
Algorithm and Hardware Co-design

for Learning On-a-chip

by

Zihan Xu

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved August 2017 by the

Graduate Supervisory Committee:

Yu Cao, Chair

Chaitali Chakrabarti

Jae-sun Seo

Shimeng Yu

ARIZONA STATE UNIVERSITY

December 2017

 i

ABSTRACT

Machine learning technology has made a lot of incredible achievements in recent

years. It has rivalled or exceeded human performance in many intellectual tasks including

image recognition, face detection and the Go game. Many machine learning algorithms

require huge amount of computation such as in multiplication of large matrices. As silicon

technology has scaled to sub-14nm regime, simply scaling down the device cannot provide

enough speed-up any more. New device technologies and system architectures are needed

to improve the computing capacity. Designing specific hardware for machine learning is

highly in demand. Efforts need to be made on a joint design and optimization of both

hardware and algorithm.

For machine learning acceleration, traditional SRAM and DRAM based system

suffer from low capacity, high latency, and high standby power. Instead, emerging

memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque

Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access

Memory (RRAM), are promising candidates providing low standby power, high data

density, fast access and excellent scalability. This dissertation proposes a hierarchical

memory modeling framework and models PRAM and STT-MRAM in four different levels

of abstraction. With the proposed models, various simulations are conducted to investigate

the performance, optimization, variability, reliability, and scalability.

Emerging memory devices such as RRAM can work as a 2-D crosspoint array to

speed up the multiplication and accumulation in machine learning algorithms. This

dissertation proposes a new parallel programming scheme to achieve in-memory learning

with RRAM crosspoint array. The programming circuitry is designed and simulated in

 ii

TSMC 65nm technology showing 900X speedup for the dictionary learning task compared

to the CPU performance.

From the algorithm perspective, inspired by the high accuracy and low power of

the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural

network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than

95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm,

but requires far fewer number of computations. The role of inhibition in this network is

systematically studied and shown to improve the hardware efficiency in learning.

 iii

ACKNOWLEDGMENTS

 Foremost, I would like to sincerely thank my advisor Dr. Yu Cao for the support of

my Ph.D research. He has guided me the professional way to do research patiently. He has

helped me solve difficult prolems in my research. His motivation and enthusiasm always

inspire me to work harder and pursue the truth. His knowledge and vision has directed me

towards a great career. I could not have imagined having a better advisor for my Ph.D study.

 Besides my advisor, I would like to thank the reset of my dissertation committee:

Dr. Chaitali Chakrabarti, Dr. Jae-sun Seo, and Dr. Shimeng Yu. They have helped me a lot

through my projects with their professional knowledge and attitude. They have given me a

broad view and experience of different research fields.

 I also want to thank my fellows in Arizona State University for the help, discussion,

and support: Dr. Chengen Yang, Dr. Ketul Sutaria, Dr. Naveen Suda, Dr. Jyothi Velamala,

Dr. Saurabh Sinha, Pei An, Venkatesa Sarma Ravi, Abinash Mohanty, Devyani Patra,

Srivatsava Gorthy, Xiaocong Du, Zheng Li, Shihui Yin, Deepak Kadetotad, Xiaoyang Mi,

Pai-Yu Chen, Dr. Ligang Gao, Runchen Fang, Zhiwei Li, Rui Liu, Manqing Mao, Dr.

Wenhao Chen, Dr. Binbin Lin, Ming Tu.

 I would like to thank all the faculty and staff in Arizona State University for the

great Electrical Engineering program.

 Last but not the least, I want to thank my parents for their unreserved support

throughout my life.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION 1

1.1 Background .. 1

1.2 Contributions .. 5

2 RELATED WORK 8

2.1 Machine Learning Algorithm Optimization 8

2.2 Machine Learning Hardware Design .. 10

3 EMERGING MEMORY MODELING ... 14

3.1 Introduction .. 14

3.2 Phase Change Random Access Memory .. 17

3.3 Spin-Transfer Torque Magnetic Random Access Memory 35

3.4 Review of Resistive Random Access Memory 49

4 MACHINE LEARNING HARDWARE DESIGN ... 50

4.1 Introduction .. 50

4.2 Parallel Programming Scheme and Circuit Design 54

4.3 Simulation and Results .. 59

5 BIO-INSPIRED LEARNING ALGORITHM .. 63

5.1 Introduction .. 63

 v

CHAPTER Page

5.2 Feedforward Inhibition Spiking Neural Network 68

5.3 Results and Discussion .. 76

6 FUTURE WORK 94

7 CONCLUSION 95

REFERENCES....... .. 96

 vi

LIST OF TABLES

Table Page

1. Parameters in the PRAM Circuit Level Model .. 19

2. Material Properties in PRAM Model .. 22

3. PRAM Cell Simulation Parameters .. 29

4. Nominal Performance of 32nm SLC PRAM.. 32

5. Parameters in STT-MRAM Model ... 36

6. Models of Critical Points in STT-MRAM .. 39

7. Formulas for the RC Elements in SPICE ... 42

8. STT-MRAM Cell Simulation Parameters .. 45

9. Comparison of the Neural Network Models... 93

 vii

LIST OF FIGURES

Figure Page

3.1. PRAM Fundamental ... 15

3.2. Magnetic Tunnel Junction Structure ... 16

3.3. Hierarchical Memory Modeling Framework... 17

3.4. The FSM Models of PRAM ... 18

3.5. The Equivalent Circuit Model of PRAM ... 19

3.6. 2D Structure of PRAM Cells in Raphael ... 22

3.7. Geometry Dependence of Fully Crystalline GST Resistance 23

3.8. Geometry Dependent Electrical Resistance Model ... 24

3.9 Compact Models of Thermal Parameters .. 25

3.10. The Iteration in Model Simulation ... 26

3.11. PRAM Model Validation ... 27

3.12. Stuck-SET Model ... 28

3.13. PRAM Cell Structure ... 29

3.14. State Transition Curve .. 30

3.15. State Transition Curve in Nominal Condition with Different Pulse Width 31

3.16. Contribution of Different Variation Sources to Variability of RRESET 32

3.17. RESET State Transition Curve with CW Variations .. 33

3.18. PRAM Write Power ... 34

3.19. Required RESET Current and Pulse Width with Given Resistance Margin 34

3.20. State Transition Curve with Stuck-SET Degradation 35

3.21. An In-plane STT-MTJ is Programmed by a Current Pulse 36

 viii

Figure Page

3.22. dθ/dt for Different I When θ Changes from 0o to 180o 37

3.23. STT-MTJ Model Validation .. 39

3.24. The Regional RC Network for Dynamic SPICE Simulation 41

3.25. The Switching Behavior under Different Pulse Widths 43

3.26. The Matching in the Prediction of MTJ Resistance .. 43

3.27. The Scaling of Critical Current .. 44

3.28. STT-MRAM Cell Structure ... 45

3.29. Programming Current and Energy of P  AP Switching 47

3.30 Programming Current and Energy of AP  P Switching 47

3.31. Supply Voltage and Energy vs. Transistor Sizes for AP  P Switching 48

4.1. The Similarity of Programming a Biophysical Synapse and a RRAM Cell 52

4.2. The Parallel Programming Scheme ... 55

4.3. Circuit Schematic to Generate the Programming Voltage Z 57

4.4. Circuit Schematic to Generate the Programming Pulses of r 59

4.5. Timing Diagram of the Programming System .. 60

4.6. The Quantization Error of the Parallel Programming Method 61

4.7. Demonstration of the Proposed Method in Updating the Dictionary 62

5.1. Feedforward Inhibition Motif .. 67

5.2. The Firing Map of Excitatory Neurons ... 77

5.3. Testing Accuracy as a Function of the Number of Training Images 78

5.4. The Effect of Connectivity ... 80

5.5. The Effect of Weight Randomization .. 81

 ix

Figure Page

5.6. The Effect of Homeostatic Balance ... 82

5.7. The Effect of Habituation Rate ... 83

5.8. The Effect of Sparsity... 84

5.9. The Prediction Accuracy as a Function of the Number of E Neurons 86

5.10. Thresholding ... 88

5.11. Dynamic Thresholding .. 89

5.12. The Classification Results of the Inhibition Layer .. 91

5.13. The Total Weighed Sum of Input .. 92

 1

1. Introduction

1.1. Background

Machine learning technology, especially deep learning, has a lot of incredible

achievements in recent years. Machine learning based products have been integrated into

our daily life, such as spam filter for email, recommendation system on ecommerce

websites, and automatic face detection when taking photos with the smart phones. It has

also rivalled or exceeded human performance in many intellectual tasks including image

recognition, face detection and the Go game. In the image recognition task of 1,000

categories (ImageNet Large Scale Visual Recognition Challenge), the state-of-the-art

algorithm achieves 2.25% top-5 error rate (ILSVRC 2017), which is better than the human

performance of 5.1% top-5 error rate (Karpathy 2014).

Machine learning is the science of getting computers to learn, without being

explicitly programmed. The computers do not copy human’s knowledge directly, but learn

from data with human defined rules. Machine learning is a very broad concept, and this

dissertation only focuses on neural networks. A deep neural network model usually needs

to learn millions of parameters provided millions of data (LeCun et al. 2015, 521:436-444).

Thus, machine learning algorithms require huge amount of computations and data

movement.

The current success of machine learning can be attributed to three aspects. First, the

computational capability of modern computers have been increasing rapidly. Especially

the development of Graphics Processing Unit (GPU) makes large scale parallel

computation possible and efficient (Raina et al. 2009, 873-880). And deep learning models,

especially neural networks, are featured by highly parallel computation of matrix

 2

multiplication and convolution. With GPUs, people can train a deep neural network much

faster than before. This not only speeds up the developing and tuning cycle of the

algorithms, but also makes high complexity models possible. Second, as Internet spreads

all over the world, there are huge amount of data generated by everyone every day, such as

articles, pictures and search history. These “big data” on the Internet can be easily accessed

and collected. And large amount of data is crucial to the training of any machine learning

algorithm. Third, new algorithms and techniques were proposed to improve learning when

simply increasing the model complexity cannot improve the performance due to overfitting,

e.g. regularization, dropout (Srivastava et al. 2014, 873-880), and residual learning (He et

al. 2015). Due to the reasons above, the tremendous growth of machine learning depends

on the development of both hardware and algorithm.

The demand for faster computing is increasing every day. The semiconductor

hardware industry has been following Moore’s law due to a variety of benefits of scaling

(Moore 1965, Moore 1975). The number of transistors on a chip doubles every two years.

The performance of a chip doubles every 18 months due to more and faster transistors. And

the cost of chips becomes more affordable to more people. Although Moore’s law came

from Gordon Moore's observation rather than any scientific or engineering theory, it has

been very successful for over 50 years. However, as the silicon technology has scaled to

sub-14nm regime, simply scaling down the device cannot provide enough speed-up any

more. New device technologies and system architectures are needed to improve the

computing capacity and continue Moore’s law. Moreover, specific hardware for machine

learning acceleration is highly in demand.

 3

Based on different applications of machine learning, there will be different

specifications and hardware choices. Machine learning algorithms usually have two phases,

the training phase and the inference phase. During training, the model computes the

forward path and backward path to update the parameters. During inference, the model

parameters are fixed, and the model only computes the forward path to get the output for a

given input. Basically, training is to obtain the model while inference is to use the model.

Thus, training requires more computing and memory accesses. Designing hardware for

training is more challenging than inference. Also, the hardware for inference can be very

specific to the model to achieve better performance, while the hardware for training needs

to be more general since the model to be trained often changes. From the perspective of

where the machine learning models are used, they can be used in cloud servers or on edge

devices. In the cloud, complex deep learning models are used to do training or inference

on “big data”. Speed is important to shorten the model development cycle or reduce the

query latency. On the edge, more and more machine learning applications like voice

recognition, machine translation and personalized health care will be implemented on the

mobile devices. Therefore, application in the cloud may prefer hardware optimized for high

speed, while application on the edge may prefer hardware optimized for low power.

There are different hardware choices based on different specifications. CPU is good

for light load due to its high frequency, low power and high flexibility. GPU is now widely

used to train deep learning models, which is much faster than CPU due to its Single

Instruction Multiple Data (SIMD) operation and high bandwidth memory. However, GPU

is not yet specialized for machine learning and it consumes a lot of power. Recently, more

attention is paid to design of Application Specific Integrated Circuit (ASIC) for machine

 4

learning (Misra 2016, 74:239-255). It has the promise to outperform GPU in terms of speed

and power. But ASIC design usually needs a long design and verification cycle, and the

software ecosystem needs to follow up quickly. Another great option is the Field

Programmable Gate Array (FPGA) (Misra and Saha 2016, 74:239-255). The computing

capacity and memory capacity of FPGAs are improving quickly. And the development

cycle of FPGA is much shorter than ASIC. These features make FPGA an excellent choice

for certain fast changing applications.

 The above acceleration options are mostly based on parallel computation with

SIMD. Most efforts are made to include more parallel Processing Elements (PE) and

increase the memory bandwidth, so that the computing capacity and the data movement

capacity are improved together. However, in these approaches, data storage and computing

are separated. Data need to be transferred from memory to the registers in PE to be

processed. Since it’s quite possible to increase the number of parallel PEs to speed up

computing, the memory bandwidth will eventually become the bottleneck. Therefore, a

more advanced idea is to do the computation inside the memory. This requires a new type

of memory device that enables computing capability.

Learning on-a-chip requires not only hardware design and implementation, but also

optimization of the algorithms to be easier to implement on hardware. One approach is to

reduce the number of bits of data including parameters and variables. In the current

computer system, data are usually represented by 32 bits, such as single-precision floating-

point number and integer type. Many researches have shown that machine learning

algorithms do not actually need 32-bit numbers (Gupta et al. 2015, Baldassi et al. 2016,

 5

93:052313, Merolla et al. 2016). Reducing the number of bits will benefit computation,

data movement and memory storage for hardware implementation.

Similarly in human brain, the basic elements, the neurons and synapses, do not have

high numerical precision, but the brain has excellent performance and extreme low power

in the cognitive tasks. It manages a variety of tasks with such a small volume. Thus biology

and neuroscience provide motivation to improve the current learning algorithms and their

hardware implementation efficiency.

1.2. Contributions

As silicon technology scales down, traditional CMOS-based memory such as

SRAM and DRAM will suffer from high standby power consumption. They may no longer

be the technology of choice for machine learning acceleration. Instead, emerging memories,

such as Phase Change Random Access Memory (PRAM) (Burr et al. 2010, 28:223-262,

Wong et al. 2010, 98 :2201-2227), Spin-Transfer Torque Magnetic Random Access

Memory (STT-MRAM) (Wang et al. 2008, 44:2479-2482, Sharad et al. 2012, 11:843-853),

and Resistive Random Access Memory (RRAM) (Wong et al. 2012, 100:1951-1970, Jo et

al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779), are promising candidates for the

next generation non-volatile memory. They provide low standby power, high data density,

fast access and excellent scalability. They are also very promising to be integrated into the

machine learning chip with CMOS technology. More importantly, they have the potential

to do computation. Therefore, they are great candidates in the machine learning hardware.

Modeling of these emerging memory devices is essential to the design. This dissertation

proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM

in four different levels of abstraction (Xu et al. 2012, Xu et al. 2013, Xu et al. 2014, 102:76-

 6

81). With the proposed models, various simulations are conducted to investigate the

performance, optimization, variability, reliability, and scalability of these two memories.

Emerging non-volatile memory devices such as RRAM can work as a 2-D

crosspoint array, which is a promising structure for matrix-based machine learning

algorithms. It can do parallel computation of multiplication and accumulation based on

current-voltage relationship. Thus, it reduces the need for data movement since the

computation happens in the memory itself. This architecture is different from the

mainstream Von-Neumann architecture, and is more suitable for data intensive

applications like machine learning algorithms. How to integrate the non-volatile memory

array with the computing system is a very challenging problem. It requires proper circuit

and system design to achieve high speed and low power. This dissertation proposes a new

parallel programming scheme to achieve in-memory learning with RRAM crosspoint array

(Xu et al. 2014, 41:126-133). Based on the scheme, the programming circuitry is designed

and simulated in TSMC 65nm technology. The proposed parallel programming scheme

can speed up the dictionary learning task significantly compared to the CPU.

Another approach to optimize the algorithms is to learn from the biological nervous

system. Inspired by the brain, which has high accuracy, low power and high hardware

efficiency, many learning models were developed with spiking neurons (Cao et al. 2015,

113:54-66, Diehl et al. 2015). This dissertation proposes a bio-plausible feedforward

inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning

rule (Xu et al. 2016, Xu et al. 2017). It achieves more than 95% accuracy on the standard

benchmark MNIST dataset, which is comparable to the sparse coding algorithm, but needs

 7

much less number of computations. The inhibition in this network plays an important role

in improving the hardware efficiency of learning.

The rest of the dissertation is organized as follows. Chapter 2 reviews related works

on machine learning algorithm optimization with low numerical precision, and machine

learning hardware design including ASIC and FPGA. Chapter 3 focuses on emerging

memory devices. Modeling and design exploration are conducted for Phase Change

Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic Random Access

Memory (STT-MRAM). Resistive Random Access Memory (RRAM) is also reviewed in

this chapter to be used in next chapter. Chapter 4 designs the new parallel programming

circuitry for learning on an RRAM crosspoint array. In Chapter 5, existing learning

algorithms are firstly reviewed, and a new bio-plausible learning algorithm of feedforward

inhibition spiking neural network is proposed and demonstrated with the standard

benchmark MNIST dataset. Finally, Chapter 6 proposes the future works and Chapter 7

concludes this dissertation.

 8

2. Related Work

 This chapter reviews related works on machine learning algorithm optimization

with low numerical precision, and machine learning hardware design including ASIC,

FPGA and emerging non-volatile memory array.

2.1. Machine Learning Algorithm Optimization

 To optimize machine learning algorithms for hardware implementation, many

efforts were spent on reducing the numerical precision due to its benefits to computation,

data movement and memory storage. Many works focused on the training of models. Hollis

et al. (1990, 2:363-373) studied the effects of precision constraints on the backpropagation

in neural network training. Fixed point arithmetic was used in the analog circuits to

implement the backpropagation. Holt et al. (1993, 42:281-290) theoretically analyzed the

finite precision error of the computations in training Multi-Layer Perceptron (MLP) for

hardware implementation. Plagianakos and Vrahatis (1999) used the differential evolution

strategy to train neural networks of 3-bit integer weights on simple datasets. For more

complex deep learning algorithms, Baldassi et al. (2016, 93:052313) did the theoretically

analysis for the possibility that learning may need only few bits of synaptic precision.

Gupta et al. (2015) proposed the stochastic rounding method to train deep learning

models with 16-bit fixed-point number. It achieved 25.4% testing error on CIFAR-10

dataset (Krizhevsky and Hinton 2009), which is very close to the floating-point model

baseline. Gysel et al. (2016) managed to condense CaffeNet model to 8-bit fixed-point

representation using quantization and fine-tuning method. Lin et al. (2016) further

proposed 3 fine-tuning methods and did a systematical study. They studied the effect of

 9

low precision weights and activations separately. They also showed different layers in the

model have different effect of low precision on the accuracy.

More aggressively, there are many works trying to train neural networks with

binary weights and activations. Baldassi (2009, 136:902-916) studied generalization

learning in a perceptron with binary synapses. Kim and Smaragdis (2016) proposed the

weight compression and noisy backpropagation method to train neural networks with

binary weights and activations. They achieved 1.33% error rate on the MNIST dataset

(LeCun et al. 1998, 86:2278-2324). Courbariaux has a series of three papers (Courbariaux

et al. 2014, Courbariaux et al. 2015, Courbariaux et al. 2016) on the binary neural networks

and studied the more difficult CIFAR-10 dataset. They used the method of propagating

gradients through discretization and batch normalization in training, and achieved 9.9%

error rate on CIFAR-10 dataset with the VGG model baseline (Simonyan and Zisserman

2014). Rastegari et al. (2016) proposed a new method to project the binary weights based

on mathematical derivation and applied this on AlexNet (Krizhevsky 2012) on the more

complex ImageNet dataset. Compared to the 80.2% top-5 accuracy of full-precision

AlexNet, they achieved 69.2% accuracy with binary weight and binary activation model,

and achieved 79.4% accuracy with binary weight only model. Zhou et al. (2016) studied

various number of bits of weights and activations in the AlexNet model, and achieved 43.6%

accuracy. Merolla et al. (2016) not only studied the weight binarization but also other non-

linear distortions during training. They showed that deep neural networks are robust to

them with experiments on CIFAR-10 and ImageNet dataset. Stromatias et al. (2015) also

showed the robustness of spiking deep belief networks to noise and reduced bit precision.

With all these efforts above, the binary neural networks training can achieve the same

 10

accuracy as the full-precision counterpart on some datasets, but still cannot compete on the

complex ImageNet dataset. Li et al. (2016) proposed the ternary weight networks and

applied on the ResNet (He et al. 2016). They showed 84.2% accuracy on ImageNet dataset

compared to the 86.76% accuracy of the full-precision model. Other experiments also

showed that the accuracy of the ternary weight networks is almost the same as the full-

precision counterparts.

 Besides the low precision models, Iandola et al. (2016) tried to reduce the size of

neural networks for easier implementation on the embedded hardware. They proposed a

small CNN architecture called SqueezeNet. It achieved AlexNet-level accuracy on

ImageNet dataset with 50x fewer parameters. For inference purpose only, Han et al. (2015)

proposed the deep compression method including pruning, trained quantization and

Huffman coding. They managed to reduce the memory storage of VGG-16 model by 49X

with no loss of accuracy.

2.2. Machine Learning Hardware Design

 Many efforts were made to design machine learning acceleration hardware

including ASIC and FPGA. Chen et al. proposed a series of ASIC designs called “DianNao

family” (Chen et al. 2016, 59:105-112, Chen et al. 2014, 49:269-284, Luo et al. 2017,

66:73-88, Du et al. 2015, 43:92-104). They specially emphasized the impact of the memory

on machine learning accelerator design, performance and energy. Among the DianNao

family, DaDianNao was designed for neural networks and achieved peak performance of

5585 giga operations per second (GOPS) with peak power of 15.97 W in 28 nm technology.

This is a 450X speedup over GPU with 150X less energy comsumption. It applied loop

tiling and SIMD to minimize the memory access. ShiDianNao was designed for

 11

convolutional neural networks (CNN) and achieved 194 GOPS with 0.32 W in 65 nm

technology. Since the storage size of convolution kernels is not very large, this design

stored the parameters in SRAM rather than DRAM, thus saving a lot of time and energy in

memory access. A group from MIT proposed an energy-efficient reconfigurable ASIC

design for CNN (Chen et al. 2016, 52:127-138). The design adopted special dataflow

according to the behavior of convolution thus maximized the data reuse. The chip

implemented in 65 nm technology achieved 34.7 images per second of the five

convolutional layers inference in AlexNet with power of 278 mW. Google recently

revealed more details about their Tensor Processing Unit (TPU) (Jouppi et al. 2017). It

achieved 180 tera floating point operations per second (TFLOPS) with 4 chips on the board.

The 2D systolic array is adopted in matrix multiplication to improve the throughput.

Apart from these designs accelerating the arithmetic computations in neural

networks, IBM designed the chip called TrueNorth implementing the spiking neural

networks (Merolla et al. 2014, 345:668-673). They converted the convolutional neural

network to the spiking version and implemented on the TrueNorth chip. They achieved

more than 1000 images per second for inference.

To further speed up the inference, Han et al. (2016) designed an ASIC of efficient

inference engine (EIE) on compressed deep neural networks as a follow-up work of the

deep compression work. It achieved 102 GOPS on compressed models and 3 TOPS on

uncompressed models.

There are also many works using FPGA as the machine learning accelerator.

Farabet et al. (2011) designed a runtime reconfigurable dataflow processor and developed

the compiler to map CNN algorithms on the hardware design. They demonstrated the street

 12

scene understanding application and achieved 160 peak GOPS with only 10 W power.

Gokhale et al. (2014) designed a mobile coprocessor for CNN and achieved 240 GOPS.

Zhang et al. (2015) used a roofline model to explore the design space of the computation

throughput and memory bandwidth, and achieved 61.62 GFLOPS under 100 MHz working

frequency for CNN. Suda et al. (2016) proposed a throughput-optimized OpenCL based

design on FPGA for CNN. They achieved 136.5 GOPS for the convolution operation. Qiu

et al. (2016) implemented VGG-16 model on FPGA using RTL design. The data precision

is quantized to 8 bits and even 4 bits with only 0.4% accuracy loss. They achieved 187.8

GOPS for convolution and 137 GOPS for the full model. Ma et al. (2016) proposed a

scalable and modular RTL compiler of CNN. They optimized the CNN operations in RTL

and developed a compiler to map the CNN models to the RTL module. So, it integrates the

flexibility of high level synthesis (HLS) and the finer level optimization of RTL. They

achieved 114.5 GOPS for the AlexNet model. Wei et al. (2017) implemented the systolic

array architecture on FPGA and achieved impressive 461 GFLOPS for floating point data

type and 1.2 TOPS for 8-16 bits fixed point data. Besides the above efforts to reduce the

data precision, there are a few works to implement the binary neural networks on FPGA

utilizing the flexibility of FPGA (Nurvitadhi et al. 2016, Fraser et al. 2017, Zhao et al.

2017). They have achieved peak throughput from 207.8 GOPS up to 14.8 TOPS.

There are also some other works using the emerging non-volatile memory array.

Park et al. (2012) firstly demonstrated the use of a 1k-bit RRAM crosspoint array to speed

up machine learning algorithms. Garbin et al. (2014) proposed a spike-based

implementation of CNN using binary RRAM devices and achieved 94% accuracy on

MNIST dataset. Xia et al. (2015) did a thorough technological exploration RRAM

 13

crosspoint array for matrix-vector multiplication. They studied the non-ideal factors of the

device, variations, and parasitics, and analyzed how to achieve a better trade-off between

performance, energy and reliability. Prezioso et al. (2015) did an experimental

implementation of RRAM crosspoint array for a single layer perceptron. They

demonstrated the training of the model on the RRAM crosspoint array and achieved a good

classification result on a small task. Hu et al. (2016) developed the Dot-Product Engine

with RRAM crosspoint array and showed 1,000X to 10,000X more speed-energy

efficiency product than state-of-the-art ASIC design. Gokmen and Vlasov (2016, 10)

applied stochastic computing and stochastic update rule on the RRAM crosspoint array.

They achieved 98% accuracy on MNIST dataset by training a CNN model. A full update

cycle of an array performed using 1 ns pulses can be completed in 20 ns with 0.28 W power.

Chi et al. (2016) designed the entire system and software-hardware interface to use RRAM

crosspoint array as matrix-vector multiplication accelerator called PRIME. It shows

1,596X to 73,237X speedup and 335X to 138,984X power consumption reduction over

CPU.

 14

3. Emerging Memory Modeling

In this chapter, a hierarchical framework is proposed for the emerging memory

modeling. Phase Change Random Access Memory (PRAM) and Spin-Transfer Torque

Magnetic Random Access Memory (STT-MRAM) are modeled explicitly. With the

proposed compact models, early stage design benchmarking is performed for these two

types of memory. In addition, Resistive Random Access Memory (RRAM) is reviewed for

the completion of the scope and will be used in the later work.

3.1. Introduction

As Silicon technology is scaling down toward the 10nm regime, CMOS-based

memory devices such as SRAM and DRAM suffer from high standby power consumption,

so that they may no longer be the technology of choice. Instead, emerging memories, such

as Phase Change Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic

Random Access Memory (STT-MRAM), are promising candidates for the next generation

non-volatile memory. They provide low standby power, high data density, fast access and

excellent scalability. In the past decade, there has been significant research effort on

engineering various types of memory device. Modeling of these memory devices including

nominal performance and variability is highly demanded for design practice.

Phase Change Random Access Memory (PRAM) is one promising candidate for

the next generation non-volatile memory. It has been shown to have excellent scalability,

fast read access time, good data retention and high data density (Burr et al. 2010, 28:223-

262, Wong et al. 2010, 98 :2201-2227). Figure 3.1 (a) shows the basic structure of PRAM.

It consists of phase change material (chalcogenide alloy, Ge2Sb2Te5 (GST)) and a heater.

The phase change material can switch between the amorphous phase with high electrical

 15

resistance (logic ‘0’) and the crystalline phase with low electrical resistance (logic ‘1’).

The phase is changed by increasing the temperature of phase change material with applied

current pulse. To change the crystalline phase to amorphous phase, a current pulse with

high amplitude and short duration is applied. To change the amorphous phase to crystalline

phase, a lower and longer current pulse is applied. Figure 3.1 (b) shows the temperature

profile in PRAM cell during these two switching periods. Additionally, by changing the

current pulse profile, it is able to program PRAM to intermediate states continuously so

that Multi-Level-Cell (MLC) is available for PRAM.

c-GST

Programming
Region

c/a - GST

Heater

 (a) (b)

Figure 3.1. PRAM fundamental. (a) A basic PRAM cell structure. (b) Temperature

profile of phase change material during programing.

Besides PRAM, Spin-Transfer Torque Magnetic Random Access Memory (STT-

MRAM) is another promising memory technology. It promises good combinations of high

density, fast read and write access, low switching power, and non-volatile data storage

(Wang et al. 2008, 44:2479-2482, Sharad et al. 2012, 11:843-853). STT-MTJ is based on

Magnetic Tunnel Junction (MTJ). Figure 3.2 illustrates the basic structure of MTJ.

Magnetic tunnel junction consists of two layers of ferromagnetic material separated by an

 16

insulator layer. The magnetic orientation of one layer is fixed while the magnetic

orientation of the other layer can be changed by application of current pulse through MTJ.

The magnetic angle between these two layers (parallel (P) or anti-parallel (AP)) determines

the resistance of MTJ. When a current is applied through the junction, the spin of the

electrons is polarized by the fixed magnetic layer, and then transferred to the free layer to

change the magnetic orientation.

Figure 3.2. Magnetic Tunnel Junction structure.

A good memory model should have the following features. (1) The model should

be based on physical principle of the device for it to be trustable and tunable with

technology evolution. (2) The model should capture various performance metrics of

memory device including static and dynamic behavior, energy, speed, variability,

reliability and scalability to support optimizations at multiple design levels (system level,

circuit level, etc.). (3) The model should be easily implemented in SPICE with high

simulation efficiency for co-design with CMOS devices. Hence, a hierarchical memory

modeling framework is proposed, which is capable with all the features above. Figure 3.3

illustrates the proposed hierarchical memory modeling framework, which is general for all

types of memory devices. It starts from the common behavioral model of a digital memory,

 17

the finite-state-machine (FSM), with electrical forces to control the program/erase/hold of

the state. The FSM is then mapped to a structural model, using an equivalent circuit for

SPICE simulation. This includes device-level models that can capture the underlying

physical mechanisms of phase change and the dependence on material/structure parameters.

The physical nature of device-level model further helps embed variability and reliability

issues in the analysis. From top down to the bottom, one can develop the model layer by

layer, from abstraction to details. It also helps us with memory design from a system

perspective. From bottom up, one can do optimization for the memory from a device

perspective. With such hierarchical approach, cross-layer analysis and the comparison of

different memories in each hierarchy level are enabled. This will give us a better

understanding of different types of memory and make heterogeneous design easier. PRAM

and STT-MRAM are then modeled within such a framework.

Figure 3.3. Hierarchical memory modeling framework.

3.2. Phase Change Random Access Memory

3.2.1. PRAM Modeling

At behavior level, PRAM is modeled as the finite-state-machine in Figure 3.4.

Since PRAM has both single-level cell (SLC) and multi-level cell (MLC) application, it

 18

has multiple FSMs. As shown in Figure 3.4 (a), SLC PRAM has two digital states, ‘0’ and

‘1’. To RESET the cell from ‘1’ to ‘0’, a high and short current pulse is applied. To SET

the cell from ‘0’ to ‘1’, a lower and longer current pulse is applied. Since PRAM needs

large write energy, the data is read before write; if the initial state and the target state are

the same, no writing is needed. Figure 3.4 (b) shows the FSM model for a 4 levels MLC

PRAM (Bedeschi et al. 2009, 44:217-227). Here ‘00’ is high resistance amorphous state,

‘11’ is low resistance crystalline state, and ‘01’ and ‘10’ are the two intermediate states.

To SET PRAM to ‘11’ state from any other initial state, a ramping down SET pulse is

applied. To RESET a ‘01’ or ‘10’ state to ‘00’ state, it needs to SET to ‘11’ first and then

RESET. To write ‘01’ or ‘10’, it needs to RESET to ‘00’ first and then program in a read

and verify process using sequential short current pulses. With the FSM, one can easily

figure out the transfer of states under a given current pulse.

 (a) (b)

Figure 3.4. The FSM models of PRAM. (The programming current waveform is

illustrated.) (a) SLC (b) 4 levels MLC.

To map the FSM behavior into a circuit-level model for SPICE, an equivalent

circuit model is introduced that captures each state transition in FSM. The input at this

level is the initial state and the applied current pulse, and the output is the next state as well

01

00

10

11

 19

as the energy and latency of each programming step. The circuit level model focuses on

the physical procedure of state transition, and is shared by both SLC and MLC operations.

RT CT

T

I
2
(t)Rwrite

Rm

Rg(T)
Cstate

Input Energy

Conversion

Phase Change

Eq. (2)

Temperature

Transition Eq. (1)

Geometry/Structure/Material

Iteration

Figure 3.5. The equivalent circuit model of PRAM.

Table 1. Parameters in the PRAM circuit level model.

Parameters Description

I Input current amplitude

Rwrite Electrical resistance of PRAM cell during write

RT Thermal resistance of GST

CT Thermal capacitance of GST

Cstate Store the state of memory cell

Rg(T) Describe the crystallization of GST

Figure 3.5 gives the equivalent circuit model of PRAM, which consists of four parts,

input energy conversion, temperature transition, phase change and geometry. Table 1

defines the parameters used at this level. The geometry block in Figure 3.5 describes the

cross-sectional shape of a PRAM cell; the exact dimensions of each part are used to

calculate electrical and thermal parameters. As the phase change of PRAM is based on

heating, the input power is calculated by I2Rwrite in the input energy conversion block. Since

the crystalline GST has a very low resistivity, Rwrite is mainly the resistance of the metallic

 20

heater (Itri et al. 2004). The energy conductance in PRAM is described by the energy

conservation equation:

   TCdtRTRI TTwrite

2

 (1)

where ΔT is the temperature difference between the top electrode and the interface of GST

and the heater. Equation (1) is modeled by the RTCT circuit in the temperature transition

block (Figure 3.5), where RT is the thermal resistance and CT is the thermal capacitance

(Kwong et al. 2008, Warren et al. 2008). The output node of this block indicates the

temperature in the PRAM cell, which is further used in the phase change block. The phase

change block consists of a capacitor Cstate to indicate the state of the memory, a switch, a

voltage source and resistors. The temperature evaluated by the temperature transition block

is used to decide the switch position: when the temperature is higher than melting

temperature (T>Tm), the switch flips up and Cstate is charged by the voltage source,

indicating the melting of GST. When the temperature is between the melting and annealing

temperature (Ta<T<Tm), the switch flips down and Cstate is discharged through Rg,

indicating the annealing of GST. The crystallization process is described by the Johnson-

Mehl-Avrami (JMA) equation (Johnson and Mehl 1939, 135:416-458):

  






T
tf


exp1
 (2)

where f is the fraction of the crystalized region, t is time, and τ(T) is a temperature

dependent time constant defined by:

   
 

 ma

m

B

A
stateg

statem

TTT

TT

Tk
E

CTR

CR

T





















exp0


 (3)

 21

where EA is the active energy of crystallization, kB is Boltzmann constant and τ0 is a

constant. Therefore, the RC circuit models the exponentially phase change of PRAM and

the voltage of Cstate indicates the size of amorphous region, which corresponds to the

memory state.

This abstracted level of PRAM model can be used to capture the nominal

performance of single memory cell. The latency of write is defined as the time when the

input current is applied to the end when the cell cools down. So, the latency can be obtained

from the temperature transient curve by the circuit model. The energy of write is evaluated

by I2Rwritetpulse, where tpulse is the time period of the input current pulse.

 The device level model of PRAM predicts the parameters in the circuit model from

cell geometry. It further paves a path to analyze the variability issues. TCAD simulators

can be used to analyze the resistance change of PRAM, but with poor simulation efficiency.

Thus, a geometry based compact model is necessary for design analysis. In this section, a

geometry dependent resistance model is proposed for the mushroom cell PRAM (Wong

2010 98:2201-2227), which is one of the most common shapes of PRAM cell. Raphael 2D,

a TCAD tool, is used to validate the model.

Figure 3.6 shows the 2D structure and the potential profile of a mushroom cell

PRAM from Raphael 2D. The key dimensions of a mushroom cell are also specified in

Figure 3.6: d is the thickness of GST, W is the width of the top contact, and CW is the

width of the bottom contact between GST and the heater. It is assumed that the shape of

the amorphous region is a hemisphere with radius r. These dimensions will determine the

electrical resistance, thermal resistance and thermal capacitance of PRAM memory cell.

 22

Table 2 summarizes the material properties that are used in this model (Li and Chan 2008,

Li et al. 2008, 7:138-141).

Figure 3.6. 2D structure of PRAM cells in Raphael. (a) Fully crystalline state. (b)

Fully amorphous state.

Table 2. Material properties in PRAM model (Li and Chan 2008, Li et al. 2008,

7:138-141).

Material

Electrical

resistivity ρ

(Ω∙cm)

Thermal

conductivity κ

(W∙m-1∙K-1)

Specific

Heat c0

(J∙cm-3∙K-1)

Crystalline GST 0.0361 0.5 1.25

Amorphous GST 33.33 0.2 1.25

Figure 3.7 shows the dependence of the resistance of fully crystalline GST on W,

CW and d. Figure 3.7 (a) shows the saturation of resistance with increasing W. Thus, our

model only focuses on the case when W is large enough and does not affect the resistance.

Since the two contacts of GST are of different size, we use an effective width to calculate

the resistance as:

CW

d
R c




 (4)

 23

where the coefficient α is the effective factor calculated as α = 0.79*d/CW+1.08. Figure

3.7 (b) validates the model for the crystalline resistance.

20 40 60 80 100 120 140

200k

300k

400k

500k

R
 (

n

m
)

W (nm)

 d = 28nm

 d = 35nm

 d = 42nm

CW = 28nm

 (a)

20 30 40 50

150k

200k

250k

300k

R
 (

n

m
)

d (nm)

 CW = 24nm

 CW = 28nm

 CW = 32nm

 Model

 (b)

Figure 3.7. Geometry dependence of fully crystalline GST resistance. (a) Saturation

of R with W increasing. (b) Fully crystalline resistance model vs. Raphael simulation

results.

For the amorphous state, as shown in Figure 3.8 (a), the resistance primarily

depends on r/CW, due to the large difference in the resistivity of amorphous GST and

crystalline GST. When the mushroom fully covers the bottom contact (r/CW > 0.5), GST

 24

shows a much higher resistance than that in the crystalline state. When the mushroom is

very small, the resistance is low and does not change much with r/CW. The resistance

changes dramatically when r/CW ≈ 0.5. We use a smoothing function to continuously

model the resistance.

0.0 0.2 0.4 0.6 0.8

1M

10M

100M

0.0 0.2

250k

300k

 CW = 28nm

 CW = 32nm

 CW = 36nm

 Model

R
 (

n

m
)

r/CW

 (a)

0.0 0.2 0.4 0.6 0.8 1.0
1M

10M

100M

 CW = 40nm r = 25nm

 Model

R
e
s
is

ta
n

c
e
 (


n
m

)

1-r'/r

 (b)

Figure 3.8. Geometry dependent electrical resistance model. (a) RESET (b) SET

 When the phase change material is changing from amorphous state to crystalline

phase (SET), a smaller crystalline mushroom (with a radius of r’) grows up inside the

 25

original amorphous mushroom from the bottom contact. Figure 3.8 (b) shows the resistance

change during this process. The difference in resistance value is due to the different

resistivity for the two figures.

The thermal resistance of GST is modeled using a similar approach. The thermal

resistance of full crystalline GST is calculated by:

CW

d
R

c

T




 (5)

On the other side, since the difference in thermal conductivity of crystalline GST and

amorphous GST is not as much as that of electrical resistivity, thermal resistance RT does

not change much with r/CW, as shown in Figure 3.9 (a). The thermal resistance also

depends on d/CW in both crystalline state and amorphous state. Thermal capacitance CT

depends on d and CW because crystalline GST and amorphous GST have the same heat

capacity, as shown in Figure 3.9 (b):

2/0 CWdcCT 
 (6)

0.0 0.2 0.4 0.6 0.8

1.2

1.6

2.0

2.4

2.8
 CW = 28nm

 CW = 32nm

 CW = 36nm

 Model

R
T
 (

m
K
W

-1
)

r/CW

0.0 0.2 0.4 0.6 0.8

r/CW

20p

22p

24p

26p

 CW = 28nm

 CW = 32nm

 CW = 36nm

C
T
 (

J
c

m
-1
K

-1
)

Figure 3.9. Compact models of thermal parameters.

(a) (b)

 26

0 50n 100n 150n 200n
200

400

600

800

1000

T
e
m

p
e
ra

tu
re

 (
K

)

t (s)

 without iteration

CW = 28nm

d = 49nm

I
SET

 = 83A

t
pulse

 = 100ns

 with iteration

 (a)

50 60 70 80 90

10k

100k

1M

R
e
s
is

ta
n

c
e
 (


)

I
SET

(A)

 with iteration

 without iteration

{
Difference due to

simulation method

Read Threshold

 (b)

Figure 3.10. The iteration in model simulation significantly impacts the prediction

of (a) temperature profile and (b) resistance transition.

With these geometry dependent resistance and capacitance models, the parameters

in the circuit level model (Figure 3.5) can be obtained. Since RT depends on the state of

PRAM, which is represented by the size of the amorphous region, it changes during the

SET process. Thus, it is important to iteratively simulate the heat and phase transition

 27

blocks (Figure 3.5) in order to accurately determine the temperature profile and the final

resistance value, as shown in Figure 3.10.

The resistance of a PRAM cell is predicted from the model with given initial

geometry information and input current pulse, the geometry, and the material property.

This model matches with experimental data from the paper of Lacaita et al. (2004) as shown

in Figure 3.11. CW=68nm and d=119nm is used in this simulation.

0 200 400 600 800

10k

100k

1M Measurement

R
e
s
is

ta
n

c
e
 (


)

Programming Current (A)

SET RESET

 Model

Figure 3.11. R-I characteristics validated with experimental data from (Lacaita et

al. 2004). CW=68nm and d=119nm.

In the next level, process variation and material reliability are modeled. Since our

device level model is geometry dependent, the impact of process variation can be easily

simulated, which will be further discussed in Section III. There are two main reliability

issues for PRAM, soft errors due to resistance drift and Stuck-SET failures. While error

due to resistance drift can be recovered by the write process, Stuck-SET is hard error that

is attributed to Ge depletion (Kim and Ahn 2005) or Ge contamination at the interface of

GST and the heater. The resistance drop is modeled as

 28

baNR  (7)

where N is the number of programming cycles, a and b are fitting parameters as shown in

Figure 3.12. In the circuit level, it is modeled by the degradation of the heating efficiency.

In order to emulate this effect, the input energy I2Rwrite is multiplied by a coefficient λ,

which is less than 1 and is a function of N.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
4

10
5

10
6

 Measurement

 Model

Number of programming cycle

R
R

E
S

E
T
 (


)

10
4

10
5

10
6


R

 (


)

R=aN
b

Figure 3.12. Stuck-SET model fitted with measured data from (Kim and Ahn 2005).

3.2.2 PRAM Design Exploration

In this section, the performance of the proposed model is analyzed with respect to

variability and reliability for the 32nm technology node. A new metric, State Transition

Curve, is presented to capture the characteristics of PRAM for reliable design. PRAM

employs 1T1R (1 transistor 1 resistor) structure as shown in Figure 3.13. BL, WL and SL

correspond to bit line, word line and source line respectively. The models are incorporated

into HSPICE using Verilog-A to simulate the shown structure. PTM 32nm HP (High

Performance) MOSFET (Zhao and Yu, 2006, 53:2816-2823) is used for the simulation in

 29

order to get high current for programming. Critical parameters of interest including their

variations are listed in Table 3.

BL

WL

SL

Figure 3.13. PRAM cell structure

Table 3. PRAM cell simulation parameters

 Parameter Value (μ±3σ)

PRAM

CW 28 nm ±4%

d 49 nm ±2%

RSET 9 kΩ

RRESET 3.6 MΩ

Rwrite 1 kΩ

CMOS

Vdd 0.9 V

Vth 494mV ±45mV

Length 28 nm

For PRAM, State Transition Curve (STC) is a curve that describes resistance

changes with programming current amplitude for a particular pulse width. Since the

currents for SET and RESET are quite different, there are two sets of STC for PRAM.

Figure 3.14 (a) shows the STC for SET and indicates the role of STC in reliable PRAM

design. STC1 and STC2 show the characteristics of PRAM under nominal and variational

condition respectively. The initial resistance is determined by the initial geometry of

PRAM. The resistance transition is determined by the phase change model in Figure 3.5

 30

and the geometry dependent resistance model in Figure 3.8. If the final resistance is a lot

larger than the read threshold resistance, we can choose the current that achieves a

successful write. However, such a choice may not be sufficient due to variability. STC2 in

Figure 3.14 (a) represents incomplete state transition due to variation. If we still choose the

same current, the write fails. But in MLC programming, intentional incomplete state

transition is adopted by using sequential short current pulses as shown in Figure 3.14 (b).

We can tune the current pulse to obtain the required resistance value. Figure 3.14 (b) shows

that different magnitude of input current can achieve the same resistance with different

number of current pulses. It consumes more energy for more programming steps (I1), but

smaller resistance steps help more accurate MLC resistance control.

R
e
s

is
ta

n
c

e

Programming Current

Read Threshold

Iset

Successful Write

 Write

 Failure

STC1

STC2

I
1

R
e

s
is

ta
n

c
e

Programming Current

I
2

 (a) (b)

Figure 3.14. State Transition Curve of (a) SLC SET and (b) MLC SET.

In this section, the performance of SLC PRAM cell is analyzed with proposed model

and STC. We extract results under CMOS and GST process variation and temporal

degradation. For nominal condition, STCs for different pulse width are presented in Figure

3.15. When tpulse increases, STCs shift left, so that smaller current is needed to get the same

I1

I2

t

 31

resistance. Thus, we can choose current and pulse width as listed in Table 4. The energy

and latency performance of PRAM are also presented. The latency is obtained by the

temperature transient curve, which is larger than the pulse width.

100 110 120 130 140 150

10k

100k

1M

R
e
s
is

ta
n

c
e
 (


)

I
RESET

 (A)

t
pulse

20ns,40ns,60ns

 (a)

50 60 70 80

10k

100k

1M

R
e
s
is

ta
n

c
e
 (


)

I
SET

 (A)

t
pulse

80ns,100ns,120ns

 (b)

Figure 3.15. State Transition Curve in the nominal condition with different pulse

width: (a) SET (b) RESET.

 32

Table 4. Nominal performance of 32nm SLC PRAM.

 SET RESET

I (μA) 85 140

tpulse (ns) 100 40

R (Ω) 9.3k 3.6M

Energy (pJ) 0.72 0.78

Latency (ns) 107 50

Figure 3.16. The contribution of different variation sources to the variability of

RRESET.

Next, the effect of variation is considered. Three variation sources are considered

in this work: Vth of the transistor, CW and d as listed in Table 3. From the simulation, the

variations of PRAM resistance (ΔRSET and ΔRRESET) are obtained. ΔRRESET is much larger

than ΔRSET. The contribution of the variation sources to ΔRRESET is shown in Figure 3.16.

We see that CW is the critical variation source. Further, we analyze the impact of variation

in CW on memory performance. Figure 3.17 shows how STC changes with CW. As CW

increases, STC shifts right and RRESET drops at a fixed IRESET. Under nominal CW, when

IRESET = 130μA, RRESET is much higher than read threshold indicating a successful write.

For the same current, when CW experiences variation of +4%, RRESET is below read

threshold causing a write failure. However, if IRESET = 140μA, we always have a successful

CW
61%

CMOS
Vth 33%

d
6%

 33

write under variation of CW. Therefore, this plot helps choose RESET current with a fixed

pulse width to tolerate different CW variations.

110 120 130 140

10k

100k

1M

 Write

 Failure

Successful Write

R
e

s
is

ta
n

c
e

 (


)

IRESET (A)

Read Threshold

CW+0%,1%,

2%,3%,4%

Figure 3.17. RESET State Transition Curve is highly sensitive to CW variations

(tpulse = 40ns).

Figure 3.17 also shows that if we fix the margin from RRESET to the read threshold

resistance, we have to increase IRESET with CW. For fixed resistance margin, the write

power, I2Rwrite, increases with CW as shown in Figure 3.18. In addition, the power goes up

when we reduce the current pulse width since the required current is larger. Figure 3.19

shows the relation between required RESET current and pulse width for maintaining

different resistance margins for successful writes. In order to achieve higher resistance

margin, more current and time are needed resulting in higher power requirements.

 34

0 1 2 3 4

16

17

18

P
o

w
e

r
(

W
)

CW%

t
pulse

20ns

30ns

40ns

50ns

Figure 3.18. Write power dramatically increases with larger CW variations,

assuming a constant resistance value after write.

20 30 40

135

140

145

 1.2 M

 800 K

 500 K

 200 K

I R
E

S
E

T
 (

A

)

t (ns)

Resistance Margin

from Read Threshold (200K)

Figure 3.19. Required RESET current and pulse width with given resistance

margin.

Finally, the impact of Stuck-SET on STC is simulated and the results are presented

in Figure 3.20. The degradation increases as the number of cycles increases. If IRESET =

 35

133μA, RESET resistance of PRAM drops below the read threshold after 106 cycles, which

causes hard error. We can increase IRESET to 140μA to increase PRAM lifetime to 107 cycles.

110 120 130 140

10k

100k

1M

10
7

R
e
s
is

ta
n

c
e
 (


)

IRESET (A)

Number of cycles

1,10,10
2
,10

3
,

10
4
,10

5
,10

6
,10

7

Read Threshold

10
6

Figure 3.20. State Transition Curve with Stuck-SET degradation.

3.3. Spin-Transfer Torque Magnetic Random Access Memory

3.3.1. STT-MRAM SPICE Model

Since STT-MTJ has only two stable states, STT-MRAM can only support SLC

application. The FSM is the same as SLC PRAM as shown in Figure 3.4 (a).

The dynamics of the magnetic moment M


of the free layer in MTJ is defined by

the LLG equation (Ralph and Stiles 2008, 320:1190-1216, Kammerer et al. 2010, 57:1408-

1415):

   
eV

I

dt

Md
M

M
uMuM

M

K
HM

dt

Md B

s

eaea

s

eff





 






20

2

 (8)

The terms (from left to right) represent the Zeeman torque, by both the local field

and the thermal fluctuation field, the anisotropic torque, the damping torque, and the spin-

 36

transfer torque, in which the efficiency (η) depends on the current direction. Table 5 defines

key model parameters (Lu et al 2007, 40:320-325, Faber et al. 2009).

Table 5. Parameters on the geometry and materials.

Saturation magnetization (Ms) 














































 3

14

1

3

2
exp

14

1
140

ch
rR

S

ch
r

M b
s

Effective magnetic field (effH


) Intrinsic H


+thermal fluctuation fH


Gyromagnetic ratio (γ) Anisotropic const. (K) Damping const. (α)

1.76x1011 rads-1/T 1.13x105 TA/m 0.02

The switching of the magnetic moment is the key dynamics in STT-MTJ. In general,

it is a three dimensional movement: the Zeeman torque and the anisotropic torque

contribute to the rotation in the plane perpendicular to the easy axis, indicated by an angle

φ; the damping torque and the spin-transfer torque dominate the switching in the easy plane,

resulting in the change of θ. Considering a realistic structure of STT-MTJ (Figure 3.21),

the change of the magnetic moment can be separated into two planes and thus, the LLG

equation reduced to two scalar equations of magnetic angle φ and θ.

Figure 3.21. An in-plane STT-MTJ is programmed by a current pulse.

0 10 20

0

90

180

 Numerical Model

M
a
g

n
e
ti

c
 A

n
g

le
 

 (
d

e
g

re
e
)

Time (ns)

θ

I

τ

I (μA)

480

500

520

τ: 10ns

 37




cossin2sin0 KHM

dt

d
M ss 

 (9)

eV

I

dt

d
M

dt

d
M B

ss










 (10)

Substituting dφ/dt from Equation (9) to Equation (10):

 
eV

I
KHM

dt

d
M B

ss





 cossin2sin0

 (11)

The scalar equation of Equation (11) is the foundation to analyze the switching dynamics

of θ. Based on Equation (11), Figure 3.22 plots dθ/dt for different I when θ changes from

0o to 180o. Some critical points are highlighted below in order to obtain the physical map

for further model derivation:

Figure 3.22. dθ/dt for different I when θ changes from 0o to 180o.

Threshold current (Ith): This concept separates two possible switching mechanisms

in a STT-MTJ device, precession switching and thermally assisted switching. When I > Ith,

dθ/dt is always > 0 (Figure 3.22) and thus, the magnetic angle is able to complete the

switching with sufficient τ. However, when I < Ith, dθ/dt may be < 0, requiring the assist of

0 90 180
-1.0

-0.5

0.0

0.5

1.0

1.5

d

/d

t
(n

o
rm

a
li
z
e
d

)

 (degree)

Precession

th c

I = Ith

I = 0

Thermally Assisted

I > Ith

 38

thermal fluctuation Hf to statistically switch STT-MTJ (Faber et al. 2009). As the thermal

process takes a longer time and is not deterministic, today’s STT-MTJ usually follows the

precession switching. Ith can be solved from the minimum of dθ/dt = 0, which is associated

with the threshold angle th (Figure 3.22).

Critical angle (c): This angle defines a critical value the magnetic moment has to

reach at the end of the current pulse; if θ at time = τ is smaller than c, the damping torque

may pull c back to 0o (Figure 3.21). As observed in Figure 3.22, when I = 0, there are three

points to satisfy dθ/dt = 0: 0o and 180o are two stable solutions, while c is a metastable

point. This behavior is similar as that in a SRAM cell, and helps us develop the model of

c.

Critical current (Ic): Given the pulse width τ, Ic is the minimum current required to

switch the magnetic angle from 0o to c. I > Ic ensures a successful precession switching.

To solve Ic, Equation (11) is integrated from 0o to c for d, and from 0 to τ for dt. A

compact solution is obtained (Table 6). Ic is proportional to the inverse of τ, implying a

tradeoff between speed and the writing power in design optimization.

Table 6 summarizes the models for P  AP, in standard international units. For AP

 P, the formulas remain the same, but with different coefficient values due to the different

initial condition. The formulas in Table 6 have a clear root in physics, and are accurate in

the precession switching. They are scalable with process and material parameters,

supporting the development of the RC network. Figure 3.23 validates our model with the

measurement data (Chun et al. 2013, 48:598-610). Due to the operation nature of STT-

MTJ, it requires more current and energy to switch it from P to AP (Figure 3.23).

 39

Table 6. Models of Critical Points in STT-MRAM.

θth    











  KHMKHM ss 832cos 0

22

0

1 

Ith     ththsB KHMeV  2sinsin0 

θc   KHM s 2cos 0

1 

Ic    1042 1026.434.0101.2   HMMr ss 

Figure 3.23 Validation with published STT-MTJ data (Chun et al. 2013, 48:598-

610). (r = 45nm, Tox = 0.85nm)

The switching of the magnetic angle represents the write process of STT-MTJ. The

read of the state is by characterizing the resistance of MTJ. When a read current is delivered

to STT-MTJ, the resistance reaches a low value (RP) if the magnetic moments in both

ferromagnetic layers are in parallel; otherwise a higher resistance (RAP) is detected.

Coupled with the dynamic magnetization procedure in previous section, this property

completes the operation of STT-MTJ.

0 2 4 6 8 10

-500

0

500

1000

 Measurement data [4]

 Numerical

I c
 (

A

)

 (ns)

 Model

P  AP

AP  P

 40

The tunnel magneto-resistance (TMR) of MTJ is defined as (RAP-RP)/RP. During the

continuous switching of the magnetic angle, the change of MTJ resistance follows (Madec

et al. 2010, 57:1416-1424):


















cos2

1
2)(

TMRTMR

TMR
RR P

 (12)

The static values of RAP and RP are calculated from the tunneling current through Tox.

Equation (12) is used to model the dynamic resistance during the switching period.

3.3.2. STT-MRAM Compact Model

The details of the switching period are important for various design purpose, such

as power and yield. In addition, design applications of STT-MTJ usually involve CMOS

as the control device. For these reasons, compact model of STT-MTJ needs to be embedded

into the SPICE simulator. Different from previous approach that directly implement the

LLG equation through complex Verilog-A codes, this work also proposes a simple RC

network that is physical, intuitive, and general.

Starting from the fundamental LLG equation (Equation (11)), sin can be

approximated as, 1, or -, when  is close 0o, 90o, or 180o, respectively. A similar

treatment can be applied to cos. By expanding sin and cos in this approach, dθ/dt in

Equation (11) is expressed as a linear function of , and thus, the solution of the LLG

equation is transferred as a passive RC network for SPICE simulation.

Based on this general principle, four distinct regions are recognized, easing the

implementation. Figure 3.24 shows the network which supports transient SPICE

simulations, with the output node representing . Rs are functions of those critical points

in Table 6, and C is a constant, as derived below:

 41

Figure 3.24. The regional RC network for dynamic SPICE simulation.

Region 1: This is at the beginning of the current pulse, when  is close to 0 and thus,

sin~ and cos~1. The damping torque resists the change of , implying that the R1C

network is a negative feedback. V1, which is a linear function of applied I, is charging the

output node.

Region 2: As soon as  exceeds the threshold angle th,  is close to 90o so that

sin~1 and cos~90o-. In this region, d2/dt2 becomes positive, as indicated in Figure 3.22.

Such a fact suggests that the RC network is a positive feedback: the increase in  helps

speed up the switching. Therefore, a negative resistance, R2, is obtained from Equation (11),

giving an exponential increase in the magnetic angle (Figure 3.24). If the current pulse

stays long enough, the magnetic angle rapidly reaches 180o, as shown in Figure 3.21.

However, if τ is not long enough to complete the switching, two more regions are needed

for time > τ.

Region 3: If  > c when the current pulse ends, the damping torque helps finish

the switching without I, as shown in Figs. 3.21. In this case, Equation (11) can be expanded

around 180o to obtain R3C.

0

90

180

M
a
g

n
e
ti

c
 A

n
g

le
 

 (
d

e
g

re
e
)

Time

III: R3

IV: R4 I: R1

II: R2

R1 R3

R2 R4

V1

th

180o

0o

C

 42

Region 4: Finally, if  < c when the current pulse ends, the damping torque

overwhelms and pulls the magnetic angle back to the initial state, 0o. The switching fails,

under the influence of R4C.

Table 7 summarizes all model parameters. They are in closed-form, derived from

the LLG equation and parameters in Table 6. The proposed RC network is followed by the

TMR model (Equation (12), in Verilog-A) to complete the simulation structure. Working

together, they convert the magnetic angle to electrical resistance. As all parameter values

are pre-solved before the simulation, this RC network is highly efficient in the SPICE

environment.

Table 7. Formulas for the RC Elements in SPICE.

V1    2rIIa thth  

R1   ss MKHMK 201 
R2      sth MKrIIbK 2

2 1 

R3  HMKK s03 2 

R4   ss MKHMK 204 

The newly developed models are implemented into SPICE. Two simulation

examples are presented in Figure 3.21 and Figure 3.23. Under the same assumptions of I,

r and Tox, Figure 3.25 further demonstrates the prediction under different pulse width τ. As

expected by the RC network in Figure 3.24, different RC components are activated,

depending on the switching condition. The success of data writing is determined by both

the magnitude and the duration of the current pulse. The proposed modeling and simulation

method smoothly captures such a behavior for design exploration.

 43

Figure 3.25. The switching behavior under different pulse widths.

0.5

1.0

R
e

s
is

ta
n

c
e

 (
n

o
rm

a
li

z
e

d
)

-600 -400 -200 0 200 400 600

Programming Current I (A)

 r = 36nm TMR = 1.2

 r = 94nm TMR = 1.5

Symbols: Measurement data Line: Model

Figure 3.26. The matching in the prediction of MTJ resistance.

By combining the switching model and the TMR model together, the new solution

generates the electrical property of STT-MTJ. Figure 3.26 validates this approach with the

experimental data (Diao et al. 2007, 19:165209, Lin et al. 2009). For a STT-MTJ device,

since P  AP starts from  = 0o but AP  P starts from  = 180o, these two switching

paths experience different switching thresholds, as predicted by the LLG equation. This

causes the hysteresis behavior in the resistance, which is well matched by our proposed

0 10 20

0

90

180

 = 5ns

 = 10ns

 = 15ns

M
a
g

n
e
ti

c
 A

n
g

le
 

 (
d

e
g

re
e
)

Time (ns)

Symbols: Numerical

Line: Model

r = 45nm

Tox = 0.85nm

 44

models. In addition, the new compact model is general enough to describe the data from

different processes, as demonstrated in Figure 3.26.

3.3.3. STT-MRAM Design Exploration

The STT-MRAM models are implemented into SPICE with Verilog-A. The effects

of technology scaling and the design under reliability constraints are studied.

From the perspective of technology scaling, Figure 3.27 examines the minimum

programming current, Ic, under shrinking of device feature size for fixed pulse width τ =

5ns. The radius r impacts the density of Ic mainly through saturation magnetization (Ms in

Table 5), which is a material property (Lu et al. 2007, 40:320-325). The density of Ic is

sensitive to r only when the radius is smaller than 20 nm. On the contrary, Ic is highly

sensitive to Tox, as Tox affects the intrinsic magnetic field in Equation (8). In addition,

Tox has a strong influence on the resistance and the long-term reliability of the tunnel

junction (Madec et al. 2010, 57:1416-1424). Therefore, process control of Tox is extremely

important to STT-MTJ based memory design.

Figure 3.27. The scaling of critical current of STT-MTJ device.

0 20 40 60 80 100
6

7

8

9

 Numerical

 Model

I c
/(


r2
)(

M
A

/c
m

2
)

Radius r (nm)

Tox = 0.85nm

Tox = 1.70nm

 45

Then, we investigate the design optimization of a single cell STT-MRAM under

reliability constraints. Similar to PRAM, STT-MRAM adopts 1T1MTJ structure, as shown

in Figure 3.28. BL, WL and SL correspond to bit line, word line and source line

respectively. We used the MTJ model parameters in Figure 3.23 and PTM HP transistor

model in 45nm technology (Zhao and Yu, 2006, 53:2816-2823). Critical parameters of

interest including their variations are listed in Table 8.

BL

WL

SL

Figure 3.28. 1T1MTJ memory cell structure.

Table 8. STT-MRAM cell simulation parameters.

 Parameter Value (μ±3σ)

STT

r 45 nm ± 1 nm

Tox 0.85 nm

Rp 1 kΩ

Rap 2 kΩ

CMOS

Vdd 1 V, 2.2 V

Vth 469 mV ± 5 mV

Length 45 nm

Due to the difference in required critical current for P  AP and AP  P

switchings, a boosted voltage of 2.2V is applied for P  AP while nominal Vdd of 1V is

used for AP  P. In the memory cell, process variation affects both MTJ and access

transistor. We use the MTJ radius r and transistor threshold voltage Vth to represent the

 46

variation sources listed in Table 8. After embedding these variations into the nominal

model, one million Monte Carlo simulations are run to show the yield under different

programming conditions.

We calculated the bit error rate (BER) as the percentage of the simulations in which

the angle θ reaches 180o from 0o and vice versa at the end of simulation time. To guarantee

reliability constraint of block failure rate (BFR) of 10-8, all the current profiles described

by the combination of current pulse amplitude (I) and width (τ), result in the same BER of

2x10-5. We set this BER constraint since BFR = 10-8 of a 512-bit block can be achieved

with ECC scheme BCH (t=2) that results in small hardware overhead (Yang et al. 2014,

76:133-147).

Programming current and cell energy consumption are generated for P  AP and

AP  P with equal BER in Figure 3.29 and Figure 3.30, respectively. The energy is

calculated by the integration of I*Vdd for the duration of the pulse. It includes both STT-

MTJ and transistor energy. We see for both P  AP and AP  P switchings, current pulse

amplitude increases as current pulse width decreases, similar to the trend shown in Figure

3.23. However, under the BER = 2x10-5 constraint, the required current amplitude is larger

than the critical current amplitude. Correspondingly, required transistor size has to be

increased to support the large current amplitude. On the other hand, programming energy

increases as current pulse width increases because the decrease in current I is slower than

the increase in τ.

 47

1 2 3 4 5
600

700

800

900

I
(

A
)

 (ns)

P -> APW=610nm

435nm

360nm

320nm

280nm

258nm 3

4

5

6

E
n

e
rg

y
 (

p
J
)

Figure 3.29. Programming current and energy of P  AP switching. All points

have 2x10-5 BER.

1 2 3 4 5
200

250

300

350
AP -> P

I
(

A
)

 (ns)

W=365nm

295nm

252nm

230nm

205nm

190nm

0.4

0.6

0.8

1.0

1.2

E
n

e
rg

y
 (

p
J
)

Figure 3.30. Programming current and energy of AP  P switching. All points

have 2x10-5 BER.

From Figure 3.29 and Figure 3.30, we see that P  AP switching requires much

larger current and transistor size in spite of boosted voltage supply (2.2V for P  AP and

 48

1V for AP  P). Therefore, the design constraints are set by those of P  AP. Using

transistor sizes set by P  AP, AP  P switching will have much lower BER than 2x10-5,

which is not needed and results in a waste of energy. So, we propose to reduce the supply

voltage for AP  P switching to save energy.

230 260 290 320

0.80

0.85

0.90

0.95

1.00

V
d

d
 (

V
)

W (nm)

 = 3ns

0.65

0.70

0.75

0.80

0.85

E
n

e
rg

y
 (

p
J

)

AP -> P

Figure 3.31. Supply voltage and energy at different transistor sizes for AP  P

switching. All points have BER of 2x10-5.

Figure 3.31 shows different combinations of supply voltage (Vdd) and transistor

width (W) to obtain the same BER of 2x10-5 for τ = 3ns. The energy decreases with lower

Vdd and larger W since current amplitude almost remains the same. As shown in Figure

3.31, when the transistor size increases from 230nm to 320nm (required by P  AP

switching), required voltage decreases from 1V to 0.86V to achieve same BER. Thus,

programming energy is reduced from 0.784pJ to 0.672pJ (14.3% decrease). However, if

the two switchings have equal probability, this optimization causes only 2.3% overall

 49

energy reduction. If we make AP  P switching more often by some coding techniques,

more energy reduction can be achieved.

3.4. Review of Resistive Random Access Memory

Resistive Random Access Memory (RRAM) is another promising emerging

memory. It has the advantages of high density, fast read and write speed, good retention

and excellent scalability (Wong et al. 2012, 100:1951-1970). RRAM is also capable of

multi-level cell (MLC), which is important to be used as the synapses in neural networks

(Jo et al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779). RRAM consists of a thin

oxide layer sandwiched by two electrodes. It is a polarized device. Depending on the

polarity of the voltage pulse on it, a conductive filament can be formed or removed in the

oxide layer. The resistance of RRAM depends on the length of the filament or the

remaining gap. Longer the filament is, smaller the resistance is. The compact model of

RRAM was developed in (Guan et al 2012, 33:1405-1407). The current is an exponential

function of the length of the gap and the voltage. And the gap is calculated iteratively with

the parameters of the voltage and temperature.

 50

4. Machine Learning Hardware Design

This chapter designs the parallel programming scheme and circuitry for learning

on an RRAM cross-point array.

4.1. Introduction

Inspired by the daunting computational capability of the human brain, cognitive

computing and learning that are inspired by neuroscience have become an increasingly

attractive paradigm for future computation beyond the von Neumann architecture. Along

this path toward machine intelligence, learning compact representations on data adaptive

dictionaries is the state-of-the-art method for analysing big data (Tosic and Frossard 2011,

28:27-38). It aims to minimize the reconstruction error ∑ ∥ 𝐷 ∙ 𝑍𝑖 − 𝑥𝑖 ∥2
𝑖 , where 𝑥𝑖 is an

input vector, 𝐷 is called the dictionary and 𝑍𝑖 is the coefficient vector which is usually

assumed to be sparse in many problems. Such an optimization target is motivated by the

sparseness in visual cortex, minimizing both the error and energy consumption in learning.

However, when the data set is big, which is often the case, optimizing the dictionary

is a computational challenging problem. Stochastic Gradient Descent (SGD) (Bousquet

and Bottou 2008) is one of the most efficient algorithms to solve this problem. Instead of

updating the dictionary by full gradient descent, SGD updates the dictionary by using

randomly selected gradient as follows:

𝐷𝑡+1 ← 𝐷𝑡 − 𝜂𝑡 ∙ Δ𝐷𝑡, (13)

where 𝜂𝑡 is the learning rate, Δ𝐷𝑡 = 𝑟𝑡 ∙ 𝑍𝑡
𝑇 and the residual error of data presentation (r)

is 𝑟𝑡 = 𝐷𝑡 ∙ 𝑍𝑡 − 𝑥𝑡.

An analogy to this dictionary learning could be found in neural networks in our

brain, which consists of spiking neurons and synapses that connect the neurons. During the

 51

training process, a spiking neural network learns through plastic synapses that change their

weights based on the spike timing of the pre-synaptic neuron and the post-synaptic neuron.

This learning rule is known as spike-timing-dependent-plasticity (STDP) (Song et al. 2000,

Bi and Poo 1998, 18:10464-10472), as illustrated in Figure 4.1 (a) (b).

Spike Timing Dependent Plasticity

(STDP)
Pre-synaptic

neuron

Post-synaptic

neuron

Synapse

Presynaptic

Spike Train

Postsynaptic

Spike Train

 t

(a)

-100 -50 0 50 100
-60

-40

-20

0

20

40

60

80

100

120

t<0

LTD

 Exp. Data

C
o

n
d

u
c
ta

n
c

e
 C

h
a
n

g
e

 
G

 (


)

Spike Timing t (ms)

t>0

LTP

(b)

 52

Resistive Cross-point Array

Metal

Metal

Oxide

V

t

D

Z

X or r
(c)

0 10 20 30

-10

-5

0

5

10

C
o

n
d

u
c

ta
n

c
e

 C
h

a
n

g
e

 
G

 (



-1
)

Voltage Pulse Width t (ns)

1.5V

1.46V

-1.46V

-1.5V

Conductance at

 V = 0.3V

(d)

Figure 4.1. The similarity of programming a biophysical synapse and a RRAM

cell. (a) STDP based on the time interval between pre- and post-synaptic spikes. (b) The

synaptic conductance change based on STDP. (c) Tuning of RRAM conductance with a

voltage pulse across both ends. (d) RRAM conductance change depends on the voltage

pulse width.

When these learning algorithms are implemented in hardware to accelerate the

learning beyond software limitations, the cross-point array was recently proposed as an

effective way to represent synapses with large fan-in and fan-out (Jo et al 2010, 10:1297-

 53

1301, Seo et al. 2011), where each cross-point is implemented with a memory cell. Since

scaling conventional on-chip memories (SRAM or eDRAM) becomes more difficult every

new technology node, resistive random access memory (RRAM) has emerged as an

alternative choice for next-generation memory designs due to its non-volatility, integration

density, and low power consumption (Wong et al. 2012, 100:1951-1970).

A RRAM cell structure is shown in Figure 4.1 (c), it consists of two metal layers

and an oxide layer. The conductance of the oxide layer is determined by the length of the

conductive filament. To change the conductance, a voltage pulse needs to be applied across

the RRAM cell. Figure 4.1 (d) shows the simulation results on how the RRAM conductance

is changed by different voltage pulses. Positive pulses will increase the conductance while

the negative pulses will decrease it. It shows that the conductance change is very sensitive

to the voltage amplitude and fairly less sensitive to pulse width, which is another reason to

use timing to control the programming in fine granularity in this work. We use 1.5V (Vdd)

as the programming voltage across the two terminals and use 0.75V (Vdd/2) to prevent

programming.

Using resistive devices for synapses in neuromorphic applications have been

actively explored (Jo et al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779). However,

updating all the resistive devices in a large cross-point array is still very time-consuming

in previous approaches, since it requires sequential operation (row-by-row, column-by-

column, or even bit-by-bit). Hereby, we focus on a resistive cross-point array which holds

the dictionary values (D), and connects Z (sparse data representation) on one side and r

(residual error of data representation on inputs) on the other side. We seek an efficient way

to update all the dictionary values stored in a resistive cross-point array by an amount

 54

proportional to the multiplication of Z and r (i.e., 𝑍 ∙ 𝑟). Specific write circuitries are

designed for Z and r on the periphery of the cross-point array, such that the entire resistive

cross-point array could be programmed in parallel and thus, the programming speed is not

limited by the scale of the dictionary any more.

4.2. Parallel Programming Scheme and Circuit Design

Conventionally, programming a resistive memory array is performed sequentially

column by column as shown in Figure 4.2 (a), or even bit by bit as usually implemented in

the software. In our learning application, to change D value by an amount proportional to

𝑍 ∙ 𝑟, it first needs to calculate 𝑍 ∙ 𝑟 for each column. To program one column of the array,

programming pulses that represent the 𝑍 ∙ 𝑟 values of this column are applied on the left

side of the array, while this column is connected to ground. The rest of the columns are

kept at Vdd/2 to prevent programming. After programming one column is finished, the next

column can be programmed by applying programming pulses and voltages that correspond

to the next column. Therefore, the total time to program the resistive cross-point array using

this method is in the order of O(N), where N is the number of columns of the array, and its

value ranges from 100 to several thousand, depending on the application.

Exploiting the specific property of resistive cross-point arrays that one can

simultaneously apply different voltage pulses on each row and column, a parallel

programming method is proposed in order to parallelize and accelerate the entire

programming process, as illustrated in Figure 4.2 (b). In this method, we do not calculate

𝑍 ∙ 𝑟 before programming, instead pulses that represent Z and pulses that represent r are

simultaneously applied on the rows and on the columns of the cross-point array,

respectively. We overlap the Z pulses and r pulses over the write enable period to

 55

effectively realize the multiplication function and thereby increase or decrease the

conductance of the RRAM. Specifically, we encode r value into spikes of 1ns pulses in a

fixed time period, and encode Z value into the duty cycle of the write period when the r

pulses could be applied to each RRAM cell. Thus, in such a synchronous design, the

accumulated overlap time of these two pulses in each write cycle indicates the product of

𝑍 ∙ 𝑟.

Traditional Sequential Programming

D

Vdd/2 Vdd/2

z[0].r[0]

z[1].r[0]

D

Vdd/2 Vdd/2

z[0].r[1]

z[1].r[1]

(a)

Proposed Parallel Programming

D
z[0]

z[1]

r[0] r[1] r[2]

(b)

Figure 4.2. The parallel scheme achieves O(1) in programming speed, independent

on the array dimension.

 56

The write circuit for Z generates the programming pulse with a duty cycle

proportional to the value of Z in a fixed clock period. To program an RRAM cell, the voltage

across the cell should be Vdd, while Vdd/2 is not able to change its conductance. Since the

programming voltage of r is in the range of 0 to Vdd, the effective programming period of

the Z pulse should supply either 0 or Vdd voltage, and the rest should be Vdd/2.

Z is always a positive number while r can be positive or negative, depending on the

residual error. Therefore, whether D will increase or decrease depends on the sign of r, but

not Z. When r is positive, D decreases, and vice versa. Since we don’t calculate 𝑍 ∙ 𝑟 up front,

the programming voltage of Z has to prepare for both positive r and negative r. In our

synchronous design, we divide the write period into two phases, controlled by the clock. The

first phase deals with the condition of r > 0 (positive period), and the second phase deals with

the condition of r < 0 (negative period). In the positive period, the effective programming

voltage is 0 in a certain time proportional to Z. After this time, the programming voltage

switches to Vdd/2 to prevent further programming. Similarly, in the negative period, the

effective programming voltage is Vdd, and then the voltage switches to Vdd/2. To program

a RRAM cell, we can keep the voltage of r as Vdd in the positive period (for r > 0) and as 0

in the negative period (for r < 0). Consequently, the voltage across the RRAM cell during

the overlap time of Z and r will be –Vdd and Vdd for r > 0 and r < 0, respectively. Such a

voltage overlap serves as the basis to tune the RRAM conductance for D.

To generate such a pulse pattern, a digital circuit is designed, as shown in Figure 4.3.

The inputs include Z [15:0], WE, PN and clock. Z [15:0] is a pre-decoded natural number,

representing the value of Z from 0 to 16 by the number of ‘1’ in these 16 bits. The ‘1’s are

all sequentially on the right side of Z [15:0]. WE is the global control write enable signal.

 57

The writing is performed when WE = 1. PN is the signal that differs the positive period and

negative period. PN = 0 means positive period and PN = 1 means negative period. The clock

signal is an internal clock. There are 32 cycles in the whole write period.

Figure 4.3. Circuit schematic to generate the programming voltage Z. The inset

illustrates the pulse pattern for both phases.

 In Figure 4.3, the left part of the circuit is a 16-bit shift register. It converts the parallel

input Z [15:0] into a sequential output. Thus, the time when the output is 1 is proportional to

the value of Z. Note that the output of the shift register is connected back to the first stage of

itself in order to recycle the data Z. With 32 clock cycles for one write period, the shift register

generates two identical pulses with the duty cycle proportional to the value of Z. These two

identical pulses are further input to the mux to generate different programming voltage levels

for the positive period and the negative period, which is controlled by both WE and PN. With

the whole circuit above, we are able to convert the value of Z into the duty cycle of pulses

for both cases of r > 0 and r <0.

The write circuit for r generates a train of pulses, where (1) the number of pulses is

proportional to the value of r, (2) each pulse has a fixed width (for fixed RRAM

programming period) and (3) the pulses are evenly distributed across a constant write period.

D Q

Q

D Q

Q

WE

Z[0]Z[15]

clock

16 bits shift register

WE

PN

Vdd
1
2

Programming

Voltage

Z
Z

Time

 58

Whenever there is overlap between the Z window and an r pulse, the fixed pulse width

ensures that the conductance of RRAM is changed by a fixed amount. The uniform

distribution of pulses is important to minimize the quantization error in our method, which

effectively multiplies Z and r. r could be a positive or negative value, which would increase

or decrease the RRAM conductance, respectively. Since the required voltage values for

increasing and decreasing the RRAM conductance are different, each write cycle was

separated into two phases, where the first phase generates signals for positive r values and

the second phase for negative r values.

In order to increase the resistance of the RRAM, a positive voltage of Vdd is required

between the Z and R nodes. Thus in the first phase, if r is positive, active-high pulses (number

of pulses proportional to r) are generated with a fixed pulse width of 1ns, while Z is driven

low (the time at low is proportional to Z value). Through this operation in the first phase, a

fixed voltage (VR – VZ = 1.5V) is applied to each RRAM cell for the accumulated overlap

time that represents 𝑍 ∙ 𝑟. If r is negative, the output signal is kept at low during the first

phase, ensuring no change in the resistance of the RRAM cells. Similarly, in the second

phase, if r is positive, the output is kept at high to ensure no change in resistance of the

RRAM cells. On the other hand, if r has a negative value, then in the second phase active-

low pulses are generated with a fixed pulse width of 1ns while Z is driven high. Thus, a fixed

voltage in the opposite direction in the case of positive r value (VZ – VR = 1.5V) is applied to

the RRAM cells for the accumulated overlap time that represents 𝑍 ∙ 𝑟. After each write

cycle, the RRAM conductance will increase or decrease by an amount proportional to 𝑍 ∙ 𝑟.

 The circuit implementation consists of various delay elements forming a configurable

ring oscillator (RO) with a start and polarity control. Write Enable (WE) and sign-bit of r

 59

determine the phase in which the pulses are to be generated and their polarity. The number

of pulses during the write period is varied by changing the length of the ring oscillator and

thus, its frequency. This was achieved using switches, which determines the total gate delay

in the ring oscillator. The control of the switches is generated from the r value, ensuring that

only one switch is on for a particular value of r. When r = 0, no change in the RRAM

conductance is allowed. In total, 15 buffer stages (d1-d15) in Figure 4.4 are implemented with

different delay values, such that the number of pulses generated for each write cycle is

proportional to the r value. The fixed pulse width (1ns) is generated after each rising edge of

the RO output. Based on the sign-bit of r and the write phase (PN), the final mux stages select

among Vdd, 0, pulse generator output or the inversion of pulse generator output.

Figure 4.4. Circuit schematic to generate the programming pulses of r.

4.3. Simulation and Results

In this section, we show the simulation results of the overall system that consists of

parallel programming circuits and RRAM cells. The write circuitries for Z and r are

implemented in 65nm CMOS technology, and we used a spice model for the RRAM device

that was generated from device measurements.

r[0:3]

Pulse Generator

Configurable

Ring Oscillator

sign

Programming

Voltage

sign

WE

d15 d14 d1d2

PN

PN

PN

Positive r

Negative r

 60

0.00

0.75

1.50

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60 80 100

400n

600n

800n

WE

Z = 6

r = 9

Time (ns)

D decreases

(a)

0.00

0.75

1.50

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60 80 100

1.0μ

2.0μ

3.0μ

WE

Z = 10

r = -7

Time (ns)

D increases

(b)

Figure 4.5. Timing diagram of the programming system. Through the overlap in time

between Z and r pulses, it demonstrates that (a) D decreases when r > 0. (b) D increases when

r < 0.

Figure 4.5 shows the timing diagram of the parallel programming system. When the

write enable (WE) signal turns on, both Z and r write circuitries start pulse programming

 61

based on the values of Z and r, and thus change the value of D during the overlap time of the

two pulses. In Figure 4.5 (a), it is shown that when r is positive, the programming occurs in

the first half of the write period and the value of D decreases. Figure 4.5 (b) illustrates that

when r is negative, the programming happens in the second half of the write period and the

value of D increases. Independent of the array size, the parallel programming of the entire

array requires only 84 ns, while the sequential programming requires 1.6 μs for a 400 x 100

array. The simulation also shows that the energy consumption of parallel programming of

the 400 x 100 array is about 13.9 nJ. The layout areas of Z and r circuitries are 850 μm2 and

1154 μm2, respectively.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

D
ig

it
a

ll
y
 P

ro
g

ra
m

m
e

d
 (

Z
r)

Theoretical (Zr)

Out of 16-bit data

Maximum error = 1 bit

RMS Error = 0.326 bit

Figure 4.6. The quantization error of the parallel programming method, with the

maximum error at 1 bit (6.25%).

The method of using overlap time of Z and r pulses with a certain granularity to

calculate multiplication introduces quantization error. To analyze this, we performed

simulation for all combinations of Z and r values (both from 0 to 16). Figure 4.6 shows the

comparison of the simulated results of 𝑍 ∙ 𝑟, namely the accumulated overlap time of Z and

 62

r pulses, to an ideal 𝑍 ∙ 𝑟 multiplication. It is observed that the digital programming mostly

follows the ideal multiplication closely, while producing the maximum error of 1 bit (out of

16 bits) when both Z and r are small.

We compared the proposed system against a software implementation on the task of

updating the dictionary D. For this purpose, we used MNIST dataset (LeCun et al. 1998,

86:2278-2324) to extract the image feature with Stochastic Gradient Descent (Bousquet and

Bottou 2008) algorithm. For the software approach, we used Intel Core i5 2.4 GHz dual-core

processor and 4 GB memory. Figure 4.7 shows the dictionary D before and after the feature

extraction. The computation time consumed to update D for this entire dictionary learning

process is 750 μs per image patch (10 iterations). With our proposed hardware approach, a

400 x 100 resistive cross-point array is used to achieve the computation time of 840 ns per

image patch, which is a 900X improvement over the software implementation for the

identical dictionary learning.

 Before learning After learning

 Figure 4.7. Demonstration of the proposed method in updating the dictionary.

Current software approach: Processor: Intel Core i5 2.4GHz 2 cores; Memory: 4 GB;

Computing time: 750 μs per image patch. Proposed parallel programming hardware

approach: RRAM array dimension: 400 x 100; Computing time: 840 ns per image patch.

 63

5. Bio-Inspired Learning Algorithm

 To realize learning on-a-chip, optimization of the learning algorithm is required.

Inspired by the fact that animal brains feature high accuracy, efficient energy use, and low

hardware overhead, this work develops a new learning algorithm based on biologically

plausible learning rules to improve the efficiency in sparse learning.

5.1. Introduction

 Neuro-inspired computing, including learning and inference, has made significant

progress in recent years and will fundamentally alter the way individuals and organizations

live, work and interact with each other (Schmidhuber 2015, 61:85-117, LeCun et al. 2015,

521:436-444, Furber 2016 13:051001, Liu et al. 2017, 234:11-26). Machine learning and

deep learning algorithms have been successfully applied to many data processing and

analysis tasks, including feature extraction from images and videos (Hong et al. 2015,

24:5659-5670, Yu et al. 2016, 99:1-11, Yu et al. 2017, 12:1005-1016, Zhang et al 2017),

image segmentation (Pan et al. 2017, 229:88-99), and big multimedia analysis (Yu et al.

2017). While many previous efforts have been made to improve the optimization algorithms

for artificial neural networks (Sun et al. 2017, 230:374-381, Baig 2017, Scardapane 2017,

241:81-89), the computational complexity of artificial neural networks still challenges the

state-of-the-art hardware platforms, especially mobile applications that are tightly

constrained by energy efficiency and hardware size (Lane and Georgiev 2015). In contrast,

animal brains, as a natural system for information processing, exhibit extraordinary features

of ultra-high energy efficiency (Sarpeshkar 1998, 10:1601-1638), low hardware overhead,

and high accuracy in perceptual and learning tasks. For instance, the olfactory system in fruit

flies only contains about 5000 neurons (Galizia and Sachse 2010); after a very small number

 64

of stimulus presentations, it is capable to detect tens of thousands of odors at very high

accuracy. The locust antennal lobe consists of ~830 excitatory projection neurons and 300

inhibitory local neurons (Emst et al. 1977, 176:285-308), achieving sparse odor

representation that is specific over thousand-fold changes in odor concentration (Stopfer et

al. 2003, 39:991-1004). Indeed, the efficiency of information processing by the sensory and

cortical systems is vitally important to animal survival in nature.

Many efforts have been made to capture the advantages of the nervous systems by

creating computational models, with biologically plausible learning rules (Perez-Orive et al.

2004, 24:6037-6047, Assisi et al. 2007, 10:1176-1184, Huerta and Nowotny 2009, 21:2123-

2151, Zylberberg et al. 2011, 7:1-12, King et al. 2013, 33:5475-5485, Querlioz et al. 2013,

12:288-295, Diehl and Cook 2015). Among neurons, the two basic forms of data

transmission are excitation and inhibition. Excitation has been extensively shown to be the

primary path of data processing and feature extraction. Neural network models with

excitation only can be trained to recognize images, differentiate objects, and categorize input

data (Huerta and Nowotny 2009, 21:2123-2151). In addition to excitation, the inhibition

provided by interneurons is indispensable to learning and behavioral adaptation, as observed

in a variety of species (Kelsom and Lu 2013, 3:1-19). Even though the number of inhibitory

interneurons is usually much smaller than that of the excitatory ones, the chemical blockade

of the inhibition path results in pronounced deficits in decision making, recognition or

memory recall (Sillito 1977, 271:699-720, Tsumoto et al. 1979, 34:351-363, Sawaguchi et

al. 1996, 75:2150-2156, Perez-Orive et al. 2004, 24:6037-6047).

The combination of excitatory and inhibitory paths forms the network element, which

is further connected into the complex nervous system (Assisi et al. 2007, 10:1176-1184).

 65

Systematic investigations (Sporns and Kötter 2004, 2:1910-1918, Alon 2007, 8:450-461)

have identified a small set of recurring structural elements, called neural motifs, serving as

efficient building blocks to realize diverse functions. Depending on the interaction among

neurons, there are two common inhibitory motifs: feedforward (FF) and feedback (FB). In

the FB (or recurrent) inhibitory motif, the inhibitory cells are driven by a population of

excitatory neurons and in turn inhibits the same population of the excitatory cells. FF

inhibition occurs between different brain areas, where the inhibition cells receive the signal

from the excitation group and then act on a different group of postsynaptic excitatory neurons

(Assisi et al. 2007, 10:1176-1184). Both FB and FF inhibitory motifs can limit the firing of

the postsynaptic neurons and facilitate the construction of sparse representation from input

data. While FB inhibition provides dynamic thresholding in the learning process (Masson et

al. 2002, 417:854-858), FF inhibition is vital to maintaining the firing rate and sparse

representation across a wide range of input conditions. For instance, external stimuli can vary

in strength by many orders of magnitude and yet the FF network still faithfully represents

the stimulus with little change in the response (Pouille et al. 2009, 12:1577-1585). Moreover,

the FF inhibitory path speeds up the response time and creates relatively fast inhibition (Alon

2007, 8:450-461). In fact, the rapid reaction induced by the FF inhibitory motif has also been

found in many other biological networks, such as transcription regulation in the gene system

(Bahrami and Drabløs 2016, 62:37-49).

Most prior computational models with inhibition were on lateral inhibition among

the excitatory cells or on the FB path in training and inference. For example, the SAILnet

model was able to perform pattern learning with direct inhibitory connections between the

excitatory neurons (Zylberberg et al. 2011, 7:1-12); an extension of the sparse coding

 66

algorithm leveraged lateral inhibition to form the dictionary in training (Szlam et al. 2011).

Yet such lateral inhibition between the excitatory cells is not consistent with the

physiological properties of primary visual cortex, in which the inhibitory interneurons

(GABAergic) are separated from the excitatory neurons (Kelsom and Lu 2013, 3:1-19). The

work of E-I Net advanced the model with a group of FB inhibitory neurons, which enable

sparse coding by actively de-correlating the excitatory population (King et al. 2013, 33:5475-

5485). Meanwhile, the knowledge of FF inhibition has been accumulated from both

biological and computational perspectives. Multiple formats of inhibitory plasticity were

summarized in (Vogels et al. 2013). Haider et al. (2006, 26:4535-4545) demonstrated the

importance of the balance between the excitation and inhibition paths. Skorheim et al. (2014,

9:1-15) built a computational model with both feedforward excitation and inhibition that

mimics the olfactory system of insects for specific foraging task.

Inspired by these results, this work develops a general spiking neural network model

with FF inhibition to illustrate its critical role in cognitive learning and hardware efficiency,

as shown in Figure 5.1. Using biologically plausible rules for plastic synapses and spiking

neurons, this new model serves as the testbed to analyze the impact of multiple factors on

learning accuracy and speed. The results further help shed light on energy-efficient learning

algorithms that may benefit from the FF inhibitory motif. The contributions of this work are

summarized as the following:

A biologically plausible spiking neural network is proposed, with the feedforward

inhibitory motif that is inspired by the olfactory system of insects.

 67

The new network model achieves more than 3X reduction in the network size,

compared to state-of-the-art biologically plausible spiking neural network at the same

accuracy of 95% in the recognition task of handwritten digits.

The role of feedforward inhibition in sparse learning, as well as associated

parameters, is systematically studied. Its function of coarse categorization is confirmed.

(a)

 (b) (c)

Figure 5.1. The feedforward inhibitory motif and the structure of the inspired neural

network model. (a) The computational model of the olfactory system of insects (Yu et al.

2017). Mushroom Body (MB) receives input from Antennal Lobe (AL). The majority part

+

+

Excitation (E)

Inhibition

(I)

Input (X)

Classification:

Reward (R)

Mushroom

Body (MB)

Antennal Lobe

(AL)

Kenyon Cells (KCs)

15,000

Lateral Horn Interneurons

(LHIs), 100

 68

of MB consists of a large number of Kenyon Cells (KCs), while Lateral Horn Interneurons

(LHIs) only contributes to a small fraction of MB. LHIs receive the same input as KCs and

generate feedforward inhibition that suppresses the firing of KCs. (b) The feedforward

inhibitory motif extracted from the olfactory model. (c) The spiking neural network model

based on the feedforward inhibitory motif. It is trained for the handwritten digits

recognition task. The input layer is a full 28x28 image containing a number between ‘0’

and ‘9’. The excitation layer (E), similar as the KCs in MB, has a large number of excitatory

neurons. The inhibition layer (I), similar as the LHIs in MB, has a small number of

inhibitory neurons that suppress the neuron firing in E layer.

5.2. Feedforward Inhibition Spiking Neural Network

To illustrate the advantage of a biological nervous system, we construct a neural

network model that has the following important features: at the device level, it should only

use biologically plausible rules for both synaptic plasticity and spiking neurons, instead of

artificial rules; at the system level, it should achieve sufficiently high accuracy in learning

compared to other artificial algorithms. Under these constraints, we explore the structure,

function and computation efficiency of the network model, with the focus on the

feedforward inhibitory motif.

Figure 5.1 (a) and (b) present the structure of the feedforward inhibitory motif (FFI).

It is inspired by the insect brain, especially the olfactory system. In such a system, the

plasticity is located in the Mushroom Body (MB) to process input signals and accomplish

fast and efficient classification. While the number of neurons and their physiological

connectivity in the MB are well studied (Perez-Orive et al. 2004, 24:6037-6047), the exact

functional map and the learning mechanism remain as open questions. One of the

 69

characteristics of the MB is the existence of a FFI path that suppresses the main excitation

path to generate the output. Even though FFI only consists of a small portion in the MB,

experiment results confirmed its critical role to the formation of sparsity during the training

process (Perez-Orive et al. 2004, 24:6037-6047). We argue that the function of FFI is to

effectively promote fast and reliable learning, as well as the reduction of network size at

high learning accuracy. This work aims to substantiate such claim by testing the FFI motif

with the MNIST database of handwritten digits (LeCun et al. 1998, 86:2278-2324). Figure

5.1 (c) presents the proposed network structure, based on the feedforward inhibitory motif.

It consists of four layers: the input layer, the excitation layer (E), the inhibition layer (I),

and the classification layer (C). The inhibition layer functions as feedforward inhibition. It

receives innervation from the input layer and sends out inhibitory pulses to the excitation

layer. The excitation layer receives innervation from the input layer and receives inhibition

from the inhibition layer. It extracts the features of input. The classification layer receives

innervation from the excitation layer and does the classification based on the features. The

size of each layer depends on the application task. The following subsections present the

spiking neuron model, learning rules, balancing method and the training procedure.

5.2.1. Spiking Neuron Model

At the device level, the neuron model used in this paper is the leaky-integrate-fire

(LIF) model described in population (King et al. 2013, 33:5475-5485). The membrane

potential of each neuron is initially reset to 0 and then accumulates by the weighted sum

of all input signals. It increases or decreases by a certain amount, depending on whether

the input signal is from the excitatory or inhibitory synapse, respectively. In addition, the

membrane potential decays at a rate proportional to itself during the integration stage.

 70

When the membrane potential is larger than the threshold, the neuron fires a spike out, and

the membrane potential is reset to 0. This model is described by the following equations.

𝑢𝑖(𝑡 + 1) = 𝑢𝑖(𝑡) exp (−
1

𝜏
) + ∑ 𝛽𝑗𝑧𝑗(𝑡)𝑊𝑖𝑗𝑗 (13)

𝑧𝑖(𝑡 + 1) = {
1, 𝑢𝑖(𝑡 + 1) ≥ 𝜃𝑖

0, 𝑢𝑖(𝑡 + 1) < 𝜃𝑖
 (14)

𝑢𝑖(𝑡 + 1) = 0 𝑖𝑓 𝑧𝑖(𝑡 + 1) = 1 (15)

𝑢𝑖(𝑡) is the membrane potential of neuron i at time t. 𝜏 is the membrane time

constant governing membrane potential decay rate, with unit of number of simulation time

step. 𝑧𝑖(𝑡) is the spike output of neuron i at time t, which is either 1 for spike or 0 for no

spike. 𝑊𝑖𝑗 is the synaptic weight from neuron j to neuron i. 𝛽𝑗 indicates the type of input

neuron j, which is either 1 for the excitatory input and -1 for the inhibitory input. 𝜃𝑖 is the

threshold of neuron i. As the full image is used as the input, as shown in Figure 5.1 (c),

each input neuron represents one pixel in the original image, which generates excitatory

signals. Each image is presented for a time window of 50 simulation time steps. The spike

rate is calculated within this time window. So, the minimum precision of the spike rate is

equivalent to 0.02.

5.2.2. Learning Rules of Synaptic Plasticity

From the input image, the FF neural network generates the sparse feature, which is

represented by the spike rate of the E layer; then the classifier produces the classification

score, i.e., the reward signal (R). If the prediction of the classification layer (C) matches

the label of the input image, the reward is 1, otherwise, the reward is -1. Based on the

digitalized reward signal, the rewarded Spike Rate Dependent Plasticity (SRDP) is applied

to update the synaptic weight; this is the rewarded training scheme. In case of unsupervised

 71

training, there is no reward term in the following equations for SRDP. For excitatory

synapses, e.g. 𝑋 to 𝐸 and 𝑋 to 𝐼, they follow the Hebbian rule:

∆𝑊_𝑋𝐸𝑖𝑗 = 𝜂_𝑋𝐸𝑖𝑗𝑅𝑋𝑖𝐸𝑗 (16)

∆𝑊_𝑋𝐼𝑖𝑗 = 𝜂_𝑋𝐼𝑖𝑗𝑅𝑋𝑖𝐼𝑗 (17)

𝑋𝑖 is the value of the i-th input neuron 𝑋. 𝐸𝑗 is the spike rate of the j-th neuron 𝐸.

𝐼𝑗 is the spike rate of the j-th neuron 𝐼. ∆𝑊_𝑋𝐸𝑖𝑗 is the change of the synaptic weight

between neuron 𝑋𝑖 and 𝐸𝑗. ∆𝑊_𝑋𝐼𝑖𝑗 is the change of the synaptic weight between neuron

𝑋𝑖 and 𝐼𝑗. 𝑅 is the reward signal corresponding to one input image 𝑋. 𝜂_𝑋𝐸𝑖𝑗 is the learning

rate of the synapse from neuron 𝑋𝑖 to 𝐸𝑗. 𝜂_𝑋𝐼𝑖𝑗 is the learning rate of the synapse from

neuron 𝑋𝑖 to 𝐼𝑗. All the learning rates decay with the increasing number of update of each

synapse, modeled by:

𝜂𝑖𝑗 =
𝜂0

𝛼+𝑁𝑖𝑗
 (18)

𝜂0 is the constant base learning rate. 𝛼 is a constant called habituation rate,

governing the speed of decay of the learning rate. Large 𝛼 indicates the learning rate decays

slowly with the number of updates and small 𝛼 indicates the learning rate decays fast with

the number of updates. 𝑁𝑖𝑗 is the number of all the previous updates of the synapse from

neuron 𝑖 to neuron 𝑗 . This decay of the learning rate is called local habituation. The

learning rate of each synapse only depends on the update history of the synapse itself. Thus,

local habituation is biologically plausible. The decay of learning rate can stabilize the

training and guarantee convergence.

The inhibitory synapses between 𝐸 and 𝐼 have slightly different update rules:

 72

∆𝑊_𝐼𝐸𝑖𝑗 = {
𝜂𝑅𝐼𝑖𝐸𝑗, 𝐸𝑗 < 𝜌𝑤𝑒𝑎𝑘

 𝜂𝑅𝐼𝑖(𝐸𝑗 − 𝜌𝑡𝑎𝑟𝑔𝑒𝑡), 𝐸𝑗 > 𝜌𝑠𝑡𝑟𝑜𝑛𝑔
 (19)

∆𝑊_𝐼𝐸𝑖𝑗 is the change of the synaptic weight between neuron 𝐼𝑖 and 𝐸𝑗. 𝐼𝑖 is the spike rate

of the i-th I neuron. 𝐸𝑗 is the spike rate of the j-th E neuron. 𝜌𝑤𝑒𝑎𝑘 is the upper bound of

weak spiking rate; 𝜌𝑠𝑡𝑟𝑜𝑛𝑔 is the lower bound of strong spike rate. 𝜌𝑡𝑎𝑟𝑔𝑒𝑡 is the target

spike rate for the strongly active neurons, 𝜌𝑙𝑜𝑤 < 𝜌ℎ𝑖𝑔ℎ < 𝜌𝑡𝑎𝑟𝑔𝑒𝑡. This rule is inspired

from (Vogels et al. 2013). Strongly active neurons receive less inhibition and weakly active

neurons receive more inhibition. Thus, the contrast of population response is enhanced.

In our SRDP rules, the update of each synaptic weight only depends on the activity

of its pre-neuron and post-neuron, and a global reward signal. No backpropagation is

involved. Our SRDP rules are biologically plausible.

5.2.3. Balancing Methods

Since Hebbian learning is not balanced, we applied two balancing methods in

supplement to the synaptic plasticity, input balancing and homeostatic balancing as used

in the paper by Skorheim et al. (2014, 9:1-15). Input balancing is to ensure that the total

synaptic weight of an input neuron remains unaffected by individual plasticity event. A

scaling process is implemented after each SRDP event. When the weight of a synapse

increases or decreases, the weight of all the other synapses connected to the same input

neuron decreases or increases by a scaling factor.

𝑊𝑖𝑗(𝑛+1) = 𝑊𝑖𝑗(𝑛)
𝑊𝑗0

∑ 𝑊𝑖𝑗(𝑛)𝑖
 (20)

𝑊𝑖𝑗(𝑛) are synaptic weights after SRDP update, but before the balancing. 𝑊𝑖𝑗(𝑛+1)

are synaptic weights after balancing. 𝑊𝑗0 is the total synaptic weight of input neuron 𝑗. The

 73

input balancing can prevent one input neuron from dominating the output or being ignored

by the output neurons. The homeostatic balancing is to ensure that all the output neurons

maintain a relatively constant long-term firing rate. It is applied once after every batch of

100 training images. All the synaptic weights of an output neuron will increase or decrease

if the firing rate of this neuron is low or high, respectively.

∆𝑊𝑖𝑗 ∝ −(𝑆𝑟𝑗 − 𝑆𝑟𝑎𝑣𝑔) (21)

𝑆𝑟𝑗 is the long-term spike rate of the j-th output neuron for a batch of images. 𝑆𝑟𝑎𝑣𝑔

is the average spike rate of a batch of input samples and of all the neurons in the same layer.

The homeostatic balancing can improve the neuron utilization.

5.2.4. Training Procedure

Algorithm 1 Training procedure of the rewarded SRDP of FFI SNN

Initialize all the synaptic weights

For input images = 100 images in training dataset

Feedforward through the network for 50 time steps

Calculate the spike rate for E and I neurons

Calculate C, update the classification layer W_EC and calculate the reward

Update the excitatory synaptic weights W_XE and W_XI with reward, and

apply the input balancing

Feedforward through the network for 50 time steps

Calculate the spike rate for E and I neurons

Calculate C, update the classification layer W_EC and calculate the reward

Update the inhibitory synaptic weights W_IE with reward, and apply the input

balancing

Apply homeostatic balancing

If number of batches is 50, 100, 150…

 Feedforward through the network with previous 50 batches of images

 Calculate the spike rate for E and I neurons

 Calculate C, update the classification layer W_EC

End If

End For when all training images are used or stopping criterion is met

 74

The rewarded training procedure is described by Algorithm 1. The weights of

excitatory synapses in the network are initialized by random values uniformly distributed

between 0 and 1. Each neuron in the excitation layer and the inhibition layer only randomly

connects to 50% of input neurons during the initialization. Such 50% connectivity mimics

the olfactory system (Assisi et al. 2007). The connectivity of a specific synapse remains the

same after the initialization. The training is mini batch based and separated for excitatory

synapses and inhibitory synapses. For a batch of 100 training images, we first simulate the

feedforward of the network and calculate the spike rate of all neurons for every image. For

rewarded training, the output of classification layer (C) and the reward (R) are then

calculated. Each neuron in the C layer represents one category in the task. Each C neuron

computes the weighted sum of the spike rate of E neurons and then is normalized by the

sum of the entire layer. The neuron with the maximum output is the prediction. If the

prediction matches the label of the input image, the reward is 1, otherwise, the reward is -

1. The weights between E and C layer are updated only when the reward is -1 with the

following rule:

∆𝑊_𝐸𝐶𝑖𝑗 ∝ −𝐸𝑖(𝐶𝑗 − 𝐶𝑡ℎ) (22)

∆𝑊_𝐸𝐶𝑖𝑗 is the change of the synaptic weight between neuron 𝐸𝑖 and 𝐶𝑗. 𝐸𝑖 is the spike

rate of the i-th E neuron. 𝐶𝑗 is the output of the j-th C neuron. 𝐶𝑡ℎ is a constant to

differentiate strong C and week C, and is tuned to be 0.105 for the optimal classification

accuracy. This rule is a punishment only Hebbian learning rule variant, which can

maximize the prediction accuracy of the classification layer. After updating the

classification layer, the reward is also updated. Next, the excitatory synaptic weights are

updated from the input layer to the excitation and inhibition layers. With updated excitatory

 75

synaptic weights, the FF network is simulated once again for this batch to update the

weights from the excitation to the classification layer, as well as the inhibitory synaptic

weights. The separation of update excitatory synapses and inhibitory synapses is for more

stabilization and easier tuning of this highly non-linear system. The input balancing is

applied after every update of synaptic weights. Homeostatic balancing is applied once after

training one batch. After this step, the training moves on to the next batch. Every 50 batches,

the classification layer is trained once again with all the 50 batches together through the FF

network, to further improve the performance of the network.

For unsupervised training, we don’t need to train the classification layer every batch,

because the reward is not needed. The classification layer is only trained after every 50

batches, using all the 50 batches together through the FF network. The unsupervised

training procedure is described by Algorithm 2.

Algorithm 2 Training procedure of the unsupervised SRDP of FFI SNN

Initialize all the synaptic weights

For input images = 100 images in training dataset

Feedforward through the network for 50 time steps

Calculate the spike rate for E and I neurons

Update the excitatory synaptic weights W_XE and W_XI without reward, and

apply the input balancing

Feedforward through the network for 50 time steps

Calculate the spike rate for E and I neurons

Update the inhibitory synaptic weights W_IE without reward, and apply the

input balancing

Apply homeostatic balancing

If number of batches is 50, 100, 150…

 Feedforward through the network with previous 50 batches of images

 Calculate the spike rate for E and I neurons

 Calculate C, update the classification layer W_EC

End If

End For when all training images are used or stopping criterion is met

 76

5.3. Results and Discussion

A neural network model is built with the feedforward inhibitory motif, and leaky

integrate-and-fire neurons as shown in Figure 5.1 (c). The spike rate in a window of 50

time steps is used to represent the data. The membrane time constant 𝜏 is set to 10. A

Hebbian Spike-Rate-Dependent-Plasticity (SRDP) is applied to all synapses. No

backpropagation is involved in the training. The base learning rate 𝜂0 is 3 for the excitatory

synapses and 1 for the inhibitory synapses to balance the amount of weight change of

excitatory and inhibitory synapses. The habituation rate 𝛼 is 50 for the excitatory synapses

and 100 for the inhibitory synapses. As a proof of concept, this network is trained with a

representative machine learning benchmark, the MNIST dataset, for the classification of

handwritten digits. This dataset consists of 60000 training images and 10000 test images.

Each image is a 28x28 grey scale (256 intensities) image of a single numerical digit

between '0' and '9'. We use the full image as the input to the network. To categorize these

images, we use 2000 excitatory neurons (E) and 100 interneurons (I). Both excitation and

inhibition layers receive innervation from half of the input neurons that are randomly

selected. Each excitatory neuron receives innervation from all the interneurons. For the

classification layer, it receives the input from all the excitatory neurons. There are 10

neurons (C) in the classification layer, representing 10 classes from ‘0’ to ‘9’. Their spike

rate represents the probability that an image belongs to each class. The prediction is the

class with the maximum probability. More details on modeling and training can be found

in Section 5.2.

5.3.1. Performance of the Feedforward Inhibitory Motif

 77

After training with 60000 training images, the network achieved 95.0%

classification accuracy on the testing set. Figure 5.2 shows the firing map of 2000 E

neurons corresponding to 1000 images before and after training. The images are randomly

selected from the training set and sorted by their true labels. Each point in the map

represents the firing rate of one E neuron for one input image. Each row is for one E neuron

and each column is for one image. The firing map after training presents a good distinction

of different classes. The images of the same class have similar firing patterns. As a

comparison, in the initial firing map before training, many neurons tend to fire for a wide

range of classes and thus, fail to distinguish different classes.

Figure 5.2. The firing map of 2000 excitatory neurons for 1000 images, before and

after training. The images are randomly selected from the training set and sorted by their

true labels (number 4, 5, 6). Each point in the map represents the firing rate of one E neuron

for one input image based on grayscale. Each row is for one E neuron and each column is

for one image.

 78

0 10k 20k 30k 40k 50k 60k

86

88

90

92

94

96

98

0 1 2 3 4 5
0

20

40

60

80

100

 With Reward

 Without Reward

 Sparse coding

A
c
c
u

ra
c
y
 (

%
)

Number of Training Images

Figure 5.3. Testing accuracy as a function of the number of training images, in both

rewarded and unsupervised (without reward) training, compared with the sparse coding

algorithm that uses 6-bit data and stochastic gradient descent. Our network model achieves

95.0% accuracy with 60000 training images. The inset shows that with FFI, the learning is

faster at the beginning, compared to sparse coding.

Figure 5.3 presents the testing accuracy as the training proceeds. After every 50

batches, we simulate the network with testing images, without change the synaptic weights,

to get the testing accuracy. The network is trained with random initialization several times

and the performance is very stable. On average, it achieves 94.2% accuracy with 20000

training images, and achieves 95.0% accuracy with 60000 training images. Our network is

also able to perform unsupervised training with the absence of reward signal. The

performance degradation is very small (0.1%), indicating that the reward signal is not

critical for this relatively simple task. The result is compared with the sparse coding

algorithm (Lee et al. 2006), which uses stochastic gradient method in training. Sparse

coding is an unsupervised machine learning algorithm that learns both the weights (i.e.,

 79

dictionary) and the sparse representations of the data. Since the data representation in our

network is equivalent to only 6 binary bits, 6-bit data precision is used in the sparse coding

algorithm for a fair comparison (Chen et al. 2015). The precision of weights is 32-bit in

both our algorithm and sparse coding. The results show that sparse coding algorithm

performs better than our network, because it uses gradient based optimization method,

which is not biologically plausible. It is worth mentioning that when the number of training

image was very limited, like about 500, the network still had above 80% accuracy, which

was much better than sparse coding. The ability of fast learning in such a small number of

trials is observed in live animals as well, which is critical to survival and evolution. It has

enabled the nervous systems to tend to learn faster than the machine learning algorithms

that are currently available. Querlioz (2013, 12:288-295) proposed a lateral inhibition

spiking neural network trained with STDP. They need 6400 excitatory neurons to achieve

95.0% accuracy on the same dataset. The FFI network is 3X more efficient than the lateral

inhibition network.

5.3.2. Important Factors to Train the Network

Several experiments are conducted to investigate the important factors in the

training step. The first one is the randomization in the initialization stage. A good random

initialization is crucial to high learning performance. There are two aspects of initialization:

connectivity and weights. The connectivity is defined as the percentage of input neurons

that each output neuron (e.g. E or I) receives innervation from. Figure 5.4 shows that the

connectivity needs to be larger than a minimum value (13%) to achieve a good training

result. In addition, when the network connectivity is larger than 80%, the learning accuracy

 80

starts to degrade slightly. Thus, in this paper each E or I neuron receives innervation from

random 50% of the input neurons.

0 20 40 60 80 100
0

20

40

60

80

100

100%

connectivity

A
c

c
u

ra
c

y
 (

%
)

Connectivity (%)

50%

connectivity

Figure 5.4. The effect of connectivity: The prediction accuracy of the FFI networks

with various levels of connectivity, which is defined as the percentage of input neurons

that each output neuron (e.g. E or I) receives innervation from.

Each synaptic connection is also initialized by a random weight. It is known that,

if all E and I neurons are connected to all the input neurons and all the synapses have the

same weight, no learning can happen, because all the neurons are identical and all the

weight changes are identical too. The random initialization of the weights is needed to

break the symmetry. Figure 5.5 shows the learning curve of the network with different

random weight initialization when all E and I neurons are connected to all the input neurons.

The randomness ranges from 100% to 10%. 100% means the weights are initialized with

random numbers between 0 and 1. 10% means the weights are initialized with random

numbers between 0.45 and 0.55. All the random numbers are drawn from uniform

distribution. The figure indicates that enough randomness is needed for a good training

 81

result. The learning performance is better with more randomness. When the level of

randomness is low, the training of weights may be stuck at non-optimal values and is more

difficult to converge. Therefore, the level of randomness needs to be high enough to

perform statistical training.

0K 2K 4K 6K 8K

75

80

85

90

A
c

c
u

ra
c

y
 (

%
)

Number of Training Images

 100% 40%

 80% 20%

 60% 10%

Randomness:

Figure 5.5. The effect of weight randomization: The training curve of networks with

50% connectivity but different initial ranges of random weights. The randomness ranges

from 100% to 10%. 100% means the weights are initialized with random numbers between

0 and 1. 10% means the weights are initialized with random numbers between 0.45 and

0.55. All the random numbers are drawn from uniform distribution. The figure shows that

if initial randomness is too small (<10%), the training cannot converge.

When the E and I neurons receive innervation only from part of the input neurons

randomly (i.e., connectivity less than 100%), more randomness is added to the initialization

and better accuracy is achieved. Other experiments show that 50% connectivity is an

optimized initialization for this dataset. And at least 10% connectivity is needed to capture

meaningful input patterns and have good learning performance. Another reason why

 82

random initialization is so important to the statistical learning is because Hebbian learning

is a process of positive feedback. Useful differentiation of features will be strengthened

during training. With more variations in the system, the mechanism of positive feedback

will learn how to amplify and separate the features for various classes. On the other side,

if the input variation is too low that even after the amplification by the feedback, there is

not enough separation to be created, then this non-linear training procedure will fail; as a

result, we observe the sudden drops in accuracy.

Figure 5.6. The effect of homeostatic balance: The firing rate of E neurons for

different classes of images, after training with and without homeostatic balance. Without

homeostatic balance, some neurons may be stuck at the constantly firing state (white) or

the non-firing state (dark), failing to differentiate the classes with different firing patterns.

As Hebbian learning is a process of positive feedback, it is very important to keep

the homeostatic balance. As shown in Figure 5.6, without homeostatic balance, the neurons

will be stuck at constantly firing state or non-firing state during training. These neurons

 83

cannot extract any useful feature and are useless to the learning. It needs to keep the long-

term firing rate of all neurons at a similar value by the balancing methods. Thus, each

neuron will only respond when particular input features arise.

0K 10K 20K 30K 40K 50K 60K

20

40

60

80

100

Number of Training Images

A
c
c
u

ra
c
y
 (

%
)

 2000

 1000

 200

 20

 2

Habituation

rate :

Figure 5.7. The effect of habituation rate: The learning curve of networks with

different habituation rates 𝛼 in Equation (18). If the learning rate doesn’t decay or decays

too slowly, the training cannot complete.

For the synapse, it is also important to make sure the learning converges, i.e., the

synaptic weight should be stable toward the end of training. In our algorithm, convergence

is guaranteed by reducing the learning rate during training. It is inspired by the habituation

of the synaptic plasticity in biological nervous systems. The more times a synaptic weight

is changed, the less it can be changed by the same amount of stimulus. In our network, the

learning rate of each synapse is reversed proportional to the number of times it has been

updated. The speed of habituation determines the speed of convergence. As shown in

 84

Figure 5.7, if the habituation is too slow, the training will fail at some point. The speed of

habituation needs to be optimized for high accuracy.

0 10k 20k 30k 40k 50k 60k

20

40

60

80

100

A
c
c

u
ra

c
y
 (

%
)

Number of Training Images

 20%

 15%

 10%

 5%

 2.5%

Percentage of

Firing Neurons:

Figure 5.8. The effect of sparsity: The training curves with different sparsity, which

is defined as the percentage of firing neurons in the E layer. If too many neurons are firing

together, the training may fail due to the incapability to differentiate various classes; if too

few neurons are firing, the accuracy degrades too. The optimal number is around 10%

because there are totally 10 classes in this learning task.

For the neurons, the parameters that impact learning include the threshold of

neurons and the sparsity. The sparsity is controlled by the threshold 𝜃. Higher threshold

results in fewer number of firing neurons and lower threshold results in more number of

firing neurons. From the learning aspect, it prefers less overlaps that a neuron fires across

different class of images, in order to better differentiate one class from another. In addition,

it prefers all output neurons can be utilized to extract features for the entire dataset, i.e., the

full feature space is utilized. Figure 5.8 shows that the average percentage of firing neurons

for one image affects the accuracy. For this dataset, since there are 10 different classes,

 85

when the percentage of firing neurons is about 10%, it achieves the best accuracy. Figure

5.8 further indicates that that if the number of firing neurons is too large, the training will

fail at some point due to too many overlaps in the feature space.

5.3.3. Role of Feedforward Inhibition in Learning

The neural network model can help us understand the role of the FFI motif in

learning, such as the benefit of adding this small group of interneurons. From both

biological experiments and previous neural networks, we know that FF excitatory neurons

only are sufficient to extract sparse features and classify objects. Yet biological studies in

vivo further indicated that the suppression of interneurons degraded the learning process,

implying that critical role of the FFI motif. To investigate the function of FFI, we conducted

a comparative study by training two similar neural networks, one with inhibition (Model

A) and the other without inhibition (Model B). The rest of the network model, such as the

number of neurons, connectivity, etc., are all identical. The same rewarded SRDP rule was

applied to both models. For a fair comparison, the threshold of E neurons in Model B was

increased to obtain a similar group firing rate as that in Model A.

The first experiment studied the dependence of learning efficacy on the number of

excitatory neurons, while the number of interneurons was kept constant. Figure 5.9 presents

the result. As the number of E neurons increases, the accuracy is improved. The accuracy

is more sensitive to the size of E, when the number of E neurons is low; when the size of

E keeps increasing, the accuracy increased more slowly and eventually became saturated.

Moreover, the results in Figure 5.9 illustrate that at the same number of E neurons, Model

A, the network with FFI, achieves higher accuracy than Model B. To achieve the same

accuracy of 95.0%, Model A only needs 2000 excitatory neurons with 100 interneurons

 86

while Model B, the model without the FFI motif, required 5200 neurons. Thus, adding a

small inhibitory layer can not only improve the final accuracy, but also significantly reduce

the number of E neurons needed to achieve a specific accuracy (i.e., in this case, a 2.6X

reduction), resulting in much greater hardware efficiency. The improved hardware

compactness will in turn bring better energy efficiency and computing speed. Furthermore,

we trained Model A with various numbers of I neurons. The result showed that as long as

the number of I neurons is larger than 10, the network achieved similar accuracy.

0 2k 4k 6k 8k 10k 12k

87

88

89

90

91

92

93

94

95

96

97

98

99

Number of Neurons (E)

A
c
c
u

ra
c
y
 (

%
)

 w/ inhibition (E + I)

 w/o inhibition (E only)

Figure 5.9. The prediction accuracy as a function of the number of E neurons in the

network model, with or without the inhibition layer (100 I neurons). To achieve 95.0%

accuracy, the network with feedforward inhibition only needs 2000 E neurons, while the

network without inhibition needs 5200 E neurons. The network with inhibition shows both

higher accuracy and higher hardware efficiency (i.e., 2.6X reduction in the number of

excitation neurons at 95.0%).

More experiments are performed on Model A, the FFI motif with 2000 E neurons

and 100 I neurons to study the role of inhibition. If the interneurons are removed from the

 87

network after training, the excitatory neurons started to fire at a much higher rate, and had

a lot of overlaps across different classes, which was consistent with the observations from

biological experiments on the locust olfactory system (Perez-Orive et al. 2004, 24:6037-

6047). In the biological experiments, blockade of inhibition in the mushroom body caused

neurons to become responsive to a much larger number of odors and lose the ability to

discriminate between them. Similarly, the prediction accuracy of our network dropped

from 95.0% to 47.7% after removal of interneurons due to too many firing neurons, which

led to less selective feature extraction. Both the network model and the biological

experiment demonstrated similar roles of inhibition in the regulation of firing rate and the

maintenance of sparsity in the response. To further prove this, we increased the threshold

of E neurons for the network after removing I neurons, so that the firing rate of E neurons

was restored to that with I neurons. With this change, the prediction accuracy was improved

back to 92.5%, but still significantly lower than that from Model A at 95.0%. Based on

these experiments, we conclude that the first role of the FFI motif is to regulate the firing

rate and the sparsity of E neurons.

To better understand the interaction between I and E neurons, the plasticity of the

inhibitory synapses from I to E are turned off. The network still has 2000 E neurons and

100 I neurons. When the inhibitory synapses were fixed at a constant weight, each E

neurons received the same amount of inhibition proportional to the group firing rate of I

neurons. This network achieved 94.7% accuracy after training. Note that Model B with

2000 E neurons, but without inhibition, achieved 93.7% accuracy. Comparing these two

results, the 1% improvement in accuracy is because the I neurons can dynamically regulate

the E neurons based on the input image, while without inhibition the regulation of E

 88

neurons is by a fixed threshold regardless of the input. This hypothesis is also proved by

Figure 5.10 and Figure 5.11. Figure 5.10 shows less batch to batch variation of the average

percentage of firing neurons for the network with inhibition. Figure 5.11 shows that the

average firing rate of E neurons without inhibition and the average firing rate of I neurons

are strongly correlated. The training of the network can strengthen such correlation. The

correlation coefficient between E firing and I firing is increased from 0.46 (before training)

to 0.74 (after training). Therefore, we conclude that the second role of the FFI motif is to

provide the sensitivity to each input during the regulation of E neurons, beyond the indirect

and delayed FB inhibition from E neurons.

0k 10k 20k 30k 40k 50k 60k

4

6

8

10

12

14

16

F
ir

in
g

 E
 N

e
u

ro
n

s
 (

%
)

Number of Training Images

 without inhibition

 with inhibition

Figure 5.10. Thresholding: The percentage of firing E neurons (i.e., sparsity) during

model training, with and without inhibition. Each data point represents the average

percentage of firing E neurons for a batch of images (100 images). The network with

feedforward inhibition has much smaller batch to batch variations. Thus, FFI helps regulate

the firing rate of E neurons.

 89

0.000 0.005 0.010
0.005

0.010

0.015

0.020

F
ir

in
g

 R
a

te
 o

f
I

N
e

u
ro

n
s

Firing Rate of E Neurons

 Before training

correlation coeffecient = 0.46

0.000 0.005 0.010
0.005

0.010

0.015

0.020

F
ir

in
g

 R
a
te

 o
f

I
N

e
u

ro
n

s

Firing Rate of E Neurons

 After training

correlation coeffecient = 0.74

Figure 5.11. Dynamic thresholding: The figures show the correlation between the

average firing rate of E neurons without inhibition and the average firing rate of I neurons

before and after training. There are 1000 data points in each figure for 1000 randomly

selected images. Each data point represents the average firing rate of E neurons without

inhibition (x axis) and I neurons (y axis). The correlation coefficient is 0.46 before training,

while the training process strengthens the correlation to be 0.74. This change indicates that

FFI responds to the same input as E and carries correlated information to suppress E,

beyond simple thresholding.

 90

Besides the interaction between E and I, the I neurons are also stimulated by the

same input as that to E. The only difference between E and I is their size: there are much

more E neurons than I neurons. Therefore, some fundamental questions in computing are

what the interneurons learn from the input, and how the learning by I help improve the

accuracy. To understand that, we reproduced the classifier with 10 output neurons and

added that after the inhibition layer. These 10 neurons received input from the interneurons

and predicted the digits. After training this new classifier, the result showed that the

interneurons achieve 68% accuracy with only 100 neurons. A more careful examination

revealed that the images that can be successfully recognized by the interneurons are more

standard (i.e., closer to the average image in each category) than those unrecognized, as

shown in Figure 5.12. Here, how standard an image looks is measured by the Euclidian

distance from the image to its corresponding cluster center assigned by K-means, which is

a representative unsupervised clustering algorithm. Images with longer distance from their

center are generally more difficult to be recognized because they contain more unusual

features. For the examples in Figure 5.12, the correct group can represent majority of the

images in the dataset. Their patterns have more common features. The interneurons can

make good prediction on these images. On the contrast, the wrong group has more

uncommon features which don’t appear often in the dataset, i.e., statistically they are

farther away from the cluster center. Thus, the interneurons cannot recognize them well.

Figure 5.12 shows the statistical accuracy with respect to this distance for three different

motifs, the inhibitory layer, the excitatory layer without inhibition (Model B) and the

excitatory layer with inhibition (Model A). They show the same trend but the excitatory

neurons have much higher accuracy than the interneurons, which can be attributed to the

 91

difference in their size. The difference between Model A and Model B is from the images

near the centers. When the distance is smaller than 0.04, the interneurons have accuracy

above 80%, which boosts the accuracy of excitatory neurons from 90% to nearly 100%.

Because the images with small distance are the majority part of the data, this improvement

is important to increase the overall accuracy.

0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Distance from cluster center

 I

 E without I

 E with I

Figure 5.12. The classification results of the inhibition layer. The first figure shows

the example images that I neurons can and cannot recognize after training. The second

figure shows the prediction accuracy as a function of the distance from an image to its

cluster center, using the K-means method.

 92

0 10 20 30 40 50

0.5

1.0

1.5

2.0

Recognized

W
e
ig

h
te

d
 S

u
m

Index of E Neurons

 XW

 IW

 E

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
e

ig
h

te
d

 S
u

m

Index of E Neurons

 XW

 IW

 E

Unrecognized

Figure 5.13. The total weighed sum of input from excitatory path and inhibitory

path of 50 random selected E neurons. The left figure is the image can be recognized and

the right figure is the image cannot be recognized.

Figure 5.13 shows the total current (i.e. weighed sum of input) from excitatory path

and inhibitory path of 50 E neurons for two different input images. For the image that is

well recognized by the network, the excitatory current and the inhibitory current have

strong correlation. For the image that is not well recognized by the network, the inhibitory

 93

current has no correlation with the excitatory current. In conclusion, the third role of

inhibition is the FFI motif is to recognize a major portion of the images with a concise

layer, and increase the accuracy of the excitatory neurons on these images.

5.3.4. Comparison with Relate Works

As a summary, a comparison of different algorithms on MNIST dataset is shown

in Table 9. Compared to biologically plausible methods, our method achieves higher

accuracy with less number of neurons; compared to artificial learning algorithms that have

better accuracy, our method only uses feedforward computation, without resorting to

expensive backpropagation on training, and thus, enhances computation efficiency.

Table 9. Comparison between the neural network models in this paper and related

works.

Model Data
representation

Learning
rules

Number of
neurons

Number of
parameters

Number
of images Accuracy

Insect mushroom
body model

(Huerta 2009)
Spike Rewarded

STDP 50000 5E5 60000 87%

Two-layer SNN
(Querlioz 2013) Spike STDP 300 2.4E5 60000x3 93.5%
Lateral inhibitory
SNN (Diehl 2015) Spike STDP 6400 4.6E7 200000 95.0%

This work
(w/ FFI) Spike rate Rewarded

SRDP 2100 8.4E5 60000 95.0%
This work
(w/o FFI) Spike rate Rewarded

SRDP 6000 2.4E6 60000 95.2%
Spiking RBM
(Neftci 2013) Spike rate Contrastive

divergence 500 3.9E5 20000 92.6%
Sparse Coding
(Chen 2015) 6-bit number Gradient

descent 300 3E4 60000x10 95.9%
Two-layer NN
(LeCun 1998)

Floating-point
number

Gradient
descent 1000 7.8E5 60000 95.5%

Spiking CNN
(Panda 2016) Spike timing Regenerative

learning 5.6E4 1.2E5 60000 99.08%

 94

6. Future Work

There are two directions for the future work. On the hardware side, the proposed

algorithm can be implemented on a chip using either SRAM or RRAM array as the

synapses. The computing, programming and controlling circuits need to be designed with

the target of high performance and low power. The early stage implementation with FPGA

can also be performed as a proof of concept. One major concern for the hardware

implementation is the data and parameter precision. It is very important to use minimum

number of bit which can keep good accuracy, in order to save the hardware resources, and

reduce latency and power.

 For the bio-inspired algorithm, it is very interesting to try more challenging dataset

such as CIFAR10. Proper tuning of parameters and even the learning rules are important

to make the algorithm work well. It is also interesting to explore deeper neural networks

with this algorithm since several more layers of neural networks are observed in the brain.

In addition, this algorithm has the potential to realize online learning, which is able to learn

from data continuously as the data distribution changes over time.

 95

7. Conclusion

This dissertation aims at the potential of machine learning on-a-chip. For this

purpose, state-of-the-art device options are firstly reviewed. For memory device, emerging

non-volatile memories are very promising synaptic devices to enable large scale parallel

computing in machine learning. Thus, PRAM and STT-MRAM are extensively studied

and modeled within the proposed hierarchical framework. In the design perspective, a new

performance metric, State Transition Curve, is proposed for the assessment of PRAM cell

and to provide valuable design insights. In addition, various simulations are conducted to

investigate the performance, optimization, variability, reliability, and scalability of these

two memories. As a hardware implementation practice, peripheral programming circuitry

is designed for the parallel programming of RRAM cross-point array as the synapses in

neural networks. The simulation shows 900X improvement in speed of dictionary learning.

On the algorithm side, a bio-plausible feedforward inhibition motif is developed with leaky

integrate-and-fire neurons and SRDP Hebbian learning rule. It shows great performance

and high efficiency of both computation and hardware, achieving 95% testing accuracy on

MNIST dataset with 30X less number of computations than sparse coding. And the

feedforward inhibition is shown to save 3X on hardware resources. In addition, the reason

why feedforward inhibition can improve the hardware efficiency is thoroughly studied.

 96

REFERENCES

Alon, Uri. 2007. Network motifs: theory and experimental approaches. Nature

Reviews Genetics 8(6):450-461.

Assisi, Collins, Mark Stopfer, Gilles Laurent, and Maxim Bazhenov. 2007.

Adaptive regulation of sparseness by feedforward inhibition. Nature neuroscience

10(9):1176.

Bahrami, Shahram, and Finn Drabløs. 2016. Gene regulation in the immediate-

early response process. Advances in biological regulation 62:37-49.

Baig, Mirza M., Mian M. Awais, and El-Sayed M. El-Alfy. 2017. AdaBoost-

based artificial neural network learning. Neurocomputing 248:120-126.

Baldassi, Carlo. 2009. Generalization learning in a perceptron with binary

synapses." Journal of Statistical Physics 136(5): 902-916.

Baldassi, Carlo, Federica Gerace, Carlo Lucibello, Luca Saglietti, and Riccardo

Zecchina. 2016. Learning may need only a few bits of synaptic precision. Physical

Review 93(5):052313.

Bedeschi, Ferdinando, Rich Fackenthal, Claudio Resta, Enzo Michele Donze,

Meenatchi Jagasivamani, Egidio Cassiodoro Buda, Fabio Pellizzer et al. 2009. A bipolar-

selected phase change memory featuring multi-level cell storage. IEEE Journal of Solid-

State Circuits 44(1):217-227.

Bi, Guo-qiang, and Mu-ming Poo. 1998. Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic

cell type. Journal of neuroscience 18(24):10464-10472.

Bousquet, Olivier, and Léon Bottou. 2008. The tradeoffs of large scale learning.

In Advances in neural information processing systems 161-168.

Burr, Geoffrey W., Matthew J. Breitwisch, Michele Franceschini, Davide Garetto,

Kailash Gopalakrishnan, Bryan Jackson, Bülent Kurdi et al. 2010. Phase change memory

technology. Journal of Vacuum Science & Technology B, Nanotechnology and

Microelectronics: Materials, Processing, Measurement, and Phenomena 28(2):223-262.

Cao, Yongqiang, Yang Chen, and Deepak Khosla. 2015. Spiking deep

convolutional neural networks for energy-efficient object recognition. International

Journal of Computer Vision 113(1):54-66.

Chen, Pai-Yu, Binbin Lin, I-Ting Wang, Tuo-Hung Hou, Jieping Ye, Sarma

Vrudhula, Jae-sun Seo, Yu Cao, and Shimeng Yu. 2015. Mitigating effects of non-ideal

 97

synaptic device characteristics for on-chip learning. Computer-Aided Design (ICCAD),

2015 IEEE/ACM International Conference on 194-199.

Chen, Tianshi, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelerator for

ubiquitous machine-learning. ACM Sigplan Notices 49(4):269-284.

Chen, Yunji, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.

DianNao family: energy-efficient hardware accelerators for machine learning.

Communications of the ACM 59(11):105-112.

Chen, Yu-Hsin, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural networks.

IEEE Journal of Solid-State Circuits 52(1):127-138.

Chi, Ping, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu

Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture for neural

network computation in reram-based main memory. Proceedings of the 43rd

International Symposium on Computer Architecture, 27-39.

Chun, Ki Chul, Hui Zhao, Jonathan D. Harms, Tae-Hyoung Kim, Jian-Ping

Wang, and Chris H. Kim. 2013. A scaling roadmap and performance evaluation of in-

plane and perpendicular MTJ based STT-MRAMs for high-density cache memory. IEEE

Journal of Solid-State Circuits 48(2):598-610.

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. 2014. Training

deep neural networks with low precision multiplications. arXiv preprint arXiv:1412.7024.

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. 2015.

Binaryconnect: Training deep neural networks with binary weights during propagations.

Advances in Neural Information Processing Systems 3123-3131.

Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized neural networks: Training deep neural networks with weights

and activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830.

Diao, Zhitao, Zhanjie Li, Shengyuang Wang, Yunfei Ding, Alex Panchula,

Eugene Chen, Lien-Chang Wang, and Yiming Huai. 2007. Spin-transfer torque switching

in magnetic tunnel junctions and spin-transfer torque random access memory. Journal of

Physics: Condensed Matter 19(16):165209.

Diehl, Peter U., and Matthew Cook. 2015. Unsupervised learning of digit

recognition using spike-timing-dependent plasticity. Frontiers in computational

neuroscience 9.

 98

Diehl, Peter U., Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and

Michael Pfeiffer. 2015. Fast-classifying, high-accuracy spiking deep networks through

weight and threshold balancing. International Joint Conference on Neural Networks 1-8.

Du, Zidong, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,

Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision

processing closer to the sensor. ACM SIGARCH Computer Architecture News 43(3):92-

104.

Ernst, K. D., J. Boeckh, and V. Boeckh. 1977. A neuroanatomical study on the

organization of the central antennal pathways in insects. Cell and tissue research

176(3):285-308.

Faber, Louis-Barthelemy, Weisheng Zhao, Jacques-Oliver Klein, Thibaut

Devolder, and Claude Chappert. 2009. Dynamic compact model of spin-transfer torque

based magnetic tunnel junction (MTJ). Design & Technology of Integrated Systems in

Nanoscal Era, 2009. DTIS'09. 4th International Conference on 130-135.

Farabet, Clément, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio

Culurciello, and Yann LeCun. 2011. Neuflow: A runtime reconfigurable dataflow

processor for vision. Computer Vision and Pattern Recognition Workshops (CVPRW),

2011 IEEE Computer Society Conference on, 109-116.

Fraser, Nicholas J., Yaman Umuroglu, Giulio Gambardella, Michaela Blott,

Philip Leong, Magnus Jahre, and Kees Vissers. 2017. Scaling binarized neural networks

on reconfigurable logic. Proceedings of the 8th Workshop and 6th Workshop on Parallel

Programming and Run-Time Management Techniques for Many-core Architectures and

Design Tools and Architectures for Multicore Embedded Computing Platforms 25-30.

Furber, Steve. 2016. Large-scale neuromorphic computing systems. Journal of

neural engineering 13(5):051001.

Galizia, C. Giovanni, and Silke Sachse. 2010. Odor coding in insects. The

neurobiology of olfaction 35-70.

Garbin, Daniele, Olivier Bichler, Elisa Vianello, Quentin Rafhay, Christian

Gamrat, L. Perniola, G. Ghibaudo, and B. DeSalvo. 2014. Variability-tolerant

convolutional neural network for pattern recognition applications based on OxRAM

synapses. Electron Devices Meeting (IEDM), 2014 IEEE International, 28-4.

Gokhale, Vinayak, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio

Culurciello. 2014. A 240 g-ops/s mobile coprocessor for deep neural networks. IEEE

Conference on Computer Vision and Pattern Recognition Workshops 682-687.

 99

Gokmen, Tayfun, and Yurii Vlasov. 2016. Acceleration of deep neural network

training with resistive cross-point devices: design considerations. Frontiers in

neuroscience 10.

Guan, Ximeng, Shimeng Yu, and H-S. Philip Wong. 2012. A SPICE compact

model of metal oxide resistive switching memory with variations. IEEE electron device

letters 33(10):1405-1407.

Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep learning with limited numerical precision. International Conference on

Machine Learning 37:1737-1746.

Gysel, Philipp, Mohammad Motamedi, and Soheil Ghiasi. 2016. Hardware-

oriented approximation of convolutional neural networks. arXiv preprint

arXiv:1604.03168.

Haider, Bilal, Alvaro Duque, Andrea R. Hasenstaub, and David A. McCormick.

2006. Neocortical network activity in vivo is generated through a dynamic balance of

excitation and inhibition. Journal of Neuroscience 26(17):4535-4545.

Han, Song, Huizi Mao, and William J. Dally. 2015. Deep compression:

Compressing deep neural networks with pruning, trained quantization and Huffman

coding. arXiv preprint arXiv:1510.00149.

Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.

Horowitz, and William J. Dally. 2016. EIE: efficient inference engine on compressed

deep neural network. International Symposium on Computer Architecture 243-254.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. IEEE Conference on Computer Vision and Pattern

Recognition 770-778.

Hollis, Paul W., John S. Harper, and John J. Paulos. 1990. The effects of precision

constraints in a backpropagation learning network. Neural Computation 2(3):363-373.

Hong, Chaoqun, Jun Yu, Jian Wan, Dacheng Tao, and Meng Wang. 2015.

Multimodal deep autoencoder for human pose recovery. IEEE Transactions on Image

Processing 24(12):5659-5670.

Huerta, Ramón, and Thomas Nowotny. 2009. Fast and robust learning by

reinforcement signals: explorations in the insect brain. Neural computation 21(8):2123-

2151.

 100

Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William

J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

ILSVRC. “ImageNet Large Scale Visual Recognition Challenge 2017.”

http://image-net.org/challenges/LSVRC/2017/results.

Itri, A., D. Ielmini, A. L. Lacaitat, A. Pirovano, E. Pellizzer, and R. Bez. 2004.

Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide

fraction in phase-change memories. Reliability Physics Symposium Proceedings, 2004.

42nd Annual. 2004 IEEE International 209-215.

Jo, Sung Hyun, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki

Mazumder, and Wei Lu. 2010. Nanoscale memristor device as synapse in neuromorphic

systems. Nano letters 10(4):1297-1301.

Johnson, William A. 1939. Reaction kinetics in process of nucleation and growth.

Transaction of AIME 135:416-458.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates et al. 2017. In-datacenter performance analysis of a tensor

processing unit. arXiv preprint arXiv:1704.04760.

Kammerer, Jean-Baptiste, Morgan Madec, and Luc Hébrard. 2010. Compact

modeling of a magnetic tunnel junction—Part I: Dynamic magnetization model. IEEE

Transactions on Electron Devices 57(6):1408-1415.

Karpathy, Andrej. “What I Learned from Competing Against a ConvNet on

ImageNet.” Andrej Karpathy blog. http://karpathy.github.io/2014/09/02/what-i-learned-

from-competing-against-a-convnet-on-imagenet/.

Kelsom, Corey, and Wange Lu. 2013. Development and specification of

GABAergic cortical interneurons. Cell & bioscience 3(1):19.

Kim, Kinarn, and Su Jin Ahn. 2005. Reliability investigations for manufacturable

high density PRAM. Reliability Physics Symposium, 2005. Proceedings. 43rd Annual.

2005 IEEE International 157-162.

Kim, Minje, and Paris Smaragdis. 2016. Bitwise neural networks. arXiv preprint

arXiv:1601.06071.

King, Paul D., Joel Zylberberg, and Michael R. DeWeese. 2013. Inhibitory

interneurons decorrelate excitatory cells to drive sparse code formation in a spiking

model of V1. Journal of Neuroscience 33(13):5475-5485.

 101

Krizhevsky, Alex, and Geoffrey Hinton. 2009. Learning multiple layers of

features from tiny images.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet

classification with deep convolutional neural networks. Advances in Neural Information

Processing Systems, 1097-1105.

Kwong, K. C., Lin Li, Jin He, and Mansun Chan. 2008. Verilog-A model for

phase change memory simulation. Solid-State and Integrated-Circuit Technology, 2008.

ICSICT 2008. 9th International Conference on 492-495.

Lacaita, A. L., A. Redaelli, D. Ielmini, F. Pellizzer, A. Pirovano, A. Benvenuti,

and R. Bez. 2004. Electrothermal and phase-change dynamics in chalcogenide-based

memories. Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International

911-914.

Lane, Nicholas D., and Petko Georgiev. 2015. Can deep learning revolutionize

mobile sensing? In Proceedings of the 16th International Workshop on Mobile

Computing Systems and Applications 117-122.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-

2324.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521:436-444.

Lee, Honglak, Alexis Battle, Rajat Raina, and Andrew Y. Ng. 2007. Efficient

sparse coding algorithms. Advances in neural information processing systems 801-808.

Le Masson, Gwendal, Sylvie Renaud-Le Masson, Damien Debay, and Thierry

Bal. 2002. Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature

417(6891):854.

Li, Fengfu, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv

preprint arXiv:1605.04711.

Li, Lin, and Mansun Chan. 2008. Scaling analysis of phase change memory

(PCM) driving devices. Electron Devices and Solid-State Circuits, 2008. EDSSC 2008.

IEEE International Conference on 1-4.

Li, Yiming, Shao-Ming Yu, Chih-Hong Hwang, and Yi-Ting Kuo. 2008.

Temperature dependence on the contact size of GeSbTe films for phase change

memories. Journal of Computational Electronics 7(3):138-141.

 102

Lin, C. J., S. H. Kang, Y. J. Wang, K. Lee, X. Zhu, W. C. Chen, X. Li et al. 2009.

45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-

connection 1T/1MTJ cell." In Electron Devices Meeting (IEDM), 2009 IEEE

International 1-4.

Lin, Darryl D., and Sachin S. Talathi. 2016. Overcoming challenges in fixed point

training of deep convolutional networks. arXiv preprint arXiv:1607.02241.

Liu, Weibo, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E.

Alsaadi. 2017. A survey of deep neural network architectures and their applications.

Neurocomputing 234:11-26.

Lu, H. M., W. T. Zheng, and Q. Jiang. 2007. Saturation magnetization of

ferromagnetic and ferrimagnetic nanocrystals at room temperature. Journal of Physics D:

Applied Physics 40(2):320.

Luo, Tao, Shaoli Liu, Ling Li, Yuqing Wang, Shijin Zhang, Tianshi Chen, Zhiwei

Xu, Olivier Temam, and Yunji Chen. 2017. DaDianNao: a neural network

supercomputer. IEEE Transactions on Computers 66(1):73-88.

Ma, Yufei, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. 2016.

Scalable and modularized RTL compilation of convolutional neural networks onto

FPGA. Field Programmable Logic and Applications (FPL), 2016 26th International

Conference on 1-8.

Madec, Morgan, Jean-Baptiste Kammerer, and Luc Hébrard. 2010. Compact

modeling of a magnetic tunnel junction—Part II: Tunneling current model. IEEE

Transactions on Electron Devices 57(6):1416-1424.

Merolla, Paul A., John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun

Sawada, Filipp Akopyan, Bryan L. Jackson et al. 2014. A million spiking-neuron

integrated circuit with a scalable communication network and interface. Science

345(6197):668-673.

 Merolla, Paul, Rathinakumar Appuswamy, John V. Arthur, Steven K. Esser, and

Dharmendra S. Modha. 2016. Deep neural networks are robust to weight binarization and

other non-linear distortions. CoRR abs/1606.01981.

Misra, Janardan, and Indranil Saha. 2016. Artificial neural networks in hardware:

a survey of two decades of progress. Neurocomputing 74(1-3):239-255.

Neftci, Emre, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert

Cauwenberghs. 2013. Event-driven contrastive divergence for spiking neuromorphic

systems. Frontiers in neuroscience 7.

 103

Nurvitadhi, Eriko, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh

Venkatesh, and Debbie Marr. 2016. Accelerating Binarized Neural Networks:

Comparison of FPGA, CPU, GPU, and ASIC." Field-Programmable Technology (FPT),

2016 International Conference on 77-84.

Pan, Xipeng, Lingqiao Li, Huihua Yang, Zhenbing Liu, Jinxin Yang, Lingling

Zhao, and Yongxian Fan. 2017. Accurate segmentation of nuclei in pathological images

via sparse reconstruction and deep convolutional networks. Neurocomputing 229:88-99.

Panda, Priyadarshini, and Kaushik Roy. 2016. Unsupervised regenerative learning

of hierarchical features in spiking deep networks for object recognition. Neural Networks

(IJCNN), 2016 International Joint Conference on 299-306.

Perez-Orive, Javier, Maxim Bazhenov, and Gilles Laurent. 2004. Intrinsic and

circuit properties favor coincidence detection for decoding oscillatory input. Journal of

Neuroscience 24(26):6037-6047.

Plagianakos, V. P., and M. N. Vrahatis. 1999. Training neural networks with 3-bit

integer weights. Genetic and Evolutionary Computation Conference 910-915.

Pouille, Frédéric, Antonia Marin-Burgin, Hillel Adesnik, Bassam V. Atallah, and

Massimo Scanziani. 2009. Input normalization by global feedforward inhibition expands

cortical dynamic range." Nature neuroscience 12(12):1577-1585.

Prezioso, Mirko, Farnood Merrikh-Bayat, B. D. Hoskins, G. C. Adam, Konstantin

K. Likharev, and Dmitri B. Strukov. 2015. Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521(7550):61-64.

Qiu, Jiantao, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng

Yu et al. 2016. Going deeper with embedded fpga platform for convolutional neural

network. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays 26-35.

Querlioz, Damien, Olivier Bichler, Philippe Dollfus, and Christian Gamrat. 2013.

Immunity to device variations in a spiking neural network with memristive nanodevices.

IEEE Transactions on Nanotechnology 12(3):288-295.

Ralph, Daniel C., and Mark D. Stiles. 2008. Spin transfer torques. Journal of

Magnetism and Magnetic Materials 320(7):1190-1216.

Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.

Xnor-net: Imagenet classification using binary convolutional neural networks. European

Conference on Computer Vision 525-542.

 104

Sarpeshkar, Rahul. 1998. Analog versus digital: extrapolating from electronics to

neurobiology. Neural computation 10(7):1601-1638.

Scardapane, Simone, Danilo Comminiello, Amir Hussain, and Aurelio Uncini.

2017. Group sparse regularization for deep neural networks. Neurocomputing 241:81-89.

Schmidhuber, Jürgen. 2015. Deep learning in neural networks: An overview.

Neural networks 61:85-117.

Seo, Jae-sun, Bernard Brezzo, Yong Liu, Benjamin D. Parker, Steven K. Esser,

Robert K. Montoye, Bipin Rajendran et al. 2011. A 45nm CMOS neuromorphic chip

with a scalable architecture for learning in networks of spiking neurons. Custom

Integrated Circuits Conference (CICC), 2011 IEEE 1-4.

Sharad, Mrigank, Charles Augustine, Georgios Panagopoulos, and Kaushik Roy.

2012. Spin-based neuron model with domain-wall magnets as synapse. IEEE

Transactions on Nanotechnology 11(4):843-853.

Sillito, A. M. 1977. Inhibitory processes underlying the directional specificity of

simple, complex and hypercomplex cells in the cat's visual cortex. The Journal of

Physiology 271(3):699-720.

Simonyan, Karen, and Andrew Zisserman. 2014. Very deep convolutional

networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Skorheim, Steven, Peter Lonjers, and Maxim Bazhenov. 2014. A spiking network

model of decision making employing rewarded STDP. PloS one 9(3):e90821.

Song, Sen, Kenneth D. Miller, and Larry F. Abbott. 2000. Competitive Hebbian

learning through spike-timing-dependent synaptic plasticity. Nature neuroscience

3(9):919-926.

Sporns, Olaf, and Rolf Kötter. 2004. Motifs in brain networks. PLoS biology

2(11):e369.

Stopfer, Mark, Vivek Jayaraman, and Gilles Laurent. 2003. Intensity versus

identity coding in an olfactory system. Neuron 39(6):991-1004.

Stromatias, Evangelos, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve

B. Furber, and Shih-Chii Liu. 2015. Robustness of spiking deep belief networks to noise

and reduced bit precision of neuro-inspired hardware platforms. Frontiers in

Neuroscience 9.

 105

Sun, Kai, Jiangshe Zhang, Chunxia Zhang, and Junying Hu. 2017. Generalized

extreme learning machine autoencoder and a new deep neural network." Neurocomputing

230:374-381.

Sawaguchi, T. O. S. H. I. Y. U. K. I., I. T. A. R. U. Yamane, and K. I. S. O. U.

Kubota. 1996. Application of the GABA antagonist bicuculline to the premotor cortex

reduces the ability to withhold reaching movements by well-trained monkeys in visually

guided reaching task. Journal of Neurophysiology 75(5):2150-2156.

Szlam, Arthur D., Karol Gregor, and Yann L. Cun. 2011. Structured sparse

coding via lateral inhibition. Advances in Neural Information Processing Systems 1116-

1124.

Tosic, Ivana, and Pascal Frossard. 2011. Dictionary learning. IEEE Signal

Processing Magazine 28(2):27-38.

Tsumoto, T., W. Eckart, and O. D. Creutzfeldt. 1979. Modification of orientation

sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition.

Experimental Brain Research 34(2):351-363.

Vogels, Tim P., Robert C. Froemke, Nicolas Doyon, Matthieu Gilson, Julie S.

Haas, Robert Liu, Arianna Maffei et al. 2013. Inhibitory synaptic plasticity: spike timing-

dependence and putative network function. Frontiers in neural circuits 7.

Wang, Xiaobin, Yiran Chen, Hai Li, Dimitar Dimitrov, and Harry Liu. 2008. Spin

torque random access memory down to 22 nm technology. IEEE Transactions on

Magnetics 44(11):2479-2482.

Warren, R., J. Reifenberg, and K. Goodson. 2008. Compact thermal model for

phase change memory nanodevices. Thermal and Thermomechanical Phenomena in

Electronic Systems, 2008. ITHERM 2008. 11th Intersociety Conference on 1018-1045.

Wei, Xuechao, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han

Hu, Yun Liang, and Jason Cong. 2017. Automated Systolic Array Architecture Synthesis

for High Throughput CNN Inference on FPGAs. Proceedings of the 54th Annual Design

Automation Conference 2017 29.

Wong, H-S. Philip, Simone Raoux, SangBum Kim, Jiale Liang, John P.

Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase

change memory. Proceedings of the IEEE 98(12):2201-2227.

Wong, H-S. Philip, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-

Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai. 2012. Metal–oxide

RRAM." Proceedings of the IEEE 100(6):1951-1970.

 106

Xia, Lixue, Peng Gu, Boxun Li, Tianqi Tang, Xiling Yin, Wenqin Huangfu,

Shimeng Yu, Yu Cao, Yu Wang, and Huazhong Yang. 2016. Technological exploration

of rram crossbar array for matrix-vector multiplication. Journal of Computer Science and

Technology 31(1):3-19.

Xu, Zihan, Ketul B. Sutaria, Chengen Yang, Chaitali Chakrabarti, and Yu Cao.

2012. Hierarchical modeling of phase change memory for reliable design. Computer

Design (ICCD), 2012 IEEE 30th International Conference on, 115-120.

Xu, Zihan, Ketul B. Sutaria, Chengen Yang, Chaitali Chakrabarti, and Yu Cao.

2013. Compact modeling of STT-MTJ for SPICE simulation. Solid-State Device

Research Conference (ESSDERC), 2013 Proceedings of the European, 338-341.

Xu, Zihan, Chengen Yang, Manqing Mao, Ketul B. Sutaria, Chaitali Chakrabarti,

and Yu Cao. 2014. Compact modeling of STT-MTJ devices. Solid-State Electronics

102:76-81.

Xu, Zihan, Abinash Mohanty, Pai-Yu Chen, Deepak Kadetotad, Binbin Lin,

Jieping Ye, Sarma Vrudhula, Shimeng Yu, Jae-sun Seo, and Yu Cao. 2014. Parallel

programming of resistive cross-point array for synaptic plasticity. Procedia Computer

Science 41:126-133.

Xu, Zihan, Pai-Yu Chen, Jae-sun Seo, Shimeng Yu, and Yu Cao. 2016.

Hardware-efficient learning with feedforward inhibition. Nanoelectronics Conference

(INEC), 2016 IEEE International, 1-2.

Xu, Zihan, Steven Skorheim, Ming Tu, Visar Berisha, Shimeng Yu, Jae sun Seo,

Maxim Bazhenov, and Yu Cao. 2017. Improving efficiency in sparse learning with the

feedforward inhibitory motif. Neurocomputing.

Yang, Chengen, Yunus Emre, Yu Cao, and Chaitali Chakrabarti. 2012. Multi-

tiered approach to improving the reliability of multi-level cell PRAM. Signal Processing

Systems (SiPS), 2012 IEEE Workshop on 114-119.

Yu, Jun, Xiaokang Yang, Fei Gao, and Dacheng Tao. 2016. Deep multimodal

distance metric learning using click constraints for image ranking. IEEE transactions on

cybernetics 99:1-11.

Yu, Jun, Jitao Sang, and Xinbo Gao. 2017. Machine learning and signal

processing for big multimedia analysis. Neurocomputing 257:1-4.

Yu, Jun, Baopeng Zhang, Zhengzhong Kuang, Dan Lin, and Jianping Fan. 2017.

iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task

learning. IEEE Transactions on Information Forensics and Security 12(5):1005-1016.

 107

Yu, Shimeng, Bin Gao, Zheng Fang, Hongyu Yu, Jinfeng Kang, and H‐ S. Philip

Wong. 2013. A low energy oxide‐ based electronic synaptic device for neuromorphic

visual systems with tolerance to device variation. Advanced Materials 25(12):1774-1779.

Zhang, Jian, Ke Li, Yun Liang, and Na Li. 2017. Learning 3D faces from 2D

images via Stacked Contractive Autoencoder. Neurocomputing 257:67-78.

Zhao, Ritchie, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani

B. Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating Binarized

Convolutional Neural Networks with Software-Programmable FPGAs." Field-

Programmable Gate Arrays FPGA 15-24.

Zhao, Wei, and Yu Cao. 2006. New generation of predictive technology model

for sub-45 nm early design exploration. IEEE Transactions on Electron Devices

53(11):2816-2823.

Zhou, Shuchang, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

2016. DoReFa-Net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv preprint arXiv:1606.06160.

Zylberberg, Joel, Jason Timothy Murphy, and Michael Robert DeWeese. 2011. A

sparse coding model with synaptically local plasticity and spiking neurons can account

for the diverse shapes of V1 simple cell receptive fields. PLoS computational biology

7(10):e1002250.

