727 research outputs found

    Inductive logic program synthesis with dialogs

    Get PDF
    DIALOGS (Dialogue-based Inductive and Abductive LOGic program Synthesizer) is a schema-guided synthesizer of recursive logic programs; it takes the initiative and queries a (possibly computationally naive) specifier for evidence in her/his conceptual language. The specifier must know the answers to such simple queries, because otherwise s/he wouldn't even feel the need for the synthesized program. DIALOGS call be used by any learner (including itself) that detects, or merely conjectures, the necessity of invention of a new predicate. Due to its foundation on a powerful codification of a “recursion-theory” (by means of the template and constraints of a divide-and-conquer schema), DIALOGS needs very little evidence and is very fast. © Springer-Vertag Berlin Heidelberg 1997

    An Update on Deductive Synthesis and Repair in the Leon Tool

    Get PDF
    We report our progress in scaling deductive synthesis and repair of recursive functional Scala programs in the Leon tool. We describe new techniques, including a more precise mechanism for encoding the space of meaningful candidate programs. Our techniques increase the scope of synthesis by expanding the space of programs we can synthesize and by reducing the synthesis time in many cases. As a new example, we present a run-length encoding function for a list of values, which Leon can now automatically synthesize from specification consisting of the decoding function and the local minimality property of the encoded value

    Can my chip behave like my brain?

    Get PDF
    Many decades ago, Carver Mead established the foundations of neuromorphic systems. Neuromorphic systems are analog circuits that emulate biology. These circuits utilize subthreshold dynamics of CMOS transistors to mimic the behavior of neurons. The objective is to not only simulate the human brain, but also to build useful applications using these bio-inspired circuits for ultra low power speech processing, image processing, and robotics. This can be achieved using reconfigurable hardware, like field programmable analog arrays (FPAAs), which enable configuring different applications on a cross platform system. As digital systems saturate in terms of power efficiency, this alternate approach has the potential to improve computational efficiency by approximately eight orders of magnitude. These systems, which include analog, digital, and neuromorphic elements combine to result in a very powerful reconfigurable processing machine.Ph.D

    Algorithm and Hardware Co-design for Learning On-a-chip

    Get PDF
    abstract: Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design and optimization of both hardware and algorithm. For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability. Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance. From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Varieties of evolved forms of consciousness, including mathematical consciousness

    Get PDF
    I shall introduce a complex, apparently unique, cross-disciplinary approach to understanding consciousness, especially ancient forms of mathematical consciousness, based on joint work with Jackie Chappell (Birmingham Biosciences) on the Meta-Configured Genome (MCG) theory. All known forms of consciousness (apart from recent very simple AI forms) are products of biological evolution, in some cases augmented by products of social, or technological evolution. Forms of consciousness differ between organisms with different sensory mechanisms, needs and abilities; and in complex animals can vary across different stages of development before and after birth or hatching or pupation, and before or after sexual and other kinds of maturity (or senility). Those forms can differ across individuals with different natural talents and environments, some with and some without fully functional sense organs or motor control functions (in humans: hearing, sight, touch, taste, smell, proprioception and other senses), along with mechanisms supporting meta-cognitive functions such as recollection, expectation, foreboding, error correction, and so forth, and varying forms of conscious control differing partly because of physical differences, such as conjoined twins sharing body parts. Forms of consciousness can also differ across individuals in different cultures with different shared theories, and social practices (e.g., art-forms, musical traditions, religions, etc.). There are many unanswered questions about such varieties of consciousness in products of biological evolution. Most of the details are completely ignored by most philosophers and scientists who focus only on a small subset of types of human consciousness—resulting in shallow theories. Immanuel Kant was deeper than most, though his insights, especially insights into mathematical consciousness tend to be ignored by recent philosophers and scientists, for bad reasons. This paper, partly inspired by Turing’s 1952 paper on chemistry-based morphogenesis, supporting William James’ observation that all known forms of consciousness must have been products of biological evolution in combination with other influences, attempts to provide (still tentative and incomplete) foundations for a proper study of the variety of biological and non-biological forms of consciousness, including the types of mathematical consciousness identified by Kant in 1781

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore