original image to understand

which regions of the input contribute more to cat than dog and vice versa.

Attribution methods can be roughly grouped by the techniques they are based on: gradi-

ents [100, 107, 109, 197, 199, 201, 208, 214], perturbations [64, 107, 237], or surrogate models [57,

188], though some methods use a mix of techniques [175, 203, 269].

Feature attribution should not be confused with feature selection, which instead determines

the average importance of an input feature over an entire dataset in a class-agnostic manner.

In contrast, feature attribution assigns an importance to each feature for a specific input with

respect to one of the model’s output—these values vary across different examples and different

model outputs.

The section is organised as follows. First, a discussion on what properties an attribution

method should have is given (section 2.5.1.1). These properties provide a more objective means

for comparing attribution methods than qualitative comparison alone. Attribution methods are

then surveyed, organised by the technique(s) they employ: these are gradients (section 2.5.1.2),

perturbations (section 2.5.1.3), both gradients and perturbations (section 2.5.1.4), or surrogate

models (section 2.5.1.5). Next, the works on attribution for video models are reviewed (sec-

tion 2.5.1.6). Finally, the section concludes with a review of works that analyse and compare

attribution methods (section 2.5.1.7).

68

2.5. MODEL ANALYSIS

2.5.1.1 What properties should attribution values have?

As many methods for attribution have been proposed, practitioners are faced with the question of

which method should they use and why. To answer this question, a number of works [64, 188, 203,

207] have considered the properties that an attribution method should obey. When attribution

methods violate these principles, they can be safely discarded from the set of candidate methods

to use. These principles are:

i) Implementation invariance [203]. An attribution method should produce the same at-

tribution values when applied to two models f and f ′ which are functionally identical, i.e.

∀x : f (x)= f ′(x), even when they are different in implementation.

ii) Input sensitivity [203]. Given two examples x and x′ that only differ in a single feature, If

fc(x) 6= fc(x′), then the attribution values assigned to feature i should be different between the

two examples x and x′.

iii) Label sensitivity [207]. An attribution method applied to a classification model should

depend on the relationship between the input and its label. If a new model is trained on the

input where the labels have been shuffled across examples, thus breaking the relationship

between input and label, the attribution values should change considerably.

iv) Parameter sensitivity [207]. An attribution method should depend on the parameters

of a model, if those parameters are randomised then the resulting attribution should vary

considerably from the learned parameters.

v) Efficiency [64, 188, 199, 203]. Attributions should sum to the output fc(x) of the neuron

c being analysed up to some additive constant specific to fc. If this property holds, then

attribution values ai can be seen as amount that xi contributes to the value fc(x). This axiom

has been known under other names, including completeness [203], summation-to-delta [199],

sensitivity-n [168], and local-accuracy [188].

Unfortunately, there are no large-scale assessments of existing methods across these properties,

leaving the properties of many attribution methods unknown. Instead, various papers have

checked a subset of these properties on a subset of attribution methods. Table 2.2 collects these

results together, showing which methods have been tested for which properties.

69

CHAPTER 2. BACKGROUND

Ta
bl

e
2.

2:
C

om
pa

ri
so

n
of

di
ff

er
en

t
at

tr
ib

ut
io

n
m

et
ho

ds
by

th
ei

r
ty

pe
an

d
th

e
pr

op
er

ti
es

th
ey

sa
ti

sf
y.

3
*

in
di

ca
te

s
th

at
a

m
et

ho
d

sa
ti

sfi
es

th
e

pr
op

er
ty

by
co

ns
tr

uc
ti

on
.3

in
di

ca
te

s
th

at
a

m
et

ho
d

w
ea

kl
y

sa
ti

sfi
es

a
st

at
is

ti
ca

lp
ro

pe
rt

y.
†:

T
he

SV
at

tr
ib

ut
io

n
ap

pr
oa

ch
m

ar
gi

na
lis

es
ov

er
m

an
y

ba
se

lin
es

,s
o

th
e

ch
oi

ce
do

es
no

t
ha

ve
to

be
m

ad
e

by
th

e
pr

ac
ti

ti
on

er
.

T
yp

e
of

ap
pr

oa
ch

R
eq

ui
re

m
en

ts
P

ro
pe

rt
ie

s

M
et

ho
d

G
ra

d
Pe

rt
.

Su
rr

og
at

e
m

od
el

B
as

el
in

e
In

pu
t

Se
ns

it
iv

it
y

Pa
ra

m
et

er
Se

ns
it

iv
it

y
L

ab
el

Se
ns

it
iv

it
y

Im
pl

em
en

ta
ti

on
In

va
ri

an
ce

E
ffi

ci
en

cy

G
ra

di
en

t
[1

00
]

3
7

7
[2

03
]

3
[2

07
]

3
[2

07
]

3
[2

03
]

7

G
ra

di
en

t×
In

pu
t

[1
99

]
3

7
3

[2
03

]
3

[2
07

]
3

[2
07

]
3

[2
03

]
7

D
eC

on
vN

et
[1

07
]

3
7

7
[2

03
]

3
[2

03
]

7

G
ui

de
d

B
ac

kP
ro

p
[1

25
]

3
7

7
[2

03
]

3
[2

07
]

3
[2

07
]

3
[2

03
]

7

E
xc

it
at

io
n

B
ac

kp
ro

p
[2

53
]

3
7

Sm
oo

th
G

ra
d

[2
01

]
3

7
3

[2
07

]
3

[2
07

]
7

L
R

P
[1

09
]

3
7

7
[2

03
]

3

D
ee

pL
IF

T
[1

99
]

3
3

7
[2

03
]

3

D
ee

pL
IF

T
SH

A
P

[1
88

]
3

7
7

[2
03

]
3

G
ra

dC
A

M
[1

97
]

3
7

3
[2

07
]

3
[2

07
]

7

G
ui

de
d

G
ra

dC
A

M
[1

97
]

3
7

3
[2

07
]

3
[2

07
]

7

In
te

gr
at

ed
G

ra
di

en
ts

[2
03

]
3

3
3

[2
07

]
3

[2
07

]
3

*
3

SV
at

tr
ib

ut
io

n
[6

4]
3

3
†

3

Fe
at

ur
e

A
bl

at
io

n
3

3
3

*
3

*
7

O
cc

lu
si

on
[1

07
]

3
3

3
*

7

R
IS

E
[2

37
]

3
3

3
*

7

M
ea

ni
ng

fu
lp

er
tu

rb
at

io
n

[1
75

]
3

3
3

3
*

7

E
xt

re
m

al
pe

rt
ur

ba
ti

on
[2

69
]

3
3

3
3

*
7

L
IM

E
/K

er
ne

lS
H

A
P

[1
53

,1
88

]
3

3
7

3

SV
re

tr
ai

ni
ng

[5
7]

3
7

3

70

2.5. MODEL ANALYSIS

2.5.1.2 Attribution via gradients

Attribution methods based on gradients use either standard or modified backpropagation

rules [168] to work out a feature’s contribution to an output neuron. These are attractive com-

putationally as they don’t require multiple model evaluations, unlike perturbation methods.

Most of these methods treat the gradient of the neuron fc with respect to an input feature xi as

the attribution value ai. However, some also combine this with the input itself, or compare the

gradient at x to the gradient at a baseline x̄. When modified rules are used, the backpropagation

algorithm no longer computes true gradients; following Ancona et al. [168], these are instead

referred to as pseudo gradients.

To describe modified backpropagation rules, a notation is needed. Let backward(f , x, g) denote

the backpropagation rule for the operation f which takes the input x during the forward pass and

the gradients g during the backward pass. Unless otherwise stated, the default rule of backward

follows the standard definition of backpropagation

backward(f , x, g)= g
∂ f (x)
∂x

. (2.1)

When an attribution method M uses a custom backpropagation rule for an operation f , it

will be defined as backwardM(f , x, g). For other operations f ′ 6= f , it is assumed that standard

backpropagation rules are used.

Most methods that employ modified backprop rules treat the (pseudo-)gradient of fc with

respect to each input feature xi as the attribution value ai. The application of the modified

backpropagation algorithm for a method M is denoted

∂M fc(x)
∂xi

. (2.2)

Unless otherwise stated, the attribution values computed by a gradient-based attribution method

are defined as

aM
i = ∂M fc(x)

∂xi
. (2.3)

The remainder of the subsection introduces the gradient attribution methods, discussing the

intuition behind their formulations and the properties they satisfy.

Gradient [54, 58, 100] The simplest gradient-based attribution method uses the gradient

itself:

agrad
i = ∂ fc(x)

∂xi
(2.4)

The motivation for this interpretation comes from an observation based on the first-order Taylor

approximation of the model about an input x:

fc(x+δ)≈ fc(x)+δ ·∇x fc(x) (2.5)

71

CHAPTER 2. BACKGROUND

This can be interpreted as a linear model on δ where fc(x) is the bias and ∇x fc(x) are the weights.

Like any linear model, these weights can be viewed as measure of how much influence each

input feature xi has on the output neuron c. Whilst attractive for its conceptual simplicity and

intuitiveness, this approach doesn’t satisfy the input sensitivity property [203]. An illustrative

example given by Fong and Vedaldi [175] demonstrates this: consider using this method to

determine attributions on a linear classifier f (x)= wx+b, the gradient of f with respect to x is

w and is thus completely independent of the input. Clearly, this doesn’t provide an explanation

of how the model came to its outcome on a per-input basis. As for the other properties, gradient

attributions do satisfy label sensitivity [207] and parameter sensitivity [207]. They also obey

implementation invariance since the partial derivatives of the model effectively describe the

model in an implementation-invariant manner [203].

Gradient×Input [157] To combat the violation of input sensitivity observed with agrad,

gradient×input incorporates bottom-up information that captures the interaction between the

input and the model gradients. This is equivalent to a first-order Taylor series approximation of

the model when the gradients are computed about 0.

agrad×input
i = xi

∂ fc(x)
∂xi

(2.6)

Clearly this method does satisfy input sensitivity. It also satisfies implementation invariance

since it is based on the gradient which acts as a functional description of a model [203].

DeConvNet [107] Unlike the previous two methods which used the true gradients of the model,

DeConvNet doesn’t, using a modified backpropagation rule for ReLUs. It was proposed as a means

of adapting the trainable DeConvNet [67] into a non-parametric method for understanding what

a network had learnt.

backwardDeConvNet(ReLU, x, g)=
g g > 0

0 otherwise.
(2.7)

DeConvNet does not satisfy input sensitivity by the same argument used for gradients.

Guided backprop [125] Guided backprop is a minor variant of the DeConvNet, combining

both the top-down gradient g and the bottom-up input x in the modified backpropagation rule for

ReLUs:

backwardGBP(ReLU, x, g)=
g g > 0∧ x > 0

0 otherwise.
(2.8)

The motivation for this change was that further conditioning on the input to the network is

necessary to obtain crisp attribution maps. As for the properties, guided backprop does not satisfy

label sensitivity [207], parameter sensitivity [207], nor input sensitivity [168, 203].

72

2.5. MODEL ANALYSIS

Layer-wise Relevance Propagation (LRP) [109] Layer-wise relevance propagation defines

attribution maps as the product between input and a pseudo gradient

aLRP
i = xi

∂LRP fc(x)
∂xi

, (2.9)

where the pseudo-gradients are obtained by a modified backpropagation rule for activation

functions. Given an activation function φ, its partial derivative is replaced with the ratio between

the pre and post activation values:

backwardLRP(φ, x, g)= g
φ(x)

x
(2.10)

The attribution maps it produces also incorporate the bottom-up input For a network only using

ReLU activations, LRP is equivalent, up to a scaling factor, to gradient×input [168, 199]. In terms

of properties, LRP does not satisfy implementation invariance [203]

DeepLIFT [199] DeepLIFT is similar to LRP, except it computes the gradients of the difference

in the output of fc on x compared to a reference x̄:

aDeepLIFT
i = (xi − x̄i)

∂DeepLIFT(fc(x)− fc(x̄))
∂xi

(2.11)

It backpropagates the difference in output between the input and the baseline, f (x)− f (x̄), back

to the input to obtain attribution values. The modified backpropagation rule for the activation

function φ are modified like so:

backwardDeepLIFT(φ(x)−φ(x̄), x, g)= g
φ(x)−φ(x̄)

x− x̄
(2.12)

DeepLIFT with x̄ = 0 is equivalent to LRP when applied to a network with no biases and with an

activation φ where φ(0)= 0 [168]. As for the properties, DeepLIFT satisfies efficiency and input

sensitivity, but does not satisfy implementation invariance [203].

Excitation Backprop [208, 253] Excitation Backprop modifies the backpropagation rules

to incorporate bottom-up information (values obtained during the forward pass) in addition to

top-down information (the backpropagated gradients). It assumes that the activation functions in

the model produce non-negative values and that neuron activation correlates with recognition of

a visual concept. Unlike gradient×input, which multiplies the gradient ∂ fc(x)
∂xi

with xi, excitation

backprop computes the product between the gradient and the input at each layer in the network

during the backpropagation. Furthermore, only the positive weights of linear layers are incorpor-

ated. The modified backpropagation rule for a linear layer computing wx+b can be expressed in

terms of the positive weights w+ =max(0,w) and the standard backprop rule:

backwardEBP(wx+b, x, g)i = xi ·backward(w+x+b, x, g® (w+x+b))i. (2.13)

This formulation is due to Fong et al.’s [269] TorchRay package18 that recasts the EBP rules from

the original paper [253] in terms of standard backprop rules.
18https://facebookresearch.github.io/TorchRay/

73

https://facebookresearch.github.io/TorchRay/

CHAPTER 2. BACKGROUND

Grad-CAM [197] Grad-CAM was proposed to produce attribution maps for image CNNs. It

uses a similar approach as gradient×input, except that rather than attributing features in the

input of the network, it attributes features produced by the last convolutional layer and averages

the gradients across spatial locations prior to multiplying with the input. The attribution maps

are also gated by a ReLU to mask out the values that negatively contribute to fc(x) and then

are averaged over the channel dimension. Typical applications of Grad-CAM interpolate this

attribution map to the same resolution as the input for visualisation purposes. Let zk
i be the i-th

output in the k-th channel produced by the last convolutional layer, then the attribution map

produced by Grad-CAM is

aGrad−CAM
i =ReLU

(∑
k
αk

c zk
i

)
, αk

c =
1
Z

∑
i

∂ fc(x)
∂zk

i

(2.14)

Where Z is a normalisation constant. Grad-CAM satisfies label sensitivity and parameter sensit-

ivity [207].

There is a variant called Guided Grad-CAM, that multiplies the upsampled attribution values

with the input image. However, this does not satisfy label sensitivity or parameter sensitivity [207].

2.5.1.3 Attribution via perturbations

Perturbation-based attribution methods generate multiple versions of the input by perturbing

(modifying) it in some way and then measuring the difference in the output of the model on the

perturbed input compared to the original. These methods range from the very simple, such as

setting a feature to a reference value and measuring the resulting change to the more complex

which use an optimisation objective to learn a mask over the input retaining valuable input

features.

Feature ablation [281] Feature ablation produces attribution values by measuring the dif-

ference of the model f on the input x when a single feature i is replaced by a baseline value x̄i:

aablation
i = fc(x)− fc(x′) where x′j =

x̄i j = i

x j otherwise
(2.15)

One obvious flaw in feature ablation is that it doesn’t account for interactions between features.

An example of where this is problematic is where the features are highly redundant as in an

image or video. Removing a single pixel or voxel in this scenario causes very little change in the

output of the model.

Occlusion (grouped feature ablation) [107] Occlusion is very similar to feature ablation,

except it removes groups of features at the same time. It was proposed as a means of determining

attributions for image models and thus is most easily explained in that context. A square is

74

2.5. MODEL ANALYSIS

centered at each position in the input image x to occlude a region. This partially-occluded image

is then fed to the model and the change relative to the original image’s response defines the

attribution value:

aocclusion
i = fc(x)− fc(m(i)¯ x) (2.16)

where m(i) is a binary mask representing the overlaid square centered at location i. It is 1 outside

the square and 0 inside. Whilst simplistic in principle, this method has been shown to effectively

localise the regions in the image that contribute to the activation of class neurons [107]. However,

this method still suffers from the same problem of feature interactions, but at a coarser grain.

Redundancy across groups of features are still not accounted for.

RISE [237] Random Input Sampling for Explanation (RISE) generates attribution maps for

image models by applying random masks to the image and measuring the model’s output. Let m

be a random mask, then the attribution for a pixel xi is defined as

ai = E
m

[fc(m¯ x)|i ∈ m] , (2.17)

where i ∈ m denotes whether the pixel i is retained by the mask m. Monte Carlo sampling is used

to approximate the expectation in equation 2.17. The random mask is parameterised by a lower

dimensional version which is upsampled by bilinear interpolation to avoid the effects of masks

which trigger pathological behaviour of the network.

Shapley value ablation [64, 104, 188] The previous perturbation approaches don’t correctly

deal with feature redundancy. Štrumbelj and Kononenko [64] show that it is necessary to consider

all possible subsets of features to correctly assess the worth of a feature. They show how to do

this by leveraging a result from the cooperative game theory literature. It transpires that the

problem of feature attribution is equivalent to the problem of reward division in a cooperative

game. A cooperative game involves a set of players N who collaborate together to play a game

and earn some reward. A value function v : 2N →R defines the reward given to a subset of players

S ⊆ N with the constraint that v(;) = 0. The problem of reward division is how to divide the

reward v(N) given to the group of players N amongst each player i ∈ N. Let φi(v) be the reward

given to player i for the game v. Shapley [2] and Young [8] showed that there exists a unique φ if

you assume the following axioms:

i) Efficiency. The sum of the rewards given to each individual player must equal the reward

given to the group: ∑
i
φi(v)= v(N) (2.18)

ii) Symmetry. If any two players i and j cause the same change in the reward to all possible

subsets that they can join, then they should be given the same reward:

∃i, j ∈ N :∀S ⊆ N \{i, j} : v(S∪ {i})= v(S∪ j)→φi(v)=φ j(v) (2.19)

75

CHAPTER 2. BACKGROUND

iii) Linearity. If players participate in two games v and w, then the rewards they receive in each

should equal the reward they receive overall:

φi(v+w)=φi(v)+φi(w) (2.20)

The unique solution φ is known as the Shapley value and is defined as:

φi(v)= ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|! (v(S∪ {i})−v(S)) (2.21)

The mapping between a cooperative game and feature attribution is as follows: the features are

the players and the reward v(N) is the output of the model’s neuron fc(x) that is being analysed.

In reward division, it is necessary to determine the reward given when only a subset of players

participate in the game. The equivalent of this in model analysis context is that features need to

be removed from the input. There are a multitude of ways of doing this [347, 349], but a typical

approach is to replace the missing feature with a value from a baseline. Let F be the set of

features in x and S ⊆ F be a subset of features. The attribution values for xi can then be defined

as

aSVA
i = ∑

S⊆F\{i}

|S|!(|F|− |S|−1)!
|F|!

[
fc(xS∪{i})− fc(xS)

]
where (xS)i =

xi i ∈ S

x̄i otherwise.
(2.22)

This is an extremely computationally expensive approach as it requires computing the model

over all possible feature subsets. Various approaches have been proposed in both the economics

and machine-learning literature to address this. The most common has been to employ Monte

Carlo sampling [4, 52, 97] to approximate the summation. Lundberg and Lee [188] introduce

a quadratic time exact computation of the Shapley value for the max function. They also show

that (under the implausibly strong assumption of feature independence) that DeepLIFT with a

specific baseline yields the Shapley value, they call this DeepLIFT SHAP. Additionally, they also

show that LIME [153] (explained in the next section) can also yields the Shapley value when the

right hyperparameters are used.

2.5.1.4 Attribution via both perturbations and gradients

Recent hybrid approaches combine perturbation with backprop [175, 203, 269]. Both works [175,

269] produce binary masks, rather than pixel attributions.

Integrated Gradients [203] Integrated Gradients is an extension of gradient×input, except

that it computes the average partial derivatives along a linear path from a baseline input x̄ to

the actual input x and multiplies this with the difference between the baseline and actual input

x− x̄:

aIG
i = (xi − x̄i)

∫ 1

α=0

∂ fc(x̃)
∂x̃i

dα where x̃ = x̄+α(x− x̄). (2.23)

76

2.5. MODEL ANALYSIS

Integrated gradients actually compute Aumann-Shapley values [6], an extension of the Shapley

value to infinite player games.

By construction, integrated gradients satisfy input sensitivity and efficiency.

Kapishnikov et al. [365] point out that integrated gradients suffers from high noise and

proposed guided integrated gradients which uses an adaptive path instead of a straight-line

between x and x̄. Adebayo et al. [207] claim that Integrated Gradients does not satisfy parameter

sensitivity, however Sundararajan and Taly [244] rebut this with experimental evidence showing

that Adebayo et al.’s [207] experimental set up was flawed and that Integrated Gradients does

satisfy parameter sensitivity.

SmoothGrad [201] SmoothGrad is an extension of the gradient attribution method. Its motiv-

ation comes from the observation that the partial derivatives of an output neuron with respect

to pixels in a small region of an input image can vary drastically. To combat this, SmoothGrad

computes n partial derivatives for each input image x after applying random Gaussian noise.

aSmoothGrad
i =

n∑
j=1

∂ fc

∂x̃i

∣∣∣∣
x̃=x+δ j

δ j ∼N (0,σ2) (2.24)

Meaningful perturbations [175] The meaningful perturbations method produces a soft

(non-binary) mask over an input image for an image CNN such that when the mask is applied,

the chosen output neuron’s value is maintained or increased. In other words, the mask retains

the regions of the image that positively contribute to the output of the chosen output neuron. The

optimal mask m∗ is found by solving an optimisation problem

m∗ = argmax
m∈(0,1)H×W

fc(mask(x;m))−λ||m||1 −βS(m) (2.25)

where mask(x;m) applies the mask m to the image x (a value of 1 in the mask retains the input

whereas 0 removes the input). There are a variety of ways for implementing the masking operator,

but these are explained later. Since one can mask the whole image, trivially minimising the

objective, the mask is encourage to be small by ||m||1. The optimisation is then conducted via

gradient ascent, however this can produce masks that exhibit artefacts along the same lines as

adversarial examples [113]. This is addressed by re-parameterising the mask as a lower resolution

variant which is upsampled as part of its application as well as applying further regularisers to

the mask, contained in the S(m) term (the same as are used in activation maximisation, total-

variation and jittering, explained in section 2.5.2). A variety of masking functions are considered

including replacing the masked values with the mean value, replacing the masked value with

sampled Gaussian noise, and replacing the value with the result of applying a Gaussian blur. The

values of the mask can be interpreted as a form of attribution map.

77

CHAPTER 2. BACKGROUND

Extremal perturbations [269] Extremal perturbations are a simplification of the meaningful

perturbations attribution method. In meaningful perturbations, the user needs to select the

hyperparameter λ that controls mask sparsity and β that regularises its shape. But different

values of these hyperparameters will produce different masks, making it hard to know which is

the best. Extremal perturbations removes them, replacing them with a single hyperparameter α

representing the proportion of the image to retain. This is intuitive and can be meaningfully set

by a user. Additionally, the mask is constrained to belong to a set of smooth functions M. Let the

input image x be of shape H×W , then the optimisation is

mα = argmax
m∈M

||m||1=a|HW |
fc(mask(x;m)) (2.26)

An extremal perturbation is defined as the smallest mask that when applied to the input still

produces a network output greater than some user-specified threshold t. This gives another

intuitive way for the user of the attribution method for specifying how the mask should be

constructed.

2.5.1.5 Attribution via surrogate models

A smaller group of attribution methods make use of additional models to the one being explained.

This is to either to avoid the issues of distribution shift caused by feature substitution, or by

using the additional model to approximate the model to explain f with a simple and interpretable

model f̂ .

Shapley value retraining [57] In the previous section, a method using the Shapley value

to compute attributions was discussed, however this used feature substitution as a means for

determining the models output without a given feature. Feature substitution can be problematic

as it produces inputs that are outside the distribution the model was trained on and can cause

the model to behave erratically [227, 273]. An alternate approach is to train a model for every

possible feature subset using this instead for compute attributions:

aSVR
i = ∑

S⊆F\{i}

|S|!(|F|− |S|−1)!
|F|!

[
f S∪{i}

c (xS∪{i})− f S
c (xS)

]
(2.27)

where f S is a model trained on the subset of features S.

LIME [153] and KernelSHAP [188] Locally-Interpretable Model Explanations (LIME) [153]

is a method for approximating a complex model f with a simple, interpretable model f̂ about an

input x0. The interpretable model f̂ is trained to approximate f on examples sampled around the

vicinity of x0 with a regularisation term that penalises the complexity of f̂ . Lundberg and Lee

[188] showed that LIME with a linear model f̂ can recover the Shapley values (see the previous

paragraph on Shapley value feature attribution in section 2.5.1.3 for details on what Shapley

values are) assuming independence between features.

78

2.5. MODEL ANALYSIS

2.5.1.6 Attribution for video models

Most works [202, 208, 214, 218, 223, 333] that perform attribution for video understanding use

backprop methods originally designed for images, such as Grad-CAM [197] or EBP [253]. A few

recent works propose video-specific attribution methods. EBP-RNN [208] extends EBP [253] to

CNN+RNN to explain video models. Saliency tubes [298] use a Grad-CAM like formulation to

provide spatio-temporal attributions. In their follow-up work [297], they extend the approach

by backpropagating gradients to different depths in the network. Mänttäri et al. [333] apply

meaningful perturbations [175] to learn a temporal mask over the input. To keep the number of

input frames fixed, they replace missing frames by duplication, however this has been shown to

cause performance drops due to a change in the temporal input distribution [227]. Li et al. [330]

learn a spatio-temporal mask via extremal perturbations [269]. They replace missing voxels with

a reference of a blurred voxel, analysing R(2+1)D [252] and a CNN+LSTM model.

2.5.1.7 Analysing and comparing attribution methods

To help make sense of the deluge of attribution methods, a variety of works [207, 273, 347]

have attempted to compare them by introducing benchmarks, tests or performing illuminating

experiments. Two of the properties, parameter sensitivity and label sensitivity, introduced in

section 2.5.1.1 can be checked using tests proposed by Adebayo et al. [207].

Parameter sensitivity can be checked by randomising the parameters of the network. More

specifically, two types of this test have been investigated. The first, progressive randomisation,

computes attribution values whilst randomising the layers’ parameters from top to bottom. The

second, independent randomisation, investigates the effect of only randomising a single layer

of the network at a time. The attribution maps for the (partially-)randomised networks are

compared to the attribution map produced for the original network by rank correlation and

structural similarity.

Label sensitivity can be checked by randomly reassigning the labels in the training set to

examples and training a new network. The attribution maps produced for the original and the

retrained model can be compared in the same way as for parameter sensitivity.

Hooker et al. [273] introduce a test to enable the comparison of attribution values produced

by different methods called ROAR, RemOve And Retrain. ROAR is motivated by the observation

that the common approach of measuring the change in the model output when ablating features

in order of their attribution values across methods is flawed. Producing a new input by ablating

features, typically replacing them with some baseline value, creates an example that is outside

the distribution of examples the model was trained on. The change in the model output is

then confounded by the distribution shift rather than just the removal of features alone. ROAR

resolves this issue by retraining models on the examples with ablated features. One of their

more surprising findings is that 90% of features in images from ImageNet can be removed yet

performance only drops from 76.7% to 63.5% when using retraining but without retraining the

79

CHAPTER 2. BACKGROUND

performance drops to 0.5% indicating that distribution shift is the dominant factor causing

performance degradation. As it is not computationally feasible to retrain a model for every

possible percentage of features removed, they train models for a small set of fixed percentages of

features retained.

Many methods use a baseline to replace removed features when computing attributions [64,

107, 175, 199, 203, 237, 269] however as illustrated above, modifying inputs by replacing features

can produce out-of-distribution examples. Though this is not the only problem to plague these

methods. Sturmfels et al. [347] show that the choice of the baseline also has a large impact on

the resulting attribution values in the context of Integrated Gradients.

2.5.2 Network-centric understanding

An alternate approach to understanding a trained network is to find an input that maximally

activates a chosen neuron, this is known as activation maximisation. The idea is that the input

that maximally activates a neuron serves as an exemplar for the features that the model picks up

on. More precisely, activation maximisation can formulated as an optimisation objective. Given a

trained network f , a layer index l, and a neuron index in that layer i, find the input

x∗ = argmax
x∈X

f l,i(x) (2.28)

where X is the space of inputs to search over. Different approaches define X in different ways.

One approach is to define X as a set of image [107] such as the training set. Another approach

is to define X as the full input space of images and solve equation 2.28 using gradient ascent.

More ingenious approaches also use gradient ascent but don’t optimise in the image space at all,

instead using a parameterisation of the image that eases optimisation [151, 190, 191] (known

as a preconditioner). Whilst the following review is necessarily condensed for brevity, readers

interested in further information on network-centric methods and a broader review should consult

Montavon et al. [232] and Samek et al. [372].

Picking examples from the training set The simplest approach to solving this optimisation

is by finding the input x in the training set that maximises a given neuron [107]. Practically, it is

more useful to look at the top-k inputs that maximally activate a neuron in order to understand

the commonalities between examples that the neuron is triggering on. However, this can still be

misleading if there are biases in the dataset; consider the results of this analysis on a dog-vs-cat

classifier trained on a dataset where all dogs are captured in good weather and cats in bad

weather—it would not be possible from this analysis to determine whether the model had learnt

to recognise weather or dogs-vs-cats.

Activation maximisation An alternative approach that doesn’t suffer the bias issue of picking

images from a training set is to synthesise the input that maximally activates a neuron [54, 100,

116, 148, 151, 191, 235]. This optimisation is performed via a gradient ascent procedure.

80

2.6. CONCLUSION

The generation of inputs without any form of regularisation to constrain them can result

in inputs that contain a large number of artefacts. As most works investigate models trained

for image classification, they try and regularise the input space to be close to the manifold of

natural images. A variety of regularisers have been investigated: α-norm to bound the range of

image intensities [122, 148], total variation to bound the variation in local regions [122, 148],

jittering [116, 148] to encourage the neuron activation to be invariant to small spatial shifts in the

input. The optimisation need not be performed directly in the image space either, other spaces can

be used like: the Fourier basis space [191], the latent space of a deep generative network [151],

or the latent space of a denoising auto-encoder [190]. Finally, activation maximisation can

be generalised finding inputs that activate not only neurons, but channels [191, 235], spatial

activations [191, 235], and groups of neurons [191, 235]. A good review of activation maximisation

and regularisation techniques can be found in Olah et al. [191].

Generating an input vs. selecting one from a dataset isn’t necessarily mutually exclusive:

Nguyen et al. [150] use dataset examples as a starting point in the optimisation process to boost

the variety of examples obtained that activate a neuron.

Network-centric and instance-centric approaches can also be combined to help provide ad-

ditional insight beyond what each offers alone. Olah et al. [235] build an interface to support

attribution between two arbitrary layers in a network coupled with examples generated to

maximise neurons in those layers.

Activation maximisation for video models Up to my knowledge, there is only one work

applying this technique to video understanding video models. Feichtenhofer et al. [320] explain

a variety of two-stream architectures [101, 139, 140, 159], synthesising inputs that maximally

activate a chosen class neuron. This is done for both the appearance and motion streams trained

on UCF-101 and HMDB-51.

Other network-centric approaches There are a variety of other creative methods aiming

to obtain a network-centric understanding such as network dissection [256] which detects

what visual concepts neurons detect; Singular Vector Canonical Correlation Analysis [193],

a technique for comparing learnt representations across architectures in an affine-transform

invariant manner; and DeepBase [295], a system designed to find neurons whose activations

correlate to a user provided hypothesis function.

2.6 Conclusion

This related work section reviewed around 300 works related to time in video understanding, video

unweaving, and attribution methods. The majority of work on time in video understanding has

focused on approaches for temporal modelling and using time for self-supervision. A large number

81

CHAPTER 2. BACKGROUND

of techniques for attribution have been proposed, but many of them don’t satisfy properties one

would expect of an attribution method.

82

C
H

A
P

T
E

R

3
COMPARING MODELS FOR ACTION RECOGNITION ON

EPIC-KITCHENS

This chapter benchmarks a variety of models, each with a different approach to incorpor-

ating temporal information, on both versions of the EPIC-KITCHENS dataset (55 & 100).

The benchmark is performed under a uniform experimental set-up to gain insight into

the models’ relative strengths and weaknesses. The choice of EPIC-KITCHENS as the evaluation

dataset was two-fold: the dataset has interesting properties that deviate from previous egocentric

datasets like its long-tail class distribution and the presence of unseen participants/environments

in the test set; and as the dataset had been relatively recently introduced at the time this research

was conducted, there was an absence of pretrained weights for other researchers to build upon

and so this investigation would contribute such weights.1

First, the models are introduced in section 3.1, next an analysis of the models is performed on

EPIC-KITCHENS-55 (EK55) in section 3.2 and on EPIC-KITCHENS-100 (EK100) in section 3.3.

3.1 Models

Three seminal models are considered in this benchmark: the Temporal Segment Network

(TSN) [302], the Temporal Relational Network (TRN) [257], and Temporal Shift Module (TSM)

based networks [285], including a variety of their variants. Whilst a comprehensive description of

these are provided in section 2.2, a summary of these models and their relationships is given next.

TSN is the earliest model of the three and both TRN and TSM can be viewed as evolutionary

descendants of TSN that integrate temporal modelling. The following paragraphs explain how

network inputs are sampled and summarise the design of each network.

Sampling Inputs to the models, snippets, are sampled according to the TSN sampling strategy.

A video is split into n equally sized segments and a snippet is sampled at a random position

1Code and pretrained weights are available for EPIC-KITCHENS-55 at https://github.com/epic-kitchens/
epic-kitchens-55-action-models and for EPIC-KITCHENS-100 at https://github.com/epic-kitchens/
C1-Action-Recognition-TSN-TRN-TSM.

83

https://github.com/epic-kitchens/epic-kitchens-55-action-models
https://github.com/epic-kitchens/epic-kitchens-55-action-models
https://github.com/epic-kitchens/C1-Action-Recognition-TSN-TRN-TSM
https://github.com/epic-kitchens/C1-Action-Recognition-TSN-TRN-TSM

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

within each segment. For an RGB network, a snippet is a single frame and for a flow network it is

a stack of 5 (u,v) optical flow pairs (a technique originally proposed by Simonyan and Zisserman

[101]).

TSN [302] Temporal Segment Networks propagate each snippet through a 2D CNN backbone

to produce class scores for the corresponding segments. These scores are then aggregated across

segments through average or max pooling. As a consequence, TSN is unable to learn correlations

relating to event ordering across segments. TSN is typically trained on RGB and optical flow

modalities and combined by late-fusion.

TRN [257] Temporal Relation Networks propagate snippets through a 2D CNN, like in TSN, up

to the pre-classification layer. Instead of producing class scores, a 1D feature is produced for each

segment. In order to support inter-segment temporal modelling, these segment-level features are

then processed by a modified relational module [196] sensitive to item ordering. Two variants of

the TRN module exists: a single scale version which computes a single n-segment relation, and a

multi-scale (M-TRN) variant which computes relations over ordered sets of segment features of

size 2 to n. Once the relational features have been computed, they are sum-pooled and fed to a

classification layer.

TSM [285] These networks functionally operate just like TSN: snippets are sampled per seg-

ment, propagated through the backbone, and are then averaged to produce scores for the input

video. However, unlike TSN, the backbone is modified to support reasoning across segments

by shifting a proportion of the convolutional filter responses across the temporal dimension in

between network blocks. This opens the possibility for subsequent convolutional layers that

process the time-shifted filter responses to learn temporal correlations.

Model complexity The complexity of the models using a ResNet-50 backbone is compared in

table 3.1. As the table shows, the models have comparable inference cost in terms of GFLOPS.

The parameter count is identical between TSN and TSM as the only difference is that TSM

adds in a parameter-less shifting operation into the backbone. The TRN variants introduce extra

parameters through the addition of the relational modules used to aggregate inter-segment

features. Optical flow models have slightly more parameters than their RGB counterparts since

the first convolutional layer’s kernels operate over 10 channels instead of 3.

3.2 Experiments on EPIC-KITCHENS-55

This section examines how a variety of factors impact model performance such as backbone choice,

input modality, and temporal support on the EPIC-KITCHENS-55 (EK55) dataset [216]. Model

84

3.2. EXPERIMENTS ON EPIC-KITCHENS-55

Table 3.1: Model parameter count and inference complexity in GFLOPS when using a ResNet-50
backbone with 8 segments for a single video.

GFLOPS Params (M)

Model RGB Flow RGB Flow

TSN 33.12 35.33 24.48 24.51
TRN 33.12 35.33 25.33 25.35
M-TRN 33.12 35.33 27.18 27.21
TSM 33.12 35.33 24.48 24.51

performance is analysed across tasks from the perspective of the more defining characteristics of

the dataset: the long-tail class distribution, and the domain gap between the seen and unseen

kitchens test sets.

3.2.1 Experimental details

Tasks EPIC-KITCHENS-55 has three tasks within the action recognition challenge: classifying

the verb, noun, and action (the verb-noun pair) of a given trimmed video. Single-task models

are adapted to multi-task models by replacing the fully-connected classification layer of each

model with two adjacent fully-connected layers producing classification scores, one for verbs and

one for nouns. The models are trained with an averaged softmax cross-entropy loss over each

task-specific classification layer. Action predictions are obtained from verb and noun predictions

by assuming the tasks are independent. Performance on these tasks are evaluated on two test

sets: seen participants (S1) and unseen participants (S2). The unseen kitchens test set contains

videos from novel environments, whereas the seen kitchens test set contains videos from the

same environments seen during training.

Training All models are trained with a batch size of 64 for 80 epochs using an ImageNet

pretrained model for initialisation. SGD is used for optimisation with momentum of 0.9. A weight

decay of 5×10−4 is applied and gradients are clipped at 20. The backbone’s original classification

layer is replaced with a dropout layer with the dropout probability set to 0.7. RGB models are

trained with an initial learning rate (LR) of 0.01 for ResNet-50 based models and 0.001 for

BN-Inception models. Flow models are trained with a LR of 0.001. These LRs were the maximum

achievable whilst maintaining convergence. The LR is decayed by a factor of 10 at epochs 20 and

40.

Testing Models are evaluated using 10 crops (center and corner crops as well as their horizontal

flips) for each video. The scores from these are averaged pre-softmax to produce a single video-

level score. Fusion results are obtained by averaging the softmaxed scores obtained for each

modality.

85

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

Table 3.2: Backbone (BB) comparison using 8 segments in both training and testing evaluating
top-1/5 accuracy across tasks. S1 denotes the seen test set, and S2 the unseen test set. Cells are
coloured on a per column basis: low high.

Verb Noun Action

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

BB Model Modality S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

B
N

-I
nc

ep
ti

on

TSN
RGB 47.97 36.46 87.03 74.36 38.85 22.64 65.54 46.94 22.39 11.30 44.75 26.32
Flow 51.68 47.35 84.63 76.95 26.82 21.20 50.64 42.47 16.76 13.49 33.75 27.52
Fusion 54.70 46.06 87.24 76.65 40.11 24.27 65.81 49.27 25.43 14.78 45.69 29.81

TRN
RGB 58.26 47.29 87.14 76.54 36.32 22.91 63.30 44.73 25.46 15.06 45.66 28.99
Flow 55.20 50.32 84.04 77.67 23.95 19.02 47.02 40.25 16.03 12.77 32.92 27.62
Fusion 61.04 51.83 87.46 79.11 37.90 24.75 63.69 47.35 26.54 16.59 46.37 31.14

M-TRN
RGB 57.66 45.41 86.91 76.34 37.94 23.90 63.78 46.33 26.62 15.57 46.39 29.57
Flow 55.92 51.38 84.44 77.74 24.88 20.69 48.37 40.83 16.78 14.00 34.09 28.75
Fusion 61.12 51.62 87.71 78.42 39.28 26.02 64.36 48.99 27.86 17.34 47.56 32.57

R
es

N
et

-5
0

TSN
RGB 49.71 36.70 87.19 73.64 39.85 23.11 65.93 44.73 23.97 12.77 46.14 26.08
Flow 53.14 47.56 84.88 76.89 27.76 20.28 51.29 42.23 18.03 13.11 35.18 27.83
Fusion 55.50 45.75 87.85 77.40 41.28 25.13 66.53 48.11 26.89 15.40 47.35 30.01

TRN
RGB 58.82 47.32 86.60 76.92 37.27 23.69 62.96 46.02 26.62 15.71 46.09 30.01
Flow 55.16 50.39 83.87 77.71 23.19 18.50 47.33 40.70 15.77 12.02 33.08 27.42
Fusion 61.60 52.27 87.20 79.55 38.41 25.74 63.37 47.87 27.58 17.79 46.44 32.20

M-TRN
RGB 60.16 46.94 87.18 75.21 38.36 24.41 64.67 46.71 28.23 16.32 47.89 29.74
Flow 56.79 50.36 84.91 77.67 25.00 20.28 48.70 41.45 17.24 13.42 34.80 29.02
Fusion 62.68 52.03 87.96 78.90 39.82 25.88 64.94 49.03 29.41 17.86 48.91 32.54

TSM
RGB 57.88 43.50 87.14 73.85 40.84 23.32 66.10 46.02 28.22 14.99 49.12 28.06
Flow 58.08 52.68 85.88 79.11 27.49 20.83 50.27 43.70 19.14 14.27 36.90 29.60
Fusion 62.37 51.96 88.55 79.21 41.88 25.61 66.43 49.47 29.90 17.38 49.81 32.67

3.2.2 Results

Backbone choice To choose a high performing backbone, BN-Inception [117, 129] is compared

against ResNet-50 [142] across TSN, TRN, and M-TRN, training and testing with 8 segments.

TSM is not tested with BN-Inception as the authors state that the shift module is harmful unless

placed in a residual branch [285], absent in BN-Inception. The top-1/5 accuracy across tasks is

reported in table 3.2 where the results show ResNet-50 to be superior to BN-Inception in 14/18

cases when examining top-1 action accuracy across both test sets. Consequently, subsequent

experiments focus on models that use ResNet-50 as a backbone.

Task performance Next, the different approaches to temporal modelling are assessed on a

per-task basis. These analyses focus on the top-1/5 accuracy metrics.

On the verb task, an intrinsically more temporal problem than classifying nouns, both M-TRN

and TSM out perform TSN, especially when operating on RGB instead of optical flow. This can be

explained by TSN’s inability to learn inter-segment correlations as only average or max pooling

is used in aggregating class scores across segments. TSN flow models outperform their RGB

counterparts; this can be attributed to the network having access to temporal information in

the form of stacked optical flow frames. The 2D convolutions present in the network can learn

86

3.2. EXPERIMENTS ON EPIC-KITCHENS-55

temporal relations within the stack. Both (M-)TRN and TSM flow models outperform TSN flow

showing that inter-segment reasoning is complimentary to intra-segment reasoning.

Unlike verb classification, noun classification relies less on temporal modelling since objects

can be recognised from a single frame. TSM and TSN perform best on this task, with TRN models

lagging 2–3% points behind. A possible explanation for the observed drop is that the relation

module within TRN places heavy emphasis on extracting temporal relational information which

is of little relevance in recognising objects. Noun performance drops considerably, across all

models, when switching from RGB to flow as the former is a much better modality for recognising

objects. Unexpectedly, TSM improves top-1 noun accuracy by 1% point over TSN. Additionally,

all fusion models improve over the RGB models alone. One possible explanation is the temporal

information helps to disambiguate the action relevant object from those that are simply present

in the environment.

Classifying actions, the joint task of classifying both verb and noun, is very challenging,

with the best top-1 accuracy on actions being 29.9% and 17.9% for the seen and unseen test set

respectively. Even at top-5, the best results are 49.8% and 32.7%. Despite flow’s superior results

on verb classification on the unseen test set, the inferior noun performance drags flow models

below RGB models on both test sets.

An enduring approach, pioneered by the 2SCNN [101], has been to ensemble networks trained

on different modalities through late fusion at test-time. Averaged across all model variants, fusing

both modalities results in a 2.9%, 5.8%, and 9.7% relative improvement over the best performing

single modality model for verb, noun, and action classification respectively. The best model on

the seen test set is TSM fusion, followed by M-TRN fusion. On the unseen test set, the trend is

reversed with M-TRN out-performing TSM.

Novel environment robustness It is interesting to examine the relative drop in model

performance from the seen (S1) to unseen (S2) test set to determine the models’ ability to

generalise to new environments and participants. table 3.2 shows that flow models are more

robust to the domain gap between the seen kitchens and unseen kitchens test sets, only suffering

an average 22% relative drop in top-1 action accuracy compared to a 44% drop for RGB models,

and 39% for fused models. The observed drop in fused model performance suggests that the RGB

model’s predictions dominates those of the flow model. Flow models consistently outperform RGB

models for verb classification on the unseen test set. This is likely due to only the appearance

information in optical flow being silhouettes, a more invariant representation (e.g. to colour) than

an RGB representation. Motion is more environment-invariant and salient to the classification of

verbs than the visual cues used by RGB models.

Class performance analysis To further understand the differences between models, confusion

amongst the top-20 most frequent classes in training is presented in figure 3.1.

87

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

Figure 3.1: Fusion models’ confusion on the top-20 most frequent classes in training. Classes are
ordered from top to bottom in descending order of frequency and any classes outside the top-20
are grouped into a super-class labelled ‘other’. Row labels denote the ground-truth class.

88

3.2. EXPERIMENTS ON EPIC-KITCHENS-55

The verb classification results show the top-3 verbs (accounting for 53% of the actions in

training) dominate predictions due to the dataset imbalance, with this effect being especially

pronounced in the unseen test set. Classes outside the top-20 are rarely correctly classified and

instead are classified into one of the majority classes. The fine-grained nature of the verbs seems

to pose challenges, particularly in the unseen test set, with similar classes being confused, such

as ‘move’ with ‘put’/‘take’, ‘turn’ with ‘mix’, and ‘insert’ with ‘put’. TSN shows increased confusion

between classes that differ primarily in their temporal aspects (e.g. ‘put’ vs. ‘take’), compared to

TSM and TRN. The generic class ‘move’ is one of the hardest to classify, for all models.

For noun classification, the confusion matrices show the models don’t struggle as much to

classify less frequent classes compared to verb classification. This is likely as a result of the models

benefiting from pretraining on the large-scale ImageNet dataset. However, when fine-tuned, some

overfitting to seen environments is observed, as the unseen test set matrices demonstrate that

the models generalise less well to new instances of objects. Like the verb results, the fine-grained

classes pose a challenge with confusion between similar objects like ‘fork’ with ‘spoon’, and ‘bowl’

with ‘plate’ occurring. Another interesting contrast between the verb and noun tasks is that the

top-20 verbs almost never get misclassified into any of the classes outside the top-20, whereas for

nouns, there are more misclassifications of top-20 nouns into the long-tail.

For action classification, the models perform well on frequent actions, but suffer more mis-

classifications into the long tail than nouns (as evidenced by the confusion into ‘other’ classes).

Confusion within the top-20 actions highlight an issue not visible from the verb and noun

matrices: semantically identical classes like ‘turn-on tap’ are confused with ‘open tap’. Whilst

these are different classes in the dataset, they refer to the same action.2 This highlights an

issue with the open vocabulary annotation process employed by the dataset: annotators may use

different phrases for describing the same action.

Qualitative examples where TSM and M-TRN correctly classify the actions, but TSN fails

are given in figure 3.2. In the top example TSN confuses ‘put’ and ‘take’ as a result of averaging

the scores across segments, and thus discarding temporal ordering. M-TRN and TSM show a

much larger disparity between the scores of these classes indicating they have better learnt

the difference. In the bottom example, TSN again struggles to correctly classify the action. The

temporal bounds are quite wide and capture frames just after someone has picked up a bowl,

they then open the cupboard and are about to place the bowl. M-TRN and TSM, through their

ability to draw correlations across segments, are able to disambiguate the correct class from the

action which came before and comes after.

Temporal support To determine how many frames/optical flow snippets the model requires

before performance saturates, a set of models with different numbers of segments are trained.

Results from these models are presented in figure 3.3. Overall, flow models (illustrated in

2This research was conducted prior to the collection of EPIC-KITCHENS-100 and these findings were used to
improve its annotation process to rectify this issue.

89

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

16976

15747

"Take plate"

open

close

dry

take

put

0.04

0.11

0.14

0.30

0.36

TSN

move

dry

put

close

take

0.03

0.04

0.08

0.25

0.56

M-TRN

move

dry

close

put

take

0.02

0.06

0.11

0.24

0.51

TSM

move

close

open

take

put

0.01

0.10

0.12

0.34

0.38

TSN

move

put

close

take

open

0.04

0.13

0.14

0.15

0.51

M-TRN

move

close

take

put

open

0.01

0.10

0.13

0.24

0.47

TSM

"Open cupboard"

Figure 3.2: Two examples demonstrating where models capable of temporal reasoning, TRN and
TSM, improve over TSN. The bar charts show the model’s scores on the above example with the
correct class’ score shown in green.

light colour) benefit more from increasing temporal support, showing monotonically increasing

performance, unlike RGB models (illustrated in a darker colour) whose performance saturates

at 8 frames, even dropping for the action task when using 16 frames. Curiously, the RGB TSM

model is severely harmed by using 16 segments instead of 8, unlike its flow counterpart whose

performance improves moving from 8 to 16 segments. This is in contrast to the authors results on

Kinetics and Something-something which show an improvement in using 16 frames over 8. This

drop was consistently observed across varying LRs suggesting this is not due to a suboptimal

learning rate.

Action priors In the previous sections, action predictions were computed assuming independ-

ence between verbs and nouns:

P(A = (v,n))= P(V = v)P(N = n), (3.1)

however this is naïve as verb-noun combinations aren’t all as equally likely. For example, it is

much more probable to observe ‘cut onion’ than ‘cut chopping board’. Wu et al. [305] propose

90

3.3. EXPERIMENTS ON EPIC-KITCHENS-100

4 8 16

54

56

58

60

To
p-

1
ac

cu
ra

cy

Verb

4 8 16
Segments

24
28
32
36
40

Noun

4 8 16

15
18
21
24
27

Action

Model
M-TRN RGB
M-TRN Flow
TSM RGB
TSM Flow

Figure 3.3: Top-1 accuracy on the seen-kitchens test-set when varying number of segments
(during both training/testing) for M-TRN and TSM.

Table 3.3: Percentage point improvement on action task when using action prior to compute
action scores across 8-segment ResNet-50 models.

Top-1 Top-5

Model Modality S1 S2 S1 S2

TRN
RGB +0.05 +1.33 +0.14 +1.43
Flow +0.01 +1.43 -0.50 +0.75

M-TRN
RGB -0.14 +0.99 +0.70 +2.80
Flow -0.25 +0.68 -0.61 +0.24

TSM
RGB +0.02 +0.82 +0.24 +2.42
Flow -0.25 +0.89 -0.83 +0.44

leveraging the prior knowledge of verb-noun co-occurrence frequency in the training set µ(v,n) to

weight the action prediction, i.e.

P(A = (v,n))∝µ(v,n)P(V = v)P(N = n). (3.2)

The method in equation 3.2 does not allow zero-shot learning of unseen verb-noun combinations.

To remedy this, Laplace smoothing is applied to µ to avoid eliminating the possibility of recog-

nising unseen actions. The relative benefit of using action priors is evaluated in table 3.3, finding

it provides little benefit on the seen test set, but improves performance on the unseen test set by

∼ 1% point for top-1 accuracy.

3.3 Experiments on EPIC-KITCHENS-100

This section investigates the same models on the subsequent version of the dataset, EPIC-

KITCHENS-100 (EK100). This is an extension of EK55 with the addition of 45 hours of extra

footage (bringing the dataset to a total of 100 hours), a new recording set up, and revised a

annotation process. Further details on the differences between EK55 and EK100 are given in

section 2.1.3.2 on page 14. The performance of the models is revisited to see whether the rankings

91

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

of the models remains the same with the additional data. The novel participant robustness is

also re-examined to determine if the additional data helps bridge the gap between seen and

unseen participants. Some new topics, not covered in the previous section, are also explored: how

beneficial is the additional footage, can models trained on EK55 generalise to the new footage

from EK100, and what are the effects of different pretraining approaches?

3.3.1 Experimental details

Any details that omitted below are the same as specified in section 3.2.1. As shown in the previous

section, ResNet-50 is a superior backbone to BN-Inception and thus all models use a ResNet-50

backbone. Models are trained with a batch size of 128. The testing set up uses single center-crop

rather than 10 crop to reduce computational requirements.

EK100 uses a different set-up for testing than EK55. In EK55, only a train and test split were

provided where the test split contained two test sets (seen and unseen kitchens). In EK100 there

are three splits: train, validation, and test where the train split contains videos from both 2018

and 2020. The validation split contains only videos from 2018 and is almost the same as the test

set from EK55.3 The EK100 test split contains only videos from 2020 and is no longer subdivided

into two sets. Additionally, it is important to note that the verb and noun classes were changed

in EK100, merging overlapping classes, and correcting issues in the part-of-speech clustering

process. Subsequently, the metrics reported on EK55 and EK100 are not directly comparable.

Metrics are reported on the full test or validation split, the unseen participants subset, and

the tail classes subset. Unseen participants are those who haven’t been seen during training. Tail

verb and noun classes are defined as the smallest set of classes whose instances account for 20%

of the total number of instances in training. A tail action classes is an action class that contains

either a tail verb class or a tail noun class or both.

3.3.2 Results

Task performance The results of training TSN, TRN, and TSM on EPIC-KITCHENS-100 is

presented in table 3.4. The same observations made for EK55 hold for EK100. TSM and M-TRN

outperform TSN on the verb prediction task, especially so under the RGB modality. Both TSM

and M-TRN outperform TSN on the verb task when operating on optical flow, reinforcing the

previous observation that inter-segment temporal modelling supports intra-segment temporal

modelling. TSM and TSN outperform M-TRN on the noun task and TSM slightly outperforms

TSN. Fusion models demonstrate a consistent improvement across all metrics apart from the

tail-classes where extremely low performance by the models trained on optical flow drag the

fusion models’ performance below that of those trained on the RGB.

3a few videos from EK55’s test split were moved into EK100’s train split.

92

3.3. EXPERIMENTS ON EPIC-KITCHENS-100

Table 3.4: EPIC-KITCHENS-100 model comparison. Results reported on the validation split
are trained on the training split. Results reported on the test split are trained on both the training
and validation splits. All models use a ResNet-50 backbone and are pretrained on ImageNet.
Cells are coloured on a per column basis within each split: low high.

Overall Unseen Participants Tail Classes

Top-1 Top-5 Top-1 Top-1

Split Model Modality Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Va
l

TSN
RGB 50.54 43.94 27.40 87.08 71.46 50.24 40.75 34.65 18.87 29.49 24.58 14.43
Flow 56.26 31.64 22.86 86.82 57.18 41.54 47.70 28.64 19.72 25.34 05.37 05.76
Fusion 60.18 46.03 33.19 89.59 72.90 55.13 47.42 38.03 23.47 30.45 19.37 13.88

M-TRN
RGB 60.61 43.44 32.48 88.11 70.61 52.64 50.89 34.93 25.54 33.69 22.21 16.17
Flow 59.73 29.49 22.76 86.55 53.98 40.59 54.84 25.45 19.81 29.55 05.58 06.41
Fusion 65.88 45.43 35.34 90.42 71.88 56.74 55.96 37.75 27.70 34.66 17.58 14.07

TSM
RGB 61.22 45.75 33.88 88.67 71.78 54.49 51.74 37.00 25.26 32.10 24.42 16.88
Flow 61.74 32.56 25.29 88.09 57.62 44.65 56.81 28.92 22.44 30.85 06.32 07.73
Fusion 66.64 47.88 36.85 90.92 73.99 58.82 57.00 39.34 28.73 34.15 20.37 15.81

Te
st

TSN
RGB 45.29 42.78 24.44 84.36 69.39 47.69 39.66 36.74 18.47 23.75 19.49 10.79
Flow 57.58 33.59 25.44 85.24 57.29 41.81 52.73 29.44 20.73 23.05 04.65 06.10
Fusion 59.03 46.78 33.57 87.55 72.10 53.89 53.11 42.02 27.37 26.23 14.73 11.43

M-TRN
RGB 56.24 42.81 30.50 85.12 69.19 49.95 50.63 36.93 24.72 27.67 17.89 12.59
Flow 58.94 31.37 24.23 85.15 54.37 40.43 54.14 27.54 19.71 24.99 04.80 06.30
Fusion 63.28 46.16 35.28 88.33 72.32 55.26 57.54 41.36 29.68 28.17 13.98 12.18

TSM
RGB 57.66 43.17 30.64 85.64 69.47 49.68 50.83 37.06 23.28 25.46 18.78 11.84
Flow 61.52 33.84 26.96 86.97 57.00 43.56 56.79 28.76 21.85 25.84 05.32 07.23
Fusion 64.42 46.95 36.17 88.92 71.94 56.75 58.81 41.46 29.81 27.59 14.76 11.84

Test of time One desirable attribute of any model is its ability to generalise to new data. This

is investigated in a test of time experiment where an RGB TSM is trained on data from 2018 and

evaluated on data captured in either 2018 and in 2020. Specifically, the model was trained on

the subset of data in the EK100 training set from 2018 and then tested on both the validation

set (which only includes 2018 data) and on the test set (which includes only 2020 data). The

test set was designed to be as similar to the validation set as possible and so any difference in

performance is primarily attributable to the changes in the dataset collection protocol, rather

than due to a change in the difficulty of the test set.

Figure 3.4 presents the results of this experiment, demonstrating a large performance gap

across all tasks. This drop in performance is indicative of a domain gap between the footage

recorded between 2018 and 2020. This domain gap could stem from a variety of changes since

2018: some participants moved homes and so their kitchens have changed (but many objects like

cutlery, pots and pans stay the same), a different camera was used that has a different colour

profile and employs motion stabilisation, and videos were captured at 50fps rather than 59.94fps.

Designing models capable of dealing with these changes is the topic of the domain adaptation

challenge proposed by Damen et al. [316].

Scaling dataset size As discovered in the test of time, models trained only on 2018 data fail

to generalise to the 2020 test set. To overcome this, models are trained with new footage from

93

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

Verb Noun Action
0%

10%

20%

30%

40%

50%

60%

To
p-

1
ac

cu
ra

cy

Test of time
Test set
year

2018
2020

Figure 3.4: Test of time: Can a model trained only on data from 2018 generalise to new footage
shot in 2020? To test this, a model is trained on the 2018 training data alone and tested on both
the 2018 and 2020 test sets. There is a large performance drop when evaluating on the 2020
test data indicating that the model does not withstand the test of time. Model: TSM (Kinetics
pretrain), modality: RGB.

Verb Noun Action
0%

10%

20%

30%

40%

50%

60%

To
p-

1
ac

cu
ra

cy
 (2

02
0

te
st

 se
t)

Effect of incorporating 2020 footage into training data
% 2020 data added to training set

0%
25%

50%
75%

100%

Figure 3.5: Effect of adding additional 2020 footage to the training data of the 2018 footage when
testing on the 2020 test set. As more 2020 data is incorporated, the performance across all tasks
improves. Model: TSM (Kinetics pretrain), modality: RGB.

2020 in addition to the training data from 2018, but how much of this new data is needed? To

answer this, the amount of 2020 footage added to the 2018 training data is varied from 0% to

100%. The results presented in figure 3.5 demonstrate consistent improvements across all tasks

when adding in the additional 2020 training data. However, it does show that as the quantity

of additional data is increased, the performance improvements start to plateau, indicating that

collecting further data won’t be sufficient to dramatically improve model performance.

Novel environment robustness As demonstrated previously, models struggle to generalise

to the new data after only being trained on 2018 data, but can models trained on the full EK100,

with data from both 2018 and 2020, generalise to unseen participants (i.e. neither the kitchen, nor

94

3.3. EXPERIMENTS ON EPIC-KITCHENS-100

Verb Noun Action
0%

20%

40%

60%

RGB

Verb Noun Action

Flow

Verb Noun Action

Fused

Participant type
Returning Kitchen
Changed Kitchen
New Participant

Figure 3.6: Environmental robustness: From EK55 (2018) to EK100 (2020) some participants
stayed within their home, some moved home, and some participants were new to the dataset.
The performance of TSM trained on RGB, optical flow, and their fusion is presented. Model: TSM
(Kinetics pretrain).

Table 3.5: A comparison of the effects of pretraining on Kinetics vs. ImageNet on EPIC-
KITCHENS-100 using TSM with a ResNet-50 backbone. Models are trained on the train and
validation set and evaluated on the test set.

Overall Unseen Participants Tail Classes

Top-1 Top-5 Top-1 Top-1

Modality Pretraining Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

RGB
ImageNet 57.66 43.17 30.64 85.64 69.47 49.68 50.83 37.06 23.28 25.46 18.78 11.84
Kinetics 58.97 46.09 33.13 86.67 72.20 54.48 53.55 41.87 27.42 28.13 22.02 14.17

Flow
ImageNet 61.52 33.84 26.96 86.97 57.00 43.56 56.79 28.76 21.85 25.84 05.32 07.23
Kinetics 62.26 36.28 28.65 87.20 59.96 46.52 56.76 29.90 22.46 28.25 08.03 08.96

Fusion
ImageNet 64.42 46.95 36.17 88.92 71.94 56.75 58.81 41.46 29.81 27.59 14.76 11.84
Kinetics 65.32 47.80 37.39 89.16 73.95 57.89 59.68 42.51 30.61 30.03 16.96 13.45

the participant has been seen during training)? Figure 3.6 demonstrates the results of evaluating

TSM on three groups of participants: those with the same kitchen between 2018 and 2020, those

that took part in 2018 but had moved home by 2020, and those who were new to the dataset

(i.e. only present in 2020). The figure shows a mostly common trend of decreasing performance

from returning kitchen to changed kitchen to new participant. The exception to this trend is

on the verb task, where the performance in the changed kitchen group is higher than of the

returning kitchens group. This could be due to the change in motion stabilisation used in the

camera for 2020 footage, making it harder to both recognise the same action performed in 2018

without motion stabilisation and in 2020 with motion stabilisation. The decrease in performance

on the noun task between returning and changed kitchens can be attributed to the change in

the environment making it harder for the model to recognise the new objects. The performance

decrease in the noun task in optical flow is lower than that of RGB since optical flow is more

invariant to object appearance, since it mostly captures the outline of objects. Overall, there is a

clear trend demonstrating that change in environment and participant poses a challenge to the

model.

95

CHAPTER 3. COMPARING MODELS FOR ACTION RECOGNITION ON EPIC-KITCHENS

Pretraining effects Up to this point, all models have used ImageNet weight initialised

backbones, but EPIC-KITCHENS is still a relatively small dataset compared to other action

recognition datasets, such as Kinetics, which means there might not be enough data to train

models adequately. One approach to mitigate this is to pretrain on another action recognition

dataset. The effect of Kinetics pretraining on TSM, presented in table 3.5, yields a 1.31%, 0.85%,

1.22% point increase for verbs/nouns/actions over ImageNet pretraining, demonstrating that

Kinetics pretraining not only benefits the verb and action tasks, but also the noun task. This

latter improvement is unexpected as one would expect ImageNet to be a suitable pretraining

dataset for noun classification. The Kinetics pretraining starts from an ImageNet initialisation,

so in fact the model has been pretrained on both datasets. It is possible that by training on

ImageNet → Kinetics → EK100, the model avoids overfitting when training on ImageNet →
EK100.

3.4 Conclusion

This chapter benchmarked three contemporary models for action recognition and analysed their

performance, highlighting areas of good and poor performance on both versions of the EPIC-

KITCHENS datasets (EK55 and EK100). TSM is competitive with M-TRN, and both outperform

TSN. These results highlight the necessity for temporal reasoning to recognise actions in EPIC-

KITCHENS. Yet, the relatively low scores for top-1 accuracy show the challenge is far from solved.

Particular issues common to all models are the long-tailed nature of the dataset, fine-grained

classes, and difficulty in generalising to unseen environments where a significant drop across all

metrics is observed.

96

C
H

A
P

T
E

R

4
LABEL-ALTERING TRANSFORMS

Open jar

Close jar

Figure 4.1: The label-altering behaviour of time reversal. Frames from a video demonstrat-
ing a ‘open jar’ action played forwards (top) and backwards (bottom). When played backwards,
the sequence depicts a ‘close jar’ action.

As seen in chapter 3, models that don’t capture temporal ordering struggle to distinguish

between classes where this is the only factor differentiating them, such as ‘put’ and ‘take’.

This observation motivated the design of architectures like TRN and TSM that enable

models to learn temporal ordering and which were shown to improve performance for action

recognition over those that didn’t [257, 285]. This chapter, starts from the same observation but

follows it to a different end; if temporal ordering is the differentiating characteristic between

some classes, then is it possible to use temporal manipulation to create new examples of one class

from examples of another?

Consider the frames presented in figure 4.1: the top sequence depicts someone opening a jar,

however when the order of the frames is reversed (bottom), the sequence depicts someone closing

a jar; one action has been transformed into another by time reversal. But time reversal doesn’t

always have this effect, consider the examples presented in figure 4.2: sometimes the label of the

video remains the same as in ‘moving part of [. . .]’ (left);1 or the label changes like in ‘removing

[. . .], revealing [. . .] behind’ (center); or the resulting video depicts an unnatural event, such as in

the time-reversed version of ‘poking a stack of [. . .] so the stack collapses’ (right).

Prior to the research presented in this chapter, time-reversal had only been used in the video

1The notation [. . .] is to be read as “something” and is a placeholder for objects in the action labels. All classes with
object interactions in the Something-something dataset follow this pattern. The idea is that the examples of a class
use lots of different objects and so the models can’t learn object appearance alone as a proxy in identifying the class.

97

CHAPTER 4. LABEL-ALTERING TRANSFORMS

NO LABEL CHANGE

moving part of [...]

moving part of [...]

IRREVERSIBLE

irreversible

poking a stack of [...] so
the stack collapses

LABEL CHANGE
removing [...],

revealing [...] behind

putting [...] in front of [...]

Figure 4.2: The different effects of time reversal on action classes. When time reversing a
video, some actions maintain their label (left), others change their label (middle), and some are
irreversible (right), producing motions that defy laws of physics.

understanding community for self-supervised learning via Arrow of Time classification [99, 250].

The assumption underlying this task is that it should be possible to detect if time has been

reversed in a video, i.e. videos are always irreversible. However, as shown in figure 4.2, this is

not always the case. Whilst some classes in action datasets are irreversible (right), a subset do

maintain realism under time reversal (left and center).

Time-reversal is not the only video transform to have label-altering effects. While in some

video datasets, horizontal flipping preserves the label of the video it transforms, it is can cause

a change in label when the dataset includes classes with a defining uni-directional horizontal

movement. For example, a ‘swipe right’ video becomes a ‘swipe left’ and a ‘rotate clockwise’

becomes a ‘rotate counter-clockwise’. Additionally, horizontal-flipping also results in right-handed

people becoming left-handed and vice versa. This can be problematic as many practitioners

gravitate to using horizontal-flipping as a default data-augmentation for training networks in

video understanding. The results presented in this chapter demonstrate this can cause quite a

substantial drop in performance (74.4% → 41.5% top-1 accuracy) on the classes affected by this.

This chapter bases its investigation on two datasets, Something-Something [178] and Jester [287].

They were chosen for this investigation as they are large (Something-Something contains 212k

videos and Jester contains 148k videos) and many of their classes are only distinguishable

through temporal ordering. Further details on both datasets can be found in section 2.1.

The chapter is structured as follows. First, the label-altering effects of transforms discussed

above are formalised in section 4.1. Next, section 4.2 describes the experimental set-up used

throughout the chapter. Following this, a study is conducted into how humans and a time-sensitive

model respond to time-reversed videos in section 4.3. A further perception study is conducted on

the same model to determine how it responds to horizontally-flipped videos in section 4.4. The

applications of label-altering transforms are then investigated for both zero-shot learning and

data augmentation in section 4.5. Finally, section 4.6 explores how the label changes under a

given video transform can be inferred from a trained model.

After the publication of the paper from which this chapter is based, an issue with the way

data was fed to the model was found. Section 4.7 describes this issue and assesses the impact

of it. Interestingly, the issue resulted in higher performance and didn’t affect the results so the

98

4.1. LABEL-ALTERING VIDEO TRANSFORMS

unconventional set-up was retained.

4.1 Label-altering video transforms

This section formalises the behaviour of video transforms that can have label-altering effects,

such as those discussed in the introduction of this chapter. These are termed label-altering

transforms (LATs), in contrast to the label-preserving transforms (LPTs) typically used in video

understanding (e.g. for data-augmentation). Additionally, the chapter’s focus is restricted to video

transforms that are self-invertible i.e. when applied twice they leave the video untouched.

Introducing label-altering transforms (LATs) A video transform T is defined as an oper-

ation that takes a video v from a set of videos V and transforms v into another video v̂ = T(v).

Let f be a labelling function that takes a video v and produces its true label y from the set of

classes Y . In a label-preserving transform TLP, the label y of a video v remains unchanged after

applying TLP to v:

∀v ∈V : f (v)= y⇔ f
(
TLP(v)

)= y. (4.1)

However, the application of a label-altering transform TLA results in a change of at least one

video’s label:

∃v ∈V : f (v)= y⇒ f
(
TLA(v)

) 6= y. (4.2)

Such transforms provide a means to generate examples of different classes from those that

generate them. However, it is strongly desirable that these video transforms change the label of

all examples belonging to the same class in a consistent manner:

∀{v,v′}⊂V : f (v)= f (v′)⇔ f
(
T(v)

)= f
(
T(v′)

)
. (4.3)

This property is termed class-homogeneity. Without it, it would be necessary to consider how the

label of each individual example of a class changes under the transform, rendering the transform

of much less use for generating new examples. Instead, when this property holds, it is only

necessary to reason about the transform’s effects at the class-level—a much more feasible task.

This is captured through a class transform TY that records the effects of a video transform T

within the label space. Properties that hold for the video transform should also hold for the class

transform. For example, if the video transform is self-invertible, then the class-transform should

also be self-invertible.

LAT categories As illustrated in the examples of time-reversal in figure 4.2 in the opening of

this chapter, classes can be affected in different ways under a video transform. These behaviours

lead to three distinct categories of classes. Defining these requires a bit of new notation; let Vy be

the set of videos from V labelled with class y. These three categories are defined in the following

text, illustrated by examples for time-reversal.

99

CHAPTER 4. LABEL-ALTERING TRANSFORMS

Moving [...] and [...] so they pass each other

Moving [...] and [...] so they pass each other

Invariant classes YI : classes whose examples maintain their label after transformation:

YI =
{
y ∈Y |∀v ∈Vy : f

(
T(v)

)= y
}
. (4.4)

The class transform for these classes simply maps them to themselves: y ∈YI ⇔TY (y)= y.

Moving away from [...] with your camera

Approaching [...] with your camera

Equivariant classes YE: classes whose examples change label after transformation:

YE = {
y ∈Y |∃y′ ∈Y ∀v ∈Vy : f

(
T(v)

)= y′ 6= y
}
. (4.5)

These are so named as they exhibit the equivariance of the video transform within the label

space. As the video transforms investigated are self-invertible, so too is the class-transform; it

maps y and y′ to one another: TY (y)= y′ and TY (y′)= y. These classes y and y′ are referred to as

an equivariant pair, where y′ is the counterpart of y and vice versa.

Raising hand (new class)

Swiping down

Novel-generating classes YN : these are classes whose transformed examples no longer belong

to any of the dataset’s classes Y .

YN = {
y ∈Y |∀v ∈Vy : f (T(v)) 6∈Y

}
. (4.6)

This category covers classes whose transformed examples can be either natural-looking (like

the one above) or unnatural-looking videos (like the one in figure 4.2). The classes producing

100

4.1. LABEL-ALTERING VIDEO TRANSFORMS

natural-looking examples are of particular interest as they can be used for zero-shot learning.

Whilst examples belonging to classes in both the equivariant and novel-generating categories

undergo a label change when the transform is applied, the key difference between these categories

is whether the transformed examples belong to a class within the dataset or not. Thus equivariant

classes can become novel-generating if their counterpart is removed from the dataset.

What makes a video irreversible? Before moving on from the LAT class categories, the

reasons that some classes produce unnatural looking video when time-reversed are examined.

The realism of these reversed videos is betrayed by reversal artefacts, aspects of the scene that

would not be possible in a natural world. Some artefacts are subtle, while others are easy to spot,

like in a reversed ‘throw’ action where the thrown object spontaneously rises from the floor and

flies back into the thrower’s hand. Reversal artefacts can be broadly classified as physical, if

the artefact exhibits a violation of the laws of nature, and improbable, if the artefact depicts a

possible but unlikely scenario. These are not exclusive, and many reversed actions suffer both

types of artefacts, like a reversed example of ‘crumpling a piece of paper’. Examples of physical

artefacts include: inverted gravity (e.g. ‘dropping something’), spontaneous impulses on objects

(e.g. ‘spinning a pen’), and irreversible state changes (e.g. ‘burning a candle’). Improbable artefacts

typically arise from unlikely orderings of actions, for example: taking a plate from the cupboard,

drying it, and placing it on the drying rack.

Composing label-altering transforms Label-preserving transforms are often combined for

augmentation purposes; label-altering transforms are no different, they too can be combined.

So in addition to horizontal flipping and time reversal, their composition is also investigated.

An example of the additional effects that can be obtained by this composition can be seen in

figure 4.3. A pull can be transformed into a push through time-reversal, but it also inverts

horizontal movements, so a left becomes a right and vice versa. Composing time-reversal with

horizontal-flipping leaves the direction of horizontal movement unchanged, but still changes a

pull to a push. Altogether, these two transforms can produce three different actions from a single

‘pulling left-to-right’ video.

Not only does the composition of these transforms offer new opportunities for data augmenta-

tion and zero-shot learning, but it also helps to remove some of the biases from the dataset. For

example, as will be shown in section 4.5.1, motion blur affects zero-shot learning when using

time reversal alone. But by combining time reversal with horizontal flipping, this bias can be

overcome and performance on the affected classes boosted.

Defining class transforms A class transform TY describes the effects of a label-altering

transform T for the action classes of a specific dataset. These are manually defined by considering

the classes’ semantics and checking a sample of transformed examples.

101

CHAPTER 4. LABEL-ALTERING TRANSFORMS

O
R

IG
H

F

Closing

Pulling Right to LeftOpening

Opening Pulling Left to Right

Closing

Pushing Right to Left

Pushing Left to Right

3
2

1

3
2

1

3
2

1

T
R

3
2

1

H
F+

T
R

Figure 4.3: Demonstration of the additional effects that can be had by composing label-altering
transforms (bold indicates label changes). A right-handed open becomes a left-handed close. A
pull from left-to-right becomes a push from left-to-right. .

Table 4.1: Class category counts for different video-transforms. Time reversal has a much
larger number of equivariant and novel-generating classes compared to horizontal flipping. This
makes it a more useful transform for zero-shot learning.

Novel-generating

Dataset Transform # Invariant # Equivariant Realistic Unrealistic

Jester
Horizontal flipping 21 6 0 0
Time reversal 8 14 5 0

Something
Horizontal flipping 168 6 0 0
Time reversal 34 32 28 80

For time reversal, the classes were first divided into those that produced natural and unnat-

ural examples when time-reversed. A total of 22/27 reversible classes were found for Jester and

66/174 classes for Something-Something. The motions and state-changes of these classes were

examined and used to define candidate class transform mappings which were refined in light of

examining examples.

For horizontal flipping, pairs of classes with defining horizontal motions (eg ‘swipe left-to-

right’ and ‘swipe right-to-left’) were mapped to one another and the remaining classes mapped to

themselves.

The number of classes within each LAT category for each transform are listed in table 4.1.

As the table shows, many of the classes invariant under horizontal flipping become equivariant

under time reversal (such as the ‘open’ action illustrated in figure 4.3). There are 5 and 28 realistic

102

4.2. EXPERIMENTAL DETAILS

novel-generating time-reversible classes in Jester and Something-Something (highlighted in blue

in the table) where the transformed label is not part of the label set (e.g. ‘putting [. . .] underneath

[. . .]’ has no counterpart ‘taking [. . .] from underneath [. . .]’).

4.2 Experimental details

Throughout the chapter, a Temporal Relational Network, introduced in section 2.2.4, is used

due it to its temporal sensitivity, computational efficiency through its use of sparse sampling,

and high performance on benchmark datasets (including Jester and Something-Something). An

8-segment single-scale variant taking in RGB input was chosen as it gave good performance on

the validation set of Something-Something and the additional computational cost of using the

multi-scale variant or using a larger number of frames wasn’t warranted given the marginal

performance gains.

The test protocol uses single center-crops to avoid unintended label transformations that

would otherwise be introduced by horizontal flipping used in 10-crop evaluation (the standard

protocol used in action recognition). Whilst 5-crop testing could have been used, the goal of this

study was to investigate how model’s respond to label-altering transforms, rather than aiming

for state-of-the-art performance.

In all experiments, networks were trained using SGD with a batch size of 80 for Jester and

128 for Something-Something on 4 NVIDIA V100 GPUs for 100 epochs with an initial learning

rate of 1e-3 decayed by a factor of 10 at epochs 40 and 80. All other parameters follow the values

in the TRN GitHub codebase.2 Results are reported on the validation set of both datasets.

4.3 Time reversal perception study

Before exploring the use of time-reversal for generating a new training data, a perception study

of time-reversed videos was conducted first on both humans (section 4.3.1) and a time-sensitive

model (TRN) trained for action recognition (section 4.3.2). The goal of the human perception study

was to determine if time-reversed videos are widely considered realistic. The model perception

study aimed to determine whether a time-sensitive model reacts in the same way to time-reversed

videos as humans do.

4.3.1 A human’s perspective

A human perception study was conducted to confirm the realism of the time-reversed examples

from the 22 classes from Jester and 66 classes from Something-Something described previously.

2Data loading issue: In my code base, the data loading code was replaced, but it used a different data layout
(CTHW) to the original codebase (TCHW). It was found that this actually improved results by ∼ 5%, so the change was
kept. Details on the impact on the input to the backbone network are given in section 4.7.

103

CHAPTER 4. LABEL-ALTERING TRANSFORMS

Figure 4.4: AMT UI used to perform the human perception study on time-reversed
videos. Participants in the study were asked to choose between two examples of a class, in this
case ‘moving [. . .] and [. . .] away from each other’. One of the videos would be a forward-time
example and the other an time-reversed example whose original class might be different. In
this example, the left video was actually a time-reversed example of ‘moving [. . .] and [. . .]
closer together’.

Study set-up The study was performed on the Amazon Mechanical Turk (AMT) crowd-sourcing

platform. Each participant was presented with a sequence of 20 forced-choice tests, each contain-

ing a pair of videos. In each test, two examples of a class were shown, one video was a forward

time example and the other was time reversed example. Figure 4.4 illustrates one of these tests

on the class ‘moving [. . .] and [. . .] away from each other’. One video (the right in this case) is a

forward-time example of the class. The other (the left) is an example that when time-reversed

belongs to this class. In this specific example, the time-reversed video was originally from the

class ‘moving [. . .] and [. . .] closer together’. When presented with the test, participants were

asked to choose the video that better exemplified the class. They were not given any further

instructions of what makes a video a better or worse example of the class. In an effort to avoid

biasing them towards selecting forward-time examples, participants weren’t informed that one

video was time reversed.

Quality control In k out of 20 video pairs, the time-reversed video was replaced with a

forward-time video from an unrelated class to test the participant’s attentiveness.3 In Jester,

k = 3 and in Something-Something, k = 5. Submissions that failed to correctly chose the relevant

example in 3/3 cases for Jester and 3/5 cases for Something-Something were discarded. The bar

was set lower for Something-Something as the dataset contains videos which could be reasonably

labelled with multiple classes and occasionally the video quality is low, making it hard, even for

attentive participants, to get 5/5. Additionally, the left-right placement of time reversed video

was randomised to prevent bias arising from a participant detecting a pattern of forward time

3Workers on AMT frequently game tasks by putting in the minimal amount of effort to complete a task, therefore
a method of checking whether the worker is faithfully following the task’s instructions needs to be introduced.

104

4.3. TIME REVERSAL PERCEPTION STUDY

Playback direction

Figure 4.5: Time-reversed video human perception study results (Jester). Proportion of
forward-time examples selected over reverse-time examples across the 22 candidate reversible
classes in Jester. The interval between the dark vertical lines delimits the region 50%±3σ within
which classes are considered reversible. As all preference splits lie within this region, all the 22
classes are considered to have passed the test of reverse-time realism.

examples always on one side and always selecting the video on that side.

Study results In total, 257 individuals annotated 200 videos per class in Jester, and 120 videos

per class in Something-Something amounting to 5.8% and 10.4% of videos in the reversible class

subsets respectively. To determine which classes were considered reversible by participants, the

results for each class were modelled as a binomial distribution with p = 0.5 and approximated

by a normal distribution. Classes were considered reversible if their forward-time preference

was within µ±3σ. These results are presented in figures 4.5 and 4.6, showing all classes in

Jester are within bounds, and only 2 are outside for Something-Something. The class with

the largest preference for forward time is ‘pretending to throw [. . .]’ in which the actor exerts

asymmetric impulses that study participants seemed to detect when viewing time-reversed

examples. Additionally, the figures don’t suggest that equivariant classes are any more or less

reversible than invariant ones.

105

CHAPTER 4. LABEL-ALTERING TRANSFORMS

Playback direction

Figure 4.6: Time-reversed video human perception study results (Something-
Something). Proportion of forward-time examples selected over reverse-time examples across
the 66 candidate reversible classes in Something-Something. The interval between the dark
vertical lines delimits the region 50%±3σ within which classes are considered reversible. All but
2 of the 66 classes lie within this region and are considered realistically reversible.

106

4.3. TIME REVERSAL PERCEPTION STUDY

4.3.2 A model’s perspective

Having assessed how humans respond to time-reversed videos, this section investigates how

a time-sensitive model, TRN, responds to them. This aims to replicate the perception study

performed on humans, but on models. As humans are almost exclusively exposed to forward-time,

the TRN is also trained solely on forward-time videos. In the human perception study, participants

weren’t told which videos were forward time or reverse time, the same is true here; the TRN is

not given any information about whether the videos it is tested on have been time-reversed or

not.

Confusion matrices illustrating the model’s response to both forward-time and reverse-time

videos are presented in figure 4.7. For each dataset, the top row shows the confusion on forward-

time videos and the next two rows on time-reversed videos, one without label transformation

and one with label transformation. The model responds in the same way that a human would:

left movements become right movements, ups become downs, pushes become pulls, and the

transformations between states are reversed (digging becomes burying and opening becomes

closing). The confusion matrix for Jester on time-reversed videos without label transformation

particularly well illustrates the model’s behaviour on the different LAT categories; equivariant

classes (blue) exchange labels, invariant classes (purple) maintain their labels, and irreversible

novel-generating classes (black) are confused with multiple other classes. The strong diagonal

on the confusion matrices when the label transform has been applied clearly illustrate how the

model’s response is in agreement with the majority of the class transform.4

Some of the model’s behaviour on classes deviates from the expected, for example time-

reversed examples of ‘turning the camera right while filming [. . .]’ are almost equally classified

into that class and the corresponding turning camera left class. It is possible the model sometimes

uses the motion blur in the frame to detect the camera movement which is unaffected by reversing

the order of the frames. However, it is curious that this behaviour is not symmetric for the turning

camera left class, whose examples are predominantly classified correctly as turning camera right

when time-reversed.

The behaviour of the model on time-reversed examples of the bottom five classes in Jester

without label transformation illustrate how the model deals with examples that don’t fit within

any of the existing classes. For example, whilst one might expect a ‘pulling hand in’ example to

be classified as a ‘pushing hand away’ under time-reversal, the two classes visually differ. In a

‘pushing hand away’, the palm faces the camera and moves towards it. In a ‘pulling hand in’,

the back of the hand faces the camera and moves away from it. The model’s response on these

time-reversed examples scatters them across multiple classes without consistent symmetries:

time-reversed examples of ‘pulling hand in’ get misclassified as ‘swiping down’, but the converse

happens rarely.

4The with label-transform confusion matrix for Jester does not apply time-reversal to the irreversible classes.

107

CHAPTER 4. LABEL-ALTERING TRANSFORMS

SS Jester

N
o
 T

ra
n
sf

o
rm

T
R

N
o
 L

T
T
R

LT

Figure 4.7: Time-reversed video model perception study. Confusion matrices of a TRN
trained only on forward-time videos and tested on forward-time (top row) and time-reversed
(TR) videos without label transform (middle row) and with label transform (bottom row). Only
the confusion in the 32 equivariant classes for Something-Something are plotted due to space
constraints. An extended version, including all invariant classes, is given in figure A.1.

4.4 Horizontal-flipping model perception study

There is no need to assess whether a human considers horizontally-flipped action videos to look

natural, as this will evidently be the case. However, the model’s response to these videos is worthy

of attention. Ideally the model will interpret the horizontally flipped videos in the same way a

human would. The set-up is much the same as in section 4.3.2 where the model is trained on

un-flipped videos and tested on un-flipped and flipped videos. The results of this experiment are

108

4.4. HORIZONTAL-FLIPPING MODEL PERCEPTION STUDY

shown in figure 4.9. The confusion matrices show that in almost all cases the model behaves as

expected, classifying previously left-to-right movements as right-to-left after being horizontally

flipped.

Right

Left

Figure 4.8: Appearance of right and left

handed (counter-)clockwise hand turns.

There is one pair of classes where the model

deviates from this correct behaviour: ‘turning hand

clockwise’ and ‘turning hand counterclockwise’. This

confusion results from a population bias towards

right-handed people and a difference in the appear-

ance of the action when performed by either left-

handed or right-handed people (visualised in fig-

ure 4.8). Both actions can be understood by consid-

ering a hand held upright and placing an imaginary

clock-face laying horizontally on top of the fingers.

The hand is rotated to trace the path of the hands on the clock either clockwise or counterclock-

wise. In a right-handed clockwise hand turn (top-left of figure), the back of the hand is shown

first then the palm, whereas the order is reversed for a left-handed person (bottom-left of figure).

The same observation is mirrored for a counter-clockwise hand turn. As the general population

is 90% right handed [338] and this dataset is crowd-sourced, it is reasonable to assume that

the majority of participants in Jester were right handed. The model appears to use the ordering

of the presentation of the back and palm of the hand instead of the rotational movement to

classify the actions. This hypothesis is supported by the lack of label change when examples are

time-reversed (palm presentation ordering is maintained). If there were equal numbers of left

and right handed people in the dataset, then the model wouldn’t be able to use this short-cut and

would instead have to learn the direction of movement of the hand. Later, in section 4.5.1, this

issue will become more apparent when using horizontal flipping for zero-shot learning.

109

CHAPTER 4. LABEL-ALTERING TRANSFORMS

SS Jester

N
o
 T

ra
n
sf

o
rm

H
F

N
o
 L

T
H

F
LT

Figure 4.9: Horizontally-flipped video model perception study. Models trained on videos
that haven’t been horizontally-flipped are tested on videos that haven’t been manipulated (top) or
that have been horizontally-flipped (HF), without (middle) or with (bottom) transforming their
labels.

4.5 Applications of label-altering transforms

The previous sections introduced the notion of a label-altering transform, considered two examples

of these, time-reversal and horizontal-flipping, and analysed how humans and a model respond

to these transforms. Up till now, the model investigated has been trained on videos that haven’t

been manipulated in any way—it has not seen time-reversed nor horizontally-flipped examples

during training. In contrast, this section explores the use of label-altering transforms during

training. The general idea beyond label-preserving transforms is that label-altering transforms

110

4.5. APPLICATIONS OF LABEL-ALTERING TRANSFORMS

can be used to construct examples of classes different to those whose examples were transformed

(e.g. generating an ‘open’ by time-reversing a ‘close’). Two ends of the spectrum are investigated.

At one end, in zero-shot learning, the only examples of a class the model sees are those generated

by the label-altering transform. At the other end, in data-augmentation, both natural examples

and those generated by a label-altering transform are used together to train the model.

4.5.1 Zero-shot learning

The novel-generating classes of a label-altering transform T are ideally suited for zero-shot

learning, thereby extending the model’s recognition abilities to previously-unseen classes. To

accomplish this, examples of a novel class y, outside the label set Y of the dataset, are generated

like so:

V zs
y = {

T(v) |v ∈Vy′ ∧ y′ ∈YN ∧TY (y′)= y
}
. (4.7)

The model can then be trained with videos from V zs
y to learn the zero-shot class y.

Experimental set-up Without a test set including examples of zero-shot classes, the approach

cannot be evaluated. To work around this limitation, four train and test subsets from Jester and

Something-Something are constructed (Jester-HF, Jester-TR, SS-HF, SS-TR). Pairs of equivariant

classes are turned into pairs of novel-generating and zero-shot classes. For each equivariant

class pair, the class with the highest training support is retained as the novel-generating class

and all examples of its counterpart are removed from the training set, which then becomes a

zero-shot class. The number of novel-generating classes and their corresponding instances are

listed in table 4.2. The model is trained on examples from all classes in the dataset except those

coming from any of the zero-shot classes. The label-altering transform is applied to all examples

of novel-generating classes to generate examples of zero-shot classes, which are added into the

training set. When using both time reversal and horizontal flipping (TR+HF), each individual

transform is randomly applied in a sequence to produce a mixture of videos that have been time

reversed, horizontally flipped, or both.

Results Table 4.3 on the following page presents the top-1 and top-5 accuracy on the validation

splits of the four sub-datasets. The results are broken down by reporting performance on the

Table 4.2: Number of novel novel-generating (NG) classes and examples across all dataset subsets.
These are the classes and examples used to generate training data for the zero-shot classes.

(a) Jester

Dataset # NG classes # NG examples

Jester-HF 3 1387
Jester-TR 7 3450

(b) Something-Something

Dataset # NG classes # NG examples

SS-HF 3 523
SS-TR 16 2622

111

CHAPTER 4. LABEL-ALTERING TRANSFORMS

Zero-shot Novel-gen. All classes

Dataset Supervision Top-1 Top-5 Top-1 Top-5 Top-1 Top- 5

Jester-HF
Chance 03.14 14.78 03.17 15.03 04.13 18.69

HF 67.92 98.85 91.64 99.50 93.16 99.57
Full 90.34 99.64 90.01 99.65 94.89 99.66

Jester-TR

Chance 03.35 15.64 03.41 15.99 04.14 18.69
TR 78.90 98.70 94.01 99.66 91.99 99.40
TR + HF 81.57 99.01 93.04 99.52 92.41 99.46
Full 93.07 99.71 92.61 99.63 94.89 99.66

SS-HF
Chance 00.76 03.73 00.80 03.99 00.86 04.21

HF 71.70 89.29 72.50 90.71 49.38 78.41
Full 77.25 91.20 71.79 89.92 49.45 78.02

SS-TR

Chance 00.85 04.20 01.10 05.42 00.86 04.21
TR 30.93 58.73 61.02 81.42 46.01 75.59
TR + HF 39.89 64.80 60.45 80.84 46.56 76.24
Full 62.01 81.88 62.41 83.10 49.45 78.02

Table 4.3: Results for zero-shot learning using LAT supervision. The results of full super-
vision are given as an upper bound, and chance performance as a lower bound. NG stands for
novel-generating.

following subsets: zero-shot classes (where a natural instance has never been observed during

training) and novel-generating classes (whose instances are used to generate examples of the

zero-shot classes during training). Chance performance is given as a lower bound in addition to

the performance of a model trained with full supervision on all classes, which acts as an upper

bound (both highlighted in grey). The number of zero-shot and novel-generating classes differs

per horizontal block so it is not fair to compare results across blocks.

Performance on the zero-shot classes is substantially higher than chance in all cases, demon-

strating that examples generated from LATs can successfully be used to supervise a model.

Combining both transforms performs better than using time reversal alone. The combination of

time reversal and horizontal flipping results increases performance beyond time reversal alone

by +9.0% and +2.6% on the zero-shot classes of Something-Something and Jester respectively.

Over the 4 subsets (listed top-to-bottom in the table), the overall top-1 accuracy, compared to full

supervision, only decreases by 1.7%, 2.4%, 0.1%, 1.8% when dropping all the training examples

of the zero-shot classes that account for 11%, 26%, 2% and 9% of the classes in the datasets

respectively. Notably, training for these zero-shot classes does not decrease the performance on

the novel-generating classes as can be seen by comparing their performance under the zero-shot

regime to full supervision.

The confusion amongst classes for the pairs of novel-generating and zero-shot classes in each

subset is examined in figure 4.10 on page 114. For Jester-HF and Jester-TR, good performance

on most zero-shot classes can be observed, but the model collapses to misclassifying almost

all examples of the novel-generating class ‘turning hand counterclockwise’ into its zero-shot

112

4.5. APPLICATIONS OF LABEL-ALTERING TRANSFORMS

counterpart ‘turning hand clockwise’ under horizontal flipping. In an inspection of a random

sample of 20 examples of ‘turning hand counterclockwise’ that were correctly classified by the

zero-shot model, 10/20 examples were recorded by left-handed individuals. For comparison,

performing the same inspection on another random sample of same class that were correctly

classified by the fully supervised model showed that only 3/20 were recorded by left-handed

individuals. This observation suggests that the zero-shot model has learnt how to recognise

(the much rarer) left-handed ‘turning hand counterclockwise’ action, but struggles to handle the

right-handed version. Consequently, the model has failed to learn to use the rotational movement

of the hand to recognise the action and is instead relying on the ordering of the presentation of

the palm and back of the hand (as was the case when the model has seen natural examples of

both classes, discussed in section 4.4). The same two classes also pose issues when using time

reversal, but performance is somewhat improved, with slightly less than the majority of instances

being classified correctly. The combination of horizontal flipping and time reversal further boosts

the performance on these classes as the model is exposed to a wider variety of examples of the

zero-shot class generated through time reversal, horizontal flipping, and their composition.

For SS-HF, zero-shot classes are distinguishable from their novel-generating counterparts. In

SS-TR, the camera movement zero-shot classes: ‘turning the camera upwards/right’ have been

confused with their novel-generating class counterparts: ‘downwards/left’. This suggests that

the model may be using motion blur in individual frames to classify the action as the model has

never seen upwards/right motion blur effects.

Overall these confusion matrices show that in the majority of cases, training on examples

generated by LATs is an effective method for learning zero-shot classes.

The qualitative results in figure 4.11 on page 115 demonstrate some success and failure

modes of the zero-shot models across 6 examples. The left column shows how a zero-shot model

trained only on real examples of left-to-right actions can correctly classify the corresponding

zero-shot right-to-left counterparts. The bottom left example shows a case where for both models,

despite not predicting the ground-truth class, their predictions are reasonable. The zero-shot

model has a greater difference between the top-2 scores indicating increased discriminative

ability of the model. The right column shows how a time-reversal zero-shot model has been able

to learn state inversions like ‘close’ (first) and ‘uncover’ (second) from time reversed examples of

‘open’ and ‘cover’. Even in the bottom right example where the model, reasonably, classifies the

video as ‘removing [. . .] revealing [. . .] behind’, the zero-shot (ground-truth) class has the next

highest score.

113

CHAPTER 4. LABEL-ALTERING TRANSFORMS

HF Jester

SS

TR

Jester

SS

SSHF-TR

Jester

Figure 4.10: Confusion between novel-generating and zero-shot classes in the zero-shot
recognition experiment. In most instances, there is minimal confusion between the zero-
shot class and its novel-generating counterpart. This demonstrates the effectiveness of LATs
to generate examples of zero-shot classes. The final column of each confusion matrix shows
confusion amongst other classes not listed.

114

4.5. APPLICATIONS OF LABEL-ALTERING TRANSFORMS

Time reversal

Moving S closer to S
Pushing S with S

Moving S across a surface without it falling down

0.132
0.281
0.286

Moving S closer to S
Pushing S with S

Moving S across a surface without it falling down

0.024
0.366

0.534

142852

Pushing S from right to left

Closing S

Moving part of S
Pretending to close S without actually closing it

Closing S

0.001
0.070

0.928

Moving S up
Pretending to close S without actually closing it

Closing S

0.000
0.018

0.981

Folding S
Removing S, revealing S behind

Uncovering S

0.000
0.020

0.980

Folding S
Uncovering S

Removing S, revealing S behind

0.005
0.177

0.816

Uncovering S

Turning the camera right while filming S

Showing S behind S
Turning the camera left while filming S

Turning the camera right while filming S

0.007
0.105

0.878

Approaching S with your camera
Turning the camera left while filming S

Turning the camera right while filming S

0.042
0.350

0.597

Pretending or failing to wipe S off of S
Pretending to pick S up

Uncovering S

0.011
0.014

0.955

Removing S, revealing S behind
Putting S, S and S on the table

Uncovering S

0.095
0.100

0.324

Uncovering SPushing S from right to left

Moving S and S closer to each other
Moving S closer to S

Pushing S from right to left

0.000
0.002

0.997

Moving S across a surface without it falling down
Pulling S from right to left

Pushing S from right to left

0.000
0.000

0.999

Horizontal flipping

Figure 4.11: Qualitative results from a model trained for zero-shot learning using LAT
supervision. The results of the model trained used LAT supervision are shown in purple. Fully
supervised model scores are also given for comparison in blue. Zero-shot classes are bolded.

115

CHAPTER 4. LABEL-ALTERING TRANSFORMS

4.5.2 Data augmentation

Label-preserving transforms have long been used for data augmentation and range from the

simple, like adjusting the frame rate of a video, to the complex, like the learnt transformations

used in adversarial training [113]. LATs further expand the set of videos that can be used

to augment the dataset compared to LPTs by enabling the generation of new examples from

equivariant classes in addition to invariant classes. New examples of class y′ can be generated

using a LAT T if there exists a class y in the label set Y such that TY (y) = y′. These examples

can then be combined with the existing ones Vy′ to produce a larger set for use in training:

V aug
y′ =Vy′ ∪

{
T(v) |v ∈Vy ∧TY (y)= y′ ∈Y

}
(4.8)

One advantage of using LATs for data augmentation is that the support of each class within

an equivariant pair becomes balanced. This can be understood by considering the number of

examples n and n′ for a pair of equivariant classes y and y′; the augmented set of examples for

both y and y′ will be of size n+n′.

Experimental set-up A video is transformed (along with its label) with probability 0.5 if

it belongs to either an invariant or equivariant class; novel-generating classes are left un-

augmented. When considering multiple label-altering transforms (as in horizontal-flipping +

time-reversal), the transforms are applied in sequence, each with probability 0.5. Thus the model

will be exposed to examples that haven’t been manipulated, that have been horizontally-flipped,

that have been time-reversed, and that have been both horizontally-flipped and time-reversed.

Results The results of applying label-altering transforms for data augmentation are presented

in table 4.4. Additionally, the results of augmenting with horizontal flipping but without label

transformation are included as this is a default, yet incorrect,5 augmentation technique imple-

mented in the public codebases of TRN and similar video recognition networks. The consequence

of using this incorrect augmentation strategy results in a drop in top-1 accuracy on the equivari-

ant classes of 3.3% for Jester and 32.9% for Something-Something (highlighted in red in the

table).

On Jester, the best two configurations are horizontal flipping with label transformation and

horizontal flipping of invariant classes only. When horizontal flipping is used and the labels

are transformed, the overall performance is improved by reducing confusion on the equivariant

classes compared to when the labels aren’t transformed. Only augmenting the invariant classes

results in better performance on the equivariant classes compared to the augmenting both

invariant and equivariant classes. This is likely due to the model that augments both types of

5Horizontal flipping without label transform is incorrect on these datasets since it converts a left-to-right
movement into a right-to-left movement, corrupting the labels of examples that come from classes defined by a
uni-directional horizontal movement.

116

4.6. INFERRING CLASS TRANSFORMS FROM MODEL RESPONSES

classes learning to better deal with left-handed people which reduces its performance on the test

set that predominantly features right-handed actors. Time reversal has a less notable impact on

the results, only slightly improving the equivariant classes performance.

On Something-Something, augmenting via the combination of time reversal and horizontal

flipping improves top-1 accuracy by 0.83%, performing comparably to horizontal flipping with

label transformation alone. Without label transformation, training with horizontal flipping results

in a model that performs worse than the model trained without any augmentation. Of particular

note is the large drop (-32.96%) in the performance on equivariant classes under horizontal

flipping when the label transform is applied (the default approach commonly applied). With label

transformation, the model improves performance over the unaugmented model by 0.82%.

All Invariant Equivariant

Augmentation LT Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Je
st

er

None - 94.89 99.66 95.99 99.67 90.18 99.64
HF (invariant only) - 95.00 99.65 96.11 99.67 90.21 99.57
HF 7 94.55 99.65 96.21 99.67 86.89 99.57
HF X 95.01 99.67 96.25 99.67 89.71 99.68

None - 94.89 99.66 97.20 99.71 92.84 99.67
TR X 94.95 99.65 97.16 99.65 93.01 99.66
HF + HF X 94.68 99.61 97.06 99.73 92.55 99.56

So
m

et
hi

ng

None - 49.45 78.02 48.31 77.45 74.42 90.49
HF 7 49.38 78.98 49.75 78.53 41.46 88.83
HF X 50.26 78.94 49.20 78.36 73.50 91.78

None - 49.45 78.02 36.33 70.48 62.23 82.56
TR X 49.00 77.91 35.12 69.10 60.52 82.97
HF + TR X 50.27 79.00 36.95 69.85 61.23 83.52

Table 4.4: LAT data augmentation results. LT stands for label transform, where a hyphen
indicates that a LT wouldn’t make a difference. Invariant only refers to only applying the data
augmentation to instances of invariant classes.

4.6 Inferring class transforms from model responses

Sections 4.3.2 and 4.4 showed that trained models never exposed to time-reversal or horizontal-

flipping respond to examples generated from both transforms in a similar way to humans. A

natural question then arises—is it possible to use the model’s responses to determine whether a

class is invariant, equivariant, or novel-generating? In other words, can the class transforms be

obtained from the model’s responses to these examples instead of relying on a human to manually

define them? This final section introduces a method for doing so and evaluates the quality of the

discovered class transforms.

117

CHAPTER 4. LABEL-ALTERING TRANSFORMS

Figure 4.12: An example of the Γ and Ω matrices used in discovering the class transform for
time reversal on the Jester dataset. Notice how time-reversed examples of ‘Pulling hand in’ fall
into ‘Swiping up’ in Γ, but not the other way round. Ω, the symmetric version of Γ, produced by
multiplying Γ by its transpose eliminates these spurious mappings.

Discovering class transforms The class transform TY corresponding to a video transform T

can be automatically determined by measuring the response of a trained classification model f̂ .

The model is tested on videos from a validation set with and without transformation by T and

the relationship between the classes is determined.

First, the recall of each class y is computed: let V̂y be the set of videos in V that are labelled as

y and were correctly classified by f̂ , then the recall of class y is Λ(y)= |V̂y|/|Vy|. Class mappings

are only extracted on classes where the model performs sufficiently well. This is implemented by

only considering classes whose recall is above a threshold λ. If Λ(y)≥λ, the model can be used

to establish the class transform T̂Y (y), though this assumes minimal noise exists in the dataset

labels. Conversely, if Λ(y)<λ, the class transform cannot be established for y from predictions

of the model f̂ since the model’s performance is not sufficiently high to be trustworthy. Next,

for every pair of classes (y, y′), the proportion of videos in V̂y that are classified as y′ when T is

applied is computed:

Γ(y, y′)=
∣∣{v ∈ V̂y | f̂

(
T(v)

)= y′
}∣∣∣∣V̂y

∣∣ , (4.9)

and the affinity Ω(y, y′), a measure of how likely it is that y will be mapped to y′ and vice versa

under T, is computed from Γ(y, y′):

Ω(y, y′)=Γ(y, y′)Γ(y′, y). (4.10)

The reason for defining Ω is due to the asymmetry of Γ where one class can map to another but

not vice versa. See the examples of Ω and Γ in figure 4.12 that demonstrate how Ω filters out

spurious mappings that are present in Γ.

Next, a candidate target class yt within the label set Y is computed for each class y ∈Y :

yt = argmax
y′∈Y

Ω(y, y′), (4.11)

118

4.6. INFERRING CLASS TRANSFORMS FROM MODEL RESPONSES

and a novel target class yn (different for each y), outside of Y , for the class is introduced. Finally,

the approximated class transform T̂Y is defined:

T̂Y (y)=

y Ω(y, y)≥α
yt Ω(y, y)<α∧Ω(y, yt)≥α∧Ω(yt, yt)<α∧Λ(yt)≥λ
yn otherwise.

(4.12)

where α is a hyperparameter controlling the trade off between extracting invariant and equivari-

ant transforms. If Ω(y, y)≥α, then an invariant mapping is extracted. Otherwise, an equivariant

mapping between y and yt is extracted if the target class yt is not deemed invariant and its

recall is also above the threshold λ. If neither of these cases hold, then the class is considered

novel-generating.

Evaluating the class transform discovery process To measure how effective the class

transform discovery process is, the recall of the mappings between classes in the discovered class

transform is computed. The macro-averaged version of recall is used as it treats each category

(invariant/equivariant/novel-generating) as equally important and doesn’t bias the evaluation

towards categories that have more mappings than others. The manually defined class transforms

are used as ground truth for this assessment.

The first evaluation of the discovery process considers how accurately class transforms can be

extracted if the optimal hyperparameters were selected. Figure 4.13 shows the results of this

experiment, providing the macro-averaged recall, optimal hyperparameters, and a confusion

matrix amongst the categories. As can be seen from the high recall scores, the discovery process

is effective, making very few errors when the model under investigation has high performance

(as in Jester’s case). Even the quality of the discovered class transforms on Something-Something

is good (where the model’s performance is much lower), especially so on the invariant and

equivariant classes, though the novel-generating classes are frequently confused as invariant.

This investigation shows that if the right hyperparameters can be chosen, the discovery process

can work well.

Choosing hyperparameters for the discovery process The previous paragraph showed

that given the right hyperparameters, the class transform discovery process works well. But now

the question of how those hyperparameters are chosen must be considered. First, the robustness

of the discovery process to varying the hyperparameters is assessed. This is accomplished by

running a grid search over the values of λ and α and measuring the recall for each configuration

of the hyperparameters. These results are visualised as heat maps in figure 4.14 on page 121. As

the figure shows, the hyperparameter space is fairly smooth and intuitive to navigate. Varying

each hyperparameter has a distinctive effect on the discovered class transform. As λ is increased,

fewer classes will be mapped. As α is increased, invariant and equivariant class mappings become

less favoured, and are misclassified as novel-generating.

119

CHAPTER 4. LABEL-ALTERING TRANSFORMS

HF (λ = 0.91, α = 0.81)
Recall: 88.9%

TR (λ = 0.78, α = 0.80)
Recall: 95.8%

HF+TR (λ = 0.91, α = 0.79)
Recall: 92.9%

HF (λ = 0.04, α = 0.09)
Recall: 99.6%

TR (λ = 0.02, α = 0.12)
Recall: 77.0%

HF+TR (λ = 0.02, α = 0.12)
Recall: 81.1%

Jester

Something-Something

Figure 4.13: Evaluation of the best discovered class-transforms. To demonstrate how well
the discovery process can work, the hyperparameters, λ and α, were chosen to maximise the
macro-average recall through a grid search. The discovery process is applied to determine class
transforms for horizontal flipping (HF), time reversal (TR) and their composition (HF+TR).
The confusion matrix cells are annotated with the number of mappings and coloured in a row-
normalised fashion. Note that equivariant classes are split into two parts on the x-axis; the
discovery process can extract an equivariant mapping for a class, but its counterpart could be the
same as in the ground truth mapping (3) or different (7). Additionally, the discovery process can
only extract class transforms for classes whose recall is above λ. When the recall is below λ, the
class ends up without a mapping and is counted in the ‘Undefined’ column.

It is envisaged that the class transform discovery process would be performed by a practitioner

who reviews and adjusts the discovered class transform. Consequently, since the hyper-parameter

space is smooth and intuitive to navigate, the practitioner could tweak the hyperparameters

until they find a sensible looking class transform. The main value of the discovery process is

in finding pairs of equivariant classes which take a large amount of time to manually search

due to the quadratic nature of the search space. Once a sensible looking class transform has

been discovered, the practitioner would then be expected to review the mappings and examine

examples to determine their validity.

An alternate approach could be taken where a small number of mappings are defined by the

practitioner that are used in a hyperparameter search to find a suitable configuration. Figure 4.15

on page 122 shows the results of such a hyperparameter search on Something-Something with

120

4.6. INFERRING CLASS TRANSFORMS FROM MODEL RESPONSES

HF TR HF+TR

S
om
et
hi
ng
-S
om
et
hi
ng

Je
st
er

HF TR HF+TR

Figure 4.14: Study on the robustness of hyperparameters in the class transform discov-
ery process. The heatmaps show the recall of the discovered class transforms across varying
values of λ and α. The bottom shows confusion matrices for a selection of settings to illustrate the
effect of each hyperparameter on the discovered class transforms. The configuration yielding the
highest recall is λ= 0.04,α= 0.12. As λ, the class-recall threshold, is increased, fewer mappings
are extracted as seen in the increased counts in the “Undefined” column. As α, the affinity
threshold, is increased, the discovery process favours extracting novel-generating classes. Finally,
if both are increased, the effects observed when varying each individual hyperparameters are
combined: More classes moved into either the “Undefined” or “Novel-generating” columns.

time reversal. To produce a small validation mapping for use in this search, the dataset’s classes

were ordered by recall on the validation set (without any video transform applied to examples)

and 10 mappings were defined. The mappings were chosen with an aim towards having a

mix of classes with varying class recalls and different categories (invariant/equivariant/novel-

generating). Of the mappings, 5 were invariant, 2 were equivariant, and 3 were novel-generating.

As can be seen in figure 4.15 by comparing the recall on the full class-transform to the small

validation class-transform, the recall values are very similar within the hyperparameter space.

This suggests that defining a handful of mappings between classes is sufficient to determine a

reasonable setting for the hyperparameters of the class transform discovery process.

121

CHAPTER 4. LABEL-ALTERING TRANSFORMS

All mappingsValidation mapping

Figure 4.15: Hyperparameter search for λ and α measuring the recall of the class-transform
mappings on a small 10 entry validation mapping (left) vs. on all the ground-truth mappings
(right). Using a small number of mappings as a means to determine the quality of the discovered
class transform compares favourably to using all the mappings from the ground-truth.

4.7 Data loading issue

After the publication of the ICCVW paper corresponding to this chapter, a set of mismatched

assumptions were found in the codebase written for this research: the data loading code loaded

videos with CTHW (channel, time, height, width) layout tensors, but the implementation of the

TRN network expected input in TCHW layout tensors. This issue didn’t lead to a run time error as

the implementation of TRN used a reshape operation on its input to combine the time and batch

dimensions into one for propagating all frames in the batch through the 2D CNN backbone. This

reshaping operation silently redefined the shape of the tensor in an inconsistent manner to the

actual data layout. The effect of this mismatch between the expected and actual data layout on

the input to the 2D CNN backbone is visualised in figure 4.16 on the next page.

To quantify the impact of this error, a set of experiments focusing on time reversal on

Something-Something were re-run. Table 4.5 presents the results for data-augmentation and

table 4.6 for zero-shot learning. Surprisingly, feeding data in the incorrect CTHW format led to

improved performance across all the experiments, including the standard evaluation protocol

that does not apply any label-altering video transforms to the input videos (from 44.95% with

TCHW format to 49.45% for CTHW format—a 4.5% improvement). This is likely due to the backbone

being able to exploit temporal signals as temporal information is present in input of the 2D CNN

backbone with CTHW format unlike with the TCHW format. In some ways, this unintentional change

foreshadowed the advent of TSM [285] which purposefully shifts part of the input across time in

the channel dimension at different layers of the network.

As the issue did not change the conclusions made from the experimental results and since

performance improved with the CTHW data layout, the results using this data layout were kept.

122

4.7. DATA LOADING ISSUE

Figure 4.16: Effect of different video data layouts on the input to a TRN backbone.
Top: Memory layout of TCHW and CTHW data. (Only the time (T) and channel (C) dimensions are
visualised as the remaining dimensions of the data layout are unchanged and would unnecessarily
complicate the figure). Each square represents a single-channel frame. The numbers within each
square indicate the frame’s index and the colour indicates its channel.
Bottom: The resulting layout of elements after reshaping TCHW (left) or CTHW (right) data into a
tensor of shape (T,C,H,W) without reordering any dimensions.
Right: The input to the 2D CNN backbone is formed by feeding one of the columns of the data
shown in the bottom left panel. When the TCHW format (expected) is used, the first input to the
network is all RGB channels of the frame at time 1. When the CTHW format (actual) is used, the
first input to the network is the red channel frames at time 1, 2, and 3 (shown). Consequently,
temporal information is available to CNN backbone to exploit with a CTHW format input, whereas
in the standard TCHW format, there is no temporal information in the input to the backbone.

Table 4.5: Comparison of top-1 accuracy on Something-Something data-augmentation experi-
ments when training with input data laid out in the TCHW or CTHW format.

All Equivariant Invariant

Augmentation TCHW CTHW Change TCHW CTHW Change TCHW CTHW Change

None 44.95 49.45 N4.50 53.06 62.23 N9.17 36.09 36.33 N0.24
Time reversal 44.62 49.00 N4.38 51.31 60.52 N9.21 33.63 35.12 N1.49

Table 4.6: Comparison of top-1 accuracy on Something-Something zero-shot experiments when
training with input data laid out in the TCHW or CTHW format.

All Novel-generating Zero-shot

Supervision TCHW CTHW Change TCHW CTHW Change TCHW CTHW Change

Full 44.95 49.45 N4.50 54.13 62.41 N8.28 51.72 62.01 N10.29
Time reversal 41.65 46.01 N4.36 51.27 61.02 N9.75 24.29 30.93 N06.64

123

CHAPTER 4. LABEL-ALTERING TRANSFORMS

4.8 Conclusion

In this chapter, the notion of label-altering video transforms and their corresponding label

transforms were introduced. A human and model perception study was conducted to determine

whether these two groups react to time-reversed videos in the same way. The results of this study

showed that TRN does respond similarly to time-reversed videos as humans do, but occasionally

differs when the model makes use of short-cuts to recognise actions. The use of label-altering

transforms to generate new examples was proposed and evaluated for the purposes of zero-

shot learning and data augmentation. These results showed the effectiveness of label-altering

transforms, particularly for zero-shot learning. The chapter also highlighted issues with applying

common video transforms, like horizontal flipping, used for augmentation without thought,

resulting in reduced performance on datasets where these transforms are label-altering. There

are many opportunities to build upon this research, some of which are presented next.

Exploring other video transforms This chapter explored time reversal, horizontal flipping

and their composition. But there are many other transforms that could be studied including

video trimming and looping. Additionally, it would be interesting to see whether it is possible to

learn video transforms with specific label-altering behaviour in a way that generalises across

different videos. This is somewhat similar to the idea used in adversarial training where the

input is adjusted in a label changing manner. However, this proposal instead would transform

videos so their label change is consistent within a class.

Using domain-adaptation techniques to make better use of data generated by LATs
Videos generated through label-altering transforms can be thought of as coming from a different

domain, and so any one of the many methods developed for domain adaptation could be used to

minimise the domain gap in the feature space between LAT transformed and untouched videos.

Evaluating data augmentation for smaller data Whilst the resulting changes in perform-

ance on the datasets when using LATs for data augmentation were fairly small, it does not mean

that this approach might not yield larger improvements in a smaller data regime where data

augmentation typically plays a more important role. Investigating either smaller, few-shot, or

long-tailed variants of the datasets used in this chapter would help answer this question and

lead to guidelines on what size of data label-altering transforms can boost performance on.

Exploring other model architectures This chapter picked one temporally-sensitive archi-

tecture, TRN, to investigate, however it would be interesting to see how well these findings

generalise to other architectures. Do structurally different architectures make better or worse use

of examples generated from label-altering transforms? Investigating other models like TSM [285],

124

4.8. CONCLUSION

I3D [170], or ViViT [358] would help answer this question and determine whether label-altering

transforms are suitable for general use.

Transforming the semantic labels of novel-generating classes When a new video is

produced by applying a video transform to a novel-generating classes, the transformed video

belongs to a new class outside the dataset. But what is the name of the novel class that this

new video belongs to? Could a method be developed to transform the novel-generating class’

name? One possible avenue for doing this is by leveraging a lexical database. A preliminary

investigation was made on WordNet [12] for the purpose of labelling novel classes found through

time-reversal using antonym (opposite) relationships. However, these were found to be quite

sparse and are missing for common words like ‘put’, ‘take’, and ‘remove’. Even those that were

present didn’t necessarily name the time-reversed class in the correct manner, for example move

has the antonym stay.

125

C
H

A
P

T
E

R

5
ATTRIBUTING FRAMES IN VIDEO RECOGNITION

1 2

13

4 5 6 7 83

Figure 5.1: Not all frames are equally valuable for recognising actions. The sequence
depicts an actor ‘putting [. . .], [. . .], and [. . .] on the table’ from the Something-Something dataset.
Which frames are more informative than others? Consider if only frames 1 and 3 where present,
would they enable you to conclude that this is someone putting 3 things down? What if instead
frames 1 and 8 were present? This thought experiment demonstrates that different parts convey
more or less information to humans. But is the same true for models?

Not all frames are equal in the information they provide to a classification model, as

demonstrated in figure 5.1. This chapter introduces a way of assessing the value of frames

through a new process called element attribution, similar to, but distinct from, feature

attribution. Element attribution answers the question: how much did each frame contribute to the

model’s output? To perform element attribution, a method called the element Shapley value (ESV)

is devised, so named due to its link to the solution to the reward division problem in cooperative

game theory introduced by Lloyd Shapley [2].

The goal of any attribution method is to produce an explanation of a model’s output on a given

input. Explanations come in a quantitative form: numeric values are assigned to different parts

of the input indicating how much they contributed to the model’s output. These values can be

non-negative, only describing the magnitude of the impact on the output, or signed, additionally

specifying whether the output was affected positively or negatively. The most common form of

attribution is feature attribution where the goal is to determine the importance of each individual

feature in the input of a model on one of its outputs, for example, a class neuron for a classification

model. This is different from feature selection, which computes the value of the feature globally

across a dataset, not for a specific example. Many methods have been proposed for feature

attribution but few are grounded by an underlying theory which makes their output hard to trust

(see section 2.5.1 on page 68 for a review of these works).

Element attribution is a new type of attribution that aims to quantify the contribution

127

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

Figure 5.2: Frame attribution using the element Shapley value. Given a trained model
f and a class c, the element Shapley values φc

i of each frame i specify how much that frame
contributed to the class score output by the model. The element Shapley values are computed
by calculating the difference in the class score for subsequences with and without the specified
frame—e.g. (1, 2, 4) vs. (1, 4). These score differences (represented by the overlapping boxes in
the center of the figure) are combined across all subsequences to produce the element’s Shapley
value (e.g. for frame 2). As element Shapley values are computed for a specific scalar output of the
model, they are class-specific when the model is trained for classification. The Element Shapley
values φc

i for two classes are shown to the right: the ground-truth class (blue) and a similar, but
incorrect, class (orange), highlighting positive and negative frame attributions.

of elements in homogeneous sequences to the output of a model. A sequence is considered

homogeneous if its elements are of the same type and can meaningfully substitute one another,

providing ordering is retained. By restricting the type of input to be explained, it is possible

to avoid some of the issues affecting methods designed for the more general task of feature

attribution. In this chapter, element attribution is used to determine the importance of each

frame in a video, though it can be applied to a broader range of models and types of sequences.

The element Shapley value (ESV) is proposed as a principled solution to the element at-

tribution problem. This attribution method is based on the axioms of fair reward division in

cooperative games introduced by Lloyd Shapley [2]. Whilst these axioms were originally designed

to encode the concept of fairness in reward division, they too have meaningful interpretations

for element attribution. The ESV casts the scalar output produced by a model, such as a class

score, as the sum of contributions from the elements input to the model. The contributions

determined by the ESV, hereafter referred to as element Shapley values (ESVs), are computed

by measuring the change in model output as each element is added to a subsequence, across

a range of subsequences. A graphical depiction of the approach and the resulting attribution

values are shown in figure 5.2. As ESVs can be easily compared, class-contrastive attributions are

introduced as a way to determine which elements contribute more to one class than another. The

ESV requires applying the model to every possible subsequence, so its complexity is exponential

in the number of elements in the input sequence. To mitigate this, a tractable approximation that

scales linearly with the number of elements in the sequence is introduced.

The chapter is structured as follows. The Shapley value and the concept of element attribution

is introduced in section 5.1. Issues in feature attribution and the benefit of restricting the problem

128

5.1. ELEMENT ATTRIBUTION AND THE SHAPLEY VALUE

to attributing elements in homogeneous sequences are discussed in section 5.2. Section 5.3 shows

how element Shapley values can be computed for longer videos via a tractable approximation.

Section 5.4 investigates element Shapley values experimentally and is split into two parts.

The first part empirically assesses the trustworthiness of element Shapley values compared to

attributions produced by two commonly used feature attribution methods, Grad-CAM [197] and

Integrated-Gradients [203], adapted for element attribution. The second part investigates what

can be learnt about two action recognition models, TRN [257] and TSN [302], on the fine-grained

action dataset Something-Something. A detailed analysis of supporting/distracting frames and a

study on the relationship of ESVs to the frame’s position, class prediction, and sequence length

are presented. Section 5.5 concludes the chapter with notes on limitations and directions for

future work.

5.1 Element attribution and the Shapley value

This section introduces element attribution, a way to answer the motivating question of this

research: how much did each frame contribute to the model’s output? It also proposes a method

for performing element attribution called the element Shapley value that leverages a solution to

fair reward division in cooperative games.

Element attribution assigns a value φi to each element xi belonging to a sequence X = (xi)n
i=1

representing its contribution to the output of the model f (X). In a classification model, where

the output f (X) ∈RC is a vector of class scores, element contributions φc
i are computed for each

class c. Element attribution can be viewed as special form of grouped-feature attribution, where

groups of features, elements in this scenario, are assigned a single value. Additive attribution

methods (first described by Lundberg and Lee [188]) impose a constraint on the values such that

their sum is equal the model output, up to a constant additive bias bc specific to fc:

fc(X)= bc +
∑

xi∈X
φc

i . (5.1)

This gives the values a scale so that they can be meaningfully interpreted as contributions to

the model output. As this is a desirable characteristic, element attribution is also defined to be a

type of additive attribution. Therefore, determining the contributions φc
i can be thought of as the

problem of dividing up the model’s output fc(X) between the elements of the input sequence X .

Elements whose contributions are positive are termed supporting elements for class c, otherwise,

they are termed distracting elements.

With the concept of element attribution defined, a way of determining the contribution φc
i for

each element xi is needed. A natural way of doing this is to determine the change in the model’s

129

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

output after the element xi is added1 to a subsequence X ′ ⊆ X \{xi}:

∆c
i (X ′)= fc(X ′∪ {xi})− fc(X ′). (5.2)

This is called the marginal contribution of xi on X ′.2 This requires feeding the model with

different length sequences, which raises some practical difficulties later addressed in section 5.2.

When ∆c
i (X ′) is positive, the inclusion of the element xi into the sequence X ′ increases the score

for class c and when it is negative, the inclusion decreases the score.

The marginal contribution ∆c
i (X ′) will differ depending on the sequence X ′ that the element

xi is added to. One might imagine that ∆c
i (X \{xi}), the marginal contribution of xi on the longest

subsequence of X excluding xi, would suffice as a measure of the value of xi. Unfortunately this

is not the case as it doesn’t account for redundancy between elements. Figure 5.3 on the next page

demonstrates this with an example containing redundant frames whose marginal contributions

to the longest subsequence undervalue the frames. The marginal contributions ∆c
3({x1, x2}) and

∆c
2({x1, x3}) suggests frames 2 and 3 don’t contribute much (top-2 bars in the bottom right chart).

However, this is because frames 2 and 3 contain similar information and the aforementioned

marginal contributions don’t consider what happens when both frames are removed. When both

are removed, leaving only frame 1, the probability of the ground-truth class drops significantly,

indicating that at least one of frames 2 or 3 must be present to correctly recognise the action. This

is reflected in the high marginal contributions ∆c
2({x1}) and ∆c

3({x1}) (bottom-2 bars in the bottom

right chart). Consequently, the marginal contribution of a frame on the largest subsequence is

insufficient to fairly determine its overall contribution to the model’s output as it doesn’t account

for interactions between frames.

Instead, it is necessary to compute the marginal contribution of each elements to all sub-

sequences to account for these potential redundancies and interactions. However, this raises a new

problem: how to should the marginal contributions be combined into a single value, measuring

the contribution of an element? This combination needs to be performed such that the attribution

values φc
i are assigned in a meaningful way. For example, elements that contribute more to the

model output should have higher attribution values than those that don’t. Whilst that might

appear to be self-evident, it is important to precisely describe the properties that attribution

values should obey. In fact, defining these properties will form an axiomatic foundation that

results in a unique way of combining the marginal contributions to obtain attribution values.

Fairly allocating contributions The additive constraint on the sum of element contributions

φc
i (equation 5.1) facilitates recasting element attribution as reward division in a cooperative

game. In a cooperative game, a group of players, known as a coalition, work together to maximise

1Throughout this chapter, set notation is adapted for sequences by using subset (⊂) and union (∪) operations to
form new subsequences. Elements within these new sequences preserve the same ordering as in the full sequence (i.e.
temporal ordering is always maintained).

2The term marginal contribution is borrowed from cooperative game theory.

130

5.1. ELEMENT ATTRIBUTION AND THE SHAPLEY VALUE

Marginal contributions

Probability of "putting [...], [...], and [...] on the table"

1 2 3

1 2

1 3

11

1 2 3

1 2 3

1 32

1 21 2

1 3

Figure 5.3: The impact of feature redundancy on marginal contributions. The bar chart on
the left shows the the ground-truth class probability output by a model on different subsequences
of the sequence shown in the top left. Frames 2 and 3 in the sequence contain redundant
information. If both or either one of them is present in the subsequence along with frame 1, then
the model outputs a high score for the ground-truth class (top-3 bars). However when both are
removed, leaving only frame 1, the probability drops considerably (bottom bar). This redundancy
is reflected within the marginal contributions ∆c

3({x1, x2}) and ∆c
2({x1, x3}) shown on the right.

the reward given to the coalition for playing the game. The analogy bridging the two problems

is as follows: the elements in the sequence act as the players, coalitions are subsequences, and

the reward given to the coalition is the model output on the full sequence.3 A central problem

in cooperative game theory had been to devise a method for fairly dividing the reward amongst

players. Lloyd Shapley solved this problem by proposing a set of axioms encoding the concept of

fairness that result in a unique reward division method, known as the Shapley value [2]. The

Shapley value can also be used to determine element contributions abiding Shapley’s axioms

of fairness. In the context of element attribution, these axioms specify the constraints that the

values φc
i should satisfy in order to faithfully represent their ‘contribution to the model output’.

A1: Efficiency.
The sum of the elements’ attribution values should equal the output of the model on the

input sequence X minus the output of the model on the empty sequence ;:

∑
xi∈X

φc
i = fc(X)− fc(;). (5.3)

This difference, f ′c(X)= fc(X)− fc(;), is termed the evidential score of class c on sequence

X as it is the difference in the class score when observing X over nothing. Throughout

the experiments, fc(;) is defined as the prior probability of the class, computed from the

empirical class distribution of the training set—this is the best guess one can make without

3This is a slight over-simplification as the reward function in a cooperative game needs to satisfy the condition
that the empty coalition receives a zero reward, therefore a small negative correction needs to be made to the model
output detailed in Axiom 1.

131

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

any visual data. As this axiom states that attribution values sum up to the evidential score,

the use of the term contribution will be used synonymously with attribution value.

A2: Symmetry.
Any pair of elements xi and x j should be assigned equal contributions φc

i = φc
j if fc(X ′∪

{xi})= fc(X ′∪ {x j}) for all X ′ ⊆ X \{xi, x j}. In other words, if two elements cause the same

change in the model’s output across all subsequences they are added to, then they should

be assigned the same contribution.

A3: Strong Monotonicity.
For any pair of classes c1 and c2, if ∆c1

i (X ′) ≥ ∆c2
i (X ′) for all subsequences X ′ ⊆ X \ {xi}

then φ
c1
i ≥ φ

c2
i . This axiom states that when an element xi always has higher marginal

contributions to class c1 than class c2 over all subsets X ′, then the contribution of xi to the

score for class c1 should be larger than its contribution to the score for class c2.

These axioms result in a unique expression for the contribution φi
c of the element xi to the

output of fc(X) called the Shapley value.4 The Shapley value combines the element’s marginal

contributions across all subsequences X ′ ⊆ X \{xi} it can join through a weighted average:

φc
i =

∑
X ′⊆X\{xi}

w(X ′)∆c
i (X ′) w(X ′)= (|X |− |X ′|−1)!|X ′|!

|X |! . (5.4)

The weighting factor w(X ′) can be interpreted as the probability of forming X by adding an

element at a time starting from ; via the intermediate subsequences X ′ and X ′∪ {xi}. In total,

there are |X |! ways of forming the full sequence X adding one element at a time. To go via X ′ and

X ′∪ {xi}, first X ′ needs to be constructed, of which there are |X ′|! ways, then xi is added to this

sequence. The remainder of the sequence then needs to be constructed, consisting of |X |− |X ′|−1

elements, which can be formed (|X |−|X ′|−1)! different ways. Hence, the probability of forming X

via X ′ and X ′∪ {xi} is w(X ′) when all orderings of construction are equally likely. Consequently,

φc
i can be rewritten as the expectation over a random variable X ′ with sample space 2X\{xi} and

probability mass function w(X ′) (proof in appendix B.1.1):5

φc
i = E

X ′

[
∆c

i (X ′)
]= E

X ′

[
fc(X ′∪ {xi})− fc(X ′)

]
, (5.5)

which, by linearity of expectations, can be rewritten in terms of the expected model response on

the sequences before and after xi is added to X ′:

φc
i = E

X ′

[
fc(X ′∪ {xi})

]− E
X ′

[
fc(X ′)

]
. (5.6)

This is an easier form to compute, as it is not necessary to measure the marginal contribution of

each element on each subsequence, instead measuring the expected model score on subsequences

containing xi and those not containing xi separately.
4Proof of the Shapley value can be found in Shapley [2] and Young [8].
5The power set of a set X is denoted 2X .

132

5.2. SUPPORTING VARIABLE-LENGTH SEQUENCES

One final step is taken to introduce the expression used to compute element attributions.

Expanding equation 5.6 via the law of total expectation gives

φc
i = Es

[
E

X ′|s
[
fc(X ′∪ {xi})

]− E
X ′|s

[
fc(X ′)

]]
, (5.7)

where the integer subsequence length s, termed the scale, ranges from 0 to |X |−1 with uniform

probability, and the random subset X ′ conditioned on s takes on values from {X ′ ⊆ X \ {xi} :

|X ′| = s} with uniform probability (proof in appendix B.1.2). This facilitates computing φc
i by first

considering the expected marginal contributions at each scale s and then combining these across

scales. This is desirable from a practical standpoint to enable the batching of computation over

subsequences of the same length. Ultimately, it is this form that is implemented for computing

element Shapley values.

Class-contrastive Element Shapley values A common question when diagnosing a model

is to understand why it made an incorrect prediction? Class-contrastive ESVs help answer this

question by describing which elements contributed more to the ground-truth class than the

predicted class. A class contrastive ESV is an ESV computed for the class-contrastive (cc) model

fcc(X) = fgt(X)− fpt(X), where gt is the ground-truth class and pt is the incorrectly predicted

class. As element Shapley values are linear in the model output, the class-contrastive ESV δi can

be easily computed from the individual classes’ ESVs: δi =φ
gt−pt
i =φ

gt
i −φpt

i . When δi > 0, the

element xi contributes more to the ground-truth class than the predicted class.

5.2 Supporting variable-length sequences

The element Shapley value requires applying the model on subsequences of the full sequence,

this is the analogue of applying the model to inputs that have had features removed from them

in feature attribution. In feature attribution, it is not possible to simply remove a feature from

the input to a model since most models don’t support the notion of a missing feature. Instead,

an alternate approach has to be taken to ‘remove’ the feature from the input; the most common

approach [64, 153, 175, 188, 269, 330, 333] is to replace the value of the feature with a non-

informative/zero value (e.g. the mean pixel in the case of an image model). However, this is

problematic as the resulting example will likely be out-of-distribution, i.e. it does not belong to

the same distribution of examples that the model was trained on.

Multiple studies [227, 273] have shown that the change in the model output on these feature-

substituted examples is primarily due to the change in distribution rather than the removal of

information. Hooker et al. [273] demonstrated that without retraining, the accuracy of an image

model trained on ImageNet drops from 76.6% to 0.5% when the input images are manipulated

such that 90% of the pixels are replaced with the mean pixel value. In contrast, when the model is

trained on images manipulated in the same way, the accuracy only drops to 63.5%, demonstrating

133

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

that the majority of the performance drop was due to the distribution shift and not the removal

of information. Huang et al. [227] show that replacing a video with a single frame duplicated

over time causes a 3D CNN’s performance to drop from 79% to 54% top-1 accuracy on UCF-

101. However, they show that this is primarily due to the change in distribution by training a

conditional generative network taking in a single frame to produce an input video that is no

longer out of distribution. When this generative network is applied, the accuracy only drops to

73%, a 4.2x reduction over the originally observed drop. Both studies demonstrate that generating

out-of-distribution examples through feature substitution is not just a theoretical issue, but one

that needs to be carefully accounted for when designing a trust-worthy attribution method.

one alternative approach to quantifying the change in model output after removing is a

feature is to train a model for every possible subset of features whose outputs are used to compute

the marginal contributions [57]. Clearly this is extremely computationally expensive, and can

only be done for simple models with few input features.

Whilst either approach could be applied for element attribution, the same issues would still

apply. Since element attribution is addressing a more narrow problem than feature attribution,

there are more options to consider. Some models (like 3D CNNs and RNNs) naturally support

variable-length inputs. It might seem like these can be analysed without further thought, however

that is not the case. Typically these models are trained with fixed-length inputs with a fixed

temporal stride between frames. The models come to rely on these attributes and suffer from

significant performance degradation when tested on sequences of different lengths or with

different temporal strides [227]. Consequently, if these types of models are to be used, they need

to be trained on similar sequences as those that will be used to probe the model by the element

attribution method.

Supporting variable length input through multi-scale modelling Not all models support

variable-length inputs, like TRN [257] or time-aligned DenseNet [222], instead operating over

a fixed number of elements. To enable their analysis, an approach inspired by multi-scale

models [257], can be used to build a model f ms capable of operating over variable-length sequences

from a set of models each operating over a fixed-length sequence. Let f s(X) be a model which can

only take a sequence of length s as input. A set of models operating at different scales { f s}nmax
s=1 ,

up to a maximum subsequence length nmax , are trained. A multi-scale model is then built by

assembling the results from each single-scale model at inference. Each scale’s model is applied

to all possible subsequences at that scale, and these results are combined such that each scale

contributes equally to the overall output:

f ms(X)= 1
S

S∑
s=1

(
|X |
s

)−1 ∑
X ′⊆X
|X ′|=s

f s(X ′), S =min(|X |,nmax). (5.8)

134

5.3. A TRACTABLE APPROACH FOR COMPUTING ESVS

This can be rewritten in terms of expectations:

f ms(X)= E
s

[
E

X ′|s
[
f s(X ′)

]]
, (5.9)

where s is a random variable over subsequence length ranging from 1 to min(|X |,nmax), all

equally likely, and X ′ is a random variable over subsequences of X of size s. This has similarities

to the approach of training a model for every feature combination [57], except it leverages the

homogeneity of the input to reduce the number of models from 2|X |, one for each subsequence, to

nmax , one for each length of subsequence. Another contrast is that the same models are used in

inference and element attribution, unlike the feature attribution method by Štrumbelj et al. [57]

which uses the model trained on all the features for inference and the models trained on feature

subsets for attribution only.

5.3 A tractable approach for computing ESVs

The previous sections defined the element Shapley value (ESV), as well as how it can be calculated

for models supporting variable-length inputs. Though one problem still remains: as previously

mentioned, computing ESVs requires evaluating the model on 2|X | subsequences. This can

be reduced, at the cost of decreasing precision, by approximating the expectations in both

the calculation of ESVs (equation 5.7) and the multi-scale model (equation 5.9). This section

introduces optimisations for computing ESVs and a sampling method for approximating them.

Bottom-up computation of f ms When ESVs are computed for the multi-scale model f ms,

many common results from the single-scale models will be needlessly recomputed again and again.

For example, f ms(X ∪ {xi}) and f ms(X ∪ {x j}) will both need the single-scale model evaluations for

all X ′ ⊆ X . This can be trivially resolved by caching the single-scale models’ results. However, it is

possible to be more memory efficient by leveraging a recurrence relation between the multi-scale

model’s results on subsequences at adjacent scales. This recurrence relation enables computing

f ms(X), where X has n elements, from f ms(X ′), where X ′ ⊂ X such that |X | = |X ′|+1 (proof in

appendix B.2):

f ms(X)=

f 1(X) n = 1
1
n

[
f n(X)+ (n−1)EX ′|s=n−1

[
f ms(X ′)

]]
n ≤ nmax

EX ′|s=n−1
[
f ms(X ′)

]
n > nmax

(5.10)

This means it is possible to compute the multi-scale model’s output in a bottom-up manner.

Simultaneously, the expected marginal contributions of each element at the scale can also be

computed. Once the largest scale has been reached, the output of the multi-scale model will have

been obtained, and the ESVs can be computed by combining the expected marginal contributions

at each scale via equation 5.7. The process starts with subsequences of one element, moving up

135

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

one scale at a time by combining results according to equation 5.10, obtaining f ms(X ′) for all

X ′ ⊆ X in the process. When moving from scale s to s+1, the results from the previous scale’s

model f s can be discarded from memory as they are no longer needed to compute either the

output of the multi-scale model nor the ESVs.

Sampling subsequences The bottom-up computation improves the efficiency by avoiding

recomputing the outputs of single-scale models, but it doesn’t deal with the exponential number

of subsequences. This is addressed by applying a sampling approximation to the expectations over

subsequences in the definition of f ms (equation 5.10) and the calculation of ESVs (equation 5.7).

This is similar to the Monte-Carlo approach [64, 104] used in prior applications of the Shapley

value, but it aims to maximise the number of subset relations across adjacent scales to best

approximate f ms. Given a collection of subsequences X s at scale s, each subsequence in the

collection is grown by one element to obtain subsequences at the next scale. Following this

process, a pool of all possible candidate subsequences of length s+1 are formed:

Cs+1 = ⋃
X s

j ∈X s

{
X s

j ∪ {x}
∣∣x ∈ X \X s

j

}
, (5.11)

from these, at most m subsequences are sampled to construct X s+1. Initially, the sampling

approach is seeded with all single-element subsequences: X 1 = {(xi)}n
i=1.

Efficiently computing ESVs Algorithm 1 combines the above techniques to compute the ESVs

for f ms. When the number of sampled subsequences m is chosen to be maxk
(|X |

k
)
, the algorithm

computes the exact ESVs φc
i for f ms(X). When m is less than this, the algorithm approximates

both the ESVs and the multi-scale model. The inner loop (line 5) that computes the marginal

contributions across all scales can be repeated a number of times to improve the accuracy of the

approximation (as is performed by line 4). Algorithm 1 can be adapted to compute ESVs for a

model that naturally supports variable-length inputs, like TSN, by substituting lines 8–14 with

F s
j ← fc(X s

j).

136

5.3. A TRACTABLE APPROACH FOR COMPUTING ESVS

Algorithm 1 element Shapley value (ESV) computation for f ms

Input:
(f s)nmax

s=1 : Single-scale models.
X = (xi)n

i=1: The sequence whose ESVs will be computed.
c: The class to compute ESVs for.
m: Maximum number of subsequences per scale to sample.

Output:
Element Shapley values φc

i for all xi ∈ X
Intermediates:
X s

j : A subsequence of X of length s.
S s

i , S̄ s
i : Sum of scores over sequences that do/don’t contain element xi at scale s.

N s
i ,N̄ s

i : Number of sequences that do/don’t contain element xi at scale s.
F s

j : Results of f ms
c on the subsequence X s

j .
Procedure:

1: S̄0
i ← fc(;) . Typically fc(;) is the class prior.

2: N̄ 0
i ← 1

3: X 0 ← {{}}
4: for iteration from 0 to max iterations do
5: for scale s from 1 to n do
6: Cs ← Form extended subsequence candidate pool according to equation 5.11.
7: X s ← Randomly select min(m, |Cs|) subsequences from Cs.
8: Z j ←∑

k1[X s−1
k ⊂X s

j] . Count how many sequences in X s−1 are subsequences of X s
j

9: if s = 1 then . Base case: evaluate single-scale model on single-element sequence.
10: F1

j ← f 1
c (X s

j)
11: else if s ≤ nmax then . Recursive case 1: Incorporate new single-scale model’s results.

12: F s
j ← 1

s

(
f s

c (X s
j)+ (s−1) 1

Z j

∑
k1[X s−1

k ⊂X s
j]F s−1

k

)
13: else . Recursive case 2: No single-scale model can deal with a sequence this long.
14: F s

j ← s−1
s

1
Z j

∑
k1[X s−1

k ⊂X s
j]F s−1

k

15: S s
i ←S s

i +
∑

j1[xi ∈X s
j]F s

j . Aggregate scores over sequences containing xi.

16: S̄ s
i ← S̄ s

i +
∑

j1[xi 6∈X s
j]F s

j . Aggregate scores over sequences that don’t contain xi.
17: N s

i ←N s
i +

∑
j1[xi ∈X s

j] . Count number of sequences containing xi.

18: N̄ s
i ← N̄ s

i +
∑

j1[xi 6∈X s
j] . Count number of sequences that don’t contain xi.

19: φc
i ← 1

|X |
∑|X |

s=1S
s
i /N s

i − S̄ s−1
i /N̄ s−1

i . Compute ESVs according to equation 5.7.

137

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

5.4 Experiments

Now that ESVs have been explained, and a method introduced for computing them in a tractable

manner, they are evaluated for their intended purpose: assessing the contribution of elements in

a sequence. While the method for computing ESVs is applicable to sequences of any type of data,

this chapter solely investigates their use on video sequences. First, the experimental set up is

described in section 5.4.1. Next, the ESV is compared against other attribution methods adapted

for element attribution in section 5.4.2. After establishing the superiority of the ESV, the method

is used to analyse two models in section 5.4.3. Then, the approximation algorithm is assessed in

section 5.4.4, showing how the ESVs can be computed for all frames in a short video. Finally, the

computational cost of the method is discussed in section 5.4.5.

5.4.1 Experimental setup

The experiments are conducted on the large-scale Something-Something v2 dataset [178], fre-

quently used to probe video models [219, 257, 333] due to its large size (220k videos), fine-grained

nature, large number of classes (174), and need for temporal modelling to disambiguate of most

of its classes e.g. ‘taking one of many similar things on the table’ vs. ‘putting something similar to

other things that are already on the table’.

The method for computing ESVs is best applied to models where frame-level features are first

extracted and then combined through a temporal module. In this case, only the temporal module,

the part of the model integrating information across time, needs to be evaluated to compute the

ESVs. The experiments explore two common action recognition models of this type: a Temporal

Relational Network (TRN) [257] and a Temporal Segment Network (TSN) [159], both reviewed

in section 2.2.4. The two models are interesting to compare as TRN incorporates non-linear

interactions between elements, unlike TSN which only has linear interactions. Further details on

both models are presented next.

TRN [257] TRN was originally introduced in two forms: a single-scale and a multi-scale variant.

The original multi-scale variant trains a set of TRN modules jointly, therefore each individual

scale’s model cannot be used on its own. Instead, in these experiments, the multi-scale model

adaptation from section 5.2 is applied to the single-scale version of TRN to enable computing

ESVs. This is accomplished by training a set of single-scale TRNs { f s}nmax=8
s=1 on 256D features

extracted from Something-Something v2 using the publicly available 8-frame multi-scale TRN6

(this uses a BN-Inception [117] backbone). These single-scale TRNs are effectively just MLPs

that take in concatenated frame features and produce class scores. The TRNs are composed of

one hidden layer of 256 units with ReLU activation. Dropout [103] is applied at the input with a

probability of 0.1 to help avoid overfitting. Each single-scale model was trained separately for 30

6https://github.com/zhoubolei/trn-pytorch

138

https://github.com/zhoubolei/trn-pytorch

5.4. EXPERIMENTS

5 10 15
Frames

20%

30%

40%

Val Accuracy

TRN
TSN

Figure 5.4: TRN and TSN validation accuracy by number of frames input to the model.

epochs with a batch-size of 512 and learning rate of 1e-3 using Adam to optimise parameters.

Training the TRNs jointly, producing a final class score by equation 5.9, was attempted, however

the individual classifiers performed very poorly when tested in isolation. Instead, the single-scale

TRNs were trained in isolation thus mitigating this issue.

TSN [302] As TSN naturally supports variable-length sequences, there is no need to apply the

multi-scale model adaptation. TSN operates by running a 2D CNN on each frame in the input

video which outputs class scores. These are then averaged together to produce the final prediction.

A slight modification was made to the original model by adding a bottleneck linear layer mapping

from the 2048D features output by the GAP layer of the 2D CNN to 256D to facilitate extraction

of smaller features that could fit in RAM. An additional linear layer was introduced atop of this

one to perform classification, mapping from the 256D features to the number of classes (174).

This TSN, using a ResNet-50 [142] backbone, was trained on the dataset for 64 epochs with a

learning rate of 1e-2, decayed at epochs 30 and 60, and a batch size of 64. SGD was used for

optimisation with a momentum of 0.9. Dropout was applied on the GAP features with probability

0.7, following the original TSN codebase. Features were then extracted from the bottleneck linear

layer for use in computing ESVs.

Throughout the experiments, unless otherwise stated, φc
i is calculated for the ground-truth class

of the example video, all videos from the validation set are analysed, and frames are uniformly

sampled from the video. The accuracy of both models on the Something-Something validation

set is shown in figure 5.4 across a range of different sequence lengths. As the figure shows,

performance saturates for TRN at around 8 frames. TSN’s performance improvement plateaus

quicker, but marginal improvements are still obtained by increasing the number of frames.

Consequently, most of the experiments are conducted with 8-frame sequences.

139

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

ESVESV

(a) Groundtruth class softmax score (b) Validation set accuracy

TRN TSN TRN TSN

Figure 5.5: Removing frames in order of their ESVs vs. alternate frame removal methods.
The ground-truth class-score and validation accuracy are shown when iteratively discarding
frames in order of their attribution values (ascending N vs. descending H). Removing frames with
the highest ESV first causes the quickest degradation, whilst removing frames with the lowest
ESV improves performance by avoiding distracting frames.

5.4.2 Validating ESVs

This section first tests whether frames have different values for classification as was hypothesised

and then compares the ESV to other attribution methods. Both of these investigations are

conducted via a frame ablation study.

Do frames contribute different amounts in classification? If it transpires that all frames

have similar contributions, then element attribution is of little use. To verify this is not the case,

the model performance is measured as frames are iteratively removed in ascending or descending

order of their ESVs. This experiment is similar to the pixel-flipping approach used by Samek

et al. [195] to assess attribution methods but performed in the temporal domain. This frame

removal method is compared against 4 simple alternatives: discarding frames from the center

frame outwards, from the edges of the sequence inwards, uniformly, and randomly.

Figure 5.5 shows the results of this investigation for 8-frame sequences, measuring the effects

by average ground-truth class-score and accuracy across videos in the validation set. If all frames

had equal value for classification, then removing them in any order should produce the same

change in either of these metrics. Yet, removing them in ascending or descending order of their

ESVs causes much larger changes than when using any of the simple removal methods. Not only

are the changes larger, but removing frames from lowest ESV to highest produces a performance

higher than when feeding all frames. Similarly, removing frames from highest ESV to lowest

causes an immediate performance drop that continues as more frames are removed.

Since removing frames by their ESVs has privileged knowledge of the ground-truth class,

a boost in performance is expected when removing frames with the lowest attribution values.

Even so, the large performance changes observed imply that frame selection alone significantly

impacts model performance. With TRN, performance can be improved by removing up to 6 of the

140

5.4. EXPERIMENTS

8 frames. For TSN, keeping only 2 of the 8 frames boosts accuracy by over 50%.

These effects demonstrates that frames do have different values for classification purposes.

How does the ESV differ from other attribution methods? Two other attribution methods,

Integrated Gradients (IG) [203] and Gradient Class Activation Mapping (Grad-CAM) [197], were

selected to compare to the ESV. Grad-CAM was chosen as it is the most-commonly used [202, 214,

218, 223] approach in explaining networks for video understanding and Integrated Gradients

was chosen due to its axiomatic foundations, like the ESV.

Grad-CAM, computes the gradients of the class score with respect to the feature map produced

by the last convolutional layer. These gradients are averaged over the spatial dimensions of the

feature map to obtain an importance weight for each channel. These importance weights are then

used to perform a weighted sum of the feature map across the channel dimension to produce a 2D

class-activation map. Typically a ReLU is then applied to this map in order to only focus on the

parts of the feature map that positively activate the class neuron, however in these experiments

the ReLU is not applied as the negative values are also of interest.

Integrated Gradients is based on Aumann-Shapley values [6], an extension of the Shapley

value to infinite player games. It computes the integral of the gradients of the class-score with

respect to the input along a path from a reference input to the input being explained.

Neither attribution method can be used for element attribution without some minor modifica-

tions, explained next.

Integrated Gradients produces feature attributions at any depth within a network. To produce

element attributions, the IG feature attributions are computed at the deepest part of the network

before any temporal modelling. These are then summed over the channel dimension to obtain a

single attribution value per element. The reference input is the mean frame feature computed

over the training set.

Grad-CAM is less flexible than IG, only producing spatio-temporal attributions at the last

convolutional layer. The spatial and channel dimensions of the attributions it produces are

averaged to obtain element attributions. The public implementation of these approaches provided

by the Captum library [281] are used.

To get a sense of how the methods differ, a qualitative comparison of the attributions produced

by the three methods on example sequences is presented in figure 5.6 on the following page

demonstrating the methods often disagree with one another.

The top example ‘closing [. . .]’ shows that the ESV assigns a high value to the first frame,

showing the open cupboard, as well as to the frame where the cupboard door has just been closed.

Both IG and Grad-CAM only assign high values to the first frame, giving low values to the

frames demonstrating the completion of the action, with Grad-CAM considering the completion

marginally distracting (i.e. having negative value).

In the second example, ‘pushing [. . .] so it spins’, the ESV assigns the first three frames

negative attributions, with positive attributions restricted to the frames following the hand’s first

141

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

ESV

ESV

ESV

ESV

ESV

ESV

Figure 5.6: A comparison of element attribution methods on example sequences. The
element Shapley value (ESV) is compared to Integrated Gradients (IG), and Grad-CAM (GC) on
a TRN model. The attribution values are computed for the ground-truth class (listed above each
sequence). +-

142

5.4. EXPERIMENTS

Figure 5.7: Pearson correlation between attribution methods. Computed per 8-frame
sequence and averaged over the validation set.

appearance. ESV considers the frame with the visibly spinning key as most important while IG

and Grad-CAM highlight the last frame instead. Intuitively one would expect that the frame

showing the spinning key would be most informative for the classification of the action.

Only the ESV assigns high values to the middle frames of the ‘taking [. . .] out of [. . .]’ example,

whereas IG and Grad-CAM both assign inexplicably high values to the initial frame.

In the ‘plugging [. . .] into [. . .]’ example, the ESV gives the frames following the plugging

and removal of the hand high values, which aligns with the intuition that these are the frames

the model needs to use to discriminate between the closely related ‘plugging [. . .] into [. . .] but

pulling it right out as your remove your hand’ action. In contrast, the initial frames are assigned

the highest value under IG and Grad-CAM.

The example of ‘moving [. . .] up’ demonstrates a case where the models don’t strongly

disagree with one another. The ESV does assign the initial frames, where the hand is not present,

a negative value, unlike the other methods.

The final example, demonstrating ‘turning [. . .] upside down’ shows the three methods assign

fairly high values to the first and last frames which show the object has been turned upside

down. Interestingly, the ESV gives a very high value to the central frame where the rotation is

performed, whereas the other methods don’t.

Next, the methods are compared quantitatively. First, the Pearson correlation coefficient

between the attribution values produced by each pair of methods on every video in the validation

set is computed. These correlation coefficients are presented in figure 5.7. First the correlation

coefficients for the TRN model are considered. There is a moderate degree of correlation between

the ESV and the alternative attribution methods, however the correlation coefficients indicate

that methods do disagree. Interestingly, the gradient-based attribution methods, Grad-CAM

and IG, correlate more to one another than to the non-gradient attribution method ESV. Now

the correlation coefficients for the TSN model are considered. The correlation values between

attribution methods are much higher than for the TRN model; this is likely due to the lack of

non-linear interactions between the elements. These results suggest that attribution values will

vary more between methods on models that have more non-linear interactions between elements.

143

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

ESVESV

TRN TSN

Figure 5.8: Removing frames in order of their attribution values produced by the ESV,
Grad-CAM, and IG. The graphs depict the validation accuracy after iteratively discarding
frames in order of their attribution rank (ascending N vs descending H) for TRN and TSN.
Removing frames by the attribution values produced by the ESV consistently causes greater
changes to the model output than when using the attribution values produced by either Grad-
CAM or IG.

Naturally, since the methods differ from on another, one wants to know which attribution

method should be trusted? The fairness axioms and avoidance of out-of-distribution inputs

make ESV a more principled technique for element attribution than Grad-CAM or IG. The next

experiment will further demonstrate why the ESV should be trusted more than the alternatives.

Another frame ablation experiment is conducted to determine which attribution method

assigns values to frames that most faithfully correspond to the their value for classification. The

experimental set up is the same as it was before, except the simple frame removal baselines are

replaced by ablation in order of the attribution values produced by Grad-CAM and Integrated

Gradients. The results of this experiment are presented in figure 5.8. When discarding 4 frames

by decreasing attribution value, the model’s accuracy increases by 20% for ESV compared to 8%

for Grad-CAM and 7% for IG. These results demonstrate that the ESV’s attribution values are

more representative of how the model values frames compared to the other attribution methods.

Since both Grad-CAM and IG produce similar attribution values to the ESV for TSN, there

is less of a performance gap when discarding frames by the attribution ranks in descending

order. However, the ESV still produces a larger performance gain than Grad-CAM and IG when

removing frames in ascending order of attributions.

5.4.3 Understanding ESVs

Having established that the ESV produces useful and reliable attribution values, this section

explores what can be learnt about models using the ESV.

144

5.4. EXPERIMENTS

0% 25% 50% 75% 100%
Supporting frames (%)

0%

10%

20%

30%

Ex
am

pl
es

 (%
)

TRN

Correctly classified
Incorrectly classified

0% 25% 50% 75% 100%
Supporting frames (%)

0%

5%

10%

15%
TSN

Figure 5.9: The percentage of supporting frames for correctly/incorrectly classified examples.

1 3 5 7 9 11 13 15
Frame

4%

6%

8%

10%

Ex
am

pl
es

 (%
)

TRN

Most supporting
Most distracting

1 3 5 7 9 11 13 15
Frame

4%

6%

8%

TSN

Figure 5.10: The percentage of examples where the frame, by its position in the sequence, is the
most supporting/distracting. TSN and TRN make use of frames in different positions.

What can we learn from supporting and distracting frames? Recall that a frame is said

to support class c when φc
i > 0, otherwise it is said to distract. Figure 5.9 plots the proportion of

frames supporting the ground-truth class across correctly and incorrectly-classified examples.

Correctly-classified examples are more likely to have a higher proportion of supporting frames,

however a number of correctly-classified videos still contain distracting frames. This suggests the

possibility of incorporating frame selection into models to remove distracting frames to boost the

model’s performance. A higher percentage of correctly-classified examples have more supporting

frames for TRN compared to TSN. This is likely due to TRN combining temporal information prior

to producing class scores unlike TSN, thus TRN is more able to suppress distracting information.

Is there a correlation between a frame’s position in the sequence and its ESV? Fig-

ure 5.10 plots the proportion of videos where each frame, by its position in the sequence, is the

most supporting or distracting. The first and last frames are often the most impactful for TRN as

the model needs to learn to detect state changes which are best understood by comparing the

frames at extreme ends of the sequence. There is strong trend for central frames to be the most

supporting for TSN. As the model can’t perform temporal reasoning, TSN likely makes use of

frames depicting the action in progress for classification.

145

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

1 3 5 7 9 11 13 15
Frame i

1
3
5
7
9

11
13
15

Fr
am

e j

TRN

1 3 5 7 9 11 13 15
Frame i

1
3
5
7
9

11
13
15

Fr
am

e j

TSN

43.7%

50.0%

56.3%

44.8%

50.0%

55.2%

Validation set

Figure 5.11: Comparing the percentage of videos where φc
i >φc

j .

An alternate way of answering this question is by considering the proportion of videos for

which φc
i > φc

j over all frame positions i and j (shown in figure 5.11). These plots show that

frames residing in the middle of the sequence have higher attributions on average than those at

the edges for both models. One might wonder why the highest proportion of impactful frames (i.e.

most supporting or distracting) for TRN were at the extreme ends of the video, yet on average,

frames within the center of the video have higher attribution values than those at the sides. The

answer is simple—despite the high proportion of most-supporting frames at extreme positions,

the high proportion of distracting frames in these positions pushes down their average value.

The same analysis is performed on a per-class basis: figure 5.12 presents heatmaps where

TRN and TSN value frames by position similarly and figure 5.13 presents heatmaps where they

value the frames by position differently.

First the classes where the models value frames similarly (figure 5.12) are discussed. In

examples of ‘pushing [. . .] from right to left’, the central frames are considered most valuable.

Usually the central frames show the actual motion of the object being moved whereas the extreme

frames show the object stationary. The same observation applies for ‘turning [. . .] upside down’.

The next two examples, ‘putting [. . .], [. . .], and [. . .] on the table’ and ‘plugging [. . .] into [. . .]’

both have more valuable frames towards the end of the video. This is because there are two

similar, but distinct, classes in the dataset from which they need to be differentiated from: ‘putting

[. . .] and [. . .] on the table’ and ‘plugging [. . .] into [. . .] but pulling it right out as you remove

your hand’. The differentiating part of these pairs of actions comes at the end of the video: a third

object is placed on the table, or whether the thing remains plugged in.

Now the classes where the models value frames differently (figure 5.13) are discussed. For

‘putting [. . .] and [. . .] on the table’, TRN values frames at the beginning and end more, whereas

TSN values later frames more. As TRN can leverage the relationships between frames, it is

able to compare the initial state of the environment to the final state to determine how many

objects have been placed. TSN is unable to do this, and so can only make use of the final state

146

5.4. EXPERIMENTS

of the environment, hence the higher ESVs for later frames. The same reasoning applies to the

difference between the models in ‘turning the camera left while filming [. . .]’. As TRN is able

to consider the relative motion between frames, there isn’t a strong trend for frames to have

dissimilar ESVs. TSN, however, cannot make use of these relationships, and so likely learns to

pickup on the final appearance of a scene after the camera has been turned left. In ‘spilling [. . .]

next to [. . .]’, TRN values the latter 2/3rds of the video more highly, whereas TSN values the

central frames more. In these videos, pouring usually takes a little while to commence, which

is why the earlier frames have lower value. Once pouring has commenced then TRN values

all frames similarly. It is possible that TSN picks up on the motion blur of the initiation of

the pouring to classify the action. Finally, in ‘uncovering [. . .]’, TSN strongly values the earlier

frames whereas TRN values most frames similarly. TSN is likely picking up on the appearance

of something being covered to recognise the action, whereas TRN will be using the before/after

relationship instead.

147

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

TRN TSN

Figure 5.12: Comparing the percentage of videos where φc
i >φc

j on a per-class basis where the
models value frames from the same position similarly.

148

5.4. EXPERIMENTS

TRN TSN

Figure 5.13: Comparing the percentage of videos where φc
i >φc

j on a per-class basis where the
models value frames from the same position differently.

149

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

2 4 6 8 10 12 14 16
Scale (s)

0.0

0.2

X
′ |s

[∆
i(
X
′ ;
f c

)]

TRN

2 4 6 8 10 12 14 16
Scale (s)

−0.1

0.0

0.1

TSN

Figure 5.14: How much does each scale contribute to the ESV? The box-plots show that
the expected marginal contribution decreases as the scale increases, indicating that there are
diminishing returns in considering longer sequences of frames.

65%

70%

75%

Su
pp

or
tin

g f
ra

m
es

 (%
)

TRN
TSN

5 10 15
Frames input to model

40%

45%

Figure 5.15: Increasing the number of frames fed to the model decreases the percentage of
supporting frames.

How do subsequences of various lengths contribute to the ESV? Since the ESV is the

average of the expected marginal contributions of subsequences at each scale, the per-scale

expected marginal contributions can be analysed to determine whether a subsequences of length

s contribute more or less to the ESV than other length subsequences. Figure 5.14 shows that

the average marginal contribution steadily decreases as longer subsequences are considered,

indicating that the majority of the frame’s value is already extracted from shorter subsequences.

Next, figure 5.15 investigates whether there is a relationship between the number of frames

fed to the model and the proportion of supporting frames. The figure shows that the longer

the subsequence, the more likely it is some frames become distracting. This is an interesting

finding—it showcases that utilising all frames in the sequence could harm model performance in

the presence of distracting frames. Whilst the trend is similar to that for TRN, the proportion of

supporting frames for TSN is much lower.

150

5.4. EXPERIMENTS

-3 -2 -1 1 2 3
Frame shift

0.0

0.1

0.2

0.3

Ch
an

ge
 in

 E
SV

TSN

-3 -2 -1 1 2 3
Frame shift

0.0

0.1

0.2

0.3

TRN

Figure 5.16: ESV temporal stability analysis. Change in normalised ESV when sampled
frames are substituted by n frames to the left (-) or right (+) of the original frame’s position.

Are ESVs temporally smooth? To test this, sub-sampled sequences are modified by replacing

a frame within the subsequence with one that is adjacent to it in the original sequence. For

example, consider the full sequence with frames (1,2, . . . ,20) which is sub-sampled to produce the

subsequence (3,7,11,15). A frame within the subsequence is chosen, e.g. the 2nd, and replaced

by the frame at a specific offset, say +1, from the full sequence. In this example, the resulting

modified sub-sampled sequence would be (3,8,11,15). The ESVs are then computed for both

sequences and the change in the ESV for the modified frame is measured. As the output of the

model will vary between different sequences, so will the ESVs. Consequently, the ESVs need to

be normalised before comparing them. This is achieved by scaling the ESVs so that the unsigned

contributions sum to one, i.e.
∑ |φc

i | = 1.

For each video, a 16-frame subsequence is sampled from the full video. For each frame within

the subsequence, the change in ESV is computed when each frame is replaced with the frame 1,

2, or 3 places to the left (-) or right (+) within the full video.

Figure 5.16 plots the distribution of change in the ESV by the number of places the frame has

been shifted. The plots for both models show a trend of temporal smoothness symmetric for both

left/right shifts; the further the shift in either direction, the greater the change in the ESV.

What insight can class-contrastive ESVs provide? Up to this point, the focus has been on

ESVs for one class, the ground-truth class of the video. Recall that class-contrastive ESVs specify

which frames contribute more to the ground-truth class than the predicted class. Figure 5.17

on the next page presents qualitative examples of class-contrastive ESVs, demonstrating how

they can reveal aspects of the video that confuse the model. In the top sequence, the first frames

confuse the model by contributing more to ‘pulling [. . .] from left to right’ than ‘letting [. . .] roll

along a flat surface’. Frames when the battery is rolling contribute highly to the ground truth

class demonstrating the model is in fact responding in an intuitive manner. The second sequence

shows that plugging the cable into the laptop contributes to both the predicted and ground truth

151

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

Figure 5.17: Class-contrastive ESVs comparing the ground truth class (gt) to the predicted class
(pt). +-

class, but there is insufficient support from the frame where the cable is unplugged to make the

correct classification. This is likely due to the fact that a cable still remains within the laptop,

confusing the model.

5.4.4 ESV approximation evaluation

This section investigates the proposed approximation for computing ESVs introduced in sec-

tion 5.3. First, approximate ESVs are compared to exact ESVs to assess the quality of the

approximation. Then, the ESV analysis is scaled up to compute ESVs for all frames in a long,

variable-length video where it is not possible to compute the ESVs exactly.

To assess the quality of the approximation, three evaluation metrics are used:

Relative error
This metric quantifies how close the approximated ESVs are to the ESVs computed exactly.

The normalised error between each approximate and exact ESV is measured: |φ̂c
i −φc

i |/Z
where Z = 1

|X |
∑

j |φc
j | is the video-level mean of the unsigned ESVs. This can be interpreted

as the percentage error relative to the average mass of the ESVs in the video.

Correlation
Pearson’s correlation coefficient r is computed between the approximate and exact ESVs

computed for each video as an additional way of measuring agreement between the approx-

imate and exact ESVs.

Least Absolute Deviance Regression Slope
The bias of an estimator is defined as the difference between the expected value of the

estimator and its true value. Ideally, in any approximation, there is zero bias. To assess

whether the approximate ESVs are biased, a Least Absolute Deviance (LAD) regression is

152

5.4. EXPERIMENTS

fitted between φc
i and φ̂c

i . The slope of this regression line reveals whether the approxima-

tion is biased and if so, whether it is an over or under estimate. When the slope < 1 the

estimated ESVs are over-estimated.

These metrics are computed per video and averaged across all videos.

The approximation of the ESVs was tested using TRN on 16-frames sequences (testing on

longer sequences was limited by insufficient GPU memory). For this assessment, 1,000 videos

were randomly sampled where fc(X)≥ 0.05, chosen so the resulting ESVs weren’t too small as to

compromise the evaluation. The approximation (algorithm 1) is controlled by two parameters: i,

the number of outer-loop iterations; and m, the number of subsequences sampled per scale every

iteration. Figure 5.18 on the following page presents the approximation evaluation across a grid

of m and i values. The table below the heatmaps demonstrates the efficiency of the approximation

by reporting the percentage of subsequences sampled per iteration for various m values in the

table underneath. For instance, m = 256 with i = 4 iterations achieves a Pearson correlation

coefficient r = 0.99 with no bias in the approximation whilst using less than 19% of all possible

subsequences. Increasing the sample size m and/or number of iterations i improves all metrics.

Figure 5.19 on page 155 shows a plot of ESVs computed for all 49 frames in a video. Without

approximation the exact computation would require 1014 evaluations of f ms, but the approxim-

ation requires only 5×104 evaluations. The plot shows the approximated ESVs are consistent

with those computed exactly for shorter sequences.

5.4.5 Computational cost

The computational cost of the element Shapley value without approximation is O(2|X |) in the

number of forward passes of the model. When the approximation method is applied, the complexity

is reduced to O(mi|X |) where m is the maximum number of sequences sampled per scale and i

is the number of iterations of the approximation. Practically speaking, ESVs can be computed

for both TSN and TRN exactly in reasonable time (under 10s/example) thanks to an optimised

batched GPU implementation for up to 16 frames. Beyond this, the exponential scaling results

in prohibitively long run times for TRN. Through the approximation, the ESV analysis can be

scaled beyond sequences of 16 frames. Table 5.1 on page 155 presents a runtime analysis on a

single NVIDIA 1080 Ti.

5.4.6 Exploring ESVs

An interactive dashboard (demonstrated in figure 5.20 on page 156) was developed to facilitate

the analysis of models through the ESV. The dashboard allows a user to explore how a model

behaves on different classes and examples of that class. It samples a number of each classes’

examples ranging from those that are classified well, to those that are classified poorly (selected

by the “Example” slider). The user can then examine how the model responds when a different

153

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

Scale sample size m 32 64 128 256 512 1024

% of total subsequences/iteration 0.68 1.32 2.56 4.71 9.01 16.19

Figure 5.18: Quantitative evaluation of the approximation of ESVs on a TRN model.
These heatmaps assess ESVs computed using algorithm 1 against exactly computed ESVs for
16-frame videos, as m, the maximum number of subsequences at each scale (y-axis), and i, the
number of iterations (x-axis), are varied. For relative error, lower is better, and for LAD regression
slope and Pearson correlation, closer to one is better. The table shows % of subsequences sampled
per iteration as m varies.

154

5.4. EXPERIMENTS

Figure 5.19: Qualitative example of approximated ESVs computed for all frames in a
long video. The mean ESVs over 10 runs of the algorithm with m = 1024 and 4 iterations is
plotted as a line graph (the shaded region indicates µ±σ). Additionally, the approximate and
exact ESVs for 16 uniformly sampled frames are plotted as a scatter graph, demonstrating these
are representative of the ESVs for longer sequences.

Table 5.1: Runtime analysis of computing exact and approximate ESVs. The approximation
algorithm (algorithm 1) has two hyper-parameters: m, max number of subsequences/scale, and i,
the number of approximation iterations.

Model # frames Configuration Time (s)

TRN
8 Exact 0.080±0.00

16 Exact 6.790±0.01
16 m = 1024, i = 1 0.122±0.01

TSN

8 Exact 0.004±0.001
16 Exact 0.035±0.000
20 Exact 0.614±0.006
20 m = 1024, i = 1 0.116±0.001

number of frames from that example are fed to the model (controlled by the “Frames fed to model”

slider). The top-10 class scores appear in the left-hand side bar chart. When a class, other than

the ground-truth one, is clicked on in the bar chart, it causes an additional set of ESVs to be

shown on the line chart (in red). This helps in comparative analyses where the user aims to

understand which parts of the video contribute more to one class than another.

In addition to building the dashboard, I supervised a summer intern, Tom Stark, who

conducted an ESV analysis of TRN on the EPIC-KITCHENS dataset. Models trained for action

recognition on EPIC-KITCHENS tend to have two classification heads: one for verbs and one for

nouns. Consequently, each head’s predictions can be analysed. Tom adapted the dashboard to

enable analysis of both the verb and noun classifications concurrently, as shown in figure 5.21.

155

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

Figure 5.20: Demonstration of the interactive ESV dashboard on the Something-
something dataset. This dashboard enabled the investigation of a model’s behaviour across
examples of all classes in the dataset. The example shown here illustrates a video labelled as
‘plugging [. . .] into [. . .], but pulling it right out as you remove your hand’. The ESVs for this
class are shown in blue on the ESV line chart on the right. Additionally, the user has selected an
additional class, ‘plugging [. . .] into [. . .]’ whose ESVs are shown in red. The ESVs demonstrate
that the later parts of the video, where the plug is removed, support the ground-truth class.

5.5 Conclusion

This chapter set out to answer the question of how much did each frame contribute to the model’s

output? This question was distilled into the newly introduced problem of element attribution. The

Shapley axioms were adopted as a way of determining element attributions in a principled manner

through the proposed element Shapley value (ESV). Issues present in feature attribution were

side stepped by reformulating the Shapley value and utilising multi-scale models to determine

the marginal contributions of frames without having to substitute frames. ESVs were used to

analyse frame-based action-recognition models on the Something-Something dataset, yielding

insights into how trained models make classification decisions. Open-source code for computing

element Shapley values has been released for others to analyse their own models.7 The directions

for future work are discussed next.

7https://github.com/willprice/play-fair/

156

https://github.com/willprice/play-fair/

5.5. CONCLUSION

Figure 5.21: Demonstration of the interactive ESV dashboard on the EPIC-KITCHENS
dataset. The example shown here illustrates a video labelled as ‘put-cup’. The ESVs for the verb
(put) are shown in blue and the noun (cup) in red on the ESV line chart on the bottom right.

Leveraging model structure The main downside of the element Shapley value is its need

to evaluate the model many times. This restricts its use to models where the forward pass is

very quick or where many inputs can be batched together to speed up the computation of the

ESVs. The ESV takes a black-box view of the model for which it computes attribution values. A

white-box approach might enable more efficient computation of the marginal contributions of

elements by leveraging the model structure. Some works [199, 261] have already investigated

this, however only in the context of feature substitution. The ESV was designed specifically to

avoid the issues arisining due to feature substitution (discussed in detail in section 5.2) which is

why these approaches weren’t adopted for element attribution. But, it might possible to use these

works’ insights to adapt the ESV to take advantage of model structure.

Different multi-scale models This chapter proposed one way of adapting a model that can

only operate on a fixed-length input into one that supports variable-length inputs. It would be

interesting to consider alternate methods for adapting single-scale models to support variable-

length inputs. One example of this, inspired by Hooker et al. [273], would be to train a single-scale

model with videos where the frames are duplicated in order to ablate others, thereby mitigating

the problems of distribution-shift. Additionally, other architectures that natively support variable-

length inputs could be considered such as transformers [358, 370] or RNNs [136, 219].

Filtering out distracting frames The investigation of TRN and TSN showed that not all

frames help the model make the right decision, suppressing the score of the correct class. This

157

CHAPTER 5. ATTRIBUTING FRAMES IN VIDEO RECOGNITION

raises the question of whether a frame selection process can be implemented to boost model

performance, either as a preliminary step, or as part of the model itself. Temporal attention and

pooling are two ways of doing this, however they have not been analysed to see whether they

help reduce the impact of distracting frames. Korbar et al. [282] investigated learning a model to

select clips from a video most likely to produce correct classification results, but this work didn’t

explore selecting frames to make up those clips. After the publication of the paper supporting

this chapter, Zhi et al. [380] investigated motion-guided frame sampling. This is in the same vein

as the proposed future work, but doesn’t optimise the frame-sampling procedure to maximise the

down-stream model’s performance, instead solely using motion cues.

158

C
H

A
P

T
E

R

6
UNWEAVING VIDEO

Time

Figure 6.1: In our daily lives, one switches between activities (e.g. making toast, preparing coffee,
washing up) to minimize idle time. Such behaviour results in video demonstrating multiple
activities woven together. This chapter introduces a model that learns to undo this, unweaving
video into threads of activity without the need for semantic labels.

It’s the morning and you’ve just walked into the kitchen: you’re hungry, sleepy, and

the kitchen is a mess. You put some bread into the toaster, turn the kettle on to make

coffee, and in between waiting for the kettle to boil and bread to toast, you clean

the dishes. The toast pops up and you put it on a plate, then the kettle boils and

you continue making your coffee, switching back and forth as necessary until your

breakfast is ready.

As in the storyline depicted in figure 6.1 and described above, activities need not be com-

pleted over one continuous block of time. Instead they might be paused and interleaved

with other activities when their continuation is prevented, such as when waiting for

the kettle to boil; or when something unexpected happens, like an object is dropped; or when

something else demands urgent attention, like a pot boiling over. This observation gives rise

to a new interpretation of video as a weaving of multiple activity instances. Such a perspective

supports the distinction between videos where an activity is paused and later resumed from

one where two instances of one activity occur. This distinction can be important for downstream

applications, like assistive technologies which need to differentiate between starting a new task

vs. resuming a previously paused one. In contrast to weaving, the classic perspective, as in activity

detection or segmentation, treats split activities no differently from the repeated ones.

159

CHAPTER 6. UNWEAVING VIDEO

Unweaving

continuation?

continuation?

new?

Unsupervised activity
segmentation

Event boundary
detection

same/new?

Figure 6.2: Task comparison: Unweaving builds up a set of representations of past and on-going
activities. At each point in time, the model has to decide whether the current clip is part of an
existing activity, or the beginning of a new one. Online event boundary detection determines
whether the current part of the video being investigated depicts a transition between two events
without maintaining any history of the processed video. Unsupervised activity segmentation
operates over the entire video using offline clustering methods to find segments of video depicting
the same activity.

This novel view of video leads to the task proposed and tackled in this chapter: unweaving a

video into its constituent activity threads. Like a person reading a story mentally unweaves the

story’s narrative threads as they unfold, a model unweaving a video does so similarly, processing

video online, detecting new threads of activity as they appear and updating its representation of

previously discovered threads as they are continued. Following this analogy, videos of activities

as referred to as activity stories.

The closest existing task to unweaving is unsupervised activity segmentation, which aims

to segment video into a number of clusters, each representing a single activity. However, this

task doesn’t distinguish between different instances of the same activity, e.g. representing the

act of making two cups of tea one after the other, the same as making just one. Most approaches

for this task [283, 373] cluster visual features to produce a segmentation of the video. Similarly,

unweaving can also be seen as a form of clustering where each cluster, representing a thread,

consists of the video segments towards the completion of a single activity. However, existing works

for unsupervised segmentation cluster offline, with knowledge of the number of activities in the

video and the video’s duration. Unweaving is significantly more challenging as it is performed

online, without specification of the number of threads, nor the duration of the video.

Another closely related task is event boundary detection, which aims to detect points in

the video where a transition between two events occurs, where an event, according to Zacks

et al. [18], is defined as “a segment of time at a given location that is perceived by an observer

to have a beginning and end”. This task aims to replicate, via computer vision models, the

experimental observation from cognitive science that humans can detect transitions between

events as they watch video online in a consistent manner across multiple viewings [17, 18, 39].

Most methods for event boundary detection [259, 375] take inspiration from the hypothesis

that event boundaries are perceived when the future is at its least predictable. Typically, these

methods are performed online [259, 375], predicting the future video representation, comparing

160

6.1. UNWEAVING STORIES

this against the true representation, and measuring the prediction error in order to decide

whether a boundary is present. Compared to unweaving, event boundary detection focuses on

finding the transitions between activities and doesn’t support the association between events

depicting a paused-and-resumed activity. The relationship between unweaving and these other

related tasks is summarised in figure 6.2 on the facing page.

Unweaving combines the challenges of the two aforementioned tasks. Similar to unsupervised

activity segmentation, unweaving parses the full video. Similar to event boundary detection,

unweaving detects the transition between activity instances. Together, these enable the concept

of resuming a previously paused activity.

In addition to the problem of unweaving, this chapter proposes a model called UnweaveNet

that learns to unweave video into activity threads. UnweaveNet distinguishes between the

continuation of an ongoing activity, the start of a new activity, and the resuming of a previously

paused activity, all without the need for any semantic labels. Different threads of activity are

modelled in an explicit manner by a thread bank, a set of representations of activity threads

observed in the video so far, that is manipulated by a neural controller as subsequent video is

processed.

To train UnweaveNet, a self-supervised approach is introduced that leverages within-thread

temporal-order consistency to construct synthetic visual stories from unlabelled videos for pre-

training. The model is then finetuned using a small set of manually annotated stories. The

efficacy of this approach is shown experimentally using the unscripted egocentric dataset EPIC-

KITCHENS [216].

The chapter is organised as follows: section 6.1 introduces UnweaveNet through its novel

structured video representation and neural controller, section 6.2 describes the synthetic and

annotated stories used to train and evaluate the model, and section 6.3 evaluates and dissects

UnweaveNet.

6.1 Unweaving stories

This section formulates the problem of unweaving (section 6.1.1); introduces the structured

video representation (section 6.1.2) and the neural controller operating it (section 6.1.3), together

forming UnweaveNet; and concludes with the process used to train the model (section 6.1.4).

6.1.1 Problem description

Unweaving is the problem of parsing an arbitrary-length video online into N variable-length

activity threads, where N is unspecified and can vary across videos. Once unwoven, all parts of

the video belonging to the same thread should correspond to the same activity instance. When

the video portrays a switch to a different activity, the ongoing thread should be paused and a

different thread started or resumed. Assuming n̂t threads have been identified up to time t, the

161

CHAPTER 6. UNWEAVING VIDEO

task is to decide whether the current video clip vt is a continuation of an existing thread or the

beginning of a new thread.1

6.1.2 Thread bank

This sections introduces a structured representation of video called a thread bank that stores

the representations of all complete and on-going activity threads discovered in the video as it is

processed. New activity threads can be added into the bank as they are discovered and existing

threads can be updated by incorporating new clips into them. Each thread is represented by a

vector that summarises the observed history of the ongoing activity. In its most general form,

a representation zi
t of thread i at time t is produced as an aggregation g of the set of clips V i

t

currently assigned to the thread:

zi
t = g

(
V i

t

)
, g :R|V i

t |×C →RD (6.1)

where C is the dimension of the clip feature and D the dimension of the thread representation.

However, this doesn’t quite capture the concept of an activity as an evolving process. Instead, a

recurrent function φupdate is used in place of g, better modelling this perspective by updating the

activity representation with information from the latest clip:

zi
t+1 =φupdate(vt, zi

t), φupdate :RC ×RD →RD . (6.2)

Equation 6.2 relies on the previous state of the thread, which poses a problem when a new thread

is discovered and there is no previous representation. In this case, zi
t is replaced with an initial

empty-thread representation z∗.

The state of the thread bank at time t and t+1 can be related as follows. Let ŷt be the thread

to which vt will be added; for UnweaveNet, this is decided by its neural controller (described in

section 6.1.3). When ŷt = n̂t +1, a new thread is started, otherwise an existing thread is extended.

The representations within the updated thread bank zt+1 are related to the previous previous

representations zt as follows

zi
t+1 =

φupdate(vt, zi

t) i = ŷt ≤ n̂t

φupdate(vt, z∗) i = ŷt = n̂t +1

zi
t otherwise.

(6.3)

When t = 1, the thread bank is empty, thus n̂1 = 0.

While the number of threads in the bank can vary, each thread’s representation is fixed in size,

thus the model’s space complexity is linear in the number of threads rather than number of clips.

Since the number of clips greatly exceeds the number of threads, this keeps the representation

compact.
1It is assumed that the clip is short enough to belong to exactly one thread, leaving the problem of tackling clips

that span multiple threads to future work.

162

6.1. UNWEAVING STORIES

Thread Bank

0.4
0.1
0.3
0.2

(a) UnweaveNet Overview (b) Controller Architecture (c) Thread bank update

Controller

Thread update

Thread
Bank

Thread
Bank

Thread
select

Figure 6.3: (a) UnweaveNet overview: at each timestep, UnweaveNet receives a new clip vt and
the current thread bank state zt; the controller determines whether that clip is a continuation
of an existing thread or the start of a new thread and updates the thread bank accordingly.
(b) Controller architecture: The clip vt and thread representations zt are embedded into a
common space by linear layers ψclip and ψthread and fed into a transformer encoder along with
a new thread token [NT]. The clip embedding is compared against the thread embedding and
the new thread token to determine the probability of the clip joining an existing/new thread.
(c) Thread bank update: Given a thread to update, determined by ŷt = argmaxi pi

t, φupdate
incorporates information from vt into the current thread representation zi

t to produce the updated
representation zi

t+1.

6.1.3 Neural controller

In order to construct this representation, a neural controller manipulates the thread bank as

new clips are received from the video stream (figure 6.3a). Given a new clip, the controller’s job is

to determine whether the clip is the beginning of a new thread or whether it is a continuation of

an existing thread (figure 6.3b). Once the decision has been made, the thread bank is updated

(figure 6.3c) and the process begins again with the subsequent clip.

UnweaveNet uses a neural network φselect to implement the controller. It is fed the new clip vt

and the current thread bank state zt and is tasked with calculating the probabilities pt ∈ [0,1]n̂t+1

of how likely it is that vt is the continuation of an existing thread or the start of a new thread.

Specifically, p1:n̂t
t contains the probabilities of vt continuing each existing thread and pn̂t+1

t is the

probability of vt starting a new thread. The controller φselect computes a vector of logits l t ∈Rn̂t+1

for each possibility

l t =φselect(vt, zt), φselect :RC ×Rn̂t×D →Rn̂t+1. (6.4)

which is fed into a softmax (with temperature τ) to compute pt

pi
t =

el i
t/τ∑n̂t+1

j=1 el j
t /τ

, (6.5)

The decision of what will be done with vt is then determined by ŷt = argmaxi pi
t.

Towards obtaining l1:n̂t
t , the controller φselect tries to match the clip to the existing threads

within the bank. This is achieved by learning a space in which the clip is closest to the thread

it continues, if it continues one at all. Both the clip and threads are embedded into this space

through linear projections ψclip :RC →RE and ψthread :RD →RE. The cosine similarity between

163

CHAPTER 6. UNWEAVING VIDEO

the clip and each thread embedding is measured to produce the scores l1:n̂t
t for how likely it is

that the clip is a continuation of each thread. However, this still leaves the question of how to

compute the score l n̂t+1
t of vt starting a new thread. The simplest approach to solve this is to

learn a latent similarity score lNT ∈ R, which acts as a threshold that a clip-thread similarity

must exceed if the clip is to be deemed a continuation of that thread. This gives rise to the linear

controller

φlinear
select (vt, zt)i =

cos
(
ψclip (vt) ,ψthread

(
zi

t
))

i ≤ n̂t

lNT otherwise.
(6.6)

The downside of this approach is that it doesn’t condition the threshold lNT on the clip vt nor

the thread bank zt. Hence the controller is unable to adaptively set the threshold. To rectify

this, contextualised embeddings that incorporate information across the clip and threads can

be computed and used in the clip-thread similarity computation instead. This is accomplished

by feeding a transformer encoder ψtran with a sequence composed of the embedded clip and

thread representations, and a new-thread token [NT] ∈RE. The transformer ψtran takes this input

sequence [
ψclip (vt) ,ψthread

(
z1

t
)
, . . . ,ψthread

(
zn̂t

1

)
, [NT]

]
∈R(n̂t+1)×E (6.7)

and produces a corresponding output sequence[
ṽt, z̃1

t , . . . , z̃n̂t+1
t

]
∈R(n̂t+1)×E. (6.8)

These contextualised vectors (denoted by tilde) form a new embedding space in which the clip ṽt

is compared against all threads z̃1:n̂t
t and the new-thread token z̃n̂t+1

t to form the vector of logits:

φtran
select(vt, zt)i = cos(ṽt, z̃i

t). (6.9)

This process using φtran
select is graphically depicted in figure 6.3b.

6.1.4 Training

UnweaveNet is trained end-to-end, including the backbone used to extract clip features, thus the

clip and thread representations are optimised along with the controller parameters. The decisions

made by φselect are supervised in a manner similar to that used for training language models

known as teacher forcing [10, 141]; at each time step, the thread bank is populated using φupdate

to get zt according to the ground-truth clip-thread assignments y1:t−1. A loss is then imposed on

the output pt (equation 6.4) with the correct decision yt to supervise the model.

It was found to be beneficial to weight three mutually exclusive scenarios in the loss (each

depicted in the abstract story in figure 6.4): starting a new thread (N), continuing the currently-

active thread (C), and resuming a paused thread after a gap of more than one clip spent in a

different thread (R). This is due to the imbalance in the distribution of scenarios where most are

continuations of an active thread. Each scenario s ∈ {C,N,R} is given a positive weight αs that

164

6.2. OBTAINING STORIES

C C C N C R C

Figure 6.4: Different decision scenarios during the unweaving process: Continue thread,
New thread, Resume thread. Each square depicts a single clip which is coloured by the thread it
belong to.

affects its contribution to the loss. To further help with the class imbalance, a focal loss [187]

is used that causes hard examples to have a larger impact on the gradient than easy examples.

Let S be a function that given y1:t determines the scenario s at time t. The loss (with focal

hyperparameter γ) for a single story takes the form:

L=−∑
t
αS(y1:t)

(
1− pyt

t
)γ log pyt

t . (6.10)

The loss is averaged over all stories within the batch and back-propagated to train UnweaveNet.

This section formalised the problem of video unweaving (section 6.1.1) and proposed a model,

UnweaveNet, for solving it. UnweaveNet builds up a structured representation of video, called a

thread bank, as it processes a streaming video (section 6.1.2). At each time-step, UnweaveNet

receives a new clip which either belongs to an existing thread or is the beginning of a new thread.

A neural controller (section 6.1.3) determines this, and updates the thread bank accordingly.

UnweaveNet is trained through a standard teacher-forcing set-up commonly used for sequence-

to-sequence models (section 6.1.4).

6.2 Obtaining stories

Exploring unweaving requires a dataset of untrimmed videos with interleaved activity instances.

Most activity datasets [84, 95] don’t contain examples of people interleaving activities as they give

participants instructions to follow. Instead, single-actor activities from the large-scale unscripted

egocentric dataset EPIC-KITCHENS (EK) [316] (described in section 2.1.3.2 on page 14) form

a good test bed for evaluating UnweaveNet. These videos capture people in their own kitchens,

where they record everything they do over a three day period using a head-mounted camera in a

completely unscripted manner. The dataset contains videos of participants switching back and

forth between activities, making it suitable source for obtaining interesting activity stories.

First, the untrimmed nature of the dataset is leveraged in making stories without any

annotations through a randomised weaving process described in section 6.2.1. These stories are

referred to as synthetic stories and are used for pretraining UnweaveNet. Second, a sample of the

dataset is annotated with activity threads for finetuning and evaluation purposes in section 6.2.2.

165

CHAPTER 6. UNWEAVING VIDEO

6.2.1 Synthetic stories

Weave threads' clips into story

Sample # threads and
clips per thread

Figure 6.5: Synthetic story construction: 1 The number of threads is sampled, then the
quantity of clips comprising each thread are sampled. 2 The threads are randomly positioned
within the video, where clips within a thread are separated by a small random gap. 3 Finally,
the threads’ clips are randomly woven together into a synthetic story.

UnweaveNet is pretrained in a self-supervised manner by learning to unweave synthetic

stories constructed via a randomised sampling procedure applied to long video. These synthetic

stories aim to pose a similar challenge to unweave as activity stories, albeit in a somewhat

label-noisy manner since they are constructed through a fully automated process.

Synthetic stories are composed of a number of randomly sampled subsequences of different

lengths, termed synthetic threads, that are randomly woven together. A graphical overview of

this process is given in figure 6.5. Synthetic threads are sampled from the same video as sampling

them from different videos would result in a story that is trivial to unweave due to the large

visual differences between videos. Threads are sampled such that they are at least a minimum

distance away from one another and are assumed to depict distinct activities.

Sampling synthetic threads Building a synthetic story starts by obtaining a number of

synthetic threads to weave together. These are obtained by sampling a number of sequences

of clips of varying lengths from distinct non-overlapping locations within a video. First, the

number of clips T that will comprise the story is decided.2 Then, the number of threads n in

the story is sampled from the uniform distribution U {1, Nmax} where Nmax is a specified upper

bound. Next, the number of clips mi comprising thread i is determined by uniformly sampling n

non-zero positive integers (mi)n
i=1 such that

∑n
i=1 mi = T using the method of Smith and Tromble

[30]. The starting location of the threads within the video are then sampled randomly from a

uniform distribution with the constraint that the threads are at least a minimum distance away

from one another. The clips V i = (
vi

t
)mi
t=1 comprising thread i are then sampled starting from

the thread’s starting location, obtained in the previous step. Adjacent clips within a thread are

separated by a small random gap sampled from U {Gmin,Gmax} where Gmin and Gmax denote

the specified minimum and maximum gap, further increasing the difficulty of unweaving the

resulting synthetic stories.

Weaving threads Once the threads have been obtained, they need to be woven together to form

a synthetic story. This is performed such that the within-thread temporal-ordering of clips is not
2T is fixed across stories to facilitate batch-based training.

166

6.2. OBTAINING STORIES

Figure 6.6: Synthetic story example constructed from 3 synthetic threads.

disrupted. In other words, given a thread i composed of the clips
(
vi

1,vi
2
)
, vi

1 will always appear

before vi
2 in the synthetic story, and so on for threads with more clips. Weaving is accomplished

by building a template for how the clips will be ordered relative to one-another, based on the

number of clips mi comprising each thread. First, a vector q ∈ {1..n}T of repeated thread indices

is constructed, where there are mi repeats of each thread index i:

q = (1, . . . ,1︸ ︷︷ ︸
m1 times

, 2, . . . ,2︸ ︷︷ ︸
m2 times

, . . . , n, . . . ,n︸ ︷︷ ︸
mn times

). (6.11)

Next, a random permutation of q is taken, denoted q̃, which forms the template used to weave

the threads’ clips together into the story v. Each clip v j in the story can thus be defined as

v j = vq̃ j
o j , o j =

j∑
k=1

1
[
q̃ j = q̃k

]
. (6.12)

where o j represents the number of clips in the story from thread q̃ j up to time j. The following

example demonstrates this procedure to aid comprehension. Let the number of total number of

clips in the story be T = 10, the number of threads be n = 4 and the number of clips within each

thread be m = (3,5,4). The duplicated thread indices vector q is formed:

q = (1,1,1,2,2,2,2,2,3,3,3,3). (6.13)

and is randomly permuted to obtain

q̃ = (1,2,1,2,2,3,3,2,2,3,3,1), (6.14)

which is then used to build the story

v = (
v1

1,v2
1,v1

2,v2
2,v2

3,v3
1,v3

2,v2
4,v2

5,v3
3,v3

4,v1
3
)
. (6.15)

Note the within-thread temporal-ordering of clips has not been violated in v.

An example of one of the generated synthetic stories is shown in figure 6.6.

6.2.2 Activity-story annotation

Synthetic stories contain visual discontinuities and synthetic threads aren’t always composed

of clips from a single activity due to the random sampling process. Thus, a model trained solely

on synthetic stories falls short of being able to unweave natural video into activity threads.

Consequently, a small dataset of manually annotated activity stories was collected for finetuning

and evaluation purposes.

167

CHAPTER 6. UNWEAVING VIDEO

Figure 6.7: Story unweaving annotation tool (pre-interaction): Initial state of the UI when
presented with a new video. denotes a user dragging a clip into a new thread track (the empty
grey rectangle).

Figure 6.8: Story unweaving annotation tool (post-interaction). State of UI after the
annotator has dragged the clips into a new thread (interaction depicted in figure 6.7). The
ordering of the clips is always preserved; i.e. the tool prevents users from reordering the clips so
that one that came at time t in the source video comes before one at t−1.

Annotating stories A web-based unweaving tool (shown in figures 6.7 and 6.8) was developed

to enable the annotation of stories within video. The tool randomly samples a sequence of video

from a collection of videos and tasks the annotator with manually unweaving the sequence. The

sampled sequence of video is broken up into a fixed number of clips which are displayed within

a single track that represents a thread (grey box in figure 6.7). The annotator can then drag

168

6.2. OBTAINING STORIES

Figure 6.9: Activity-story example composed of two threads: putting biscuits into food processor
(thread 0) and cleaning up dropped biscuits (thread 1). Thread 0 is resumed following completion
of thread 1. The numbers in the bottom right of each clip denote its annotated thread. Thread
descriptions are provided for figure interpretability only and are not annotated as part of the
dataset.

and drop clips (interaction denoted by the dark grey arrows in figure 6.7) into a new track to

form a new thread (the result of which is shown in figure 6.8). Once complete, the tool saves the

annotation to a database and ensure that this portion of video is not shown again to another

annotator. Annotators were provided with the following instructions to use the tool:

Thread annotation: We have sampled consecutive clips from a video (labelled 0–9) and

the interface allows grouping these into activity ‘threads’ (sequence of clips sharing a

common goal). Your task is to identify occurrences where the person is changing the

course-of-action or goal (e.g. switch from washing-up to cooking, or from preparing-

food to returning-items-to-cupboards). Once identified, the interface allows you to

group all clips belonging to one goal in the same thread by dragging other clips to a

new thread. If the person returns to an earlier goal (e.g. Goal switches A → B → A),

make sure to keep all A clips together in one thread.

Using the annotator: Your task is to drag video clips onto a new track (denoted by the

gray background) when you detect a change in the course-of-actions. If the example is

ambiguous or you cannot understand the activity from the clips or the videos are too

dark to see, click skip (alternatively press <space>). Click next (alternatively press

<enter>) to save and continue on to the next example.

Activity-story dataset Overall, 15k clips were annotated covering 240k frames (4.2 hours)

across 448 videos from EPIC-KITCHENS into their activity threads. Of these clips, 9.5k are

for training, 3.8k for validation, and 1.8k for testing. An example is presented in figure 6.9.

The activity stories comprising the training and validation set were collected by 7 volunteer

annotators, all consisting of 10 clips, A sample of each annotator’s stories were checked to ensure

they had correctly performed the task. For testing, I manually collected stories of varying lengths

(from 5 to 26 clips). The training stories come from videos in the training split of the EPIC-

KITCHENS action-recognition challenge, and the test and validation stories come from videos

from the combined test and validation action-recognition splits. Statistics on the number of

stories by number of threads are given in table 6.1. Note that threads are not annotated with any

semantic labels, the only metadata annotated is which clips belong together within a thread.

169

CHAPTER 6. UNWEAVING VIDEO

Table 6.1: EPIC-KITCHENS activity-story dataset: # examples by # of threads.

Threads

Split 1 2 3

Train 718 201 32
Val 211 94 46
Test 50 50 50

6.3 Experiments

This section evaluates UnweaveNet on the EPIC-KITCHENS activity-story dataset, demonstrat-

ing the model’s capabilities both qualitatively and quantitatively. It’s performance is compared

to a number of baselines and its design decisions are motivated through multiple ablation

experiments. The section is structured as follows: section 6.3.1 introduces the baselines that

UnweaveNet is compared against; section 6.3.2 explains the metrics used for evaluation; sec-

tion 6.3.3 provides experimental details; section 6.3.4 presents the main results; and section 6.3.5

ablates the components in UnweaveNet.

6.3.1 Baselines

As unweaving is a new concept, there aren’t existing works to directly compare against. Accord-

ingly, a variety of baselines are either proposed or adapted from prior work. Two non-learnt naïve

baselines are provided to give a lower bound on performance. As unweaving is an inherently

online process, methods for offline unsupervised action segmentation are excluded.

Naïve baselines The simplest of these baselines assigns all clips to a single thread, and hence

is referred to as the single-thread baseline. Naturally this baseline will perform optimally in

the case of all clips belonging to the same thread. An alternate, non-learnt baseline predicts all

possible partitions of the clips as equally likely. This is termed the random-chance baseline.

Online Clustering This is a simple model that clusters clips online into threads by measuring

feature similarities. A feature representation vt ∈ RC for the t-th clip is extracted using a pre-

trained 3D CNN. The similarity si
t of vt to each thread V i

t detected up to time t is computed by

si
t =

1∣∣V i
t
∣∣ ∑

v j∈V i
t

cos
(
vt,v j

)
(6.16)

The clip is assigned a candidate thread argmaxi si
t to join and if maxi si

t is beyond a specified

threshold, then the clip continues that thread, otherwise a new thread consisting only of the clip

vt is started.

170

6.3. EXPERIMENTS

PredictAbility [375] This is a model designed for event segmentation that is adapted to

perform unweaving. Recall that event segmentation aims to find the boundaries between events,

rather than building a representation of the past events that have happened or are ongoing as is

done in unweaving. Online methods for event segmentation can be repurposed for unweaving,

albeit with the limitation that paused threads cannot be resumed. A representative model of

this type, PredictAbility, by Shou et al. [375] is used. A detailed description of how the model

operates is provided in section 2.4. At a high level, the model detects event boundaries where

there is a large change in feature representation over time. The model is adapted to perform

unweaving by snapping the detected event boundaries to the closest clip, defined by the distance

to the beginning of each clip. Each separate event is then treated as a separated thread.

EGO-TOPO [336] This is a model designed to produce a structured representation of egocentric

video. The representation takes the form of a graph where multiple subsequences of a video

captured in the same physical location comprise a node. Nodes are linked together by edges

formed when the video depicts a transition from one location to another. Thus EGO-TOPO aims

to model video by the physical locations depicted within, rather than capturing activities as nodes.

Nevertheless, it can still be viewed as a form of video unweaving that creates threads by location.

A detailed description on EGO-TOPO is provided in section 2.4. As this model operates on frames

rather than clips, a majority voting strategy is used to map from the frames assigned to nodes in

the graph to the clips comprising threads in the unweaving.

6.3.2 Metrics

Three metrics are used to measure performance on the unweaving task: the Rand Index (RI),

Teach-Forcing Accuracy (TFA), and the difference in the number of threads between the predicted

unweaving vs. the ground truth (∆N). These are described in detail next.

Rand Index (RI) As unweaving is a form of clustering, a clustering metric is used as the main

assessor of the quality of the unwoven threads. The Rand index [5], a frequently used metric to

assess the similarity of one clustering to another, fulfils this role. It computes the percentage of

correct pair-wise decisions.

The Rand index is best understood by examining the meaning of true/false positives/negatives

in this setting. Given a story that is annotated with a ground-truth set of threads G and that has

been unwoven by a model into a set of threads P, both defined as partitions over the set of clips

comprising the story, the definition of true/false positives/negatives are:

• True positives TP(G,P): the number of pairs of clips that are in the same thread in G and in

the same thread in P.

• False positives FP(G,P): the number of pairs of clips that are in different threads in G but in

the same thread in P.

171

CHAPTER 6. UNWEAVING VIDEO

• True negatives TN(G,P): the number of pairs of clips that are in different threads in G and

also in different threads in P.

• False negatives FN(G,P): the number of pairs of clips that are in the same thread in G but in

different threads in P.

These can then be used to define the Rand index:

RI(G,P)= TP(G,P)+TN(G,P)
TP(G,P)+FP(G,P)+TN(G,P)+FN(G,P)

. (6.17)

Note that the denominator in equation 6.17 is equal to
(T

2
)

where T is the total number of clips.

The Rand index is computed for each story and is averaged over all stories in the test set to

produce a single score.

The expected Rand index EP∼R(T) [RI(G,P)] for the naïve baselines can be computed by

defining their corresponding distribution R(T) over partitions of T clips. Gates and Ahn [176]

provide closed form expressions for both naïve baselines. For the single-thread baseline R1,

E
P∼R1(T)

[RI(G,P)]=
∑

i
(|V i |

2
)(T

2
) (6.18)

where |V i| the number of clips in the i-th thread of partition P. For the random-chance baseline

Rall,

E
P∼Rall(T)

[RI(G,P)]= B(T −1)
B(T)

∑
i
(|V i |

2
)(T

2
) +

(
1− B(T −1)

B(T)

)1−
∑

i
(|V i |

2
)(T

2
)

 , (6.19)

where B(T) is the T-th Bell number, which counts how many possible ways there are of partition-

ing a set of T objects into non-empty subsets.

Teacher-forcing accuracy (TFA) The teacher-forcing accuracy measures the proportion of

clip decisions that were made correctly, assuming that all the past decisions up to that point were

correct. The teacher-forcing accuracy is broken down by n, the number of threads that have been

observed up to and including time t.

To describe how teacher-forcing accuracy is computed, it is necessary to define the set of

story prefixes Pn, story subsequences starting from the first clip onwards that contain exactly n

threads. These are defined as

Pn = {v1:t |v ∈X ∧N(v1:t)= n∧1≤ t ≤ T(v)} , (6.20)

where X represents the dataset of stories, N(v1:t) denotes the number of threads in the ground

truth for v up to and including time t, and T(v) denotes the number of clips in v. The teacher-

forcing accuracy for clip decisions where exactly n threads have been observed can then be defined

as

TFA(Pn)= 1
|Pn|

∑
v∈Pn

1
[

ŷ′T(v)(v)= yT(v)(v)
]
1 [|v| > 1], (6.21)

172

6.3. EXPERIMENTS

where ŷ′t(v) denotes the decision produced by the model at time t on v when it is run using

teacher-forcing and yt(v) denotes the ground-truth thread-index at time t in story v. The |v| > 1

condition in equation 6.21 removes stories composed of a single clip where all methods will

trivially make the correct decision. For UnweaveNet, the thread bank is populated using φupdate

according to the ground-truth thread assignments y1:T(v)−1 to produce zT(v). The controller φselect

is then fed vT(v) and zT(v) to determine ŷ′T(v)(v).

An analogous approach is taken for the online clustering baseline, populating the clusters

according to the ground-truth. PredictAbility’s decision is judged to be correct at each time step

if the ground truth has a thread continuation and the model does not detect a transition, or if

there is a new thread in the ground truth and the model detects a transition. It is not possible to

evaluate the TFA of the EGO-TOPO model with the provided implementation.

To compute the teacher-forcing accuracy for the naïve baselines, the term 1[ŷ′T(v)(v)= yT(v)(v)]

in equation 6.21 is replaced with the probability pR
t (v) of selecting the correct thread at time t in

video v for a baseline model R. For the single thread baseline,

p1
t (v)=

1/N(v1:t−1) yt is an existing thread

0 yt is a new thread.
(6.22)

The reasoning behind the first case in equation 6.22 is that there may be more than one thread

in the ground-truth unweaving up to time t. Because of this, the baseline has to make a choice

which thread the clip will join, so the choice is made randomly. However, this baseline is unable

to start a new thread (case two).

The formulation for the random chance baseline is simpler, since the probability that the

correct decision is made is uniform across the possible options: pall
t = 1/(N(v1:t−1)+1). Note that

the denominator is N(v1:t−1)+1 and not N(v1:t−1) as there is the additional option of starting a

new thread at each time-step.

Difference in number of threads (∆N) It is informative to know whether the model over-

segments, creating more threads than in the ground truth, or undersegments, creating fewer

threads than in the ground truth. Computing the difference ∆N = N̂ −N between the number of

threads N̂ detected by a model and the number of threads N in the ground truth reveals this.

For the single-thread baseline, the number of predicted threads is always set to one. For the

random-chance baseline, a closed form expression can be derived using Stirling numbers of the

second kind which compute the number of ways to partition n items into k non-empty subsets

denoted S(n,k). The number of threads this baseline produces over a video with T clips is simply

a weighted average over partitions of size n:

N̂all = 1∑T
n=1 S(T,n)

T∑
n=1

S(T,n)n. (6.23)

This metric is computed for each story and averaged across all stories to produce a single score

across the dataset.

173

CHAPTER 6. UNWEAVING VIDEO

6.3.3 Experimental details

Data Videos are encoded to 16fps, resized to a height of 112px, and center-cropped. Synthetic

stories are constructed from 1s long clips which are separated from adjacent clips in a synthetic

thread by a gap of between 2–4s. To lower the chance of sampling threads sharing the same

activity, threads are separated by at least 60s. Each synthetic story is composed of 10 clips

and is produced by weaving between 1–4 synthetic threads, unless stated otherwise. Synthetic

stories are sampled randomly from the training videos of EPIC-KITCHENS, thus the model is

trained on a practically infinite number of synthetic stories. Videos shorter than 3½ mins long

are discarded, as they are insufficiently long to sample synthetic stories from. In all experiments

using synthetic story pretraining, around 800K synthetic stories are sampled (8M clips, 50K

batches, each containing 16 stories).

UnweaveNet The backbone network used to extract clip features is a top-heavy 3D ResNet-

18 pretrained on Kinetics [183] using the DPC self-supervised objective [271]. The backbone’s

features are average pooled both spatially and temporally to produce a single vector per clip.

Clip and thread features have dimensions C = D = 256 respectively and are embedded into to

an E = 256 dimensional space for φlinear
select or E = 512 for φtran

select. The thread representation update

module φupdate is instantiated using a single layer GRU [90] with a hidden/output dimension of

256. The transformer-based controller φtran
select uses 1 layer, 4 heads, a model dimension of 512, and

a feed forward MLP dimension of 2048 with a dropout of 0.2 (applied only during pretraining). The

new thread token [NT] is defined as a learnt latent vector, and the empty thread representation

as z∗ = 0 (using a learnt latent vector was also experimented with, but it did not yield any

improvements). The softmax temperature τ is set to 0.05.

UnweaveNet is pretrained on synthetic stories, generated on the fly, for 50k steps (determined

by measuring performance on a validation set of synthetic stories). The learning rate is set to

2×10−4 for 25k steps and then dropped to 2×10−5 for the remaining 25k steps. Finetuning is

conducted using the learning rate 2×10−5 and proceeds for up to 1k steps, with early stopping

based on validation split performance. Adam [119] is used to optimise the models with a batch-

size of 16 stories on 2x NVIDIA RTX-2080 Tis. Each training step takes around 1.3s; therefore

pretraining takes around 18 hours and finetuning over 5 random seeds just under 2 hours.

Results are reported as the mean over 5 different seeds (consistent across experiments) used in

finetuning, starting from a single synthetic story pretrained checkpoint. Horizontal flipping is

used for data augmentation, applied consistently to all clips within a story. Other augmentation

strategies, including random crops and color distortion, were attempted, but didn’t improve

performance.

Baselines Both PredictAbility [375] and the online clustering baseline use features extracted

from a top-heavy 3D ResNet18 trained with the DPC objective on Kinetics, the same as used

174

6.3. EXPERIMENTS

for the clip backbone in UnweaveNet. Hyperparameters for the following baselines are chosen

by performing a hyperparameter search optimising for the average RI across the validation set.

PredictAbility uses a temporal stride of 2, a window of 10 frames each side of the candidate

boundary, and a σ of 15 frames for the Laplacian of Gaussian kernel. The online clustering

baseline uses a similarity threshold of 0.645 above which the clip is judged a continuation of

the thread. EGO-TOPO uses a window size of 8 frames, a lower threshold of 0.4, and an upper

threshold of 0.6. The localisation network used is the same as the one released by the authors.3

6.3.4 Results

The results for unweaving the stories from the EPIC-KITCHENS activity-story test set are

presented in table 6.2, comparing the non-learnt and learnt baselines to UnweaveNet. Unweave-

Net’s performance is reported under three different training regimes: synthetic stories only (SS),

activity stories only (AS), and pretrained on synthetic stories then finetuned on the activity

stories (SS+AS). UnweaveNet performs well compared to the baselines. The full model that

is pretrained on synthetic stories and finetuned on activity stories (SS+AS) outperforms the

baselines on all averaged metrics. EGO-TOPO performs best out of the baselines, however this is

primarily due to its strong performance on the single-thread examples which demonstrate a sole

activity, typically in one location. Compared to UnweaveNet (when trained with activity stories),

all the learnt baselines have a tendency to create more threads than exist in the ground truth as

evidenced by the positive ∆N values. UnweaveNet also suffers this issue, albeit to a lesser extent.

The benefit of synthetic story pretraining is evident comparing AS to SS+AS under both the

RI and TFA metrics. The average ∆N is closer to the ideal (0) for the AS model compared to

the SS+AS model. This can be attributed to the synthetic stories having more threads than the

activity stories, thus predisposing the model to creating more threads. Interestingly, the average

RI is higher, 69.1% vs. 67.0%, when only pretraining on synthetic stories (SS) than when only

training on activity stories (AS), although the SS model oversegments the video into too many

threads as can be seen from the higher average ∆N (2.0 vs. 0.3) and higher 3-thread RI (74.8%

vs. 60.9%).

Qualitative examples of the unweavings produced by UnweaveNet are provided in figures 6.10

and 6.12, demonstrating the model’s capability to unweave stories with varying numbers of

threads.

Figure 6.13 demonstrates how UnweaveNet is capable of unweaving a long sequence of 40

clips, demonstrating the ability of the model to create new threads of varying lengths.

Figure 6.14 demonstrates two failure modes of UnweaveNet: oversegmenting into too many

threads and transitioning between threads slightly later than in the ground truth.

Figure 6.11 shows how the teacher-forcing accuracy varies during online predictions as more

clips are observed. Initially, the single thread baseline has an easy task since few stories this

3EGO-TOPO source code and models: https://github.com/facebookresearch/ego-topo

175

https://github.com/facebookresearch/ego-topo

CHAPTER 6. UNWEAVING VIDEO

Table 6.2: Unweaving performance (5 run average) on the activity-story test set for naïve no-
learning baselines (top section), learnt baselines (middle section) and UnweaveNet (bottom
section) with/without pretraining on synthetic stories (SS) and finetuning on activity stories (AS).
Metrics are described in section 6.3.3. Performance is broken down by the number of threads in
the test story (specified below each metric heading). Chance∗ refers to a random partition for RI
and ∆N, and a random decision at each step for teacher-forcing accuracy (TFA).

RI (↑) TFA (↑) ∆N(→ 0←)

Model Supervision 1 2 3 Avg 1 2 3 Avg 1 2 3 Avg

Single thread - - 52.4 35.3 62.6 - 41.9 26.5 56.2 - -1.0 -2.0 -1.0
Chance∗ - 18.9 48.4 60.5 42.6 50.0 36.0 26.7 37.6 3.7 3.0 3.8 3.5

PredictAbility [375] Self-supervised 47.2 58.8 73.5 59.9 54.6 44.4 39.3 46.1 1.2 0.5 0.5 0.8
Online Clustering Self-supervised 66.8 60.4 64.3 64.0 92.4 60.5 47.5 63.7 1.0 0.9 0.3 0.7
EGO-TOPO [336] Action boundaries 83.9 66.2 64.9 71.7 - - - - 0.6 0.7 1.6 0.9

UnweaveNet SS 63.8 68.6 74.8 69.1 78.3 53.1 61.9 66.5 1.5 2.4 2.0 2.0
UnweaveNet AS 81.8 58.4 60.9 67.0 83.0 51.3 37.6 57.3 0.6 0.5 -0.1 0.3
UnweaveNet SS+AS 84.1 70.1 71.3 75.1 85.2 71.9 74.3 77.5 0.5 0.7 0.3 0.5

short have more than a single thread, but from 4 clips onwards, UnweaveNet’s performance gap

over this baseline steadily increases, and the performance is robust as more clips are considered.

UnweaveNet outperforms the online clustering baseline from observing 4 clips onwards. The

teacher-forcing accuracy of the PredictAbility model is quite high due to two facts: one, the model

cannot create resume threads, and two, resuming a threads is a rarer event than continuing or

starting a thread, therefore the model has fewer choices to take at each step, and performs well

on the more frequent scenarios.

176

6.3. EXPERIMENTS

GT

Pred

Time

Figure 6.10: Qualitative examples demonstrating UnweaveNet successfully unweaving 3 activity
stories. Decision probabilities pt are shown below each clip as a bar chart (N denotes a new
thread). Top right corner indicates predicted thread, bottom right corner indicates ground-truth
thread, and top left corner indicates clip index. Top (1 thread story): chopping mushrooms.
Middle (2 thread story): dicing meat (clips 0–5, 10–11) and rinsing cleaver (6–9). Bottom (3
thread story): setting up washing machine (0–5), throwing empty bottle into recycling (6–7) and
washing hands (8–11).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of past clips

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
ac

he
r-f

or
cin

g
Ac

cu
ra

cy

UnweaveNet
PredictAbility
Online clustering
Single thread
Random chance

Figure 6.11: Teacher-forcing accuracy by number of clips observed

177

CHAPTER 6. UNWEAVING VIDEO

Single thread

Two threads

Three threads

Figure 6.12: Additional examples demonstrating UnweaveNet successfully unweaving videos.
See figure 6.10 for a legend. Single thread (top) row one: preparing grated cheese; row two:
preparing pizza dough; row three: stir frying herbs. Two threads (middle): row one: closing
and putting away bottle, stirring contents of pan; row two: blending soup, stirring pasta. Three
threads (bottom): turning oven off, serving baked potato, recycling used tin foil.

178

6.3. EXPERIMENTS

Figure 6.13: UnweaveNet applied to a 40 clip sequence. UnweaveNet represents this video as 4
threads: juicing the oranges (0–7), washing hands (9–17), getting a glass (19–21), and serving the
orange juice (22–39).

GT

Pred

Time

Figure 6.14: Two sequences demonstrating UnweaveNet’s failure modes. Top (over-
segmentation): UnweaveNet separates the chopping activity (clips 0–4) from cleaning (putting
peelings into the bin) (clips 6–7) and correctly resumes the first thread (clip 9). However, an
additional incorrect thread is created (clips 5 and 8) to capture the transition. Bottom (late-
starts): two threads are recognised: serving food (clips 0–4) and washing pan (clips 5–9). However
UnweaveNet leaves the serving thread one clip later than in the ground truth (clip 4).

179

CHAPTER 6. UNWEAVING VIDEO

6.3.5 Ablation studies

Several ablation studies are conducted to determine the impact of the various components of

UnweaveNet on its behaviour. Each ablation study aims to answer a specific question.

How to best construct synthetic stories? Having established that pretraining on synthetic

stories is beneficial (as was shown in table 6.2), the best way of constructing them is investigated.

There are two hyperparameters to tune: the gap between clips within a synthetic thread and the

number of synthetic threads forming the story. As the gap between clips in a thread increases,

the visual similarity between adjacent clips decreases, making the task of associating the clips

together harder. Table 6.3a shows that increasing this gap up to 2 seconds is beneficial, but

beyond this we observe a degradation. Using a random gap between 2–4 seconds was found to

further boost performance over a fixed clip gap. This is the default configuration used throughout

the remainder of the ablation studies.

When constructing synthetic stories, the number of threads is sampled uniformly from one

to a maximum Nmax. Table 6.3b shows the RI increases as Nmax is increased up to 4 threads,

beyond which the performance decreases. This drop can be attributed to the fact that threads are

composed of fewer clips as the number of threads is increased in addition to the increased risk

that some threads overlap in activity.

How to implement φselect and φupdate? The two versions of φselect introduced in section 6.1.3

φlinear
select and φtran

select are compared in table 6.3c. The transformer based model proves superior to the

linear embedding. In a similar manner, two versions of φupdate are compared using the recurrent

update module based on a GRU vs. a linear projection of the last clip of each thread. For the latter,

the new clip representation overwrites the previous thread representation when performing

an update. The results demonstrate a small but consistent improvement when using the GRU

update module.

Table 6.3: UnweaveNet Ablation studies: (a) and (b) study the hyperparameters used to construct
the synthetic stories in pretraining, and (c) considers the impact of different architectural choices
in UnweaveNet.

(a) Clip gap within thread.

Clip gap (s) RI (↑)

0 60.6±0.6
1 73.1±0.3
2 74.6±0.7
4 73.7±0.7

2–4 75.1±0.5

(b) Max # threads.

Max # threads RI (↑)

2 69.0±0.6
3 72.7±0.6
4 75.1±0.5
5 74.0±0.8
6 73.5±0.8

(c) UnweaveNet architectural choices.

φselect φupdate RI (↑)

Linear Emb. Last clip 73.7±0.7
Linear Emb. GRU 74.3±0.3
Transformer Last clip 74.8±0.3
Transformer GRU 75.1±0.5

180

6.4. CONCLUSION

Continue Resume New
Predicted

Continue

Resume

New

Tr
ue

0.93
(±0.00)

0.05
(±0.00)

0.02
(±0.00)

0.77
(±0.02)

0.17
(±0.00)

0.07
(±0.02)

0.77
(±0.01)

0.07
(±0.01)

0.16
(±0.00)

(C, R, N) = (1, 1, 1)

Continue Resume New
Predicted

0.85
(±0.04)

0.04
(±0.01)

0.11
(±0.04)

0.34
(±0.12)

0.17
(±0.00)

0.49
(±0.12)

0.49
(±0.05)

0.03
(±0.02)

0.48
(±0.06)

(C, R, N) = (1, 10, 10)

Continue Resume New
Predicted

0.82
(±0.00)

0.04
(±0.00)

0.14
(±0.01)

0.29
(±0.04)

0.17
(±0.00)

0.54
(±0.04)

0.47
(±0.02)

0.01
(±0.00)

0.51
(±0.02)

(C, R, N) = (1, 50, 10)

Continue Resume New
Predicted

0.83
(±0.01)

0.04
(±0.00)

0.12
(±0.01)

0.43
(±0.04)

0.21
(±0.02)

0.36
(±0.06)

0.49
(±0.02)

0.02
(±0.00)

0.50
(±0.02)

(C, R, N) = (1, 100, 10)

Figure 6.15: Scenario confusion matrix as αs (top) is varied using teacher-forced history.

How do the scenario loss weights affect UnweaveNet’s behaviour? Section 6.1.4 noted

that it was necessary to weight different scenarios in the loss function. The effects of the scenario

loss weights αs used in equation 6.10 on the model’s behaviour are investigated in figure 6.15.

When an equal weighting for all scenarios is used (left), the model is heavily biased towards

continuing threads. To mitigate this, a higher weighting (αC,αR,αN) = (1,100,10) is used for

resume and new thread scenarios (right) roughly proportional to their inverse frequency in the

training split. The higher weighting for these scenarios improves their performance at the cost

of the continue thread scenario. As anticipated, resuming threads after a break is the hardest

scenario to tackle. Two additional configuration for (αC,αR,αN) are shown in the center of the

figure between the two extremes of an equal weighting for each scenario (left) and heavily

weighting towards resume and new thread scenarios (right). Overall, the proposed non-uniform

weightings perform better in terms of RI (75.1%) than using equal scenario weightings (67.9%).

6.4 Conclusion

This chapter introduced video unweaving, the task of parsing a video online into its constituent

activity threads, accomplished by the introduction of a novel representation that models ongoing

activity, operated by a neural controller, together called UnweaveNet. Given a clip, UnweaveNet

determines whether the clip continues an existing thread within its bank or is the start of a new

thread. UnweaveNet can handle resuming a thread when the video depicts a switch from one

thread to a previously observed thread. Moreover, it can be applied to variable-length videos,

with memory requirements scaling linearly in the number of threads. A dataset of activity stories

was annotated and used to evaluate how UnweaveNet can be pretrained through self-supervision

by sampling synthetic stories from untrimmed videos.

UnweaveNet has potential applications in assistive technologies as the user’s activities can

be perceived online. By focusing the experiments on egocentric footage, UnweaveNet is more

suitable for sousveillance [24], one’s ability to monitor her/his activities, than surveillance, remote

monitoring of others’ activities. However, in principle, the same approach can be adapted for

181

CHAPTER 6. UNWEAVING VIDEO

monitoring other people’s activity. Video monitoring has significant advantages for tasks in

healthcare and maintenance, but also can facilitate worker monitoring and efficiency assessment.

UnweaveNet is just the first step towards building a solution capable of comprehensive video

unweaving. Potential areas of future work are outlined next.

Revising past decisions UnweaveNet has no way of revising its past decisions in light of new

information. Integrating a revision process for threads would enable the model to rectify past

erroneous decisions in clip-thread assignments that were made based on insufficient information.

This additionally opens up the opportunity to limit the thread bank’s size, by merging threads

together.

Peeking into the future Scaling up unweaving to more complex stories requires a model that

can deal with periods of ambiguity. Consider a story where it is not clear whether the current

clip is a continuation of a past thread or the beginning of a new one and only after observing

future clips does it become apparent what should have been done with the previous clip. In such

a scenario, UnweaveNet is forced to make a (possibly sub-optimal) decision. This is the same

problem that revising past decisions would address, however it could also be mitigated by peeking

into the future instead. Providing knowledge of the future to the model, such as a few subsequent

clips, would reduce the ambiguity of the present, allowing the model to make a better decision

about the current clip.

Beyond greedy decisions Yet another direction to mitigate the problems due to ambiguity

is to adapt the model to hypothesise multiple possible unweavings of the video simultaneously.

One way of doing this is through a beam search, where at each time-step, each hypothesised

unweaving is used to populate the thread bank and the model produces a set of new unweavings

extended by a single clip. Only the top-k hypothesised unweavings are retained at each step

to prevent the process becoming an exhaustive search. This requires a way of scoring the

unweavings to determine which ones are retained. The typical approach, as employed in sequence-

to-sequence recurrent models, is to compute the joint probability of the decisions over time. This

was attempted, however the quality of the unweaving as measured by the RI actually decreased.

This may well be due to a shift in the feature distribution of the thread bank causing the neural

controller to perform erratically. There is some prior work [161] in using beam search during

training in order to expose the model to incorrect histories and to optimise for a sequence-level

metric, such as the RI in the case of unweaving. This would help the model learn to recover from

mistakes it has made earlier, in contrast to teacher forcing which optimises the controller based

on the assumption that the past was unwoven correctly. It would be interesting to see whether

the same approach applied to UnweaveNet would improve performance.

182

6.4. CONCLUSION

Variable-sized thread representations The representations that populate the thread bank

in UnweaveNet are of a fixed dimension. This can be seen as one end of the design spectrum of

thread representations. At the other end of the spectrum is a representation consisting of all the

observed clips. Somewhere between the two extremes would have thread representations grow

sub-linearly with the number of clips assigned to them, capturing richer details of the thread

than a fixed-sized representation. Such a representation could take inspiration from the works

on neural data structures [93, 114].

Hierarchical representation of threads As noted in the introduction, unweaving is related

to the process of event segmentation, a cognitive process in which the brain perceives bound-

aries between separate events. Event segmentation is known to be a hierarchical process [18],

where events at different levels of granularity are perceived (e.g. making coffee vs. boiling the

kettle). Whilst events are a simplified version of activity threads, these findings still suggest the

possibility of hierarchical unweaving. It would be interesting to see whether neural hierarch-

ical representations based on hyperbolic embeddings [221, 332, 376] could be used to perform

hierarchical unweaving.

Assigning semantics to threads Whilst unweaving was posed as a semantic-free task, it

would also be interesting to classify the activity each thread depicts. This can be thought of as the

analogue of the second stage of the two-stage approaches for temporal action localisation. These

methods first apply a model to generate a number of segments deemed to consist of a single action

which are then classified in the second step into a fixed number of actions. Here, UnweaveNet

performs the first stage, finding the activity threads, and an additional neural module classifies

the activity.

Explicitly representing completed activity threads UnweaveNet does not distinguish

between activities that are paused-and-ongoing from those that have been completed. Explicitly

incorporating this distinction into the model would enable bounding the computational cost of the

controller, reducing it from proportional in the number of threads, to proportional in the number

of ongoing threads. Additionally, it would also likely make the model’s task easier when scaling

up to longer videos where many activities have occurred.

183

C
H

A
P

T
E

R

7
CONCLUSION

This thesis set out to investigate the role of time in video understanding, this was accom-

plished through the study of time from multiple perspectives. Two key themes tie together

the work presented: the act of temporal manipulation and the search for relationships

between parts of a video across time. In the first use of temporal manipulation, time-reversal was

used to probe models’ understanding of gestures and human-object interactions, finding their

perception mostly agreed with that of humans and that time-reversed actions could sometimes

look natural. This observation motivated the use of time-reversed examples in training models.

The second use was in generating synthetic stories for pretraining UnweaveNet. The second

theme, the relationship between parts of video, was touched on by both the element Shapley

value and UnweaveNet. The element Shapley value related frames to one another through their

support towards the classification of a video. Unweaving considered video at a coarser granularity,

linking together video clips depicting the same activity. A summary of the contributions and

limitations of the works presented in each chapter are given next.

Action Recognition on EPIC-KITCHENS Three different methods for action recognition

that modelled time in different ways were evaluated on the EPIC-KITCHENS datasets in

chapter 3. This study demonstrated that action recognition on EPIC-KITCHENS requires tem-

poral modelling to distinguish between certain classes like ‘put’ and ‘take’. Furthermore, the

results serve as a baseline for others to build upon, highlighting areas of weak model performance

to be improved.

Time-reversal and label-altering transforms The difficulty of discriminating between

‘put’ and ‘take’ by models that don’t consider temporal ordering was further investigated in

chapter 4. This was accomplished by examining the effects of time-reversal on gestures and

human-object interactions. This found that time-reversed examples can look natural, in contrast

to previous works [99, 222, 250] that assumed time-reversed examples should be distinguishable

from forward-time ones. A model trained on forward-time examples was tested on time-reversed

examples and found to respond similarly to a human, e.g. classifying a time-reversed ‘open’ as

185

CHAPTER 7. CONCLUSION

a ‘close’ and vice versa. The relationships between different classes under time-reversal were

studied, finding that some examples maintain their class label, some switch their label with

another existing class, and some produce examples of new classes outside the dataset. The

framework of label-altering transforms was introduced to describe this behaviour and a method

was developed to classify classes into these different groups based on the response of a trained

model. The use of label-altering transforms to produce new examples was investigated for the

applications of data augmentation and zero-shot learning. These experiments demonstrated that

in a majority of cases, these examples could be used to train models that can recognise previously

unseen classes.

Whilst time-reversal could be used to learn some new classes, others proved problematic.

The difficulty of learning from time-reversed examples of these classes is likely due to low-level

signals being used by the model for classification instead of the higher level signals that the

model ideally would have used. There’s an opportunity for future work here, considering the use

of techniques like domain adaptation to help align the time-reversed representations with the

forward-time ones to improve the model’s performance. An additional limitation of this work

is that the reversibility of actions decreases as the actions span longer periods of time. It only

takes a single part of an action to be irreversible to render the whole action irreversible. Future

work could consider how the parts that make up an action and their (ir)reversibility relate to the

whole.

Element attribution Beyond manipulating video and examining the resulting effects on

trained models, chapter 5 considered the frames that comprise a video and how each contributes

to the output produced by a model. This task was formalised as the novel problem of element

attribution. Whilst similar to the more general problem of feature attribution, two key issues

were side-stepped by focusing on this more constrained scenario: i) frames were not assumed to

be independent ii) the model analysed was not probed with out-of-distribution examples. The

latter was accomplished by introducing a way of building a multi-scale model capable of operating

over variable-length inputs. A principled method to perform element attribution, the element

Shapley value (ESV), was introduced and applied to analyse two models, TSN and TRN, each

with different approaches to temporal modelling. The trust-worthiness of ESVs was assessed

by frame ablation studies. This showed that removing frames in order of the attribution values

produced by the ESV caused a greater change in model performance than those produced by

feature ablation methods adapted for element attribution. Whilst the ESV is a computationally

expensive method, a joint approximation of the multi-scale model and the ESV was proposed to

mitigate this and was evaluated for computing each frame’s contribution in a short video without

any subsampling.

The element Shapley value helps determine which frames a model relies on for classification,

however it does suffer from some drawbacks. Its computational complexity prevents it from being

applied to models that perform temporal modelling throughout the whole network. There is scope

186

for future work in reducing this computational cost by exploiting the model’s structure. Beyond

this, future work could develop a method that can attribute over space as well as time to gain

insight into what parts of frames are supporting the classification produced by a model.

Video unweaving Whilst the ESV aimed to shed light on black-box models, chapter 6 intro-

duced a less-opaque video representation that explicitly models the activities present within. This

representation is learnt and evaluated through the novel task of video unweaving: unravelling a

video into its constituent activity threads without activity labels. This is achieved by a neural

controller that processes video online, detecting new or continued activities, whilst building up

the representation of the past. Together, the representation and controller form the UnweaveNet

model which is pretrained via a novel self-supervised unweaving task making use of long videos.

A small dataset of activity stories on EPIC-KITCHENS were collected to finetune and evaluate

the model’s performance for unweaving.

The activity stories UnweaveNet was tested on were on the order of 10s long, scaling this up

to longer videos is challenging due to computational requirements. Techniques for scaling the

model up to longer video offer an interesting avenue for future work. Additionally, UnweaveNet

produces a single unweaving of video, but activities are hierarchical in nature, further work could

extend UnweaveNet to break the video into activities at different levels of granularity.

A future outlook Next, a broader view is taken on what the future of video understanding

holds beyond the immediate directions discussed above.

The most successful models for action recognition are currently black-boxes, they operate over

a video and produce an output without any explicitly interpretable intermediates. Such models

are acceptable in certain scenarios where the reasoning of the model need not be exposed, but

as systems for video understanding became more complex and involve further user interaction,

interpretability becomes a desirable trait. Consider a system that helps support a user through

a complex task. If the system misunderstands what has occurred and its representation is

interpretable and modifiable, the user can correct the model, helping address its shortcomings.

Additionally, this opens up the opportunity of active learning, where not only can the user correct

the model’s mistakes, but the correction can also help improve its subsequent performance.

Currently video understanding models are trained through a paradigm of ‘show-and-tell’; they

are shown hundreds of thousands of examples and told their corresponding labels. The models

then have to learn correlations between the data and label to be able to correctly perform the task

they’ve been set. This set up seems to work well for actions that can be recognised predominantly

from appearance or through motion patterns like those in Kinetics. However, I am skeptical of

whether this process is sufficient to learn models that truly understand state-changing actions.

The Something-Something dataset is a good example of a dataset that has been carefully

constructed to try and mitigate some of the issues that can occur within this paradigm. The

dataset aims to enable training models that can recognise state-changing actions. This is accom-

187

CHAPTER 7. CONCLUSION

plished in two main ways: firstly, by collecting examples of closely related actions; and secondly,

by introducing ‘pretending’ classes which aim to illustrate motions and appearance as close to

the true action as possible without causing any state change. Constructing such a dataset is a

very burdensome task for its creators as they have to anticipate the spurious correlations the

models might pick up on, and mitigate them through the introduction of new classes. Additionally,

scaling the number of classes in datasets is more challenging than it might first appear. Each new

class introduced needs to be considered in light of all the other classes, without doing so it’s quite

possible to accidentally add duplicate or related classes. For example, in Something-Something

there are the classes ‘covering [. . .] with [. . .]’ and ‘putting [. . .] on top of [. . .]’, the latter subsumes

the former. Such mistakes in the data make it hard for the model to learn.

An alternative paradigm that mitigates these issues is one of ‘act-and-observe’, where a visual

model is trained within an environment where the model is given a goal and can act in someway

towards achieving it. The model’s failure and successes constitute the training data used for the

visual part of the model. This paradigm aims to give models a more causal understanding of

actions, merely than the correlations they currently learn. At present, this paradigm is hard

to implement as in its full generality it entails the use of reinforcement learning, a notoriously

difficult technique to get working for complex tasks. However, this ideal can at least serve as

inspiration to create tasks that require models to obtain a causal understanding of the actions

they learn.

188

A
P

P
E

N
D

I
X

A
ADDITIONAL MATERIAL REGARDING LABEL-ALTERING TRANSFORMS

Figure A.1: TRN’s response to time-reversed videos from the Something-Something dataset. Only
the classes considered invariant and equivariant are shown as the confusion matrix for the full
174 classes cannot be rendered legibly on an A4 page.

189

A
P

P
E

N
D

I
X

B
SUPPORTING PROOFS FOR THE ELEMENT SHAPLEY VALUE

This appendix contains proofs for the various results that are used in chapter 5 supporting the

element Shapley value.

B.1 Shapley value expectation forms

The Shapley value can be expressed in a variety of forms, which provide different interpretations

of the Shapley value.

B.1.1 Single expectation form

The Shapley value for an element xi from a sequence X can be interpreted as the expected

marginal contribution of xi on a random coalition X ′ ⊆ X \{xi}, where X ′ maintains the order of

elements in X .

Proof. The Shapley value is originally defined [2] as

φi =
∑

X ′⊆X\{xi}

(|X |− |X ′|−1)!|X ′|!
|X ′|! [f (X ′∪ {xi})− f (X)] . (B.1)

Let X ′ be a random variable whose probability mass function (pmf) is

p(X ′)= (|X |− |X ′|−1)!|X ′|!
|X |! . (B.2)

p(X ′) is a valid pmf, given all values are non-negative and its sum is equal to one by direct proof∑
X ′⊆X\{xi}

p(X ′)= ∑
X ′⊆X\{xi}

(|X |− |X ′|−1)!|X ′|!
|X |! (B.3)

=
|X |−1∑
s=0

∑
X ′⊆X\{xi}
|X ′|=s

(|X |− |X ′|−1)!|X ′|!
|X |! (B.4)

=
|X |−1∑
s=0

(|X |− s−1)!s!
|X |!

∑
X ′⊆X\{xi}
|X ′|=s

1 (B.5)

191

APPENDIX B. SUPPORTING PROOFS FOR THE ELEMENT SHAPLEY VALUE

=
|X |−1∑
s=0

1
|X |

(
|X |−1

s

)−1 ∑
X ′⊆X\{xi}
|X ′|=s

1 (B.6)

= 1
|X |

|X |−1∑
s=0

(
|X |−1

s

)−1 ∑
X ′⊆X\{xi}
|X ′|=s

1 (B.7)

= 1
|X |

|X |−1∑
s=0

(
|X |−1

s

)−1(
|X |−1

s

)
(B.8)

= 1
|X |

|X |−1∑
s=0

1 (B.9)

= 1. (B.10)

Consequently

φi = E
X ′

[
f (X ′∪ {xi})− f (X ′)

]
. (B.11)

B.1.2 Conditional expectation form

The Shapley value can also be formulated as the expectation over the conditional expectations of

the marginal contribution of an element on a coalition of size s where all values of s are equally

probable.

E
X ′

[
f (X ′∪ {xi})− f (X ′)

]= E
s

[
E

X ′|s
[
f (X ′∪ {xi})− f (X ′)

]]
(B.12)

This is a consequence of the law of total expectation, as the sample space is split into |X |
non-empty and non-overlapping partitions, each containing subsets of size s ∈ {0.. |X |−1}.

Proof. This equivalence is shown by direct proof. Since there are
(|X |−1

s
)

instances of X ′ of size s

the conditional probability of X ′ given s is

p(X ′|s)=
(
|X |−1

s

)−1

(B.13)

Expanding out the RHS of equation B.12 yields

|X |−1∑
s=0

p(s)
∑

X ′⊆X\{xi}
|X ′|=s

p(X ′|s)[f (X ′∪ {xi})− f (X ′)] (B.14)

=
|X |−1∑
s=0

1
|X |

∑
X ′⊆X\{xi}
|X ′|=s

(
|X |−1

s

)−1

[f (X ′∪ {xi})− f (X ′)] (B.15)

= ∑
X ′⊆X\{xi}

1
|X |

(
|X |−1
|X ′|

)−1

[f (X ′∪ {xi})− f (X ′)] (B.16)

= E
X ′

[
f (X ′∪ {xi})− f (X ′)

]
(B.17)

192

B.2. RECURSIVE DEFINITION OF VARIABLE-LENGTH INPUT MODEL

B.2 Recursive definition of variable-length input model

The multi-scale model f (note this is the same as f ms, but the superscript is dropped in this

proof for notational simplicity) is defined as a combination of the results from a set of single scale

models { f s}nmax
s=1

f (X)= E
s

[
E

X ′|s
[
f s(X ′)

]]
. (5.9 revisited)

To improve efficiency when computing Shapley values, it is desirable to formulate this in a

recursive fashion, denoted f̌ . This enables the computation of f (X) in terms of the expected result

of f̌ (X̌) where X̌ is a random variable over subsequences of X with one element less (all equally

probable).

f̌ (X)=

f 1(X) |X | = 1

|X |−1 [
f |X |(X)+ (|X |−1)EX̌

[
f̌ (X̌)

]] |X | ≤ nmax

EX̌
[
f̌ (X̌)

] |X | > nmax

(B.18)

Proof. The equivalence between f and f̌ is proven by induction on |X |.

Base case: When |X | = 1, observe that p(s = 1) = 1 and the sample space Ω(X ′|s = 1) = {X }

therefore f (X)= f 1(X) from equation 5.9.

Inductive step: The inductive step is split into two parts: one where |X | ≤ nmax and one where

|X | > nmax . Both parts of the proof begin by assuming f (X̌) = f̌ (X̌), which was proven for the

base case s = 1. For |X | ≤ nmax , the proof starts from f̌ (X), expanding out the definition according

to clause 2 in equation B.18

f̌ (X)= |X |−1
[

f |X |(X)+ (|X |−1) E
X̌

[
f̌ (X̌)

]]
. (B.19)

The strategy taken will be to expand the expectation in equation B.19, and show that substituting

the expanded form back into equation B.19 recovers equation 5.9. Focusing on the expectation

and substituting our assumption, f (X̌)= f̌ (X̌), yields

E
X̌

[
f̌ (X̌)

]= E
X̌

[
f (X̌)

]
(B.20)

= E
X̌

[
E
s

[
E

X̌ ′|s

[
f s(X ′)

]]]
(B.21)

It is important to note the definitions of the random variables here: X̌ ′ ⊆ X̌ and s ∈ {1.. |X̌ |}.
Expanding out the expectations yields

E
X̌

[
f̌ (X̌)

]= ∑
X̌⊂X

|X̌ |=|X |−1

1
|X |

|X̌ |∑
s=1

1
|X̌ |

∑
X̌ ′⊆X̌
|X̌ ′|=s

(
|X̌ |
s

)−1

f s(X̌ ′) , (B.22)

193

APPENDIX B. SUPPORTING PROOFS FOR THE ELEMENT SHAPLEY VALUE

reordering the summations, and replacing |X̌ | with |X |−1 yields

E
X̌

[
f̌ (X̌)

]= 1
|X |

|X |−1∑
s=1

1
|X |−1

∑
X̌⊂X

|X̌ |=|X |−1

∑
X̌ ′⊆X̌
|X̌ ′|=s

(
|X |−1

s

)−1

f s(X̌ ′) . (B.23)

As {X̌ ⊂ X : |X̌ | = |X | −1} is all subsequences of X excluding a single element, this set can be

substituted with {xi ∈ X } and replace X̌ with X \{xi},

E
X̌

[
f̌ (X̌)

]= 1
|X |

|X |−1∑
s=1

1
|X |−1

∑
xi∈X

∑
X ′⊆X\{xi}
|X ′|=s

(
|X |−1

s

)−1

f s(X ′) . (B.24)

Next, the following relation is shown to hold

1
|X |

∑
xi∈X

∑
X ′⊆X\{xi}
|X ′|=s

(
|X |−1

s

)−1

= ∑
X ′⊆X
|X ′|=s

(
|X |
s

)−1

(B.25)

To get from the LHS to the RHS, an argument based on how many times X ′ will be repeatedly

counted due to the outer summation will be used. Considering a fixed X ′, there will be |X |− |X ′|
times where it will be drawn in the inner summation. Hence the outer summation can be replaced

with the number of its occurrences

1
|X |

∑
xi∈X

∑
X ′⊆X\{xi}
|X ′|=s

(
|X |−1

s

)−1

(B.26)

= 1
|X |

∑
X ′⊆X\{xi}
|X ′|=s

(|X |− s)

(
|X |−1

s

)−1

(B.27)

= ∑
X ′⊆X\{xi}
|X ′|=s

(|X |− s)
|X |

(|X |−1− s)!s!
(|X |−1)!

(B.28)

= ∑
X ′⊆X\{xi}
|X ′|=s

(|X |− s)!s!
(|X |)! (B.29)

= ∑
X ′⊆X\{xi}
|X ′|=s

(
|X |
s

)−1

. (B.30)

Having proven equation B.25, equation B.24 can be simplified to

E
X̌

[
f̌ (X̌)

]= 1
|X |−1

|X |−1∑
s=1

∑
X ′⊆X
|X ′|=s

(
|X |
s

)−1

f s(X ′) . (B.31)

Substituting this form back into equation B.19 yields

f̌ (X)= |X |−1

|X |−1∑
s=1

∑
X ′⊆X
|X ′|=s

[(
|X |
s

)−1

f s(X ′)

]
+ f |X |(X)

 . (B.32)

194

B.3. LINEARITY OF SHAPLEY VALUES

Now f |X |(X) can be merged into the summation over s by increasing its bound from |X |−1 to |X |

f̌ (X)=
|X |∑
s=1

1
|X |

∑
X ′⊆X
|X ′|=s

(
|X |
s

)−1

f s(X ′) . (B.33)

Which is the expansion of the expectations of f (X). The proof for the equivalence between f̌ (X)

and f (X) for |X | > nmax is very similar to the above and has been omitted for brevity.

B.3 Linearity of Shapley values

The Shapley value φw1c1+w2c2
i for a model fw1c1+w2c2(X)= w1 fc1(X)+w2 fc2(X) where w1,w2 ∈R

is w1φ
c1
i +w2φ

c2
i .

Proof.

φw1c1+w2c2 = ∑
X ′⊆X\{xi}

w(X ′) fw1c1+w2c2(X ′) (B.34)

= ∑
X ′⊆X\{xi}

w(X ′)
[
w1 fc1(X ′)+w2 fc2(X ′)

]
(B.35)

= w1
∑

X ′⊆X\{xi}
w(X ′) fc1(X ′)+w2

∑
X ′⊆X\{xi}

w(X ′) fc2(X ′) (B.36)

= w1φ
c1
i +w2φ

c2
i (B.37)

195

B.3. LINEARITY OF SHAPLEY VALUES

197

GLOSSARY

Activity story A first-person video that demonstrates the camera-wearer performing multiple

activities, possibly that are interleaved with one-another..

Amazon Mechanical Turk A crowd sourcing platform used to distribute tasks to many human

workers across the globe at low cost.

Class homogeneous A Label-Altering Transform is said to be class-homogenous if the trans-

form consistently transforms the label of all video from a given class for all classes.

Equivariant class A class y of the pair of classes (y, y′) such that when a label transform Ty is

applied Ty(y)= y′ and Ty(y′)= y.

Feature attribution A technique that assesses the importance of an feature in a specific input

to a model. Typically input features are assigned numerical values indicating how much

they contributed to an output neuron.

Forced-choice human perception study A human perception study in which participants

are presented a number of choices, exactly one of which they have to choose.

Grad-CAM A coarse-grained feature attribution method based on examining the derivatives of

the output to attribute with respect to intermediate feature maps modulated by the forward

pass values.

Integrated Gradients A feature attribution method based on Aumann-Shapley values, an

extension of Shapley values to infinite-player games.

Invariant class A class that is transformed to itself when a label transform is applied to it.

Jester A hand-gesture recognition dataset composed of webcam videos demonstrating a single

hand-gesture (27 classes).

Label transform A label transform accompanies a video transform and specifies how the label

of a video is transformed when the video transform is applied to it.

Label-Altering Transform A video transform which can change the label of the video it is ap-

plied to. e.g. time-reversal on the a video of someone ‘swiping up’ (which is then transformed

to someone ‘swiping down’).

199

GLOSSARY

Label-Preserving Transform A video transform which does not affect the label of the video is

applied to.

Late fusion A technique used for combining the results of different models. Typically late

fusion is applied to aggregate class scores produced by multiple models on different input

modalities like RGB frames and optical flow. It is usually performed by pooling the class

scores via averaging.

Multi-scale Temporal Relational Network A multi-scale variant of Temporal Relational Net-

work where there are multiple temporal relational modules, one for each scale, where a

scale is defined as the number of segment features that are input to the module.

Novel-generating class A class that is transformed into a new class outside the set of classes

of a dataset when a label transform is applied to it.

Segment A portion of a video. A video is split into a number of equal sized segments from which

a snippet is extracted for propagation through a model.

Snippet A short portion of video to be propagated through a model. For an RGB model, a snippet

is typically a single frame. For an optical-flow model, a snippet is typically a number of

(u,v) flow-fields stacked in the channel dimension.

Something-Something Fine-grained action recognition dataset. Videos are short (typically

under 5s) and of mixed first and third person viewpoints. The dataset contains 174 classes

with a focus on needing temporal reasoning to distinguish between classes.

Synthetic story An automatically constructed story that aims to roughly replicate an activity

story through randomised sampling..

Temporal Relational Network An evolution of Temporal Segment Network that replaced

the average pooling of class scores, with a modified relational network that operates over

ordered tuples of segment features to endow the model with inter-segment modelling

abilities.

Temporal Segment Network An action recognition architecture that runs a 2D CNN per-

segment and then aggregates class-scores across segments.

Temporal Shift Module A module/module that transforms a 2D CNN into one that performs

temporal reasoning through shifting a proportion of filter responses across time to allow

subsequent convolutional layers to integrate information across time.

Tubelet A sequence of voxels across space-time. These are typically formed by tracking an object

or person across time.

200

BIBLIOGRAPHY

[1] Dennis Gabor. ‘Theory of Communication. Part 1: The Analysis of Information’. In: Journal
of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering
93.26 (1946), pp. 429–441.

[2] L. S. Shapley. ‘A Value for N-Person Games’. In: Contributions to the Theory of Games
(AM-28), Volume II. Vol. 2. Princeton: Princeton University Press, 1953. ISBN: 978-1-
4008-8197-0. DOI: 10.1515/9781400881970-018. URL: https://www.degruyter.com/
view/books/9781400881970/9781400881970-018/9781400881970-018.xml (visited on
17/01/2020).

[3] Robert L. Thorndike. ‘Who Belongs in the Family?’ In: Psychometrika 18.4 (1st Dec. 1953),
pp. 267–276. ISSN: 1860-0980. DOI: 10.1007/BF02289263. URL: https://doi.org/10.
1007/BF02289263 (visited on 05/08/2021).

[4] Irwin Mann and Lloyd S. Shapley. Values of Large Games, IV: Evaluating the Electoral
College by Montecarlo Techniques. RAND Corporation, 1st Jan. 1960. URL: https://www.
rand.org/pubs/research_memoranda/RM2651.html (visited on 24/08/2021).

[5] William M. Rand. ‘Objective Criteria for the Evaluation of Clustering Methods’. In:
Journal of the American Statistical Association 66.336 (1st Dec. 1971), pp. 846–850. ISSN:
0162-1459. DOI: 10.1080/01621459.1971.10482356. URL: https://www.tandfonline.
com/doi/abs/10.1080/01621459.1971.10482356 (visited on 26/02/2021).

[6] Robert J. Aumann and Lloyd S. Shapley. Values of Non-Atomic Games. Princeton Univer-
sity Press, 1974. 333 pp. ISBN: 978-0-691-08103-8. Google Books: ugf6vgEACAAJ.

[7] Martin A. Fischler and Robert C. Bolles. ‘Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography’. In:
Communications of the ACM 24.6 (1st June 1981), pp. 381–395. ISSN: 0001-0782. DOI:
10.1145/358669.358692. URL: https://doi.org/10.1145/358669.358692 (visited on
02/08/2021).

[8] H. P. Young. ‘Monotonic Solutions of Cooperative Games’. In: International Journal of
Game Theory 14.2 (1st June 1985), pp. 65–72. ISSN: 1432-1270. DOI: 10.1007/BF01769885.
URL: https://doi.org/10.1007/BF01769885 (visited on 17/01/2020).

[9] C. Harris and M. Stephens. ‘A Combined Corner and Edge Detector’. In: Proceedings of
the 4th Alvey Vision Conference. 1988, pp. 147–151.

[10] Ronald J. Williams and David Zipser. ‘A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks’. In: Neural Computation 1.2 (June 1989), pp. 270–280.
ISSN: 0899-7667. DOI: 10.1162/neco.1989.1.2.270.

[11] Jianbo Shi and Tomasi. ‘Good Features to Track’. In: 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. June 1994, pp. 593–600. DOI: 10.1109/CVPR.
1994.323794.

[12] George A. Miller. ‘WordNet: A Lexical Database for English’. In: Communications of the
ACM 38.11 (1st Nov. 1995), pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/219717.219748.
URL: https://doi.org/10.1145/219717.219748 (visited on 21/06/2021).

201

https://doi.org/10.1515/9781400881970-018
https://www.degruyter.com/view/books/9781400881970/9781400881970-018/9781400881970-018.xml
https://www.degruyter.com/view/books/9781400881970/9781400881970-018/9781400881970-018.xml
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://www.rand.org/pubs/research_memoranda/RM2651.html
https://www.rand.org/pubs/research_memoranda/RM2651.html
https://doi.org/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://books.google.com/books?id=ugf6vgEACAAJ
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/BF01769885
https://doi.org/10.1007/BF01769885
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748

BIBLIOGRAPHY

[13] Minerva M. Yeung et al. ‘Video Browsing Using Clustering and Scene Transitions on
Compressed Sequences’. In: Multimedia Computing and Networking 1995. Multime-
dia Computing and Networking 1995. Vol. 2417. International Society for Optics and
Photonics, 14th Mar. 1995, pp. 399–413. DOI: 10.1117/12.206067. URL: https://
www.spiedigitallibrary.org/conference-proceedings-of-spie/2417/0000/Video-
browsing-using-clustering-and-scene-transitions-on-compressed-sequences/10.
1117/12.206067.short (visited on 05/08/2021).

[14] A. Bobick and J. Davis. ‘An Appearance-Based Representation of Action’. In: Proceedings
of 13th International Conference on Pattern Recognition. Proceedings of 13th International
Conference on Pattern Recognition. Vol. 1. Aug. 1996, 307–312 vol.1. DOI: 10.1109/ICPR.
1996.546039.

[15] A. F. Bobick and Y. A. Ivanov. ‘Action Recognition Using Probabilistic Parsing’. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
1998, pp. 196–202.

[16] Y.A. Ivanov and A.F. Bobick. ‘Recognition of Visual Activities and Interactions by Stochastic
Parsing’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.8 (Aug.
2000), pp. 852–872. ISSN: 1939-3539. DOI: 10.1109/34.868686.

[17] J. M. Zacks et al. ‘Human Brain Activity Time-Locked to Perceptual Event Boundaries’. In:
Nature Neuroscience 4.6 (June 2001), pp. 651–655. ISSN: 1097-6256. DOI: 10.1038/88486.
pmid: 11369948.

[18] Jeffrey M. Zacks, Barbara Tversky and Gowri Iyer. ‘Perceiving, Remembering, and Com-
municating Structure in Events.’ In: Journal of experimental psychology: General 130.1
(2001), p. 29.

[19] Xiaolin Feng and P. Perona. ‘Human Action Recognition by Sequence of Movelet Code-
words’. In: First International Symposium on 3D Data Processing Visualization and
Transmission Proceedings. First International Symposium on 3D Data Processing Visu-
alization and Transmission Proceedings. June 2002, pp. 717–721. DOI: 10.1109/TDPVT.
2002.1024148.

[20] Thorsten Joachims. ‘Optimizing Search Engines Using Clickthrough Data’. In: Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’02. New York, NY, USA: Association for Computing Machinery,
23rd July 2002, pp. 133–142. ISBN: 978-1-58113-567-1. DOI: 10.1145/775047.775067.
URL: https://doi.org/10.1145/775047.775067 (visited on 02/08/2021).

[21] Efros et al. ‘Recognizing Action at a Distance’. In: Proceedings Ninth IEEE International
Conference on Computer Vision. Proceedings Ninth IEEE International Conference on
Computer Vision. Oct. 2003, 726–733 vol.2. DOI: 10.1109/ICCV.2003.1238420.

[22] Gunnar Farnebäck. ‘Two-Frame Motion Estimation Based on Polynomial Expansion’. In:
Image Analysis. Ed. by Josef Bigun and Tomas Gustavsson. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, pp. 363–370. ISBN: 978-3-540-45103-7.

[23] Ivan Laptev and Tony Lindeberg. ‘Space-Time Interest Points’. In: Proceedings of the Ninth
IEEE International Conference on Computer Vision - Volume 2. ICCV ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 432–. ISBN: 978-0-7695-1950-0. URL: http:
//dl.acm.org/citation.cfm?id=946247.946605 (visited on 05/04/2018).

202

https://doi.org/10.1117/12.206067
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2417/0000/Video-browsing-using-clustering-and-scene-transitions-on-compressed-sequences/10.1117/12.206067.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2417/0000/Video-browsing-using-clustering-and-scene-transitions-on-compressed-sequences/10.1117/12.206067.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2417/0000/Video-browsing-using-clustering-and-scene-transitions-on-compressed-sequences/10.1117/12.206067.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2417/0000/Video-browsing-using-clustering-and-scene-transitions-on-compressed-sequences/10.1117/12.206067.short
https://doi.org/10.1109/ICPR.1996.546039
https://doi.org/10.1109/ICPR.1996.546039
https://doi.org/10.1109/34.868686
https://doi.org/10.1038/88486
11369948
https://doi.org/10.1109/TDPVT.2002.1024148
https://doi.org/10.1109/TDPVT.2002.1024148
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/775047.775067
https://doi.org/10.1109/ICCV.2003.1238420
http://dl.acm.org/citation.cfm?id=946247.946605
http://dl.acm.org/citation.cfm?id=946247.946605

BIBLIOGRAPHY

[24] Steve Mann, Jason Nolan and Barry Wellman. ‘Sousveillance: Inventing and Using
Wearable Computing Devices for Data Collection in Surveillance Environments.’ In:
Surveillance & Society 1.3 (2003), pp. 331–355. ISSN: 1477-7487. DOI: 10.24908/ss.
v1i3.3344. URL: https://ojs.library.queensu.ca/index.php/surveillance-and-
society/article/view/3344 (visited on 23/05/2021).

[25] Sivic and Zisserman. ‘Video Google: A Text Retrieval Approach to Object Matching
in Videos’. In: Proceedings Ninth IEEE International Conference on Computer Vision.
Proceedings Ninth IEEE International Conference on Computer Vision. Oct. 2003, 1470–
1477 vol.2. DOI: 10.1109/ICCV.2003.1238663.

[26] Kristina Toutanova et al. ‘Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency
Network’. In: Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology - Volume 1.
NAACL ’03. Stroudsburg, PA, USA: Association for Computational Linguistics, 2003,
pp. 173–180. DOI: 10.3115/1073445.1073478. URL: https://doi.org/10.3115/1073445.
1073478 (visited on 20/09/2018).

[27] Thomas Brox et al. ‘High Accuracy Optical Flow Estimation Based on a Theory for
Warping’. In: European Conference on Computer Vision. Springer Berlin Heidelberg, 2004,
pp. 25–36. URL: http://link.springer.com/chapter/10.1007/978-3-540-24673-2_3
(visited on 24/02/2017).

[28] Ho J. Kim et al. ‘A Weighted Fuzzy Min-Max Neural Network for Pattern Classification
and Feature Extraction’. In: Computational Science and Its Applications – ICCSA 2004. Ed.
by Antonio Laganá et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2004, pp. 791–798. ISBN: 978-3-540-24768-5. DOI: 10.1007/978-3-540-24768-5_85.

[29] C. Schuldt, I. Laptev and B. Caputo. ‘Recognizing Human Actions: A Local SVM Approach’.
In: Proceedings of the 17th International Conference on Pattern Recognition, 2004 (ICPR).
Proceedings of the 17th International Conference on Pattern Recognition, 2004 (ICPR).
Vol. 3. Aug. 2004, 32–36 Vol.3. DOI: 10.1109/ICPR.2004.1334462.

[30] Noah A. Smith and Roy W. Tromble. ‘Sampling Uniformly from the Unit Simplex’. In:
Johns Hopkins University, Tech. Rep 29 (2004).

[31] Moshe Blank et al. ‘Actions as Space-Time Shapes’. In: The Tenth IEEE International
Conference on Computer Vision (ICCV’05). Beiging, 2005, pp. 1395–1402.

[32] A. Buades, B. Coll and J.-M. Morel. ‘A Non-Local Algorithm for Image Denoising’. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 2. June 2005, 60–65 vol. 2. DOI: 10.1109/CVPR.2005.38.

[33] N. Dalal and B. Triggs. ‘Histograms of Oriented Gradients for Human Detection’. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. June 2005, 886–893 vol. 1. DOI: 10.1109/CVPR.2005.177.

[34] P. Dollar et al. ‘Behavior Recognition via Sparse Spatio-Temporal Features’. In: 2005
IEEE International Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance. 2005 IEEE International Workshop on Visual Surveillance
and Performance Evaluation of Tracking and Surveillance. Oct. 2005, pp. 65–72. DOI:
10.1109/VSPETS.2005.1570899.

203

https://doi.org/10.24908/ss.v1i3.3344
https://doi.org/10.24908/ss.v1i3.3344
https://ojs.library.queensu.ca/index.php/surveillance-and-society/article/view/3344
https://ojs.library.queensu.ca/index.php/surveillance-and-society/article/view/3344
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.3115/1073445.1073478
http://link.springer.com/chapter/10.1007/978-3-540-24673-2_3
https://doi.org/10.1007/978-3-540-24768-5_85
https://doi.org/10.1109/ICPR.2004.1334462
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/VSPETS.2005.1570899

BIBLIOGRAPHY

[35] Ivan Laptev. ‘On Space-Time Interest Points’. In: International Journal of Computer
Vision 64.2-3 (1st Sept. 2005), pp. 107–123. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/
s11263-005-1838-7. URL: https://link.springer.com/article/10.1007/s11263-005-
1838-7 (visited on 05/04/2018).

[36] Alper Yilmaz and Mubarak Shah. ‘Actions Sketch: A Novel Action Representation’. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. June 2005, 984–989 vol. 1. DOI: 10.1109/CVPR.2005.58.

[37] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. ‘SURF: Speeded Up Robust Features’.
In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst Bischof and Axel Pinz.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 404–417.
ISBN: 978-3-540-33833-8. DOI: 10.1007/11744023_32.

[38] Navneet Dalal, Bill Triggs and Cordelia Schmid. ‘Human Detection Using Oriented Histo-
grams of Flow and Appearance’. In: Computer Vision – ECCV 2006. European Conference
on Computer Vision. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
7th May 2006, pp. 428–441. ISBN: 978-3-540-33835-2. DOI: 10.1007/11744047_33. URL:
https://link.springer.com/chapter/10.1007/11744047_33 (visited on 12/04/2018).

[39] Bridgette M. Hard, Barbara Tversky and David S. Lang. ‘Making Sense of Abstract
Events: Building Event Schemas’. In: Memory & Cognition 34.6 (1st Sept. 2006), pp. 1221–
1235. ISSN: 1532-5946. DOI: 10.3758/BF03193267. URL: https://doi.org/10.3758/
BF03193267 (visited on 25/05/2021).

[40] H. Jhuang et al. ‘A Biologically Inspired System for Action Recognition’. In: 2007 IEEE
11th International Conference on Computer Vision. 2007 IEEE 11th International Confer-
ence on Computer Vision. Oct. 2007, pp. 1–8. DOI: 10.1109/ICCV.2007.4408988.

[41] Ho-Joon Kim, Joseph S. Lee and Hyun-Seung Yang. ‘Human Action Recognition Using a
Modified Convolutional Neural Network’. In: Advances in Neural Networks – ISNN 2007.
Ed. by Derong Liu et al. Vol. 4492. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 715–723. DOI: 10.1007/978-3-540-72393-6_85. URL: http://link.springer.com/
10.1007/978-3-540-72393-6_85 (visited on 12/03/2017).

[42] Paul Scovanner, Saad Ali and Mubarak Shah. ‘A 3-Dimensional Sift Descriptor and Its
Application to Action Recognition’. In: Proceedings of the 15th ACM International Confer-
ence on Multimedia. MM ’07. New York, NY, USA: Association for Computing Machinery,
29th Sept. 2007, pp. 357–360. ISBN: 978-1-59593-702-5. DOI: 10.1145/1291233.1291311.
URL: https://doi.org/10.1145/1291233.1291311 (visited on 01/08/2021).

[43] Timothee Cour et al. ‘Movie/Script: Alignment and Parsing of Video and Text Tran-
scription’. In: Computer Vision – ECCV 2008. Ed. by David Forsyth, Philip Torr and
Andrew Zisserman. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2008, pp. 158–171. ISBN: 978-3-540-88693-8. DOI: 10.1007/978-3-540-88693-8_12.

[44] Fernando De la Torre et al. Guide to the Carnegie Mellon University Multimodal Activity
(CMU-MMAC) Database. Apr. 2008.

[45] Alireza Fathi and Greg Mori. ‘Action Recognition by Learning Mid-Level Motion Features’.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008 IEEE
Conference on Computer Vision and Pattern Recognition. June 2008, pp. 1–8. DOI: 10.
1109/CVPR.2008.4587735.

204

https://doi.org/10.1007/s11263-005-1838-7
https://doi.org/10.1007/s11263-005-1838-7
https://link.springer.com/article/10.1007/s11263-005-1838-7
https://link.springer.com/article/10.1007/s11263-005-1838-7
https://doi.org/10.1109/CVPR.2005.58
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744047_33
https://link.springer.com/chapter/10.1007/11744047_33
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.1109/ICCV.2007.4408988
https://doi.org/10.1007/978-3-540-72393-6_85
http://link.springer.com/10.1007/978-3-540-72393-6_85
http://link.springer.com/10.1007/978-3-540-72393-6_85
https://doi.org/10.1145/1291233.1291311
https://doi.org/10.1145/1291233.1291311
https://doi.org/10.1007/978-3-540-88693-8_12
https://doi.org/10.1109/CVPR.2008.4587735
https://doi.org/10.1109/CVPR.2008.4587735

BIBLIOGRAPHY

[46] A. Klaeser, M. Marszalek and C. Schmid. ‘A Spatio-Temporal Descriptor Based on 3D-
Gradients’. In: Procedings of the British Machine Vision Conference 2008. British Machine
Vision Conference 2008. Leeds: British Machine Vision Association, 2008, pp. 99.1–99.10.
ISBN: 978-1-901725-36-0. DOI: 10.5244/C.22.99. URL: http://www.bmva.org/bmvc/
2008/papers/275.html (visited on 01/08/2021).

[47] I. Laptev et al. ‘Learning Realistic Human Actions from Movies’. In: 2008 IEEE Conference
on Computer Vision and Pattern Recognition. 2008 IEEE Conference on Computer Vision
and Pattern Recognition. June 2008, pp. 1–8. DOI: 10.1109/CVPR.2008.4587756.

[48] Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei. ‘Unsupervised Learning of Human
Action Categories Using Spatial-Temporal Words’. In: International Journal of Computer
Vision 79.3 (Sept. 2008), pp. 299–318. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/s11263-
007-0122-4. URL: http://link.springer.com/10.1007/s11263-007-0122-4 (visited on
12/03/2017).

[49] Paul Over et al. ‘TRECVID 2008 - Goals, Tasks, Data, Evaluation Mechanisms and Met-
rics’. In: TRECVid 2008. Gaithersburg, Maryland, USA: National Institute for Standards
and Technology (NIST), 17th Nov. 2008. URL: http://trecvid.nist.gov (visited on
01/08/2021).

[50] Geert Willems, Tinne Tuytelaars and Luc Van Gool. ‘An Efficient Dense and Scale-
Invariant Spatio-Temporal Interest Point Detector’. In: Computer Vision – ECCV 2008.
Ed. by David Forsyth, Philip Torr and Andrew Zisserman. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2008, pp. 650–663. ISBN: 978-3-540-88688-4. DOI:
10.1007/978-3-540-88688-4_48.

[51] Thomas Brox, Christoph Bregler and Jitendra Malik. ‘Large Displacement Optical Flow’.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009,
pp. 41–48.

[52] Javier Castro, Daniel Gómez and Juan Tejada. ‘Polynomial Calculation of the Shapley
Value Based on Sampling’. In: Computers & Operations Research. Selected Papers Presen-
ted at the Tenth International Symposium on Locational Decisions (ISOLDE X) 36.5
(1st May 2009), pp. 1726–1730. ISSN: 0305-0548. DOI: 10.1016/j.cor.2008.04.004. URL:
https://www.sciencedirect.com/science/article/pii/S0305054808000804 (visited
on 24/08/2021).

[53] Jia Deng et al. ‘ImageNet: A Large-Scale Hierarchical Image Database’. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009 IEEE Conference on
Computer Vision and Pattern Recognition. June 2009, pp. 248–255. DOI: 10.1109/CVPR.
2009.5206848.

[54] Dumitru Erhan et al. Visualizing Higher-Layer Features of a Deep Network. Jan. 2009.
URL: https://www.researchgate.net/publication/265022827_Visualizing_Higher-
Layer_Features_of_a_Deep_Network (visited on 18/03/2017).

[55] Marcin Marszalek, Ivan Laptev and Cordelia Schmid. ‘Actions in Context’. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009 IEEE Conference
on Computer Vision and Pattern Recognition. June 2009, pp. 2929–2936. DOI: 10.1109/
CVPR.2009.5206557.

[56] Randall Munroe. Movie Narrative Charts. xkcd. 2009. URL: https://xkcd.com/657/
(visited on 05/08/2021).

205

https://doi.org/10.5244/C.22.99
http://www.bmva.org/bmvc/2008/papers/275.html
http://www.bmva.org/bmvc/2008/papers/275.html
https://doi.org/10.1109/CVPR.2008.4587756
https://doi.org/10.1007/s11263-007-0122-4
https://doi.org/10.1007/s11263-007-0122-4
http://link.springer.com/10.1007/s11263-007-0122-4
http://trecvid.nist.gov
https://doi.org/10.1007/978-3-540-88688-4_48
https://doi.org/10.1016/j.cor.2008.04.004
https://www.sciencedirect.com/science/article/pii/S0305054808000804
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network
https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network
https://doi.org/10.1109/CVPR.2009.5206557
https://doi.org/10.1109/CVPR.2009.5206557
https://xkcd.com/657/

BIBLIOGRAPHY

[57] E. Štrumbelj, I. Kononenko and M. Robnik Šikonja. ‘Explaining Instance Classifications
with Interactions of Subsets of Feature Values’. In: Data & Knowledge Engineering 68.10
(1st Oct. 2009), pp. 886–904. ISSN: 0169-023X. DOI: 10.1016/j.datak.2009.01.004. URL:
https://doi.org/10.1016/j.datak.2009.01.004 (visited on 17/01/2020).

[58] David Baehrens et al. ‘How to Explain Individual Classification Decisions’. In: The Journal
of Machine Learning Research 11 (1st Aug. 2010), pp. 1803–1831. ISSN: 1532-4435.

[59] Michael Gutmann and Aapo Hyvärinen. ‘Noise-Contrastive Estimation: A New Estim-
ation Principle for Unnormalized Statistical Models’. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 31st Mar. 2010, pp. 297–304. URL: http://proceedings.
mlr.press/v9/gutmann10a.html (visited on 19/08/2021).

[60] H. Jégou et al. ‘Aggregating Local Descriptors into a Compact Image Representation’. In:
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
June 2010, pp. 3304–3311. DOI: 10.1109/CVPR.2010.5540039.

[61] Shuiwang Ji et al. ‘3D Convolutional Neural Networks for Human Action Recognition’. In:
ICML. Omnipress, 2010, pp. 495–502.

[62] Florent Perronnin, Jorge Sánchez and Thomas Mensink. ‘Improving the Fisher Kernel
for Large-Scale Image Classification’. In: Computer Vision – ECCV 2010. Ed. by Kostas
Daniilidis, Petros Maragos and Nikos Paragios. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2010, pp. 143–156. ISBN: 978-3-642-15561-1. DOI: 10.1007/978-3-
642-15561-1_11.

[63] Iain E. Richardson. The H.264 Advanced Video Compression Standard. 2nd ed. Wiley
Publishing, 2010. 346 pp. ISBN: 978-0-470-51692-8.

[64] Erik Štrumbelj and Igor Kononenko. ‘An Efficient Explanation of Individual Classific-
ations Using Game Theory’. In: The Journal of Machine Learning Research (JMLR) 11
(1st Mar. 2010), pp. 1–18. ISSN: 1532-4435.

[65] Graham W. Taylor et al. ‘Convolutional Learning of Spatio-Temporal Features’. In: Com-
puter Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros Maragos and Nikos Paragios.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 140–153. ISBN:
978-3-642-15567-3.

[66] Angela Yao, Juergen Gall and Luc Van Gool. ‘A Hough Transform-Based Voting Frame-
work for Action Recognition’. In: 2010 IEEE Computer Society Conference on Computer Vis-
ion and Pattern Recognition. 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. June 2010, pp. 2061–2068. DOI: 10.1109/CVPR.2010.5539883.

[67] M. D. Zeiler et al. ‘Deconvolutional Networks’. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. June 2010, pp. 2528–2535. DOI: 10.1109/
CVPR.2010.5539957.

206

https://doi.org/10.1016/j.datak.2009.01.004
https://doi.org/10.1016/j.datak.2009.01.004
http://proceedings.mlr.press/v9/gutmann10a.html
http://proceedings.mlr.press/v9/gutmann10a.html
https://doi.org/10.1109/CVPR.2010.5540039
https://doi.org/10.1007/978-3-642-15561-1_11
https://doi.org/10.1007/978-3-642-15561-1_11
https://doi.org/10.1109/CVPR.2010.5539883
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/CVPR.2010.5539957

BIBLIOGRAPHY

[68] Moez Baccouche et al. ‘Sequential Deep Learning for Human Action Recognition’. In:
2nd International Workshop on Human Behavior Understanding (HBU). Ed. by B. Lepri
A.A. Salah. Amsterdam, Netherlands: Springer, Nov. 2011, pp. 29–39. DOI: 10.1007/978-
3-642-25446-8_4. URL: https://hal.archives-ouvertes.fr/hal-01354493 (visited on
12/03/2017).

[69] Alireza Fathi, Xiaofeng Ren and James M. Rehg. ‘Learning to Recognize Objects in
Egocentric Activities’. In: CVPR 2011. 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Colorado Springs, CO, USA: IEEE, June 2011, pp. 3281–3288.
ISBN: 978-1-4577-0394-2. DOI: 10.1109/CVPR.2011.5995444. URL: http://ieeexplore.
ieee.org/document/5995444/ (visited on 28/09/2018).

[70] H. Kuehne et al. ‘HMDB: A Large Video Database for Human Motion Recognition’. In:
2011 International Conference on Computer Vision. 2011 International Conference on
Computer Vision. Nov. 2011, pp. 2556–2563. DOI: 10.1109/ICCV.2011.6126543.

[71] Quoc V. Le et al. ‘Learning Hierarchical Invariant Spatio-Temporal Features for Action
Recognition with Independent Subspace Analysis’. In: CVPR 2011. CVPR 2011. June
2011, pp. 3361–3368. DOI: 10.1109/CVPR.2011.5995496.

[72] Panagiotis Sidiropoulos et al. ‘Temporal Video Segmentation to Scenes Using High-
Level Audiovisual Features’. In: IEEE Transactions on Circuits and Systems for Video
Technology 21.8 (Aug. 2011), pp. 1163–1177. ISSN: 1558-2205. DOI: 10.1109/TCSVT.2011.
2138830.

[73] H. Wang et al. ‘Action Recognition by Dense Trajectories’. In: CVPR 2011. CVPR 2011.
June 2011, pp. 3169–3176. DOI: 10.1109/CVPR.2011.5995407.

[74] Philippe Ercolessi, Christine Sénac and Hervé Bredin. ‘Toward Plot De-Interlacing in
TV Series Using Scenes Clustering’. In: 2012 10th International Workshop on Content-
Based Multimedia Indexing (CBMI). 2012 10th International Workshop on Content-Based
Multimedia Indexing (CBMI). June 2012, pp. 1–6. DOI: 10.1109/CBMI.2012.6269836.

[75] Alireza Fathi, Yin Li and James M. Rehg. ‘Learning to Recognize Daily Actions Using
Gaze’. In: Proceedings of the 12th European Conference on Computer Vision - Volume Part
I. ECCV’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 314–327. ISBN: 978-3-642-
33717-8. DOI: 10.1007/978-3-642-33718-5_23. URL: http://dx.doi.org/10.1007/978-
3-642-33718-5_23 (visited on 14/03/2017).

[76] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘ImageNet Classification with
Deep Convolutional Neural Networks’. In: Advances in Neural Information Processing Sys-
tems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. URL: http://
papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (visited on 22/11/2017).

[77] Kevin P. Murphy and Francis Bach. Machine Learning: A Probabilistic Perspective. Illus-
trated edition. Cambridge, MA: MIT Press, 18th Sept. 2012. 1096 pp. ISBN: 978-0-262-
01802-9.

[78] H. Pirsiavash and D. Ramanan. ‘Detecting Activities of Daily Living in First-Person
Camera Views’. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition.
2012 IEEE Conference on Computer Vision and Pattern Recognition. June 2012, pp. 2847–
2854. DOI: 10.1109/CVPR.2012.6248010.

207

https://doi.org/10.1007/978-3-642-25446-8_4
https://doi.org/10.1007/978-3-642-25446-8_4
https://hal.archives-ouvertes.fr/hal-01354493
https://doi.org/10.1109/CVPR.2011.5995444
http://ieeexplore.ieee.org/document/5995444/
http://ieeexplore.ieee.org/document/5995444/
https://doi.org/10.1109/ICCV.2011.6126543
https://doi.org/10.1109/CVPR.2011.5995496
https://doi.org/10.1109/TCSVT.2011.2138830
https://doi.org/10.1109/TCSVT.2011.2138830
https://doi.org/10.1109/CVPR.2011.5995407
https://doi.org/10.1109/CBMI.2012.6269836
https://doi.org/10.1007/978-3-642-33718-5_23
http://dx.doi.org/10.1007/978-3-642-33718-5_23
http://dx.doi.org/10.1007/978-3-642-33718-5_23
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/CVPR.2012.6248010

BIBLIOGRAPHY

[79] Marcus Rohrbach et al. ‘A Database for Fine Grained Activity Detection of Cooking
Activities’. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012
IEEE Conference on Computer Vision and Pattern Recognition. June 2012, pp. 1194–1201.
DOI: 10.1109/CVPR.2012.6247801.

[80] Khurram Soomro, Amir Roshan Zamir and Mubarak Shah. UCF101: A Dataset of 101
Human Actions Classes From Videos in The Wild. 3rd Dec. 2012. arXiv: 1212.0402 [cs].
URL: http://arxiv.org/abs/1212.0402 (visited on 18/02/2017).

[81] Debargha Mukherjee et al. ‘A Technical Overview of VP9 – The Latest Open-Source Video
Codec’. In: SMPTE 2013 Annual Technical Conference Exhibition. SMPTE 2013 Annual
Technical Conference Exhibition. Oct. 2013, pp. 1–17. DOI: 10.5594/M001518.

[82] Javier Sánchez Pérez, Enric Meinhardt-Llopis and Gabriele Facciolo. ‘TV-L1 Optical
Flow Estimation’. In: Image Processing On Line 3 (19th July 2013), pp. 137–150. ISSN:
2105-1232. DOI: 10.5201/ipol.2013.26. URL: https://www.ipol.im/pub/art/2013/26/
(visited on 01/08/2021).

[83] Kishore K. Reddy and Mubarak Shah. ‘Recognizing 50 Human Action Categories of Web
Videos’. In: Machine Vision and Applications 24.5 (1st July 2013), pp. 971–981. ISSN:
1432-1769. DOI: 10.1007/s00138-012-0450-4. URL: https://doi.org/10.1007/s00138-
012-0450-4 (visited on 16/08/2021).

[84] Sebastian Stein and Stephen J. McKenna. ‘Combining Embedded Accelerometers with
Computer Vision for Recognizing Food Preparation Activities’. In: Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp
’13. New York, NY, USA: ACM, 2013, pp. 729–738. ISBN: 978-1-4503-1770-2. DOI: 10.
1145/2493432.2493482. URL: http://doi.acm.org/10.1145/2493432.2493482 (visited
on 21/03/2018).

[85] H. Wang and C. Schmid. ‘Action Recognition with Improved Trajectories’. In: 2013 IEEE
International Conference on Computer Vision. 2013 IEEE International Conference on
Computer Vision. Dec. 2013, pp. 3551–3558. DOI: 10.1109/ICCV.2013.441.

[86] Xingxing Wang, LiMin Wang and Yu Qiao. ‘A Comparative Study of Encoding, Pooling and
Normalization Methods for Action Recognition’. In: Computer Vision – ACCV 2012. Ed. by
Kyoung Mu Lee et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2013, pp. 572–585. ISBN: 978-3-642-37431-9. DOI: 10.1007/978-3-642-37431-9_44.

[87] Philippe Weinzaepfel et al. ‘DeepFlow: Large Displacement Optical Flow with Deep
Matching’. In: 2013 IEEE International Conference on Computer Vision. 2013 IEEE
International Conference on Computer Vision. Dec. 2013, pp. 1385–1392. DOI: 10.1109/
ICCV.2013.175.

[88] Mykhaylo Andriluka et al. ‘2D Human Pose Estimation: New Benchmark and State of
the Art Analysis’. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
2014 IEEE Conference on Computer Vision and Pattern Recognition. June 2014, pp. 3686–
3693. DOI: 10.1109/CVPR.2014.471.

[89] Ken Chatfield et al. ‘Return of the Devil in the Details: Delving Deep into Convolutional
Nets’. In: Proceedings of the British Machine Vision Conference 2014. British Machine
Vision Conference 2014. Nottingham: British Machine Vision Association, 2014, pp. 6.1–
6.12. ISBN: 978-1-901725-52-0. DOI: 10.5244/C.28.6. URL: http://www.bmva.org/bmvc/
2014/papers/paper054/index.html (visited on 28/09/2021).

208

https://doi.org/10.1109/CVPR.2012.6247801
https://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
https://doi.org/10.5594/M001518
https://doi.org/10.5201/ipol.2013.26
https://www.ipol.im/pub/art/2013/26/
https://doi.org/10.1007/s00138-012-0450-4
https://doi.org/10.1007/s00138-012-0450-4
https://doi.org/10.1007/s00138-012-0450-4
https://doi.org/10.1145/2493432.2493482
https://doi.org/10.1145/2493432.2493482
http://doi.acm.org/10.1145/2493432.2493482
https://doi.org/10.1109/ICCV.2013.441
https://doi.org/10.1007/978-3-642-37431-9_44
https://doi.org/10.1109/ICCV.2013.175
https://doi.org/10.1109/ICCV.2013.175
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.5244/C.28.6
http://www.bmva.org/bmvc/2014/papers/paper054/index.html
http://www.bmva.org/bmvc/2014/papers/paper054/index.html

BIBLIOGRAPHY

[90] Kyunghyun Cho et al. ‘On the Properties of Neural Machine Translation: Encoder–Decoder
Approaches’. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation. Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 103–111. DOI: 10.3115/v1/W14-4012. URL: https://www.aclweb.org/
anthology/W14-4012 (visited on 25/05/2021).

[91] Dima Damen et al. ‘Discovering Task Relevant Objects and Their Modes of Interaction
from Multi-User Egocentric Video’. In: British Machine Vision Association, 2014, pp. 30.1–
30.13. ISBN: 978-1-901725-52-0. DOI: 10.5244/C.28.30. URL: http://www.bmva.org/
bmvc/2014/papers/paper059/index.html (visited on 16/03/2017).

[92] Ian Goodfellow et al. ‘Generative Adversarial Nets’. In: Advances in Neural Informa-
tion Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Associates, Inc., 2014,
pp. 2672–2680. URL: http://papers.nips.cc/paper/5423-generative-adversarial-
nets.pdf (visited on 09/05/2018).

[93] Alex Graves, Greg Wayne and Ivo Danihelka. Neural Turing Machines. 10th Dec. 2014.
arXiv: 1410.5401 [cs]. URL: http://arxiv.org/abs/1410.5401 (visited on 16/02/2021).

[94] Andrej Karpathy et al. ‘Large-Scale Video Classification with Convolutional Neural
Networks’. In: IEEE, June 2014, pp. 1725–1732. ISBN: 978-1-4799-5118-5. DOI: 10.1109/
CVPR.2014.223. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6909619 (visited on 18/02/2017).

[95] H. Kuehne, A. B. Arslan and T. Serre. ‘The Language of Actions: Recovering the Syntax
and Semantics of Goal-Directed Human Activities’. In: Proceedings of Computer Vision
and Pattern Recognition Conference (CVPR). 25th Sept. 2014.

[96] Tsung-Yi Lin et al. ‘Microsoft COCO: Common Objects in Context’. In: Computer Vision
– ECCV 2014. Ed. by David Fleet et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2014, pp. 740–755. ISBN: 978-3-319-10602-1. DOI:
10.1007/978-3-319-10602-1_48.

[97] Sasan Maleki et al. Bounding the Estimation Error of Sampling-Based Shapley Value
Approximation. 12th Feb. 2014. arXiv: 1306.4265 [cs]. URL: http://arxiv.org/abs/
1306.4265 (visited on 24/08/2021).

[98] Christopher D. Manning et al. ‘The Stanford CoreNLP Natural Language Processing
Toolkit’. In: Association for Computational Linguistics (ACL) System Demonstrations.
2014, pp. 55–60. URL: http://www.aclweb.org/anthology/P/P14/P14-5010.

[99] Lyndsey C. Pickup et al. ‘Seeing the Arrow of Time’. In: 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition. 2014 IEEE Conference on Computer Vision and
Pattern Recognition. June 2014, pp. 2043–2050. DOI: 10.1109/CVPR.2014.262.

[100] Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. ‘Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps’. In: 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014.
URL: http://arxiv.org/abs/1312.6034.

209

https://doi.org/10.3115/v1/W14-4012
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/W14-4012
https://doi.org/10.5244/C.28.30
http://www.bmva.org/bmvc/2014/papers/paper059/index.html
http://www.bmva.org/bmvc/2014/papers/paper059/index.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909619
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909619
https://doi.org/10.1007/978-3-319-10602-1_48
https://arxiv.org/abs/1306.4265
http://arxiv.org/abs/1306.4265
http://arxiv.org/abs/1306.4265
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.1109/CVPR.2014.262
http://arxiv.org/abs/1312.6034

BIBLIOGRAPHY

[101] Karen Simonyan and Andrew Zisserman. ‘Two-Stream Convolutional Networks for Action
Recognition in Videos’. In: Advances in Neural Information Processing Systems 27. Ed.
by Z. Ghahramani et al. Curran Associates, Inc., 2014, pp. 568–576. URL: http://
papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-
recognition-in-videos.pdf (visited on 18/09/2018).

[102] Irwin Sobel. ‘An Isotropic 3x3 Image Gradient Operator’. In: Presentation at Stanford A.I.
Project 1968 (8th Feb. 2014).

[103] Nitish Srivastava et al. ‘Dropout: A Simple Way to Prevent Neural Networks from
Overfitting’. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958. URL:
http://jmlr.org/papers/v15/srivastava14a.html (visited on 12/04/2018).

[104] Erik Štrumbelj and Igor Kononenko. ‘Explaining Prediction Models and Individual Predic-
tions with Feature Contributions’. In: Knowledge and Information Systems 41.3 (1st Dec.
2014), pp. 647–665. ISSN: 0219-1377, 0219-3116. DOI: 10.1007/s10115-013-0679-x.
URL: https://link.springer.com/article/10.1007/s10115-013-0679-x (visited on
05/07/2018).

[105] Vivienne Sze, Madhukar Budagavi and Gary J. Sullivan. High Efficiency Video Coding
(HEVC): Algorithms and Architectures. Springer Publishing Company, Incorporated, 2014.
375 pp. ISBN: 978-3-319-06894-7.

[106] Makarand Tapaswi, Martin Bäuml and Rainer Stiefelhagen. ‘StoryGraphs: Visualizing
Character Interactions as a Timeline’. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. 2014 IEEE Conference on Computer Vision and Pattern Recognition.
June 2014, pp. 827–834. DOI: 10.1109/CVPR.2014.111.

[107] Matthew D. Zeiler and Rob Fergus. ‘Visualizing and Understanding Convolutional Net-
works’. In: Proceedings of the European Conference on Computer Vision (ECCV). Pro-
ceedings of the European Conference on Computer Vision (ECCV). Ed. by David Fleet
et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014,
pp. 818–833. ISBN: 978-3-319-10590-1. DOI: 10.1007/978-3-319-10590-1_53.

[108] Pulkit Agrawal, Joao Carreira and Jitendra Malik. ‘Learning to See by Moving’. In:
Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 37–45.
URL: https://openaccess.thecvf.com/content_iccv_2015/html/Agrawal_Learning_
to_See_ICCV_2015_paper.html (visited on 18/08/2021).

[109] Sebastian Bach et al. ‘On Pixel-Wise Explanations for Non-Linear Classifier Decisions
by Layer-Wise Relevance Propagation’. In: PLOS ONE 10.7 (10th July 2015), e0130140.
ISSN: 1932-6203. DOI: 10.1371/journal.pone.0130140. URL: https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0130140 (visited on 23/06/2020).

[110] Jeffrey Donahue et al. ‘Long-Term Recurrent Convolutional Networks for Visual Recog-
nition and Description’. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 2625–2634. URL: http://openaccess.thecvf.com/
content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_
paper.html (visited on 01/10/2018).

[111] Alexey Dosovitskiy et al. ‘FlowNet: Learning Optical Flow with Convolutional Networks’.
In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. IEEE Computer Society, 2015, pp. 2758–2766. DOI: 10.1109/ICCV.
2015.316. URL: https://doi.org/10.1109/ICCV.2015.316.

210

http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/s10115-013-0679-x
https://link.springer.com/article/10.1007/s10115-013-0679-x
https://doi.org/10.1109/CVPR.2014.111
https://doi.org/10.1007/978-3-319-10590-1_53
https://openaccess.thecvf.com/content_iccv_2015/html/Agrawal_Learning_to_See_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Agrawal_Learning_to_See_ICCV_2015_paper.html
https://doi.org/10.1371/journal.pone.0130140
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
http://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html
http://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html
http://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316

BIBLIOGRAPHY

[112] Basura Fernando et al. ‘Modeling Video Evolution for Action Recognition’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 5378–
5387. URL: https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/
Fernando_Modeling_Video_Evolution_2015_CVPR_paper.html (visited on 16/05/2019).

[113] Ian J. Goodfellow, Jonathon Shlens and Christian Szegedy. ‘Explaining and Harnessing
Adversarial Examples’. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2015. URL: http://arxiv.org/abs/1412.6572.

[114] Edward Grefenstette et al. ‘Learning to Transduce with Unbounded Memory’. In: Pro-
ceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 2. NIPS’15. Cambridge, MA, USA: MIT Press, 7th Dec. 2015, pp. 1828–1836.

[115] F. C. Heilbron et al. ‘ActivityNet: A Large-Scale Video Benchmark for Human Activity
Understanding’. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2015, pp. 961–970. DOI: 10.1109/CVPR.2015.7298698.

[116] Inceptionism: Going Deeper into Neural Networks. Research Blog. 17th July 2015. URL:
https://research.googleblog.com/2015/06/inceptionism- going- deeper- into-
neural.html (visited on 14/03/2017).

[117] Sergey Ioffe and Christian Szegedy. ‘Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift’. In: International Conference on Machine
Learning (ICML). International Conference on Machine Learning (ICML). 1st June 2015,
pp. 448–456. URL: http://proceedings.mlr.press/v37/ioffe15.html (visited on
21/03/2018).

[118] Armand Joulin and Tomas Mikolov. ‘Inferring Algorithmic Patterns with Stack-Augmented
Recurrent Nets’. In: Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 1. NIPS’15. Cambridge, MA, USA: MIT Press, 7th Dec.
2015, pp. 190–198.

[119] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic Optimization’. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015. URL: http://arxiv.org/abs/1412.6980.

[120] Y. Li, Zhefan Ye and J. M. Rehg. ‘Delving into Egocentric Actions’. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2015, pp. 287–295. DOI:
10.1109/CVPR.2015.7298625.

[121] Tsung-Yu Lin, Aruni RoyChowdhury and Subhransu Maji. ‘Bilinear CNN Models for
Fine-Grained Visual Recognition’. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015 IEEE International Conference on Computer Vision (ICCV). Dec.
2015, pp. 1449–1457. DOI: 10.1109/ICCV.2015.170.

[122] Aravindh Mahendran and Andrea Vedaldi. ‘Understanding Deep Image Representations
by Inverting Them’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 5188–5196. URL: https://openaccess.thecvf.com/
content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.
html (visited on 28/09/2021).

211

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Fernando_Modeling_Video_Evolution_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Fernando_Modeling_Video_Evolution_2015_CVPR_paper.html
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/CVPR.2015.7298698
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR.2015.7298625
https://doi.org/10.1109/ICCV.2015.170
https://openaccess.thecvf.com/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html

BIBLIOGRAPHY

[123] Jerome Revaud et al. ‘EpicFlow: Edge-Preserving Interpolation of Correspondences for
Optical Flow’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 1164–1172. URL: https://openaccess.thecvf.com/content_
cvpr_2015/html/Revaud_EpicFlow_Edge- Preserving_Interpolation_2015_CVPR_
paper.html (visited on 11/08/2021).

[124] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Challenge’. In: Inter-
national Journal of Computer Vision 115.3 (2015), pp. 211–252. DOI: 10.1007/s11263-
015-0816-y. URL: https://doi.org/10.1007/s11263-015-0816-y.

[125] Jost Tobias Springenberg et al. ‘Striving for Simplicity: The All Convolutional Net’. In:
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015. URL: http://arxiv.org/abs/1412.6806.

[126] Nitish Srivastava, Elman Mansimov and Ruslan Salakhutdinov. ‘Unsupervised Learn-
ing of Video Representations Using LSTMs’. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37. ICML’15. Lille,
France: JMLR.org, 6th July 2015, pp. 843–852.

[127] Chen Sun et al. ‘Temporal Localization of Fine-Grained Actions in Videos by Domain
Transfer from Web Images’. In: Proceedings of the 23rd ACM International Conference
on Multimedia. MM ’15. New York, NY, USA: Association for Computing Machinery,
13th Oct. 2015, pp. 371–380. ISBN: 978-1-4503-3459-4. DOI: 10.1145/2733373.2806226.
URL: https://doi.org/10.1145/2733373.2806226 (visited on 25/05/2021).

[128] Lin Sun et al. ‘Human Action Recognition Using Factorized Spatio-Temporal Convolu-
tional Networks’. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015. IEEE Computer Society, 2015, pp. 4597–4605. DOI:
10.1109/ICCV.2015.522. URL: https://doi.org/10.1109/ICCV.2015.522.

[129] Christian Szegedy et al. ‘Going Deeper with Convolutions’. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015. IEEE Computer Society, 2015, pp. 1–9. DOI: 10.1109/CVPR.2015.7298594. URL:
https://doi.org/10.1109/CVPR.2015.7298594.

[130] Du Tran et al. ‘Learning Spatiotemporal Features with 3D Convolutional Networks’.
In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV).
ICCV ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 4489–4497. ISBN:
978-1-4673-8391-2. DOI: 10.1109/ICCV.2015.510. URL: http://dx.doi.org/10.1109/
ICCV.2015.510 (visited on 23/03/2018).

[131] Oriol Vinyals, Meire Fortunato and Navdeep Jaitly. ‘Pointer Networks’. In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran
Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf.

[132] Limin Wang, Yu Qiao and Xiaoou Tang. ‘Action Recognition with Trajectory-Pooled
Deep-Convolutional Descriptors’. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society,
2015, pp. 4305–4314. DOI: 10.1109/CVPR.2015.7299059. URL: https://doi.org/10.
1109/CVPR.2015.7299059.

212

https://openaccess.thecvf.com/content_cvpr_2015/html/Revaud_EpicFlow_Edge-Preserving_Interpolation_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Revaud_EpicFlow_Edge-Preserving_Interpolation_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Revaud_EpicFlow_Edge-Preserving_Interpolation_2015_CVPR_paper.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1412.6806
https://doi.org/10.1145/2733373.2806226
https://doi.org/10.1145/2733373.2806226
https://doi.org/10.1109/ICCV.2015.522
https://doi.org/10.1109/ICCV.2015.522
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1109/ICCV.2015.510
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.1109/CVPR.2015.7299059
https://doi.org/10.1109/CVPR.2015.7299059
https://doi.org/10.1109/CVPR.2015.7299059

BIBLIOGRAPHY

[133] Jason Weston, Sumit Chopra and Antoine Bordes. ‘Memory Networks’. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1410.3916.

[134] Stephen J. Wright. ‘Coordinate Descent Algorithms’. In: Mathematical Programming
151.1 (1st June 2015), pp. 3–34. ISSN: 1436-4646. DOI: 10.1007/s10107-015-0892-3.
URL: https://doi.org/10.1007/s10107-015-0892-3 (visited on 03/08/2021).

[135] Jonas Wulff and Michael J. Black. ‘Efficient Sparse-to-Dense Optical Flow Estimation
Using a Learned Basis and Layers’. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015, pp. 120–130. DOI: 10.1109/CVPR.2015.7298607.

[136] Joe Yue-Hei Ng et al. ‘Beyond Short Snippets: Deep Networks for Video Classification’. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2015.

[137] Martin Abadi et al. ‘TensorFlow: A System for Large-Scale Machine Learning’. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016,
pp. 265–283. URL: https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf (visited on 11/08/2021).

[138] Sami Abu-El-Haija et al. YouTube-8M: A Large-Scale Video Classification Benchmark.
27th Sept. 2016. arXiv: 1609.08675 [cs]. URL: http://arxiv.org/abs/1609.08675
(visited on 20/03/2018).

[139] Christoph Feichtenhofer, Axel Pinz and Richard Wildes. ‘Spatiotemporal Residual Net-
works for Video Action Recognition’. In: Advances in Neural Information Processing
Systems 29 (NeurIPS). Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 3468–
3476. URL: http://papers.nips.cc/paper/6433-spatiotemporal-residual-networks-
for-video-action-recognition.pdf (visited on 27/03/2018).

[140] Christoph Feichtenhofer, Axel Pinz and Andrew Zisserman. ‘Convolutional Two-Stream
Network Fusion for Video Action Recognition’. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 1933–1941. URL: https:
//www.cv-foundation.org/openaccess/content_cvpr_2016/html/Feichtenhofer_
Convolutional_Two-Stream_Network_CVPR_2016_paper.html (visited on 18/09/2018).

[141] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press, 2016.

[142] K. He et al. ‘Deep Residual Learning for Image Recognition’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016, pp. 770–778.
DOI: 10.1109/CVPR.2016.90.

[143] Kaiming He et al. ‘Identity Mappings in Deep Residual Networks’. In: Computer Vision
– ECCV 2016. Ed. by Bastian Leibe et al. Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 630–645. ISBN: 978-3-319-46493-0.

[144] De-An Huang, Li Fei-Fei and Juan Carlos Niebles. ‘Connectionist Temporal Modeling for
Weakly Supervised Action Labeling’. In: Computer Vision – ECCV 2016. Ed. by Bastian
Leibe et al. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2016, pp. 137–153. ISBN: 978-3-319-46493-0. DOI: 10.1007/978-3-319-46493-0_9.

213

http://arxiv.org/abs/1410.3916
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1109/CVPR.2015.7298607
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1609.08675
http://papers.nips.cc/paper/6433-spatiotemporal-residual-networks-for-video-action-recognition.pdf
http://papers.nips.cc/paper/6433-spatiotemporal-residual-networks-for-video-action-recognition.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_9

BIBLIOGRAPHY

[145] Soo Min Kang and Richard P. Wildes. Review of Action Recognition and Detection Methods.
1st Nov. 2016. arXiv: 1610.06906 [cs]. URL: http://arxiv.org/abs/1610.06906 (visited
on 02/08/2021).

[146] Karol Kurach, Marcin Andrychowicz and Ilya Sutskever. ‘Neural Random-Access Ma-
chines.’ In: 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio
and Yann LeCun. 2016. URL: http://arxiv.org/abs/1511.06392.

[147] Colin Lea et al. ‘Segmental Spatiotemporal CNNs for Fine-Grained Action Segmentation’.
In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2016, pp. 36–52. ISBN: 978-3-319-
46487-9. DOI: 10.1007/978-3-319-46487-9_3.

[148] Aravindh Mahendran and Andrea Vedaldi. ‘Visualizing Deep Convolutional Neural Net-
works Using Natural Pre-Images’. In: International Journal of Computer Vision 120.3
(Dec. 2016), pp. 233–255. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/s11263-016-0911-8.
arXiv: 1512.02017. URL: http://arxiv.org/abs/1512.02017 (visited on 18/02/2017).

[149] Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ‘Shuffle and Learn: Unsupervised
Learning Using Temporal Order Verification’. In: Computer Vision – ECCV 2016. European
Conference on Computer Vision. Lecture Notes in Computer Science. Springer, Cham,
8th Oct. 2016, pp. 527–544. DOI: 10.1007/978-3-319-46448-0_32. URL: https://link.
springer.com/chapter/10.1007/978-3-319-46448-0_32 (visited on 31/07/2018).

[150] Anh Nguyen, Jason Yosinski and Jeff Clune. Multifaceted Feature Visualization: Uncover-
ing the Different Types of Features Learned By Each Neuron in Deep Neural Networks.
11th Feb. 2016. arXiv: 1602.03616 [cs]. URL: http://arxiv.org/abs/1602.03616
(visited on 16/03/2017).

[151] Anh Mai Nguyen et al. ‘Synthesizing the Preferred Inputs for Neurons in Neural Networks
via Deep Generator Networks’. In: Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. Ed. by Daniel D. Lee et al. 2016, pp. 3387–3395. URL: https:
//proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-
Abstract.html.

[152] Scott E. Reed and Nando de Freitas. ‘Neural Programmer-Interpreters’. In: 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016.
URL: http://arxiv.org/abs/1511.06279.

[153] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. ‘"Why Should I Trust You?":
Explaining the Predictions of Any Classifier’. In: Proceedings of the 22nd ACM Inter-
national Conference on Knowledge Discovery and Data Mining (SIGKDD). KDD ’16.
San Francisco, California, USA: Association for Computing Machinery, 13th Aug. 2016,
pp. 1135–1144. ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939778. URL: https:
//doi.org/10.1145/2939672.2939778 (visited on 17/01/2020).

214

https://arxiv.org/abs/1610.06906
http://arxiv.org/abs/1610.06906
http://arxiv.org/abs/1511.06392
https://doi.org/10.1007/978-3-319-46487-9_3
https://doi.org/10.1007/s11263-016-0911-8
https://arxiv.org/abs/1512.02017
http://arxiv.org/abs/1512.02017
https://doi.org/10.1007/978-3-319-46448-0_32
https://link.springer.com/chapter/10.1007/978-3-319-46448-0_32
https://link.springer.com/chapter/10.1007/978-3-319-46448-0_32
https://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1602.03616
https://proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-Abstract.html
http://arxiv.org/abs/1511.06279
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

BIBLIOGRAPHY

[154] Marcus Rohrbach et al. ‘Recognizing Fine-Grained and Composite Activities Using Hand-
Centric Features and Script Data’. In: International Journal of Computer Vision 119.3
(1st Sept. 2016), pp. 346–373. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/s11263-015-
0851-8. URL: https://link.springer.com/article/10.1007/s11263-015-0851-8
(visited on 21/03/2018).

[155] Ramprasaath R. Selvaraju et al. Grad-CAM: Why Did You Say That? Visual Explanations
from Deep Networks via Gradient-Based Localization. 7th Oct. 2016. arXiv: 1610.02391
[cs]. URL: http://arxiv.org/abs/1610.02391 (visited on 16/03/2017).

[156] Zheng Shou, Dongang Wang and Shih-Fu Chang. ‘Temporal Action Localization in Un-
trimmed Videos via Multi-Stage Cnns’. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2016, pp. 1049–1058.

[157] Avanti Shrikumar et al. Not Just a Black Box: Learning Important Features Through
Propagating Activation Differences. 5th May 2016. arXiv: 1605.01713 [cs]. URL: http:
//arxiv.org/abs/1605.01713 (visited on 05/07/2018).

[158] Gunnar A. Sigurdsson et al. ‘Hollywood in Homes: Crowdsourcing Data Collection for
Activity Understanding’. In: European Conference on Computer Vision. 2016.

[159] Limin Wang et al. ‘Temporal Segment Networks: Towards Good Practices for Deep Action
Recognition’. In: Proceedings of the European Conference on Computer Vision (ECCV).
Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 20–36.

[160] Xiaolong Wang, Ali Farhadi and Abhinav Gupta. ‘Actions ~ Transformations’. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 2658–2667. URL: http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_
Actions__Transformations_CVPR_2016_paper.html (visited on 16/10/2017).

[161] Sam Wiseman and Alexander M. Rush. ‘Sequence-to-Sequence Learning as Beam-Search
Optimization’. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. EMNLP 2016. Austin, Texas: Association for Computational Lin-
guistics, Nov. 2016, pp. 1296–1306. DOI: 10.18653/v1/D16-1137. URL: https://www.
aclweb.org/anthology/D16-1137 (visited on 12/05/2021).

[162] Michael Wray et al. SEMBED: Semantic Embedding of Egocentric Action Videos. 29th July
2016. arXiv: 1607.08414 [cs]. URL: http://arxiv.org/abs/1607.08414 (visited on
16/08/2021).

[163] Sergey Zagoruyko and Nikos Komodakis. ‘Wide Residual Networks’. In: Procedings of the
British Machine Vision Conference 2016. British Machine Vision Conference 2016. York,
UK: British Machine Vision Association, 2016, pp. 87.1–87.12. ISBN: 978-1-901725-59-9.
DOI: 10.5244/C.30.87. URL: http://www.bmva.org/bmvc/2016/papers/paper087/
index.html (visited on 09/08/2021).

[164] Wojciech Zaremba and Ilya Sutskever. Reinforcement Learning Neural Turing Machines
- Revised. 12th Jan. 2016. arXiv: 1505.00521 [cs]. URL: http://arxiv.org/abs/1505.
00521 (visited on 27/05/2021).

[165] Wojciech Zaremba et al. ‘Learning Simple Algorithms from Examples’. In: International
Conference on Machine Learning. International Conference on Machine Learning. PMLR,
11th June 2016, pp. 421–429. URL: http://proceedings.mlr.press/v48/zaremba16.
html (visited on 27/05/2021).

215

https://doi.org/10.1007/s11263-015-0851-8
https://doi.org/10.1007/s11263-015-0851-8
https://link.springer.com/article/10.1007/s11263-015-0851-8
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1605.01713
http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Actions__Transformations_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Actions__Transformations_CVPR_2016_paper.html
https://doi.org/10.18653/v1/D16-1137
https://www.aclweb.org/anthology/D16-1137
https://www.aclweb.org/anthology/D16-1137
https://arxiv.org/abs/1607.08414
http://arxiv.org/abs/1607.08414
https://doi.org/10.5244/C.30.87
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1505.00521
http://proceedings.mlr.press/v48/zaremba16.html
http://proceedings.mlr.press/v48/zaremba16.html

BIBLIOGRAPHY

[166] Bowen Zhang et al. ‘Real-Time Action Recognition with Enhanced Motion Vector CNNs’.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016,
pp. 2718–2726. DOI: 10.1109/CVPR.2016.297.

[167] Ke Zhang et al. ‘Video Summarization with Long Short-Term Memory’. In: European
Conference on Computer Vision. Ed. by Bastian Leibe et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2016, pp. 766–782. ISBN: 978-3-319-
46478-7. DOI: 10.1007/978-3-319-46478-7_47.

[168] Marco Ancona et al. ‘A Unified View of Gradient-Based Attribution Methods for Deep
Neural Networks’. In: NIPS Workshop on Interpreting, Explaining and Visualizing Deep
Learning - Now What? (NIPS 2017). ETH Zurich, 2017. DOI: 10.3929/ethz-b-000237705.
URL: https://www.research-collection.ethz.ch/handle/20.500.11850/237705
(visited on 29/05/2020).

[169] Relja Arandjelovic and Andrew Zisserman. ‘Look, Listen and Learn’. In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 609–617. URL:
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_
Listen_and_ICCV_2017_paper.html (visited on 18/08/2021).

[170] Joao Carreira and Andrew Zisserman. ‘Quo Vadis, Action Recognition? A New Model and
the Kinetics Dataset’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017, pp. 6299–6308. URL: https://openaccess.thecvf.
com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
(visited on 06/07/2020).

[171] François Chollet. ‘Xception: Deep Learning with Depthwise Separable Convolutions’.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 1800–1807. DOI:
10.1109/CVPR.2017.195. URL: https://doi.org/10.1109/CVPR.2017.195.

[172] Jifeng Dai et al. ‘Deformable Convolutional Networks’. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2017, pp. 764–773. URL: https://openaccess.
thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_
ICCV_2017_paper.html (visited on 10/08/2021).

[173] C. Feichtenhofer, A. Pinz and R. P. Wildes. ‘Spatiotemporal Multiplier Networks for
Video Action Recognition’. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 7445–7454. DOI: 10.1109/CVPR.2017.787.

[174] Basura Fernando et al. ‘Self-Supervised Video Representation Learning With Odd-One-
Out Networks’. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017.

[175] Ruth C. Fong and Andrea Vedaldi. ‘Interpretable Explanations of Black Boxes by Mean-
ingful Perturbation’. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV). Proceedings of the IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 3429–3437. URL: https://openaccess.thecvf.com/content_iccv_
2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html (visited on
29/06/2020).

216

https://doi.org/10.1109/CVPR.2016.297
https://doi.org/10.1007/978-3-319-46478-7_47
https://doi.org/10.3929/ethz-b-000237705
https://www.research-collection.ethz.ch/handle/20.500.11850/237705
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.html
https://doi.org/10.1109/CVPR.2017.787
https://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html

BIBLIOGRAPHY

[176] Alexander J. Gates and Yong-Yeol Ahn. ‘The Impact of Random Models on Clustering
Similarity’. In: The Journal of Machine Learning Research 18.1 (1st Jan. 2017), pp. 3049–
3076. ISSN: 1532-4435.

[177] Priya Goyal et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 8th June
2017. arXiv: 1706.02677 [cs]. URL: http://arxiv.org/abs/1706.02677 (visited on
27/03/2018).

[178] Raghav Goyal et al. ‘The “Something Something” Video Database for Learning and Evalu-
ating Visual Common Sense’. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). Proceedings of the IEEE International Conference on Computer
Vision (ICCV). Oct. 2017.

[179] Kaiming He et al. ‘Mask R-CNN’. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 2961–2969. URL: https://openaccess.thecvf.com/content_
iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html (visited on 12/08/2021).

[180] Gao Huang et al. ‘Densely Connected Convolutional Networks’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 4700–4708.
URL: http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_
Connected_Convolutional_CVPR_2017_paper.html (visited on 30/09/2018).

[181] Eddy Ilg et al. ‘FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks’.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

[182] Justin Johnson et al. ‘CLEVR: A Diagnostic Dataset for Compositional Language and
Elementary Visual Reasoning’. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 2901–2910. URL: https://openaccess.thecvf.
com/content_cvpr_2017/html/Johnson_CLEVR_A_Diagnostic_CVPR_2017_paper.html
(visited on 17/08/2021).

[183] Will Kay et al. The Kinetics Human Action Video Dataset. 19th May 2017. arXiv: 1705.
06950 [cs]. URL: http://arxiv.org/abs/1705.06950 (visited on 19/03/2018).

[184] Thomas N. Kipf and Max Welling. ‘Semi-Supervised Classification with Graph Convolu-
tional Networks’. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL: https://openreview.net/forum?id=SJU4ayYgl (visited on 13/08/2021).

[185] Colin Lea et al. ‘Temporal Convolutional Networks for Action Segmentation and De-
tection’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Re-
cognition. 2017, pp. 156–165. URL: https://openaccess.thecvf.com/content_cvpr_
2017/html/Lea_Temporal_Convolutional_Networks_CVPR_2017_paper.html (visited on
18/05/2021).

[186] Hsin-Ying Lee et al. ‘Unsupervised Representation Learning by Sorting Sequences’. In:
Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 667–676.
URL: https://openaccess.thecvf.com/content_iccv_2017/html/Lee_Unsupervised_
Representation_Learning_ICCV_2017_paper.html (visited on 18/08/2021).

[187] Tsung-Yi Lin et al. ‘Focal Loss for Dense Object Detection’. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2980–2988. URL: https://
openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_
paper.html (visited on 20/05/2021).

217

https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Johnson_CLEVR_A_Diagnostic_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Johnson_CLEVR_A_Diagnostic_CVPR_2017_paper.html
https://arxiv.org/abs/1705.06950
https://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1705.06950
https://openreview.net/forum?id=SJU4ayYgl
https://openaccess.thecvf.com/content_cvpr_2017/html/Lea_Temporal_Convolutional_Networks_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Lea_Temporal_Convolutional_Networks_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lee_Unsupervised_Representation_Learning_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lee_Unsupervised_Representation_Learning_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html

BIBLIOGRAPHY

[188] Scott M Lundberg and Su-In Lee. ‘A Unified Approach to Interpreting Model Predictions’.
In: Advances in Neural Information Processing Systems 30 (NeurIPS). Ed. by I. Guyon
et al. Curran Associates, Inc., 2017, pp. 4765–4774. URL: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (visited
on 19/03/2018).

[189] Behrooz Mahasseni, Michael Lam and S. Todorovic. ‘Unsupervised Video Summarization
with Adversarial LSTM Networks’. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017). DOI: 10.1109/CVPR.2017.318.

[190] Anh Nguyen et al. ‘Plug Amp; Play Generative Networks: Conditional Iterative Generation
of Images in Latent Space’. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 3510–3520. DOI: 10.1109/CVPR.2017.374.

[191] Chris Olah, Alexander Mordvintsev and Ludwig Schubert. ‘Feature Visualization’. In:
Distill 2.11 (7th Nov. 2017). ISSN: 2476-0757. DOI: 10.23915/distill.00007. URL:
https://distill.pub/2017/feature-visualization (visited on 19/03/2018).

[192] Zhaofan Qiu, Ting Yao and Tao Mei. ‘Learning Spatio-Temporal Representation With
Pseudo-3D Residual Networks’. In: The IEEE International Conference on Computer
Vision (ICCV). Oct. 2017.

[193] Maithra Raghu et al. ‘SVCCA: Singular Vector Canonical Correlation Analysis for Deep
Learning Dynamics and Interpretability’. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et al. 2017, pp. 6076–6085. URL:
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-
Abstract.html.

[194] Anurag Ranjan and Michael J. Black. ‘Optical Flow Estimation Using a Spatial Pyramid
Network’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4161–4170. URL: https://openaccess.thecvf.com/content_
cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html (visited on
11/08/2021).

[195] Wojciech Samek et al. ‘Evaluating the Visualization of What a Deep Neural Network Has
Learned’. In: IEEE Trans. Neural Networks Learn. Syst. 28.11 (2017), pp. 2660–2673. DOI:
10.1109/TNNLS.2016.2599820. URL: https://doi.org/10.1109/TNNLS.2016.2599820.

[196] Adam Santoro et al. ‘A Simple Neural Network Module for Relational Reasoning’. In:
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by
Isabelle Guyon et al. 2017, pp. 4967–4976. URL: https://proceedings.neurips.cc/
paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html.

[197] Ramprasaath R. Selvaraju et al. ‘Grad-CAM: Visual Explanations From Deep Networks
via Gradient-Based Localization’. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 618–626.
DOI: 10.1109/ICCV.2017.74. URL: https://doi.org/10.1109/ICCV.2017.74.

218

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1109/CVPR.2017.318
https://doi.org/10.1109/CVPR.2017.374
https://doi.org/10.23915/distill.00007
https://distill.pub/2017/feature-visualization
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74

BIBLIOGRAPHY

[198] Zheng Shou et al. ‘CDC: Convolutional-De-Convolutional Networks for Precise Tem-
poral Action Localization in Untrimmed Videos’. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2017, pp. 5734–5743. URL: https:
//openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-
Convolutional_Networks_CVPR_2017_paper.html (visited on 25/05/2021).

[199] Avanti Shrikumar, Peyton Greenside and Anshul Kundaje. ‘Learning Important Features
Through Propagating Activation Differences’. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. PMLR, 2017, pp. 3145–3153. URL: http://proceedings.mlr.press/v70/
shrikumar17a.html.

[200] Gunnar A. Sigurdsson, Olga Russakovsky and Abhinav Gupta. ‘What Actions Are Needed
for Understanding Human Actions in Videos?’ In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 2137–2146. URL: http://openaccess.thecvf.
com/content_iccv_2017/html/Sigurdsson_What_Actions_Are_ICCV_2017_paper.html
(visited on 22/09/2018).

[201] Daniel Smilkov et al. SmoothGrad: Removing Noise by Adding Noise. 12th June 2017.
arXiv: 1706.03825 [cs, stat]. URL: http://arxiv.org/abs/1706.03825 (visited on
29/06/2020).

[202] Vignesh Srinivasan et al. ‘Interpretable Human Action Recognition in Compressed Do-
main’. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Mar. 2017, pp. 1692–1696. DOI: 10.1109/ICASSP.2017.7952445.

[203] Mukund Sundararajan, Ankur Taly and Qiqi Yan. ‘Axiomatic Attribution for Deep Net-
works’. In: Proceedings of the 34th International Conference on Machine Learning (ICML).
ICML’17. Sydney, NSW, Australia: JMLR.org, 6th Aug. 2017, pp. 3319–3328.

[204] Du Tran et al. ConvNet Architecture Search for Spatiotemporal Feature Learning. 16th Aug.
2017. arXiv: 1708.05038 [cs]. URL: http://arxiv.org/abs/1708.05038 (visited on
15/05/2019).

[205] Ashish Vaswani et al. ‘Attention Is All You Need’. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 5998–6008.
URL: http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf (visited
on 28/05/2020).

[206] Saining Xie et al. ‘Aggregated Residual Transformations for Deep Neural Networks’.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 1492–1500. URL: https://openaccess.thecvf.com/content_cvpr_2017/
html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html (visited on
09/08/2021).

[207] Julius Adebayo et al. ‘Sanity Checks for Saliency Maps’. In: Advances in Neural Inform-
ation Processing Systems 31 (NeurIPS). Ed. by S. Bengio et al. Curran Associates, Inc.,
2018, pp. 9505–9515. URL: http://papers.nips.cc/paper/8160-sanity-checks-for-
saliency-maps.pdf (visited on 29/05/2020).

219

https://openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-Convolutional_Networks_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-Convolutional_Networks_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-Convolutional_Networks_CVPR_2017_paper.html
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
http://openaccess.thecvf.com/content_iccv_2017/html/Sigurdsson_What_Actions_Are_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Sigurdsson_What_Actions_Are_ICCV_2017_paper.html
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://doi.org/10.1109/ICASSP.2017.7952445
https://arxiv.org/abs/1708.05038
http://arxiv.org/abs/1708.05038
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf

BIBLIOGRAPHY

[208] Sarah Adel Bargal et al. ‘Excitation Backprop for RNNs’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 1440–1449.
URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Bargal_Excitation_
Backprop_for_CVPR_2018_paper.html (visited on 29/06/2020).

[209] Relja Arandjelović and Andrew Zisserman. ‘Objects That Sound’. In: Computer Vision
– ECCV 2018. Ed. by Vittorio Ferrari et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 451–466. ISBN: 978-3-030-01246-5. DOI:
10.1007/978-3-030-01246-5_27.

[210] Fabien Baradel et al. ‘Object Level Visual Reasoning in Videos’. In: Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XIII. Ed. by Vittorio Ferrari et al. Vol. 11217. Lecture Notes in Computer
Science. Springer, 2018, pp. 106–122. DOI: 10.1007/978-3-030-01261-8_7. URL:
https://doi.org/10.1007/978-3-030-01261-8_7.

[211] Peter Battaglia et al. ‘Relational Inductive Biases, Deep Learning, and Graph Networks’.
In: arXiv (2018). URL: https://arxiv.org/pdf/1806.01261.pdf (visited on 13/08/2021).

[212] Uta Büchler, Biagio Brattoli and Björn Ommer. ‘Improving Spatiotemporal Self-Supervision
by Deep Reinforcement Learning’. In: Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XV. Ed. by Vittorio
Ferrari et al. Vol. 11219. Lecture Notes in Computer Science. Springer, 2018, pp. 797–814.
DOI: 10.1007/978-3-030-01267-0_47. URL: https://doi.org/10.1007/978-3-030-
01267-0_47.

[213] Joao Carreira et al. A Short Note about Kinetics-600. 3rd Aug. 2018. arXiv: 1808.01340
[cs]. URL: http://arxiv.org/abs/1808.01340 (visited on 26/09/2018).

[214] Aditya Chattopadhay et al. ‘Grad-CAM++: Generalized Gradient-Based Visual Explana-
tions for Deep Convolutional Networks’. In: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV). Mar. 2018, pp. 839–847. DOI: 10.1109/WACV.2018.00097.

[215] Yunpeng Chen et al. ‘Multi-Fiber Networks for Video Recognition’. In: Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part I. Ed. by Vittorio Ferrari et al. Vol. 11205. Lecture Notes in Computer
Science. Springer, 2018, pp. 364–380. DOI: 10.1007/978-3-030-01246-5_22. URL:
https://doi.org/10.1007/978-3-030-01246-5_22.

[216] Dima Damen et al. ‘Scaling Egocentric Vision: The EPIC-KITCHENS Dataset’. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 720–736.
URL: http://openaccess.thecvf.com/content_ECCV_2018/html/Dima_Damen_Scaling_
Egocentric_Vision_ECCV_2018_paper.html (visited on 20/09/2018).

[217] Li Ding and Chenliang Xu. ‘Weakly-Supervised Action Segmentation With Iterative Soft
Boundary Assignment’. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 6508–6516. URL: https://openaccess.thecvf.com/
content_cvpr_2018/html/Ding_Weakly- Supervised_Action_Segmentation_CVPR_
2018_paper.html (visited on 07/08/2021).

220

https://openaccess.thecvf.com/content_cvpr_2018/html/Bargal_Excitation_Backprop_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Bargal_Excitation_Backprop_for_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-030-01246-5_27
https://doi.org/10.1007/978-3-030-01261-8_7
https://doi.org/10.1007/978-3-030-01261-8_7
https://arxiv.org/pdf/1806.01261.pdf
https://doi.org/10.1007/978-3-030-01267-0_47
https://doi.org/10.1007/978-3-030-01267-0_47
https://doi.org/10.1007/978-3-030-01267-0_47
https://arxiv.org/abs/1808.01340
https://arxiv.org/abs/1808.01340
http://arxiv.org/abs/1808.01340
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1007/978-3-030-01246-5_22
https://doi.org/10.1007/978-3-030-01246-5_22
http://openaccess.thecvf.com/content_ECCV_2018/html/Dima_Damen_Scaling_Egocentric_Vision_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Dima_Damen_Scaling_Egocentric_Vision_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Ding_Weakly-Supervised_Action_Segmentation_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Ding_Weakly-Supervised_Action_Segmentation_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Ding_Weakly-Supervised_Action_Segmentation_CVPR_2018_paper.html

BIBLIOGRAPHY

[218] Hazel Doughty, Dima Damen and Walterio Mayol-Cuevas. ‘Who’s Better? Who’s Best?
Pairwise Deep Ranking for Skill Determination’. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 6057–6066. URL: https:
//openaccess.thecvf.com/content_cvpr_2018/html/Doughty_Whos_Better_Whos_
CVPR_2018_paper.html (visited on 29/06/2020).

[219] Debidatta Dwibedi, Pierre Sermanet and Jonathan Tompson. ‘Temporal Reasoning in
Videos Using Convolutional Gated Recurrent Units’. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018, pp. 1111–
1116. URL: http://openaccess.thecvf.com/content_cvpr_2018_workshops/w19/html/
Dwibedi_Temporal_Reasoning_in_CVPR_2018_paper.html (visited on 13/05/2019).

[220] Lijie Fan et al. ‘End-to-End Learning of Motion Representation for Video Understanding’.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 6016–6025. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/
Fan_End-to-End_Learning_of_CVPR_2018_paper.html (visited on 02/08/2021).

[221] Octavian Ganea, Gary Becigneul and Thomas Hofmann. ‘Hyperbolic Entailment Cones for
Learning Hierarchical Embeddings’. In: International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, 3rd July 2018, pp. 1646–1655.
URL: https://proceedings.mlr.press/v80/ganea18a.html (visited on 08/09/2021).

[222] Amir Ghodrati, Efstratios Gavves and Cees Snoek. ‘Video Time: Properties, Encoders
and Evaluation’. In: British Machine Vision Conference 2018, BMVC 2018, Northumbria
University, Newcastle, UK, September 3-6, 2018. 2018, p. 160. URL: http://bmvc2018.
org/contents/papers/0859.pdf.

[223] Raghav Goyal et al. ‘Evaluating Visual "Common Sense" Using Fine-Grained Classifica-
tion and Captioning Tasks’. In: 6th International Conference on Learning Representations,
Workshop Track Proceedings (ICLRW). 2018. URL: https://openreview.net/forum?id=
rkX9Z_kwf (visited on 06/07/2020).

[224] Chunhui Gu et al. ‘AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual Ac-
tions’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018, pp. 6047–6056. URL: http://openaccess.thecvf.com/content_cvpr_
2018/html/Gu_AVA_A_Video_CVPR_2018_paper.html (visited on 26/09/2018).

[225] Kensho Hara, Hirokatsu Kataoka and Yutaka Satoh. ‘Can Spatiotemporal 3D CNNs
Retrace the History of 2D CNNs and ImageNet?’ In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 6546–6555. URL: https://
openaccess.thecvf.com/content_cvpr_2018/html/Hara_Can_Spatiotemporal_3D_
CVPR_2018_paper.html (visited on 09/08/2021).

[226] Jie Hu, Li Shen and Gang Sun. ‘Squeeze-and-Excitation Networks’. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. June 2018, pp. 7132–7141. DOI: 10.1109/CVPR.
2018.00745.

221

https://openaccess.thecvf.com/content_cvpr_2018/html/Doughty_Whos_Better_Whos_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Doughty_Whos_Better_Whos_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Doughty_Whos_Better_Whos_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w19/html/Dwibedi_Temporal_Reasoning_in_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w19/html/Dwibedi_Temporal_Reasoning_in_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Fan_End-to-End_Learning_of_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Fan_End-to-End_Learning_of_CVPR_2018_paper.html
https://proceedings.mlr.press/v80/ganea18a.html
http://bmvc2018.org/contents/papers/0859.pdf
http://bmvc2018.org/contents/papers/0859.pdf
https://openreview.net/forum?id=rkX9Z_kwf
https://openreview.net/forum?id=rkX9Z_kwf
http://openaccess.thecvf.com/content_cvpr_2018/html/Gu_AVA_A_Video_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gu_AVA_A_Video_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745

BIBLIOGRAPHY

[227] De-An Huang et al. ‘What Makes a Video a Video: Analyzing Temporal Information in
Video Understanding Models and Datasets’. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 7366–7375. URL: http:
//openaccess.thecvf.com/content_cvpr_2018/html/Huang_What_Makes_a_CVPR_
2018_paper.html (visited on 22/09/2018).

[228] Prakhar Kulshreshtha and Tanaya Guha. ‘An Online Algorithm for Constrained Face
Clustering in Videos’. In: 2018 25th IEEE International Conference on Image Processing
(ICIP). 2018 25th IEEE International Conference on Image Processing (ICIP). Oct. 2018,
pp. 2670–2674. DOI: 10.1109/ICIP.2018.8451343.

[229] Yin Li, Miao Liu and James M. Rehg. ‘In the Eye of Beholder: Joint Learning of Gaze and
Actions in First Person Video’. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari
et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018,
pp. 639–655. ISBN: 978-3-030-01228-1. DOI: 10.1007/978-3-030-01228-1_38.

[230] Yingwei Li, Yi Li and Nuno Vasconcelos. ‘RESOUND: Towards Action Recognition without
Representation Bias’. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 513–528. URL: https://openaccess.thecvf.com/content_ECCV_
2018/html/Yingwei_Li_RESOUND_Towards_Action_ECCV_2018_paper.html (visited on
16/08/2021).

[231] Zhenyang Li et al. ‘VideoLSTM Convolves, Attends and Flows for Action Recognition’.
In: Computer Vision and Image Understanding 166 (1st Jan. 2018), pp. 41–50. ISSN:
1077-3142. DOI: 10.1016/j.cviu.2017.10.011. URL: https://www.sciencedirect.com/
science/article/pii/S1077314217301741 (visited on 03/08/2021).

[232] Grégoire Montavon, Wojciech Samek and Klaus-Robert Müller. ‘Methods for Interpreting
and Understanding Deep Neural Networks’. In: Digital Signal Processing 73 (1st Feb.
2018), pp. 1–15. ISSN: 1051-2004. DOI: 10.1016/j.dsp.2017.10.011. URL: http://www.
sciencedirect.com/science/article/pii/S1051200417302385 (visited on 22/05/2018).

[233] Joe Yue-Hei Ng and Larry S. Davis. ‘Temporal Difference Networks for Video Action
Recognition’. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).
2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Mar. 2018,
pp. 1587–1596. DOI: 10.1109/WACV.2018.00176.

[234] Joe Yue-Hei Ng et al. ‘ActionFlowNet: Learning Motion Representation for Action Recog-
nition’. In: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018,
Lake Tahoe, NV, USA, March 12-15, 2018. IEEE Computer Society, 2018, pp. 1616–1624.
DOI: 10.1109/WACV.2018.00179. URL: https://doi.org/10.1109/WACV.2018.00179.

[235] Chris Olah et al. ‘The Building Blocks of Interpretability’. In: Distill 3.3 (6th Mar. 2018).
ISSN: 2476-0757. DOI: 10.23915/distill.00010. URL: https://distill.pub/2018/
building-blocks (visited on 19/03/2018).

[236] Andrew Owens and Alexei A. Efros. ‘Audio-Visual Scene Analysis with Self-Supervised
Multisensory Features’. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 631–648. URL: https://openaccess.thecvf.com/content_ECCV_
2018/html/Andrew_Owens_Audio-Visual_Scene_Analysis_ECCV_2018_paper.html
(visited on 02/08/2021).

222

http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_What_Makes_a_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_What_Makes_a_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_What_Makes_a_CVPR_2018_paper.html
https://doi.org/10.1109/ICIP.2018.8451343
https://doi.org/10.1007/978-3-030-01228-1_38
https://openaccess.thecvf.com/content_ECCV_2018/html/Yingwei_Li_RESOUND_Towards_Action_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Yingwei_Li_RESOUND_Towards_Action_ECCV_2018_paper.html
https://doi.org/10.1016/j.cviu.2017.10.011
https://www.sciencedirect.com/science/article/pii/S1077314217301741
https://www.sciencedirect.com/science/article/pii/S1077314217301741
https://doi.org/10.1016/j.dsp.2017.10.011
http://www.sciencedirect.com/science/article/pii/S1051200417302385
http://www.sciencedirect.com/science/article/pii/S1051200417302385
https://doi.org/10.1109/WACV.2018.00176
https://doi.org/10.1109/WACV.2018.00179
https://doi.org/10.1109/WACV.2018.00179
https://doi.org/10.23915/distill.00010
https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks
https://openaccess.thecvf.com/content_ECCV_2018/html/Andrew_Owens_Audio-Visual_Scene_Analysis_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Andrew_Owens_Audio-Visual_Scene_Analysis_ECCV_2018_paper.html

BIBLIOGRAPHY

[237] Vitali Petsiuk, Abir Das and Kate Saenko. ‘RISE: Randomized Input Sampling for Explan-
ation of Black-Box Models’. In: British Machine Vision Conference 2018 (BMVC). BMVA
Press, 2018, p. 151. URL: http://bmvc2018.org/contents/papers/1064.pdf (visited on
06/07/2020).

[238] Mrigank Rochan, L. Ye and Y. Wang. ‘Video Summarization Using Fully Convolutional
Sequence Networks’. In: European Conference on Computer Vision. 2018, pp. 347–363.
DOI: 10.1007/978-3-030-01258-8_22.

[239] Laura Sevilla-Lara et al. ‘On the Integration of Optical Flow and Action Recognition’. In:
Pattern Recognition - 40th German Conference, GCPR 2018, Stuttgart, Germany, October
9-12, 2018, Proceedings. Ed. by Thomas Brox, Andrés Bruhn and Mario Fritz. Vol. 11269.
Lecture Notes in Computer Science. Springer, 2018, pp. 281–297. DOI: 10.1007/978-3-
030-12939-2_20. URL: https://doi.org/10.1007/978-3-030-12939-2_20.

[240] Gunnar A. Sigurdsson et al. ‘Actor and Observer: Joint Modeling of First and Third-
Person Videos’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 7396–7404. URL: https://openaccess.thecvf.com/content_
cvpr_2018/html/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.html (visited on
17/08/2021).

[241] Chen Sun et al. ‘Actor-Centric Relation Network’. In: Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XI.
Ed. by Vittorio Ferrari et al. Vol. 11215. Lecture Notes in Computer Science. Springer,
2018, pp. 335–351. DOI: 10.1007/978-3-030-01252-6_20. URL: https://doi.org/10.
1007/978-3-030-01252-6_20.

[242] Deqing Sun et al. ‘PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and
Cost Volume’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 8934–8943. URL: http://openaccess.thecvf.com/content_cvpr_
2018/html/Sun_PWC-Net_CNNs_for_CVPR_2018_paper.html (visited on 19/09/2018).

[243] Shuyang Sun et al. ‘Optical Flow Guided Feature: A Fast and Robust Motion Representa-
tion for Video Action Recognition’. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 1390–1399. URL: https://openaccess.thecvf.
com/content_cvpr_2018/html/Sun_Optical_Flow_Guided_CVPR_2018_paper.html
(visited on 12/08/2021).

[244] Mukund Sundararajan and Ankur Taly. A Note about: Local Explanation Methods for Deep
Neural Networks Lack Sensitivity to Parameter Values. 11th June 2018. arXiv: 1806.04205
[cs, stat]. URL: http://arxiv.org/abs/1806.04205 (visited on 29/05/2020).

[245] Du Tran et al. ‘A Closer Look at Spatiotemporal Convolutions for Action Recognition’. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2018, pp. 6450–6459. URL: http://openaccess.thecvf.com/content_cvpr_2018/html/
Tran_A_Closer_Look_CVPR_2018_paper.html (visited on 17/01/2020).

[246] G. Varol, I. Laptev and C. Schmid. ‘Long-Term Temporal Convolutions for Action Recogni-
tion’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP.99 (2018),
pp. 1–1. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2017.2712608.

223

http://bmvc2018.org/contents/papers/1064.pdf
https://doi.org/10.1007/978-3-030-01258-8_22
https://doi.org/10.1007/978-3-030-12939-2_20
https://doi.org/10.1007/978-3-030-12939-2_20
https://doi.org/10.1007/978-3-030-12939-2_20
https://openaccess.thecvf.com/content_cvpr_2018/html/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-030-01252-6_20
https://doi.org/10.1007/978-3-030-01252-6_20
https://doi.org/10.1007/978-3-030-01252-6_20
http://openaccess.thecvf.com/content_cvpr_2018/html/Sun_PWC-Net_CNNs_for_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sun_PWC-Net_CNNs_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sun_Optical_Flow_Guided_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sun_Optical_Flow_Guided_CVPR_2018_paper.html
https://arxiv.org/abs/1806.04205
https://arxiv.org/abs/1806.04205
http://arxiv.org/abs/1806.04205
http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.html
https://doi.org/10.1109/TPAMI.2017.2712608

BIBLIOGRAPHY

[247] Limin Wang et al. ‘Appearance-and-Relation Networks for Video Classification’. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. June 2018, pp. 1430–1439. DOI:
10.1109/CVPR.2018.00155.

[248] Xiaolong Wang and Abhinav Gupta. ‘Videos as Space-Time Region Graphs’. In: Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part V. Ed. by Vittorio Ferrari et al. Vol. 11209. Lecture Notes in Computer
Science. Springer, 2018, pp. 413–431. DOI: 10.1007/978-3-030-01228-1_25. URL:
https://doi.org/10.1007/978-3-030-01228-1_25.

[249] Xiaolong Wang et al. ‘Non-Local Neural Networks’. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018. Computer Vision Foundation / IEEE Computer Society, 2018, pp. 7794–7803. DOI:
10.1109/CVPR.2018.00813. URL: http://openaccess.thecvf.com/content_cvpr_2018/
html/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.html.

[250] Donglai Wei et al. ‘Learning and Using the Arrow of Time’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 8052–8060. URL:
http://openaccess.thecvf.com/content_cvpr_2018/html/2518.html (visited on
01/06/2018).

[251] Chao-Yuan Wu et al. ‘Compressed Video Action Recognition’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 6026–6035. URL:
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Compressed_Video_
Action_CVPR_2018_paper.html (visited on 23/10/2019).

[252] Saining Xie et al. ‘Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-
Offs in Video Classification’. In: Proceedings of the European Conference on Computer
Vision (ECCV). Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 305–321. URL: https://openaccess.thecvf.com/content_ECCV_2018/html/
Saining_Xie_Rethinking_Spatiotemporal_Feature_ECCV_2018_paper.html (visited on
06/07/2020).

[253] Jianming Zhang et al. ‘Top-Down Neural Attention by Excitation Backprop’. In: Interna-
tional Journal of Computer Vision (IJCV) 126.10 (1st Oct. 2018), pp. 1084–1102. ISSN:
1573-1405. DOI: 10.1007/s11263-017-1059-x. URL: https://doi.org/10.1007/s11263-
017-1059-x (visited on 06/07/2020).

[254] Hang Zhao et al. ‘The Sound of Pixels’. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 570–586. URL: https://openaccess.thecvf.com/
content_ECCV_2018/html/Hang_Zhao_The_Sound_of_ECCV_2018_paper.html (visited on
02/08/2021).

[255] Yue Zhao, Yuanjun Xiong and Dahua Lin. ‘Trajectory Convolution for Action Recognition’.
In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio et al. Curran
Associates, Inc., 2018, pp. 2204–2215. URL: http://papers.nips.cc/paper/7489-
trajectory-convolution-for-action-recognition.pdf (visited on 13/05/2019).

[256] B. Zhou et al. ‘Interpreting Deep Visual Representations via Network Dissection’. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2018), pp. 1–1. ISSN:
0162-8828. DOI: 10.1109/TPAMI.2018.2858759.

224

https://doi.org/10.1109/CVPR.2018.00155
https://doi.org/10.1007/978-3-030-01228-1_25
https://doi.org/10.1007/978-3-030-01228-1_25
https://doi.org/10.1109/CVPR.2018.00813
http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/2518.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Compressed_Video_Action_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Compressed_Video_Action_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Saining_Xie_Rethinking_Spatiotemporal_Feature_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Saining_Xie_Rethinking_Spatiotemporal_Feature_ECCV_2018_paper.html
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x
https://openaccess.thecvf.com/content_ECCV_2018/html/Hang_Zhao_The_Sound_of_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Hang_Zhao_The_Sound_of_ECCV_2018_paper.html
http://papers.nips.cc/paper/7489-trajectory-convolution-for-action-recognition.pdf
http://papers.nips.cc/paper/7489-trajectory-convolution-for-action-recognition.pdf
https://doi.org/10.1109/TPAMI.2018.2858759

BIBLIOGRAPHY

[257] Bolei Zhou et al. ‘Temporal Relational Reasoning in Videos’. In: Proceedings of the
European Conference on Computer Vision (ECCV). Proceedings of the European Con-
ference on Computer Vision (ECCV). 2018, pp. 803–818. URL: http://openaccess.
thecvf.com/content_ECCV_2018/html/Bolei_Zhou_Temporal_Relational_Reasoning_
ECCV_2018_paper.html (visited on 17/01/2020).

[258] Mohammadreza Zolfaghari, Kamaljeet Singh and Thomas Brox. ‘ECO: Efficient Con-
volutional Network for Online Video Understanding’. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 695–712. URL: http://openaccess.
thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_
Convolutional_ECCV_2018_paper.html (visited on 30/09/2018).

[259] Sathyanarayanan N. Aakur and Sudeep Sarkar. ‘A Perceptual Prediction Framework
for Self Supervised Event Segmentation’. In: CVPR. June 2019, pp. 1197–1206. DOI:
10.1109/CVPR.2019.00129.

[260] Unaiza Ahsan, Rishi Madhok and Irfan A. Essa. ‘Video Jigsaw: Unsupervised Learning
of Spatiotemporal Context for Video Action Recognition’. In: IEEE Winter Conference
on Applications of Computer Vision, WACV 2019, Waikoloa Village, HI, USA, January
7-11, 2019. IEEE, 2019, pp. 179–189. DOI: 10.1109/WACV.2019.00025. URL: https:
//doi.org/10.1109/WACV.2019.00025.

[261] Marco Ancona, Cengiz Oztireli and Markus Gross. ‘Explaining Deep Neural Networks
with a Polynomial Time Algorithm for Shapley Value Approximation’. In: International
Conference on Machine Learning (ICML). International Conference on Machine Learning
(ICML). 24th May 2019, pp. 272–281. URL: http://proceedings.mlr.press/v97/
ancona19a.html (visited on 08/07/2020).

[262] Christian Bailer, Bertram Taetz and Didier Stricker. ‘Flow Fields: Dense Correspondence
Fields for Highly Accurate Large Displacement Optical Flow Estimation’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 41.8 (Aug. 2019), pp. 1879–
1892. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2018.2859970.

[263] Joao Carreira et al. A Short Note on the Kinetics-700 Human Action Dataset. 15th July
2019. arXiv: 1907.06987 [cs]. URL: http://arxiv.org/abs/1907.06987 (visited on
16/08/2021).

[264] Ali Diba et al. ‘DynamoNet: Dynamic Action and Motion Network’. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 6192–6201.
URL: https://openaccess.thecvf.com/content_ICCV_2019/html/Diba_DynamoNet_
Dynamic_Action_and_Motion_Network_ICCV_2019_paper.html (visited on 18/08/2021).

[265] Debidatta Dwibedi et al. ‘Temporal Cycle-Consistency Learning’. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 1801–1810.
URL: https://openaccess.thecvf.com/content_CVPR_2019/html/Dwibedi_Temporal_
Cycle-Consistency_Learning_CVPR_2019_paper.html (visited on 19/08/2021).

[266] Quanfu Fan et al. ‘More Is Less: Learning Efficient Video Representations by Big-Little
Network and Depthwise Temporal Aggregation’. In: Advances in Neural Information
Processing Systems. Vol. 32. Curran Associates, Inc., 2019. URL: https://papers.nips.
cc/paper/2019/hash/3d779cae2d46cf6a8a99a35ba4167977-Abstract.html (visited on
09/08/2021).

225

http://openaccess.thecvf.com/content_ECCV_2018/html/Bolei_Zhou_Temporal_Relational_Reasoning_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Bolei_Zhou_Temporal_Relational_Reasoning_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Bolei_Zhou_Temporal_Relational_Reasoning_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_Convolutional_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_Convolutional_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_Convolutional_ECCV_2018_paper.html
https://doi.org/10.1109/CVPR.2019.00129
https://doi.org/10.1109/WACV.2019.00025
https://doi.org/10.1109/WACV.2019.00025
https://doi.org/10.1109/WACV.2019.00025
http://proceedings.mlr.press/v97/ancona19a.html
http://proceedings.mlr.press/v97/ancona19a.html
https://doi.org/10.1109/TPAMI.2018.2859970
https://arxiv.org/abs/1907.06987
http://arxiv.org/abs/1907.06987
https://openaccess.thecvf.com/content_ICCV_2019/html/Diba_DynamoNet_Dynamic_Action_and_Motion_Network_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Diba_DynamoNet_Dynamic_Action_and_Motion_Network_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Dwibedi_Temporal_Cycle-Consistency_Learning_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Dwibedi_Temporal_Cycle-Consistency_Learning_CVPR_2019_paper.html
https://papers.nips.cc/paper/2019/hash/3d779cae2d46cf6a8a99a35ba4167977-Abstract.html
https://papers.nips.cc/paper/2019/hash/3d779cae2d46cf6a8a99a35ba4167977-Abstract.html

BIBLIOGRAPHY

[267] Yazan Abu Farha and Jurgen Gall. ‘MS-TCN: Multi-Stage Temporal Convolutional Net-
work for Action Segmentation’. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 3575–3584. URL: https://openaccess.
thecvf.com/content_CVPR_2019/html/Abu_Farha_MS-TCN_Multi-Stage_Temporal_
Convolutional_Network_for_Action_Segmentation_CVPR_2019_paper.html (visited on
18/05/2021).

[268] Christoph Feichtenhofer et al. ‘SlowFast Networks for Video Recognition’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 6202–6211. URL: http://openaccess.thecvf.com/content_ICCV_2019/html/
Feichtenhofer_SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html
(visited on 17/01/2020).

[269] Ruth Fong, Mandela Patrick and Andrea Vedaldi. ‘Understanding Deep Networks via
Extremal Perturbations and Smooth Masks’. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). Proceedings of the IEEE International Conference
on Computer Vision (ICCV). 2019, pp. 2950–2958. URL: https://openaccess.thecvf.
com/content_ICCV_2019/html/Fong_Understanding_Deep_Networks_via_Extremal_
Perturbations_and_Smooth_Masks_ICCV_2019_paper.html (visited on 29/06/2020).

[270] Rohit Girdhar et al. ‘Video Action Transformer Network’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 244–253. URL:
https://openaccess.thecvf.com/content_CVPR_2019/html/Girdhar_Video_Action_
Transformer_Network_CVPR_2019_paper.html (visited on 06/07/2020).

[271] Tengda Han, Weidi Xie and Andrew Zisserman. ‘Video Representation Learning by
Dense Predictive Coding’. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops. 2019. URL: https://openaccess.thecvf.com/content_
ICCVW_2019/html/HVU/Han_Video_Representation_Learning_by_Dense_Predictive_
Coding_ICCVW_2019_paper.html (visited on 15/02/2021).

[272] Jonathan Ho et al. Axial Attention in Multidimensional Transformers. Version 1. 20th Dec.
2019. arXiv: 1912.12180 [cs]. URL: http://arxiv.org/abs/1912.12180 (visited on
27/08/2021).

[273] Sara Hooker et al. ‘A Benchmark for Interpretability Methods in Deep Neural Networks’.
In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.,
2019. URL: https://papers.nips.cc/paper/2019/hash/fe4b8556000d0f0cae99daa5c5c5a410-
Abstract.html (visited on 22/08/2021).

[274] Noureldien Hussein, Efstratios Gavves and Arnold W. M. Smeulders. ‘Timeception for
Complex Action Recognition’. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 254–263. URL: http://openaccess.
thecvf.com/content_CVPR_2019/html/Hussein_Timeception_for_Complex_Action_
Recognition_CVPR_2019_paper.html (visited on 17/01/2020).

[275] Noureldien Hussein, Efstratios Gavves and Arnold WM Smeulders. ‘VideoGraph: Recog-
nizing Minutes-Long Human Activities in Videos’. In: ICCV Workshop on Scene Graph
Representation and Learning. 2019.

226

https://openaccess.thecvf.com/content_CVPR_2019/html/Abu_Farha_MS-TCN_Multi-Stage_Temporal_Convolutional_Network_for_Action_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Abu_Farha_MS-TCN_Multi-Stage_Temporal_Convolutional_Network_for_Action_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Abu_Farha_MS-TCN_Multi-Stage_Temporal_Convolutional_Network_for_Action_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/Feichtenhofer_SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/Feichtenhofer_SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Fong_Understanding_Deep_Networks_via_Extremal_Perturbations_and_Smooth_Masks_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Fong_Understanding_Deep_Networks_via_Extremal_Perturbations_and_Smooth_Masks_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Fong_Understanding_Deep_Networks_via_Extremal_Perturbations_and_Smooth_Masks_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Girdhar_Video_Action_Transformer_Network_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Girdhar_Video_Action_Transformer_Network_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_ICCVW_2019/html/HVU/Han_Video_Representation_Learning_by_Dense_Predictive_Coding_ICCVW_2019_paper.html
https://openaccess.thecvf.com/content_ICCVW_2019/html/HVU/Han_Video_Representation_Learning_by_Dense_Predictive_Coding_ICCVW_2019_paper.html
https://openaccess.thecvf.com/content_ICCVW_2019/html/HVU/Han_Video_Representation_Learning_by_Dense_Predictive_Coding_ICCVW_2019_paper.html
https://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1912.12180
https://papers.nips.cc/paper/2019/hash/fe4b8556000d0f0cae99daa5c5c5a410-Abstract.html
https://papers.nips.cc/paper/2019/hash/fe4b8556000d0f0cae99daa5c5c5a410-Abstract.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hussein_Timeception_for_Complex_Action_Recognition_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hussein_Timeception_for_Complex_Action_Recognition_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hussein_Timeception_for_Complex_Action_Recognition_CVPR_2019_paper.html

BIBLIOGRAPHY

[276] Boyuan Jiang et al. ‘STM: SpatioTemporal and Motion Encoding for Action Recognition’.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 2000–2009. URL: https://openaccess.thecvf.com/content_ICCV_2019/html/
Jiang_STM_SpatioTemporal_and_Motion_Encoding_for_Action_Recognition_ICCV_
2019_paper.html (visited on 09/08/2021).

[277] Longlong Jing et al. Self-Supervised Spatiotemporal Feature Learning via Video Rotation
Prediction. 3rd Apr. 2019. arXiv: 1811.11387 [cs]. URL: http://arxiv.org/abs/1811.
11387 (visited on 21/06/2021).

[278] Y. Jung et al. ‘Discriminative Feature Learning for Unsupervised Video Summarization’.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 8537–
8544. DOI: 10.1609/aaai.v33i01.33018537.

[279] Evangelos Kazakos et al. ‘EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Ac-
tion Recognition’. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 5492–5501. URL: https://openaccess.thecvf.com/content_ICCV_
2019/html/Kazakos_EPIC-Fusion_Audio-Visual_Temporal_Binding_for_Egocentric_
Action_Recognition_ICCV_2019_paper.html (visited on 02/08/2021).

[280] Dahun Kim, Donghyeon Cho and In So Kweon. ‘Self-Supervised Video Representation
Learning with Space-Time Cubic Puzzles’. In: Proceedings of the AAAI Conference on
Artificial Intelligence 33.01 (01 17th July 2019), pp. 8545–8552. ISSN: 2374-3468. DOI:
10.1609/aaai.v33i01.33018545. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/4873 (visited on 18/08/2021).

[281] Narine Kokhlikyan et al. ‘PyTorch Captum’. In: GitHub repository (2019). URL: https:
//github.com/pytorch/captum.

[282] Bruno Korbar, Du Tran and Lorenzo Torresani. ‘SCSampler: Sampling Salient Clips From
Video for Efficient Action Recognition’. In: 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE,
2019, pp. 6231–6241. DOI: 10.1109/ICCV.2019.00633. URL: https://doi.org/10.1109/
ICCV.2019.00633.

[283] Anna Kukleva et al. ‘Unsupervised Learning of Action Classes With Continuous Temporal
Embedding’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 12066–12074. URL: https://openaccess.thecvf.com/
content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_
With_Continuous_Temporal_Embedding_CVPR_2019_paper.html (visited on 19/05/2021).

[284] Zihang Lai and Weidi Xie. ‘Self-Supervised Video Representation Learning for Corres-
pondence Flow’. In: 30th British Machine Vision Conference 2019, BMVC 2019, Cardiff,
UK, September 9-12, 2019. BMVA Press, 2019, p. 299. URL: https://bmvc2019.org/wp-
content/uploads/papers/0599-paper.pdf (visited on 18/08/2021).

[285] Ji Lin, Chuang Gan and Song Han. ‘TSM: Temporal Shift Module for Efficient Video
Understanding’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 7083–7093. URL: http://openaccess.thecvf.com/
content_ICCV_2019/html/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_
Understanding_ICCV_2019_paper.html (visited on 17/01/2020).

227

https://openaccess.thecvf.com/content_ICCV_2019/html/Jiang_STM_SpatioTemporal_and_Motion_Encoding_for_Action_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Jiang_STM_SpatioTemporal_and_Motion_Encoding_for_Action_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Jiang_STM_SpatioTemporal_and_Motion_Encoding_for_Action_Recognition_ICCV_2019_paper.html
https://arxiv.org/abs/1811.11387
http://arxiv.org/abs/1811.11387
http://arxiv.org/abs/1811.11387
https://doi.org/10.1609/aaai.v33i01.33018537
https://openaccess.thecvf.com/content_ICCV_2019/html/Kazakos_EPIC-Fusion_Audio-Visual_Temporal_Binding_for_Egocentric_Action_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Kazakos_EPIC-Fusion_Audio-Visual_Temporal_Binding_for_Egocentric_Action_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Kazakos_EPIC-Fusion_Audio-Visual_Temporal_Binding_for_Egocentric_Action_Recognition_ICCV_2019_paper.html
https://doi.org/10.1609/aaai.v33i01.33018545
https://ojs.aaai.org/index.php/AAAI/article/view/4873
https://ojs.aaai.org/index.php/AAAI/article/view/4873
https://github.com/pytorch/captum
https://github.com/pytorch/captum
https://doi.org/10.1109/ICCV.2019.00633
https://doi.org/10.1109/ICCV.2019.00633
https://doi.org/10.1109/ICCV.2019.00633
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
https://bmvc2019.org/wp-content/uploads/papers/0599-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/0599-paper.pdf
http://openaccess.thecvf.com/content_ICCV_2019/html/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.html

BIBLIOGRAPHY

[286] Jiasen Lu et al. ‘ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks’. In: Proceedings of the 33rd International Conference on
Neural Information Processing Systems. 2. Red Hook, NY, USA: Curran Associates Inc.,
8th Dec. 2019, pp. 13–23.

[287] Joanna Materzynska et al. ‘The Jester Dataset: A Large-Scale Video Dataset of Human
Gestures’. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW). 2019 IEEE/CVF International Conference on Computer Vision Workshop (IC-
CVW). Oct. 2019, pp. 2874–2882. DOI: 10.1109/ICCVW.2019.00349.

[288] Mathew Monfort et al. ‘Moments in Time Dataset: One Million Videos for Event Under-
standing’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019),
pp. 1–8. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2019.2901464.

[289] Alaaeldin El-Nouby et al. Skip-Clip: Self-Supervised Spatiotemporal Representation
Learning by Future Clip Order Ranking. Version 1. 28th Oct. 2019. arXiv: 1910.12770
[cs]. URL: http://arxiv.org/abs/1910.12770 (visited on 18/08/2021).

[290] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance Deep Learning Lib-
rary’. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc., 2019. URL: https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html (visited on 11/08/2021).

[291] A. J. Piergiovanni and Michael S. Ryoo. ‘Representation Flow for Action Recognition’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 9945–9953. URL: https://openaccess.thecvf.com/content_CVPR_2019/html/
Piergiovanni_Representation_Flow_for_Action_Recognition_CVPR_2019_paper.
html (visited on 11/08/2021).

[292] A. J. Piergiovanni et al. ‘Evolving Space-Time Neural Architectures for Videos’. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 1793–
1802. URL: https://openaccess.thecvf.com/content_ICCV_2019/html/Piergiovanni_
Evolving_Space-Time_Neural_Architectures_for_Videos_ICCV_2019_paper.html
(visited on 10/08/2021).

[293] Aj Piergiovanni and Michael Ryoo. ‘Temporal Gaussian Mixture Layer for Videos’. In:
International Conference on Machine Learning. International Conference on Machine
Learning. PMLR, 24th May 2019, pp. 5152–5161. URL: http://proceedings.mlr.press/
v97/piergiovanni19a.html (visited on 24/05/2021).

[294] Saquib Sarfraz, Vivek Sharma and Rainer Stiefelhagen. ‘Efficient Parameter-Free Clus-
tering Using First Neighbor Relations’. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 8934–8943. URL: https://
openaccess.thecvf.com/content_CVPR_2019/html/Sarfraz_Efficient_Parameter-
Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.html (visited
on 05/08/2021).

[295] Thibault Sellam et al. ‘DeepBase: Deep Inspection of Neural Networks’. In: Proceedings
of the 2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, the Netherlands, June 30 - July 5, 2019. Ed. by Peter A. Boncz et al. ACM,
2019, pp. 1117–1134. DOI: 10.1145/3299869.3300073. URL: https://doi.org/10.1145/
3299869.3300073.

228

https://doi.org/10.1109/ICCVW.2019.00349
https://doi.org/10.1109/TPAMI.2019.2901464
https://arxiv.org/abs/1910.12770
https://arxiv.org/abs/1910.12770
http://arxiv.org/abs/1910.12770
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Piergiovanni_Representation_Flow_for_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Piergiovanni_Representation_Flow_for_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Piergiovanni_Representation_Flow_for_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Piergiovanni_Evolving_Space-Time_Neural_Architectures_for_Videos_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Piergiovanni_Evolving_Space-Time_Neural_Architectures_for_Videos_ICCV_2019_paper.html
http://proceedings.mlr.press/v97/piergiovanni19a.html
http://proceedings.mlr.press/v97/piergiovanni19a.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.html
https://doi.org/10.1145/3299869.3300073
https://doi.org/10.1145/3299869.3300073
https://doi.org/10.1145/3299869.3300073

BIBLIOGRAPHY

[296] Zheng Shou et al. ‘DMC-Net: Generating Discriminative Motion Cues for Fast Compressed
Video Action Recognition’. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 1268–1277. URL: http://openaccess.thecvf.com/
content_CVPR_2019/html/Shou_DMC-Net_Generating_Discriminative_Motion_Cues_
for_Fast_Compressed_Video_Action_CVPR_2019_paper.html (visited on 23/10/2019).

[297] Alexandros Stergiou et al. ‘Class Feature Pyramids for Video Explanation’. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
(ICCVW). Oct. 2019, pp. 4255–4264. DOI: 10.1109/ICCVW.2019.00524.

[298] Alexandros Stergiou et al. ‘Saliency Tubes: Visual Explanations for Spatio-Temporal
Convolutions’. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019
IEEE International Conference on Image Processing (ICIP). Sept. 2019, pp. 1830–1834.
DOI: 10.1109/ICIP.2019.8803153.

[299] Swathikiran Sudhakaran, Sergio Escalera and Oswald Lanz. ‘LSTA: Long Short-Term
Attention for Egocentric Action Recognition’. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2019, pp. 9954–9963. URL: https:
//openaccess.thecvf.com/content_CVPR_2019/html/Sudhakaran_LSTA_Long_Short-
Term_Attention_for_Egocentric_Action_Recognition_CVPR_2019_paper.html (vis-
ited on 03/08/2021).

[300] Chen Sun et al. ‘VideoBERT: A Joint Model for Video and Language Representation
Learning’. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2019, pp. 7464–7473. URL: https://openaccess.thecvf.com/content_ICCV_2019/html/
Sun_VideoBERT_A_Joint_Model_for_Video_and_Language_Representation_Learning_
ICCV_2019_paper.html (visited on 13/08/2021).

[301] Du Tran et al. ‘Video Classification With Channel-Separated Convolutional Networks’. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 5552–
5561. URL: https://openaccess.thecvf.com/content_ICCV_2019/html/Tran_Video_
Classification_With_Channel- Separated_Convolutional_Networks_ICCV_2019_
paper.html (visited on 29/06/2020).

[302] Limin Wang et al. ‘Temporal Segment Networks for Action Recognition in Videos’. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 41.11 (Nov. 2019),
pp. 2740–2755. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2018.2868668.

[303] Ning Wang et al. ‘Unsupervised Deep Tracking’. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 1st June
2019, pp. 1308–1317. ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.2019.00140. URL:
https://www.computer.org/csdl/proceedings- article/cvpr/2019/329300b308/
1gyrDn1LIOY (visited on 18/08/2021).

[304] Xiaolong Wang, Allan Jabri and Alexei A. Efros. ‘Learning Correspondence From the
Cycle-Consistency of Time’. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2566–2576. URL: https://openaccess.thecvf.
com/content_CVPR_2019/html/Wang_Learning_Correspondence_From_the_Cycle-
Consistency_of_Time_CVPR_2019_paper.html (visited on 18/08/2021).

229

http://openaccess.thecvf.com/content_CVPR_2019/html/Shou_DMC-Net_Generating_Discriminative_Motion_Cues_for_Fast_Compressed_Video_Action_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Shou_DMC-Net_Generating_Discriminative_Motion_Cues_for_Fast_Compressed_Video_Action_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Shou_DMC-Net_Generating_Discriminative_Motion_Cues_for_Fast_Compressed_Video_Action_CVPR_2019_paper.html
https://doi.org/10.1109/ICCVW.2019.00524
https://doi.org/10.1109/ICIP.2019.8803153
https://openaccess.thecvf.com/content_CVPR_2019/html/Sudhakaran_LSTA_Long_Short-Term_Attention_for_Egocentric_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Sudhakaran_LSTA_Long_Short-Term_Attention_for_Egocentric_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Sudhakaran_LSTA_Long_Short-Term_Attention_for_Egocentric_Action_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Sun_VideoBERT_A_Joint_Model_for_Video_and_Language_Representation_Learning_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Sun_VideoBERT_A_Joint_Model_for_Video_and_Language_Representation_Learning_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Sun_VideoBERT_A_Joint_Model_for_Video_and_Language_Representation_Learning_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Tran_Video_Classification_With_Channel-Separated_Convolutional_Networks_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Tran_Video_Classification_With_Channel-Separated_Convolutional_Networks_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Tran_Video_Classification_With_Channel-Separated_Convolutional_Networks_ICCV_2019_paper.html
https://doi.org/10.1109/TPAMI.2018.2868668
https://doi.org/10.1109/CVPR.2019.00140
https://www.computer.org/csdl/proceedings-article/cvpr/2019/329300b308/1gyrDn1LIOY
https://www.computer.org/csdl/proceedings-article/cvpr/2019/329300b308/1gyrDn1LIOY
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Learning_Correspondence_From_the_Cycle-Consistency_of_Time_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Learning_Correspondence_From_the_Cycle-Consistency_of_Time_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Learning_Correspondence_From_the_Cycle-Consistency_of_Time_CVPR_2019_paper.html

BIBLIOGRAPHY

[305] Chao-Yuan Wu et al. ‘Long-Term Feature Banks for Detailed Video Understanding’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 284–293. URL: https://openaccess.thecvf.com/content_CVPR_2019/html/
Wu_Long-Term_Feature_Banks_for_Detailed_Video_Understanding_CVPR_2019_paper.
html (visited on 12/08/2021).

[306] Dejing Xu et al. ‘Self-Supervised Spatiotemporal Learning via Video Clip Order Pre-
diction’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 10334–10343. URL: https://openaccess.thecvf.com/content_
CVPR_2019/html/Xu_Self-Supervised_Spatiotemporal_Learning_via_Video_Clip_
Order_Prediction_CVPR_2019_paper.html (visited on 15/02/2021).

[307] L. Yuan et al. ‘Cycle-SUM: Cycle-Consistent Adversarial LSTM Networks for Unsu-
pervised Video Summarization’. In: Proceedings of the AAAI Conference on Artificial
Intelligence 33 (2019), pp. 9143–9150. DOI: 10.1609/AAAI.V33I01.33019143.

[308] Richard Zhang. ‘Making Convolutional Networks Shift-Invariant Again’. In: International
Conference on Machine Learning. PMLR, 2019, pp. 7324–7334.

[309] Hang Zhao et al. ‘HACS: Human Action Clips and Segments Dataset for Recognition
and Temporal Localization’. In: 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019,
pp. 8667–8677. DOI: 10.1109/ICCV.2019.00876. URL: https://doi.org/10.1109/ICCV.
2019.00876.

[310] Xinqi Zhu et al. ‘Approximated Bilinear Modules for Temporal Modeling’. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). Oct. 2019, pp. 3493–3502. DOI:
10.1109/ICCV.2019.00359.

[311] Yi Zhu et al. ‘Hidden Two-Stream Convolutional Networks for Action Recognition’. In:
Computer Vision – ACCV 2018. Ed. by C. V. Jawahar et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 363–378. ISBN: 978-3-030-
20893-6. DOI: 10.1007/978-3-030-20893-6_23.

[312] Triantafyllos Afouras et al. ‘Self-Supervised Learning of Audio-Visual Objects from Video’.
In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 208–224. ISBN: 978-3-030-
58523-5. DOI: 10.1007/978-3-030-58523-5_13.

[313] Humam Alwassel et al. ‘Self-Supervised Learning by Cross-Modal Audio-Video Clus-
tering’. In: Advances in Neural Information Processing Systems. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 9758–9770. URL: https://papers.nips.cc/paper/2020/hash/
6f2268bd1d3d3ebaabb04d6b5d099425-Abstract.html (visited on 18/08/2021).

[314] Sagie Benaim et al. ‘SpeedNet: Learning the Speediness in Videos’. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 9922–9931.
URL: https://openaccess.thecvf.com/content_CVPR_2020/html/Benaim_SpeedNet_
Learning_the_Speediness_in_Videos_CVPR_2020_paper.html (visited on 15/02/2021).

230

https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_Long-Term_Feature_Banks_for_Detailed_Video_Understanding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_Long-Term_Feature_Banks_for_Detailed_Video_Understanding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_Long-Term_Feature_Banks_for_Detailed_Video_Understanding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Self-Supervised_Spatiotemporal_Learning_via_Video_Clip_Order_Prediction_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Self-Supervised_Spatiotemporal_Learning_via_Video_Clip_Order_Prediction_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Self-Supervised_Spatiotemporal_Learning_via_Video_Clip_Order_Prediction_CVPR_2019_paper.html
https://doi.org/10.1609/AAAI.V33I01.33019143
https://doi.org/10.1109/ICCV.2019.00876
https://doi.org/10.1109/ICCV.2019.00876
https://doi.org/10.1109/ICCV.2019.00876
https://doi.org/10.1109/ICCV.2019.00359
https://doi.org/10.1007/978-3-030-20893-6_23
https://doi.org/10.1007/978-3-030-58523-5_13
https://papers.nips.cc/paper/2020/hash/6f2268bd1d3d3ebaabb04d6b5d099425-Abstract.html
https://papers.nips.cc/paper/2020/hash/6f2268bd1d3d3ebaabb04d6b5d099425-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Benaim_SpeedNet_Learning_the_Speediness_in_Videos_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Benaim_SpeedNet_Learning_the_Speediness_in_Videos_CVPR_2020_paper.html

BIBLIOGRAPHY

[315] Xinyun Chen et al. ‘Compositional Generalization via Neural-Symbolic Stack Machines’.
In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual. Ed. by
Hugo Larochelle et al. 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
12b1e42dc0746f22cf361267de07073f-Abstract.html.

[316] Dima Damen et al. Rescaling Egocentric Vision. 2020. DOI: 10.5523/bris.2g1n6qdydwa9u22shpxqzp0t8m.
arXiv: 2006.13256 [cs]. URL: http://arxiv.org/abs/2006.13256 (visited on 22/06/2021).

[317] Ali Diba et al. ‘Large Scale Holistic Video Understanding’. In: Computer Vision – ECCV
2020. Ed. by Andrea Vedaldi et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 593–610. ISBN: 978-3-030-58558-7. DOI: 10.1007/978-
3-030-58558-7_35.

[318] Linxi Fan et al. ‘RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition’. In:
Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 505–521. ISBN: 978-3-030-
58529-7. DOI: 10.1007/978-3-030-58529-7_30.

[319] Christoph Feichtenhofer. ‘X3D: Expanding Architectures for Efficient Video Recognition’.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-
cognition (CVPR). 2020, pp. 203–213. URL: https://openaccess.thecvf.com/content_
CVPR_2020/html/Feichtenhofer_X3D_Expanding_Architectures_for_Efficient_
Video_Recognition_CVPR_2020_paper.html (visited on 29/06/2020).

[320] Christoph Feichtenhofer et al. ‘Deep Insights into Convolutional Networks for Video
Recognition’. In: International Journal of Computer Vision (IJCV) 128.2 (1st Feb. 2020),
pp. 420–437. ISSN: 1573-1405. DOI: 10.1007/s11263-019-01225-w. URL: https://doi.
org/10.1007/s11263-019-01225-w (visited on 06/07/2020).

[321] Ruohan Gao et al. ‘Listen to Look: Action Recognition by Previewing Audio’. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 10457–10467. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/
Gao_Listen_to_Look_Action_Recognition_by_Previewing_Audio_CVPR_2020_paper.
html (visited on 02/08/2021).

[322] Rohit Girdhar and Deva Ramanan. ‘CATER: A Diagnostic Dataset for Compositional
Actions & TEmporal Reasoning’. In: 8th International Conference on Learning Represent-
ations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL:
https://openreview.net/forum?id=HJgzt2VKPB (visited on 16/08/2021).

[323] Tengda Han, Weidi Xie and Andrew Zisserman. ‘Memory-Augmented Dense Predictive
Coding for Video Representation Learning’. In: Computer Vision – ECCV 2020. Ed. by
Andrea Vedaldi et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 312–329. ISBN: 978-3-030-58580-8. DOI: 10.1007/978-3-030-
58580-8_19.

[324] Tengda Han, Weidi Xie and Andrew Zisserman. ‘Self-Supervised Co-Training for Video
Representation Learning’. In: Advances in Neural Information Processing Systems 33
(2020), pp. 5679–5690. URL: https://papers.nips.cc/paper/2020/hash/3def184ad8f4755ff269862ea77393dd-
Abstract.html (visited on 24/05/2021).

231

https://proceedings.neurips.cc/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
https://doi.org/10.5523/bris.2g1n6qdydwa9u22shpxqzp0t8m
https://arxiv.org/abs/2006.13256
http://arxiv.org/abs/2006.13256
https://doi.org/10.1007/978-3-030-58558-7_35
https://doi.org/10.1007/978-3-030-58558-7_35
https://doi.org/10.1007/978-3-030-58529-7_30
https://openaccess.thecvf.com/content_CVPR_2020/html/Feichtenhofer_X3D_Expanding_Architectures_for_Efficient_Video_Recognition_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Feichtenhofer_X3D_Expanding_Architectures_for_Efficient_Video_Recognition_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Feichtenhofer_X3D_Expanding_Architectures_for_Efficient_Video_Recognition_CVPR_2020_paper.html
https://doi.org/10.1007/s11263-019-01225-w
https://doi.org/10.1007/s11263-019-01225-w
https://doi.org/10.1007/s11263-019-01225-w
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Listen_to_Look_Action_Recognition_by_Previewing_Audio_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Listen_to_Look_Action_Recognition_by_Previewing_Audio_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Listen_to_Look_Action_Recognition_by_Previewing_Audio_CVPR_2020_paper.html
https://openreview.net/forum?id=HJgzt2VKPB
https://doi.org/10.1007/978-3-030-58580-8_19
https://doi.org/10.1007/978-3-030-58580-8_19
https://papers.nips.cc/paper/2020/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://papers.nips.cc/paper/2020/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html

BIBLIOGRAPHY

[325] Allan Jabri, Andrew Owens and Alexei Efros. ‘Space-Time Correspondence as a Contrast-
ive Random Walk’. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 19545–19560. URL: https://papers.nips.cc/paper/2020/hash/e2ef524fbf3d9fe611d5a8e90fefdc9c-
Abstract.html (visited on 18/08/2021).

[326] Simon Jenni, Givi Meishvili and Paolo Favaro. ‘Video Representation Learning by Re-
cognizing Temporal Transformations’. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16. Springer,
2020, pp. 425–442.

[327] Joshua Knights et al. ‘Temporally Coherent Embeddings for Self-Supervised Video Rep-
resentation Learning’. In: 25th International Conference on Pattern Recognition, ICPR
2020, Virtual Event / Milan, Italy, January 10-15, 2021. IEEE, 2020, pp. 8914–8921. DOI:
10.1109/ICPR48806.2021.9412071.

[328] Ang Li et al. The AVA-Kinetics Localized Human Actions Video Dataset. 20th May 2020.
arXiv: 2005.00214 [cs, eess]. URL: http://arxiv.org/abs/2005.00214 (visited on
16/08/2021).

[329] Xinyu Li, Bing Shuai and Joseph Tighe. ‘Directional Temporal Modeling for Action
Recognition’. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 275–291.
ISBN: 978-3-030-58539-6. DOI: 10.1007/978-3-030-58539-6_17.

[330] Zhenqiang Li et al. A Comprehensive Study on Visual Explanations for Spatio-Temporal
Networks. 1st May 2020. arXiv: 2005.00375 [cs]. URL: http://arxiv.org/abs/2005.
00375 (visited on 29/06/2020).

[331] Zhaoyang Liu et al. ‘TEINet: Towards an Efficient Architecture for Video Recognition’.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 11669–11676. URL: https:
//aaai.org/ojs/index.php/AAAI/article/view/6836 (visited on 12/08/2021).

[332] Teng Long et al. ‘Searching for Actions on the Hyperbole’. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 1141–1150. URL:
https://openaccess.thecvf.com/content_CVPR_2020/html/Long_Searching_for_
Actions_on_the_Hyperbole_CVPR_2020_paper.html (visited on 08/09/2021).

[333] Joonatan Mänttäri et al. ‘Interpreting Video Features: A Comparison of 3D Convolutional
Networks and Convolutional LSTM Networks’. In: Computer Vision - ACCV 2020 - 15th
Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020,
Revised Selected Papers, Part V. Ed. by Hiroshi Ishikawa et al. Vol. 12626. Lecture Notes in
Computer Science. Springer, 2020, pp. 411–426. DOI: 10.1007/978-3-030-69541-5_25.
URL: https://doi.org/10.1007/978-3-030-69541-5_25.

[334] Joanna Materzynska et al. ‘Something-Else: Compositional Action Recognition With
Spatial-Temporal Interaction Networks’. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 1049–1059. URL: https://
openaccess.thecvf.com/content_CVPR_2020/html/Materzynska_Something-Else_
Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_
CVPR_2020_paper.html (visited on 13/08/2021).

232

https://papers.nips.cc/paper/2020/hash/e2ef524fbf3d9fe611d5a8e90fefdc9c-Abstract.html
https://papers.nips.cc/paper/2020/hash/e2ef524fbf3d9fe611d5a8e90fefdc9c-Abstract.html
https://doi.org/10.1109/ICPR48806.2021.9412071
https://arxiv.org/abs/2005.00214
http://arxiv.org/abs/2005.00214
https://doi.org/10.1007/978-3-030-58539-6_17
https://arxiv.org/abs/2005.00375
http://arxiv.org/abs/2005.00375
http://arxiv.org/abs/2005.00375
https://aaai.org/ojs/index.php/AAAI/article/view/6836
https://aaai.org/ojs/index.php/AAAI/article/view/6836
https://openaccess.thecvf.com/content_CVPR_2020/html/Long_Searching_for_Actions_on_the_Hyperbole_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Long_Searching_for_Actions_on_the_Hyperbole_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-69541-5_25
https://doi.org/10.1007/978-3-030-69541-5_25
https://openaccess.thecvf.com/content_CVPR_2020/html/Materzynska_Something-Else_Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Materzynska_Something-Else_Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Materzynska_Something-Else_Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Materzynska_Something-Else_Compositional_Action_Recognition_With_Spatial-Temporal_Interaction_Networks_CVPR_2020_paper.html

BIBLIOGRAPHY

[335] Mathew Monfort et al. Multi-Moments in Time: Learning and Interpreting Models for
Multi-Action Video Understanding. 9th Jan. 2020. arXiv: 1911.00232 [cs, eess]. URL:
http://arxiv.org/abs/1911.00232 (visited on 16/08/2021).

[336] Tushar Nagarajan et al. ‘Ego-Topo: Environment Affordances From Egocentric Video’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 163–172. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/
Nagarajan_Ego-Topo_Environment_Affordances_From_Egocentric_Video_CVPR_2020_
paper.html (visited on 07/08/2021).

[337] Suraj Nair et al. ‘TRASS: Time Reversal as Self-Supervision’. In: 2020 IEEE International
Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31,
2020. IEEE, 2020, pp. 115–121. DOI: 10.1109/ICRA40945.2020.9196862. URL: https:
//doi.org/10.1109/ICRA40945.2020.9196862.

[338] Marietta Papadatou-Pastou et al. ‘Human Handedness: A Meta-Analysis’. In: Psycholo-
gical Bulletin 146.6 (June 2020), pp. 481–524. ISSN: 1939-1455. DOI: 10.1037/bul0000229.
pmid: 32237881.

[339] A. J. Piergiovanni, Anelia Angelova and Michael S. Ryoo. ‘Evolving Losses for Unsu-
pervised Video Representation Learning’. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2020, pp. 133–142. URL: https://
openaccess.thecvf.com/content_CVPR_2020/html/Piergiovanni_Evolving_Losses_
for_Unsupervised_Video_Representation_Learning_CVPR_2020_paper.html (visited
on 10/08/2021).

[340] Siyuan Qi et al. ‘A Generalized Earley Parser for Human Activity Parsing and Prediction’.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020), pp. 1–1. ISSN:
1939-3539. DOI: 10.1109/TPAMI.2020.2976971.

[341] Anyi Rao et al. ‘A Local-to-Global Approach to Multi-Modal Movie Scene Segmenta-
tion’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 10146–10155. URL: https://openaccess.thecvf.com/content_
CVPR_2020/html/Rao_A_Local-to-Global_Approach_to_Multi-Modal_Movie_Scene_
Segmentation_CVPR_2020_paper.html (visited on 05/08/2021).

[342] Dian Shao et al. ‘FineGym: A Hierarchical Video Dataset for Fine-Grained Action Un-
derstanding’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 2616–2625. URL: https://openaccess.thecvf.com/
content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-
Grained_Action_Understanding_CVPR_2020_paper.html (visited on 20/05/2021).

[343] Dian Shao et al. ‘Intra- and Inter-Action Understanding via Temporal Action Parsing’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 730–739. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/
Shao_Intra- _and_Inter- Action_Understanding_via_Temporal_Action_Parsing_
CVPR_2020_paper.html (visited on 16/05/2021).

[344] Hao Shao, Shengju Qian and Yu Liu. ‘Temporal Interlacing Network’. In: Proceedings of
the AAAI Conference on Artificial Intelligence 34.07 (07 3rd Apr. 2020), pp. 11966–11973.
ISSN: 2374-3468. DOI: 10.1609/aaai.v34i07.6872. URL: https://ojs.aaai.org/index.
php/AAAI/article/view/6872 (visited on 09/08/2021).

233

https://arxiv.org/abs/1911.00232
http://arxiv.org/abs/1911.00232
https://openaccess.thecvf.com/content_CVPR_2020/html/Nagarajan_Ego-Topo_Environment_Affordances_From_Egocentric_Video_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Nagarajan_Ego-Topo_Environment_Affordances_From_Egocentric_Video_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Nagarajan_Ego-Topo_Environment_Affordances_From_Egocentric_Video_CVPR_2020_paper.html
https://doi.org/10.1109/ICRA40945.2020.9196862
https://doi.org/10.1109/ICRA40945.2020.9196862
https://doi.org/10.1109/ICRA40945.2020.9196862
https://doi.org/10.1037/bul0000229
32237881
https://openaccess.thecvf.com/content_CVPR_2020/html/Piergiovanni_Evolving_Losses_for_Unsupervised_Video_Representation_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Piergiovanni_Evolving_Losses_for_Unsupervised_Video_Representation_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Piergiovanni_Evolving_Losses_for_Unsupervised_Video_Representation_Learning_CVPR_2020_paper.html
https://doi.org/10.1109/TPAMI.2020.2976971
https://openaccess.thecvf.com/content_CVPR_2020/html/Rao_A_Local-to-Global_Approach_to_Multi-Modal_Movie_Scene_Segmentation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rao_A_Local-to-Global_Approach_to_Multi-Modal_Movie_Scene_Segmentation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rao_A_Local-to-Global_Approach_to_Multi-Modal_Movie_Scene_Segmentation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-Grained_Action_Understanding_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-Grained_Action_Understanding_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-Grained_Action_Understanding_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_Intra-_and_Inter-Action_Understanding_via_Temporal_Action_Parsing_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_Intra-_and_Inter-Action_Understanding_via_Temporal_Action_Parsing_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shao_Intra-_and_Inter-Action_Understanding_via_Temporal_Action_Parsing_CVPR_2020_paper.html
https://doi.org/10.1609/aaai.v34i07.6872
https://ojs.aaai.org/index.php/AAAI/article/view/6872
https://ojs.aaai.org/index.php/AAAI/article/view/6872

BIBLIOGRAPHY

[345] Lucas Smaira et al. A Short Note on the Kinetics-700-2020 Human Action Dataset. 21st Oct.
2020. arXiv: 2010.10864 [cs]. URL: http://arxiv.org/abs/2010.10864 (visited on
16/08/2021).

[346] Jonathan C. Stroud et al. ‘D3D: Distilled 3D Networks for Video Action Recognition’. In:
2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV). Mar. 2020, pp. 614–623.
DOI: 10.1109/WACV45572.2020.9093274.

[347] Pascal Sturmfels, Scott Lundberg and Su-In Lee. ‘Visualizing the Impact of Feature
Attribution Baselines’. In: Distill 5.1 (10th Jan. 2020), e22. ISSN: 2476-0757. DOI: 10.
23915/distill.00022. URL: https://distill.pub/2020/attribution- baselines
(visited on 27/05/2020).

[348] Swathikiran Sudhakaran, Sergio Escalera and Oswald Lanz. ‘Gate-Shift Networks for
Video Action Recognition’. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 1102–1111. URL: https://openaccess.thecvf.
com/content_CVPR_2020/html/Sudhakaran_Gate-Shift_Networks_for_Video_Action_
Recognition_CVPR_2020_paper.html (visited on 09/08/2021).

[349] Mukund Sundararajan and Amir Najmi. ‘The Many Shapley Values for Model Explana-
tion’. In: Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning Re-
search. PMLR, 2020, pp. 9269–9278. URL: http://proceedings.mlr.press/v119/
sundararajan20b.html.

[350] Zachary Teed and Jia Deng. ‘RAFT: Recurrent All-Pairs Field Transforms for Optical
Flow’. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2020, pp. 402–419. ISBN:
978-3-030-58536-5. DOI: 10.1007/978-3-030-58536-5_24.

[351] Heng Wang et al. ‘Video Modeling With Correlation Networks’. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 352–
361. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Video_
Modeling_With_Correlation_Networks_CVPR_2020_paper.html (visited on 29/06/2020).

[352] Jiangliu Wang, Jianbo Jiao and Yun-Hui Liu. ‘Self-Supervised Video Representation
Learning by Pace Prediction’. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi
et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020,
pp. 504–521. ISBN: 978-3-030-58520-4. DOI: 10.1007/978-3-030-58520-4_30.

[353] Zhenzhi Wang et al. ‘Boundary-Aware Cascade Networks for Temporal Action Segmenta-
tion’. In: Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XXV. Ed. by Andrea Vedaldi et al. Vol. 12370. Lecture Notes
in Computer Science. Springer, 2020, pp. 34–51. DOI: 10.1007/978-3-030-58595-2_3.
URL: https://doi.org/10.1007/978-3-030-58595-2_3.

[354] Fanyi Xiao et al. Audiovisual SlowFast Networks for Video Recognition. 8th Mar. 2020.
arXiv: 2001.08740 [cs]. URL: http://arxiv.org/abs/2001.08740 (visited on 02/08/2021).

234

https://arxiv.org/abs/2010.10864
http://arxiv.org/abs/2010.10864
https://doi.org/10.1109/WACV45572.2020.9093274
https://doi.org/10.23915/distill.00022
https://doi.org/10.23915/distill.00022
https://distill.pub/2020/attribution-baselines
https://openaccess.thecvf.com/content_CVPR_2020/html/Sudhakaran_Gate-Shift_Networks_for_Video_Action_Recognition_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sudhakaran_Gate-Shift_Networks_for_Video_Action_Recognition_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sudhakaran_Gate-Shift_Networks_for_Video_Action_Recognition_CVPR_2020_paper.html
http://proceedings.mlr.press/v119/sundararajan20b.html
http://proceedings.mlr.press/v119/sundararajan20b.html
https://doi.org/10.1007/978-3-030-58536-5_24
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Video_Modeling_With_Correlation_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Video_Modeling_With_Correlation_Networks_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-58520-4_30
https://doi.org/10.1007/978-3-030-58595-2_3
https://doi.org/10.1007/978-3-030-58595-2_3
https://arxiv.org/abs/2001.08740
http://arxiv.org/abs/2001.08740

BIBLIOGRAPHY

[355] Ceyuan Yang et al. ‘Temporal Pyramid Network for Action Recognition’. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 591–600. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/Yang_
Temporal_Pyramid_Network_for_Action_Recognition_CVPR_2020_paper.html (visited
on 12/08/2021).

[356] Ceyuan Yang et al. Video Representation Learning with Visual Tempo Consistency.
17th Dec. 2020. arXiv: 2006.15489 [cs]. URL: http://arxiv.org/abs/2006.15489
(visited on 18/08/2021).

[357] Linchao Zhu et al. ‘FASTER Recurrent Networks for Efficient Video Classification’. In:
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, the Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, the Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 13098–13105. URL: https:
//aaai.org/ojs/index.php/AAAI/article/view/7012.

[358] Anurag Arnab et al. ViViT: A Video Vision Transformer. 29th Mar. 2021. arXiv: 2103.15691
[cs]. URL: http://arxiv.org/abs/2103.15691 (visited on 12/05/2021).

[359] Gedas Bertasius, Heng Wang and Lorenzo Torresani. ‘Is Space-Time Attention All You
Need for Video Understanding?’ In: Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila
and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021,
pp. 813–824. URL: http://proceedings.mlr.press/v139/bertasius21a.html.

[360] Peihao Chen et al. ‘RSPNet: Relative Speed Perception for Unsupervised Video Rep-
resentation Learning’. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 1045–1053. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/16189 (visited on 18/08/2021).

[361] Ishan Dave et al. TCLR: Temporal Contrastive Learning for Video Representation. 4th Feb.
2021. arXiv: 2101.07974 [cs]. URL: http://arxiv.org/abs/2101.07974 (visited on
15/02/2021).

[362] Alexey Dosovitskiy et al. ‘An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale’. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL: https:
//openreview.net/forum?id=YicbFdNTTy (visited on 19/08/2021).

[363] Shreyank N. Gowda, Marcus Rohrbach and Laura Sevilla-Lara. ‘SMART Frame Selection
for Action Recognition’. In: Proceedings of the AAAI Conference on Artificial Intelligence
35.2 (2 18th May 2021), pp. 1451–1459. ISSN: 2374-3468. URL: https://ojs.aaai.org/
index.php/AAAI/article/view/16235 (visited on 16/08/2021).

[364] Xudong Guo, Xun Guo and Yan Lu. ‘SSAN: Separable Self-Attention Network for Video
Representation Learning’. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 12618–12627. URL: https://openaccess.
thecvf.com/content/CVPR2021/html/Guo_SSAN_Separable_Self-Attention_Network_
for_Video_Representation_Learning_CVPR_2021_paper.html (visited on 09/08/2021).

235

https://openaccess.thecvf.com/content_CVPR_2020/html/Yang_Temporal_Pyramid_Network_for_Action_Recognition_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Yang_Temporal_Pyramid_Network_for_Action_Recognition_CVPR_2020_paper.html
https://arxiv.org/abs/2006.15489
http://arxiv.org/abs/2006.15489
https://aaai.org/ojs/index.php/AAAI/article/view/7012
https://aaai.org/ojs/index.php/AAAI/article/view/7012
https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/2103.15691
http://arxiv.org/abs/2103.15691
http://proceedings.mlr.press/v139/bertasius21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/16189
https://ojs.aaai.org/index.php/AAAI/article/view/16189
https://arxiv.org/abs/2101.07974
http://arxiv.org/abs/2101.07974
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://ojs.aaai.org/index.php/AAAI/article/view/16235
https://ojs.aaai.org/index.php/AAAI/article/view/16235
https://openaccess.thecvf.com/content/CVPR2021/html/Guo_SSAN_Separable_Self-Attention_Network_for_Video_Representation_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Guo_SSAN_Separable_Self-Attention_Network_for_Video_Representation_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Guo_SSAN_Separable_Self-Attention_Network_for_Video_Representation_Learning_CVPR_2021_paper.html

BIBLIOGRAPHY

[365] Andrei Kapishnikov et al. ‘Guided Integrated Gradients: An Adaptive Path Method for
Removing Noise’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 5050–5058. URL: https://openaccess.thecvf.com/
content/CVPR2021/html/Kapishnikov_Guided_Integrated_Gradients_An_Adaptive_
Path_Method_for_Removing_Noise_CVPR_2021_paper.html (visited on 23/08/2021).

[366] Dan Kondratyuk et al. ‘MoViNets: Mobile Video Networks for Efficient Video Recog-
nition’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 16020–16030. URL: https://openaccess.thecvf.com/content/
CVPR2021 / html / Kondratyuk _ MoViNets _ Mobile _ Video _ Networks _ for _ Efficient _
Video_Recognition_CVPR_2021_paper.html (visited on 11/08/2021).

[367] Xinyu Li et al. VidTr: Video Transformer Without Convolutions. 23rd Apr. 2021. arXiv:
2104.11746 [cs]. URL: http://arxiv.org/abs/2104.11746 (visited on 03/08/2021).

[368] Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows.
25th Mar. 2021. arXiv: 2103.14030 [cs]. URL: http://arxiv.org/abs/2103.14030
(visited on 13/08/2021).

[369] Ze Liu et al. Video Swin Transformer. 24th June 2021. arXiv: 2106.13230 [cs]. URL:
http://arxiv.org/abs/2106.13230 (visited on 11/08/2021).

[370] Daniel Neimark et al. Video Transformer Network. 1st Feb. 2021. arXiv: 2102.00719 [cs].
URL: http://arxiv.org/abs/2102.00719 (visited on 12/05/2021).

[371] Rui Qian et al. ‘Spatiotemporal Contrastive Video Representation Learning’. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, June
19-25, 2021. Computer Vision Foundation / IEEE, 2021, pp. 6964–6974. URL: https://
openaccess.thecvf.com/content/CVPR2021/html/Qian_Spatiotemporal_Contrastive_
Video_Representation_Learning_CVPR_2021_paper.html.

[372] Wojciech Samek et al. ‘Explaining Deep Neural Networks and Beyond: A Review of
Methods and Applications’. In: Proceedings of the IEEE 109.3 (Mar. 2021), pp. 247–278.
ISSN: 1558-2256. DOI: 10.1109/JPROC.2021.3060483.

[373] M. Saquib Sarfraz et al. ‘Temporally-Weighted Hierarchical Clustering for Unsuper-
vised Action Segmentation’. In: IEEE Conference on Computer Vision and Pattern Re-
cognition, CVPR 2021, Virtual, June 19-25, 2021. Computer Vision Foundation / IEEE,
2021, pp. 11225–11234. URL: https://openaccess.thecvf.com/content/CVPR2021/
html/Sarfraz_Temporally-Weighted_Hierarchical_Clustering_for_Unsupervised_
Action_Segmentation_CVPR_2021_paper.html.

[374] Laura Sevilla-Lara et al. ‘Only Time Can Tell: Discovering Temporal Data for Tem-
poral Modeling’. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. 2021, pp. 535–544. URL: https://openaccess.thecvf.com/content/
WACV2021/html/Sevilla-Lara_Only_Time_Can_Tell_Discovering_Temporal_Data_
for_Temporal_Modeling_WACV_2021_paper.html (visited on 18/08/2021).

[375] Mike Zheng Shou et al. ‘Generic Event Boundary Detection: A Benchmark for Event
Segmentation’. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2021, pp. 8075–8084. URL: https://openaccess.thecvf.com/content/
ICCV2021/html/Shou_Generic_Event_Boundary_Detection_A_Benchmark_for_Event_
Segmentation_ICCV_2021_paper.html (visited on 06/11/2021).

236

https://openaccess.thecvf.com/content/CVPR2021/html/Kapishnikov_Guided_Integrated_Gradients_An_Adaptive_Path_Method_for_Removing_Noise_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kapishnikov_Guided_Integrated_Gradients_An_Adaptive_Path_Method_for_Removing_Noise_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kapishnikov_Guided_Integrated_Gradients_An_Adaptive_Path_Method_for_Removing_Noise_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kondratyuk_MoViNets_Mobile_Video_Networks_for_Efficient_Video_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kondratyuk_MoViNets_Mobile_Video_Networks_for_Efficient_Video_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kondratyuk_MoViNets_Mobile_Video_Networks_for_Efficient_Video_Recognition_CVPR_2021_paper.html
https://arxiv.org/abs/2104.11746
http://arxiv.org/abs/2104.11746
https://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2106.13230
http://arxiv.org/abs/2106.13230
https://arxiv.org/abs/2102.00719
http://arxiv.org/abs/2102.00719
https://openaccess.thecvf.com/content/CVPR2021/html/Qian_Spatiotemporal_Contrastive_Video_Representation_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Qian_Spatiotemporal_Contrastive_Video_Representation_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Qian_Spatiotemporal_Contrastive_Video_Representation_Learning_CVPR_2021_paper.html
https://doi.org/10.1109/JPROC.2021.3060483
https://openaccess.thecvf.com/content/CVPR2021/html/Sarfraz_Temporally-Weighted_Hierarchical_Clustering_for_Unsupervised_Action_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sarfraz_Temporally-Weighted_Hierarchical_Clustering_for_Unsupervised_Action_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sarfraz_Temporally-Weighted_Hierarchical_Clustering_for_Unsupervised_Action_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Sevilla-Lara_Only_Time_Can_Tell_Discovering_Temporal_Data_for_Temporal_Modeling_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Sevilla-Lara_Only_Time_Can_Tell_Discovering_Temporal_Data_for_Temporal_Modeling_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Sevilla-Lara_Only_Time_Can_Tell_Discovering_Temporal_Data_for_Temporal_Modeling_WACV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Shou_Generic_Event_Boundary_Detection_A_Benchmark_for_Event_Segmentation_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Shou_Generic_Event_Boundary_Detection_A_Benchmark_for_Event_Segmentation_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Shou_Generic_Event_Boundary_Detection_A_Benchmark_for_Event_Segmentation_ICCV_2021_paper.html

BIBLIOGRAPHY

[376] Didac Suris, Ruoshi Liu and Carl Vondrick. ‘Learning the Predictability of the Future’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 12607–12617. URL: https://openaccess.thecvf.com/content/CVPR2021/
html/Suris_Learning_the_Predictability_of_the_Future_CVPR_2021_paper.html
(visited on 18/08/2021).

[377] Rosaura G. VidalMata et al. ‘Joint Visual-Temporal Embedding for Unsupervised Learn-
ing of Actions in Untrimmed Sequences’. In: IEEE Winter Conference on Applications
of Computer Vision, WACV 2021, Waikoloa, HI, USA, January 3-8, 2021. IEEE, 2021,
pp. 1237–1246. DOI: 10.1109/WACV48630.2021.00128. URL: https://doi.org/10.1109/
WACV48630.2021.00128.

[378] Limin Wang et al. ‘TDN: Temporal Difference Networks for Efficient Action Recognition’.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 1895–1904. URL: https://openaccess.thecvf.com/content/CVPR2021/html/
Wang_TDN_Temporal_Difference_Networks_for_Efficient_Action_Recognition_
CVPR_2021_paper.html (visited on 12/08/2021).

[379] Xitong Yang et al. ‘Beyond Short Clips: End-to-End Video-Level Learning With Collaborat-
ive Memories’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2021, pp. 7567–7576. URL: https://openaccess.thecvf.com/content/
CVPR2021/html/Yang_Beyond_Short_Clips_End-to-End_Video-Level_Learning_With_
Collaborative_Memories_CVPR_2021_paper.html (visited on 11/08/2021).

[380] Yuan Zhi et al. ‘MGSampler: An Explainable Sampling Strategy for Video Action Recog-
nition’. In: (20th Apr. 2021). URL: https://arxiv.org/abs/2104.09952v1 (visited on
23/07/2021).

237

https://openaccess.thecvf.com/content/CVPR2021/html/Suris_Learning_the_Predictability_of_the_Future_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Suris_Learning_the_Predictability_of_the_Future_CVPR_2021_paper.html
https://doi.org/10.1109/WACV48630.2021.00128
https://doi.org/10.1109/WACV48630.2021.00128
https://doi.org/10.1109/WACV48630.2021.00128
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_TDN_Temporal_Difference_Networks_for_Efficient_Action_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_TDN_Temporal_Difference_Networks_for_Efficient_Action_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_TDN_Temporal_Difference_Networks_for_Efficient_Action_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Beyond_Short_Clips_End-to-End_Video-Level_Learning_With_Collaborative_Memories_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Beyond_Short_Clips_End-to-End_Video-Level_Learning_With_Collaborative_Memories_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Beyond_Short_Clips_End-to-End_Video-Level_Learning_With_Collaborative_Memories_CVPR_2021_paper.html
https://arxiv.org/abs/2104.09952v1

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Thesis overview

	Background
	Video Understanding Datasets
	A brief history of datasets for video action recognition
	Third-person action video datasets
	First-person action video datasets

	Video Understanding Models
	A very brief history of models for video action recognition
	Input modalities
	Before deep learning
	2D CNNs
	3D CNNs
	Two-stream networks
	Feature flow
	Factorised spatio-temporal modelling
	Attention and Transformers
	Long-term temporal modelling
	Higher-level modelling: objects and actors
	Efficient video understanding

	Time in video understanding
	The role of datasets in temporal modelling
	Time as a training signal

	Works related to video unweaving
	Model analysis
	Instance-centric understanding: Attribution
	Network-centric understanding

	Conclusion

	Comparing models for action recognition on EPIC-KITCHENS
	Models
	Experiments on EPIC-KITCHENS-55
	Experimental details
	Results

	Experiments on EPIC-KITCHENS-100
	Experimental details
	Results

	Conclusion

	Label-altering transforms
	Label-altering video transforms
	Experimental details
	Time reversal perception study
	A human's perspective
	A model's perspective

	Horizontal-flipping model perception study
	Applications of label-altering transforms
	Zero-shot learning
	Data augmentation

	Inferring class transforms from model responses
	Data loading issue
	Conclusion

	Attributing frames in video recognition
	Element attribution and the Shapley value
	Supporting variable-length sequences
	A tractable approach for computing ESVs
	Experiments
	Experimental setup
	Validating ESVs
	Understanding ESVs
	ESV approximation evaluation
	Computational cost
	Exploring ESVs

	Conclusion

	Unweaving video
	Unweaving stories
	Problem description
	Thread bank
	Neural controller
	Training

	Obtaining stories
	Synthetic stories
	Activity-story annotation

	Experiments
	Baselines
	Metrics
	Experimental details
	Results
	Ablation studies

	Conclusion

	Conclusion
	Additional material regarding label-altering transforms
	Supporting proofs for the element Shapley value
	Shapley value expectation forms
	Single expectation form
	Conditional expectation form

	Recursive definition of variable-length input model
	Linearity of Shapley values

	Glossary
	Bibliography

