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ABSTRACT  

   

Machine learning technology has made a lot of incredible achievements in recent 

years. It has rivalled or exceeded human performance in many intellectual tasks including 

image recognition, face detection and the Go game. Many machine learning algorithms 

require huge amount of computation such as in multiplication of large matrices. As silicon 

technology has scaled to sub-14nm regime, simply scaling down the device cannot provide 

enough speed-up any more. New device technologies and system architectures are needed 

to improve the computing capacity. Designing specific hardware for machine learning is 

highly in demand. Efforts need to be made on a joint design and optimization of both 

hardware and algorithm.  

For machine learning acceleration, traditional SRAM and DRAM based system 

suffer from low capacity, high latency, and high standby power. Instead, emerging 

memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque 

Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access 

Memory (RRAM), are promising candidates providing low standby power, high data 

density, fast access and excellent scalability. This dissertation proposes a hierarchical 

memory modeling framework and models PRAM and STT-MRAM in four different levels 

of abstraction. With the proposed models, various simulations are conducted to investigate 

the performance, optimization, variability, reliability, and scalability.  

Emerging memory devices such as RRAM can work as a 2-D crosspoint array to 

speed up the multiplication and accumulation in machine learning algorithms. This 

dissertation proposes a new parallel programming scheme to achieve in-memory learning 

with RRAM crosspoint array. The programming circuitry is designed and simulated in 



  ii 

TSMC 65nm technology showing 900X speedup for the dictionary learning task compared 

to the CPU performance. 

From the algorithm perspective, inspired by the high accuracy and low power of 

the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural 

network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 

95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, 

but requires far fewer number of computations. The role of inhibition in this network is 

systematically studied and shown to improve the hardware efficiency in learning. 
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1. Introduction 

1.1. Background 

Machine learning technology, especially deep learning, has a lot of incredible 

achievements in recent years. Machine learning based products have been integrated into 

our daily life, such as spam filter for email, recommendation system on ecommerce 

websites, and automatic face detection when taking photos with the smart phones. It has 

also rivalled or exceeded human performance in many intellectual tasks including image 

recognition, face detection and the Go game. In the image recognition task of 1,000 

categories (ImageNet Large Scale Visual Recognition Challenge), the state-of-the-art 

algorithm achieves 2.25% top-5 error rate (ILSVRC 2017), which is better than the human 

performance of 5.1% top-5 error rate (Karpathy 2014).  

Machine learning is the science of getting computers to learn, without being 

explicitly programmed. The computers do not copy human’s knowledge directly, but learn 

from data with human defined rules. Machine learning is a very broad concept, and this 

dissertation only focuses on neural networks. A deep neural network model usually needs 

to learn millions of parameters provided millions of data (LeCun et al. 2015, 521:436-444). 

Thus, machine learning algorithms require huge amount of computations and data 

movement.  

The current success of machine learning can be attributed to three aspects. First, the 

computational capability of modern computers have been increasing rapidly. Especially 

the development of Graphics Processing Unit (GPU) makes large scale parallel 

computation possible and efficient (Raina et al. 2009, 873-880). And deep learning models, 

especially neural networks, are featured by highly parallel computation of matrix 
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multiplication and convolution. With GPUs, people can train a deep neural network much 

faster than before. This not only speeds up the developing and tuning cycle of the 

algorithms, but also makes high complexity models possible. Second, as Internet spreads 

all over the world, there are huge amount of data generated by everyone every day, such as 

articles, pictures and search history. These “big data” on the Internet can be easily accessed 

and collected. And large amount of data is crucial to the training of any machine learning 

algorithm. Third, new algorithms and techniques were proposed to improve learning when 

simply increasing the model complexity cannot improve the performance due to overfitting, 

e.g. regularization, dropout (Srivastava et al. 2014, 873-880), and residual learning (He et 

al.  2015). Due to the reasons above, the tremendous growth of machine learning depends 

on the development of both hardware and algorithm.  

The demand for faster computing is increasing every day. The semiconductor 

hardware industry has been following Moore’s law due to a variety of benefits of scaling 

(Moore 1965, Moore 1975). The number of transistors on a chip doubles every two years. 

The performance of a chip doubles every 18 months due to more and faster transistors. And 

the cost of chips becomes more affordable to more people. Although Moore’s law came 

from Gordon Moore's observation rather than any scientific or engineering theory, it has 

been very successful for over 50 years. However, as the silicon technology has scaled to 

sub-14nm regime, simply scaling down the device cannot provide enough speed-up any 

more. New device technologies and system architectures are needed to improve the 

computing capacity and continue Moore’s law. Moreover, specific hardware for machine 

learning acceleration is highly in demand.  
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Based on different applications of machine learning, there will be different 

specifications and hardware choices. Machine learning algorithms usually have two phases, 

the training phase and the inference phase. During training, the model computes the 

forward path and backward path to update the parameters. During inference, the model 

parameters are fixed, and the model only computes the forward path to get the output for a 

given input. Basically, training is to obtain the model while inference is to use the model. 

Thus, training requires more computing and memory accesses. Designing hardware for 

training is more challenging than inference. Also, the hardware for inference can be very 

specific to the model to achieve better performance, while the hardware for training needs 

to be more general since the model to be trained often changes. From the perspective of 

where the machine learning models are used, they can be used in cloud servers or on edge 

devices. In the cloud, complex deep learning models are used to do training or inference 

on “big data”. Speed is important to shorten the model development cycle or reduce the 

query latency. On the edge, more and more machine learning applications like voice 

recognition, machine translation and personalized health care will be implemented on the 

mobile devices. Therefore, application in the cloud may prefer hardware optimized for high 

speed, while application on the edge may prefer hardware optimized for low power.  

There are different hardware choices based on different specifications. CPU is good 

for light load due to its high frequency, low power and high flexibility. GPU is now widely 

used to train deep learning models, which is much faster than CPU due to its Single 

Instruction Multiple Data (SIMD) operation and high bandwidth memory. However, GPU 

is not yet specialized for machine learning and it consumes a lot of power. Recently, more 

attention is paid to design of Application Specific Integrated Circuit (ASIC) for machine 
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learning (Misra 2016, 74:239-255). It has the promise to outperform GPU in terms of speed 

and power. But ASIC design usually needs a long design and verification cycle, and the 

software ecosystem needs to follow up quickly. Another great option is the Field 

Programmable Gate Array (FPGA) (Misra and Saha 2016, 74:239-255). The computing 

capacity and memory capacity of FPGAs are improving quickly. And the development 

cycle of FPGA is much shorter than ASIC. These features make FPGA an excellent choice 

for certain fast changing applications.  

 The above acceleration options are mostly based on parallel computation with 

SIMD. Most efforts are made to include more parallel Processing Elements (PE) and 

increase the memory bandwidth, so that the computing capacity and the data movement 

capacity are improved together. However, in these approaches, data storage and computing 

are separated. Data need to be transferred from memory to the registers in PE to be 

processed. Since it’s quite possible to increase the number of parallel PEs to speed up 

computing, the memory bandwidth will eventually become the bottleneck. Therefore, a 

more advanced idea is to do the computation inside the memory. This requires a new type 

of memory device that enables computing capability.  

Learning on-a-chip requires not only hardware design and implementation, but also 

optimization of the algorithms to be easier to implement on hardware. One approach is to 

reduce the number of bits of data including parameters and variables. In the current 

computer system, data are usually represented by 32 bits, such as single-precision floating-

point number and integer type. Many researches have shown that machine learning 

algorithms do not actually need 32-bit numbers (Gupta et al. 2015, Baldassi et al. 2016, 
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93:052313, Merolla et al. 2016). Reducing the number of bits will benefit computation, 

data movement and memory storage for hardware implementation.  

Similarly in human brain, the basic elements, the neurons and synapses, do not have 

high numerical precision, but the brain has excellent performance and extreme low power 

in the cognitive tasks. It manages a variety of tasks with such a small volume. Thus biology 

and neuroscience provide motivation to improve the current learning algorithms and their 

hardware implementation efficiency.  

1.2. Contributions 

As silicon technology scales down, traditional CMOS-based memory such as 

SRAM and DRAM will suffer from high standby power consumption. They may no longer 

be the technology of choice for machine learning acceleration. Instead, emerging memories, 

such as Phase Change Random Access Memory (PRAM) (Burr et al. 2010, 28:223-262, 

Wong et al. 2010, 98 :2201-2227), Spin-Transfer Torque Magnetic Random Access 

Memory (STT-MRAM) (Wang et al. 2008, 44:2479-2482, Sharad et al. 2012, 11:843-853), 

and Resistive Random Access Memory (RRAM) (Wong et al. 2012, 100:1951-1970, Jo et 

al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779), are promising candidates for the 

next generation non-volatile memory. They provide low standby power, high data density, 

fast access and excellent scalability. They are also very promising to be integrated into the 

machine learning chip with CMOS technology. More importantly, they have the potential 

to do computation. Therefore, they are great candidates in the machine learning hardware. 

Modeling of these emerging memory devices is essential to the design. This dissertation 

proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM 

in four different levels of abstraction (Xu et al. 2012, Xu et al. 2013, Xu et al. 2014, 102:76-
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81). With the proposed models, various simulations are conducted to investigate the 

performance, optimization, variability, reliability, and scalability of these two memories.  

Emerging non-volatile memory devices such as RRAM can work as a 2-D 

crosspoint array, which is a promising structure for matrix-based machine learning 

algorithms. It can do parallel computation of multiplication and accumulation based on 

current-voltage relationship. Thus, it reduces the need for data movement since the 

computation happens in the memory itself. This architecture is different from the 

mainstream Von-Neumann architecture, and is more suitable for data intensive 

applications like machine learning algorithms. How to integrate the non-volatile memory 

array with the computing system is a very challenging problem. It requires proper circuit 

and system design to achieve high speed and low power. This dissertation proposes a new 

parallel programming scheme to achieve in-memory learning with RRAM crosspoint array 

(Xu et al. 2014, 41:126-133). Based on the scheme, the programming circuitry is designed 

and simulated in TSMC 65nm technology. The proposed parallel programming scheme 

can speed up the dictionary learning task significantly compared to the CPU. 

Another approach to optimize the algorithms is to learn from the biological nervous 

system. Inspired by the brain, which has high accuracy, low power and high hardware 

efficiency, many learning models were developed with spiking neurons (Cao et al. 2015, 

113:54-66, Diehl et al. 2015). This dissertation proposes a bio-plausible feedforward 

inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning 

rule (Xu et al. 2016, Xu et al. 2017). It achieves more than 95% accuracy on the standard 

benchmark MNIST dataset, which is comparable to the sparse coding algorithm, but needs 
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much less number of computations. The inhibition in this network plays an important role 

in improving the hardware efficiency of learning. 

The rest of the dissertation is organized as follows. Chapter 2 reviews related works 

on machine learning algorithm optimization with low numerical precision, and machine 

learning hardware design including ASIC and FPGA. Chapter 3 focuses on emerging 

memory devices. Modeling and design exploration are conducted for Phase Change 

Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic Random Access 

Memory (STT-MRAM). Resistive Random Access Memory (RRAM) is also reviewed in 

this chapter to be used in next chapter. Chapter 4 designs the new parallel programming 

circuitry for learning on an RRAM crosspoint array. In Chapter 5, existing learning 

algorithms are firstly reviewed, and a new bio-plausible learning algorithm of feedforward 

inhibition spiking neural network is proposed and demonstrated with the standard 

benchmark MNIST dataset. Finally, Chapter 6 proposes the future works and Chapter 7 

concludes this dissertation. 
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2. Related Work 

 This chapter reviews related works on machine learning algorithm optimization 

with low numerical precision, and machine learning hardware design including ASIC, 

FPGA and emerging non-volatile memory array. 

2.1. Machine Learning Algorithm Optimization 

 To optimize machine learning algorithms for hardware implementation, many 

efforts were spent on reducing the numerical precision due to its benefits to computation, 

data movement and memory storage. Many works focused on the training of models. Hollis 

et al. (1990, 2:363-373) studied the effects of precision constraints on the backpropagation 

in neural network training. Fixed point arithmetic was used in the analog circuits to 

implement the backpropagation. Holt et al. (1993, 42:281-290) theoretically analyzed the 

finite precision error of the computations in training Multi-Layer Perceptron (MLP) for 

hardware implementation. Plagianakos and Vrahatis (1999) used the differential evolution 

strategy to train neural networks of 3-bit integer weights on simple datasets. For more 

complex deep learning algorithms, Baldassi et al. (2016, 93:052313) did the theoretically 

analysis for the possibility that learning may need only few bits of synaptic precision. 

Gupta et al. (2015) proposed the stochastic rounding method to train deep learning 

models with 16-bit fixed-point number. It achieved 25.4% testing error on CIFAR-10 

dataset (Krizhevsky and Hinton 2009), which is very close to the floating-point model 

baseline. Gysel et al. (2016) managed to condense CaffeNet model to 8-bit fixed-point 

representation using quantization and fine-tuning method. Lin et al. (2016) further 

proposed 3 fine-tuning methods and did a systematical study. They studied the effect of 
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low precision weights and activations separately. They also showed different layers in the 

model have different effect of low precision on the accuracy.  

More aggressively, there are many works trying to train neural networks with 

binary weights and activations. Baldassi (2009, 136:902-916) studied generalization 

learning in a perceptron with binary synapses. Kim and Smaragdis (2016) proposed the 

weight compression and noisy backpropagation method to train neural networks with 

binary weights and activations. They achieved 1.33% error rate on the MNIST dataset 

(LeCun et al. 1998, 86:2278-2324). Courbariaux has a series of three papers (Courbariaux 

et al. 2014, Courbariaux et al. 2015, Courbariaux et al. 2016) on the binary neural networks 

and studied the more difficult CIFAR-10 dataset. They used the method of propagating 

gradients through discretization and batch normalization in training, and achieved 9.9% 

error rate on CIFAR-10 dataset with the VGG model baseline (Simonyan and Zisserman 

2014). Rastegari et al. (2016) proposed a new method to project the binary weights based 

on mathematical derivation and applied this on AlexNet (Krizhevsky 2012) on the more 

complex ImageNet dataset. Compared to the 80.2% top-5 accuracy of full-precision 

AlexNet, they achieved 69.2% accuracy with binary weight and binary activation model, 

and achieved 79.4% accuracy with binary weight only model. Zhou et al. (2016) studied 

various number of bits of weights and activations in the AlexNet model, and achieved 43.6% 

accuracy. Merolla et al. (2016) not only studied the weight binarization but also other non-

linear distortions during training. They showed that deep neural networks are robust to 

them with experiments on CIFAR-10 and ImageNet dataset. Stromatias et al. (2015) also 

showed the robustness of spiking deep belief networks to noise and reduced bit precision. 

With all these efforts above, the binary neural networks training can achieve the same 
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accuracy as the full-precision counterpart on some datasets, but still cannot compete on the 

complex ImageNet dataset. Li et al. (2016) proposed the ternary weight networks and 

applied on the ResNet (He et al. 2016). They showed 84.2% accuracy on ImageNet dataset 

compared to the 86.76% accuracy of the full-precision model. Other experiments also 

showed that the accuracy of the ternary weight networks is almost the same as the full-

precision counterparts.  

 Besides the low precision models, Iandola et al. (2016) tried to reduce the size of 

neural networks for easier implementation on the embedded hardware. They proposed a 

small CNN architecture called SqueezeNet. It achieved AlexNet-level accuracy on 

ImageNet dataset with 50x fewer parameters. For inference purpose only, Han et al. (2015) 

proposed the deep compression method including pruning, trained quantization and 

Huffman coding. They managed to reduce the memory storage of VGG-16 model by 49X 

with no loss of accuracy.  

2.2. Machine Learning Hardware Design 

 Many efforts were made to design machine learning acceleration hardware 

including ASIC and FPGA. Chen et al. proposed a series of ASIC designs called “DianNao 

family” (Chen et al. 2016, 59:105-112, Chen et al. 2014, 49:269-284, Luo et al. 2017, 

66:73-88, Du et al. 2015, 43:92-104). They specially emphasized the impact of the memory 

on machine learning accelerator design, performance and energy. Among the DianNao 

family, DaDianNao was designed for neural networks and achieved peak performance of 

5585 giga operations per second (GOPS) with peak power of 15.97 W in 28 nm technology. 

This is a 450X speedup over GPU with 150X less energy comsumption. It applied loop 

tiling and SIMD to minimize the memory access. ShiDianNao was designed for 
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convolutional neural networks (CNN) and achieved 194 GOPS with 0.32 W in 65 nm 

technology. Since the storage size of convolution kernels is not very large, this design 

stored the parameters in SRAM rather than DRAM, thus saving a lot of time and energy in 

memory access. A group from MIT proposed an energy-efficient reconfigurable ASIC 

design for CNN (Chen et al. 2016, 52:127-138). The design adopted special dataflow 

according to the behavior of convolution thus maximized the data reuse. The chip 

implemented in 65 nm technology achieved 34.7 images per second of the five 

convolutional layers inference in AlexNet with power of 278 mW. Google recently 

revealed more details about their Tensor Processing Unit (TPU) (Jouppi et al. 2017). It 

achieved 180 tera floating point operations per second (TFLOPS) with 4 chips on the board. 

The 2D systolic array is adopted in matrix multiplication to improve the throughput.  

Apart from these designs accelerating the arithmetic computations in neural 

networks, IBM designed the chip called TrueNorth implementing the spiking neural 

networks (Merolla et al. 2014, 345:668-673). They converted the convolutional neural 

network to the spiking version and implemented on the TrueNorth chip. They achieved 

more than 1000 images per second for inference.  

To further speed up the inference, Han et al. (2016) designed an ASIC of efficient 

inference engine (EIE) on compressed deep neural networks as a follow-up work of the 

deep compression work. It achieved 102 GOPS on compressed models and 3 TOPS on 

uncompressed models.  

There are also many works using FPGA as the machine learning accelerator. 

Farabet et al. (2011) designed a runtime reconfigurable dataflow processor and developed 

the compiler to map CNN algorithms on the hardware design. They demonstrated the street 
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scene understanding application and achieved 160 peak GOPS with only 10 W power. 

Gokhale et al. (2014) designed a mobile coprocessor for CNN and achieved 240 GOPS. 

Zhang et al. (2015) used a roofline model to explore the design space of the computation 

throughput and memory bandwidth, and achieved 61.62 GFLOPS under 100 MHz working 

frequency for CNN. Suda et al. (2016) proposed a throughput-optimized OpenCL based 

design on FPGA for CNN. They achieved 136.5 GOPS for the convolution operation. Qiu 

et al. (2016) implemented VGG-16 model on FPGA using RTL design. The data precision 

is quantized to 8 bits and even 4 bits with only 0.4% accuracy loss. They achieved 187.8 

GOPS for convolution and 137 GOPS for the full model. Ma et al. (2016) proposed a 

scalable and modular RTL compiler of CNN. They optimized the CNN operations in RTL 

and developed a compiler to map the CNN models to the RTL module. So, it integrates the 

flexibility of high level synthesis (HLS) and the finer level optimization of RTL. They 

achieved 114.5 GOPS for the AlexNet model. Wei et al. (2017) implemented the systolic 

array architecture on FPGA and achieved impressive 461 GFLOPS for floating point data 

type and 1.2 TOPS for 8-16 bits fixed point data. Besides the above efforts to reduce the 

data precision, there are a few works to implement the binary neural networks on FPGA 

utilizing the flexibility of FPGA (Nurvitadhi et al. 2016, Fraser et al. 2017, Zhao et al. 

2017). They have achieved peak throughput from 207.8 GOPS up to 14.8 TOPS.  

There are also some other works using the emerging non-volatile memory array. 

Park et al. (2012) firstly demonstrated the use of a 1k-bit RRAM crosspoint array to speed 

up machine learning algorithms. Garbin et al. (2014) proposed a spike-based 

implementation of CNN using binary RRAM devices and achieved 94% accuracy on 

MNIST dataset. Xia et al. (2015) did a thorough technological exploration RRAM 
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crosspoint array for matrix-vector multiplication. They studied the non-ideal factors of the 

device, variations, and parasitics, and analyzed how to achieve a better trade-off between 

performance, energy and reliability. Prezioso et al. (2015) did an experimental 

implementation of RRAM crosspoint array for a single layer perceptron. They 

demonstrated the training of the model on the RRAM crosspoint array and achieved a good 

classification result on a small task. Hu et al. (2016) developed the Dot-Product Engine 

with RRAM crosspoint array and showed 1,000X to 10,000X more speed-energy 

efficiency product than state-of-the-art ASIC design. Gokmen and Vlasov (2016, 10) 

applied stochastic computing and stochastic update rule on the RRAM crosspoint array. 

They achieved 98% accuracy on MNIST dataset by training a CNN model. A full update 

cycle of an array performed using 1 ns pulses can be completed in 20 ns with 0.28 W power. 

Chi et al. (2016) designed the entire system and software-hardware interface to use RRAM 

crosspoint array as matrix-vector multiplication accelerator called PRIME. It shows 

1,596X to 73,237X speedup and 335X to 138,984X power consumption reduction over 

CPU. 
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3. Emerging Memory Modeling 

In this chapter, a hierarchical framework is proposed for the emerging memory 

modeling. Phase Change Random Access Memory (PRAM) and Spin-Transfer Torque 

Magnetic Random Access Memory (STT-MRAM) are modeled explicitly. With the 

proposed compact models, early stage design benchmarking is performed for these two 

types of memory. In addition, Resistive Random Access Memory (RRAM) is reviewed for 

the completion of the scope and will be used in the later work.  

3.1. Introduction 

As Silicon technology is scaling down toward the 10nm regime, CMOS-based 

memory devices such as SRAM and DRAM suffer from high standby power consumption, 

so that they may no longer be the technology of choice. Instead, emerging memories, such 

as Phase Change Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic 

Random Access Memory (STT-MRAM), are promising candidates for the next generation 

non-volatile memory. They provide low standby power, high data density, fast access and 

excellent scalability. In the past decade, there has been significant research effort on 

engineering various types of memory device. Modeling of these memory devices including 

nominal performance and variability is highly demanded for design practice. 

Phase Change Random Access Memory (PRAM) is one promising candidate for 

the next generation non-volatile memory. It has been shown to have excellent scalability, 

fast read access time, good data retention and high data density (Burr et al. 2010, 28:223-

262, Wong et al. 2010, 98 :2201-2227). Figure 3.1 (a) shows the basic structure of PRAM. 

It consists of phase change material (chalcogenide alloy, Ge2Sb2Te5 (GST)) and a heater. 

The phase change material can switch between the amorphous phase with high electrical 
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resistance (logic ‘0’) and the crystalline phase with low electrical resistance (logic ‘1’). 

The phase is changed by increasing the temperature of phase change material with applied 

current pulse. To change the crystalline phase to amorphous phase, a current pulse with 

high amplitude and short duration is applied. To change the amorphous phase to crystalline 

phase, a lower and longer current pulse is applied. Figure 3.1 (b) shows the temperature 

profile in PRAM cell during these two switching periods. Additionally, by changing the 

current pulse profile, it is able to program PRAM to intermediate states continuously so 

that Multi-Level-Cell (MLC) is available for PRAM. 

c-GST

Programming
Region

c/a - GST

Heater

 

 (a)                          (b) 

Figure 3.1. PRAM fundamental. (a) A basic PRAM cell structure. (b) Temperature 

profile of phase change material during programing. 

Besides PRAM, Spin-Transfer Torque Magnetic Random Access Memory (STT-

MRAM) is another promising memory technology. It promises good combinations of high 

density, fast read and write access, low switching power, and non-volatile data storage 

(Wang et al. 2008, 44:2479-2482, Sharad et al. 2012, 11:843-853). STT-MTJ is based on 

Magnetic Tunnel Junction (MTJ). Figure 3.2 illustrates the basic structure of MTJ. 

Magnetic tunnel junction consists of two layers of ferromagnetic material separated by an 
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insulator layer. The magnetic orientation of one layer is fixed while the magnetic 

orientation of the other layer can be changed by application of current pulse through MTJ. 

The magnetic angle between these two layers (parallel (P) or anti-parallel (AP)) determines 

the resistance of MTJ. When a current is applied through the junction, the spin of the 

electrons is polarized by the fixed magnetic layer, and then transferred to the free layer to 

change the magnetic orientation. 

 
Figure 3.2. Magnetic Tunnel Junction structure. 

A good memory model should have the following features. (1) The model should 

be based on physical principle of the device for it to be trustable and tunable with 

technology evolution. (2) The model should capture various performance metrics of 

memory device including static and dynamic behavior, energy, speed, variability, 

reliability and scalability to support optimizations at multiple design levels (system level, 

circuit level, etc.). (3) The model should be easily implemented in SPICE with high 

simulation efficiency for co-design with CMOS devices. Hence, a hierarchical memory 

modeling framework is proposed, which is capable with all the features above. Figure 3.3 

illustrates the proposed hierarchical memory modeling framework, which is general for all 

types of memory devices. It starts from the common behavioral model of a digital memory, 
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the finite-state-machine (FSM), with electrical forces to control the program/erase/hold of 

the state. The FSM is then mapped to a structural model, using an equivalent circuit for 

SPICE simulation. This includes device-level models that can capture the underlying 

physical mechanisms of phase change and the dependence on material/structure parameters. 

The physical nature of device-level model further helps embed variability and reliability 

issues in the analysis. From top down to the bottom, one can develop the model layer by 

layer, from abstraction to details. It also helps us with memory design from a system 

perspective. From bottom up, one can do optimization for the memory from a device 

perspective. With such hierarchical approach, cross-layer analysis and the comparison of 

different memories in each hierarchy level are enabled. This will give us a better 

understanding of different types of memory and make heterogeneous design easier. PRAM 

and STT-MRAM are then modeled within such a framework. 

 

Figure 3.3. Hierarchical memory modeling framework. 

3.2. Phase Change Random Access Memory 

3.2.1. PRAM Modeling 

At behavior level, PRAM is modeled as the finite-state-machine in Figure 3.4. 

Since PRAM has both single-level cell (SLC) and multi-level cell (MLC) application, it 
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has multiple FSMs. As shown in Figure 3.4 (a), SLC PRAM has two digital states, ‘0’ and 

‘1’. To RESET the cell from ‘1’ to ‘0’, a high and short current pulse is applied. To SET 

the cell from ‘0’ to ‘1’, a lower and longer current pulse is applied. Since PRAM needs 

large write energy, the data is read before write; if the initial state and the target state are 

the same, no writing is needed. Figure 3.4 (b) shows the FSM model for a 4 levels MLC 

PRAM (Bedeschi et al. 2009, 44:217-227). Here ‘00’ is high resistance amorphous state, 

‘11’ is low resistance crystalline state, and ‘01’ and ‘10’ are the two intermediate states. 

To SET PRAM to ‘11’ state from any other initial state, a ramping down SET pulse is 

applied. To RESET a ‘01’ or ‘10’ state to ‘00’ state, it needs to SET to ‘11’ first and then 

RESET. To write ‘01’ or ‘10’, it needs to RESET to ‘00’ first and then program in a read 

and verify process using sequential short current pulses. With the FSM, one can easily 

figure out the transfer of states under a given current pulse.  

 

      (a)                                                    (b) 

Figure 3.4. The FSM models of PRAM. (The programming current waveform is 

illustrated.) (a) SLC (b) 4 levels MLC.  

To map the FSM behavior into a circuit-level model for SPICE, an equivalent 

circuit model is introduced that captures each state transition in FSM. The input at this 

level is the initial state and the applied current pulse, and the output is the next state as well 

01

00

10

11
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as the energy and latency of each programming step. The circuit level model focuses on 

the physical procedure of state transition, and is shared by both SLC and MLC operations. 

RT CT

T

I
2
(t)Rwrite

Rm 

Rg(T)
Cstate

Input Energy 

Conversion

Phase Change 

Eq. (2)

Temperature

Transition Eq. (1)

Geometry/Structure/Material

Iteration

 

Figure 3.5. The equivalent circuit model of PRAM. 

Table 1. Parameters in the PRAM circuit level model. 

Parameters Description 

I Input current amplitude 

Rwrite Electrical resistance of PRAM cell during write 

RT Thermal resistance of GST 

CT Thermal capacitance of GST 

Cstate Store the state of memory cell 

Rg(T) Describe the crystallization of GST 

 

Figure 3.5 gives the equivalent circuit model of PRAM, which consists of four parts, 

input energy conversion, temperature transition, phase change and geometry. Table 1 

defines the parameters used at this level. The geometry block in Figure 3.5 describes the 

cross-sectional shape of a PRAM cell; the exact dimensions of each part are used to 

calculate electrical and thermal parameters. As the phase change of PRAM is based on 

heating, the input power is calculated by I2Rwrite in the input energy conversion block. Since 

the crystalline GST has a very low resistivity, Rwrite is mainly the resistance of the metallic 
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heater (Itri et al. 2004). The energy conductance in PRAM is described by the energy 

conservation equation: 

                            
   TCdtRTRI TTwrite

2

                                                  (1) 

where ΔT is the temperature difference between the top electrode and the interface of GST 

and the heater. Equation (1) is modeled by the RTCT circuit in the temperature transition 

block (Figure 3.5), where RT is the thermal resistance and CT is the thermal capacitance 

(Kwong et al. 2008, Warren et al. 2008). The output node of this block indicates the 

temperature in the PRAM cell, which is further used in the phase change block. The phase 

change block consists of a capacitor Cstate to indicate the state of the memory, a switch, a 

voltage source and resistors. The temperature evaluated by the temperature transition block 

is used to decide the switch position: when the temperature is higher than melting 

temperature (T>Tm), the switch flips up and Cstate is charged by the voltage source, 

indicating the melting of GST. When the temperature is between the melting and annealing 

temperature (Ta<T<Tm), the switch flips down and Cstate is discharged through Rg, 

indicating the annealing of GST. The crystallization process is described by the Johnson-

Mehl-Avrami (JMA) equation (Johnson and Mehl 1939, 135:416-458): 

                                  






T
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where f is the fraction of the crystalized region, t is time, and τ(T) is a temperature 

dependent time constant defined by: 
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where EA is the active energy of crystallization, kB is Boltzmann constant and τ0 is a 

constant. Therefore, the RC circuit models the exponentially phase change of PRAM and 

the voltage of Cstate indicates the size of amorphous region, which corresponds to the 

memory state.  

This abstracted level of PRAM model can be used to capture the nominal 

performance of single memory cell. The latency of write is defined as the time when the 

input current is applied to the end when the cell cools down. So, the latency can be obtained 

from the temperature transient curve by the circuit model. The energy of write is evaluated 

by I2Rwritetpulse, where tpulse is the time period of the input current pulse. 

 The device level model of PRAM predicts the parameters in the circuit model from 

cell geometry. It further paves a path to analyze the variability issues. TCAD simulators 

can be used to analyze the resistance change of PRAM, but with poor simulation efficiency. 

Thus, a geometry based compact model is necessary for design analysis. In this section, a 

geometry dependent resistance model is proposed for the mushroom cell PRAM (Wong 

2010 98:2201-2227), which is one of the most common shapes of PRAM cell. Raphael 2D, 

a TCAD tool, is used to validate the model. 

Figure 3.6 shows the 2D structure and the potential profile of a mushroom cell 

PRAM from Raphael 2D. The key dimensions of a mushroom cell are also specified in 

Figure 3.6: d is the thickness of GST, W is the width of the top contact, and CW is the 

width of the bottom contact between GST and the heater. It is assumed that the shape of 

the amorphous region is a hemisphere with radius r. These dimensions will determine the 

electrical resistance, thermal resistance and thermal capacitance of PRAM memory cell. 
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Table 2 summarizes the material properties that are used in this model (Li and Chan 2008, 

Li et al. 2008, 7:138-141). 

 

Figure 3.6. 2D structure of PRAM cells in Raphael. (a) Fully crystalline state. (b) 

Fully amorphous state. 

Table 2. Material properties in PRAM model (Li and Chan 2008, Li et al. 2008, 

7:138-141). 

Material 

Electrical 

resistivity ρ 

(Ω∙cm) 

Thermal 

conductivity κ 

(W∙m-1∙K-1) 

Specific  

Heat c0 

(J∙cm-3∙K-1) 

Crystalline GST 0.0361 0.5 1.25 

Amorphous GST 33.33 0.2 1.25 

 

Figure 3.7 shows the dependence of the resistance of fully crystalline GST on W, 

CW and d. Figure 3.7 (a) shows the saturation of resistance with increasing W. Thus, our 

model only focuses on the case when W is large enough and does not affect the resistance. 

Since the two contacts of GST are of different size, we use an effective width to calculate 

the resistance as: 

CW

d
R c




                                                       (4) 
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where the coefficient α is the effective factor calculated as α = 0.79*d/CW+1.08. Figure 

3.7 (b) validates the model for the crystalline resistance.   
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                    (b)   

Figure 3.7. Geometry dependence of fully crystalline GST resistance. (a) Saturation 

of R with W increasing. (b) Fully crystalline resistance model vs. Raphael simulation 

results. 

For the amorphous state, as shown in Figure 3.8 (a), the resistance primarily 

depends on r/CW, due to the large difference in the resistivity of amorphous GST and 

crystalline GST. When the mushroom fully covers the bottom contact (r/CW > 0.5), GST 
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shows a much higher resistance than that in the crystalline state. When the mushroom is 

very small, the resistance is low and does not change much with r/CW. The resistance 

changes dramatically when r/CW ≈ 0.5. We use a smoothing function to continuously 

model the resistance. 
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Figure 3.8. Geometry dependent electrical resistance model. (a) RESET (b) SET 

 When the phase change material is changing from amorphous state to crystalline 

phase (SET), a smaller crystalline mushroom (with a radius of r’) grows up inside the 
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original amorphous mushroom from the bottom contact. Figure 3.8 (b) shows the resistance 

change during this process. The difference in resistance value is due to the different 

resistivity for the two figures. 

The thermal resistance of GST is modeled using a similar approach. The thermal 

resistance of full crystalline GST is calculated by:  

CW

d
R

c

T




                                                        (5) 

On the other side, since the difference in thermal conductivity of crystalline GST and 

amorphous GST is not as much as that of electrical resistivity, thermal resistance RT does 

not change much with r/CW, as shown in Figure 3.9 (a). The thermal resistance also 

depends on d/CW in both crystalline state and amorphous state. Thermal capacitance CT 

depends on d and CW because crystalline GST and amorphous GST have the same heat 

capacity, as shown in Figure 3.9 (b): 

2/0 CWdcCT 
                                                    (6) 
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Figure 3.9. Compact models of thermal parameters. 
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Figure 3.10. The iteration in model simulation significantly impacts the prediction 

of (a) temperature profile and (b) resistance transition.  

With these geometry dependent resistance and capacitance models, the parameters 

in the circuit level model (Figure 3.5) can be obtained. Since RT depends on the state of 

PRAM, which is represented by the size of the amorphous region, it changes during the 

SET process. Thus, it is important to iteratively simulate the heat and phase transition 
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blocks (Figure 3.5) in order to accurately determine the temperature profile and the final 

resistance value, as shown in Figure 3.10.  

The resistance of a PRAM cell is predicted from the model with given initial 

geometry information and input current pulse, the geometry, and the material property. 

This model matches with experimental data from the paper of Lacaita et al. (2004) as shown 

in Figure 3.11. CW=68nm and d=119nm is used in this simulation. 
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Figure 3.11. R-I characteristics validated with experimental data from (Lacaita et 

al. 2004). CW=68nm and d=119nm. 

In the next level, process variation and material reliability are modeled. Since our 

device level model is geometry dependent, the impact of process variation can be easily 

simulated, which will be further discussed in Section III. There are two main reliability 

issues for PRAM, soft errors due to resistance drift and Stuck-SET failures. While error 

due to resistance drift can be recovered by the write process, Stuck-SET is hard error that 

is attributed to Ge depletion (Kim and Ahn 2005) or Ge contamination at the interface of 

GST and the heater. The resistance drop is modeled as  
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baNR                                                              (7) 

where N is the number of programming cycles, a and b are fitting parameters as shown in 

Figure 3.12. In the circuit level, it is modeled by the degradation of the heating efficiency. 

In order to emulate this effect, the input energy I2Rwrite is multiplied by a coefficient λ, 

which is less than 1 and is a function of N. 
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Figure 3.12. Stuck-SET model fitted with measured data from (Kim and Ahn 2005). 

3.2.2 PRAM Design Exploration 

In this section, the performance of the proposed model is analyzed with respect to 

variability and reliability for the 32nm technology node. A new metric, State Transition 

Curve, is presented to capture the characteristics of PRAM for reliable design. PRAM 

employs 1T1R (1 transistor 1 resistor) structure as shown in Figure 3.13. BL, WL and SL 

correspond to bit line, word line and source line respectively. The models are incorporated 

into HSPICE using Verilog-A to simulate the shown structure. PTM 32nm HP (High 

Performance) MOSFET (Zhao and Yu, 2006, 53:2816-2823) is used for the simulation in 
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order to get high current for programming. Critical parameters of interest including their 

variations are listed in Table 3. 

BL

WL

SL  

Figure 3.13. PRAM cell structure 

Table 3. PRAM cell simulation parameters 

 Parameter Value (μ±3σ) 

PRAM 

CW 28 nm ±4% 

d 49 nm ±2% 

RSET 9 kΩ 

RRESET 3.6 MΩ 

Rwrite 1 kΩ 

CMOS 

Vdd 0.9 V 

Vth 494mV ±45mV 

Length 28 nm 

 

For PRAM, State Transition Curve (STC) is a curve that describes resistance 

changes with programming current amplitude for a particular pulse width. Since the 

currents for SET and RESET are quite different, there are two sets of STC for PRAM. 

Figure 3.14 (a) shows the STC for SET and indicates the role of STC in reliable PRAM 

design. STC1 and STC2 show the characteristics of PRAM under nominal and variational 

condition respectively. The initial resistance is determined by the initial geometry of 

PRAM. The resistance transition is determined by the phase change model in Figure 3.5 
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and the geometry dependent resistance model in Figure 3.8. If the final resistance is a lot 

larger than the read threshold resistance, we can choose the current that achieves a 

successful write. However, such a choice may not be sufficient due to variability. STC2 in 

Figure 3.14 (a) represents incomplete state transition due to variation. If we still choose the 

same current, the write fails. But in MLC programming, intentional incomplete state 

transition is adopted by using sequential short current pulses as shown in Figure 3.14 (b). 

We can tune the current pulse to obtain the required resistance value. Figure 3.14 (b) shows 

that different magnitude of input current can achieve the same resistance with different 

number of current pulses. It consumes more energy for more programming steps (I1), but 

smaller resistance steps help more accurate MLC resistance control. 
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       (a)                                                         (b) 

Figure 3.14. State Transition Curve of (a) SLC SET and (b) MLC SET. 

In this section, the performance of SLC PRAM cell is analyzed with proposed model 

and STC. We extract results under CMOS and GST process variation and temporal 

degradation. For nominal condition, STCs for different pulse width are presented in Figure 

3.15. When tpulse increases, STCs shift left, so that smaller current is needed to get the same 

I1

I2

t



  31 

resistance. Thus, we can choose current and pulse width as listed in Table 4. The energy 

and latency performance of PRAM are also presented. The latency is obtained by the 

temperature transient curve, which is larger than the pulse width. 
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Figure 3.15. State Transition Curve in the nominal condition with different pulse 

width: (a) SET (b) RESET. 
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Table 4. Nominal performance of 32nm SLC PRAM. 

 SET RESET 

I (μA) 85 140 

tpulse (ns) 100 40 

R (Ω) 9.3k 3.6M 

Energy (pJ) 0.72 0.78 

Latency (ns) 107 50 

 

 

Figure 3.16. The contribution of different variation sources to the variability of 

RRESET. 

Next, the effect of variation is considered. Three variation sources are considered 

in this work: Vth of the transistor, CW and d as listed in Table 3. From the simulation, the 

variations of PRAM resistance (ΔRSET and ΔRRESET) are obtained. ΔRRESET is much larger 

than ΔRSET. The contribution of the variation sources to ΔRRESET is shown in Figure 3.16. 

We see that CW is the critical variation source. Further, we analyze the impact of variation 

in CW on memory performance.  Figure 3.17 shows how STC changes with CW. As CW 

increases, STC shifts right and RRESET drops at a fixed IRESET. Under nominal CW, when 

IRESET = 130μA, RRESET is much higher than read threshold indicating a successful write. 

For the same current, when CW experiences variation of +4%, RRESET is below read 

threshold causing a write failure. However, if IRESET = 140μA, we always have a successful 

CW 
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CMOS    
Vth  33% 
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write under variation of CW. Therefore, this plot helps choose RESET current with a fixed 

pulse width to tolerate different CW variations. 
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Figure 3.17. RESET State Transition Curve is highly sensitive to CW variations 

(tpulse = 40ns). 

Figure 3.17 also shows that if we fix the margin from RRESET to the read threshold 

resistance, we have to increase IRESET with CW. For fixed resistance margin, the write 

power, I2Rwrite, increases with CW as shown in Figure 3.18. In addition, the power goes up 

when we reduce the current pulse width since the required current is larger. Figure 3.19 

shows the relation between required RESET current and pulse width for maintaining 

different resistance margins for successful writes. In order to achieve higher resistance 

margin, more current and time are needed resulting in higher power requirements. 
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Figure 3.18. Write power dramatically increases with larger CW variations, 

assuming a constant resistance value after write. 
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Figure 3.19. Required RESET current and pulse width with given resistance 

margin. 

Finally, the impact of Stuck-SET on STC is simulated and the results are presented 

in Figure 3.20. The degradation increases as the number of cycles increases. If IRESET = 
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133μA, RESET resistance of PRAM drops below the read threshold after 106 cycles, which 

causes hard error. We can increase IRESET to 140μA to increase PRAM lifetime to 107 cycles. 
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Figure 3.20. State Transition Curve with Stuck-SET degradation. 

3.3. Spin-Transfer Torque Magnetic Random Access Memory 

3.3.1. STT-MRAM SPICE Model 

Since STT-MTJ has only two stable states, STT-MRAM can only support SLC 

application. The FSM is the same as SLC PRAM as shown in Figure 3.4 (a). 

The dynamics of the magnetic moment M


of the free layer in MTJ is defined by 

the LLG equation (Ralph and Stiles 2008, 320:1190-1216, Kammerer et al. 2010, 57:1408-

1415): 
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The terms (from left to right) represent the Zeeman torque, by both the local field 

and the thermal fluctuation field, the anisotropic torque, the damping torque, and the spin-
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transfer torque, in which the efficiency (η) depends on the current direction. Table 5 defines 

key model parameters (Lu et al 2007, 40:320-325, Faber et al. 2009). 

Table 5. Parameters on the geometry and materials. 

Saturation magnetization (Ms) 
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1.76x1011 rads-1/T 1.13x105 TA/m 0.02 

 

The switching of the magnetic moment is the key dynamics in STT-MTJ. In general, 

it is a three dimensional movement: the Zeeman torque and the anisotropic torque 

contribute to the rotation in the plane perpendicular to the easy axis, indicated by an angle 

φ; the damping torque and the spin-transfer torque dominate the switching in the easy plane, 

resulting in the change of θ. Considering a realistic structure of STT-MTJ (Figure 3.21), 

the change of the magnetic moment can be separated into two planes and thus, the LLG 

equation reduced to two scalar equations of magnetic angle φ and θ. 

 

Figure 3.21. An in-plane STT-MTJ is programmed by a current pulse. 
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Substituting dφ/dt from Equation (9) to Equation (10): 

 
eV

I
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dt

d
M B

ss





 cossin2sin0

                                     (11) 

The scalar equation of Equation (11) is the foundation to analyze the switching dynamics 

of θ. Based on Equation (11), Figure 3.22 plots dθ/dt for different I when θ changes from 

0o to 180o. Some critical points are highlighted below in order to obtain the physical map 

for further model derivation: 

 

Figure 3.22. dθ/dt for different I when θ changes from 0o to 180o. 
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thermal fluctuation Hf to statistically switch STT-MTJ (Faber et al. 2009). As the thermal 

process takes a longer time and is not deterministic, today’s STT-MTJ usually follows the 

precession switching. Ith can be solved from the minimum of dθ/dt = 0, which is associated 

with the threshold angle th (Figure 3.22). 

Critical angle (c): This angle defines a critical value the magnetic moment has to 

reach at the end of the current pulse; if θ at time = τ is smaller than c, the damping torque 

may pull c back to 0o (Figure 3.21). As observed in Figure 3.22, when I = 0, there are three 

points to satisfy dθ/dt = 0: 0o and 180o are two stable solutions, while c is a metastable 

point. This behavior is similar as that in a SRAM cell, and helps us develop the model of 

c. 

Critical current (Ic): Given the pulse width τ, Ic is the minimum current required to 

switch the magnetic angle from 0o to c. I > Ic ensures a successful precession switching. 

To solve Ic, Equation (11) is integrated from 0o to c for d, and from 0 to τ for dt. A 

compact solution is obtained (Table 6). Ic is proportional to the inverse of τ, implying a 

tradeoff between speed and the writing power in design optimization. 

Table 6 summarizes the models for P  AP, in standard international units. For AP 

 P, the formulas remain the same, but with different coefficient values due to the different 

initial condition. The formulas in Table 6 have a clear root in physics, and are accurate in 

the precession switching. They are scalable with process and material parameters, 

supporting the development of the RC network. Figure 3.23 validates our model with the 

measurement data (Chun et al. 2013, 48:598-610). Due to the operation nature of STT-

MTJ, it requires more current and energy to switch it from P to AP (Figure 3.23). 
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Table 6. Models of Critical Points in STT-MRAM. 

θth    
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Figure 3.23 Validation with published STT-MTJ data (Chun et al. 2013, 48:598-

610).  (r = 45nm, Tox = 0.85nm) 

The switching of the magnetic angle represents the write process of STT-MTJ. The 

read of the state is by characterizing the resistance of MTJ. When a read current is delivered 

to STT-MTJ, the resistance reaches a low value (RP) if the magnetic moments in both 

ferromagnetic layers are in parallel; otherwise a higher resistance (RAP) is detected. 

Coupled with the dynamic magnetization procedure in previous section, this property 

completes the operation of STT-MTJ.  
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The tunnel magneto-resistance (TMR) of MTJ is defined as (RAP-RP)/RP. During the 

continuous switching of the magnetic angle, the change of MTJ resistance follows (Madec 

et al. 2010, 57:1416-1424): 


















cos2

1
2)(

TMRTMR

TMR
RR P

                                         (12) 

The static values of RAP and RP are calculated from the tunneling current through Tox. 

Equation (12) is used to model the dynamic resistance during the switching period. 

3.3.2. STT-MRAM Compact Model 

The details of the switching period are important for various design purpose, such 

as power and yield. In addition, design applications of STT-MTJ usually involve CMOS 

as the control device. For these reasons, compact model of STT-MTJ needs to be embedded 

into the SPICE simulator. Different from previous approach that directly implement the 

LLG equation through complex Verilog-A codes, this work also proposes a simple RC 

network that is physical, intuitive, and general.  

Starting from the fundamental LLG equation (Equation (11)), sin can be 

approximated as, 1, or -, when  is close 0o, 90o, or 180o, respectively. A similar 

treatment can be applied to cos. By expanding sin and cos in this approach, dθ/dt in 

Equation (11) is expressed as a linear function of , and thus, the solution of the LLG 

equation is transferred as a passive RC network for SPICE simulation.  

Based on this general principle, four distinct regions are recognized, easing the 

implementation. Figure 3.24 shows the network which supports transient SPICE 

simulations, with the output node representing .  Rs are functions of those critical points 

in Table 6, and C is a constant, as derived below: 
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Figure 3.24. The regional RC network for dynamic SPICE simulation.    

Region 1: This is at the beginning of the current pulse, when  is close to 0 and thus, 

sin~ and cos~1. The damping torque resists the change of , implying that the R1C 

network is a negative feedback. V1, which is a linear function of applied I, is charging the 

output node. 

Region 2: As soon as  exceeds the threshold angle th,  is close to 90o so that 

sin~1 and cos~90o-. In this region, d2/dt2 becomes positive, as indicated in Figure 3.22.  

Such a fact suggests that the RC network is a positive feedback: the increase in  helps 

speed up the switching. Therefore, a negative resistance, R2, is obtained from Equation (11), 

giving an exponential increase in the magnetic angle (Figure 3.24). If the current pulse 

stays long enough, the magnetic angle rapidly reaches 180o, as shown in Figure 3.21. 

However, if τ is not long enough to complete the switching, two more regions are needed 

for time > τ. 

Region 3: If  > c when the current pulse ends, the damping torque helps finish 

the switching without I, as shown in Figs. 3.21. In this case, Equation (11) can be expanded 

around 180o to obtain R3C.  
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Region 4: Finally, if  < c when the current pulse ends, the damping torque 

overwhelms and pulls the magnetic angle back to the initial state, 0o. The switching fails, 

under the influence of R4C. 

Table 7 summarizes all model parameters. They are in closed-form, derived from 

the LLG equation and parameters in Table 6. The proposed RC network is followed by the 

TMR model (Equation (12), in Verilog-A) to complete the simulation structure. Working 

together, they convert the magnetic angle to electrical resistance. As all parameter values 

are pre-solved before the simulation, this RC network is highly efficient in the SPICE 

environment.      

Table 7. Formulas for the RC Elements in SPICE. 

V1    2rIIa thth  
 

R1   ss MKHMK 201   
R2      sth MKrIIbK 2

2 1   

R3  HMKK s03 2   

R4   ss MKHMK 204   

 

The newly developed models are implemented into SPICE. Two simulation 

examples are presented in Figure 3.21 and Figure 3.23. Under the same assumptions of I, 

r and Tox, Figure 3.25 further demonstrates the prediction under different pulse width τ. As 

expected by the RC network in Figure 3.24, different RC components are activated, 

depending on the switching condition. The success of data writing is determined by both 

the magnitude and the duration of the current pulse. The proposed modeling and simulation 

method smoothly captures such a behavior for design exploration. 



  43 

 

Figure 3.25. The switching behavior under different pulse widths. 
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Figure 3.26. The matching in the prediction of MTJ resistance.  

By combining the switching model and the TMR model together, the new solution 

generates the electrical property of STT-MTJ. Figure 3.26 validates this approach with the 

experimental data (Diao et al. 2007, 19:165209, Lin et al. 2009). For a STT-MTJ device, 

since P  AP starts from  = 0o but AP  P starts from  = 180o, these two switching 

paths experience different switching thresholds, as predicted by the LLG equation. This 

causes the hysteresis behavior in the resistance, which is well matched by our proposed 
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models. In addition, the new compact model is general enough to describe the data from 

different processes, as demonstrated in Figure 3.26. 

3.3.3. STT-MRAM Design Exploration 

The STT-MRAM models are implemented into SPICE with Verilog-A. The effects 

of technology scaling and the design under reliability constraints are studied.  

From the perspective of technology scaling, Figure 3.27 examines the minimum 

programming current, Ic, under shrinking of device feature size for fixed pulse width τ = 

5ns. The radius r impacts the density of Ic mainly through saturation magnetization (Ms in 

Table 5), which is a material property (Lu et al. 2007, 40:320-325). The density of Ic is 

sensitive to r only when the radius is smaller than 20 nm. On the contrary, Ic is highly 

sensitive to Tox, as Tox affects the intrinsic magnetic field in Equation (8). In addition, 

Tox has a strong influence on the resistance and the long-term reliability of the tunnel 

junction (Madec et al. 2010, 57:1416-1424). Therefore, process control of Tox is extremely 

important to STT-MTJ based memory design. 

 

Figure 3.27. The scaling of critical current of STT-MTJ device. 
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Then, we investigate the design optimization of a single cell STT-MRAM under 

reliability constraints. Similar to PRAM, STT-MRAM adopts 1T1MTJ structure, as shown 

in Figure 3.28. BL, WL and SL correspond to bit line, word line and source line 

respectively. We used the MTJ model parameters in Figure 3.23 and PTM HP transistor 

model in 45nm technology (Zhao and Yu, 2006, 53:2816-2823). Critical parameters of 

interest including their variations are listed in Table 8. 

BL

WL

SL  

Figure 3.28. 1T1MTJ memory cell structure. 

Table 8. STT-MRAM cell simulation parameters. 

 Parameter Value (μ±3σ) 

STT 

r 45 nm ± 1 nm 

Tox 0.85 nm 

Rp 1 kΩ 

Rap 2 kΩ 

CMOS 

Vdd 1 V, 2.2 V 

Vth 469 mV ± 5 mV 

Length 45 nm 

 

Due to the difference in required critical current for P  AP and AP  P 

switchings, a boosted voltage of 2.2V is applied for P  AP while nominal Vdd of 1V is 

used for AP  P. In the memory cell, process variation affects both MTJ and access 

transistor. We use the MTJ radius r and transistor threshold voltage Vth to represent the 
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variation sources listed in Table 8. After embedding these variations into the nominal 

model, one million Monte Carlo simulations are run to show the yield under different 

programming conditions. 

We calculated the bit error rate (BER) as the percentage of the simulations in which 

the angle θ reaches 180o from 0o and vice versa at the end of simulation time. To guarantee 

reliability constraint of block failure rate (BFR) of 10-8, all the current profiles described 

by the combination of current pulse amplitude (I) and width (τ), result in the same BER of 

2x10-5. We set this BER constraint since BFR = 10-8 of a 512-bit block can be achieved 

with ECC scheme BCH (t=2) that results in small hardware overhead (Yang et al. 2014, 

76:133-147).  

Programming current and cell energy consumption are generated for P  AP and 

AP  P with equal BER in Figure 3.29 and Figure 3.30, respectively. The energy is 

calculated by the integration of I*Vdd for the duration of the pulse. It includes both STT-

MTJ and transistor energy. We see for both P  AP and AP  P switchings, current pulse 

amplitude increases as current pulse width decreases, similar to the trend shown in Figure 

3.23. However, under the BER = 2x10-5 constraint, the required current amplitude is larger 

than the critical current amplitude. Correspondingly, required transistor size has to be 

increased to support the large current amplitude. On the other hand, programming energy 

increases as current pulse width increases because the decrease in current I is slower than 

the increase in τ. 



  47 

1 2 3 4 5
600

700

800

900

I 
(

A
)

 (ns)

P -> APW=610nm

435nm

360nm

320nm

280nm

258nm 3

4

5

6

E
n

e
rg

y
 (

p
J
)

 

 

Figure 3.29. Programming current and energy of P  AP switching. All points 

have 2x10-5 BER. 
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Figure 3.30. Programming current and energy of AP  P switching. All points 

have 2x10-5 BER. 

From Figure 3.29 and Figure 3.30, we see that P  AP switching requires much 

larger current and transistor size in spite of boosted voltage supply (2.2V for P  AP and 
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1V for AP  P). Therefore, the design constraints are set by those of P  AP. Using 

transistor sizes set by P  AP, AP  P switching will have much lower BER than 2x10-5, 

which is not needed and results in a waste of energy. So, we propose to reduce the supply 

voltage for AP  P switching to save energy. 
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Figure 3.31. Supply voltage and energy at different transistor sizes for AP  P 

switching. All points have BER of 2x10-5. 

Figure 3.31 shows different combinations of supply voltage (Vdd) and transistor 

width (W) to obtain the same BER of 2x10-5 for τ = 3ns. The energy decreases with lower 

Vdd and larger W since current amplitude almost remains the same. As shown in Figure 

3.31, when the transistor size increases from 230nm to 320nm (required by P  AP 

switching), required voltage decreases from 1V to 0.86V to achieve same BER. Thus, 

programming energy is reduced from 0.784pJ to 0.672pJ (14.3% decrease). However, if 

the two switchings have equal probability, this optimization causes only 2.3% overall 



  49 

energy reduction. If we make AP  P switching more often by some coding techniques, 

more energy reduction can be achieved. 

3.4. Review of Resistive Random Access Memory 

Resistive Random Access Memory (RRAM) is another promising emerging 

memory. It has the advantages of high density, fast read and write speed, good retention 

and excellent scalability (Wong et al. 2012, 100:1951-1970). RRAM is also capable of 

multi-level cell (MLC), which is important to be used as the synapses in neural networks 

(Jo et al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779). RRAM consists of a thin 

oxide layer sandwiched by two electrodes. It is a polarized device. Depending on the 

polarity of the voltage pulse on it, a conductive filament can be formed or removed in the 

oxide layer. The resistance of RRAM depends on the length of the filament or the 

remaining gap. Longer the filament is, smaller the resistance is. The compact model of 

RRAM was developed in (Guan et al 2012, 33:1405-1407). The current is an exponential 

function of the length of the gap and the voltage. And the gap is calculated iteratively with 

the parameters of the voltage and temperature.  
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4. Machine Learning Hardware Design 

This chapter designs the parallel programming scheme and circuitry for learning 

on an RRAM cross-point array. 

4.1. Introduction 

Inspired by the daunting computational capability of the human brain, cognitive 

computing and learning that are inspired by neuroscience have become an increasingly 

attractive paradigm for future computation beyond the von Neumann architecture. Along 

this path toward machine intelligence, learning compact representations on data adaptive 

dictionaries is the state-of-the-art method for analysing big data (Tosic and Frossard 2011, 

28:27-38). It aims to minimize the reconstruction error ∑ ∥ 𝐷 ∙ 𝑍𝑖 − 𝑥𝑖 ∥2
𝑖 , where 𝑥𝑖 is an 

input vector, 𝐷 is called the dictionary and 𝑍𝑖  is the coefficient vector which is usually 

assumed to be sparse in many problems. Such an optimization target is motivated by the 

sparseness in visual cortex, minimizing both the error and energy consumption in learning. 

However, when the data set is big, which is often the case, optimizing the dictionary 

is a computational challenging problem. Stochastic Gradient Descent (SGD) (Bousquet 

and Bottou 2008) is one of the most efficient algorithms to solve this problem. Instead of 

updating the dictionary by full gradient descent, SGD updates the dictionary by using 

randomly selected gradient as follows: 

𝐷𝑡+1 ←  𝐷𝑡  −  𝜂𝑡 ∙ Δ𝐷𝑡,                                                 (13) 

where 𝜂𝑡 is the learning rate, Δ𝐷𝑡 = 𝑟𝑡 ∙ 𝑍𝑡
𝑇 and the residual error of data presentation (r) 

is 𝑟𝑡 = 𝐷𝑡 ∙ 𝑍𝑡 − 𝑥𝑡. 

An analogy to this dictionary learning could be found in neural networks in our 

brain, which consists of spiking neurons and synapses that connect the neurons. During the 
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training process, a spiking neural network learns through plastic synapses that change their 

weights based on the spike timing of the pre-synaptic neuron and the post-synaptic neuron. 

This learning rule is known as spike-timing-dependent-plasticity (STDP) (Song et al. 2000, 

Bi and Poo 1998, 18:10464-10472), as illustrated in Figure 4.1 (a) (b). 
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Figure 4.1. The similarity of programming a biophysical synapse and a RRAM 

cell. (a) STDP based on the time interval between pre- and post-synaptic spikes. (b) The 

synaptic conductance change based on STDP. (c) Tuning of RRAM conductance with a 

voltage pulse across both ends. (d) RRAM conductance change depends on the voltage 

pulse width. 

When these learning algorithms are implemented in hardware to accelerate the 

learning beyond software limitations, the cross-point array was recently proposed as an 

effective way to represent synapses with large fan-in and fan-out (Jo et al 2010, 10:1297-
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1301, Seo et al. 2011), where each cross-point is implemented with a memory cell. Since 

scaling conventional on-chip memories (SRAM or eDRAM) becomes more difficult every 

new technology node, resistive random access memory (RRAM) has emerged as an 

alternative choice for next-generation memory designs due to its non-volatility, integration 

density, and low power consumption (Wong et al. 2012, 100:1951-1970). 

A RRAM cell structure is shown in Figure 4.1 (c), it consists of two metal layers 

and an oxide layer. The conductance of the oxide layer is determined by the length of the 

conductive filament. To change the conductance, a voltage pulse needs to be applied across 

the RRAM cell. Figure 4.1 (d) shows the simulation results on how the RRAM conductance 

is changed by different voltage pulses. Positive pulses will increase the conductance while 

the negative pulses will decrease it. It shows that the conductance change is very sensitive 

to the voltage amplitude and fairly less sensitive to pulse width, which is another reason to 

use timing to control the programming in fine granularity in this work. We use 1.5V (Vdd) 

as the programming voltage across the two terminals and use 0.75V (Vdd/2) to prevent 

programming. 

Using resistive devices for synapses in neuromorphic applications have been 

actively explored (Jo et al. 2010, 10:1297-1301, Yu et al. 2013, 25:1774-1779). However, 

updating all the resistive devices in a large cross-point array is still very time-consuming 

in previous approaches, since it requires sequential operation (row-by-row, column-by-

column, or even bit-by-bit). Hereby, we focus on a resistive cross-point array which holds 

the dictionary values (D), and connects Z (sparse data representation) on one side and r 

(residual error of data representation on inputs) on the other side. We seek an efficient way 

to update all the dictionary values stored in a resistive cross-point array by an amount 
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proportional to the multiplication of Z and r (i.e., 𝑍 ∙ 𝑟). Specific write circuitries are 

designed for Z and r on the periphery of the cross-point array, such that the entire resistive 

cross-point array could be programmed in parallel and thus, the programming speed is not 

limited by the scale of the dictionary any more. 

4.2. Parallel Programming Scheme and Circuit Design 

Conventionally, programming a resistive memory array is performed sequentially 

column by column as shown in Figure 4.2 (a), or even bit by bit as usually implemented in 

the software. In our learning application, to change D value by an amount proportional to 

𝑍 ∙ 𝑟, it first needs to calculate 𝑍 ∙ 𝑟 for each column. To program one column of the array, 

programming pulses that represent the 𝑍 ∙ 𝑟 values of this column are applied on the left 

side of the array, while this column is connected to ground. The rest of the columns are 

kept at Vdd/2 to prevent programming. After programming one column is finished, the next 

column can be programmed by applying programming pulses and voltages that correspond 

to the next column. Therefore, the total time to program the resistive cross-point array using 

this method is in the order of O(N), where N is the number of columns of the array, and its 

value ranges from 100 to several thousand, depending on the application. 

Exploiting the specific property of resistive cross-point arrays that one can 

simultaneously apply different voltage pulses on each row and column, a parallel 

programming method is proposed in order to parallelize and accelerate the entire 

programming process, as illustrated in Figure 4.2 (b). In this method, we do not calculate 

𝑍 ∙ 𝑟 before programming, instead pulses that represent Z and pulses that represent r are 

simultaneously applied on the rows and on the columns of the cross-point array, 

respectively. We overlap the Z pulses and r pulses over the write enable period to 
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effectively realize the multiplication function and thereby increase or decrease the 

conductance of the RRAM. Specifically, we encode r value into spikes of 1ns pulses in a 

fixed time period, and encode Z value into the duty cycle of the write period when the r 

pulses could be applied to each RRAM cell. Thus, in such a synchronous design, the 

accumulated overlap time of these two pulses in each write cycle indicates the product of 

𝑍 ∙ 𝑟. 

Traditional Sequential Programming

D

Vdd/2 Vdd/2

z[0].r[0]

z[1].r[0]

D

Vdd/2 Vdd/2

z[0].r[1]

z[1].r[1]

 
(a) 

Proposed Parallel Programming

D
z[0]

z[1]

r[0] r[1] r[2]

 
(b) 

Figure 4.2. The parallel scheme achieves O(1) in programming speed, independent 

on the array dimension. 
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The write circuit for Z generates the programming pulse with a duty cycle 

proportional to the value of Z in a fixed clock period. To program an RRAM cell, the voltage 

across the cell should be Vdd, while Vdd/2 is not able to change its conductance. Since the 

programming voltage of r is in the range of 0 to Vdd, the effective programming period of 

the Z pulse should supply either 0 or Vdd voltage, and the rest should be Vdd/2.  

Z is always a positive number while r can be positive or negative, depending on the 

residual error. Therefore, whether D will increase or decrease depends on the sign of r, but 

not Z. When r is positive, D decreases, and vice versa. Since we don’t calculate 𝑍 ∙ 𝑟 up front, 

the programming voltage of Z has to prepare for both positive r and negative r. In our 

synchronous design, we divide the write period into two phases, controlled by the clock. The 

first phase deals with the condition of r > 0 (positive period), and the second phase deals with 

the condition of r < 0 (negative period). In the positive period, the effective programming 

voltage is 0 in a certain time proportional to Z. After this time, the programming voltage 

switches to Vdd/2 to prevent further programming. Similarly, in the negative period, the 

effective programming voltage is Vdd, and then the voltage switches to Vdd/2. To program 

a RRAM cell, we can keep the voltage of r as Vdd in the positive period (for r > 0) and as 0 

in the negative period (for r < 0). Consequently, the voltage across the RRAM cell during 

the overlap time of Z and r will be –Vdd and Vdd for r > 0 and r < 0, respectively. Such a 

voltage overlap serves as the basis to tune the RRAM conductance for D. 

To generate such a pulse pattern, a digital circuit is designed, as shown in Figure 4.3. 

The inputs include Z [15:0], WE, PN and clock. Z [15:0] is a pre-decoded natural number, 

representing the value of Z from 0 to 16 by the number of ‘1’ in these 16 bits. The ‘1’s are 

all sequentially on the right side of Z [15:0]. WE is the global control write enable signal. 
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The writing is performed when WE = 1. PN is the signal that differs the positive period and 

negative period. PN = 0 means positive period and PN = 1 means negative period. The clock 

signal is an internal clock. There are 32 cycles in the whole write period. 

 

Figure 4.3. Circuit schematic to generate the programming voltage Z. The inset 

illustrates the pulse pattern for both phases. 

 In Figure 4.3, the left part of the circuit is a 16-bit shift register. It converts the parallel 

input Z [15:0] into a sequential output. Thus, the time when the output is 1 is proportional to 

the value of Z. Note that the output of the shift register is connected back to the first stage of 

itself in order to recycle the data Z. With 32 clock cycles for one write period, the shift register 

generates two identical pulses with the duty cycle proportional to the value of Z. These two 

identical pulses are further input to the mux to generate different programming voltage levels 

for the positive period and the negative period, which is controlled by both WE and PN. With 

the whole circuit above, we are able to convert the value of Z into the duty cycle of pulses 

for both cases of r > 0 and r <0. 

The write circuit for r generates a train of pulses, where (1) the number of pulses is 

proportional to the value of r, (2) each pulse has a fixed width (for fixed RRAM 

programming period) and (3) the pulses are evenly distributed across a constant write period. 
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Whenever there is overlap between the Z window and an r pulse, the fixed pulse width 

ensures that the conductance of RRAM is changed by a fixed amount. The uniform 

distribution of pulses is important to minimize the quantization error in our method, which 

effectively multiplies Z and r. r could be a positive or negative value, which would increase 

or decrease the RRAM conductance, respectively. Since the required voltage values for 

increasing and decreasing the RRAM conductance are different, each write cycle was 

separated into two phases, where the first phase generates signals for positive r values and 

the second phase for negative r values. 

In order to increase the resistance of the RRAM, a positive voltage of Vdd is required 

between the Z and R nodes. Thus in the first phase, if r is positive, active-high pulses (number 

of pulses proportional to r) are generated with a fixed pulse width of 1ns, while Z is driven 

low (the time at low is proportional to Z value). Through this operation in the first phase, a 

fixed voltage (VR – VZ = 1.5V) is applied to each RRAM cell for the accumulated overlap 

time that represents 𝑍 ∙ 𝑟. If r is negative, the output signal is kept at low during the first 

phase, ensuring no change in the resistance of the RRAM cells. Similarly, in the second 

phase, if r is positive, the output is kept at high to ensure no change in resistance of the 

RRAM cells. On the other hand, if r has a negative value, then in the second phase active-

low pulses are generated with a fixed pulse width of 1ns while Z is driven high. Thus, a fixed 

voltage in the opposite direction in the case of positive r value (VZ – VR = 1.5V) is applied to 

the RRAM cells for the accumulated overlap time that represents 𝑍 ∙ 𝑟. After each write 

cycle, the RRAM conductance will increase or decrease by an amount proportional to 𝑍 ∙ 𝑟. 

 The circuit implementation consists of various delay elements forming a configurable 

ring oscillator (RO) with a start and polarity control. Write Enable (WE) and sign-bit of r 
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determine the phase in which the pulses are to be generated and their polarity. The number 

of pulses during the write period is varied by changing the length of the ring oscillator and 

thus, its frequency. This was achieved using switches, which determines the total gate delay 

in the ring oscillator.  The control of the switches is generated from the r value, ensuring that 

only one switch is on for a particular value of r. When r = 0, no change in the RRAM 

conductance is allowed. In total, 15 buffer stages (d1-d15) in Figure 4.4 are implemented with 

different delay values, such that the number of pulses generated for each write cycle is 

proportional to the r value. The fixed pulse width (1ns) is generated after each rising edge of 

the RO output. Based on the sign-bit of r and the write phase (PN), the final mux stages select 

among Vdd, 0, pulse generator output or the inversion of pulse generator output. 

 

Figure 4.4. Circuit schematic to generate the programming pulses of r. 

4.3. Simulation and Results 

In this section, we show the simulation results of the overall system that consists of 

parallel programming circuits and RRAM cells. The write circuitries for Z and r are 

implemented in 65nm CMOS technology, and we used a spice model for the RRAM device 

that was generated from device measurements. 
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Figure 4.5. Timing diagram of the programming system. Through the overlap in time 

between Z and r pulses, it demonstrates that (a) D decreases when r > 0. (b) D increases when 

r < 0. 

Figure 4.5 shows the timing diagram of the parallel programming system. When the 

write enable (WE) signal turns on, both Z and r write circuitries start pulse programming 
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based on the values of Z and r, and thus change the value of D during the overlap time of the 

two pulses. In Figure 4.5 (a), it is shown that when r is positive, the programming occurs in 

the first half of the write period and the value of D decreases. Figure 4.5 (b) illustrates that 

when r is negative, the programming happens in the second half of the write period and the 

value of D increases. Independent of the array size, the parallel programming of the entire 

array requires only 84 ns, while the sequential programming requires 1.6 μs for a 400 x 100 

array. The simulation also shows that the energy consumption of parallel programming of 

the 400 x 100 array is about 13.9 nJ. The layout areas of Z and r circuitries are 850 μm2 and 

1154 μm2, respectively.  
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Figure 4.6. The quantization error of the parallel programming method, with the 

maximum error at 1 bit (6.25%). 

The method of using overlap time of Z and r pulses with a certain granularity to 

calculate multiplication introduces quantization error. To analyze this, we performed 

simulation for all combinations of Z and r values (both from 0 to 16). Figure 4.6 shows the 

comparison of the simulated results of 𝑍 ∙ 𝑟, namely the accumulated overlap time of Z and 
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r pulses, to an ideal 𝑍 ∙ 𝑟 multiplication. It is observed that the digital programming mostly 

follows the ideal multiplication closely, while producing the maximum error of 1 bit (out of 

16 bits) when both Z and r are small. 

We compared the proposed system against a software implementation on the task of 

updating the dictionary D. For this purpose, we used MNIST dataset (LeCun et al. 1998, 

86:2278-2324) to extract the image feature with Stochastic Gradient Descent (Bousquet and 

Bottou 2008) algorithm. For the software approach, we used Intel Core i5 2.4 GHz dual-core 

processor and 4 GB memory. Figure 4.7 shows the dictionary D before and after the feature 

extraction. The computation time consumed to update D for this entire dictionary learning 

process is 750 μs per image patch (10 iterations). With our proposed hardware approach, a 

400 x 100 resistive cross-point array is used to achieve the computation time of 840 ns per 

image patch, which is a 900X improvement over the software implementation for the 

identical dictionary learning. 

              

     Before learning                                After learning 

  Figure 4.7. Demonstration of the proposed method in updating the dictionary. 

Current software approach: Processor: Intel Core i5 2.4GHz 2 cores; Memory: 4 GB; 

Computing time: 750 μs per image patch. Proposed parallel programming hardware 

approach: RRAM array dimension: 400 x 100; Computing time: 840 ns per image patch. 
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5. Bio-Inspired Learning Algorithm 

 To realize learning on-a-chip, optimization of the learning algorithm is required. 

Inspired by the fact that animal brains feature high accuracy, efficient energy use, and low 

hardware overhead, this work develops a new learning algorithm based on biologically 

plausible learning rules to improve the efficiency in sparse learning. 

5.1. Introduction 

  Neuro-inspired computing, including learning and inference, has made significant 

progress in recent years and will fundamentally alter the way individuals and organizations 

live, work and interact with each other (Schmidhuber 2015, 61:85-117, LeCun et al. 2015, 

521:436-444, Furber 2016 13:051001, Liu et al. 2017, 234:11-26). Machine learning and 

deep learning algorithms have been successfully applied to many data processing and 

analysis tasks, including feature extraction from images and videos (Hong et al. 2015, 

24:5659-5670, Yu et al. 2016, 99:1-11, Yu et al. 2017, 12:1005-1016, Zhang et al 2017), 

image segmentation (Pan et al. 2017, 229:88-99), and big multimedia analysis (Yu et al. 

2017). While many previous efforts have been made to improve the optimization algorithms 

for artificial neural networks (Sun et al. 2017, 230:374-381, Baig 2017, Scardapane 2017, 

241:81-89), the computational complexity of artificial neural networks still challenges the 

state-of-the-art hardware platforms, especially mobile applications that are tightly 

constrained by energy efficiency and hardware size (Lane and Georgiev 2015). In contrast, 

animal brains, as a natural system for information processing, exhibit extraordinary features 

of ultra-high energy efficiency (Sarpeshkar 1998, 10:1601-1638), low hardware overhead, 

and high accuracy in perceptual and learning tasks. For instance, the olfactory system in fruit 

flies only contains about 5000 neurons (Galizia and Sachse 2010); after a very small number 
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of stimulus presentations, it is capable to detect tens of thousands of odors at very high 

accuracy. The locust antennal lobe consists of ~830 excitatory projection neurons and 300 

inhibitory local neurons (Emst et al. 1977, 176:285-308), achieving sparse odor 

representation that is specific over thousand-fold changes in odor concentration (Stopfer et 

al. 2003, 39:991-1004). Indeed, the efficiency of information processing by the sensory and 

cortical systems is vitally important to animal survival in nature.  

Many efforts have been made to capture the advantages of the nervous systems by 

creating computational models, with biologically plausible learning rules (Perez-Orive et al. 

2004, 24:6037-6047, Assisi et al. 2007, 10:1176-1184, Huerta and Nowotny 2009, 21:2123-

2151, Zylberberg et al. 2011, 7:1-12, King et al. 2013, 33:5475-5485, Querlioz et al. 2013, 

12:288-295, Diehl and Cook 2015). Among neurons, the two basic forms of data 

transmission are excitation and inhibition. Excitation has been extensively shown to be the 

primary path of data processing and feature extraction. Neural network models with 

excitation only can be trained to recognize images, differentiate objects, and categorize input 

data (Huerta and Nowotny 2009, 21:2123-2151). In addition to excitation, the inhibition 

provided by interneurons is indispensable to learning and behavioral adaptation, as observed 

in a variety of species (Kelsom and Lu 2013, 3:1-19). Even though the number of inhibitory 

interneurons is usually much smaller than that of the excitatory ones, the chemical blockade 

of the inhibition path results in pronounced deficits in decision making, recognition or 

memory recall (Sillito 1977, 271:699-720, Tsumoto et al. 1979, 34:351-363, Sawaguchi et 

al. 1996, 75:2150-2156, Perez-Orive et al. 2004, 24:6037-6047).  

The combination of excitatory and inhibitory paths forms the network element, which 

is further connected into the complex nervous system (Assisi et al. 2007, 10:1176-1184). 
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Systematic investigations (Sporns and Kötter 2004, 2:1910-1918, Alon 2007, 8:450-461) 

have identified a small set of recurring structural elements, called neural motifs, serving as 

efficient building blocks to realize diverse functions. Depending on the interaction among 

neurons, there are two common inhibitory motifs: feedforward (FF) and feedback (FB). In 

the FB (or recurrent) inhibitory motif, the inhibitory cells are driven by a population of 

excitatory neurons and in turn inhibits the same population of the excitatory cells. FF 

inhibition occurs between different brain areas, where the inhibition cells receive the signal 

from the excitation group and then act on a different group of postsynaptic excitatory neurons 

(Assisi et al. 2007, 10:1176-1184). Both FB and FF inhibitory motifs can limit the firing of 

the postsynaptic neurons and facilitate the construction of sparse representation from input 

data. While FB inhibition provides dynamic thresholding in the learning process (Masson et 

al. 2002, 417:854-858), FF inhibition is vital to maintaining the firing rate and sparse 

representation across a wide range of input conditions. For instance, external stimuli can vary 

in strength by many orders of magnitude and yet the FF network still faithfully represents 

the stimulus with little change in the response (Pouille et al. 2009, 12:1577-1585). Moreover, 

the FF inhibitory path speeds up the response time and creates relatively fast inhibition (Alon 

2007, 8:450-461). In fact, the rapid reaction induced by the FF inhibitory motif has also been 

found in many other biological networks, such as transcription regulation in the gene system 

(Bahrami and Drabløs 2016, 62:37-49).  

Most prior computational models with inhibition were on lateral inhibition among 

the excitatory cells or on the FB path in training and inference. For example, the SAILnet 

model was able to perform pattern learning with direct inhibitory connections between the 

excitatory neurons (Zylberberg et al. 2011, 7:1-12); an extension of the sparse coding 
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algorithm leveraged lateral inhibition to form the dictionary in training (Szlam et al. 2011). 

Yet such lateral inhibition between the excitatory cells is not consistent with the 

physiological properties of primary visual cortex, in which the inhibitory interneurons 

(GABAergic) are separated from the excitatory neurons (Kelsom and Lu 2013, 3:1-19).  The 

work of E-I Net advanced the model with a group of FB inhibitory neurons, which enable 

sparse coding by actively de-correlating the excitatory population (King et al. 2013, 33:5475-

5485). Meanwhile, the knowledge of FF inhibition has been accumulated from both 

biological and computational perspectives. Multiple formats of inhibitory plasticity were 

summarized in (Vogels et al. 2013). Haider et al. (2006, 26:4535-4545) demonstrated the 

importance of the balance between the excitation and inhibition paths. Skorheim et al. (2014, 

9:1-15) built a computational model with both feedforward excitation and inhibition that 

mimics the olfactory system of insects for specific foraging task. 

Inspired by these results, this work develops a general spiking neural network model 

with FF inhibition to illustrate its critical role in cognitive learning and hardware efficiency, 

as shown in Figure 5.1. Using biologically plausible rules for plastic synapses and spiking 

neurons, this new model serves as the testbed to analyze the impact of multiple factors on 

learning accuracy and speed. The results further help shed light on energy-efficient learning 

algorithms that may benefit from the FF inhibitory motif. The contributions of this work are 

summarized as the following: 

A biologically plausible spiking neural network is proposed, with the feedforward 

inhibitory motif that is inspired by the olfactory system of insects. 
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The new network model achieves more than 3X reduction in the network size, 

compared to state-of-the-art biologically plausible spiking neural network at the same 

accuracy of 95% in the recognition task of handwritten digits. 

The role of feedforward inhibition in sparse learning, as well as associated 

parameters, is systematically studied. Its function of coarse categorization is confirmed. 

 

(a) 

                          

      (b)                                               (c) 

Figure 5.1. The feedforward inhibitory motif and the structure of the inspired neural 

network model. (a) The computational model of the olfactory system of insects (Yu et al. 

2017). Mushroom Body (MB) receives input from Antennal Lobe (AL). The majority part 
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of MB consists of a large number of Kenyon Cells (KCs), while Lateral Horn Interneurons 

(LHIs) only contributes to a small fraction of MB. LHIs receive the same input as KCs and 

generate feedforward inhibition that suppresses the firing of KCs. (b) The feedforward 

inhibitory motif extracted from the olfactory model. (c) The spiking neural network model 

based on the feedforward inhibitory motif. It is trained for the handwritten digits 

recognition task. The input layer is a full 28x28 image containing a number between ‘0’ 

and ‘9’. The excitation layer (E), similar as the KCs in MB, has a large number of excitatory 

neurons. The inhibition layer (I), similar as the LHIs in MB, has a small number of 

inhibitory neurons that suppress the neuron firing in E layer. 

5.2. Feedforward Inhibition Spiking Neural Network 

To illustrate the advantage of a biological nervous system, we construct a neural 

network model that has the following important features: at the device level, it should only 

use biologically plausible rules for both synaptic plasticity and spiking neurons, instead of 

artificial rules; at the system level, it should achieve sufficiently high accuracy in learning 

compared to other artificial algorithms. Under these constraints, we explore the structure, 

function and computation efficiency of the network model, with the focus on the 

feedforward inhibitory motif.  

Figure 5.1 (a) and (b) present the structure of the feedforward inhibitory motif (FFI).  

It is inspired by the insect brain, especially the olfactory system. In such a system, the 

plasticity is located in the Mushroom Body (MB) to process input signals and accomplish 

fast and efficient classification. While the number of neurons and their physiological 

connectivity in the MB are well studied (Perez-Orive et al. 2004, 24:6037-6047), the exact 

functional map and the learning mechanism remain as open questions. One of the 
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characteristics of the MB is the existence of a FFI path that suppresses the main excitation 

path to generate the output. Even though FFI only consists of a small portion in the MB, 

experiment results confirmed its critical role to the formation of sparsity during the training 

process (Perez-Orive et al. 2004, 24:6037-6047). We argue that the function of FFI is to 

effectively promote fast and reliable learning, as well as the reduction of network size at 

high learning accuracy. This work aims to substantiate such claim by testing the FFI motif 

with the MNIST database of handwritten digits (LeCun et al. 1998, 86:2278-2324). Figure 

5.1 (c) presents the proposed network structure, based on the feedforward inhibitory motif. 

It consists of four layers: the input layer, the excitation layer (E), the inhibition layer (I), 

and the classification layer (C). The inhibition layer functions as feedforward inhibition. It 

receives innervation from the input layer and sends out inhibitory pulses to the excitation 

layer. The excitation layer receives innervation from the input layer and receives inhibition 

from the inhibition layer. It extracts the features of input. The classification layer receives 

innervation from the excitation layer and does the classification based on the features. The 

size of each layer depends on the application task. The following subsections present the 

spiking neuron model, learning rules, balancing method and the training procedure.  

5.2.1. Spiking Neuron Model 

At the device level, the neuron model used in this paper is the leaky-integrate-fire 

(LIF) model described in population (King et al. 2013, 33:5475-5485). The membrane 

potential of each neuron is initially reset to 0 and then accumulates by the weighted sum 

of all input signals. It increases or decreases by a certain amount, depending on whether 

the input signal is from the excitatory or inhibitory synapse, respectively. In addition, the 

membrane potential decays at a rate proportional to itself during the integration stage. 
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When the membrane potential is larger than the threshold, the neuron fires a spike out, and 

the membrane potential is reset to 0. This model is described by the following equations. 

𝑢𝑖(𝑡 + 1) =  𝑢𝑖(𝑡) exp (−
1

𝜏
) + ∑ 𝛽𝑗𝑧𝑗(𝑡)𝑊𝑖𝑗𝑗                           (13) 

𝑧𝑖(𝑡 + 1) =  {
1,       𝑢𝑖(𝑡 + 1) ≥ 𝜃𝑖

0,       𝑢𝑖(𝑡 + 1) < 𝜃𝑖
                                  (14) 

𝑢𝑖(𝑡 + 1) = 0    𝑖𝑓    𝑧𝑖(𝑡 + 1) = 1                                  (15) 

𝑢𝑖(𝑡) is the membrane potential of neuron i at time t. 𝜏  is the membrane time 

constant governing membrane potential decay rate, with unit of number of simulation time 

step. 𝑧𝑖(𝑡) is the spike output of neuron i at time t, which is either 1 for spike or 0 for no 

spike. 𝑊𝑖𝑗 is the synaptic weight from neuron j to neuron i. 𝛽𝑗 indicates the type of input 

neuron j, which is either 1 for the excitatory input and -1 for the inhibitory input. 𝜃𝑖 is the 

threshold of neuron i. As the full image is used as the input, as shown in Figure 5.1 (c), 

each input neuron represents one pixel in the original image, which generates excitatory 

signals. Each image is presented for a time window of 50 simulation time steps. The spike 

rate is calculated within this time window. So, the minimum precision of the spike rate is 

equivalent to 0.02. 

5.2.2. Learning Rules of Synaptic Plasticity 

From the input image, the FF neural network generates the sparse feature, which is 

represented by the spike rate of the E layer; then the classifier produces the classification 

score, i.e., the reward signal (R). If the prediction of the classification layer (C) matches 

the label of the input image, the reward is 1, otherwise, the reward is -1. Based on the 

digitalized reward signal, the rewarded Spike Rate Dependent Plasticity (SRDP) is applied 

to update the synaptic weight; this is the rewarded training scheme. In case of unsupervised 
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training, there is no reward term in the following equations for SRDP. For excitatory 

synapses, e.g. 𝑋 to 𝐸 and 𝑋 to 𝐼, they follow the Hebbian rule: 

∆𝑊_𝑋𝐸𝑖𝑗 = 𝜂_𝑋𝐸𝑖𝑗𝑅𝑋𝑖𝐸𝑗                                             (16) 

∆𝑊_𝑋𝐼𝑖𝑗 = 𝜂_𝑋𝐼𝑖𝑗𝑅𝑋𝑖𝐼𝑗                                               (17) 

𝑋𝑖 is the value of the i-th input neuron 𝑋. 𝐸𝑗 is the spike rate of the j-th neuron 𝐸. 

𝐼𝑗  is the spike rate of the j-th neuron 𝐼. ∆𝑊_𝑋𝐸𝑖𝑗  is the change of the synaptic weight 

between neuron 𝑋𝑖 and 𝐸𝑗. ∆𝑊_𝑋𝐼𝑖𝑗 is the change of the synaptic weight between neuron 

𝑋𝑖 and 𝐼𝑗. 𝑅 is the reward signal corresponding to one input image 𝑋. 𝜂_𝑋𝐸𝑖𝑗 is the learning 

rate of the synapse from neuron 𝑋𝑖 to 𝐸𝑗. 𝜂_𝑋𝐼𝑖𝑗 is the learning rate of the synapse from 

neuron 𝑋𝑖 to 𝐼𝑗. All the learning rates decay with the increasing number of update of each 

synapse, modeled by: 

𝜂𝑖𝑗 =
𝜂0

𝛼+𝑁𝑖𝑗
                                                    (18) 

𝜂0  is the constant base learning rate. 𝛼  is a constant called habituation rate, 

governing the speed of decay of the learning rate. Large 𝛼 indicates the learning rate decays 

slowly with the number of updates and small 𝛼 indicates the learning rate decays fast with 

the number of updates. 𝑁𝑖𝑗 is the number of all the previous updates of the synapse from 

neuron 𝑖  to neuron 𝑗 . This decay of the learning rate is called local habituation. The 

learning rate of each synapse only depends on the update history of the synapse itself. Thus, 

local habituation is biologically plausible. The decay of learning rate can stabilize the 

training and guarantee convergence.  

The inhibitory synapses between 𝐸 and 𝐼 have slightly different update rules: 



  72 

∆𝑊_𝐼𝐸𝑖𝑗 = {
𝜂𝑅𝐼𝑖𝐸𝑗,                               𝐸𝑗 < 𝜌𝑤𝑒𝑎𝑘

  𝜂𝑅𝐼𝑖(𝐸𝑗 − 𝜌𝑡𝑎𝑟𝑔𝑒𝑡),        𝐸𝑗 > 𝜌𝑠𝑡𝑟𝑜𝑛𝑔
                     (19) 

∆𝑊_𝐼𝐸𝑖𝑗 is the change of the synaptic weight between neuron 𝐼𝑖 and 𝐸𝑗. 𝐼𝑖 is the spike rate 

of the i-th I neuron. 𝐸𝑗 is the spike rate of the j-th E neuron. 𝜌𝑤𝑒𝑎𝑘 is the upper bound of 

weak spiking rate; 𝜌𝑠𝑡𝑟𝑜𝑛𝑔  is the lower bound of strong spike rate. 𝜌𝑡𝑎𝑟𝑔𝑒𝑡  is the target 

spike rate for the strongly active neurons, 𝜌𝑙𝑜𝑤 < 𝜌ℎ𝑖𝑔ℎ < 𝜌𝑡𝑎𝑟𝑔𝑒𝑡. This rule is inspired 

from (Vogels et al. 2013). Strongly active neurons receive less inhibition and weakly active 

neurons receive more inhibition. Thus, the contrast of population response is enhanced. 

In our SRDP rules, the update of each synaptic weight only depends on the activity 

of its pre-neuron and post-neuron, and a global reward signal. No backpropagation is 

involved. Our SRDP rules are biologically plausible. 

5.2.3. Balancing Methods 

Since Hebbian learning is not balanced, we applied two balancing methods in 

supplement to the synaptic plasticity, input balancing and homeostatic balancing as used 

in the paper by Skorheim et al. (2014, 9:1-15). Input balancing is to ensure that the total 

synaptic weight of an input neuron remains unaffected by individual plasticity event. A 

scaling process is implemented after each SRDP event. When the weight of a synapse 

increases or decreases, the weight of all the other synapses connected to the same input 

neuron decreases or increases by a scaling factor. 

𝑊𝑖𝑗(𝑛+1) = 𝑊𝑖𝑗(𝑛)
𝑊𝑗0

∑ 𝑊𝑖𝑗(𝑛)𝑖
                                            (20) 

𝑊𝑖𝑗(𝑛) are synaptic weights after SRDP update, but before the balancing. 𝑊𝑖𝑗(𝑛+1) 

are synaptic weights after balancing. 𝑊𝑗0 is the total synaptic weight of input neuron 𝑗. The 
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input balancing can prevent one input neuron from dominating the output or being ignored 

by the output neurons. The homeostatic balancing is to ensure that all the output neurons 

maintain a relatively constant long-term firing rate. It is applied once after every batch of 

100 training images. All the synaptic weights of an output neuron will increase or decrease 

if the firing rate of this neuron is low or high, respectively. 

∆𝑊𝑖𝑗 ∝ −(𝑆𝑟𝑗 − 𝑆𝑟𝑎𝑣𝑔)                                               (21) 

𝑆𝑟𝑗 is the long-term spike rate of the j-th output neuron for a batch of images. 𝑆𝑟𝑎𝑣𝑔 

is the average spike rate of a batch of input samples and of all the neurons in the same layer. 

The homeostatic balancing can improve the neuron utilization.  

5.2.4. Training Procedure 

Algorithm 1 Training procedure of the rewarded SRDP of FFI SNN 

Initialize all the synaptic weights 

For input images = 100 images in training dataset 

Feedforward through the network for 50 time steps 

Calculate the spike rate for E and I neurons 

Calculate C, update the classification layer W_EC and calculate the reward 

Update the excitatory synaptic weights W_XE and W_XI with reward, and 

apply the input balancing 

Feedforward through the network for 50 time steps 

Calculate the spike rate for E and I neurons 

Calculate C, update the classification layer W_EC and calculate the reward 

Update the inhibitory synaptic weights W_IE with reward, and apply the input 

balancing 

Apply homeostatic balancing 

If number of batches is 50, 100, 150…  

    Feedforward through the network with previous 50 batches of images 

    Calculate the spike rate for E and I neurons 

    Calculate C, update the classification layer W_EC 

End If 

End For when all training images are used or stopping criterion is met  
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The rewarded training procedure is described by Algorithm 1. The weights of 

excitatory synapses in the network are initialized by random values uniformly distributed 

between 0 and 1. Each neuron in the excitation layer and the inhibition layer only randomly 

connects to 50% of input neurons during the initialization. Such 50% connectivity mimics 

the olfactory system (Assisi et al. 2007). The connectivity of a specific synapse remains the 

same after the initialization. The training is mini batch based and separated for excitatory 

synapses and inhibitory synapses. For a batch of 100 training images, we first simulate the 

feedforward of the network and calculate the spike rate of all neurons for every image. For 

rewarded training, the output of classification layer (C) and the reward (R) are then 

calculated. Each neuron in the C layer represents one category in the task. Each C neuron 

computes the weighted sum of the spike rate of E neurons and then is normalized by the 

sum of the entire layer. The neuron with the maximum output is the prediction. If the 

prediction matches the label of the input image, the reward is 1, otherwise, the reward is -

1. The weights between E and C layer are updated only when the reward is -1 with the 

following rule: 

∆𝑊_𝐸𝐶𝑖𝑗 ∝ −𝐸𝑖(𝐶𝑗 − 𝐶𝑡ℎ)                                       (22) 

∆𝑊_𝐸𝐶𝑖𝑗 is the change of the synaptic weight between neuron 𝐸𝑖 and 𝐶𝑗. 𝐸𝑖 is the spike 

rate of the i-th E neuron. 𝐶𝑗  is the output of the j-th C neuron. 𝐶𝑡ℎ  is a constant to 

differentiate strong C and week C, and is tuned to be 0.105 for the optimal classification 

accuracy. This rule is a punishment only Hebbian learning rule variant, which can 

maximize the prediction accuracy of the classification layer. After updating the 

classification layer, the reward is also updated. Next, the excitatory synaptic weights are 

updated from the input layer to the excitation and inhibition layers. With updated excitatory 
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synaptic weights, the FF network is simulated once again for this batch to update the 

weights from the excitation to the classification layer, as well as the inhibitory synaptic 

weights. The separation of update excitatory synapses and inhibitory synapses is for more 

stabilization and easier tuning of this highly non-linear system. The input balancing is 

applied after every update of synaptic weights. Homeostatic balancing is applied once after 

training one batch. After this step, the training moves on to the next batch. Every 50 batches, 

the classification layer is trained once again with all the 50 batches together through the FF 

network, to further improve the performance of the network. 

For unsupervised training, we don’t need to train the classification layer every batch, 

because the reward is not needed. The classification layer is only trained after every 50 

batches, using all the 50 batches together through the FF network. The unsupervised 

training procedure is described by Algorithm 2. 

Algorithm 2 Training procedure of the unsupervised SRDP of FFI SNN 

Initialize all the synaptic weights 

For input images = 100 images in training dataset 

Feedforward through the network for 50 time steps 

Calculate the spike rate for E and I neurons 

Update the excitatory synaptic weights W_XE and W_XI without reward, and 

apply the input balancing 

Feedforward through the network for 50 time steps 

Calculate the spike rate for E and I neurons 

Update the inhibitory synaptic weights W_IE without reward, and apply the 

input balancing 

Apply homeostatic balancing 

If number of batches is 50, 100, 150…  

    Feedforward through the network with previous 50 batches of images 

    Calculate the spike rate for E and I neurons 

    Calculate C, update the classification layer W_EC 

End If 

End For when all training images are used or stopping criterion is met 
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5.3. Results and Discussion 

A neural network model is built with the feedforward inhibitory motif, and leaky 

integrate-and-fire neurons as shown in Figure 5.1 (c). The spike rate in a window of 50 

time steps is used to represent the data. The membrane time constant 𝜏 is set to 10. A 

Hebbian Spike-Rate-Dependent-Plasticity (SRDP) is applied to all synapses. No 

backpropagation is involved in the training. The base learning rate 𝜂0 is 3 for the excitatory 

synapses and 1 for the inhibitory synapses to balance the amount of weight change of 

excitatory and inhibitory synapses. The habituation rate 𝛼 is 50 for the excitatory synapses 

and 100 for the inhibitory synapses. As a proof of concept, this network is trained with a 

representative machine learning benchmark, the MNIST dataset, for the classification of 

handwritten digits. This dataset consists of 60000 training images and 10000 test images. 

Each image is a 28x28 grey scale (256 intensities) image of a single numerical digit 

between '0' and '9'. We use the full image as the input to the network. To categorize these 

images, we use 2000 excitatory neurons (E) and 100 interneurons (I). Both excitation and 

inhibition layers receive innervation from half of the input neurons that are randomly 

selected. Each excitatory neuron receives innervation from all the interneurons. For the 

classification layer, it receives the input from all the excitatory neurons. There are 10 

neurons (C) in the classification layer, representing 10 classes from ‘0’ to ‘9’. Their spike 

rate represents the probability that an image belongs to each class. The prediction is the 

class with the maximum probability. More details on modeling and training can be found 

in Section 5.2. 

5.3.1. Performance of the Feedforward Inhibitory Motif 
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After training with 60000 training images, the network achieved 95.0% 

classification accuracy on the testing set. Figure 5.2 shows the firing map of 2000 E 

neurons corresponding to 1000 images before and after training. The images are randomly 

selected from the training set and sorted by their true labels. Each point in the map 

represents the firing rate of one E neuron for one input image. Each row is for one E neuron 

and each column is for one image. The firing map after training presents a good distinction 

of different classes. The images of the same class have similar firing patterns. As a 

comparison, in the initial firing map before training, many neurons tend to fire for a wide 

range of classes and thus, fail to distinguish different classes.  

 

Figure 5.2. The firing map of 2000 excitatory neurons for 1000 images, before and 

after training. The images are randomly selected from the training set and sorted by their 

true labels (number 4, 5, 6). Each point in the map represents the firing rate of one E neuron 

for one input image based on grayscale. Each row is for one E neuron and each column is 

for one image. 
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Figure 5.3. Testing accuracy as a function of the number of training images, in both 

rewarded and unsupervised (without reward) training, compared with the sparse coding 

algorithm that uses 6-bit data and stochastic gradient descent. Our network model achieves 

95.0% accuracy with 60000 training images. The inset shows that with FFI, the learning is 

faster at the beginning, compared to sparse coding. 

Figure 5.3 presents the testing accuracy as the training proceeds. After every 50 

batches, we simulate the network with testing images, without change the synaptic weights, 

to get the testing accuracy. The network is trained with random initialization several times 

and the performance is very stable. On average, it achieves 94.2% accuracy with 20000 

training images, and achieves 95.0% accuracy with 60000 training images. Our network is 

also able to perform unsupervised training with the absence of reward signal. The 

performance degradation is very small (0.1%), indicating that the reward signal is not 

critical for this relatively simple task. The result is compared with the sparse coding 

algorithm (Lee et al. 2006), which uses stochastic gradient method in training. Sparse 

coding is an unsupervised machine learning algorithm that learns both the weights (i.e., 
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dictionary) and the sparse representations of the data. Since the data representation in our 

network is equivalent to only 6 binary bits, 6-bit data precision is used in the sparse coding 

algorithm for a fair comparison (Chen et al. 2015). The precision of weights is 32-bit in 

both our algorithm and sparse coding. The results show that sparse coding algorithm 

performs better than our network, because it uses gradient based optimization method, 

which is not biologically plausible. It is worth mentioning that when the number of training 

image was very limited, like about 500, the network still had above 80% accuracy, which 

was much better than sparse coding. The ability of fast learning in such a small number of 

trials is observed in live animals as well, which is critical to survival and evolution. It has 

enabled the nervous systems to tend to learn faster than the machine learning algorithms 

that are currently available. Querlioz (2013, 12:288-295) proposed a lateral inhibition 

spiking neural network trained with STDP. They need 6400 excitatory neurons to achieve 

95.0% accuracy on the same dataset. The FFI network is 3X more efficient than the lateral 

inhibition network. 

5.3.2. Important Factors to Train the Network 

Several experiments are conducted to investigate the important factors in the 

training step. The first one is the randomization in the initialization stage. A good random 

initialization is crucial to high learning performance. There are two aspects of initialization: 

connectivity and weights. The connectivity is defined as the percentage of input neurons 

that each output neuron (e.g. E or I) receives innervation from. Figure 5.4 shows that the 

connectivity needs to be larger than a minimum value (13%) to achieve a good training 

result. In addition, when the network connectivity is larger than 80%, the learning accuracy 
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starts to degrade slightly. Thus, in this paper each E or I neuron receives innervation from 

random 50% of the input neurons.  
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Figure 5.4. The effect of connectivity: The prediction accuracy of the FFI networks 

with various levels of connectivity, which is defined as the percentage of input neurons 

that each output neuron (e.g. E or I) receives innervation from. 

Each synaptic connection is also initialized by a random weight. It is known that, 

if all E and I neurons are connected to all the input neurons and all the synapses have the 

same weight, no learning can happen, because all the neurons are identical and all the 

weight changes are identical too. The random initialization of the weights is needed to 

break the symmetry. Figure 5.5 shows the learning curve of the network with different 

random weight initialization when all E and I neurons are connected to all the input neurons. 

The randomness ranges from 100% to 10%. 100% means the weights are initialized with 

random numbers between 0 and 1. 10% means the weights are initialized with random 

numbers between 0.45 and 0.55. All the random numbers are drawn from uniform 

distribution. The figure indicates that enough randomness is needed for a good training 
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result. The learning performance is better with more randomness. When the level of 

randomness is low, the training of weights may be stuck at non-optimal values and is more 

difficult to converge. Therefore, the level of randomness needs to be high enough to 

perform statistical training.  
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Figure 5.5. The effect of weight randomization: The training curve of networks with 

50% connectivity but different initial ranges of random weights. The randomness ranges 

from 100% to 10%. 100% means the weights are initialized with random numbers between 

0 and 1. 10% means the weights are initialized with random numbers between 0.45 and 

0.55. All the random numbers are drawn from uniform distribution. The figure shows that 

if initial randomness is too small (<10%), the training cannot converge. 

When the E and I neurons receive innervation only from part of the input neurons 

randomly (i.e., connectivity less than 100%), more randomness is added to the initialization 

and better accuracy is achieved. Other experiments show that 50% connectivity is an 

optimized initialization for this dataset. And at least 10% connectivity is needed to capture 

meaningful input patterns and have good learning performance. Another reason why 
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random initialization is so important to the statistical learning is because Hebbian learning 

is a process of positive feedback. Useful differentiation of features will be strengthened 

during training. With more variations in the system, the mechanism of positive feedback 

will learn how to amplify and separate the features for various classes. On the other side, 

if the input variation is too low that even after the amplification by the feedback, there is 

not enough separation to be created, then this non-linear training procedure will fail; as a 

result, we observe the sudden drops in accuracy.  

 

Figure 5.6. The effect of homeostatic balance: The firing rate of E neurons for 

different classes of images, after training with and without homeostatic balance. Without 

homeostatic balance, some neurons may be stuck at the constantly firing state (white) or 

the non-firing state (dark), failing to differentiate the classes with different firing patterns. 

As Hebbian learning is a process of positive feedback, it is very important to keep 

the homeostatic balance. As shown in Figure 5.6, without homeostatic balance, the neurons 

will be stuck at constantly firing state or non-firing state during training. These neurons 
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cannot extract any useful feature and are useless to the learning. It needs to keep the long-

term firing rate of all neurons at a similar value by the balancing methods. Thus, each 

neuron will only respond when particular input features arise.  
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Figure 5.7. The effect of habituation rate: The learning curve of networks with 

different habituation rates 𝛼 in Equation (18). If the learning rate doesn’t decay or decays 

too slowly, the training cannot complete. 

For the synapse, it is also important to make sure the learning converges, i.e., the 

synaptic weight should be stable toward the end of training. In our algorithm, convergence 

is guaranteed by reducing the learning rate during training. It is inspired by the habituation 

of the synaptic plasticity in biological nervous systems. The more times a synaptic weight 

is changed, the less it can be changed by the same amount of stimulus. In our network, the 

learning rate of each synapse is reversed proportional to the number of times it has been 

updated. The speed of habituation determines the speed of convergence. As shown in 
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Figure 5.7, if the habituation is too slow, the training will fail at some point. The speed of 

habituation needs to be optimized for high accuracy.  
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Figure 5.8. The effect of sparsity: The training curves with different sparsity, which 

is defined as the percentage of firing neurons in the E layer. If too many neurons are firing 

together, the training may fail due to the incapability to differentiate various classes; if too 

few neurons are firing, the accuracy degrades too. The optimal number is around 10% 

because there are totally 10 classes in this learning task. 

For the neurons, the parameters that impact learning include the threshold of 

neurons and the sparsity. The sparsity is controlled by the threshold 𝜃. Higher threshold 

results in fewer number of firing neurons and lower threshold results in more number of 

firing neurons. From the learning aspect, it prefers less overlaps that a neuron fires across 

different class of images, in order to better differentiate one class from another. In addition, 

it prefers all output neurons can be utilized to extract features for the entire dataset, i.e., the 

full feature space is utilized. Figure 5.8 shows that the average percentage of firing neurons 

for one image affects the accuracy. For this dataset, since there are 10 different classes, 
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when the percentage of firing neurons is about 10%, it achieves the best accuracy. Figure 

5.8 further indicates that that if the number of firing neurons is too large, the training will 

fail at some point due to too many overlaps in the feature space. 

5.3.3. Role of Feedforward Inhibition in Learning 

The neural network model can help us understand the role of the FFI motif in 

learning, such as the benefit of adding this small group of interneurons. From both 

biological experiments and previous neural networks, we know that FF excitatory neurons 

only are sufficient to extract sparse features and classify objects. Yet biological studies in 

vivo further indicated that the suppression of interneurons degraded the learning process, 

implying that critical role of the FFI motif. To investigate the function of FFI, we conducted 

a comparative study by training two similar neural networks, one with inhibition (Model 

A) and the other without inhibition (Model B). The rest of the network model, such as the 

number of neurons, connectivity, etc., are all identical. The same rewarded SRDP rule was 

applied to both models. For a fair comparison, the threshold of E neurons in Model B was 

increased to obtain a similar group firing rate as that in Model A.  

The first experiment studied the dependence of learning efficacy on the number of 

excitatory neurons, while the number of interneurons was kept constant. Figure 5.9 presents 

the result. As the number of E neurons increases, the accuracy is improved. The accuracy 

is more sensitive to the size of E, when the number of E neurons is low; when the size of 

E keeps increasing, the accuracy increased more slowly and eventually became saturated. 

Moreover, the results in Figure 5.9 illustrate that at the same number of E neurons, Model 

A, the network with FFI, achieves higher accuracy than Model B. To achieve the same 

accuracy of 95.0%, Model A only needs 2000 excitatory neurons with 100 interneurons 
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while Model B, the model without the FFI motif, required 5200 neurons. Thus, adding a 

small inhibitory layer can not only improve the final accuracy, but also significantly reduce 

the number of E neurons needed to achieve a specific accuracy (i.e., in this case, a 2.6X 

reduction), resulting in much greater hardware efficiency. The improved hardware 

compactness will in turn bring better energy efficiency and computing speed. Furthermore, 

we trained Model A with various numbers of I neurons. The result showed that as long as 

the number of I neurons is larger than 10, the network achieved similar accuracy. 
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Figure 5.9. The prediction accuracy as a function of the number of E neurons in the 

network model, with or without the inhibition layer (100 I neurons). To achieve 95.0% 

accuracy, the network with feedforward inhibition only needs 2000 E neurons, while the 

network without inhibition needs 5200 E neurons. The network with inhibition shows both 

higher accuracy and higher hardware efficiency (i.e., 2.6X reduction in the number of 

excitation neurons at 95.0%). 

More experiments are performed on Model A, the FFI motif with 2000 E neurons 

and 100 I neurons to study the role of inhibition. If the interneurons are removed from the 
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network after training, the excitatory neurons started to fire at a much higher rate, and had 

a lot of overlaps across different classes, which was consistent with the observations from 

biological experiments on the locust olfactory system (Perez-Orive et al. 2004, 24:6037-

6047). In the biological experiments, blockade of inhibition in the mushroom body caused 

neurons to become responsive to a much larger number of odors and lose the ability to 

discriminate between them. Similarly, the prediction accuracy of our network dropped 

from 95.0% to 47.7% after removal of interneurons due to too many firing neurons, which 

led to less selective feature extraction. Both the network model and the biological 

experiment demonstrated similar roles of inhibition in the regulation of firing rate and the 

maintenance of sparsity in the response. To further prove this, we increased the threshold 

of E neurons for the network after removing I neurons, so that the firing rate of E neurons 

was restored to that with I neurons. With this change, the prediction accuracy was improved 

back to 92.5%, but still significantly lower than that from Model A at 95.0%. Based on 

these experiments, we conclude that the first role of the FFI motif is to regulate the firing 

rate and the sparsity of E neurons. 

To better understand the interaction between I and E neurons, the plasticity of the 

inhibitory synapses from I to E are turned off. The network still has 2000 E neurons and 

100 I neurons. When the inhibitory synapses were fixed at a constant weight, each E 

neurons received the same amount of inhibition proportional to the group firing rate of I 

neurons. This network achieved 94.7% accuracy after training. Note that Model B with 

2000 E neurons, but without inhibition, achieved 93.7% accuracy. Comparing these two 

results, the 1% improvement in accuracy is because the I neurons can dynamically regulate 

the E neurons based on the input image, while without inhibition the regulation of E 
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neurons is by a fixed threshold regardless of the input. This hypothesis is also proved by 

Figure 5.10 and Figure 5.11. Figure 5.10 shows less batch to batch variation of the average 

percentage of firing neurons for the network with inhibition. Figure 5.11 shows that the 

average firing rate of E neurons without inhibition and the average firing rate of I neurons 

are strongly correlated. The training of the network can strengthen such correlation. The 

correlation coefficient between E firing and I firing is increased from 0.46 (before training) 

to 0.74 (after training). Therefore, we conclude that the second role of the FFI motif is to 

provide the sensitivity to each input during the regulation of E neurons, beyond the indirect 

and delayed FB inhibition from E neurons.  
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Figure 5.10. Thresholding: The percentage of firing E neurons (i.e., sparsity) during 

model training, with and without inhibition. Each data point represents the average 

percentage of firing E neurons for a batch of images (100 images). The network with 

feedforward inhibition has much smaller batch to batch variations. Thus, FFI helps regulate 

the firing rate of E neurons. 
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Figure 5.11. Dynamic thresholding: The figures show the correlation between the 

average firing rate of E neurons without inhibition and the average firing rate of I neurons 

before and after training. There are 1000 data points in each figure for 1000 randomly 

selected images. Each data point represents the average firing rate of E neurons without 

inhibition (x axis) and I neurons (y axis). The correlation coefficient is 0.46 before training, 

while the training process strengthens the correlation to be 0.74. This change indicates that 

FFI responds to the same input as E and carries correlated information to suppress E, 

beyond simple thresholding. 
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Besides the interaction between E and I, the I neurons are also stimulated by the 

same input as that to E. The only difference between E and I is their size: there are much 

more E neurons than I neurons. Therefore, some fundamental questions in computing are 

what the interneurons learn from the input, and how the learning by I help improve the 

accuracy. To understand that, we reproduced the classifier with 10 output neurons and 

added that after the inhibition layer. These 10 neurons received input from the interneurons 

and predicted the digits. After training this new classifier, the result showed that the 

interneurons achieve 68% accuracy with only 100 neurons. A more careful examination 

revealed that the images that can be successfully recognized by the interneurons are more 

standard (i.e., closer to the average image in each category) than those unrecognized, as 

shown in Figure 5.12. Here, how standard an image looks is measured by the Euclidian 

distance from the image to its corresponding cluster center assigned by K-means, which is 

a representative unsupervised clustering algorithm. Images with longer distance from their 

center are generally more difficult to be recognized because they contain more unusual 

features. For the examples in Figure 5.12, the correct group can represent majority of the 

images in the dataset. Their patterns have more common features. The interneurons can 

make good prediction on these images. On the contrast, the wrong group has more 

uncommon features which don’t appear often in the dataset, i.e., statistically they are 

farther away from the cluster center. Thus, the interneurons cannot recognize them well. 

Figure 5.12 shows the statistical accuracy with respect to this distance for three different 

motifs, the inhibitory layer, the excitatory layer without inhibition (Model B) and the 

excitatory layer with inhibition (Model A). They show the same trend but the excitatory 

neurons have much higher accuracy than the interneurons, which can be attributed to the 
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difference in their size. The difference between Model A and Model B is from the images 

near the centers. When the distance is smaller than 0.04, the interneurons have accuracy 

above 80%, which boosts the accuracy of excitatory neurons from 90% to nearly 100%. 

Because the images with small distance are the majority part of the data, this improvement 

is important to increase the overall accuracy.  
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Figure 5.12. The classification results of the inhibition layer. The first figure shows 

the example images that I neurons can and cannot recognize after training. The second 

figure shows the prediction accuracy as a function of the distance from an image to its 

cluster center, using the K-means method. 
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Figure 5.13. The total weighed sum of input from excitatory path and inhibitory 

path of 50 random selected E neurons. The left figure is the image can be recognized and 

the right figure is the image cannot be recognized. 

Figure 5.13 shows the total current (i.e. weighed sum of input) from excitatory path 

and inhibitory path of 50 E neurons for two different input images. For the image that is 

well recognized by the network, the excitatory current and the inhibitory current have 

strong correlation. For the image that is not well recognized by the network, the inhibitory 
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current has no correlation with the excitatory current. In conclusion, the third role of 

inhibition is the FFI motif is to recognize a major portion of the images with a concise 

layer, and increase the accuracy of the excitatory neurons on these images. 

5.3.4. Comparison with Relate Works 

As a summary, a comparison of different algorithms on MNIST dataset is shown 

in Table 9. Compared to biologically plausible methods, our method achieves higher 

accuracy with less number of neurons; compared to artificial learning algorithms that have 

better accuracy, our method only uses feedforward computation, without resorting to 

expensive backpropagation on training, and thus, enhances computation efficiency.  

Table 9. Comparison between the neural network models in this paper and related 

works. 

Model Data 
representation 

Learning 
rules 

Number of 
neurons 

Number of 
parameters 

Number 
of images Accuracy 

Insect mushroom 
body model  

(Huerta 2009) 
Spike Rewarded 

STDP 50000 5E5 60000 87% 

Two-layer SNN 
(Querlioz 2013) Spike  STDP 300 2.4E5 60000x3 93.5% 
Lateral inhibitory 
SNN (Diehl 2015) Spike  STDP 6400 4.6E7 200000 95.0% 

This work  
(w/ FFI) Spike rate Rewarded 

SRDP 2100 8.4E5 60000 95.0% 
This work  
(w/o FFI) Spike rate Rewarded 

SRDP 6000 2.4E6 60000 95.2% 
Spiking RBM  
(Neftci 2013) Spike rate Contrastive 

divergence 500 3.9E5 20000 92.6% 
Sparse Coding 
(Chen 2015) 6-bit number Gradient 

descent 300 3E4 60000x10 95.9% 
Two-layer NN 
(LeCun 1998) 

Floating-point 
number 

Gradient 
descent 1000 7.8E5 60000 95.5% 

Spiking CNN  
(Panda 2016)  Spike timing Regenerative 

learning 5.6E4 1.2E5 60000 99.08% 
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6. Future Work 

There are two directions for the future work. On the hardware side, the proposed 

algorithm can be implemented on a chip using either SRAM or RRAM array as the 

synapses. The computing, programming and controlling circuits need to be designed with 

the target of high performance and low power. The early stage implementation with FPGA 

can also be performed as a proof of concept. One major concern for the hardware 

implementation is the data and parameter precision. It is very important to use minimum 

number of bit which can keep good accuracy, in order to save the hardware resources, and 

reduce latency and power. 

 For the bio-inspired algorithm, it is very interesting to try more challenging dataset 

such as CIFAR10. Proper tuning of parameters and even the learning rules are important 

to make the algorithm work well. It is also interesting to explore deeper neural networks 

with this algorithm since several more layers of neural networks are observed in the brain. 

In addition, this algorithm has the potential to realize online learning, which is able to learn 

from data continuously as the data distribution changes over time. 
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7. Conclusion 

This dissertation aims at the potential of machine learning on-a-chip. For this 

purpose, state-of-the-art device options are firstly reviewed. For memory device, emerging 

non-volatile memories are very promising synaptic devices to enable large scale parallel 

computing in machine learning. Thus, PRAM and STT-MRAM are extensively studied 

and modeled within the proposed hierarchical framework. In the design perspective, a new 

performance metric, State Transition Curve, is proposed for the assessment of PRAM cell 

and to provide valuable design insights. In addition, various simulations are conducted to 

investigate the performance, optimization, variability, reliability, and scalability of these 

two memories. As a hardware implementation practice, peripheral programming circuitry 

is designed for the parallel programming of RRAM cross-point array as the synapses in 

neural networks. The simulation shows 900X improvement in speed of dictionary learning. 

On the algorithm side, a bio-plausible feedforward inhibition motif is developed with leaky 

integrate-and-fire neurons and SRDP Hebbian learning rule. It shows great performance 

and high efficiency of both computation and hardware, achieving 95% testing accuracy on 

MNIST dataset with 30X less number of computations than sparse coding. And the 

feedforward inhibition is shown to save 3X on hardware resources. In addition, the reason 

why feedforward inhibition can improve the hardware efficiency is thoroughly studied.   
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