
CAN MY CHIP BEHAVE LIKE MY BRAIN?
OR

RECONFIGURABLE MIXED SIGNAL NEUROMORPHIC
ARCHITECTURES

A Thesis
Presented to

The Academic Faculty

by

Suma George

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Suma George

CAN MY CHIP BEHAVE LIKE MY BRAIN?
OR

RECONFIGURABLE MIXED SIGNAL NEUROMORPHIC
ARCHITECTURES

Approved by:

Professor Jennifer Hasler, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Hua Wang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor David Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Michael Pfeiffer
Institute of Neuroinformatics
University of Zurich and ETH Zurich

Professor Omer Inan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 6 April 2015

To my parents,

Suju and Ami

Because You’re mine I walk the Line!

iii

ACKNOWLEDGEMENTS

I want to thank all the people who make my life wonderful. There are many people

who have been with me throughout my journey through graduate school and it has

been much easier because of them. First and foremost I would like to thank my

advisor Jennifer Hasler who has been my guide, teacher, friend and even therapist at

times. I have always admired her technical prowess and the breadth of her knowledge.

She has also taught me many life lessons on how to manage time and stress. I will be

forever grateful for all your guidance. It has truly helped me grow both professionally

and personally. I would also like to thank my committe members. David Anderson,

who has been on my committe since my MS Thesis days. Omer Inan, and Hua Wang

for all the wonderful feedback and support. Michael Pfeiffer for all your technical

feedback both for the thesis and at the neuromorphic workshops at Capocaccia and

Telluride.

I would like to thank my dearest parents. Mom and Dad you have always been

my source of unconditional love and support. Mom, for helping me believe nothing

is impossible if I set my mind to it. Dad, for teaching me the value of hard work and

diligence. Your prayers and blessings have helped me achieve and become all that

I am today. Thank you with all my heart! Suju, my elder sister for always blindly

believing in me and egging me on. Ami, my younger brother for always helping me

‘keep it real’ ! This journey would be incomplete without you. Aneesh Jiju, Annie

and Joey my nieces, for keeping me on my toes! Leela aunty and Matchu for all

their help. Fr. Matthew and Joy Uncle for being my guardian angels in the US. Joy

uncle for all wonderful Halloween breaks at Disney. I’m truly blessed to have such a

wonderful family.

iv

Friends are the family we choose and I have been blessed with some really great

people as friends. Smriti Chopra for being my sister in arms while we both pursued

our PhDs. Through all my ups and downs you have been a constant, helping me

navigate the craziness and celebrate the victories. It would not be any fun without

you! Sudipto Das, for being chirpy, comical, and cynical. I know it is hard for one

person to be all that, but you helped me see the lighter side of difficult moments.

I’m very grateful to count you as one of my best friends. Michelle Collins for being

the younger sister I never had. You are one of the sweetest people I know. I admire

your integrity and strength. I’m cheering to see you succeed! Aishwarya Sarath, you

always believed in me and would hear me out. You are truly cherished. Koshu, for

being my strength and heart. You are an angel! KD, for being my rock and hearing

me through countless sob stories. Aman Praji for being such a big support for me

throughout, lucky to have a brother like you. Also would like to thank Amritha

Arakali and Anjali Ashok for being awesome roommates and the countless karaoke

nights. Samina Jamil, for your poetry and wonderful company.

Labmates are not just friends but an extension to your family as well, who help

you keep it all going smoothly. I had the unique opportunity of being in the middle

of the transition of old and new Integrated Computational Electronics (ICE) mem-

bers. Richie Wunderlich for being my mentor, friend and counselor. Stephen Nease

for being a great friend, I learned so much from you. Scott Koziol, for your positive

attitude and advice and being an excellent collaborator. Shubha Ramakrishnan for

being a guide, friend and an awesome chef feeding me Sambhar and other south In-

dian delicacies. Farhan Adil, for being a guide and a good friend. Craig Schlottmann

for being extremely helpful and patient. Stephen Brink for the awesome technical

discussions and advice. Arindam Basu, for getting me interested in neuromorphic

circuits. As for new icicles Michelle Collins, Sihwan Kim and Sahil Shah, thanks

for all the support while testing the ICs. I have really enjoyed our discussions both

v

technical and not. Sahil, keep laughing- it is refreshing to see you have a rather sen-

sitive funny bone! Alex Cardwell, for being my punching bag, friend, and correcting

my grammar. I have enjoyed our discussions on wide range of topics from religion,

philosophy to neuromorphic systems. Andrew Freedman, your perseverance has been

a stellar example for me. I wish all the Icicles past and present all the very best! Also

would like to thank Dean Walker, my manager at Blackberry. You are one of the

most amazing people I have met. I have learned a lot from you. Sudha Jha ma’am,

you have been an inspiration for me throughout. Thank You all for being part of my

journey!

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xv

I RECONFIGURABLE MIXED SIGNAL NEUROMORPHIC AR-
CHITECTURES . 1

1.1 Neuromorphic Systems . 5

1.1.1 Dendritic Computation . 6

1.1.2 Neuromorphic Integrated Circuits (ICs) 6

1.1.3 Modeling the Brain . 6

1.1.4 Applications of Neuromorphic and Analog Systems 7

1.2 Reconfigurable Mixed Signal Architectures 8

1.2.1 Low Power IC Design: . 8

1.2.2 Hardware Software CoDesign/ CAD tools: 8

1.3 Overview . 9

II RECONFIGURABLE SOC: RASP 3.0 12

2.1 Architecture Description of the FPAA SOC IC 14

2.2 SOC FPAA Routing Fabric Characterization and Computation . . . 17

2.3 Representative Circuit and Signal Processing Components in the SOC
FPAA . 22

2.4 Representative System Application in the SOC FPAA 24

2.5 Summary Discussion and Comparisons 26

III CAD SYNTHESIS TOOLS FOR HETEROGENEOUS SOCS . . 29

3.1 CAD Tools for Reconfigurable Hardware: Overview 31

3.2 x2c: Design Suite on FPAA SoCs 33

vii

3.2.1 sci2blif : Tool for XCOS to BLIF 34

3.3 vpr2swcs: Targeting Heterogenous SoCs 35

3.3.1 VPR . 38

3.3.2 Challenges to make VPR work for Heterogeneous systems . . 40

3.3.3 Macroblocks : Encapsulating complex circuits 41

3.3.4 vpr2swcs design flow . 41

3.3.5 Efficiency question for routing 43

3.4 Routing resources for computation 43

3.5 System Example: Speech Classifier 44

3.6 Conclusions and Future Directions 45

IV HARDWARE SOFTWARE CODESIGN 47

4.1 Analog–Digital Design Tool Overview 49

4.2 Integrating Analog–Digital Design Tool with an FPAA Platform . . 52

4.3 Methodology for Implementing the Tool Set 55

4.3.1 Macromodel Simulation . 56

4.3.2 sci2blif : Xcos to VPR . 59

4.4 System Examples . 60

4.5 Summary, Comparisons, and Approaches for Analog–Digital Co-Design 62

V MODELING VOLTAGE-MODE CMOS DENDRITES 69

5.1 The Silicon Channel . 70

5.2 Implementing the Linear Cable Model with Analog CMOS Circuits . 72

5.3 Demonstrating Equivalence to the Linear Cable Model 78

5.3.1 Steady-State Experiments . 80

5.3.2 Dynamic Experiments . 81

5.3.3 Effects of a Reconfigurable Testbed 82

5.4 Simulink Model for simulating CMOS dendrites and FPAA configu-
ration . 83

5.4.1 Dendrite Simulink Block . 84

5.4.2 Behavioral modeling . 84

viii

5.5 Nonlinear Behavior of Dendrites . 88

5.5.1 Math Modeling . 89

5.5.2 Demonstration of Impact on Dendrite Circuit Behavior . . . 90

5.6 Implementing Dendrites in Large Reconfigurable Systems 91

VI DENDRITIC COMPUTATION . 94

6.1 Dendrites for Wordspotting . 94

6.2 Dendritic computation and the HMM branch 100

6.2.1 RC delay line without taper 103

6.2.2 RC delay line with taper . 105

6.3 CMOS Dendrite . 107

6.4 Dendrites: Behavioral Modeling . 109

6.5 Single Line CMOS dendrite . 110

6.5.1 Inputs to the PFET source 112

6.5.2 Single line dendrite results 113

6.5.3 Dendrite on the routing fabric 115

6.5.4 Simulating CMOS dendrites 116

6.6 Analog Classifier for Word-spotting 117

6.7 Reconfigurable platform to build Neuromorphic circuits 121

6.8 Classifier:Computational efficiency 122

6.9 Conclusion . 123

VII BUILDING RECONFIGURABLE NEUROMORPHIC SYSTEMS125

7.1 Neuron2 chip . 126

7.2 Dendritic Modeling and Computation 129

7.3 RASP 3.0N . 129

VIIICONCLUSION . 135

8.1 Summary of Research so far . 135

8.2 Summary of Work Completed . 137

8.3 Vision going forward . 138

ix

8.3.1 Neuromorphic Systems . 139

8.3.2 Applications of Neuromorphic systems 140

8.3.3 Reconfigurable Mixed Signal Architectures 141

REFERENCES . 143

VITA . 164

x

LIST OF TABLES

1 Comparing HMM PDE and RC Delay Line Terms w/Assumptions . . 106

2 Comparing computational efficiency of Digital, Analog and Biological
systems . 122

3 Comparison of RASP chips . 132

xi

LIST OF FIGURES

1 Neuromorphic Systems . 1

2 Reconfigurable Mixed Signal Neuromorphic Architectures 3

3 Computationally Efficiency . 4

4 Limitations when using Analog vs Digital Systems 5

5 Applications possible with Neuromorphic and Analog Solutions . . . 7

6 Reconfigurable SoC RASP 3.0 block diagram and die photo 13

7 RASP 3.0 functional block diagram illustrating the resulting compu-
tational blocks and resulting routing architecture 14

8 RASP 3.0 FPAA IC enables integration of Analog and Digital Blocks
in the routing fabric . 16

9 Experimental measurements for characterizing the capacitances of the
routing fabric. 18

10 Additional aspects of our FPAA Routing Fabric 20

11 Vector-Matrix Multiplication (VMM) as a computational block 21

12 Compiled Analog-to-Digital Converters (ADC) with experimental results 23

13 VMM and WTA classifier block . 24

14 Analog auditory word classification application 25

15 Comparison of RASP 3.0 to other devices 28

16 Typical iterative flow for CAD tools to design Integrated Circuits . . 30

17 x2c Design Suite for FPAAs . 33

18 System example of the tools to demonstrate Hardware-Sofware Codesign 34

19 vpr2swcs synthesis tool flow . 35

20 Configuration settings in x2c . 36

21 Challenges one faces when using VPR 37

22 Macroblocks . 38

23 Optimization techniques for Heterogeneous Systems 39

24 Utilizing routing for VMMs . 44

25 Universal Approximator system example 45

xii

26 Speech Classifier System example . 46

27 Hardware Software CoDesign . 48

28 x2c Tool Design Overview . 49

29 An example of the entire tool flow . 51

30 Illustration of the structure of FPAA devices 53

31 Low level cicuits as macroblocks . 54

32 Approach to build a MacroModel . 55

33 sci2blif fundamentals . 58

34 VMM blocks in sci2blif . 60

35 A system example showing a basic circuit classifier 61

36 Possible approaches for mixed-mode computing systems 62

37 Spectrum of Codesign computation 63

38 Remote system concept . 67

39 System perspective using a remote test system to utilize mixed-signal
configurable systems . 68

40 Dendrites and their description based on Linear Cable Theory 70

41 The Silicon Channel . 71

42 Various models of a dendrite . 73

43 Demonstration that the ratio of source conductances is a function of
the difference between gate voltages. 78

44 Steady State Experiments for a dendrite 79

45 Dynamic Plots . 81

46 Parasitic Non-idealities . 83

47 Dendrite Simulation Model . 85

48 Comparing Simulation results to experimental results 87

49 Non-linear behavior of dendrites . 88

50 Illustration of nonlinear dynamics in dendrite circuit 89

51 Illustration of the phase portrait . 90

52 Illustration of interlinks between the fields of neurobiology, HMM struc-
tures and CMOS transistors . 95

xiii

53 High level overview of FPAAs . 97

54 Basic auditory feature extraction and probability generation stage . . 98

55 Simulation results for an HMM state machine based on a Mathematical
HMM model . 100

56 CMOS implementation for a dendritic branch and experimental results. 101

57 RC delay line representing a dendrite 104

58 System overview for a dendrite branch 107

59 Experimental results, simulation results and trends observed for a sin-
gle line dendrite . 108

60 System overview for a dendrite branch 110

61 Simulation Data vs. experimental data comparison 111

62 Experimental results for a single branch 6-tap dendrite 112

63 The dendrite classifier structure . 114

64 Experimental results for the classifier system 115

65 Experimental results for the YES/NO classifier system 119

66 Experimental results for the classifier system when a sequence of words
is detected . 120

67 Digital efficiency Wall . 126

68 Comparison of current silicon systems 127

69 Neuromorphic ICs . 128

70 Dendritic Structure on Neuron2 . 129

71 Different applications using the Pattern Recognition system 130

72 RASP 3.0N chip layout . 130

73 RASP 3.0N CAB elements . 131

74 RASP 3.0N Neuron Models . 131

75 RASP 3.0N Neuron CAB . 132

76 NMDA Synapse and a Negative Charge Pump 133

77 Research Vision . 141

xiv

SUMMARY

‘Can My Chip Behave Like My Brain? ’ As a young graduate student at Georgia

Tech looking at Prof. Hasler’s research, this was the first query I had. Coming from

a Very Large Scale Integration (VLSI) background, it was very exciting for me to

see biophysical models of neurons using CMOS transistors! My research goal thereon

has been to investigate how to build efficient neuromorphic systems using mixed

signal reconfigurable architectures. Many decades ago, Carver Mead established the

foundations of Neuromorphic Systems. Neuromorphic systems are analog circuits

that emulate biology.They utilize sub-threshold dynamics of CMOS transistors to

mimic biology. The objectives are to emulate biological processes, and also build

useful applications using these bio-inspired circuits.

In this research we will learn how we can achieve this by using reconfigurable

hardware like field programmable analog arrays(FPAA). FPAAs enable configur-

ing/prototyping different systems on a unified platform. As digital systems saturate

in terms of power efficiency, this alternate approach has the potential to improve

computational efficiency by about eight orders of magnitude. These systems include

analog, digital and neuromorphic elements as building blocks; an amalgamation of all

of the above results in a very powerful processing machine. These systems can then

be used to implement complex algorithms like Artificial Neural Networks, Winner-

Take-All (WTA) and word-spotting to build ultra low-power applications.

This body of work is divided into three main parts. First we will discuss recon-

figurable systems and talk about the latest FPAA System-on-a-chip (SoC) built. We

will discuss some mixed signal, analog and digital examples as well as demonstrate a

command word classifier. Second, we will discuss the VLSI CAD tools developed to

make system design feasible on these SoCs. Third, we will talk about neuromorphic

xv

architectures and applications one can build using these systems. We will go over bio-

inspired modeling of dendrites and how along with other bio-physically based models

of the soma, synapse and channels we can make a neuron block. We will discuss how

combining all these approaches enables us to build efficient low power systems.

Why is this important? Modern day technology relies heavily on silicon devices to

do computation. These systems have however hit an energy efficiency wall and hence

we need to look at different solutions that will help break this efficiency barrier.

This can be done by using reconfigurable and programmable analog solutions and

we can further this approach by using bio-inspired systems. Together with existing

mixed signal systems and neuromorphic models, we can build ultra efficient low power

systems. Thus, along with in vivo studies, in silico studies are also very important.

Building a neuromorphic supercomputer is within our grasp, and is a grand challenge

of our times.

xvi

CHAPTER I

RECONFIGURABLE MIXED SIGNAL NEUROMORPHIC

ARCHITECTURES

“The brain is a monstrous, beautiful mess. Its billions of nerve cells called neurons

lie in a tangled web that displays cognitive powers far exceeding any of the silicon

machines we have built to mimic it.”

William F. Allman [99]

(a) (b)

Figure 1: (a) Typical PhD student’s ‘brain’ (b) Efficient System On Chip(SoC) that
can perform complex tasks like the brain aka “what we want”!

The human brain, though studied a lot, is still a mystery when it comes to its func-

tioning. Scientists are yet to determine what the intricate relationships and functions

among various parts of the brain are. Merely knowing all the components of the brain

doesn’t lead to a sound understanding of how they interact with each other [103]. Nu-

merous comparisons have been made between the brain and a digital computer; the

biggest similarity being they both process information. What sets the brain’s neural

1

networks apart is a very high computational efficiency, robustness and the ability to

solve structured as well as ill-structured problems. The digital computer has advan-

tages of being very precise for well-structured problems. However, most real-world

problems are not structured in nature. Therefore, even though a lot of progress has

been made to develop systems that tackle real world problems, for example IBM

Watson; we haven’t yet designed a system that can function or adapt like the human

brain and do so with minimal power. One can joke about a young graduate student’s

brain as shown in Fig. 1(a) with our sole focus being our thesis but it is only natural

to draw comparisons between Very Large Scale Integrated (VLSI) chips which are

ubiquitous as shown in Fig. 1(b). In this thesis we will explore how to combine

different areas under VLSI system design and use it to build computationally efficient

machines. Thus a more technical title for this thesis would be ‘Reconfigurable Mixed

Signal Neuromorphic Architectures’. VLSI systems pioneered by Carver Mead and

Lynn Conway has spawned into multiple areas as shown in Fig. 2. This thesis will

cover discussion about mixed signal systems reconfigurable systems, neuromorphic

systems as well as CAD tools that help us design such complex systems.

Neuromorphic engineering is an area pioneered by Carver Mead in the late 1980s

which endeavors to do this. Silicon devices operating in the sub-threshold regime

and biological structures share similar physical principles of operation. This implies

that silicon devices can be used to emulate biological systems. The consequences of

this statement are two-fold. First, we can use Neuromorphic circuits to emulate bio-

logical systems and second, we can use these systems to perform novel computation.

Neuromorphic engineering though considered a non-traditional approach, has a lot of

potential to look into real world problems as well as model biology. I have focused

my research on building systems that leverage digital, analog and bio-inspired cir-

cuits. The goal is to build a powerful prototype for a neuromorphic processor. These

low-power reconfigurable systems, can be used to solve different problems like image

2

Figure 2: VLSI systems were pioneered by the Mead-Conway approach. Its defining
Characteristics were top-down design, stress on system-level concepts, merging sep-
arate disciplines to create a new, simplified methodology, Present a small set of key
concepts from a range of topics, to carry along the least amount of mental baggage
as well as focus on Starting with education. Now VLSI systems are ubiquitous. This
revolution spawned many different areas. You have analog, digital and mixed mode
system chips driving computation on our smartphones, electronic gadgets, robots etc
with industry leaders like Intel, Qualcomm, Nvidia, Apple, Samsung to name a few.
We have reconfigurable systems like Field Programmable Gate Arrays (FPGAs) with
market leaders like Xilinx, Altera etc. and FPAAs [153–158] that enable quick pro-
totyping of digital and analog systems respectively. We have neuromorphic systems
which propose novel physical algorithms that can be used to build efficient machines.
We have digital implementations like the IBM True North, University of Manchester’s
SpiNNaker, Georgia Tech’s Neuron ICs [164,165]. Last but not the least we have CAD
design tools that actually make the implementation of systems possible on hardware
and make design easier. Prominent industry leaders are Cadence, Synopsys, Mentor
Graphics as well as open source tool efforts like Virtual Place and Route(VPR) [121].

processing, speech processing applications, prototyping and build simple circuits in

the classroom. A technology evolution roadmap for neuromorphic engineers has been

proposed by Hasler et al. as seen in Fig. 3, to get the same foresight that IC designers

gained from Moore’s law many years ago. Scaling of energy efficiency, performance,

3

PoweruEfficiencyuScaling
,stuDSPsu0,978uNu,98,m

EnergyuEfficiencyuWallu
0/Fbituinputsm

Typicalu AnaloguVMM

DendriticuClassifieru
0/5LnmuICm

0<muBiologicaluNeuronu

Shrinkubyu
scalinguLBuVdd

FPAAucompileduDendriticu
Classifieru0/5LnmuICm

,LMMAC0ksmkW

,LMMAC0ksmkmW

,LMMAC0ksmkuW

,LMMAC0ksmknW

,MMAC0ksmkpW

,MMAC0ksmkmW

,LLMMAC0ksmkW

,LLMMAC0ksmkmW

,MMAC0ksmkuW

,LLMMAC0ksmkuW

,MMAC0ksmknW

,LLMMAC0ksmknW

SpeakuanduSpell

Latest
Smartphones

RASPu2.9vuFPAA:
AnaloguVectoruMatrixu

Multipliersu(VMM)

BiologicaluNeuron

Figure 3: Power efficiency scaling has hit an efficiency wall in recent times with state
of art digital processors as shown in a survey in 2012 in [16, 101]. Analog as well as
bio-inspired solutions can help us further scale to ultra low power systems.

and size is discussed as well as how the implementation and application space of neu-

romorphic systems is expected to evolve over time [101]. This work endeavors to be

a step in the direction of building such large-scale neuromorphic systems.

My research goal is to build computationally efficient bio-inspired systems and ap-

plications. As an engineer, I believe building bio-inspired systems gives me a unique

outlook to not just understand the brain, but also utilize my findings to build bio-

inspired systems for real world applications. In the process of doing so I cover multi-

ple areas like neuromorphic systems, reconfigurable architectures, low power system

design, mixed signal CAD tools, and application of these technologies for speech

4

Solve the parts of the problem in the domain most efficient for that problem.

Reconfigurable systems enable that.

Analog –Digital

Tradeoff

(a) (b)
Sarpeshkar ‘97 Marr et al. 2012

Figure 4: Limitations when using Analog vs Digital Systems. (a) Here is a plot
demonstrating the tradeoff in terms of energy and SNR. We want to perform compu-
tation in the most efficient domains depending on our requirements. We can leverage
analog processing to enable lower power systems while using digital systems when we
need more precision. We build reconfigurable architectures to enable this flexibility.
(b) Survey done by Marr et al. [16] demonstrating an enery efficiency wall for current
state of the art digital processors.

processing, pattern recognition and robotics.

1.1 Neuromorphic Systems

Neuromorphic systems are analog circuits that utilize subthreshold dynamics of CMOS

transistors to mimic biology. The objective is not just to simulate the human brain,

but also to build useful applications using this knowledge for speech recognition, im-

age processing, and robotics. As digital systems saturate in terms of power efficiency

as shown in Fig. 4, this alternate approach becomes more attractive.

Neuromorphic hardware models the behavior of biological neural systems to enable

efficient computational modeling. It leads to a significant reduction in size and power

compared to the traditional approaches of modeling based on numerical integration

on a digital computer.

5

1.1.1 Dendritic Computation

I focus my research on a much smaller yet important component of the nervous

system- dendrites. Dendrites are essentially tree-like structures that connect neu-

rons. Dendritic computation is often ignored and a point neuron model is typically

adopted. However, studies show dendrites perform operations such as nonlinear fil-

tering, spatial and temporal summation of synaptic inputs, coincidence detection,

synaptic scaling and sequence detection. I have demonstrated that by exploiting the

directional selectivity and coincidence detection properties of dendrites, we can imple-

ment a word-spotting network that can be used in many classifier applications using

our VLSI chip. The word-spotting network is similar to a Hidden Markov Model

(HMM) classifier that is often used in speech and pattern recognition.

1.1.2 Neuromorphic Integrated Circuits (ICs)

I was the co-architect in building a reconfigurable neuromorphic IC with neurons and

a mixed signal fabric to further study these architectures. I developed an efficient and

scalable hardware system for studying dendritic computation in large scale networks

with programmable learning synapses and dendrites that support arbitrarily branched

dendrites. This architecture also includes active channels in the dendrite for non

linear filtering. Effectively, it is a multilayer neural network within each neuron. This

system is a way to study and gain insight into building larger computationally efficient

systems in the future.

1.1.3 Modeling the Brain

The ultimate goal is to build a system that matches or exceeds the complexity of the

human brain. It is advantageous to build smaller applications emulating functionality

of basic elements using silicon models of the neurons, synapses, and dendrites to build

networks. Learning can be implemented on these networks using floating gate (FG)

transistor technology, which can be used as a memory element that simulates learning.

6

Neuromorphic + Analog Computation

Path Planning Dendritic Computation Image Processing

Koziol et al. 2013 George et al. 2013 Schlottman et al. 2012

VMM+WTA as

2- layer NN

Ramakrishnan

and Hasler

2013

Current

GT FPAA

Figure 5: Applications like image processing, path planning for robots, wordspotting
using dendritic classifier and a VMM+WTA circuit as a universal approximator have
been demonstrated using neuromorphic and analog solutions on FPAAs.

Modern day technology relies heavily on silicon devices to do computation. How-

ever, there is a critical need to invest in silicon to build bio-inspired systems. With

existing mixed signal systems and neuromorphic models, we can build ultra efficient

low power systems. Thus, in silico studies are very important as are in vivo studies.

Building a neuromorphic supercomputer, or a “Silicon Brain” is within our grasp,

and is a grand challenge of the twenty-first century.

1.1.4 Applications of Neuromorphic and Analog Systems

One of the goals of my research is to not only to mimic biology in silicon, but also

utilize these bio-inspired systems to solve real world problems like speech classifica-

tion, pattern recognition, robotics etc. as shown in Fig. 5 I have demonstrated a

YES/NO classifier using dendrites and a Winner Take All (WTA) circuit using our

VLSI chip. I believe that by using this dendrite based neuromorphic classifier and

other front end techniques, I can build an effective audio recognition system which

7

can be used for a wide variety of applications in speech/audio processing particularly

for phoneme recognition. We will discuss more about this model in chapters 3 and 4.

1.2 Reconfigurable Mixed Signal Architectures

The backbone of my research that enables building such systems is reconfigurable

hardware and a software CAD toolset. Reconfigurable hardware for digital computa-

tion is the norm these days, namely the Field Programmable Gate Arrays (FPGAs).

Similarly for analog solutions, we have Field Programmable Analog Arrays (FPAAs).

In such a platform, analog components are embedded in a switch fabric that enables

arbitrary connections between them. We use FG as the switch element, as this adds

the properties of non-volatility and compactness. Combining both analog and digital

components into a FG switch fabric, we can leverage the best of both worlds.

1.2.1 Low Power IC Design:

I have been instrumental in developing and testing a new generation of Reconfig-

urable Analog Signal Processor (RASP) 3.0 family of SoCs designed by our research

group, fabricated in the 350 nm technology. This design effort addressed a lot of the

interfacing questions and made our systems more compact. The SoC has a processor,

memory, ADCs, DACs and other peripherals on chip. The neural IC is a variation

of this as it contains not just analog and digital blocks, but neuron blocks as well.

The global interconnect between all tile elements is FPGA-style manhattan routing.

These are very powerful SoCs that I plan to use. I also hope for students to learn IC

design by building chips through MOSIS. I hope to build RASP peripherals for these

chips that can specialize as sensor blocks that interface with the existing IC.

1.2.2 Hardware Software CoDesign/ CAD tools:

I was instrumental in developing a new CoDesign environment x2c for simulating

and programming reconfigurable FG based mixed signal SoCs. These SoCs consist

8

of an integrated processor, I/O peripherals, and a FPAA comprised of analog and

digital components. This novel open source tool platform empowers the user to

seamlessly CoDesign low power analog and digital systems in a single environment.

This approach integrates multiple open source tools to develop a coherent user friendly

design flow. Scilab is the graphical front end for system level block design, which

invokes Verilog to Routing (VTR)/ Versatile Place and Route (VPR) tools.vpr2swc-

VPR to switches tool handles analog component packing, integrates the system, then

generates switches to program and test the IC. We demonstrated several mixed signal

examples, as well as how to perform useful computation using the routing fabric. This

is a very powerful open source platform that will be open to a wider audience post

publication and will be very effective for teaching in the classroom. The tool can be

extended to any new family of heterogeneous ICs.

1.3 Overview

In chapter 2, I will present an System-on-a-chip (SoC) that integrates divergent con-

cepts from previous multiple large-scale FPAA designs along with low-power digital

computation and interface circuitry (i.e. DACs, ADCs). This unified structure en-

ables a wide range of a system-on-a-chip computing options that can be optimized

for a wide range of parameters (i.e. Power); the resulting IC architecture is the most

sophisticated FPAA device built to date.

In chapter 3, I will talk about the CAD synthesis tool vpr2swcs for targeting float-

ing gate (FG) based mixed-signal SoCs of the RASP 3.0 family. These SoCs consist of

a digital processor, Field Programmable Analog Array (FPAA) fabric, DACs, ADCs

and peripherals. The tool is used for building parametric FPAA architectures that

consist of both digital and analog blocks. I will discuss here the modifications, chal-

lenges and novel solutions proposed while doing mixed signal system design. Mixed

signal examples will be demonstrated. Also we will see how the routing fabric can be

9

leveraged for computation.

In chapter 4, An Analog-Digital Hardware-Software CoDesign environment for

simulating and programming reconfigurable systems will be presented. For this the-

sis, we will focus on a large-signal SoC Field Programmable Analog Array (FPAA)

comprised of analog and digital components, consist of an integrated processor with

I/O peripherals, and based on Floating-Gate (FG) devices and circuits, although the

approaches can be extended to other platforms. The open-source tool platform, in-

tegrating multiple open source codes, empowers the user to do seamless low-power

analog-digital CoDesign in a single environment that generates and implements high-

level simulation and experimental measurement of the resulting hardware system.

The tool flow will be demonstrated with multiple mixed signal examples through this

configurable system.

In chapter 5, we will foray into the world of neuromorphic systems especially

dendrites. Many decades ago, Wilfrid Rall and others laid the foundations for math-

ematical modeling of dendrites using cable theory. With reconfigurable analog ar-

chitectures, we are now able to accurately program different circuit architectures to

emulate dendrites. Our work has shown that these circuits accurately reproduce re-

sults predicted from cable theory when inputs to the system are small. For large

inputs, interesting nonlinear effects begin to take hold.

In chapter 6, we will talk about how a network of dendrites can be used to build

the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM)

classifier structure. Simulation and experimental data will be presented for a single

line dendrite and also experimental results for a dendrite-based classifier structure.

This work builds on previously demonstrated building blocks of a neural network: the

channel, synapses and dendrites using CMOS circuits. These structures can be used

for speech and pattern recognition. The advantage of such a structure over digital

systems is ultra low power consumption.

10

In chapter 7, we will discuss how to build neuromorphic systems to be able to

mimic biology and also solve more complex problems.To this end, we design neuro-

morphic chips using biologically inspired circuits. We build a neuron chip embedded

in FPGA style routing architecture which models dendrites using transistors as dis-

cussed in previous chapters. I will discuss the Neuron2 chip in this chapter as well

as the RASP 3.0N SoC, which belongs to the RASP 3.0 family but in addition to

analog and digital components has neuron blocks as well.

In chapter 8, I will summarize the work done so far as well as future directions

for this research which I hope to pursue.

11

CHAPTER II

RECONFIGURABLE SOC: RASP 3.0

Reconfigurable Analog Signal Processor (RASP) 3.0 is an integrated Ultra-Low Power

System-On-Chip (SOC) enabling configurable and programmable analog and digital

computation and interfacing. The potential of energy efficiency improvement over

current computing approaches (i.e. a factor of 1000 or better) [34, 35], as well as

the saturation of energy efficiency in digital computation [36], puts this IC at an

important industrial pain point for the embedded systems industry for a range of

applications such as acoustic, vision, communications, and small robotics. We see

this IC as both an analog–digital computational device as typical expected from a

microprocessor (µP), as well as enabling analog and digital interfacing and control

of an embedded system. We demonstrate this IC in a 350nm CMOS process; such

approaches could be possible in scaled down IC processes as well.

This SoC integrates early concepts of rapid reconfigurable analog computation

[37], along with early demonstration of configurable fabric of interdigitated analog

and digital computing blocks [38], along with resulting µP (open-source MSP430 [39])

based computing and control, to address a wide range of ultra-low power embed-

ded system computational needs. This large-scale Field-programmable analog array

(FPAA) still enables analog computational energy efficiencies of 1000X as well as area

efficiencies of 100X over digital solutions. The following sections describe this FPAA

IC architecture, basic analog and digital computational approaches, capacitance, tim-

ing, and rapid reconfigurability of the configurable routing fabric, implementation of

data converters in the mixed mode fabric, computation and classification utilizing

the routing fabric as part of the computation, and system examples. The SoC is

12

SRAM
Program: 16k x 16

Data: 16k x 16

MSP430
Open Core
Processor

Memory
Mapped
Registers

16, 7bit signal
 D

A
C

s
P

rog D
A

C
s

(6, 6 to 7bit)

GP I/O

Prog: I V
Ramp ADC

SPI
Ports

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

+
RASP 3.0 FPAA IC

Analog + Digital one ICFPAA fabric Digital µP, SRAM,
DACs, ADCs

~ MSP430

FPAA Fabric

16k x 16
SRAM

µP

DACs
Prog

Figure 6: The RASP 3.0 integrates divergent concepts from previous multiple FPAA designs
[37, 38, 40] along with low-power digital computation and interface circuitry (i.e. DACs, ADCs).
This unified structure enables a wide range of a system-on-a-chip computing options that can be
optimized for a wide range of parameters (i.e. Power); the resulting IC architecture is the most
sophisticated FPAA device built to date. We show the die photo of the 12mm x 7mm FPAA device
fabricated in a 350nm standard CMOS process.

13

illustrated in Fig. 6

2.1 Architecture Description of the FPAA SOC IC

CAB CAB

CAB CAB

CLB

CLB

Computational
Analog and/or
digital Block

C Block:
Routing
to CABs

S Block:
Routing to
Routing

G
N

D

V
dd

x4

x2

x2

x4

GND Vdd

Output Lines

Input Lines

x4

CAB

JTAG: 8n1
 serial port

SRAM
Program: 8k x 16

Data: 8k x 16

MSP430
Open Core
Processor

Memory
Mapped
Registers

16, 7bit signal
 D

A
C

s
P

rog D
A

C
s

(6, 7bit)

16bit
GP input

16bit
GP output

GP I/O

Prog: I V
Ramp ADC

SPI
Ports

3 SPI
Ports

FPAA Fabric Array

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

FPA
A

 Fabric O
utputs

GND GND

GND GND

CAB / CLB Lines

R
ou

ti
ng

 L
in

es

0 0.5 1 1.5 2 2.5

1MΩ

10kΩ

100kΩ

R
sw

it
ch

Vs Vd~Vs

Vg=0V

Vs Vd~Vs

Vg=0V

Qfg

 (V)Vs

N S W E
N

S

W E

CAB/
CLB

x8

Output Lines

Input Lines

CLB

BLE

R

Figure 7: RASP 3.0 functional block diagram illustrating the resulting computational blocks and
resulting routing architecture. We start showing the block diagram of the FPAA IC. The infras-
tructure control includes a µP developed from an open-core MSP 430 processor [39], as well as on
chip structures include the on-chip DACs, current-to-voltage conversion, and voltage measurement,
to program each Floating-Gate (FG) device. This configurable fabric device utilizes a manhattan
geometry architecture to both effectively integrate analog (A) and digital (D) components, as well
as build a compiler tool-friendly hardware platform. The floating-gate switches in the Connection
(C) Blocks, the Switch Blocks (S), and the local routing are a single pFET Floating-Gate (FG)
transistor programmed to be a closed switch over the entire fabric signal swing of 0 to 2.5V [69].
The Computational Analog Blocks (CAB) and Computational Logic Blocks (CLB) are similar to
previous approaches [38]. Eight, 4 input Boolean Logic Element (BLE) lookup tables with a latch
comprise the CLB blocks.

Figure 7 shows the block diagram for the RASP 3.0 FPAA IC based on a man-

hattan FPAA architecture, including the array of computation blocks and routing,

14

composed of Connection (C) and Switch (S) blocks. The computation is a combi-

nation of the components in the Computational Analog Blocks (CAB) and Compu-

tational Logic Blocks (CLB), as well as utilizing the devices in the routing architec-

tures that are programmed to non-binary levels. We use data-flow architectures for

power-efficient computing to merge as much as possible computation and memory,

minimizing the amount of external memory access required.

The architecture is based on Floating-Gate (FG) device, circuit, and system tech-

niques. The programming approach, based on previous all-digital infrastructure con-

cepts [41], is fully integrated on-chip. The µP and other control infrastructure allow

all programming of FG devices on-chip by simply downloading the list of switches

to be programmed. The code for programming is eliminated when the processor is

executing, efficiently utilizing the on-chip SRAM capabilities. The external system,

through a serial port interface, first loads the programming code, and then executes

the programming code on the downloaded data. The details of the FG programming

approach will be explained in further sections of this chapter.

The processor is able to send information to and from the array through memory

mapped I/O special purpose peripherals. These peripherals include ADCs and DACs,

allowing measurements to be performed on chip, with the data taken by and stored in

the processor. There are 16 memory mapped 7bit signal DACs for the architecture,

as well as additional DACs / ADC for the FG programming. The processor supple-

ments the processing power of the digital portion of the system and increase overall

implementation flexibility; portions of a problem can be mapped to reconfigurable

analog, reconfigurable digital, or a general purpose digital processor.

This FPAA SOC, with a highly programmable, fine grain fabric enabling signal-

processing approaches, practically requires a toolset for system design in a reasonable

design timeframe. Using manhattan geometry enables the use and direct modifica-

tion of open-source tools, like VPR [42], for the place and route approaches, a huge

15

Analog Block Digital Block Processor / System Control

MSP430
Processor

Memory Mapped
Registers

7bit signal
 DACs SRAM Data

t

V

Vref

GND

C1

V1

C2

Cw
CL

GND

Vin
Gm4

Gm1

Vdd

GND

G
N

D

V
dd

V2
30pA

G
N

D

V
dd

Cpeak

GND

Amplitude Detector / Filter

C4 Bandpass Filter Circuit

Vout
Vbias

First-Order LPF30nA

30pA

7

0 0.5 1 1.5

0

2.5

Time (s)

2.5
0

0

2.5

2.5

2.5

M
ea

su
re

d
V

ol
ta

ge
s

(V
)

In
pu

t A
In

pu
t B

In
pu

t C
cl

oc
k

O
ut

pu
t

X goes through Latch,
 loaded on clock,
 inverted output

X = AB C + AB C

A
B

C

X
D Q

QClock Out

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time (s)

V
ol

ta
ge

 (
V

) Max

Min

Min Detect Min0 4 8 12 16 20
Time (ms)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

V
ol

ta
ge

 (
V

)

30mV/ms

33mV/ms1.5

1.6

1.7

V
ol

ta
ge

(V
)

0 2 4 6 8 10
Time (ms)

0 20 40 60 80 100 120 140
Input DAC Code

6000

7000

8000

9000

10000

11000

12000

R
am

p
A

D
C

 C
od

e

0.5

1

1.5

2

2.5

D
A

C
 V

ol
ta

ge
 (

V
)

0

14bit prog
 ADC

USB

Vdd

Vdd

Vdd

Indirect
FG in CAB

GNDGND

Routing
Fabric

Figure 8: Approach for the RASP 3.0 FPAA IC enables integration of Analog and Digital Blocks
in the routing fabric, as well as resulting standard digital computation (i.e. uP) and infrastructure.
Analog Blocks: Compilation of single signal processing chain, including a second-order bandpass
filter, amplitude detection, and smoothing of the output signal. Digital Blocks: We can compile
digital blocks using the look-up tables in the CLB, the resulting latches in the CLB, as well as the
routing fabric. We demonstrate basic capability in a single BLE element in a CLB for a simple
combinatorial function. Digital Computation / Infrastructure: The µP design is an open-core
MSP 430 processor with on-chip structures for 7-bit signal DACs, a ramp ADC, memory mapped
General Purpose (GP) IO and related components. We show a measurement through a FG transistor
in a CAB utilizing the processor, signal DACs and memory mapped register. We often instrument
similar loops for instrumenting and measuring analog and digital blocks; in general we utilize all of
these capabilities as part of the FPAA computation.

improvement over previous home grown tools [43] in both dense (system-level) compi-

lation as well as optimizing routing infrastructure for digital and analog constraints.

Our high level toolframework is recently built in Scilab / Xcos based on our earlier

tool development in MATLAB / Simulink [44–46]. The graphical (i.e. Simulink)

based compilation and macromodeling tool enables the FPAA to be an embedded

system where the user has control over the resulting analog-digital co-design prob-

lem. The rest of the user control is through GUI interfaces. The detailed discussion

of the recent tool flow is followed by this chapter. Higher-level tools also enable the

use of these systems in educational experiences [47, 48], which will be essential to

educating engineers to design for system applications.

16

Figure 8 shows our SOC FPAA approach enables integrated analog interfacing

and computation,with digital blocks, both FPGA and µP blocks. We show the com-

pilation of auditory processing chain for subband signal detection. Where possible,

one wants to compile key blocks into a single CAB to minimize parasitic capaci-

tances as well as minimize global routing requirements. The analog computation,

utilizing significant innovations enabling integration of previous heterogeneous con-

cepts [37,38,40], would seem familiar given our earlier FPAA designs. What is unique

is the integration of digital low-power programmable and configurable FPGA fabric,

first attempted in [38], to fully enable the routing of analog and digital signals through

a continuous fabric. Further, we integrate these capabilities with an on-chip µP com-

ponent and a range of digital communication ports (i.e. SPI ports), completing the

picture that this FPAA device is a SoC computing device, not just a device for analog

processing. Further, the interaction of analog computation, digital FPGA like com-

ponents, and a µP infrastructure integrated together creates, in general, a significant

co-design problem between these three domains, requiring significant innovations in

design tools. Presenting our revised design tools is beyond the scope of this discussion,

which is an entire discussion in its own right.

2.2 SOC FPAA Routing Fabric Characterization and Com-
putation

From a classical FPGA approach, one considers the capability of the device to be in its

components (CLBs, specialized blocks), and the routing fabric is simply a capability to

interconnect these components. In such an approach, we want to minimize the effect

of the routing fabric that from a circuit perspective is dead weight that can only

degrade the circuit. That approach requires minimizing the amount of switches, each

of which add resistance, as well as minimize the resulting capacitance of the routing.

The routing infrastructure can effectively be modeled as a distributed RC line. The

architecture choices look at the relationship of the resulting switch resistances, or

17

G
N

D

V
dd

G
N

D

V
dd

Vin

VoutV1

Buffer

3µA
10nA

Gm

Case 0: Parasitics required
 for routing measurement

0 20 40 60 80 100 120

0.01

0.1

τ =3.33µs τ =7.15µs τ = 16.2 µs τ = 25.6 µs τ = 30.8 µs

Time (µs)

O
ut

pu
t V

ol
ta

ge
 f

ro
m

 S
te

ad
y

St
at

e
(V

)

Case 0 Case 1 Case 2 Case 3 Case 4

0.002

Case 1: 4 local
 lines added

Case 2: 8 local
 lines added

Case 3: 4 C Block
 lines + 4 local lines
 added
 Case 4: 4 S Block +

 4 C Block lines added
 τ 5.1783µs

τ 9.0750µs

τ 9.4029µs

τ 3.8160µs

0
Differential Input Voltage (mV)

G
m

 = 0.1547 µA/V

O
ut

pu
t C

ur
re

nt
 (

nA
) 10

100 200-200 -100

 = 1 / 6.464 MΩ

Bias = 11.3nA

0

-10

C = 0.52pF
∆C = 0.59pF ∆C =1.40pF ∆C =1.46pF ∆C = 0.79pF
C=1.11pF C = 2.51pF C = 3.97pF C = 4.77pF

0 20 40 60 80 100 120 140 160 180 200
Time (µs)

-0.05

0

0.05

0.1

0.15

0.2

0.25

V
ol

ta
ge

 (
V

)
-

vo
lt

ag
e

of
fs

et

Input Signal

DC voltage = 1.25V

Case 0 Response

Case 3 Response

Measured Step
Responses

Data
Regression

Component Capacitance

On Switch < 20fF

Local Line 160fF

C block Line 160fF

S block Line 38fF

Extracted Interconnect
 Capacitance

τ = 3.33µs

Figure 9: Experimental measurements for characterizing the capacitances of the routing fabric.
These FPAAs enable programming experiments that characterize the fundamental properties of the
configurable fabric. We first measure the current-voltage relationship for a specific OTA device,
shown in the inset, to exactly find the resulting Gm (0.1547µA/V) of the device. Then we use that
exact OTA with the same programmed current to measure the time-constant of the step response
(on a 1.2V dc for the 2.5V supply) for different (additive) routing combinations. In the presented
measurement, we measure the resulting step responses, and from that we can linearly curve fit to
the time constant after removing the effect of the steady state voltage. The resulting measurements
give a measurement of the resulting routing capacitance, as well as enables, through the routing
fabric, a range of tunable capacitor blocks. We summarize multiple measurement configurations for
our values of routing capacitances.

other circuit uses of the FG switch devices, as a function of the number of CAB

inputs and number of tracks, as well as the typical number of switches needed for a

connection.

This FPAA structure enables directly characterizing the resulting capacitance;

coupled with the resistance of an on-switch (5-10kΩ programmed at the maximum

conductance point) we can directly predict delays along each of these lines. Figure

18

9 illustrates we can compile circuits to characterize precisely the behavior of these

circuits, including load capacitance of the fabric itself. Every experiment is same

voltage bias, so expect that p-n junction capacitances would be similar through this

experiment. Precise measurement of routing capacitances enable tuning, through pro-

gramming switches, for precise capacitances where needed for matching. Matching of

capacitances and programmability of current sources by FG techniques dramatically

reduces the effect of mismatch in small cell sizes.

But our approach further moves away from the classical FPGA approach, in a

radical perspective that, because we can program FG devices to analog levels, our

routing fabric is no longer dead weight, as we first hypothesized previously [49] and

fully implemented in our SOC FPAA.

We begin by describing one aspect of our routing fabric used for computation

tied with capability for rapid reconfigurability. Figure 10 shows additional routing

structure enabling rapid reconfigurability in the FPAA fabric. Essential to analog

structures, typically data flow, and want to configure the computation to optimally

minimize the amount of intermediate data storage. Intermediate data storage often

the largest power and complexity cost for a system development. We have developed

rapid reconfigurability in the fabric such that we can change between programmed

aspects in a single clock cycle or asynchronous request–acknowledge loop. SOC FPAA

shift register control signals are controlled by locally routed signals in the fabric con-

trolling the clock (CK) and data signals. Data stored in the FG fabric would be

as optimal as data stored in an off-chip nonvolatile memory without the complexity

of loading the resulting computation. We also see the first illustration of using the

routing fabric elements, this time as a bank of parallel current sources, as well as a

cascading transistor. One easily sees an Arbitrary Waveform Generator that could

be compiled into the fabric; the circuit also becomes the non-volatile memory for the

19

Volitile Register Block

Shift Register Block
Clk

Data
Out

X1 X2 XmVolitile
Switch
Line

Volitile
Switch
Line

Aligned with C Block Size

R
outed in Fabric

R
ou

te
d

in
 F

ab
ri

c

Clk
Data

GND GND GND

GND GND GND

GND GND GND

C Block

Line Line

Out Volitile Register Block
Clk

Data

GND GND GND

Vdd
A

GND

On-Chip

Switch Type Mean I % Varience

Indirect Switches 20.7nA 29.5%

Direct Switches 18.7nA 1.37%

Direct Switches (Cascode) 11.0nA 0.76%

1 2 3 4 5 6 7 8
5

10

15

20

25

30

35

40

Position

M
ea

su
re

d
C

ur
re

nt
 (

A
)

t
Clk

Data

Add Scanned Values Together

0

2

4

6

8

10

12

M
ea

su
re

d
C

ur
re

nt
 (

A
)

Scan Each Input

t

Clk

Data

GND

1 2 3 4 5 6 7 8
Position

GND
Vdd

Direct Switch Indirect Switch

3.94nA per step
(0.23% variance)

Figure 10: Additional aspects of our FPAA Routing Fabric. We include a set of T-gate based
switch elements in the routing fabric to enable rapid reconfigurability. These switches are accessed
through a shift register that enables rapid change of configuration on a single clock cycle; different
lines of the resulting C block and/or local routing store the different configurations. We represent
the resulting switches, resulting shift register, and switches connecting the block to the routing
fabric as a single volatile routing block. We illustrated this capability utilizing routing elements
programmed as precision current source elements, both using an input to the shift register input
to scan through the individual signals, as well as using an input to the shift register to accumulate
the resulting outputs through the individual signals. It is straight-forward to imagine a range of
arbitrary waveform generation based on patterns stored in routing fabric. This measurement gives a
metric of programming accuracy in operational mode. The accuracy for these switches ranged 0.2 to
0.76 percent for programmed subthreshold currents for uncorrected FG values; the resulting accuracy
can be improved after such an initial measurement. Further, some switches in the routing fabric
use only a single pFET transistor (Direct Switches), while some use two pFET transistors (Indirect
Switches), where one device is used for computation and one device is used for programming. The
Indirect switches show characteristically higher mismatch for uncorrected FG programming due to
the threshold voltage mismatch of the two pFET devices. GND is signal GND; we bias the gate
terminal for the FG devices at 0.6V.

function, eliminating outside memory and resulting complexity and energy require-

ments. The measurements show the accuracy of the FG transistor programming,

either in the FG voltage or resulting channel current. We notice accuracy tighter

than 1 percent in sub threshold, relating to less than 250µV variation.

The difference between directly programmed and indirectly programmed floating-

gates is whether or not current measurements are made on the circuit transistor or

20

Gm

Vout

CAB

CAB

S

CAB

CAB

S

CAB

CAB

GND GND GND GND

GND GND GND GND

GND GND GND GND

V1 V1 Vm Vm
+ - + -

Vector-Matrix
Multiplication

(VMM)

m

n

Input

Output

From

Block

1 x 1
VMM

Input

0 0.04 0.08 0.12 0.16
0

1

2

TransR = 15 MΩ

Input Current (µA)

O
ut

pu
t V

ol
ta

ge
 (

V
)

0.8

1.2

1.6

In
pu

t (
V

)

-1 0 1 2
1.093

1.095

1.097

Time (s)

O
ut

pu
t (

V
)

GND GND
V1

+
V1

-

Clk
Data

G
N

D

GND

On

G
N

D

GND

O1

G
N

D

GND

O2

I1

I2

In

Vector-Matrix
Multiplication

(VMM)

V
olitile R

egister B
lock

m

Input

G
N

D

V
dd

Vout

3uA

Vref

Input 1

Input 2
-0.05

0

0.05

0.1
V

ol
ta

ge
 (

V
)

Output

0.1

0.11

0.12

V
ol

ta
ge

 (
V

)

Weight Vector 1 Weight Vector 2 Weight Vector 3 Weight Vector 4

0

1

2

0 0.05 0.1 0.15 0.2
Time (s)

V
ol

ta
ge

 (
V

)

Figure 11: Vector-Matrix Multiplication (VMM) as a computational block instantiated in C Block
routing fabric. The C Block forms a natural crossbar network typical for a VMM computation. We
show the data for a single VMM element through routing fabric to illustrate the basic behavior;
two pFET transistors are required for source-input 4-quadrant multiplication. We independently
measure the resulting transresistance as 15MΩ. Further, we show an application of VMM integrated
with the volatile switch register block to enable rapid (single-clock) switching between weight vectors.

the injection transistor during the programming algorithm. In the direct case, both

the circuit and injection transistor are the same transistor. In the indirect case, they

are two seperate transistors. The indirect FG device leads to a more efficient switch

(fewer parasitics), but one must account for the VT0 mismatch between the two pFET

devices. The direct FG device programs, measures, and computes through the same

21

device, eliminating any VT0 mismatch , requires additional transmission gates in the

signal path for programming.

Computing Vector-Matrix Multiplication (VMM) solidifies the radical use of rout-

ing fabric as a computational element. Figure 11 shows implementation of a VMM

in the routing fabric of our FPAA structure. We implement this functionality either

in the C block or in the local CAB / CLB routing fabric, being that both structures

are naturally crossbar arrays. Longer discussion on VMMs in early FPAA routing

fabric is described elsewhere [50]. Further, we are effectively computing through our

memory device, effectively the EEPROM storage of our values, directly in routing fab-

ric, enabling the VMM computation; other approaches, including traditional FPGA

approaches, require additional memory elsewhere from the resulting computations

required. Further, we show integrated VMM and rapid reconfigurabiliity enabling

switching between metrics in the FPAA architecture. This feature further enables

data flow architectures to do a particular computation right when data arrives, re-

ducing the need for short-term storage.

2.3 Representative Circuit and Signal Processing Compo-
nents in the SOC FPAA

After considering the basic computation of the key components as well as the behav-

ior and computation of the routing fabric, we move to looking at the behavior for

some basic mixed-signal processing circuits compiled and experimentally measured

in this system. The circuits illustrate some of the analog-digital co-design in these

approaches.

Our first example is compiling two basic ADC devices in the routing fabric. Figure

12 shows circuit compilation at the analog–digital boundary through compilation of

multiple forms of ADCs as an example of integration of the capabilities. Being able

to compile an ADC, and the particularly needed ADC both allows for optimal power

computation, heavy IP block reuse, as well as allowing the system lines to be blurred

22

Voltage-to-
Current (Gm)

Vin

Vref
Vref

Vref
Vdd Vdd

1 bit DAC: Ibias, -Ibias

Vref
Ibias

Vout

to µP
for filtering

Vout

Reset

Second-Order Sigma-Delta ConverterCompiled Ramp ADC Converter

Counter

GND

CIntegrate

Vdd

GND

GND

Vin

GND

Reset

Vramp

Vout

Vin

t

Vramp

Reset

12

Shift Register
Clock

Clk

1 10
Frequency (kHz)

0.1

0.1

1

S
ig

na
l A

m
pl

it
ud

e
(V

)

0.37V

1kHz

0 1 2 3 4 5
Time(ms)

1

1.1

1.2

1.3

1.4

0

0.5

1

1.5

2

2.5

V
ol

ta
ge

 (
V

)

Vin = 1V

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

1

1.2

1.4

1.6

1.8

Time (s)

V
ol

ta
ge

 (
V

)

Vin = 1.3V
Vin = 1.6V

 Vin =

 1.7V

In
pu

t (
V

)

Figure 12: Two compiled Analog-to-Digital Converters (ADC) with experimental results. These
approaches show the mixed signal structure compiled on our analog and digital enabled routing
fabric. One example shows a compiled Ramp ADC converter. The second example shows a compiled
second-order Sigma-Delta (Σ - ∆) converter.

between analog and digital for more effective approaches of classifying raw analog

data. The design of the routing fabric was not a block of analog components and a

block of digital components with hard-build data converters in between, but rather a

mixed fabric to explicitly allow the lines to be blurred as the application requires.

Our second example is a basic FPAA classifier using a single Layer VMM +

Winner-Take-All (WTA) circuit as a non-ADC conversion between analog and dig-

ital signals. Figure 13 shows a one-layer classifier approach based on the combina-

tion of a VMM and a k-winner Winner-Take-All (WTA) circuit [51], that elegantly

compiles into routing fabric [52]. The one layer architecture can perform standard

one-layer hyperplane classifiers, while also performing tasks considered impossible for

23

x1

x2

xN-1

xN

M WTA Inputs

N
 W

TA
 Inputs

GND

GND

Vb1 Vb2 Vb3 Vb,m-2 Vb,m-1 Vb,m
Vref

FG
 C

ascode
W

TA

 A
rray V

GND

C

GND

GND GND

Vref

Vdd

CbCa
GND

Cz

GND GND

(b)

0 0.5 1 1.5 2 2.5 3 3.5
1

1.2

1.4

1.6

1.8

2

2.2

2.1

2.3

In
pu

ts
 (

V
)

A & B

A & BBA

AB

Time (ms)

W
TA

 O
ut

pu
t (

V
)

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (ms)

W
TA

 O
ut

pu
t (

V
)

VMMx (e.g. linear hyperplane)

(e.g. XOR, n-input parity)

N M
k-WTA

M
(or fewer)

out

VMMx
N M

M
(or fewer)

out

VMMx
N ?

?
(unknown
hidden layer)

VMM
M

M
(or fewer)

out

VMM + WTA = universal approximator

(a)

(c)

(d)

Figure 13: Instantiated FPAA classifier block based on a combination of VMM with a Winner-
Take-All (WTA) block enabling a compiled one-layer universal approximator that efficiently compiles
into an FPAA device. We show the circuit block for the one-layer VMM + WTA classifier block for
N inputs and M outputs. The WTA circuit is operated as a single winner circuit, or as a k-WTA
circuit, where upto K winners are possible if their metric is above a basic threshold, as originally
described in [12]. We show an example of a single hyperplane classification, as well as an example
of an n-input parity classification, experimentally verifying the universal approximator approach.
(need a block diagram of VMM +WTA type block)

typical one-layer Neural Network architectures (i.e. XOR). Figure 13 shows exper-

imental measurements for both of these cases, both an XOR function, as well as a

linear approximator function. The result experimentally verifies that this one-layer

VMM+WTA architecture, compiled on this RASP 3.0 FPAA structure is a universal

approximator.

2.4 Representative System Application in the SOC FPAA

Following the example of signal processing circuits compiled in the SOC FPAA, we

move in this section to discussing two representative applications compiled and mea-

sured on this SOC FPAA. The goal of this section is showing two possible application

opportunities; we expect the wider range of applications for sound / acoustics / speech

applications, image processing and vision sensors, robotics applications, and wireless

24

Vector-Matrix
Multiplication

(VMM) +
Winner Take All

(WTA)

n
OutputInput C4 BPF Amplitude

Detect

m

100Hz to 4kHz
Constant Q = 2
Exponential Spacing

25Hz corner

m
1st Order

LPF

m

10Hz 100Hz 1kHz 10kHz
-40

-30

-20

-10

0

10

20

Frequency (Hz)

B
an

dp
as

s
Fi

lt
er

 G
ai

n
(d

B
)

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

B
P

F
O

ut
pu

t +
 s

ca
le

d
dc

 (
V

)

Center frequency = 3.5kHz

2.66kHz

1.83kHz

1.26kHz

955Hz

658Hz

546Hz

413Hz

236Hz

179Hz

112Hz

85Hz

1 2 3 4 5 6 7 8 9 10 11 12
100Hz

1kHz

Fi
lt

er
 b

an
d

Filter Tap Number

Exponential Curve Fit
 ~ 2 taps per octave

4kHz

(a)

(b) (c)

(d)

1.2

1.25

1.3

1.35

1.5

2.5

0 1 2 3

1.5

2.5

0.5

1.5

2.5

She had
your dark suit

selected at this output

WTA
Output 1

WTA
Output 2

WTA
Output 3

Digital
Threshold

In
pu

t
V

ol
ta

ge
(V

)
W

TA
2

O
ut

 (
V

)
W

TA
3

O
ut

 (
V

)
W

TA
1

O
ut

 (
V

)

Time (s)

Figure 14: Analog auditory word classification application, compiled into the RASP 3.0, showing
the experimental waveforms from the IC. (a) Block diagram for the classifier algorithm, in a similar
representation used for our tool framework. (b) We use BPF center frequencies that are scaled
evenly on a log-frequency scale between 100Hz and 4kHz with a constant Q filters (Q=2). (c) We
show BandPass Filter (BPF) outputs and Amplitude Detection for a single phrase from the TIMIT
database. (d) Classification of word and components for a TIMIT waveform. We use a k-WTA with
three outputs to detect the ford ”dark” in the resulting phrase.

communication applications, will be the subject of many future research where each

system itself is a significant circuit and system design that can be experimentally

implemented in this SOC FPAA IC.

We show an example application of auditory / speech classification looking at de-

tecting a command word in a sentence. Figure 14 shows the first application example

of an auditory classifier structure for a limited phrase, like a command word, that

can be classified through features in the averaged signal spectrum. We start using a

25

continuous-time spectrum decomposition using a bank of constant Q filters, using a

bank of amplitude detection and filtering operations, and then using a VMM+WTA

classifier block to classify each of the resulting spectrum into simple symbols. In a

more complex speech recognition system, we might have the spectrum correspond to

phonemes or part of phonemes and build up the temporal representations using tem-

poral classification (i.e. HMM classification) to word spot the resulting phonemes,

syllables and words. In a simple command word application, we only need to dis-

tinguish between a few simple symbols, directly computed as a state machine on the

MSP430 processor; a next level of computation, say as a simple Viterbi decoder, could

be directly implemented on the MSP430 processor as well.

2.5 Summary Discussion and Comparisons

We presented an IC that integrates divergent concepts from previous multiple FPAA

designs along with low-power digital computation and interface circuitry (i.e. DACs,

ADCs). We showed through discussion and measured data that this unified structure

enables a wide range of SoC computing options that can be optimized for a wide

range of parameters, showing the most sophisticated FPAA capability built to date;

we hope that the success of this IC inspires additional devices build in the near future.

Figure 15 shows the table of parameters for the resulting SOC FPAA. Largest signal

processing functions shown to date [37, 38, 65], where each are only taking a small

percentage of the available IC.

Using data from generations of FPAA devices, built at GT and elsewhere, we plot

various FPAA devices showing the (Percentage of Control Path implemented) vs.

Analog Parameter Density. Figure 15 shows two key metrics for FPAA approaches

based on a wide range of published FPAA devices [37,38,40,58–69]. We define analog

parameter density as the number of programmable parameters per mm2, normalized

26

to a 1µm CMOS node. Analog parameter density determines critically the IC compu-

tation complexity, particularly when using routing as computation. Figure 15 shows

FG based FPAAs enable ≈ 1000 improvement in parameter density, enabling orders

of magnitude potential computation on a single device; alternatives to FG devices

require a DAC at every node or similar dynamic techniques.

One could imagine a second metric of maximum measured frequency, normal-

ized to 1µm process. The result is very predictable and we find maximum analog

frequency response being directly related to process technology; we have compared

FPAA devices from 1µ CMOS to 40nm CMOS. Detailed discussions about frequency

scaling will be discussed in a further discussion and demonstration of FPAA scaling

and is beyond the scope of this discussion.

For an SOC FPAA device, we would want to maximize both metrics, so that

we have a large number of programmable parameters, and resulting computation,

as well as having the infrastructure to get data communicated to these processing

devices. We develop the second metric to describe the the amount of control flow

(mostly digital) relative to the amount of analog and digital data flow capability.

Practically, the ability to get data to all of the processors can be a primary limitation

for a range of application spaces, such as image processing, where data does not

always arrive in the desired order for the computation. Recent RASP based FPAA

designs [37,38] have started to focus on improving this second metric while not losing

the analog parameter density efficiency. The presented SOC FPAA device maximizes

both metrics, being nearly a factor of 500 improvement in area efficiency as typical of

other analog FPAA devices, but with high utilization of the resulting computational

resources; the closest high utilization structure (i,e, like PSoC5) is nearly a 300,000

factor improvement. This work resulted in the journal [126].

27

0

10

20

30

40

50

60

70

80

90

100

of Analog Parameters / (mm2 / node (1µm normalization)
0.1 1 10 1000.01 1000

Pe
rc

en
ta

ge
 o

f
Fu

ll
C

on
tr

ol
 P

at
h

In
fr

as
tr

uc
tu

re
 I

m
pl

em
en

te
d

0.001

CowenEPAC

PSoC5

Becker

This
WorkSRAM

Program: 16k x 16
Data: 16k x 16

MSP430
Open Core
Processor

Memory
Mapped

Registers

16, 7bit signal
 D

A
C

s
Prog D

A
C

s
(6, 6 to 7bit)

GP I/O

Prog: I V
Ramp ADC

SPI
Ports

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

~ x1000 improvement
 using FG switches�
 (parameters / routing)

~ x600000 improvement

Parameter Value Parameter Value
Number of CABs 98 Number of CLBs 98
On Chip µP Open Source MSP430 µP clock frequency 0 - 50MHz
C block Line Cap. 160fF S Block Line Cap. 160fF
Vdd (analog) 2.5V Vdd (digital) 2.5V, 3.3V
Vdd Injection 6.0V Vdd Tunneling 12V
Program Memory 16k x 16 Data Memory 16k x 16
CMOS Process Standard 350nm Die Size 12mm x 7mm
General Digital I/O 16 (in), 16(out) SPI ports 5
General Analog I/O 125 Analog Parameters 359,014

Figure 15: Using data from generations of FPAA devices, built at GT and elsewhere,
we plot various FPAA devices showing the Percentage of Control Path implemented
versus Analog Parameter Density. Recent FPAA ICs, like the dynamically recon-
figurable FPAA or FPAADD device begin to effectively maximize both parameters.
Analog Parameter Density is the number of analog parameters per mm2, normalized
to a 1µm process (or analog parameter density). Analog parameters directly sets the
complexity possible by the particular FPAA device. Further, we include a table of
relevant parameters for our SOC FPAA device.

28

CHAPTER III

CAD SYNTHESIS TOOLS FOR HETEROGENEOUS SOCS

Field Programmable Gate Arrays (FPGAs) have evolved a lot over the past twenty

years and have been rapidly adopted in industry, academia as well as by end users

worldwide for a variety of applications. This has been possible due to powerful CAD

tools for architectural exploration, CAD algorithm research and open source efforts

[121, 148–150]. On the other hand, reconfigurable analog technologies have been

lagging behind because of lack of such a rich toolset. Our endeavor is to build an

integrated CAD tool framework that is a trailblazer for analog tool solutions for

Field Programmable Analog Arrays (FPAAs) for shorter design turnaround times as

shown in Fig. 16. Typically analog design is considered niche. We believe this will

revolutionize analog design as we know it and enable a wider group of people to test

analog, digital and mixed signal designs. Our tool suite x2c -Xcos to Chip, generates

and integrates these tools to program and test an FPAA SoC. It enables fast and

accurate co-simulations in both hardware and software. This methodology empowers

the user to do seamless low power analog, digital and mixed signal design in a single

environment from a graphical frontend to a switch list to target the SoC and test

design.

In this chapter, I present a new synthesis, place and route tool called vpr2swcs

which is a part of this tool suite and converts a netlist to an object file needed to

program the FPAA SoC. These SoCs consist of a digital processor, an FPAA consist-

ing of both digital and analog blocks in a reconfigurable switch fabric, DACs, ADCs

and peripherals. This approach is novel as it enables, analog, digital and assembly

codesign in the same environment. It also allows advanced synthesis by converting

29

Memory

Processor

D
A

C
s

GP I/O

Peripherals

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A
D

C
s

M
em

ory M
apped

R
egisters

 Reconfigurable SoCs

SYNTHESIS
TOOLS

Object File

High Level
 Design Tools

Program IC

Converging Design
Cycle

Design
Iteration

Repeat
as needed

Circuit
Design

Digital Flow

Analog Flow

HDL

Simulation

Simulation

 Synthesis
and Verification

 Synthesis
 and
 Verification
 (IC layout
 level)

Place and
Route

(FPGA
blocks)

 Place
 and Route
 Analog
(similar
to IC fab)

Experimental
Measurements, Characterization

Experimental
Measurements

ANALOG
blif (netlist)

DIGITAL
blif /verilog

ASSEMBLY
.asm

Program
IC

CIRCUIT

Compile to
switches

Analog-Digital-Assembly
CoDesign

Figure 16: Typical iterative flow for CAD tools to design Integrated Circuits is il-
lustrated here. Consider one such cycle, showing the design, simulation, synthesis,
and testing for the analog and digital flows of the design. Reconfigurable ICs enable
rapid turnaround time for testing. We have developed a software tool suite x2c,
enabling design, simulation, verification, and experimental testing for configurable
heterogeneous SoCs in a single environment.

a netlist to a programmed system on the hardware. Our approach embeds existing

Virtual Place and Route (VPR) tool typically used for FPGAs in the modular python

based tool vpr2swcs to develop a coherent user friendly design flow for heterogeneous

30

architectures. Though VPR treats analog blocks as a blackbox, vpr2swcs contains

detailed descriptions of analog blocks. It effectively combines digital solutions from

VPR along with custom techniques for analog circuits.

In this chapter, the focus is on the synthesis, place and route aspect of these

heterogeneous SoCs and the tool called vpr2swcs that was developed to target FPAA

SoCs. Previously a tool called Generic Reconfigurable Architecture Specification and

Programming Environment or GRASPER was used for FPAA ICs which were based

on a more crossbar routing structure [151]. This tool is a significant improvement over

the previous tool. It can now be used for exploring heterogeneous architectures as well

as for scaling systems. One particular novel piece of vpr2swcs is the ability to build

useful computation out of routing resources. The synthesis and place and route of

circuits containing Vector Matrix Multiplier (VMMs) [152] built out of floating-gate

switches will also be highlighted in this chapter.

3.1 CAD Tools for Reconfigurable Hardware: Overview

Reconfigurable hardware for digital computation i.e. FPGAs are the norm these

days. Similarly for analog solutions, we have FPAAs. The FPAA SoC is a floating-

gate based, reconfigurable, fine-grained, mixed signal array with integrated processor,

memory, and I/O peripherals. The hardware is tailored to explore and implement

single chip solutions to mixed-signal problems in a codesign approach that flexibly

varies how much of the problem is solved in software, digital or analog circuits. To

facilitate the use of this hardware, x2c tool suite was created that starts with Scilab

Xcos blocks and verilog , and runs all the way through synthesis, place and route, and

programming of the hardware. In such a platform, analog components are embedded

in a switch fabric which enable arbitrary connections between them. We use floating-

gates(FG) as the switch element, as this adds the properties of non-volatility and

compactness. Now, if we combine both analog and digital components into a FG

31

switch fabric, we can leverage the best of both worlds. Many FPAA structures have

been built over the years such as [153–158].

There is a real need to develop an automated design flow for analog circuits,

especially for non-analog designers who find the abstracted digital modeling much

easier. Previously a tool called GRASPER [151] was developed to place and route

for FPAAs. This tool for designed specifically for just complex analog blocks and

didn’t handle any digital circuits. It took a SPICE netlist as an input and gener-

ated switches to program the FPAA. The placement algorithm used was Modified

Hyper-edge Coarsening (MHEC) order of cells and for routing labeling and backtrac-

ing techniques were used. However there were limitations while using the tool in

terms of specifying a different architecture, digital elements, optimization and fixing

placement of devices. The high level graphical interface for this tool was developed

in MATLAB Simulink [159]. However, MATLAB not being an open-source software,

it limited the outreach of this toolset. It was thus important to move to more flexible

tool infrastructure that could support different architectures and enable quick test-

ing and prototyping. Therefore, we decided to move towards using the open-source

VTR/VPR tools as a code base. Though VTR/VPR is typically used for FPGAs,

it supports heterogeneous architectures and is scalable for larger designs. However

built for FPGAs it didn’t meet all our requirements. Thus we developed vpr2swcs to

specify analog circuits, utilize global and local routing resources for computation, as

well as create an accurate switch map for a given FPAA chip. The new tool vpr2swcs

is faster, more flexible, powerful, and easier to use than before, as well as relying only

on a completely open source code base. This should enable a wider community to be

able to use these tools for their FPAA solutions.

32

Memory

Processor

D
A

C
s

GP I/O

Peripherals

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A
D

C
s

M
em

ory M
apped

R
egisters

CLB CAB

CLB CAB
S Block:
Routing to

C Block:
Routing
to CABs

GND GND

GND GND

CAB / CLB Lines

R
ou

ti
ng

 L
in

es

Global Interconnects

(b)

High Level Graphical

x2c tool for FPAAs

.xcos

Integrate digital
and analog blif

VPR

vpr2swcs

.blif

.swcs

sci2blif

Program IC

Technology
 File for
different

ICs

.xml

x2c CAD Design Suite

 LUT

 F/F

BLE

DIGITALANALOG

(a)

Routing Resources

Local Interconnects

x8

Bus B

Bus A

CLB

BLE

R

Reconfigurable Heterogeneous SoC

Figure 17: x2c Design Suite for FPAAs (a) Typical FPAA SoCs structure with
Configurable Analog Blocks (CABs), digital Configurable Logic Blocks (CLBs), and
global and local interconnects. (b) x2c top-down tool design flow diagram. x2c
combines open-source software like Scilab Xcos, VPR/VTR and our open source
software tools sci2blif and vpr2swcs, to create a software suite to program and test
FPAA SoCs.

3.2 x2c: Design Suite on FPAA SoCs

The latest FPAA SoCs are complex chips with an on-chip processor, data converters,

FPAA fabric, routing resources and peripherals as shown in Fig. 16(a). x2c or ‘xcos

to chip’ is the open-source CAD tool software suite we have developed to build a tool

to design mixed-mode circuits on FPAAs as shown in Fig. 17(b). The tools enables

analog-digital-assembly level CoDesign as depicted in Fig. 16. The tool integrates

different tools like sci2blif , VPR/VTR and vpr2swcs. It enables hardware software

codesign on FPAA SoCs. An illustration of our SoCs are shown in Fig. 17(a).

The whole software is setup in a Ubuntu Virtual-Machine, which makes setup and

distribution very easy.

33

(c)

(d)

(e)

(b)

Simulation Results

0 1 2 3 4 50

0.5

1

1.5

2

2.5

Time (ms)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Time (ms)

V
ol

ta
ge

 (
V

) Square wave
 input

Experimental results

Design File

Step input

(a)

Figure 18: A system example of the tools to demonstrate Hardware-Sofware Codesign
(a) FPAA Tools GUI which is the primary user-interface. It has various options the
user can choose from including example designs. (b) Snapshot of the Xcos palette
for FPAA blocks. There are four sections, namely the Analog, Digital, Input/Output
and Complex Blocks. The Analog, Digital and I/O blocks consists of basic elements
in different tiles of a chip. Complex blocks are pre-defined circuit blocks like C4

Band-Pass Filters, peak detectors, VMMs etc whose parameters are programmable.
(c) We show an XCOS diagram for a complex block, Low Pass Filter (LPF). The user
can use the same file to simulate the block or synthesize the system on the SoC. (d)
Simulation results for LPF block for a step function (e) Experimental Results for the
LPF block for a square wave input.

3.2.1 sci2blif : Tool for XCOS to BLIF

The Xcos file has the information of the circuit and parameters to be compiled and

programmed to the FPAA hardware. sci2blif is a tool we developed to convert block

level information to a netlist in the BLIF format. This creates a netlist that the

vpr2swcs tool can then use to place, route and program system on the chip. sci2blif

can combine verilog, block level design, assembly code to create an integrated netlist

that vpr2swcs then uses for further processing. FPAA Tools is the graphical interface

we have developed for our tools as shown in 18 (a). The tool was designed in open-

source software Scilab and using Scilab Xcos to make user-defined blocks and libraries.

A detailed discussion of sci2blif will be presented in chapter 4.

In the following section, I will talk more about the tool vpr2swcs which helps

34

Architecture
file for

different ICs

.xml

vpr2swcs

VPR

Routing
local

interconnects

.blif

.swcs

Architecture Selection:
&

Packing Macroblocks

.net, .route, .place

Macroblocks
parameters and

I/O specifications

Switch list to
target IC

(a) (b) (c)

Technology
 map for

different ICs

.py

Figure 19: vpr2swcs synthesis tool flow (a) A flow diagram of vpr2swcs which con-
verts the BLIF (Berkeley Logic Interchange Format) to a switch list. The tool uses
VPR tools for place and global routing of elements. vpr2swcs takes both the architec-
ture file and technology map as inputs along with the output of VPR. It handles the
packing of macroblocks which are complex analog blocks, local interconnect routing as
well specialized handling which is chip dependent. (b) Mixed-mode system example
consisting of an OR gate and low-pass filter with different I/O blocks. Corresponding
routing in VPR is shown. (c) A vectorized system using a C4 band-pass filters and
peak detector blocks is shown in Xcos and VPR. A vectorized block signifies multi-
ple copies of the same block. The example here shows a block representing 16 such
filter-banks.

target the FPAA SoCs.

3.3 vpr2swcs: Targeting Heterogenous SoCs

When building the tool set for the new generation FPAAs, it was our intention to

build a software base that others can actively contribute to. Thus, we decided to

use VPR as an open-source code base for our tools [121]. vpr2swcs then enables

us to further define analog circuits which VPR just considers as a blackbox as well

as add new features like reusing routing resources, building optimized analog blocks

called macroblocks, switch architecture files, map switches for an FPAA SoC, define

peripheral maps and generate switch list to target mixed signal FPAAs. The archi-

tecture files have been modified to accommodate special sub-circuits that are part of

35

SWITCH LIST

345 123 0 0
123 341 10e-09 2

223 341 0 0
305 123 0 0
917 111 20e-09 1

row column Current Switch
 type

(c)

.subckt ota in[0]=net1 in[1]=net2 out[0]=out1 #ota_bias= 10e-09

Vout

G
N

D

V
dd

Vin0

OTA

Vin1

Specifies target current for

tuning bias current of the OTA

BLIF FORMAT

PADS FILE

net1 9 0 0 #tgate[0]
net2 11 0 0 #int[0]
out:out1 12 0 0 #ana_buf[0]

(a)

(b)

I/O

DAC

Analog buffer

Figure 20: Configuration settings in x2c. One can specify configuration values in
the BLIF file that we generate. This is then used by vpr2swcs to generate a switch
list accordingly. (a) BLIF format description of an Operational Transconductance
Amplifier (OTA) with a programmbale bias current. vpr2swcs parses the comment
to correctly associate the bias current value with the OTA block, as well as handling
the local interconnect. (b) Illustration of a typical pads file for the chip. Depending
on the technology map of an SoC, different I/Os can be simple I/Os or DACs/ ADCs
or buffered I/Os or just simple internal nets. vpr2swcs enables I/O blocks to be
configurable as well. (c) A typical switch list output that is used to target FPAA
SoCs.

the analog CABs and aren’t native to a typical FPGA. The circuits are expressed in

the Berkeley Logic Interface Format(BLIF), which is essentially a netlist. The tool

packs the analog/digital components into CABs/CLBs. Once packed, VPR places

these depending on I/O pin placement and routes the global signals between them.

36

Digital Ports are defined as Input or Ouput

X = AB C + AB C

A
B

C

X
D Q

QClock Out

QCLK

D Q
Input
ports

Output
ports

S

D

G

OR

S

D

G

I/Os can be bidirectional for elements.
It does not necessarily imply

functionality

Port A

Port B

Port A

Port B

 Bus B

Bus A

GND Vdd

CAB

(a)

In Out

In Out

In Out

net N1

Single driver and multiple sinks allowed in VPR

In Out

In Out

net N1

In Out

Multiple drivers and single sinks allowed in VPR

For Analog Circuits, this is a desirable feature

(b)

Enforces input-output
relationships

Enforces directionality of
Bus

x8

Output: Bus B

Input: Bus A

CLB

BLE

R

Digital block definition

Analog block definition

Enforces port directions of elements

(c)

I
IN,0

I
IN,1

I
IN,2

I
OUT,0

I
OUT,1

I
OUT,2

Winner-Take-All
CIrcuit

Figure 21: Challenges one faces when using VPR (a) Bi-directionality of local inter-
connects as well as I/Os of block elements is a desirable feature for analog circuits
which VPR does not support. For digital elements the bus direction is specified but
for analog CABs, one just considers the buses to be bidirectional. (b) The way ports
of elements is defined is also different. In a flip-flop for example the input and output
of a flip-flop is explicitly defined. But in the case of a transistor for example, the
source and drain can be switched and either can be used as input or output. This
isn’t supported in VPR. Flexibility of defining ports is also a desirable feature. (c)
Multiple drivers for a single net is also not supported in VPR. While this is a sanity
check for digital circuits, functionality wise it is required for analog circuits. Here
we show the example of a Winner-Take-All (WTA) circuit where we have multiple
drivers and a sink which is a very useful analog circuit. This type of a circuit can’t
be specified in VPR.

37

D Q

CS

D Q

CS

D Q

CS

CLK

16-bit Shift Register

Vref

GND

C1

Vout

C2

Cw
CL

GND

Vin

 C4 Bandpass Filter Circuit
Vdd

GND

G
N

D

V
d d

V

C

GND

Vbias

Vin

out

Minimum Amplitude Detector

G
N

D

V
dd

C

GND

Vout
Vin

Low Pass Filter COMPLEX CIRCUIT MODEL MACROBLOCK

GND Vdd

Output Lines

Input Lines

CAB
GND Vdd

Output Lines

Input Lines

CAB

Macro
Block

Circuit
(2in, 1out)

Figure 22: Macroblocks are complex blocks that are built from basic elements in the
Analog and Digital Tiles. For simplicity, these have been encapsulated as a single
block in the palette. We define these analog tiles as blackboxes in VPR such that all
elements remain in a Analog/Digital Tile. We show a few examples: LPF, Minimum
Amplitude Detector, C4 Band-Pass Filter, and the Shift-Register Block.

vpr2swcs then utilizes the global routing information from VPR and further builds

the local interconnect switch map which is specialized along with special handling of

I/Os to add to a switch list which is then used to target the SoC.

3.3.1 VPR

The VPR tool was designed to be a platform for simulation based FPGA place and

route experiments. It was built to be an open-source academic platform for analyzing

the efficacy of place and route algorithms in the mapping of benchmark circuits to

FPGA architectures, the effects that varying the FPGA architecture has on the solu-

tion space, and the circuit performance of any routing solution. Being open source,

algorithms, architectures, cost metrics, and benchmarks are easily swapped for large

parametric and statistical experiments. At its heart, VPR is simply a wrapper for ap-

plying off-the-shelf placement and routing algorithms to the problem of implementing

a target circuit graph out of some subgraph of a target architecture. In this sense,

it can target a limitless variety of FPGA architectures. The VPR toolchain can be

interrupted and any custom architecture graph could be inserted. However, the tool

38

 LUT

 F/F

BLE

DIGITAL

L
atches

L
atches

clk

C/L Path 1

C/L Path 2

C/L Path 3

Critcal Path = t c

Slack = t c - t 2

Slack = t c - t 3
fclk=1/t c

(a)

Timing driven optimization:
Delay is calculated for the critical path.

As Capcitance ↓, Delay ↓

G
N

D

V
dd

C

GND

Vout

Vin

Low-Pass Filter example

L

ANALOG

(b)

Delay, τ ∝ Capacitance

However,
Noise ↓, as Capacitance ↑

Thus, SNR ↑, as Capacitance ↑

CAB CAB

CAB CAB

CLB

CLB

Line 2: 556 fF

Line 1:
160 fF

(c)

Component Capacitance

On Switch < 20fF

Local Line 160fF

C block Line 160fF

S block Line 38fF

(d)

Figure 23: Optimization techniques for Heterogeneous Systems (a) Representation of
Digital blocks. The main criteria for optimization is timing-driven and connection-
driven. (b) One cannot always optimize for timing delay or capacitance for analog
circuits as this can be a useful parameter. For example, consider the low-pass filter.
Here, τ is a parameter that the user wants to modulate. (c) An example of different
routing capacitances for path chosen. (d) A table of routing capacitance as observed
on the FPAA chip fabric in 350nm CMOS.

does implement a parametric architectural graph generator. This generator provided

a quick interface to building parametric FPGA architectures that were a subset of

the architecture space it could target. That space was limited to Manhattan style

architectures. The fabric was a linear array of tiles comprising complex logic blocks

and global interconnect where the complex logic blocks contained the computational

39

devices (LUTs and FFs) and some reconfigurable wiring called the local interconnect.

Local interconnect is used to wire devices together that have been clustered to-

gether into these complex blocks, and then those groupings are wired together at a

higher level using the global interconnect. In this manner, some level of hierarchy is

applied to the global place and route problem.

Since we have built a lot of variations of reconfigurable chips, it is nice to have a

sort of unified code base for utilizing these chips that leverages as much code reuse as

possible. Therefore, we have adopted the Manhattan-style routing fabric which can

then be easily targeted by VPRs architectural building language.

3.3.2 Challenges to make VPR work for Heterogeneous systems

The big challenge for making VPR work for heterogeneous ICs is defining Analog

blocks and how to modify the basic rules of digital design for analog design place and

route. We list some of these challenges in Fig. 21. One issue is having multiple drivers

for a single net. While this is a sanity check for digital circuits, this doesn’t quite work

for analog circuits where this is fairly common. Take for example current-summation

in a Winner-Take-All circuit as shown in Fig. 21 (c).

Another issue is not having bidirectional input/outputs. This is an issue when

talking about local routing as well as for analog elements. This is illustrated in Fig. 21

(a-b). Take the example of a CMOS MOSFET, where the source and drain terminals

are equivalent and interchangeable and one doesn’t want to define it explicitly as input

or output. In our system design all our I/Os were bidirectional mostly and handling

that aspect in code was tricky. Now analog blocks are considered as blackboxes

in the VPR tool. So, to circumvent this problem, I came up with idea of tailored

macroblocks which I will define next. Now VPR just considers these macroblocks

as new blackboxed element. We restrict the reuse of elements used to make the

macroblock by restricting interconnect specification.

40

3.3.3 Macroblocks : Encapsulating complex circuits

Macroblocks is just a concept of encapsulating complex circuits using elements inside

a single tile to create a single block. Some macroblocks are hard-coded to define some

common circuit configurations. The connections within the CAB are pre-optimized

and VPR now only handles global placement and routing. This helps us leverage

some inherent circuit knowledge not apparent in the tool definition. We show some

examples in Fig. 22. vpr2swcs utilizes parameters specified as comments in the BLIF

file to now set parameters to configure these circuits.

3.3.4 vpr2swcs design flow

The vpr2swcs design flow is illustrated in Fig. 19. We will detail some key aspects

below.

Architecture selection: The tool initially parses the BLIF file to choose the archi-

tecture file and configuration settings to use. Also any configuration settings to be

passed to VPR are set.

Packing Macroblocks: The tool determines the packing of complex macroblocks

in CABs/CLBs along with specifying the parameters related to these. Since these

blocks are configurable/programmable in nature, the tools needs to handle setting

the appropriate parameters correctly. To this end, we have modified the BLIF format

to include comments after a sub circuit description that enables one to configure the

circuit. This is illustrated in Fig. 20(a)where the bias current of an Operational

Transconductance Amplifier is specified along with its model definition. Even for

specialized macroblocks, it helps set the configuration of the block.

Routing local interconnects: Though VPR handles the placement of elements

inside the CABs/CLBs, vpr2swcs tool handles local interconnect routing for CAB

elements. This is because the interconnect defined on chip is highly complex and

bidirectional. This feature is customizable and hence can be swapped depending on

41

the technology of the chip. Hence, much like the architecture file that VPR uses,

a detailed chip dependent mapping of local interconnects can be made easily. This

helps make the system very flexible and increases the degree of freedom while using

buses. Also, for the purpose of maintaining hierarchy with global interconnects and

the function of bi-directionality, we specified a bus as inputs to CABs as both input

and output, even though the switches for both would map to the same bus.

Handling I/Os: Since our system is a mixed-signal system, we have many different

options for I/Os. For each I/O pad on the chip there are multiple options like it

being an analog buffered I/O, digital buffered I/O or just an unbuffered I/O. Besides

these, I/O lines can also be re-routed back into the fabric or are connected to the

DAC/ADC peripheral blocks. To handle such a complex set of conditions we define

a single I/O block as multiple blocks each with a unique property which is again

specified in the pads file but as a comment. Our tool vpr2swcs then parses this in

the pads file and generates the correct switch configuration for that operation. The

pads file configuration is illustrated in Fig. 20(b)

Parameters for switches: Various complex block or elements have some special

parameters that need to be set. For example in digital LUTs, the conditions that

need to be satisfied or in the case of OTAs, the bias condition for a floating-gate

transistor as shown in Fig. 20(c). The tool helps to handle these and specify different

conditions.

Generating switch lists: Our configurable architecture supports switches in three

modes namely, ON, OFF or intermediate levels. This implies that the floating-gate

switches can be used as ON/OFF switches as well as targeted to a specific current

value.

42

3.3.5 Efficiency question for routing

For digital circuits few factors are considered while routing namely timing driven

routing or custom routing. For timing-driven routing, the capacitive load is a major

factor considered. Delay,

τ ∝ Capacitance (1)

In synchronous digital design the delay of the critical path is used to set the clock

frequency in order to guarantee that the propagation delays of all paths will satisfy the

setup and hold times of the latches used to synchronize the data. For analog circuits

however that is not always the criteria one might consider. For analog circuits one

must consider parameters like delay, noise, Signal-to-Noise-ratio (SNR) etc. while

designing. Now,

Noise ∝ 1/Capacitance (2)

SNR of the system is lower if we decrease capacitance.

SNR ∝ Capacitance (3)

Hence there needs to be trade-off while optimizing a circuit rather than just decreasing

capacitance. This is another challenge which we handle in a more custom manner

right now but also hope to integrate into the tools. We illustrate this issue in Fig.

23.

3.4 Routing resources for computation

VMMs are very efficient blocks for computation and can be used in image and speech

processing algorithms [160,162]. Unused Routing resources can be leveraged to build

VMMs [163]. We were able to leverage local routing interconnects to build VMMs as

shown in Fig. 24(a)-(b). This was done by manipulating the architectural file as well

as the technology map specified for a chip to block the local interconnect. vpr2swcs

can then selectively block certain columns in an architecture as VMM blocks. A high

43

G
N

D

V
d d

x2

x2

x2

x2

GND Vdd

Input Lines

x2

CAB

Unused CAB
block

Output Lines

Local routing consists of a crossbar
matrix of Floating-gate switches

Floating-gate switches can be programmed to be used as an
Analog Vector- Matrix-Multiplier (VMM)

XCOS block for building VMMs with
sense-amplifier at the backend

(a) (b) (d)

GND GND GND GND

GND GND GND GND

GND GND GND GND

V1 V1 Vm Vm
+ - + -

(c)

Vector- Matrix-Multiplier (VMM) implemented in the
routing matrix in the CABs

Figure 24: A novel feature of this hardware/software system is the ability to build use-
ful computation out of routing resources. The synthesis, place, and routing of circuits
containing VMMs built out of floating gate switches is highlighted here. (a) Local
interconnect routing resources inside an Analog CAB are utilized to build VMMs.
The size of basic VMM block depends on the size of the interconnect. Multiple VMM
blocks can then be tiled to build bigger mXn VMMs. (b) Illustration of how a cross-
bar switch matrix can be used to build VMMs. (c) Block Diagram and parameters
for a VMM block that can be set by the user. (d) When using VMMs, vpr2swcs
chooses a new architecture file and technology map that isolates some columns of the
FPAA for use as VMMs. Thus, one can build these structures while still building
other designs on the chip. We show the routing view for this new configuration type.

level Xcos block was developed as seen in Fig. 24(c) which could then be compiled

on to chip as shown in the VPR routing output in Fig. 24(d).

3.5 System Example: Speech Classifier

I now present a system example using the circuit blocks we have presented so far.

Let us look at the mixed-mode example of a speech classifier. the use of VMMs as a

computing element is demonstrated here. The speech classifier circuit detects speech

in an input signal. It is a good example of how we can encapsulate a large system

into a simple block as shown in Fig. 26(a)-(b). We combine 12 filterbanks for speech

over different bandwidths which is then followed by a 12x4 VMM and 4− input WTA

processing stage and a digital shift register block. As one can see in Fig. 26(c) routing

is much more complex and spread out. We show experimental data in Fig. 26(d) as

recorded for the speech classifier synthesized on chip .

44

VMM
N M

k-WTA
M

(or fewer)

VMM + WTA = universal approximator Simulation Results in XCOS

0 0.5 1 1.5 2 2.5 3 3.5
1

1.2

1.4

1.6

1.8

2

2.2

2.1

2.3

In
pu

ts
 (

V
)

A & B

A & BBA

AB

Time (ms)

W
T

A
 O

ut
pu

t (
V

)

Experimental Results from IC

VMM+WTA
as an

XOR gate

(a)

(b)

(c)

(d)

(e)

A

B

Threshold

A B

Figure 25: VMM+WTA or Universal Approximator system example: (a)The
VMM+WTA has been shown to act as a universal approximator [160]. Here we
present the circuit as a two-input Exclusive OR (EXOR) gate. The VMM matrix
so chosen is a 3X3 matrix as shown in [160]. (b) The XCOS block diagram of the
system. This Xcos file is used for simulation as well as experimental testing. (c)
Routing as viewed in the VPR tool. (d) Simulation results of two-input EXOR gate.
(e) Experimental results of two-input EXOR as recorded from the FPAA.

3.6 Conclusions and Future Directions

We presented a new synthesis tool vpr2swcs which is an open-source tool environment

for mixed signal design using FPAA SoCs. The tool enables rapid prototyping on

FPAA SoCs in the same integrated design tool framework. The toolset is open source

(after publication) framework to target and explore of new FPAA architectures and

encourage collaboration. We believe it will empower a wider community to do analog

and digital system design. We have demonstrated some mixed signal design examples.

There are no benchmarks specified for this tool, simply because such benchmarks are

45

0 1 2 3 4 5 6 7 8 9 10
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time (s)

Input Speech signal

WTA output

No Speech

SpeechO
ut

pu
t (

V
)

(c)

(a)

(b)

Vector-Matrix
Multiplication

(VMM) +
Winner Take All

(WTA)

OutputInput C4 BPF Amplitude
Detect

m m

Shift register
n

100Hz to 4kHz
Constant Q = 2
Exponential Spacing

25Hz corner

12x4
VMMs

m=12, n=4

12 Filterbanks,
4-input WTA

Filterbank

Figure 26: Speech Classifier System example: We demonstrate a classifier which can
detect speech in a signal. (a) Block Diagram of a speech classifier system. It consists
of a vectorized filterbank frontend that isolates frequencies in the speech spectrum.
The signals are then input into a VMM+WTA circuit, which processes the signal to
determine if speech was detected. (b) Routing the system using vpr2swcs for a speech
system with twelve filterbank, 12X4 VMM and a four input WTA. (c) Experimental
Data recorded from the FPAA for the speech classifier.

yet to be set for reconfigurable mixed signal systems. This work is an initial step in

that direction.

46

CHAPTER IV

HARDWARE SOFTWARE CODESIGN

We present a unified tool framework for Analog–Digital Hardware-Software CoDe-

sign, enabling the user to manipulate design choices (i.e. power, area) involving

mixed-signal computation and signal processing. Digital Hardware-Software CoDe-

sign is an established, although unsolved, discipline (e.g. [115]); incorporating analog

computation and signal processing adds a new dimension to codesign. One typi-

cally assumes all computation is done in programmable digital hardware. The wide

demonstration of programmable and configurable analog signal processing and com-

putation [71] opens up an additional range of design choices, but requires user friendly

design tools to enable system design without requiring understanding of analog circuit

components.

We present our tool framework integrates a high-level design environment built

in Scilab and Xcos (an open-source platform for MATLAB and Simulink, respec-

tively), with a compilation tool, x2c, from the design environment to configurable

and programmable configurable hardware. Figure 27 illustrates that although go-

ing from an application on a mixed-mode computing system may seem intractable,

going through our Xcos tool framework compiled down to the system through x2c

provides a potential method of solution. The approach is focused to enable system

designers to integrate useful systems, while still enabling circuit experts to continue

to develop creative and reusable designs within the same tool flow. Our example

mixed-signal processing environment uses Large-Scale Field Programmable Analog

Arrays (FPAA).

This open-source tool platform integrates existing open-source tools with software

47

ASP ASP

Software

SoftwareDigital

Digital

Digital

Application

???
x2c

Platform of Programmable Analog and Digital Hardware / Software

Figure 27: The translation from an application to a heterogeneous set of digital hardware +
software resources is a known field of study; The translation from an application to a heterogeneous
set of analog and digital hardware + software resources is question that is barely even considered.
The focus of this chapter is to describe a set of software tools to encapsulate a range of potential
application solutions, written in SciLab / Xcos, that enable a range of system design choices to be
investigated by the designer. These tools enable high-level simulation as well as enable compilation
to physical hardware through a tool x2c. The toolset will be publicly available upon publication.

we have developed to build an integrated environment to simulate, and experimentally

test designs on the FPAA SoCs. Section II overviews the Analog–Digital design tool.

Section III describes tool integration with an experimental FPAA platform. Section

IV describes our methodology for implementing the toolset, including the approach for

macromodel system simulation corresponding to measurements, and the approach of

translating from the Xcos description to net list descriptions for hardware compilation.

48

ANALOG
blif (netlist)

DIGITAL
blif /verilog

ASSEMBLY
.asm

Program IC

High Level
Graphical

Circuit

Compile to
switches

Compile to
Hex code

(a)

(b)

x2c tool for FPAAs

Integrate digital
and analog blif

VPR

vpr2swcs

.blif

.swcs

Technology
 File for
different

ICs

.xml

sci2blifSRAM
Program: 16k x 16

Data: 16k x 16

MSP430
Open Core
Processor

Memory
Mapped
Registers

16, 7bit signal
 D

A
C

s
P

rog D
A

C
s

(6, 6 to 7bit)

GP I/O

Prog: I V
Ramp ADC

SPI
Ports

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

ASP ASP

Software

SoftwareDigital

Digital

Digital

Platform of Programmable Analog and Digital Hardware / Software

Can switch to differ-
ent IC specifications/
configuration modes.

.net, .route, .place

(c)

Figure 28: Tool Design Overview to handle programming this mixed platform of programmable
analog and digital hardware and software, such as the block in (a). For this discussion, we will utilize
large-scale Field Programmable Analog Arrays (FPAA), such as a recent FPAA shown in (b), for
our starting discussion. These approaches are not limited to this particular system, and could be any
particular system. In (c), we show an overview of our Top-down design tool flow for targeting such
an FPAA device. The graphical high level tool uses a palette for available blocks that compile down
to a combination of digital and analog hardware blocks, as well as software blocks on the resulting
processor. The tool framework x2c, converts Xcos design to switches to program the SoC as well
as for software simulation. x2c combines open-source software like Scilab Xcos, VPR/VTR and our
custom software sci2blif and vpr2swcs to create a software suite to program and test FPAA SoCs.

Section V describes some larger FPAA system examples. Section VI summarizes our

chapter, as well as discusses strategies for Analog–Digital Co-Design. The toolset will

be publicly available upon publication of this chapter.

4.1 Analog–Digital Design Tool Overview

Figure 28 shows our toolset for the translation from an application to a heterogeneous

set of analog and digital hardware + software resources, such as the representative

case in Fig. 28a, as well as our specific FPAA IC in Fig. 28b.

49

Figure 28c shows the block diagram of the resulting tool flow used for our infras-

tructure, used from IC experimental results as well as to simulate a given circuit before

testing on FPAA hardware. Xcos system is built to enable macro model simulation of

the resulting physical system. x2c converts Xcos design to switches to program the

hardware system, made up of sci2blif that converts Xcos to modified BLIF (Berkeley

Logic Interface Format), and vpr2swcs that converts BLIF to a programmable switch

list as code around modified open-source Virtual Place and Route(VPR) tool [121], a

tool originally designed for basic FPGA place and route algorithms. The particular

system to be targeted, in this case a particular FPAA device, is defined by its re-

sulting technology file for x2c tool use. A detailed discussion of vpr2swcs place and

route tools will be published elsewhere as it is beyond the scope and length of this

chapter.

Figure 29 shows the graphical interface and the palette/library for different blocks

in the tool. The tool is encapsulated in a single, open-source Ubuntu Virtual-Machine,

with a single desktop button to launch the entire scilab tool framework. Xcos gives

the user the ability to create, model, and simulate analog and digital designs. The

Xcos editor is standard blocks that are compartmentalized into classes or palettes

that range from mathematical operations to digital signal processing. The editor

allows the internal simulator to utilize the functionality of each block to compute the

final answer. Our tool structure took advantage of user-defined blocks and palettes

that can interact with Scilab inherent blocks.

Our Xcos [125] tool uses user-defined blocks and libraries. When the user opens

the Xcos editor, a palette browser is displayed, as shown in 29(b). The browser

lists Scilab’s collection of palettes as well as user defined palettes. One selects from

a palette of available blocks to build the resulting system, which can be composed

of a mixture of analog (BLIF), digital (verilog), and software (assembly language)

components. The Palette for FPAA Tools contains sub-palettes for blocks that are

50

(a)

(b) (c)

(d) (e)

Figure 29: Graphical Tool Interface for x2c. (a) The user chooses basic design options through the
FPAA Tools GUI, which starts running when the Scilab tools are started in the distributed Ubuntu
Virtual Machine (VM). (b) Snapshot of the Xcos palette for FPAA blocks for I/O blocks. There are
four sections, namely the Analog, Digital, Input/Output and Complex Blocks; the Analog, Digital
and I/O blocks consists of basic elements in different tiles of a chip. Complex blocks are pre-defined
circuit blocks called ‘macroblocks’ which we introduced in the previous chapter. (c) Snapshot of
the Xcos palette for FPAA blocks for digital blocks. The user sets parameters for simulation or for
compiling into IC. (d) Snapshot of the Xcos palette for FPAA blocks for Level 1 analog blocks. (e)
Snapshot of the Xcos palette for FPAA blocks for Level 2 analog blocks.

classified as analog, digital, inputs/outputs, and complex blocks. The Input/Output

palette contains typical circuits like DACs, Arbitrary Waveform Generator, IO pads,

and Voltage Measurement. The digital palette contains typical circuits like a D-F/F

and a clock divider. A few examples of complex blocks are a LPF, a Sigma-Delta

ADC, and a VMM+WTA .

The blocks and their information are stored in a Scilab data structure that can be

accessed in two different files, a block interfacing function and a block computational

function. The interfacing function sets up the fields of the dialog box associated with

each block to retrieve user parameters and set default values, as well as defines the

size of the block and the number of inputs and outputs. Consistency checks to let the

user know if the values they entered into the dialog box are valid implementation.

51

Each block has two specific files that dictate its appearance and its performance

within Xcos. The computational function encourages model customization, while

the interfacing function supports built-in data checking, variable inputs/outputs, and

default parameters. The interfacing and computational functions are heavily coupled

by the Scilab structure for a block. Thus, the parameters retrieved from a dialog box

displayed to users are accessible to compute the output of blocks during simulation.

We follow previous representation [124] of analog blocks into Level 1 and Level

2 blocks. Level 1 blocks abstract away intricacies for system designers, such as the

inputs and outputs are vectorized, voltage-mode signals. Level 2 blocks allow for

general circuit design, typically at representation of CAB elements (i.e. caps, FG

OTAs, and Tgates). Each block uses vector signals and resulting vector-based block

computation, where each block may represent potentially N virtual blocks (or more)

to either be compiled to silicon or simulated. The lines/links that connect the blocks

together are essentially layered buses. Each link, and resulting block element, allows

for vectorized signals consistent with level = 1 definition [124], empowering the user

to develop systems with just the necessary number of blocks.

4.2 Integrating Analog–Digital Design Tool with an FPAA
Platform

Figure 39 shows further details of the structure and testing of the FPAA devices.

When one thinks of testing a mixed mode IC, one does not visualize, a full system IC

requiring only simple interfacing to the outside world through USB or say SPI ports,

appearing to be a standard peripheral to a typical device. Figure 39 shows a typical

FPAA block diagram that enables both analog and digital components in its manhat-

tan routing fabric, and most approaches for FPAA devices can be fit into this resulting

framework [153–158]. The blocks with simply digital components are called in Com-

putational Logic Blocks (CLB), and the blocks with analog and digital components

are called Computational Analog Blocks (CAB). Figure 28 shows the block diagram

52

 LUT

 F/F

BLE

DIGITAL

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

I/O

I/O

I/O

I/O

ANALOG

Microprocessor Peripherals

A

A

A

A

A

A

A

A

Figure 30: Illustration of the structure of FPAA devices. The particular FPAA, or system of
FPAAs and/or other components are defined by their different technology files, chosen by the user.
Such an array could be a combination of components with analog (i.e. Computational Analog
Block, or CAB) or digital components (i.e. Computational Logic Block, or CLB) that are connected
through a switch matrix, as well as a range of I/O components and special additional components.

of the SoC FPAA used in this chapter for experimental measurements. This SoC

FPAA enables nonvolatile digital and analog programmability through Floating-Gate

(FG) devices, both in the routing fabric, but also for parameters for the computing

elements.

Figure 31 shows description of component blocks in the library (all level=1 blocks)

and their resulting circuit schematics. Although a circuit expert gains tremendous

insight to the particular circuit being compiled and used on the IC, most system

designers are satisfied with getting the desired functional behavior, with minimal

nonidealities from the circuit. The result is a rich set of analog and digital blocks,

similar to FPGAs when using graphical design tools (i.e. [82]), that can be expanded

53

Vdd

GND

G
N

D

V
d d

V

C

GND

Vbias

Vin

out

Minimum Amplitude Detector

G
N

D

V
dd

C

GND

Vout

Vin

Low Pass Filter

COMPLEX CIRCUIT MODEL

MACROBLOCK

Figure 31:
The tool allows us to draw in block diagrams for mixed-mode computation; each of these cases the
inputs could be a scalar or a vector; In each case, we often want to encapsulate the knowledge of
the designer as much as possible in the resulting design. For example, the original analog designer
might want a group of circuits all in a single CAB; we use a macro block to encapsulated as a single
block in a CAB that are built from basic elements in the Analog and Digital Tiles, using separate
blackboxes in VPR to keep all elements in the same Tile. (a) We show an example of a few low-level
circuit components and their block diagram, as well as some of their testing circuits, that includes
analog and digital components. We show a LPF and a Minimum Amplitude Detector circuit. (b)
A rich palette of macroblocks that can be generated using the core elements of a chip.

and grown as needed.

Figure 31 also shows typical components in a CAB, with its typical routing infras-

tructure of input and output port lines to the rest of the manhattan geometry routing

fabric. We see the detailed routing to compile the C4 bandpass filter circuit. We de-

fine a macroblock as encapsulating complex circuits using elements inside a single tile

to create a single block, enabling more efficient high-level routing. The connections

within the CAB are pre-optimized and the tool now only handles placement and

global routing. The approach enables us to encapsulate much of the objectives of the

circuit designer, often started at a level=2 block, as it becomes a full level=1 block.

Further, the use of FG devices for switches effectively embeds analog components

into the routing fabric as well as enabling connections on the resulting lines [83],

enabling often far more computation in just the routing fabric compared to the CAB

or CLB elements. Any tool development for these FPAA SoC must be able to handle

these opportunities; almost all configurable systems have some similar opportunities

54

that must be encoded in the system’s technology file.

Gm1

Vin

Gm4

C2

C1

Cw

Vref

Vout

CL

V2

(a)

Modify ODEs of the form
dV
dt

= f(V,Vin,
dVin

dt
)

Modify ODEs to have
no input derivatives
dV
dt

= f(V,Vin)

400 20 60 80 100

2

1

0.5

1.5

Time (µs)

O
ut

pu
t V

ol
ta

ge
 (

V
)

(b)

(C1 + C2 + Cw)dV1
dt

=
C1

dVin
dt

+ C2
dVout
dt

+Ibias2 tanh
(
Vout−V 1

VL

)
(CL + C2)dVout

dt
= C2

dV1
dt

+

Ibias1 tanh
(
− κV1

2UT

)
Ceq

dV1
dt

= C1
CL+C2

C2

dVin
dt

+CL+C2

C2
I2 + I1

Ceq
dVout
dt

= C1
dVin
dt

C1+C2+Cw
C2

I1 + I2

I2 = Ibias2 tanh
(
Vout−V 1

VL

)
I1 = Ibias1 tanh

(
− κV1

2UT

)

Ceq
dV1
dt

=
CL+C2

C2
I2 + I1

Ceq
dVout
dt

= I2 + C1+C2+Cw
C2

I1

I2 = Ibias2 tanh
(
Vouta−V 2+(β−α)Vin

VL

)
I1 = Ibias1 tanh

(
−κ(V2+αVin)

2UT

)
Figure 32: Approach to building a level=1 macro model for the C4 filter that corre-
sponds closely to measured experimental data. (a) Circuit diagram for a C4 bandpass
filter. (b) Simulation of a step response for the C4 bandpass filter. (c) Starting equa-
tions from the circuit in (a). (d) Modification of the equations into the 1st form. (e)
Modification of the equations into the final Xcos ODE formulation.

4.3 Methodology for Implementing the Tool Set

In this section we dive deeper into the key aspects of the high-level tool infrastructure.

Our system requires that we can use the same Xcos block diagram structure to both

55

simulate and compile to hardware. Our approaches in this section follow the level=1

definition [124], as defined elsewhere and first fully implemented in this work.

For level=2 cases, the compilation to BLIF / veriog follows the same path as

level=1, but the simulation environment requires a far more complex simulation en-

vironment. Simulation in level=2 requires compiling the net list into a SPICE, direct

measurement after compilation, or developing a simulation framework using Modelica

with Scilab; this last topic will be the topic of future discussions.

In the following sections, we will address, in turn, the aspects required for level=1

macromodeled simulation, and then, the aspects required for sci2blif which converts

the Scilab structure into a format ready for place and route compilation.

4.3.1 Macromodel Simulation

A typical design flow includes simulating a designs functionality, analyzing the results,

and iterating to a good solution, before proceeding to hardware synthesis, often be-

cause of the constraints of accessing such a hardware system. At first, one might ask

if physical hardware is directly available (and portable), why not always go directly

to circuit measurement, where we get precisely our results in real time. Even in cases

where hardware is available, it is often useful to have one simulation case, say for DC

values and a reference simulation, to compare with experimental measurements.

The amount of simulation one might do before compiling a circuit will depend on

compile time (longer compile time, more simulation), accessibility to FPAA hardware,

whether in person or remote, user inexperience (more inexperienced, longer simulation

time) as well as number of potential debugging points required.

We focus the simulation on as fast a simulation model as possible that gives

accurate results. Further, different from a SPICE model, we do not need to make

a model every possible transistor configuration and situation, but for a given macro

model, we have precisely one specific case related to a particular hardware device,

56

greatly simplifying the resulting computations. We want a simulation accurate enough

compared to the real data, but without much computational complexity. Scilab, like

MATLAB, optimizes for vector operations; our vectorization of blocks preserves this

functionality, as well as results in the fastest numerical simulation possible.

The analog system modeling requires using Ordinary Differential Equations (ODE),

potentially in combination with algebraic equations, that capture the nonlinearities

of a circuit in continuous time are used in the computational function. Scilab also

enables discrete time modeling as well as modeling for clocked systems, which follows

a similar approach. In the SoC FPAA, .every connection point will have some ca-

pacitance, resulting in dynamics where the resulting capacitor voltages would often

be the state variables. The required form for Xcos /Scilab for ODE simulation is the

standard form of

dV

dt
= f(V,Vin) (4)

where V is the vector of state variables (i.e. voltages), and Vin is the vector of system

inputs. The resulting ODE definition is put into the computation function code using

this functional form.

Figure 32 shows an example to formulate a physically realistic model for a C4

bandpass filter. A particular system will require reformatting these vectors from

typical circuit analysis. We show an example of a C4 bandpass filter; this block

was shown to be useful elsewhere, but not modeled at circuit (just linear transfer

function). Nonlinearities to be modeled accurately (as seen by the tanh() function)

to enable a system designer to minimize the effect where needed, as well as to empower

a designer to utilize nonlinearities when desired. Figure 32 shows the resulting three

iterations of mathematics required to get the physical equations to their proper Xcos

simulation form, as well as resulting Xcos simulation data that corresponds closely to

experimental data.

57

B3

B1

B4

B2

Block
Port1
Inputs Outputs

Port2
Port3

Port1
Port2
Port3

link1
(net1)

link3
(net3)

link2
(net2)

1
2
3
4

5
6
7

object #

Block
info

Link
info

name
location
size
user parameters

source block #
destination block #
InputOutput port #

maximum # inputs
maximum
outputs

Find System Input & Output Blocks,
 and create vector of those blocks

Input B3 B4

Output B2
Block # Port 1 Port 1Port 2

1

2

3

4

Routing Block Matrix

link1

link3

link2link1 link3

link2

Blif Output

.inputs net1 net3

.output net2

.subckt dev1 in[0]=net1 in[1]=net3 out[0]=net2
.end

(a)

link2

S1

split
block

link3

link2

link3

link5

link4

link2

B1

B2

B3

B1

B2

B3

(b)

Figure 33: sci2blif fundamentals: Xcos model to blif / verily net list to put into
VPR. (a) The data structure for a single set of blocks is an array with the block
information, as well as link information. Blocks are enumerated by when they are
created in Xcos; links are enumerated by where they are located on the block. We
also show the transformation of this data structure to blif / VPR representation for
VPR. (c) The resulting data structure of the Xcos network only allows for a single
input and output for a particular link; therefore we need to have additional blocks
included to handle when we have a single output going to multiple inputs.

58

4.3.2 sci2blif : Xcos to VPR

When user presses Compile Design, Scilab calls up Sci2blif that uses the Xcos rep-

resentation to create a circuit format in blif / verilog for the place and route tools

to create a switch list, as well as gathers the resulting assembly language modules.

Analog blocks are directly converted into a Blif format. Digital blocks first have to

call VTR before merging the resulting blif file. The switch list represents the low-level

hardware description (i.e. switches to be programmed).

Figure 33 illustrates the approach in converting from Xcos visual representation

to blif files for the analog components; the digital approaches are similar, although

typically easier. Scilab saves the graph as a data structure shown in Figure 33a,

described as

data = scs_m

that describes the Xcos file contents. The block objects are listed first followed by

then link objects and then they are listed by link numbers.

The approach is converted in three passes over the data structure. The first

pass parses data over the blocks portion to determine the number of blocks that

are compiled to CAB/CLB, input blocks, and output blocks. The input and output

blocks object numbers are saved in two separate vectors (a and b, respectively). We

define B as the number of blocks, I as the number of inputs, and O as the number

of outputs. Finally, the data object is represented as a matrix, G, of size [(B + I

+ O) x B] that contains the net numbers corresponding to each of the blocks to be

compiled.

The second pass parses data to determine which block’s input or output port is

connected to another block’s and input OR output port. Each link is represented

by two values the source and destination in data. The information provided is block

59

number, port number (ports on blocks are numbered top-down for inputs and out-

puts), and if port is an input or output. The net number is placed in the matrix

mentioned above.

The third pass parses data to generate resulting blif statements for compilation.

The input and output vectors and the matrix are used to put the nets of inputs and

outputs at the beginning of the blif file. Then one by one the command for each block

is put in... the net numbers are retrieved from the matrix using the block number.

Figure 33c shows when users connect an output of a block to at least two inputs,

an extra small block is inserted into the Xcos internal representation, increasing the

number of blocks and links, that is removed before generating blif file.

GND Vdd

Input Lines

CAB

Output Lines

 CAB
Block

GND GND GND GND

GND GND GND GND

GND GND GND GND

V1 V1 Vm Vm
+ - + -

Figure 34: A key feature to these tools is the ability to build useful computation out of rout-
ing resources; for example, the synthesis, place, and routing of circuits containing Vector-Matrix
Multiplication (VMM) built out of routing (i.e. floating-gate) switches. (a) Block Diagram and
parameters for a VMM block. (b) Vector-Matrix Multiplier can be built from a crossbar switch
matrix. (c) Local interconnect routing resources inside an analog tile.

4.4 System Examples

In this section we will investigate compilation of more complex system examples

particularly using the routing components as computational elements. In our SoC

FPAA, using FG switches enables analog computing devices when we program a

switch to an analog value. For example, a crossbar array of these analog programmed

FG switches could compute an Analog Vector-Matrix Multiplication (VMM), common

60

XCOS Macromodel Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5
1

1.2

1.4

1.6

1.8

2

2.2

2.1

2.3

In
pu

ts
 (

V
)

A & B
A & BBA

AB

Time (ms)

W
T

A
 O

ut
pu

t (
V

)

Experimental Results from IC

A

B

Figure 35: A system example showing a basic circuit classifier built from a VMM + a Winner-
Take-All (WTA) block. The three input vectorized system, with a 3X3 VMM, is configured as a
two-input EXOR gate; the resulting Xcos system block diagram is used for high-level simulation as
well as experimental results, which agree closely in their experimental results.

in all signal processing operations, entirely in routing fabric. The inclusion of such

capabilities requires additional sophistication at all levels of the tool flow.

Figure 34 shows an Xcos vectorized block diagram to implement a VMM struc-

ture, as well as its implementation using local routing crossbar array, as well as circuit

representation, for a VMM computation. This circuit requires a current-to-voltage

conversion, in this case a transimpedance amplifier of two OTA devices, to be con-

sistent with level=1 requirements. The resulting block has a dialogue box for key

parameters.

Figure 35 shows a VMM+ Winner-Take-all (WTA) circuit used as a classifier

circuit, including the vectorized test system as well as macromodelled simulation

data and experimentally measured data from the same vectorized test system. The

VMM + WTA classifier both elegantly compiles into FPAA devices using he VMM

through FG routing fabric, but further, the classifier combination using a k-WTA is

a universal approximator in a single classifier layer [160]. We use a 3x3 VMM matrix

61

FPAA1

µP

FPAA2

µP

FPAA3

µP

FPAA4

µP

FPAA3

µP

FPAA3

µP

(a) (b) (c)

µP1

A
D

C
s

D
A

C
s

Memory Block

µP2 µP3 µP4

Sensors

Switch Block

USB

Sensors

FPAA

µP

Figure 36: Possible approaches for mixed-mode computing systems. Implementation
could be a (a) single FPAA device, (b) a board of FPAA devices, or even (c) a
board with no FPAA devices but with programmable parameters and topology for a
resulting board encoded in the resulting technology file.

to demonstrate an example of a 2-input classifier consistent with XOR functionality;

For WTA circuits, a low output voltage signifies a winner.

4.5 Summary, Comparisons, and Approaches for Analog–
Digital Co-Design

We presented an Analog–Digital Software-Hardware CoDesign environment and fo-

cused examples as mixed-signal design using FPAA SoCs. The tool simulates designs

as well as enables experimental measurements after compiling to SoCs in the same

integrated design tool framework. The toolset is open source (after publication) setup

as an Ubuntu virtual machine enabling straight-forward user setup as well as open to

contributions from third party users empowering a wider community to do analog and

digital system design. Digital co-design questions pose issues for systems of mixed

62

SRAM
(costly)

Digital
Components

Digital
Interfacing

Buffer
memory

Bookkeeping
tasks

Software
(Processor)

FPGA
Fabric

FPAA
Fabric

S
ensors / A

ctuators
µP

Analog
Computation

Timing, counters,
 digital filtering

Control flow

State Machines

ADCs/DACs
Classifiers

ODE computation

Filters
(spatial / temporal)

VMM

Figure 37: We show a heuristic guide in the analog–digital hardware-software system CoDesign
for such computing systems.

hardware (i.e. FPGA) and software (i.e. code running on processor(s)) on the par-

ticular partitioning of the resulting computational system based on metrics of power,

area, time to market, etc. The recent including of programmable and configurable

analog computation allows this community to revisit fundamentally these tradeoff

and issues already a vibrant field.

The need for large-scale design tools for SoC FPAA devices was the practical

driver to create our toolset, although the approach is entirely extendable to a wide

range of analog–digital programmable–configurable systems. We have also developed

a high level software in Scilab (open-source MATLAB version) that converts high-level

block description by the user to .blif format, which acts as an input to our modified

63

VPR tool [121], including our code vpr2swcs, as well as modified architecture files

for analog–digital SoC. Our tool, sci2bli, translates a block in scilab to .blif format.

The resulting tool builds an analog, as well as mixed-signal library of components,

enabling users and future researchers of the basic analog operations / computations

that are possible.

We built this entire toolset as an open-source configuration to explicitly enable a

wider user community for these approaches. We package the entire tool flow, from

Scilab/Xcos, device library files, through sci2blif , vpr2swcs, and modified VPR tools

into a single Ubuntu 12.04 Virtual Machine (VM) that encapsulates the entire toolset

that simply requires pressing one button to bring up the entire graphical working

toolset. The approach allows us to fully distribute this toolset (which we will as soon

as it is published), both for classroom use, research groups, as well as interested users;

we hope this approach both encourages a user community around these tools as well

as a community to further improve the toolset. Further, the need to incorporate

modified VPR tool, which prefers to live under a unix environment, along with the

significant modifications from our previous tools developed in Simulink [124], includ-

ing modifications to enable Manhattan geometries and on-chip µProcessor, gave the

positive pressure to move our tool framework to this open source Scilab/Xcos envi-

ronment and fully implement the proposed level=1,2 concepts previously described.

We see this toolset as expanding out the graphical design approach for analog–

digital computational systems, from what we see for relatively well established FPGA

design tools for Simulink tools [82] developed to work with Xlinix [94] and Altera

FPGA [95,96] devices. Simulink provides the framework to input into Xlinix / Altera

compilation tools, completely abstracting away the details from the user. but in an

approach for analog–digital (or simply analog or digital) application spaces. Currently

the Simulink approach is the dominant graphical FPGA approach, allowing both

standard simulink blocks to compile to verilog blocks as well as support for specific

64

blocks. although one finds a few other open-source approaches [125] approaches.

These approaches are also consistent with the world of hardware-software co-

design (i.e. [115]), where almost all of the work focuses on digital hardware-software

codesign (for example [91–93]). Rarely, we see directions towards analog approaches

[89,90], but usually more theoretical in nature without experimental hardware avail-

able, and therefore lacking momentum required to make into a system usable for even

a class audience.

A remaining question is understanding the conceptual framework to guide the

designer in these analog–digital co-design problems, a question we expect will be the

subject of many future discussions and tool developments. Figure 36 shows we could

be designing with a single FPAA IC, multiple Ics, rack of boards, etc. as well as a

set of other components that have some programmability. The high-level graphical

tools enables a user to be able to try different approaches to optimize the system

performance, allowing consideration of trade-offs of power, system utilization, time

to market, etc.

Figure 36d illustrates initial starting guidelines for the problem partition. In

particular, one will typically want the heavy computation as physical computation

blocks near the sensor where the data originates or transmits, ideally in a data flow

approach to minimize the amount of short-term storage elements (power and area

issues). Moving heavy processing to the more analog approaches also tends to have

less impact on line and substrate coupling, a significant issue for mostly digital com-

puting systems. Often the line between digital and analog computation is blurred, for

example for data-converters or their more general concepts, analog classifier blocks

that typically have digital outputs. We expect the digital processor will be invalu-

able for bookkeeping functions, including interfacing, memory buffering, and related

computations, as well as serial computations that are just better understood at the

time of design compared to other approaches.

65

This chapter discusses a novel remote test system, enabled by configurable analog–

digital ICs to create a simple interface for a wide range of experiments; We have seen

a wide range of previous remote test systems that have to spend considerable time

developing their hand-tailored configurable system [108–113]. Figure 38 remote test

system requires no additional setup, other than the experimental FPAA system, other

than simple email handling, which is available over almost all network systems without

affecting the network. Independent of the distance, the system enables users around

the globe we have an internet connection sufficient to send and receive email. We see

the opportunities both in academic as well as research and industrial applications.

This approach minimizes computer support setup and maintenance, relieving the

pressure overworked computer support staff, particularly in cost-conscious academic

environments, trying to keep pace to maintain a larger number of computing systems.

An analog–digital programmable and configurable IC system, enabled by large-

scale Field Programmable Analog Array (FPAA) device(s), requiring a single digital

external digital interface opens opportunities for a simple remote test infrastructure.

This approach gives a simple digital peripheral using a standard interface (i.e. USB),

enabling a small Internet of Things (IoT) block interfaced through an email system

to an open-source design / control tool. The resulting controlling device, whether it

be directly connected through this digital port (i.e. phone or tablet) or through a

network, can be a potentially simple OS enabling all features on the resulting system,

including sensory / actuation devices connected to this remote platform.

We present an integrated remote testing system requiring minimal IT overhead.

First, we will overview the FPAA devices and Baseline Tool Framework so that our

discussion is self-contained. Second, we will present a Low-pass Filter as the overview

example for the Remote System. Next, we will present the range of user interfacing,

expanding the remote user application as well as measurement capability.

66

USB
FPAA
IC(s)

S
ensors

Email

POP
email

Figure 38: We present a remote test system based on FPAA devices that can be used within our
current framework of high-level, open-source Xcos/Scilab tools. With a single button click in the
graphical tool, the system will email the resulting targeting code for the FPAA device to a server
location, to be picked up by the remote system, that compiles, runs, and then emails back the target
results.

67

Serial
to

USB

USB

SPI

FPAA IC(s)

µPAnalog
to test

Analog
IC under

test

In
fr

as
tr

uc
tu

re

 f
or

 te
st

in
g

S
ensors

(a)

(b)

SRAM
Program: 16k x 16

Data: 16k x 16

MSP430
Open Core
Processor

Memory
Mapped
Registers

16, 7bit signal
 D

A
C

s
P

rog D
A

C
s

(6, 6 to 7bit)

GP I/O

Prog: I V
Ramp ADC

SPI
Ports

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

(d)

USB

FPAA
IC(s)

Sensors

Send
Email to
address

POP
email

Send
Measurements
to target
email address

Outgoing
email
server

ANALOG
blif (netlist)

DIGITAL
blif /verilog

Program IC

High Level
Graphical

Circuit

Compile to
switches

Compile to
Hex code

x2c tool for FPAAs

Integrate digital
and analog blif

VPR

vpr2swcs

.blif

.swcs

Technology
 File for
different

ICs

.xml

sci2blif

Can switch to differ-
ent IC specifications/
configuration modes.

.net, .route, .place

ASSEMBLY
.asm

(c) (e)

Figure 39: System perspective using a remote test system to utilize mixed-signal
configurable systems. (a) Classical approach when considering analog IC design and
testing that we have an analog component under test along with all of the required
board (or bench) infrastructure required. (b) For these mixed signal ICs, the IC is an
entire system, acting as a peripheral through a USB port and/or optional SPI port.
Also, the resulting analog to test, if making a complete parallel to the system in (a)
is a small part of the overall available computing infrastructure. (c) Detailed flow for
the remote test system implementation. The design toolset in scilab / Xcos allows
the user to ”send email” in addition to ”program FPAA”. (d) Illustration of the
structure of FPAA SoCs. The particular FPAA, or system of FPAAs and/or other
components are defined by their different technology files, chosen by the user. (e)
High level block diagram of the FPAA Xcos toolset, including the high level design
environment as well as the compiler, x2c.

68

CHAPTER V

MODELING VOLTAGE-MODE CMOS DENDRITES

Neuromorphic engineering has garnered ever-increasing interest ever since Carver

Mead’s early explorations of the field [128]. Neuromorphic engineers claim that tran-

sistors can be used to emulate biological processes. Silicon devices and biological

structures operate based on similar physical principles, so it is possible to make cir-

cuits which share many of the computational properties of neurobiological systems.

There are two consequences of this statement: neuromorphic circuits can be used

to natively simulate biological systems, and they can also be used to perform bio-

inspired computation. This chapter explores how neuromorphic technology can be

applied towards emulation of dendritic behavior.

Computational neuroscientists use mathematical models implemented on digital

computers to simulate biological processes. While these are powerful tools, their ef-

fectiveness is decreased as simulation sizes grow. However, neuromorphic engineering

promises a different paradigm: simulation through the physics common to silicon tech-

nology and biological systems. This allows for real-time emulation of dense biological

systems, rather than a slower and less efficient numerical simulation.

The dendrite is a highly-branched conductive medium that connects neuron’s

synapses to its soma as shown in Fig. 40. They perform linear (and sometimes

nonlinear) summations of input currents, directional selectivity and coincidence de-

tection. Previously believed to have no computational value, they were modeled as

wires. However, studies have demonstrated otherwise [14, 18, 20]. In order to begin

to take advantage of this computation, we have verified that some of the most basic

properties of dendrites can be observed using analog CMOS circuit models.

69

Figure 40: (a) Dendrites are the structures which connect synapses to the cell body.
(b) Neuroscientists typically model these structures as passive linear cables. (c) The
classical model for this linear cable is an equivalent RC delay line. (d) An alternative
model for the linear cable is a network of aVLSI elements, primarily MOSFETs
and capacitors. (e) The steady-state behavior of both models is expected to be
an exponential decay in voltage, where the amount of decay depends on physical
parameters. (f) The dynamic behavior of both models is expected to be exponential
decay in space and a delay in time.

5.1 The Silicon Channel

Neuromorphic engineering begins with the principle that the transistor acts as a

biological analog. Carver Mead recognized that this is true because both silicon and

biological channels behave according to the same natural principle. The channel of a

transistor operated in its subthreshold regime is governed by the diffusion equation,

as are many biological processes [128].

The channel of a transistor is a region of silicon that separates the drain from the

source (see Fig. 41a). This area forms an energy barrier to charge carriers at the

source and at the drain. The number of charge carriers at the source or drain end

of the channel is determined by the size of this barrier, which is modulated by the

70

difference between the gate voltage and the source or drain voltage. Since the source

is operated at a higher potential than the drain in the P-channel device, the barrier at

the source end of the channel is lower, so there are more charge carriers at the source

end of the channel than at the drain end. Therefore we have a gradient of charge

carriers from the source end of the channel to the drain end. This is illustrated in Fig.

41c. This means that carriers must diffuse from the source to the drain according to

the diffusion equation from [128]:

(a)

Figure 41: (a) The physical structure of a MOSFET consists of polysilicon, silicon
dioxide, and doped n-type silicon. A channel is formed between the source and the
drain. (b) The physical structure of a biological channel consists of an insulating
phospholipid bilayer and a protein which stretches across the barrier. The protein is
the channel in this case. (c) The band diagram of silicon (solid line) has a similar
shape to the classical model of membrane permeability proposed by Danielli [135]
(dashed line). In both cases, carriers must overcome energy barriers in order to travel
from one side of the device to the other.

71

vdiffusion = −D 1

N

dN

dh
(5)

where vdiffusion is the velocity of carriers, D is the diffusion constant, N is the number

of charge carriers per unit volume, and h is distance. When the diffusion equation is

applied in the case of a gradient of charge carriers from the source to the drain of a

pFET channel, the current is given in [136] as:

I = I0e
κ(Vdd−Vg)/UT

(
e−(Vdd−Vs)/UT − e−(Vdd−Vd/UT)

)
= I ′0e

−κVg/UT
(
eVs/UT − eVd/UT

)
(6)

Vdd is the well potential of the pFET, Vg is the gate voltage, Vs is the source voltage,

and Vd is the drain voltage, all referenced to ground. I0 is a collection of physical

constants which is intuitively the saturation current when Vg = Vs = Vdd. κ is

a measure of how well the gate voltage modulates the potential at the channel’s

surface. UT is the thermal voltage (typically around 26 mV at room temperature).

To simplify the nomenclature, we can reference the terminal voltages to Vdd, in which

case I ′0 = I0. To reference everything to ground, we let I ′0 = I0e
κVdd/UT e−Vdd/UT .

The idea of overcoming energy barriers to produce current is also seen in biological

channels. In Fig. 41b, we show the structure of a channel embedded in a membrane.

Fig. 41c shows how both biological and silicon channels generate barriers to current,

where the barrier is shown as a change in membrane permeability in the case of

biological channels and a change in potential energy in the case of silicon channels.

5.2 Implementing the Linear Cable Model with Analog CMOS
Circuits

Historically, dendrites have been modeled as linear cables. Their structure consists of

a conductive solution that allows current to flow from the synapse to the cell body;

a phospholipid bilayer which separates the membrane potential from the external

72

potential; and ion channels which allow small amounts of current to leak across the

membrane. Wilfrid Rall adapted the mathematics originally developed to model core

conductor cables and applied it to dendrites [140]. We wish to demonstrate that the

behavior of a CMOS dendrite with pFET channels reduces to Rall’s mathematical

model when operated with small-signal inputs.

Our basic thesis is shown in Fig. 42. We begin with the biological dendrite and

model both the conductive medium and the leak channel using a silicon channel. We

also provide a bias current to set the resting membrane potential, Vrest. We then

assume small signals are applied as inputs, and our circuit reduces to a linear model.

VAx VAx

VLk C

g
Ax

g
Lk C

Vmem

Vmem

Iax

Vmem

Ek

ILk

(a) (c)(b)

Vbias

Vdd

gsΔVs

gdΔVd

C

gsΔVs

gdΔVd

gsΔVs

+
-Ek

(d)

Vmem

g
Ax

Figure 42: Various models of a dendrite. A biological dendrite is modeled as a
conductive cylinder surrounded by an insulating layer. A cross section of this model
is shown in (a), where Iax represents the current flowing along the axial direction of
the dendrite, ILk represents current from the dendrite to extracellular fluid through a
leak channel, and the internal and external potentials are Vmem and Ek, respectively.
When we translate channels into transistors, we get the model shown in (b), where
both the axial and leakage current flow through transistors. The external voltage is
set by a voltage source Ek, and Vmem is set by the bias structure. When we linearize
the transistor model, the result is shown in (c) and (d). Current sources can be
reduced simply to small-signal conductances.

The simplest model neuroscientists use to describe the function of dendrites is

known as the Linear Cable Model. The dendrite is treated as a conductive core

surrounded by an insulating layer. The core is modeled as a long piece of resistive

73

material, which can be discretized into many incremental resistances RAx. The insu-

lating layer is a phospholipid bilayer, and it is modeled as a capacitance C because it

separates the internal membrane potential from the extracellular potential. However,

there is leakage current from the intracellular solution to the outside of the cell, so a

leakage resistance RLk is also included in the model.

Koch gives a simple derivation of the mathematical cable model for this circuit

in [134]. If one writes down Kirchhoff’s Current Law (KCL) at the nodes Vmem and

uses Ohm’s Law V = IR and the capacitor equation I = C dV
dt

, then the following

differential equation describes the system:

λ2∂
2Vmem
∂x2

= τ
∂Vmem
∂t

+ Vmem −RmIinj (7)

where Iinj is current injected into the dendrite, τ = RLkC and λ =
√

RLk
RAx

. τ and λ

are called the time constant and the space constant. Intuitively, τ determines how

voltages along the dendrite change with time, and λ determines how voltages change

with distance down the dendrite. If we only care about the steady-state solution, we

can set the differential with respect to time equal to zero. This results in a solution

for the steady-state behavior given in Eq. 8.

V (x) = V0e
−|x|/λ (8)

Our goal is to replace the resistances in the linear cable model with silicon chan-

nels. The most intuitive way to do this is to simply replace each resistance with a

single pFET. The axial resistances are replaced with a pFET whose gate is set at a

fixed potential, VAx. Similarly, the membrane resistances are replaced with pFETs

whose gates are set at a fixed potential VLk. On an intuitive level, the conductance

of the pFETs is set by their gate voltage. We will need to bias the dendrite at a fixed

membrane potential, so a transistor which provides a DC bias current is inserted into

each node of the dendrite. It has a gate voltage Vbias, and it sets the DC point Vmem.

74

The final piece of the dendrite to consider is the capacitance. It is a fact of analog

circuits that every node has some capacitance associated with it. So we do not have

to place an explicit capacitance at each node to simulate a dendrite. If we so desire,

the FPAA has the ability to compile 500 fF capacitances into the nodes. The final

circuit is as shown in Fig. 42b.

In order to model an equivalence to the linear cable model, we can simplify the

full circuit into a linear one. Each transistor is replaced with a small-signal, linearized

model. To do this, we take partial derivatives of the current equation for a pFET as

formulated in Eq. 6.

Linear Model of Axial FET

In the operation of the circuit, we will leave the gate fixed at a DC bias, so we

can simplify Eq. 6 by incorporating the gate voltage term into Ibias = I ′0e
−κVg/UT .

Therefore, the current through the axial and leakage pFETs can be expressed as

follows:

I = Ibias
(
eVs/UT − eVd/UT

)
Traditionally, we form a linear model for this device by taking the partial derivative

of the current with respect to a changing terminal voltage. Since a signal is traveling

in the axial direction of our dendrite, both the source and the drain of the axial FET

are changing. We model this with two current sources in parallel pointing in opposite

directions, with the values gs∆Vs and gd∆Vd. Ignoring channel length modulation,

the values for gs and gd are given in [136] as:

gs =
∂IAx
∂Vs

=
Ibias
UT

eVs/UT

gd = −∂IAx
∂Vd

=
Ibias
UT

eVd/UT

75

Note that, at rest, the dendrite will be biased such that all source and drain nodes of

the axial pFETs will be at the same rest potential, Vrest. This means that gs = gd.

We can combine the two current sources into one source with the value

I = gAx∆Vs − gAx∆Vd

= gAx (∆Vs −∆Vd)

= gAx∆Vsd

So this is simply a small-signal conductance,

gAx =
IbiasAx
UT

eVmem/UT (9)

Linear Model of Leakage FET Modeling the leakage transistor is much easier.

Both the gate and the drain are fixed to DC voltages. So any change in voltage

across the device is completely due to a change in the source. Therefore, the small-

signal conductance of the leakage FET is just the source conductance, as given above:

gLk =
IbiasLk
UT

eVmem/UT (10)

Deriving the Space and Time Constants

The space constant is the parameter λ in the linear cable equation which describes

how voltage in the dendrite decays with position along the dendrite. It is related to

the ratio of the axial and leakage conductances. Now that we have linearized our

model, we can define a space constant λ by taking the ratio of our conductances:

76

λ ≡
(
RLk

RAx

)1/2

=

(
gAx
gLk

)1/2

=

(
IbiasAx
IbiasLk

)1/2

= e
κ(VLk−VAx)

2UT (11)

Figure 43 verifies this expression experimentally using the FPAA. We measured how

the conductance of a pFET changes as a function of its DC gate potential. To relate

this back to Eq. 11, we measure a reference conductance and see how changing

the gate voltage affects the square root of the ratio of the new conductance to the

reference.

The time constant τ describes how voltages decay with time. It is defined as the

product of the leakage resistance and the capacitance, or

τ =
C

gLk
=

CUT
IbiasLk

e−Vmem/UT (12)

Sources of Error: The above expressions hinge on perfect matching among all

pFET devices. This unfortunately is rarely achieved. We measured the values of κ

and I0 for a sample of 15 pFET CABs in the FPAA and measured the statistical

variation for these two parameters. This information is shown below:

µ σ

κ 0.8393 0.0021

I0 4.5740 fA 0.77549 fA

The above analysis assumes the system is processing “small” signals. We can no

longer assume that the linear models behave if they are perturbed far from the DC

bias. We limited inputs to the system such that the source nodes of the vertical

pFETs never changed by more than 25 mV.

77

−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5

6

ΔVg

(C
o

n
d

u
c
ta

n
c
e
 R

a
ti
o
)1

/2

Measured

Theoretical

~

A

V

meas

sweep

I

Vg

+ -
ΔVg

0

Vs0

Vd0

Figure 43: Demonstration that the ratio of source conductances is a function of the
difference between gate voltages. We took a CAB pFET and measured a reference
source conductance by fixing the DC potential at all of its terminals (Vs0 , Vg0 , and Vg0),
and measuring the DC current. We then swept its source voltage through a very small
range (Vsweep) and measured the change in current. The reference conductance was
the slope of change in current with respect to change in source voltage. We performed
this same experiment for ten different values of the gate voltage (Vg0 - ∆Vg). We then
plotted the square root of the ratio of source conductances as a function of the gate
voltage. We used the difference in gate voltages to create a theoretical value of the
conductance ratio from Eq. 11, and the two match very closely.

5.3 Demonstrating Equivalence to the Linear Cable Model

We now wish to demonstrate that our voltage-mode circuit retains many of the be-

haviors of a passive dendrite. We set up our cable using the system shown in Fig. 44

(a).

78

Vin

Stage 1

Iin

Stage NStage 2

+

-
Vdyn1

Vref

+

- Vstatic1

+

-
Vdyn2

Vref

+

-

+

-
VdynN

Vref

+

-Vstatic2
VstaticN

(a)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Tap Number

∆
V

ou
t i =

 V
m

em
i −

 V
re

st
i

Theory, λ = 5.2532
Measured
Theory, λ = 2.8201
Measured
Theory, λ = 1.5139
Measured
Theory, λ = 0.81273
Measured
Theory, λ = 0.4363
Measured

(b)

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

Tap Number

∆
V

ou
t i =

 V
m

em
i −

 V
re

st
i

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Normalized length L (l/λ)

R
in

 /
R

∞

Measured
Ideal
Best fit to a+b*coth(L)

(d)

Figure 44: (a) Schematic for taking measurements from the cable. Each block rep-
resenting a stage consists of one bias, axial, and leakage transistor as shown in Fig.
42b. (b) and (c) Steady-state decay of dendrite voltage. For five different values of
λ, a ten-stage dendrite was biased at DC such that the Vmem nodes were about 20-50
mV above Ek = 1. Then a small DC current was injected into the first node. We
then measured ∆Vi = Vmemi − Vresti for every node in the dendrite. Then ∆Vi was
normalized. The dots are experimental measurements, and the lines represent how
the voltages should decay if λ matches the theoretical value perfectly. The linear plot
gives an intuitive physical feel for how the dendrite behaves, while the logarithmic
plot demonstrates how these are approximately exponential responses. The log plot
also shows how error in slope accumulates.(d) This plot shows how input resistance
changes as dendrite length is increased. A fixed input current was injected into Node 1
of the diffusor, and the membrane voltage at that node was measured before and after
injection. We then calculated the difference between these two (Vdelta = Vmem−Vrest).
This was done for many different dendrite lengths. To calculate Rin/R∞, we divided
all values of Vdelta by the value for L = 1. Since the injected current was the same for
all tests, the ratio of resistances is therefore the ratio of the voltage responses. The
response did not follow the quantitatively predicted curve, but it does demonstrate
qualitative behavior similar to what we expect, as shown by the dashed curve, which
is a curve fit to a + b*coth(L)

79

5.3.1 Steady-State Experiments

The first test to perform is a steady-state analysis. In our experiment, we compiled a

10-stage dendrite onto the FPAA. We set Ek = 1V and biased the membrane voltage

to around 20 mV above Ek. Due to mismatch among the bias transistors and leak

transistors, not all membrane voltages were exactly the same, and they could vary by

as much as tens of mV. We attempted to compensate for some of the mismatch by

an iterative process of measuring and changing the bias voltages on the gates of the

Ibias transistors, but this did not remove all of the mismatch. Since this is a dendrite

of finite length, the steady-state solution takes on a slightly different form than that

given earlier. From [134], the solution is

V (X) = V0
cosh(L−X)

cosh(L)
(13)

where X = x/λ and L = l/λ. For this experiment, we defined the steady-state voltage

of a particular node as the difference between its measured rest voltage and its voltage

after applying an input. The results for this dendrite are given in Fig. 44 b,c.

The input resistance of a semi-infinite, sealed-end cable is also well-known. Its

expression is given in [134] as

Rin = R∞ coth(L) (14)

As L increases, Rin approaches R∞. To test whether our dendrite follows this model,

we applied a step input current of I0 to our dendrite and varied the value of λ. For

a fixed input current but variable dendrite length, we can predict what the voltage

should be at various points along the dendrite. Our results are shown in Fig. 44(d).

Our theoretical results do not perfectly match the data, and there are a few pos-

sible reasons for this. Probably the largest contributor to the problem is biasing

the dendrite correctly. For the experiments in Fig. 44 b,c, the resting membrane

80

potentials were as much as 30 mV away from each other. The ratio of small-signal

conductances is e(∆V/UT), so this means that the ratio of two ideally matched con-

ductances could be as high as 3.32. It should also be noted that κ changes with the

source voltage, so a 30 mV mismatch in source voltage could also affect κ.

5.3.2 Dynamic Experiments

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 ∆
 V

 =
 V

ou
t −

 V
re

st

Data
Error Function
Exponential

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 ∆
 V

 =
 V

ou
t −

 V
re

st

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 ∆
 V

 =
 V

ou
t −

 V
re

st

(b)

Figure 45: (a) Step response for the first node of a diffusor, along with the best fit
to the error function and an exponential function. The step response was obtained
by setting the value of Vref on the first node’s floating-gate OTA such that Vdyn1

was midrail. Then the input current was pulsed, and the waveform was captured.
We experimentally determined how much to pulse Vin by alternatively pulsing it,
measuring how much the first node’s voltage changed, and adjusting the gate until
the first node’s voltage changed by less than UT , or 25 mV. We chose this value since
the FETs would leave saturation if the source voltage changed by much more. We
normalized the result by subtracting the DC offset and dividing by the maximum
value reached. Linear cable theory predicts that the error function will be a closer fit
than the exponential, but the data for our system mirrors an exponential response
much more closely. It is possible that our step size was greater than needed to keep all
devices in their linear regimes. (b) Step responses for four taps of the dendrite were
taken for two different values of λ. For a small value of λ, the velocity of propagation
is small, so one can see delays of the response as they travel down the dendrite. For
higher values of λ, the velocity of propagation is very fast, so very little delay can be
seen. Fig. 46 shows parasitic transients not visible in this figure.

Cable theory provides us with a prediction for what the shape of the step response

should look like at the site of current injection. The form is given in [134] as

81

VStep(0, T) =
I0R∞

2
erf(
√
T) (15)

We have plotted a representative step response for x=0 along with a best-fit line to

this theoretical function in Fig. 45a.

Since the cable model is basically an RC network, we expect to see delay down

the line. The propagation velocity of a step input down the line is given in [134] as

v = 2
λ

τ
(16)

This means that we can increase the delay down the line (decrease the velocity of

propagation) by decreasing λ or increasing τ . In our experiment, we changed λ and

looked at how the velocity of propagation was affected. The results are shown in Fig.

45b.

In both the steady-state and dynamic experiments, we have seen a trend in our

results. Namely, they agree with cable theory qualitatively but do not match it

precisely, quantitatively. We do not expect these nonidealities to affect usability of

the dendrites greatly. This is because we believe the computation in dendrites is

not governed by precise tuning of every parameter. Neural computation is inherently

different from the von-Neumann architectures in which precision is key. They exhibit

high levels of stochastic behavior, redundancy, and recurrent connections. Rather,

for us it was more more important to see that the basic dendritic properties can be

varied over a wide range, allowing gross tuning of parameters.

5.3.3 Effects of a Reconfigurable Testbed

A reality of working in a reconfigurable environment is that parasitics can cause

nonidealities to crop up when experiments are run. Fig. 46 demonstrates this. To

apply an input current to our system, the gate of a pFET is pulsed low. This pulse

can capacitively couple both into the system and into the instrumentation measuring

82

the system’s response. The amount of coupling depends on how the system is routed,

so certain care should be made to ensure that system components are routed to

minimize such effects. For instance, the routing lines for the voltage measurement

circuitry should not be physically close to the digital pulse on the gate of the input

current source. Additionally, a cascode should be used on the input current source.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

N
or

m
al

iz
ed

 V
ol

ta
ge

 (
V

)

Figure 46: Two parasitic effects seen at once for one particular step response. When
the gate of the pFET is pulsed down, some of that voltage change is coupled into
the input node of the dendrite, and therefore initially the voltage at the membrane
decreases. This change can be seen propagating along the system. For this step
response, we also see a spike upwards. This is likely due to capacitive coupling into
the instrumentation amplifier (a floating-gate input OTA), because this change is not
seen propagating down the dendrite in other plots.

5.4 Simulink Model for simulating CMOS dendrites and
FPAA configuration

For DSP and neuromorphic engineers with little or no hardware experience, it is ben-

eficial to have a software tool that can provide an easy interface with the hardware.

Matlab Simulink allows users to add new blocks with user-defined functionality pro-

viding the user an interactive graphical interface. DSP engineers are familiar with

this tool to a large extent. Keeping this in mind, we developed a Simulink model for

dendrites. The Dendrite Simulink block provides users with a block-level interface.

Sim2spice [141] is the compiling tool we used to convert the block-level implementa-

tion to a Spice netlist. The GRASPER tool [142] is then used to configure the FPAA

83

and the RAT tool [143] is used to view and edit the routing.

5.4.1 Dendrite Simulink Block

The dendrite Simulink block is defined by level-2 M file S-funcions and corresponding

netlist elements. The elements used to model the block are the CAB elements on the

FPAA. The input parameters for the block are configurable. The Simulink block can

be used to run a behavioral simulation of the CMOS dendrites and also generate a

Spice netlist to configure the FPAA. It consists of mainly four files :

1. S-function Simulink block: Consists of the physical dendrite block with its

inputs, outputs and other input parameters that need to be defined. It is the

user-interface block as illustrated in Fig. 47a. The input parameters that the

user can specify are given in Fig 47b.

2. Matlab(.m) build script: Builds the spice netlist for the block

3. Description file(.desc): Defines list of paramters needed by the parser

4. Simulink(.m) behavior file: Simulates dendrites in Simulink using the mathe-

matical model based on the device physics of the silicon devices

5.4.2 Behavioral modeling

The Simulink block simulates the behavioral characteristics of the dendrite structure

given inputs.This provides the user an insight to the working of the dendritic circuit

when implemented using the FPAA. The MOSFET parameters used are based on the

MOSFETS present on the FPAA. It is characterized by coupled ordinary differential

equations (ODE) and solved using the ode solver ode-45. The model has been tested

for both static as well as time-varying inputs and has given reasonable results. We

present below a detailed analysis of the mathematical model used, based on the device

physics of silicon.

84

(a)

(b)

Figure 47: (a)Dendrite Simulink Block. This is a fully connected block with five
inputs, which are the biasing voltages required for the dendritic line and the output
port which denotes the voltage at every tap. (b) Block parameter window for the
Dendrite Simulink Block. The window asks users to specify input parameters needed
for the block. The user is asked to specify the number of stages, the type of FET used
(PFET/FG-PFET), if the output should be buffered or not, and the biasing voltages
required for the circuit.

Consider a dendritic line as given in Figure 42, with n number of nodes. Current

is injected only at the first node and the axial and leakage conductances are the same

throughout.

Applying KCL at node 1, the injected current and the bias current are the sum

of the axial and the leakage currents. The leakage current comprises of the current

through the leakage capacitor and the leakage transistor.

Applying KCL at node 2; the current through the first axial conductance equals

the current through the second axial conductance, the leakage conductance, and the

leakage capacitance.

Generalizing the ODE for all nodes except the boundary cases, the voltage at the

85

nth node is given by

C
dVn
dt

= Iinj + k1(eVn−1/UT − eVn/UT)

− k1(eVn/UT − eVn+1/UT)

− k2(eVn/UT − eEk/UT) + Ibias

(17)

where, C is the leakage capacitance and

k1 = I0e
((κ−1)Vdd−κVAxn)/UT (18)

k2 = I0e
((κ−1)Vdd−κVLkn)/UT (19)

This is a general expression for k1 and k2, however in our experiments VAx and

VLk are the same throughout. The boundary conditions are as follows, At the first

node,

C
dVn
dt

= Iinj − k1(eV1/UT − eV2/UT)

− k2(eV1/UT − eEk/UT) + Ibias

(20)

At the last node,

C
dVn
dt

= Iinj + k1(eVn−1/UT − eVn/UT)

− k2(eVn/UT − eEk/UT) + Ibias

(21)

Writing the equations in vector form is useful as it reduces the time required for

Matlab computation. We define all the constants in the equations based on the

MOSFETS used on the FPAA (κ, I0,C) along with the input parameters as defined

for the block (VLk,VAx,Ek).

We can re-write these equation in vector form ,

~dV

dt
=

1

C
(a1.Iinj + k1(ea2.

~V /UT − ea3.~V /UT)

+ k1(ea4.
~V /UT − ea5.~V /UT)

+ k2(ea6.
~V /UT − eEk/UT) + Ibias)

(22)

86

where

~V =

[
V1 V2 V3 . . . Vn

]
a1,a2,a3, a4, a5 and a6 are constant matrices whose size is dependent on the number

of stages of the dendrite.

0 1 2 3 4 5 6 7 8 9

10
−4

10
−3

10
−2

10
−1

10
0

No. of Taps

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
V

ol
ta

ge
 (

V
)

Simulink, λ = 5.2532

Measured

Simulink, λ = 2.8201

Measured

Simulink, λ = 1.5139

Measured

Simulink, λ = 0.81273

Measured

Simulink, λ = 0.4363

Measured

Figure 48: Comparing Simulation results to data obtained using the FPAA. After
modifying the I0 parameter, injected current, and node capacitance, the two normal-
ized curves have similar qualitative behavior.

Results

We simulated a 10-stage dendrite using the Simulink Dendrite block. The nodes are

biased at 1.02 V and a current is injected into the first node. The parameters used

for the axial and leakage transistors are κ = 0.8464 and I0 = 0.05fA. For the bias

transistors, κ = 0.72 and I0 = 0.45fA. The node capacitance was 70 pF, and the

injected current was 5 pA.

These simulation settings differ from our steady-state experiment in three ways.

The input current is different from experiment, the node capacitance is higher than in

87

experiment, and I0 differs from the experimental I0 by one or two orders of magnitude.

We believe the higher capacitance was needed in order to allow the simulation to reach

its steady-state results more quickly.

Once the above parameters have been changed for best agreement, the average

error between the normalized data and the simulation is 16.8%.

5.5 Nonlinear Behavior of Dendrites

Most of this chapter has concerned the behavior of the dendritic circuit operated in

its linear regime. When the input current becomes large, however, the qualitative

behavior of the circuit changes, and nonlinear effects begin to take hold. Typically, a

difference between drain and source of about 4UT , or 100 mV is typically considered

the nonlinear regime of the dendrite. In order to get a qualitative understanding of

the nonlinear effects, we will analyze one “section” of dendrite, shown in Fig. 50.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

N
or

m
al

iz
ed

 S
te

ad
y−

S
ta

te
 V

ol
ta

ge

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time

N
or

m
al

iz
ed

 V
ol

ta
ge

Large Step
Small Step

(b)

Figure 49: (a) When the steady-state response of a 10-stage dendrite is measured
with a large input current (causing a change of about 200 mV at the first node), the
response is a linear degradation in voltage. (b) Comparing shapes of small step and
large step response. The step response was normalized in voltage by dividing by the
steady-state value, and time was normalized by finding the point at which the voltage
rises to 95% of its steady-state value. The initial response of the small step is more
of an RC response, while the large step shows a sigmoidal behavior. See Fig. 46 for
a discussion of the transient at the beginning of the small step.

88

5.5.1 Math Modeling

Applying KCL and the current equations for a capacitor and a saturated transistor,

Figure 50: Illustration of nonlinear dynamics in dendrite circuit. A large-signal input
current is sent into a node which sees a transistor and capacitor in parallel.

dVs
dt

=
Iin
C
− Ibias

C
eVs/UT (23)

We can use Eq. 23 to plot a phase portrait. The basic shape is a negative exponential

with a vertical offset, shown in Fig. 51.

This portrait gives us quantitative and qualitative information about our circuit’s

voltage response to an input current. First, it gives us the voltage where we expect

Vs to settle:

Vs = UT ln
Iin
Ibias

(24)

89

Figure 51: Illustration of the phase portrait resulting from the circuit in Fig. 50. The
input current moves the line vertically, which changes the qualitative behavior of the
system.

Second, the picture tells us that we will get small time constants for large values of

Iin. Note from Eq. 23 that the vertical offset of this plot is determined by the value

of Iin. As Iin increases, the plot is shifted up, and the rate at which Vs changes for

a given value of Vs will be increased, thus decreasing the time constant. It is also

important to point out that the slope of the actual phase portrait is much steeper

than what we drew in Fig. 51. This means that a shift up in the plot won’t affect

the steady-state value of Vs as much as it will affect the time constant.

5.5.2 Demonstration of Impact on Dendrite Circuit Behavior

If we apply a large enough input current such that the membrane voltage changes

by more than 100 mV, we can measure the effects of nonlinear input currents on the

dendrite.

Our first experiment was to see how the steady-state voltage decays, as shown in

49a. The result is that the voltage decays linearly with space. This is a desirable

effect, since it is essentially a compression operation. Recall that, for small inputs,

90

the steady-state voltage decayed exponentially. If this trend were to continue for large

inputs, the dynamic range of available voltages would be severely limited. However,

for a large input, the FETs are no longer operating as resistors; they are in saturation,

so we merely require linear changes in voltage to achieve exponential changes in

current. Therefore the dendrite is using nonlinearity to increase its dynamic range.

Our second experiment is to see how the shape of the step response changes with

an increase in input current. We can rewrite Eq. 25 in the current domain. Defining

I1 = Ibiase
Vs/UT , we can differentiate with respect to time to get İ1 = I1/UT V̇s.

Substituting into Eq. 23,

Iin =
CUT
I1

∂I1

∂t
+ I1

∂I1

∂t
=

I1

CUT
(Iin − I1) (25)

When Eq. 25 is solved, it behaves like a tanh function, so we expect the shape of our

dendrite’s step response to be sigmoidal for large current steps. Our results in Fig.

49 bear this out.

5.6 Implementing Dendrites in Large Reconfigurable Sys-
tems

Recall that the FPAA connects analog components together using a matrix of floating-

gate pFET switches. These FG pFETs can be used as regular transistors, as well, so

they can be connected to form floating-gate diffusors. Rather than explicitly apply a

gate voltage to the horizontal and vertical transistors, they can be programmed with

varying levels of charge, which effectively acts like an applied voltage. The switch

matrix must by design be an extremely dense array of switches, so we can make very

large dendrites as inputs into neurons.

Difficulties of Floating-Gate Diffusors

Modeling floating-gate denditic circuits is more complicated than with regular FETs.

91

The reason for this is that the capacitive coupling from the source and drain to the

floating-gate is more pronounced than with regular pFETs. In order to design a

floating-gate dendrite, therefore, an extra step of characterizing these coupling ratios

is necessary. If we desire more complicated behavior by programming different values

of the floating-gate voltage for different sections of the dendrite (i.e. changing the

dendrite’s diameter), we will need to take these coupling ratios into account when

determining to what voltage we want to program the floating gate. We need to know

coupling ratios because floating-gate transistors are programmed with their terminal

voltages at one potential (in “program mode”), and after programming their terminal

potentials undergo a change (in “run mode,” when the circuit is operating).

Another important nonideality in floating-gate systems which requires character-

ization is the fact that the transistor which is programmed differs from the transistor

which is actually placed in the circuit. This scheme is known as indirect programming,

and any differences between the programmed and in-circuit transistor will affect the

circuit’s performance. Methods to characterize these effects are discussed in [144].

Benefits of Floating-Gate Diffusors

The most exciting aspect of dendritic circuits is that they can be made in an extremely

compact manner. As we stated above, the switch matrix of the RASP 2.8a FPAA

is completely made up of floating-gate switches. So there is potential to make huge

arrays of dendrites using the switch matrix. Since the purpose of the array is to

interconnect components, it makes sense that dendrites be used to send signals from

one compiled structure to another. Partitioning of the switch matrix allows for a

large number of dendrites to be created.

We can estimate how large these dendrites can be based on the FPAA routing

structure. Each CAB has an associated floating-gate switch matrix. Some rows

and columns are global, meaning they have connectivity among multiple CABs. We

will only consider local rows and columns which do not connect beyond a CAB.

92

In addition, the columns have semi-local connections to their nearest vertical and

horizontal neighbors, so we assume that half of those columns are available per CAB.

The equivalent number of useful columns per CAB is 14. The rows are hard-wired

to CAB elements, so the number of usable rows is reduced to ensure no CAB devices

are turned on. For CAB types 1 and 2, the number of available rows is 24 and 34,

respectively. If we make a dendrite using the switch matrix, each row connects to one

vertical transistor, and each column connects to two horizontal transistors. The size

of dendrites in CAB type 1 is limited by its number of rows, while CAB type 2 is

limited by columns. Therefore, we estimate that CAB types 1 and 2 can implement

dendrites of approximately 24 and 28 stages, respectively. Based on the numbers of

these CABs in the FPAA, we can theoretically make 28 dendrites of length 24 and

4 dendrites of length 28. We can then use the global routing to chain some of these

together.

It is also important to point out that neural systems are inherently imprecise. Real

synapses are very unreliable, and no two dendritic structures are the same. So the

disadvantages listed above are not necessarily detriments. Some amount of variability

from dendrite-to-dendrite caused by floating-gate transistor mismatch could be seen

as a good thing. In fact, the inability to precisely model the behavior could be an

asset, for it requires designers to get an intuitive feel for what parameters work well

for a given system. The chapter discussed here resulted in a journal paper [19].

93

CHAPTER VI

DENDRITIC COMPUTATION

Dendrites are highly branched tree like structures that connect neuron’s synapses to

the soma. They were previously believed to act just like wires and have little or

no computational value. However, studies show that dendrites are computational

subunits that perform some inherent processing that contributes to overall neural

computation [8, 11, 14, 19, 20, 133]. It is thus interesting to explore computational

models that can be built using dendrites as a unit.

6.1 Dendrites for Wordspotting

It has been shown that dendrites can perform computations similar to an HMM

branch [4, 8] which can be used for wordspotting. Wordspotting is the detection of

small set of words in unconstrained speech [13]. The interlink between Neuroscience,

CMOS transistors and HMMs is shown in Fig. 52(a).

A typical Wordspotting system has at least three stages: Feature generation,

Probability Generation (Signal to symbol conversion) and the State Decoding (clas-

sification) stage, which determines the word detected. Fig. 52(b) shows the general

block diagram for a classification system. In the specific example of speech recog-

nizer, the sensor would be a microphone stage. The first stage has interface circuitry

to acquire the signal from the microphone as well as initial signal processing. This

processing may include signal conditioning and filtering, frequency decomposition as

well as signal enhancement.

Fig. 53 shows the FPAA as a prototyping device for audio signal processing ap-

plications. Our approach to audio processing includes a range of signal processing

94

Sensor
Signal

Processing

Signal to
Symbol

Conversion

First Layer
Cortical

Classification

W
T
A

W
T
A

Refined
Symbols

Sensor
Inputs

BIOLOGY

Figure 52: (a) The Venn Diagram depicts the interlinks between the fields of neuro-
biology, HMM structures and CMOS transistors. We have demonstrated in the past
how we can build reconfigurable dendrites using programmable analog techniques.
We have also shown how such a dendritic network can be used to build an HMM
classifier which is typically used for speech recognition systems. (b) Block Diagram
for a Speech/Pattern Recognition system with respect to biology. In a typical speech
recognition system, we have an auditory front-end processing block, a signal to symbol
conversion block and a state decoding block for classification. We have implemented
the state decoding block using dendritic branches, WTA and supporting circuitry for
wordspotting. It is the classification stage before which symbols have been generated
for a word.

algorithms, that fit into the pathway between speech production (source) and percep-

tion (human ear). These algorithms are implemented by non-linear processing of sub-

banded speech signals for applications such as noise suppression or hearing compensa-

tion, by proper choice of the non-linearity. In addition, the outputs of the non-linear

95

processor can be taken at each sub-band, for speech detection instead of recombining

to generate a perceptible signal for the human ear. Using this general framework,

a variety of non-linear processing can result in applications in speech classifiers and

hearing aid blocks. Here, we focus on the application of speech enhancement by

noise-suppression, targeting word recognition in noisy environments. Detailed exper-

imental results for a noise suppression application are discussed in [22,23], where the

speech-enhanced sub-band signals are recombined together. For a speech recognizer,

we use the enhanced sub-band signals directly to extract basic auditory features.

The second stage of the speech classifier consists of the probability generation

stage that detects basic auditory features and supplies input probabilities to the

state decoding stage. These enhanced sub-band signals undergo first-level informa-

tion refinement in the probability generation stage, resulting in a sparse “symbol” or

“event” representation. This stage maybe implemented as an Artificial Neural net-

work (ANN), Gaussian Mixture model (GMM) or a VMM+WTA classifier. A typical

2-layer NN has synaptic inputs represented by the VMM and the sigmoid modeling

the soma of a point-neuron. Alternatively, we can have synaptic computation followed

by a competitive network modeled by the WTA.

We show in [160] that a single-stage VMM+WTA classifier can be used as a uni-

versal approximator, in contrast to an ANN implementation which requires two layers

to implement a non-linear decision boundary. Fig. 54 shows the comparison in circuit

complexity of a two-layer ANN and a VMM+WTA classifier. A 1-layer NN requires

the computation of a Vector-Matrix Multiply (VMM) + neuron. The addition of var-

ious weighted inputs is achieved through Kirchoff’s Current Law (KCL) at the soma

node, adding all currents. The computation at the neuron is governed by the choice

of complexity in the model. Usually, for moderate size of the network, the synaptic

computation dominates the neuron computation. The sigmoidal threshold block for

the soma nonlinearity in a NN can be implemented in voltage mode by converting

96

Non-linear Processing
Non-linear Processing

FPAA for Noise-Suppression, Hearing

Compensation, Speech Detection etc

Speech

Input

Processed

Output

Non-linear Processing
Non-linear Processing

Non-linear Processing

time (s)
0 1 2 3 4 5

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

n
o
is

e
su

p
p
re

ss
ed

 a
n
d

n
o
is

y
 s

p
ee

ch
 a

m
p
li
tu

d
e

SNR

Estimator

Soft

Threshold

Figure 53: High level overview: The FPAA can be used for a variety of audio
processing applications using the signal framework described. The first stage is a
frequency decomposition stage followed by a non-linear processing block. The non-
linear circuit can be used to implement the SNR estimator and a soft-threshold, which
sets the gain in each sub-band. The gain control is implemented using a multiplier.
Transient results from a MATLAB simulation of a 4 channel system is plotted. The
noisy speech is gray, while the processed speech is in black.

the current output from the VMM into voltage and using a voltage-mode threshold

block, or in current mode with an arcsinh(.) block. All of these implementations

require more transistors per neuron compared to a WTA, which requires as few as 2

transistors per neuron.

The VMM+WTA classifier topology has the advantage of being highly dense and

low power. Each multiply is performed by one single transistor that stores the weight

97

Microphone

Waveform

Enhancement /

Frequency

Decomposition

ANN

GMM

VMM + WTA

Classifier /

Sequence

Detector"signals" "symbols"

 or

"events"

WTA
Single Winner

Multiple WInner

Local Winner

Hysteretic WTAm
 i
n

p
u

ts
 /

o
u

tp
u

ts

VMM (n x m)

W

a (n x 1)

VMM (n x m)

W

a (n x 1)

VMM

m outputs

Figure 54: Basic auditory feature extraction and probability generation
stage: The speech input undergoes frequency decomposition or enhancement result-
ing in sub-band signals. The probability generation block can be implemented using
an ANN, GMM or the VMM+WTA classifier. The circuit complexity is halved by
using a VMM+WTA classifier.

as well, and each WTA unit has only 2 transistors, providing very high circuit den-

sity. Custom analog VMMs have been shown to be 1000X more power efficient than

commercial digital implementations [162]. The non-volatile weights for the multiplier

can be programmed allowing flexibility. The transistors performing multiplication

are biased in deep sub-threshold regime of operation, resulting in high computing

efficiency. We combine these advantages of VMMs with the reconfigurability offered

by FPAA platforms to develop simple classifier structures.

In this chapter, we demonstrate the state decoding stage of a simple YES/NO

wordspotter. We have implemented an HMM classifier using biophysically based

98

CMOS dendrites for state decoding. For all experimental results in this chapter, it is

assumed that we have the outputs of the feature and probability generation stages.

We shall describe an HMM classifier model and its programmable IC implemen-

tation using CMOS dendrites. The first part of this chapter describes the similarity

between a single dendritic branch and HMM branch, in addition to exemplifying its

usage to compute a metric for classification. An HMM classifier is modeled comprising

of these dendritic branches, a Winner-Take-All (WTA) circuit and other supporting

circuitry. Subsequently, the computational efficiency of this implementation in com-

parison to biological and digital systems is discussed. Intriguingly, this research sub-

stantiates the propensity of computational power that biological dendrites encompass,

allowing speculation of several interesting possibilities and impacts on neuroscience.

It is in some ways a virtual visit into the dendritic tree as was suggested by Segev

et al [29]. This chapter further explores the interlinks between neurobiology, Hidden

Markov Models and CMOS transistors based on which we can postulate that a large

group of cortical cells function in a similar fashion as an HMM network [4,19]. Section

II describes the similarities between a dendrite branch and an HMM branch. We dis-

cuss the similarities between a simulated HMM branch and experimental results using

a CMOS dendrite branch. In Section III, we discuss the single CMOS dendrite in

detail. We will present experimental results for the line for different parameters. We

also discuss the simulation model that we have developed and the similar results seen.

In section IV, we discuss the Analog HMM classifier implementation. We discuss the

experimental results for a YES/NO wordspotter for different sequences. In section V,

we discuss the tools that made the implementation of this classifier structure possible.

In section VI, we will discuss the computational efficiency of the system as compared

to digital and biological systems. In the final section we will summarize the results

and discuss the future possibilities.

99

0

0.5

1

b 1

0

0.5

1

b 2

0

0.5

1

b 3

0

0.5

1

b 4

0

0.5

1

b 5

0

0.5

1

b 6

0

0.5

1

b 7
0

0.5

1

b 8

0

0.5

1

b 9

0 20 40 60 80 100 120 140 1600
0.5

1

b 10

0 20 40 60 80 100 120 140 160

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

State 01
State 02
State 03
State 04
State 05
State 06
State 07
State 08
State 09
State 10

Time Index(n)

20 40 60 80 100 120 140 160

10−100

10−80

10−60

10−40

10−20

100

x(n)

Pr
ob

ab
ili

ty
 M

ea
su

re

Tap 10

Tap 9

Tap 8

Tap 7

Tap 6

Tap 2
Tap 1

Tap 3

Tap 4

Tap 5

(a)

(b)

(c)

Pr
ob

ab
ili

ty
 M

ea
su

re

Time Index(n)

Figure 55: Simulation results for an HMM state machine based on a Mathematical
HMM model built using MATLAB (a) Input probability distribution of different sym-
bols varying with time. (b) Likelihood outputs of all the states on a logarithmic scale.
(c) Normalized likelihood outputs of all the states. The outputs were normalized by
multiplying them with an exponential function of the form exp(n/τ)

6.2 Dendritic computation and the HMM branch

For a typical HMM used for speech recognition, the update rule is given by:

φi[n] = bi[n]((1− ai)φi[n− 1] + ai−1φi−1[n− 1]) (26)

100

GND

GND GND GND

GND GND GND

GND GND GND

VLkVLkVLk

V3V2V1

Soma

Starting

Circuits

HMM Metric Computation

for Classification

(a)

... ...~ Diffusion between

Channels

Distal Side

of Dendrite
Proximal Side

of Dendrite

Vi-1 Vi Vi+1

Ii-1
Ii

Ii+1

0 1 2 3 4 5 6 7 8 9 10
0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

Figure 56: CMOS implementation for a dendritic branch and experimental results.
(a) Dendrite with increasing diameter as typically seen in pyramidal cells. We re-
fer this increasing diameter as ‘taper’. (b) Co-relation between an HMM branch
and a CMOS dendrite branch with ‘taper’. (c) Resulting IC implementation using
programmable analog floating-gate pFETs. For the CMOS dendrite the ‘taper’ is
modeled by increasing the axial conductance. (d) Experimental results showing the
outputs from each tap of the CMOS dendrite. These outputs are equivalent to likeli-
hood outputs from the HMM states. The output doesn’t decay completely but attains
a new dc level. Note that we did not do normalization explicitly for the outputs of
the dendrite as the decay is not as sharp as seen in HMMs. All taps are set initially
to have the same membrane voltage Vmem.

101

The probability distribution bi[n], represents the estimate of a symbol (short segment

of speech/phoneme) produced by a state i in frame n. φi[n] represents the likelihood

that a particular state, was the end-state in a path of states that models the input

signals [12] as shown in (26). ai is the transition probability from one state to another.

In a typical speech recognition model, the states would be phonemes/words and the

output would represent the audio signal produced by the subject. The features of

the audio signal tend to vary for different subjects. The goal of this classifier model

is to correctly classify a sequence of symbols with some tolerance. For an HMM

state machine for speech recognition using CMOS dendrites, the inputs bi[n] can

be modeled as Gaussian inputs as shown in Fig. 55a, which is typical for bi[n] for

speech signals with an exponential rise-time and fall-time. In Fig. 55b, the likelihood

outputs for each state shows a very a sharp decay and has a very high dynamic

range. To limit this range, we normalize this output with an exponential function.

It can be observed that the normalized likelihood is similar to an EPSP signal with

an asymmetric rise and fall time. For a single n-stage dendritic line with ‘taper’, if

we applied sequential EPSP inputs at subsequent nodes, the output observed at the

end of the line is as shown in Fig. 56d. A ‘taper’ signifies the changing diameter

through the length of a dendrite. It represents the normalized likelihood outputs of

an HMM classifier. The Gaussian inputs for the HMM model can be modeled using

synaptic currents for a dendrite which is also typical for biological systems. bi(t)

is thus represented as the synaptic current into each node. The output voltage of

each tap of the dendrite represents the likelihood φi(t) of an HMM state. This can

be linearly-encoded or log-encoded depending on the region of operation. For the

dendritic system, no normalization is done as the decay is not as sharp as seen in the

HMM branch for a wide dynamic range.

For a continuous-time version of (26), the update rule is given by,

φi(t) = bi(t)((1− ai)φi(t− τ) + ai−1φi−1(t− τ)) (27)

102

where, bi(t) is the input probability of symbol in state i and φi(t) is the likelihood of

a state i at time t, τ is the time index between two consecutive time indexes and ai is

the transition probability between adjacent states. Even though the state sequence is

implied, one cannot assume a definitive observation of transition between the states.

This is the reason why it is called Hidden Markov Model although the state sequence

has a Markovian structure [10]. Continuous-time HMMs can be represented as a

continuous-time wave-propagating PDE as given in (28) [6].

τ
∂ϕ (x, t)

∂t︸ ︷︷ ︸
state
element

+

(
1

b (x, t)
− 1

)
ϕ (x, t)︸ ︷︷ ︸

decay
term

+ a (x) ∆
∂ϕ (x, t)

∂x︸ ︷︷ ︸
wave
propagation

= 0 (28)

where, ∆ is the distance between two state nodes. This can be compared to analog

diffuser circuits. Also, an HMM branch and a dendrite branch have similar looking

topologies and similar wave-propagating properties. The HMM state machine used,

as shown in Fig. 55a, is a left-to-right model. Studies have shown that a biological

dendrite also does not have a constant diameter [18]. Its diameter at the distal end

is smaller as compared to the proximal end as shown in Fig. 56a and Fig. 56b [3].

Thus, for a similar CMOS dendritic line that is uni-directional, we would expect the

axial conductances of the line to increase from left-to-right as shown in Fig. 56c.

This is the case of a dendrite with ‘taper’. Such a topology ensures that the current

flow is uni-directional. This also favors coincidence detection in the dendrite. We can

compare the continuous-time HMM to an RC delay line with ‘taper’. For this let us

analyze the behavior of an RC delay line with and without taper.

6.2.1 RC delay line without taper

The classical RC delay line is reviewed in Mead’s text [103]. Fig.57 shows the topology.

Kirchoff’s Current Law (KCL) can be used to derive a differential equation for this

circuit, given by (29), where G is conductance.

103

R
i

Gi C

R
i+1

Gi C

Figure 57: RC delay line representing a dendrite. The Rs represent the axial resis-
tances, the Gs represent the leakage conductances and C is the membrane capacitance.

Ii (t) = Ci
dVi(t)
dt

+ Vi (t)Gi + [Vi(t)−Vi+1(t)]
Ri−1

+ [Vi(t)−Vi−1(t)]
Ri

(29)

Assuming the horizontal resistances are equal as given in (30) allows one to simplify

(29) to (31):

Ri = Ri−1 = Rx (30)

Ii (t) = Ci
dVi(t)
dt

+ Vi (t)Gi

+ 1
Rx

[2Vi (t)− Vi+1 (t)− Vi−1 (t)]
(31)

Assuming there are many nodes allows one to perform the following change of notation

from discrete nodes to continuous nodes:

Vi(t) = V (x, t) (32)

Vi+1 (t) = V (x+ ∆x, t) (33)

Vi−1 (t) = V (x−∆x, t) (34)

Assuming that ∆x represents a “position delta” one may use the Taylor series to

describe the continuous nodes in terms of ∆x, (35), (36).

V (x+ ∆x, t) = V (x, t) + ∆x
dV (x, t)

dx
+

1

2
(∆x)

2 d
2V (x, t)

dx2
+ · · · (35)

104

V (x−∆x, t) = V (x, t)−∆x
dV (x, t)

dx
+

1

2
(∆x)

2 d
2V (x, t)

dx2
+ · · · (36)

Substituting (35) and (36) into (31) and simplifying, yields (37), the generalized

PDE describing the RC delay line diffusor.

Ii (t)Rx = RxCi
dVi (t)

dt
+RxGiVi (t)− (∆x)

2 d
2V (x, t)

dx2
(37)

If one assumes no input current at the top of each node Ii = 0, then one can put

the diffusor circuit into a form similar to the continuous time HMM equation as given

in (38).

RxCi
dV (x, t)

dt︸ ︷︷ ︸
state
element

+RxGiV (x, t)︸ ︷︷ ︸
decay
term

− (∆x)
2 d

2V (x, t)

dx2︸ ︷︷ ︸
diffusion
term

= 0 (38)

The impulse response of such a system is a Gaussian decaying function over time. In

this case, diffusion is the dominant behavior of the system.

6.2.2 RC delay line with taper

Assuming that HMM will always propagate to the next state and there is no proba-

bility that it will remain in its current state leads to the assumption as given in (39)

which can be substituted in (28):

a (x) = 1 (39)

For a dendrite circuit with taper, axial conductances are NOT equal and increase

towards the right. Using this assumption, (29) simplifies to (40):

Ii (t) = Ci
dVi (t)

dt
+ Vi (t)

[
Gi +

1

Ri

]
− Vi−1 (t)

Ri

(40)

Substituting the Taylor series expansions of ((35)) and ((36)) into the above we

105

get:

Ii (t) = Ci
dV (x,t)
dt

+ V (x, t)
[
Gi + 1

Ri

]

− 1
Ri


V (x, t)

−∆x
dV (x,t)
dx

+1
2
(∆x)

2 d2V (x,t)
dx2


(41)

Assuming that

∆x� 1 (42)

we can neglect higher order terms of the Taylor series.

(∆x)
2 ≈ 0 (43)

We can see in (41) that there is still some diffusion that can be seen in the line. It

is however negligible as the wave propagation term is more dominant. Re-arranging

terms and assuming no input current we get:

0 = RiCi
dV (x, t)

dt︸ ︷︷ ︸
state
element

+V (x, t) [GiRi − 1]︸ ︷︷ ︸
decay
term

+ ∆x
dV (x, t)

dx︸ ︷︷ ︸
wave
propagation

(44)

Table 1 closely examines the similarities between a RC delay line and an HMM PDE.

Table 1: Comparing HMM PDE and RC Delay Line Terms w/Assumptions

Element Description HMM PDE RC Delay Line
Recursion Variable ϕ (x, t) V (x, t)

State Element Coefficient τ RiCi
Decay Term Coefficient 1

b(x,t)
− 1 GiRi − 1

Wave Propagation/Diffusion Term K ∂ϕ(x,t)
∂x

K dV (x,t)
dx

In Fig. 59, we have studied the trends that one would observe collectively for

different parameters. The output metric here is the difference of amplitude of last

node when all inputs are present and when only the last input is present. We observed

that as we increased the timing difference between various inputs, the final metric of

106

the line decreased as seen in Fig. 59b. We simulated the dendritic branch to observe

the effects a wide range of time delays between inputs as shown in Fig. 59c. We

observed that the output metric decreased as we increased the delay between the

inputs for a line. And for the cases where we reversed the sequence, the amplitude

was very close to zero. This clearly demonstrates that if the sequence of the inputs is

not in succession, there will be no word detection. Also, the output metric decreases

as the delay between the inputs increases.

6.3 CMOS Dendrite

Tap1 Tap2 Tap3 Tap4 Tap5 Tap6

Figure 58: (a) Detailed diagram for a single dendritic line (b) The representation of
input voltage on the source of the transistor representing the input synapses (c) The
asymmetric triangular input voltages Vsyn on the source of the transistor representing
the input synapses. Isyn, the input synapse currents into each of the different nodes is
proportional to Vsyn (d) Vota, the output of FG-OTA which has a gain of approximately
20. (e) Vout, the output voltage at each node.

Fig. 60 shows a complete overview of how CMOS dendrites are modeled and also

the experimental results for a 6-compartment CMOS dendrite. We implemented a

single 6-compartment dendrite. Each compartment consisted of 3 FG pFETS for the

axial conductance, the leakage conductance and the synaptic input respectively.The

107

(a) (b)

0 1 2 3 4 5
1.21

1.215

1.22

1.225

1.23

1.235

1.24

1.245

M
ax

im
um

 P
ea

k
fo

r
la

st
 n

od
e

tdiff(ms)

0 5 10
1.25

1.3

1.35

1.4

1.45

tdiff(ms)
−2 −1 0 1

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c)

O
u
tp

u
t
m

e
tr

ic
 o

n
 l
a

s
t
ta

p

0 20 40 60
1

2

3

4

5

6

7

8

−2 −1 0 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

(d) tdiff(ms)

O
u
tp

u
t
m

e
tr

ic
 o

n
 l
a

s
t
ta

p

Varying EPSP

strengths

Varying tilts of the

dendritic line

Tap1 Tap2 Tap3 Tap4 Tap5

Distal side

of Dendrite

Proximal side

of Dendrite

Synapse

... ...

Isyn1 Isyn2 Isyn3 Isyn4 Isyn5 Isyn6

Figure 59: We varied the input sequence with respect to the time difference between
signals. The output metric in this case is the difference between the output of the
dendrite when all signals were present and output of the dendrite when only the
last input was present. (a) Diagram depicting the decreasing EPSP inputs into a
single CMOS dendrite line. (b)Experimental data showing change in peak to peak
amplitude for a dendrite as the EPSP inputs into each of the nodes decrease down the
line. (c) Change in amplitude of the output with respect to increasing difference in
the EPSP amplitudes as we progress from left to right down the line. tdiff implies the
time delay between inputs. As we increase the time delay the output metric reduces.
Negative tdiff implies a reversed sequence of inputs, where the output metric is zero.
(d) Change in amplitude of the output with respect to increasing difference in the
taper of the dendrite. In this experiment, the diameter of the dendrite was increased
as we progress from left to right down the line. tdiff implies the time delay between
inputs. As we increase the time delay the output metric reduces. Negative tdiff
implies a reversed sequence of inputs, where the output metric is zero.

inputs to the dendrite are synaptic currents. In biological systems, synaptic inputs

can be excitatory and inhibitory in nature. However, in our experiments we use

excitatory synapses as a majority of contacts on a pyramidal cell are excitatory in

108

nature. The dendrite does not have a constant diameter. This implies that for a

CMOS dendrite, the conductance of the dendrite increases towards the soma i.e.

from left to right [3]. We will hereon call it ‘taper’. Also the EPSP strengths near

the distal end are larger than the EPSP strengths near the proximal end. Evidence

for the same has been shown in biology [18]. It was observed that as the difference in

amplitude was increased, the amplitude of the output reduced. To test the behavior

of dendrites, we varied three parameters namely: ‘taper’, delay between inputs and

the EPSP strengths of the synaptic inputs. In terms of ‘taper’, two approaches were

tested. One without ‘taper’ and the second with increasing ‘taper’.

6.4 Dendrites: Behavioral Modeling

We developed a Simulink block to simulate the behavioral characteristics of the CMOS

dendrite structure using the given inputs. This provides the user an insight to the

working of the dendritic circuit when implemented using the FPAA. The MOSFET

parameters used are based on the MOSFETS present on the FPAA. It is characterized

by coupled ordinary differential equations (ODE) and solved using the ODE solver

ode-45. The model has been tested for both static as well as time-varying inputs and

has given reasonable results. I present below the mathematical model used, based on

the device physics of silicon.

In Fig. 59, we have studied the trends that one would observe collectively for dif-

ferent parameters of a dendrite. The output metric here is the difference of amplitude

of last node when all inputs are present and when only the last input is present. We

observed that as we increased the timing difference between various inputs, the final

metric of the line decreased as seen in Fig. 59b. We simulated the dendritic branch to

observe the effects a wide range of time delays between inputs as shown in Fig. 59c.

We observed that the output metric decreased as we increased the delay between the

inputs for a line. Here one observes coincidence detection and nonlinear summation.

109

And for the cases where we reversed the sequence, the amplitude was very close to

zero. This shows directional selectivity.

Tap1 Tap2 Tap3 Tap4 Tap5 Tap6

Figure 60: System overview for a dendrite branch. (a) Detailed diagram for a single
dendritic line which is equivalent to an HMM branch (b) The representation of in-
put voltage on the source of the transistor representing the input synapses (c) The
asymmetric triangular input voltages Vsyn on the source of the transistor represent-
ing the input synapses. Isyn, the input synapse currents into each of the different
nodes is proportional to Vsyn (d) Vota, the output of FG-OTA which has a gain of
approximately 20. (e) Vout, the output voltage at each node.

6.5 Single Line CMOS dendrite

Since dendrites have computational significance, it is interesting to explore computa-

tional models that can be built using dendrites or a network of dendrites. One such

application is classification in speech recognition. We have already discussed the sim-

ilarities between an HMM branch and a dendritic branch. To test this hypotheses, we

implemented a single dendritic branch with spatially temporal synaptic inputs. We

compared a single CMOS dendritic branch implemented on a reconfigurable analog

platform and a MATLAB Simulink simulation model based on the device physics of

CMOS transistors. Fig. 60 shows a complete overview of how CMOS dendrites are

modeled and also the experimental results for a 6-compartment CMOS dendrite. The

inputs to the dendrite are synaptic currents. In biological systems, synaptic inputs

110

0

200

400

Figure 61: Simulation Data vs. experimental data comparison. The dotted lines
depict the simulation data and the solid lines are the experimental data. The pa-
rameters for simulation data are VLeak = 0.5V , Vaxial = 0.5V , κ = 0.84, I0 = 0.1fA,
C = 1.3pF , Ek = 1V , Vdd = 2.4V

can be excitatory and inhibitory in nature. However, majority of contacts on a pyra-

midal cell are excitatory in nature. As discussed before the dendrite does not have a

constant diameter. This implies that for a CMOS dendrite, the conductance of the

dendrite increases towards the soma i.e. from left to right [3]. The inputs will also

decrease in amplitude as conductance increases. This ensures that an input closer to

the soma does not have a larger effect than inputs farther away. This indicates de-

creasing synaptic strengths of inputs down the dendritic line. This has been observed

previously in biological dendrites [18]. Thus, we also varied the synaptic strengths

of inputs in our experiments. We implemented the single dendritic line both as a

CMOS circuit model and a MATLAB Simulink simulation model. We found that

the comparison of our experimental and simulation results were fairly close. This is

demonstrated in Fig. 61.

111

0 5 10 15 20
Time (msec)

A
m

p(
m

V
)

0

200

400

A
m

p(
m

V
)

Increasing Spatial Gradient of Dendritic Diameter

D
ia

m
et

er
 G

ra
di

en
t

Increasing Time Delay Between Input Events

Increasing Spatial Gradient of Synaptic Strengths

(a)

(b)

(c)

No Delay 1ms delay 4ms
delay

Uniform Diameter
Small Spatial
Gradient

Large Spatial
Gradient

0 5 10 15 20
Time (msec)

A
m

p(
m

V
)

0

200

400
A

m
p(

m
V

)

0 5 10 15 20
Time (msec)

A
m

p(
m

V
)

0

200

400

A
m

p(
m

V
)

0 5 10 15 20
0
1

2

3

4
5

6

Time (msec)

0

200

400

A
m

p(
m

V
)

V
m

em
(m

V
)

0 5 10 15 20
Time (msec)

0

200

400

A
m

p(
m

V
)

V
m

em
(m

V
)

0 5 10 15 20
Time (msec)

0

200

400

A
m

p(
m

V
)

V
m

em
(m

V
)

D
el

ay
 B

et
w

ee
n

In
pu

ts

0 5 10 15 20 25 30
Time (msec)

A
m

p(
m

V
)

A
m

p(
m

V
)

Max Synapse Vs:
 400mV to 390mV
 (40% Isynchange)

Max Synapse Vs:
 400mV to 350mV
 (~7x Isyn change)

Max Synapse Vs:
 400mV to 350mV
 (~50x Isyn change)

0
1

2

3

4
5

6

0
1

2

3

4
5

6

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

S
yn

ap
ti

c
W

ei
gh

t C
ha

ng
e

0 5 10 15 20 25 30
Time (msec)

0 5 10 15 20 25 30
Time (msec)

A
m

p(
m

V
)

A
m

p(
m

V
)

A
m

p(
m

V
)

A
m

p(
m

V
)

0

3

6

9

0

3

6

9

0

3

6

9

0
200

400

0
200

400

0
200

400

Figure 62: Experimental results for a single branch 6-tap dendrite for different param-
eters. The three main parameters that govern the output of a dendrite are, namely
the taper of the line, the spatial-temporal characteristics of the synaptic inputs and
the strength of the synaptic inputs. All results are from the last tap of the dendrite.
(a) Metric changed is the taper of the dendrite. For subsequent figures, the taper
is increased from no taper to a larger taper. The diameter of the dendrite increases
down the line which is achieved by increasing the conductances of the axial transis-
tors from left to right(b)Metric changed is the delay between EPSP inputs into each
of the taps of the dendrite. In the first case we have zero time unit delay, 10 time
units delay (2ms) for second and 20 time units delay (4ms)for the third diagram in
the sequence. One time unit=0.2ms (c)Metric changes is the difference between the
EPSP strengths of the input signals. In the first case, the difference is 10 mV, 50 mV
for the second and 100 mV for the third case. As can be seen in the graph we can
see decreasing amplitude as the difference in EPSP strengths increases

6.5.1 Inputs to the PFET source

The input probabilities bi(t) are represented as log-compressed voltage signal at the

dendrite node. To generate EPSP input currents into each of the dendritic nodes, we

input an asymmetric triangular wave voltage at the source of the pFET FG-FETs.

112

This generates typical EPSP signals, which have a faster rising time and a slower fall

time. By varying the magnitude of the triangular waves we were able to control the

input current into each of the nodes of the dendrite. This can be seen in Fig. 60c.

The current of a transistor is exponentially proportional to its source voltage VS.

Isyn = I0e
κ(VS−VG)/UT (e−(VS−VD)/UT − 1) (45)

where, VS = Vdd. This enables us to generate EPSP-like inputs for the CMOS den-

drite. All input representations shown thus are voltage inputs on the source of the

transistor, that acts as synapse at every node of the dendrite.

6.5.2 Single line dendrite results

We implemented a single 6-compartment dendrite. Each compartment consisted of 3

FG pFETS for the axial conductance, the leakage conductance and the synaptic in-

put respectively. We present experimental results for the same. To test the behavior

of dendrites for a typical speech model, we varied three parameters namely: ‘taper’,

delay between inputs and the EPSP strengths of the synaptic inputs. In terms of ‘ta-

per’, two approaches were tested. One without ‘taper’ and the second with increasing

‘taper’. Results are shown in Fig. 62a. We observed that by using ‘taper’ we could

ensure that the input current would transmit more in one direction of the dendritic

cable. To achieve this we increased the axial conductance of the cable down the line,

such that maximum current tends to flow to the end of the cable. At every node

of the dendrites we input EPSP currents in a sequence. This is similar to a speech

processing model, where all the phonemes/words are in a sequence and based on the

sequence we classify the word/phoneme. We then varied the delay between the input

EPSP signals as seen in Fig. 62b. It was observed that as the delay between the

inputs increases, the amplitude of the output decreases. This implies that as outputs

are spaced farther apart, there is less coincidence detection. The third parameter

varied was the strength of the EPSP inputs, with the difference in EPSP strengths

113

of the first node and the last node increasing for subsequent plots as seen in Fig.

62c. The EPSP strengths near the distal end are larger than the EPSP strengths

near the proximal end. Evidence for the same has been shown in biology [18]. It was

observed that as the difference in amplitude was increased, the amplitude of the out-

put reduced. The study of the variation of these parameters showed the robustness

that such a system would demonstrate in terms of speech signals. The difference in

delay, models the different time delays between voice signals when a word is spoken

by different subjects. The difference in EPSP strengths ensures that the impact of

all the inputs to the classifier on the output will be similar for classification and not

dominated by just the last stage.

W

T

 A'

Dendrite 1

Dendrite2

Dendrite 3- Threshold

A1 + A2

A2

A1

W

T

 A

Dendrite 1

Dendrite2

Dendrite 3- Threshold

A1 + A2

A2

A1
f(t)

f(t)

f(t)

(a)

(b) (c)

V
syn,A1

GND

V
syn,k

V
dd

V
casp I1

A
1

V
refp

V
dd

V
casp I2

A
2

V
dd

V
casp I3

A
3

V
refn

A1

A2

A1 + A2

C

GND

GND

GNDGND

GND

WTA

GND

GND

GND

GND

Figure 63: (a) The classifier structure with the normalization factor multiplied,
f(t) = et/τ . (b) The classifier structure after normalization. This figure demon-
strates that the normalization is inherent in the system. (c) Detailed structure of
the HMM classifier using reconfigurable floating-gate devices. There are three main
structures here : The dendrite branches, the Winner-Take-All circuit and the sup-
porting circuitry. The dendrite branch consists of a 5-stage dendrite for both the
branches representing the words YES and NO; and a single stage dendrite to set the
the threshold current. The dendrites have synaptic inputs at each node, which repre-
sent the phonemes of the word to be detected. When the output of a dendrite exceeds
the threshold limit i.e. if a YES/NO is detected, the threshold loses. The supporting
circuitry consists of a Vector-Matrix Multiplier (VMM) building block which acts as
a reset after a word is spotted [162].

114

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

A
m

pl
itu

de
 (

V
)

Time (msec)

0
0

0.02

0.04

0.06

0.08

0.1

A
m

pl
itu

de
 (

V
)

0

0.02

0.04

0.06

0.08

0.1

A
m

pl
itu

de
 (

V
)

0

100

200

300

400

A
m

pl
itu

de
 (

m
V

)

Inputs with decreasing synaptic strength,
when delay is 1.5 ms

Dendrite 1

Threshold
Dendrite 2

Delay 1.5 ms between inputs

Delay 3 ms between inputs

Delay 9 ms between inputs

Figure 64: Experimental results for the classifier system with different timing delays
for inputs and varying synaptic strength. It demonstrates the effect of different tim-
ing in sequences. This implementation is for a classifier system with 4-tap dendrites,
3-input WTA and supporting circuitry. The WTA outputs for varying delays be-
tween inputs is shown. The delay between subsequent inputs is 1.5ms, 3ms and 9ms
respectively. Also the inputs have different EPSP current strengths.

6.5.3 Dendrite on the routing fabric

We used floating gate pFET switches to build the network of dendrites. This would

also enable us to build denser networks as we scale the system. In our current system

implementation for a single dendrite, we implemented 5 dendritic compartments,

with each compartment consisting of 3 floating gate transistors. The most exciting

aspect of implementing dendritic circuits using floating-gates is, that we can do so

in a very compact manner. As stated above, the switch matrix of the RASP 2.8a

FPAA is completely made up of about 50,000 floating-gate elements. Thus huge

arrays of dendrites can be made using the switch matrix. Its inherent function is to

interconnect components, which is similar to the function of dendrites that are used

to transmit signals from one structure to another. Modeling dendritic circuits using

floating gates, however has a few complications. The reason being the capacitive

coupling from source and drain to the floating gate is more pronounced than regular

pFETs [19]. Characterizing this capacitive coupling between the source and the drain

115

is important if precision is desired. Another non-ideality that arises due to indirect

programming is the mismatch between the transistor that is ‘programmed’ versus the

transistor that is actually used in the circuit. However, recently methods have been

developed to characterize this mismatch [30].

Nevertheless, floating-gates enable building very compact circuits. This enables

the building of larger systems like HMM classifiers using CMOS dendrites. The

advantage being that not only could we individually program the FG-FETs for varying

levels of charge to obtain taper easily but also could build a denser network. This

would be useful for building larger systems. Also one must also take into account that

neural systems are known to be inherently imprecise. Dendritic structures are not

always similar and synapses are very unreliable. So one can say that this floating-gate

mismatch is similar to dendrite-to-dendrite variability [19].

6.5.4 Simulating CMOS dendrites

The Simulink block as discussed in the previous chapter mainly serves two purposes.

First, it converts the block-level Simulink model into a spice netlist which can be im-

plemented on the FPAA. Secondly, it can also be used to run a behavioral simulation

of the circuit.

Dendrite Simulink Block

The Simulink block simulates the behavioral characteristics of the dendrite structure

given input/s. This provides the user an insight to the working of the dendritic circuit

when implemented using the FPAA. The MOSFET parameters used are based on the

MOSFETS present on the FPAA. It is characterized by coupled ordinary differential

equations (ODE) and solved using the ode solver ode-45. The model has been tested

for both static as well as time-varying inputs and has given reasonable results. For

this chapter we have used EPSP signals as inputs for the block. Consider a dendritic

line as given in Fig. 56c, with n number of nodes. The voltage at each node can be

116

calculated using the following coupled ODE [19],

~dV

dt
=

1

C
(a1 · Iinj + k1(ea2·

~V /UT − ea3·~V /UT)

+ k1(ea4·
~V /UT − ea5·~V /UT)

+ k2(ea6·
~V /UT − eEk/UT))

(46)

For taper, we changed the parameters k1 as it is proportional to axial conductances.

6.6 Analog Classifier for Word-spotting

We will now discuss the complete classifier structure. We have built a simple YES/NO

HMM classifier using dendrite branches, a Winner-Take-All (WTA) circuit and sup-

porting circuitry. We will simplify the modeling of a group of neuron somas and the

inhibitory inter-neurons as a basic WTA block, with one winning element. We can

consider the winning WTA output, when it transitions to a winning response as an

equivalent of an output event (or action potential). To build this network, we made

a model of a dendrite, initially a single piece of cable with branch points, where the

conductance of the line gets larger towards the soma end, and the inputs are excita-

tory synaptic inputs. For classification, we focus on the ability for dendritic trees to

be able to compute useful metrics of confidence of a particular symbol occurring at a

particular time. This confidence metric will not only be a metric of the strength of the

inputs, but also will capture the coincidence of the timing of the inputs. We would

expect to get a higher metric if the 1st, 2nd, and 3rd, inputs arrived in sequence,

whereas we would expect a lower metric for the 3rd, 2nd, and 1st inputs arrived in

sequence. This type of metric building is typical of HMM type networks. Simple

example being if the word ‘Y’ ‘E’ ‘S’ were detected in a sequence as opposed to ‘S’

‘E’ ‘Y’. This is demonstrated by the simulation results as shown in Fig. 59, where

when the input sequence is reversed the output metric is zero. The output metric is

defined as the difference in output of last node when all inputs are present and when

only the last input is present.

117

The network we built has two desired winning symbols, ‘YES’ and ‘NO’. Each

symbol is represented by one or more states that indicate if a valid metric has been

classified. Only the winning states would be seen as useful outputs. The useful out-

puts feed back to the input dendrite lines, and in effect reset the metric computations.

This is implemented using a Vector-Matrix-Multiplier block [162]. The system block

diagram is as shown in Fig. 63. Each of the dendritic lines for the desired winning

symbols has 5 states (dendritic compartments), where the inputs to the dendritic line

represent typical excitatory synaptic inputs.

Synaptic inputs model symbol probability

In speech/pattern recognition, signal statistics/features are the inputs to the HMM

state decoder. It generates the probability of the occurrence of any of the speech

symbols. These signals when grouped, generate a larger set of symbols like phonemes

or words [12]. We assume we have these input probabilities to begin with, as inputs to

the classifier structure. We have taken inspiration from Lazzaro’s Analog wordspotter

for classification. However, we use a different normalization technique to eliminate

the decay as shown in Fig. 55c. We can draw comparisons for such a system to

a biological dendrite with synaptic inputs. We have modeled the input signals as

excitatory synaptic currents. The synaptic current is given by :

Isyn ∝ te−t/tpeak (47)

For a continuous cable,

τ
dV (x, t)

dt
+ V (x, t) = λ2(x)

d2V (x, t)

dx2
+R(x)Iinput (48)

Considering that exp(t/τ) is the normalizing factor we have,

V (x, t) = V1(x, t)et/τ (49)

where,

τ
dV1

dt
+ V1(x, t) = λ2(x)

d2V1

dx2
+R(x)Iinpute

−t/τ (50)

118

(a)

Time(msec)

V
o
u
t(

V
)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Time(msec)

V
o
u
t(

V
)

In
p
u
t1

(m
V

)

900

450

0

0 5 10 15
0.6

0.7

0.8

0.9

1

1.1

1.2

WTA output :Dendrite1

winning- YES detected

Dendrite1 input- Phonemes representing

the word 'YES' in sequence

Dendrite1 output :The word YES

(f)(e)

Time(msec)

(c)

(b)

Time(msec)

V
o

u
t(

v
)

(d)

0 5 10 15
0.6

0.7

0.8

0.9

1

1.1

1.2

WTA Output: Dendrite2 losing

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Time(msec)

V
o
u
t(

V
)

In
p
u
t2

(m
V

)

900

450

0

Dendrite2 input- No inputs

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

V
o
u
t(

V
)

In
p
u
t3

(m
V

)

900

450

0

0 5 10 15
0.6

0.7

0.8

0.9

1

1.1

1.2

Time(msec)

V
o
u
t(

V
)

WTA Output: Dendrite3

threshold winning after reset

Dendrite3 input- Constant input current to

maintain threshold

Figure 65: Experimental results for the YES/NO classifier system. The results shown
are for the case when a YES is detected by the system (a) Synaptic inputs at the nodes
of the first dendrite and the line output for the first dendrite. Here we assume we
have the input probability estimate for the phonemes(symbols) for the word YES. (b)
Corresponding WTA output for first dendrite. A low value signifies that it is winning.
(c) The synaptic input and output for the second dendrite. (d) Corresponding WTA
output for the second dendrite. (e) The line output for the third dendrite. (f)
Corresponding WTA output of the third dendrite. The third dendrite acts as a
threshold parameter. The amplitude of the word detected on a particular line needs
to be higher than the threshold to win

V1(x, t) is the system output before normalization. From (47) and (50), we see that

the input is similar to a synaptic current. Thus the inputs for the classifier using

dendrites can be modeled as synaptic currents. This is represented in Fig. 63a and

Fig. 63b. The derivation has two implications. First, we can use EPSP inputs

to represent the input probabilities for phonemes. Second the system inherently

119

0 5 10 15 20 25 30 35
0.6

0.7

0.8

0.9

1

1.1

1.2

Time (msec)

Vo
ut

(V
)

(a)

0 5 10 15 20 25 30 35
0.6

0.7

0.8

0.9

1

1.1

1.2

Time (msec)

Vo
ut

(V
)

(b)

0

450

900

D
e

n
d

r
it
e

1
(
m

V
)

0

450

900

D
e

n
d

r
it
e

2
(
m

V
)

0 5 10 15 20 25 30
0

450

900
D

e
n

d
r
it
e

3
(
m

V
)

0

450

900

D
e

n
d

r
it
e

2
(
m

V
)

0

450

900

Time(msec)

D
e

n
d

r
it
e

1
(
m

V
)

0 5 10 15 20 25 30
0

450

900

D
e

n
d

r
it
e

3
(
m

V
)

Dendrite1: Inputs representing YES

Dendrite2: Inputs representing NO

Dendrite3: Threshold

Dendrite1: Inputs representing YES

Dendrite2: Inputs representing NO

Dendrite3: Threshold

YES

NO detected
NO

YES detected

Figure 66: Experimental results for the classifier system when a sequence of words
is detected. (a) First dendrite wins when the word YES is detected and the second
dendrite wins when the word NO is detected. The WTA inputs and outputs are
shown. (b) Second dendrite wins when the word NO is detected and first dendrite
wins when YES in detected.

normalizes the outputs. In Fig. 65, the input to dendrite-1 signifies the phonemes of

the word ‘YES’. The inputs used were EPSP inputs that are similar to probability

inputs bi(t) that in a typical HMM classification structure would be generated by

a probability estimation block. There is no input into dendrite-2 which signifies

that phonemes of ‘NO’ weren’t detected. The threshold dendrite, dendrite-3 sets the

threshold level. The WTA circuit determines the winner amongst the three dendritic

lines. It is observed that when ‘YES’ is detected, dendrite-1 wins. This happens

when coincidence detection is observed at the output of dendrite-1. The winning line

signifies the word that is classified. It is only when all the inputs are in sequence and

cross the given threshold that the dendrite line wins. In Fig. 65 we demonstrate the

classification of the word ‘YES’. The feedback from the WTA acts as a reset function

for the dendrites, as after a word has been classified the threshold dendrite wins again.

In Fig. 66, the classification of words ‘YES’ and ‘NO’ in a sequence is demonstrated.

In Fig. 64 we show the effect of timing and variation of EPSP strengths for input

120

sequences.

The winning output of the WTA is akin to an action potential. In terms of

classification too, the WTA output signifies if a ’word’ has been detected. Our results

have demonstrated that, such a system looks similar to an HMM state machine for a

word/pattern. We can postulate from these experimental results that there are some

similarities in computation done by HMM networks and a network of dendrites. The

results are shown in Fig. 65 for a single word and for continuous detection of words

in Fig. 66. We have demonstrated a biological model, built using circuits that is

much closer than the implementation of any HMM network to date. Thus we have

shown that an HMM classifier is possible using dendrites, and we have made a clearly

neuromorphic connection to computation, a computation more rich than previously

expected by dendritic structures.

6.7 Reconfigurable platform to build Neuromorphic circuits

I will give a brief overview of the experimental setup used for the study. We used

the FPAA, RASP 2.8a for all experimental data and the software tool MATLAB

Simulink and sim2spice script to build the dendrite simulation block. All the data

presented in this chapter comes from a reconfigurable hardware platform. It allowed

us to build multiple complex circuits. The specific chip used from the family of RASP

chips for this research work is RASP 2.8a [153]. It is a powerful and reconfigurable

analog computing platform that can be used to build neuromorphic models. The

CAB consists of groups of analog elements which include nFETs, pFETs, Operational

Transconductance Amplifiers, capacitors, Gilbert multipliers, among others. These

act as the computational elements which together can form complex sub-circuits

that can be used to build analog computational systems. The interconnection of

the CAB components is achieved by the switch matrix. It essentially consists of

floating-gate(FG) pFETs. These 50, 000 programmable elements can be used not

121

Table 2: Comparing computational efficiency of Digital, Analog and Biological sys-
tems

Computing Type Computational Efficiency
Digital (DSP) < 10MMAC/mW [21]
Analog SP (VMM) 10MMAC/µW [16,28]
Analog(wordspotter) > 10MMAC/µW
Neural Process > 10MMAC/pW

only as programmable interconnects for routing but also as adaptive computational

elements. The switch matrix allows for both local routing between CAB elements

as well as global routing. Last but not the least, it has the programmer block,

which selectively accesses a floating-gate device on the chip and through tunneling

and injection tune it on, off or operational in between. This is not only an efficient

routing scheme but can enable implementation of dense systems.

6.8 Classifier:Computational efficiency

A major advantage that analog systems have over digital systems is computational

efficiency. The unit used to compare computational efficiency is Multiply ACcumu-

lates (MAC) per second. The energy efficiency at a given node of the system, depends

on the bias currents, supply voltage and also the node capacitance. We know that

the node capacitance C is the product of conductance and the time constant τ . Now

the bias current Ibias for a dendrite node is given by,

Ibias = (Vrest − Ek)
C

τ
(51)

where, Vrest is the resting potential, Ek signifies the voltage of a potassium channel

and G is the axial conductance. Also, power is the product of voltage across the node

and current into the node. Now for a single node of an HMM classifier, we have 2

MAC/sample. Assuming τ ∼ delay , which at a given node is approximately 1ms.

Thus,

Energy/MAC =
1

2
Vdd(Vrest − Ek)C (52)

122

We have compared the computational efficiency of digital, analog and biological sys-

tems as shown in Table 2. Now for a wordspotting passive dendritic structure, we

have 2 MAC/node. Typical dendrite would have over 1000 state variable equivalents

in its continuous structure. For a particular neuron time constant τ , we would want

to have multiple samples for proper operation. For this discussion, let’s assume an

effective discrete time sample rate 5 times more than τ . Let us choose τ = 1ms for

this discussion. Thus, we have each tree computing 10 MMAC for an HMM com-

putation. For biological systems, say the brain has 1T neurons and total power

consumption of about 20 W. Thus the power consumption is 20 pW/neuron. In a

passive dendritic structure, the computational efficiency is 10 MMAC /neuron. Thus

the computational efficiency of biological systems works out to be 0.5 MMAC/pW.

Also from the equation it is evident that a major factor contributing to energy effi-

ciency is node capacitance. Currently the node capacitance on the chip we used was

1pF . If we further scale down the process used, this number will also reduce. This

effectively means higher computational efficiency. A decrease to 10fF itself will give

us an improvement of 2 orders of magnitude.

6.9 Conclusion

We have demonstrated a low power dendritic computational classifier model to im-

plement the state decoding block of a YES/NO wordspotter. We have also found

that this implementation is computationally efficient. We have demonstrated a single

dendritic line with 6 compartments, with each compartment having a single synaptic

input current. We have seen the behavior of a single dendrite line by varying three

parameters, namely, the ‘taper’, the delay between inputs and the strength of the

EPSP input currents. The effects of taper which enabled coincidence detection were

studied. We have also seen the functioning of the WTA block with dendritic inputs

and the how feedback helps initiate the reset after a word/phoneme is detected. We

123

also build a Simulink dendritic model and simulated the output for time-varying in-

puts to compare with experimental data. This demonstrated how such a network

would behave if inputs were in a sequence or if they were reversed.

The broader impact of such a system is two-fold. First, this system is an example

of a computational model using bio-inspired circuits. Secondly the system proposes a

computationally efficient solution for speech-recognition systems using analog VLSI

systems. As we scale down the process, we can get more efficient and denser systems.

We can also address how synaptic learning can be implemented and classification sys-

tems be trained. We can also model the input synapses as NMDA synapses to get a

more multiplicative effect. In NMDA synapses, the synaptic strength is proportional

to the membrane voltage. It couples the membrane potential to the cellular output.

This could lead to a more robust system and is also closer to how biological systems are

modeled. Also, we have modeled passive dendrites in this chapter. It would be inter-

esting to see how the system behaves when we add active channels. We currently have

systems built that will enable us to further explore this discussion which is beyond the

scope of this chapter. There is a lot of scope for discussing how to build larger systems

using this architecture. We can use spiking WTA networks for a larger dictionary of

words. It is evident from the computational efficiency discussions, that clearly analog

systems are a better choice for higher computational efficiency and lower costs. This

calls for greater effort to build such systems. Reconfigurable/programmable analog

systems open a wide range of possibilities in demonstrating biological processing and

also for signal processing problems. There is great potential in other areas as im-

age processing and communication networks as well. These systems will not only

enhance our understanding of biological processes but also will help us design more

computationally efficient systems.

124

CHAPTER VII

BUILDING RECONFIGURABLE NEUROMORPHIC

SYSTEMS

Modern day technology relies heavily on silicon devices to do computation. However,

digital processors are now approaching an efficiency wall as illustrated in Fig. 67.

Hence, there is a critical need to invest in alternate approaches such as neuromorphic

systems. The brain is a really efficient system when it comes to classifying images and

sounds. In the brain, computation and memory are not separate as is typical in most

Very Large Scale Integration (VLSI) chips, that have a Von-Neumann architecture.

Neurons have synapses that change their weight based on learning. We propose using

floating-gate(FG) transistors in a similar fashion, where the gate terminal charge is

modulated depending on the inputs. Thus, we achieve computing in memory similar

to biology. Together with existing mixed-signal systems and neuromorphic models, we

can build ultra efficient low-power systems. Building a neuromorphic supercomputer

aka the Silicon Brain is within our grasp, and is a grand challenge of our times.

To be able to mimic biology and also solve more complex problems there is a need

to build system solutions. To this end, we design neuromorphic chips using biologi-

cally inspired circuits. In our research lab two approaches were followed. One using

the all-to-all connectivity point-neuron Neuron1 chip and the FPGA style architec-

ture of the Neuron2 chip which also models closely the dendrites in the fabric. I will

discuss the Neuron2 chip in this chapter as it is relevant to this discussion.

Neuromorphic hardware models the behavior of biological neural systems to enable

efficient computational modeling. It leads to significant reduction in size and power,

compared to the traditional approaches of modeling based on numerical integration

125

Figure 67: A study of different modern digital processors shows saturation in terms
of computational efficiency [16]. This can be addressed by moving towards ana-
log/neuromorphic solutions.

on a digital computer. Dendritic computation is often ignored and a point-neuron

model is typically adopted in such approaches. However, studies show dendrites

perform operations such as non-linear filtering, spatial and temporal summation of

synaptic inputs, coincidence detection, synaptic scaling, and sequence detection [14].

We present an efficient and scalable hardware system for studying dendritic computa-

tion in large-scale networks with programmable learning synapses and dendrites that

support arbitrary branched dendrites. We also include active channels in the dendrite

for non-linear filtering. Effectively, we implement a multi-layer neural network within

each neuron, which results in very powerful computation as shown in Fig. 68.

7.1 Neuron2 chip

The neuron chip was built keeping in mind architectural changes that were necessary

to build large-scale neuromorphic systems and was a first step in that directions.

This chip consisted of an array of neurons with plastic synapses and programmable

126

Figure 68: Comparison of current silicon systems is illustrated here. One can see that
neuromorphic approaches are far more efficient than current digital/analog solutions.
Efficiency is stated in terms of Million Multiply Accumulates/Watt

dendrites. This architecture used FPGA-style routing for intra-chip routing and Ad-

dress Even Representation (AER) developed by Mahowald and Silvotti for inter-chip

routing. It was designed to contend with traditional digital solutions as a reconfig-

urable and programmable alternative. The main drawback of FPGA’s is high power

consumption, size and interconnect parasitics. If we compare reconfigurable digital

solutions with biology, we see that in biology neurons mainly rely on nearest-neighbor

connections. Thus an all to all connectivity matrix for all logic elements wouldn’t be

127

Figure 69: (a) Neuron2 chip die photo (b) Neuron CAB architecture: The Neuron
chip consists of neuron cells embedded in a typical FPGA routing fabric. The Neuron
I/O interface with the routing at the C-Blocks through programmable FG switches.
The tracks are routed at the S-Blocks, where each node consists of 6 switches. The
neuron cell has synaptic inputs, programmable dendrites with active channels that
aggregate inputs into the soma block.

an ideal solution. The neurons have rich dynamics and several state variables. They

communicate using action potentials and have a low event rate. It was endeavored

to replicate this in the chip.

The chip consists of 21 programmable neurons which consists of synapses, 2D den-

dritic structure with active channel and a soft winner-take-all (WTA) network. The

neuron inputs and output can be routed on the programmable routing fabric. Some of

these routing lines are also connected to the AER for off-chip communication. In Fig.

69 you can see an illustration of how a single Computational Analog Block(CAB) is

built.

128

7.2 Dendritic Modeling and Computation

As discussed before we have modeled dendrites based on the linear cable theory as

postulated by Wilfred Rall. The 2D dendrite architecture supports arbitrary arboriza-

tion which enable the study of some interesting structures. Properties like directional

selectivity, sub-linear temporal summation and non-linearity were studied. Also these

properties were employed to study a classifier structure using dendrites to re-create

results we had demonstrated previously.

Figure 70: (a) 2D Dendritic Structure as implemented on the chip (b) Coincidence
detection results

7.3 RASP 3.0N

The RASP 3.0N is the first neuromorphic SoC built with an FPGA architecture. It

has specialized neuron blocks as well as digital and analog blocks as in RASP 3.0N .

The analog CABs have specialized macroblocks. Macroblocks are circuits that are

very useful when computing like the C4 filterbank, envelop detectors, WTA circuits

etc. It also has an AER block for easy communication between neuron blocks along

with 16K memory dedicated to it. The neuron blocks consists the neuron model

discussed before along with a 2D dendritic network with different kinds of synapse

129

Figure 71: Different applications using the Pattern Recognition system based on
biology. It has application in speech and image processing and in communication
systems. The state decoder in this paper is one block that is part of the whole system
level design that we plan to build.

Figure 72: RASP 3.0N chip layout

structures as shown in Fig. 75. The RASP 3.0N core has 28 Digital tiles, 84

Analog tiles (each having specialized blocks), and 63 Neuron tiles. The basic tile is

depicted in Fig. 75. Each tile consists of the global interconnect and the CABs. The

global interconnect consists of the C-Block that makes connections from CABs to

the interconnect and the S-Block (switch block) that is used for routing. Within the

130

Figure 73: Different CAB types in RASP 3.0N . CAB1 and CAB2 are similar to
RASP 3.0. CAB3 is a specialized CBA with WTAs, waveform shaping block, FETs
and OTAs.

NEURON MODELS

Farquhar and Hasler, 2005Channel Models
Synapse Array

130nm STDP synapse data

Single Transistor Learning Synapse

Use the physics of physical medium (Si) for efficient

computation

Hasler, 1995

Ramakrishnan

2012

Figure 74: RASP 3.0N Neuron CAB :This diagram illustrates the how the different
parts of the neuron are biophysically modeled. We use the channel models developed
by Farquhar et al. [167] as well as a single floating gate as a learning synapse.

CAB, there exists the local interconnect, which allows all-to-all connectivity between

the components. The array was designed such that the analog and digital CABs

have 24 I/O. This choice reflects a trade-off between the number of I/O and the

size of the local interconnect within each block. An increased local interconnect

131

Figure 75: RASP 3.0N Neuron CAB :This diagram illustrates the dendrite connec-
tivity with different types of synapses feeding into the channels and then to the soma.
This was a change as compared to the previous Neuron2 chip

Table 3: Comparison of RASP chips

RASP 3.0 3.0N
Parameter Value Value

Digital CLBs 98 28
Analog CAB1 84 28
Analog CAB2 14 28
Analog CAB3 − 28
Neuron CABs − 63

also increases routing parasitics. Each Digital CAB consists of 8 BLEs and local

interconnect. The BLE itself comprises of a four-input Look-up Table (LUT) and a

D-F/F whose inputs and clocks are routable. The analog and digital tiles have general

purpose I/O blocks terminating the tiles, which allow analog or digital signals in/out

of the tiles. The I/O blocks terminating the neuron tiles are basic I/O which connect

the global interconnect to the AER in/out blocks. At the bottom of the array is

the C4 BPF I/O block, which consists of programmable filterbanks. The C4 I/O

block is reconfigurable, since its inputs may be from an external microphone or from

the array itself. The outputs from the filterbank can be routed into the array for

further processing, or be routed out to pads. The neuron CAB itself consists of

132

NMDA Synapse Negative Charge
Pump

(a) (b)

Figure 76: New components added on the RASP 3.0N chip. (a) NMDA Synapse
model as implemented on the chip. This synapse is modeled using a common-source
amplifier whose gain is set by the ratio of the input capacitance of the floating gate to
the overlap capacitance is used to amplify the local dendritic potential before feeding
it back to the second control gate on the synapse. The inverting characteristic of
the common-source amplifier is desirable, since the synapse is implemented using a
pFET device [166].(b) Negative Charge Pump: Integrated negative charge pump
on chip to eliminate use of noisy high-voltage supplies and allow run-time injection
for synaptic learning in the STDP synapses [166].

biophysically based models as shown in Fig. 74 for the channels, synapse and the

dendritic network which equivalent to the local interconnect with different synaptic

inputs is shown in Fig. 75. This architecture differs from Neuron2 where synaptic

inputs were only on the periphery of the dendrites. This is very useful especially

when one wants to build the dendritic classifier. Also, the synapses are of four types:

16 Spike-Timing Dependant Plasticity (STDP),8 Non-STDP excitatory, 8 N-Methyl

D-Aspartate (NMDA) and 2 inhibitory synapse. Typical synapse structure is shown

in Fig. 74. For STDP synapses learning is done by using injection and tunneling

mechanisms to change the ‘weight’ of the synapse which is represented by a floating-

gate. The NMDA synapse as shown in Fig. 76 was a new feature on this chip. NMDA

133

receptors in synapses are thought to play an important role in synaptic plasticity. A

sufficient pre-synaptic excitation causes NMDA receptors to be activated and increase

synaptic efficacy. Studies on dendritic trees have also revealed that NMDA synapses

are a key component for obtaining robust directional selectivity which further help

give us the super-linear effect we desire while building the dendritic classifier. Also, in

order to avoid setting different injection voltages as needed for the learning synapses,

we included a negative charge pump as shown in Fig. 76 which enables all elements in

the Neuron CAB to also operate at 2.5V supply. The negative charge pump provides

sufficient field across the drain and source terminals to cause injection to support

learning in the synapses.

The choice of FPGA-style manhattan geometry for global routing allows us to

extend the x2c design suite to include the RASP 3.0N chip. A major drawback while

testing the Neuron2 was lack of tools. This chip is still to be tested but with the new

tool framework, we know this will be an easier task.

134

CHAPTER VIII

CONCLUSION

The objective of my research has been to build reconfigurable mixed-signal and neu-

romorphic systems to implement low-power solutions. I demonstrated the first com-

putationally efficient classifier structure using bio-inspired CMOS dendrites, which

can be used for speech/pattern classification. I was instrumental in developing the

first mixed signal FPAA SoCs and the software CAD tools for this system. These

reconfigurable chips can be used for a variety of applications like speech and image

processing. I presented an Analog-Digital Hardware-Software CoDesign environment

x2c for simulating and programming reconfigurable systems. I also talked about the

CAD synthesis tool vpr2swcs used for targeting FG based mixed signal SoCs of the

RASP 3.0 family.

8.1 Summary of Research so far

In chapter 1, I discussed why it is important to look at neuromorphic solutions as one

of the solutions to study the brain as well as get inspired by it to build new technology.

The objective is to build systems that leverage digital, analog and bio-inspired circuits.

A Neuromorphic engineer’s thesis is that silicon emulates biology [19]. These low-

power reconfigurable systems can be used for image processing, speech processing

applications, prototyping, education and also studying networks of neurons. This

work endeavors to be a step in the direction of building such large-scale neuromorphic

systems.

In chapter 2, I presented an IC that integrates divergent concepts from previous

multiple large-scale FPAA designs along with low-power digital computation and

interface circuitry (i.e. DACs, ADCs). This unified structure enables a wide range

135

of a system-on-a-chip computing options that can be optimized for a wide range of

parameters (i.e. Power); the resulting IC architecture is the most sophisticated FPAA

device built to date.

In chapter 3, we discussed the synthesis tool vpr2swcs. The tool was used to build

parametric FPAA architectures that consists of both digital and analog blocks. The

modifications, challenges and novel solutions implemented while doing mixed signal

system design were discussed.

In chapter 4, I presented an Analog-Digital Hardware-Software CoDesign x2c en-

vironment for simulating and programming reconfigurable systems as well as sci2blif .

The tool flow was demonstrated with multiple mixed signal examples through this

configurable system.

In chapter 5, we forayed into the world of neuromoprhic systems especially den-

drites. We were able to accurately program different circuit architectures to emulate

dendrites. It was demonstrated that these circuits accurately reproduce results pre-

dicted from cable theory when inputs to the system are small.

In chapter 6, we talked about how a network of dendrites can be used to build

the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM)

classifier structure. We talked about how these structures can be used for speech and

pattern recognition. The advantage of such a structure over digital systems is ultra

low power consumption.

In chapter 7, we discussed why neuromorphic systems are more efficient and can

be used to solve more complex problems. We discussed neuromorphic chips that were

developed using biologically inspired circuits. The neuron chip shown was embedded

in FPGA style routing architecture with a CAB that modeled dendrites, neurons,

synapse, active channels using transistors, .

136

8.2 Summary of Work Completed

Significant work has been accomplished towards the goal of design reconfigurable high

performance mixed-signal FPAAs with the guidance of Prof.Jennifer Hasler and the

help of a lot of members of the Integrated Computation Electronics (ICE) Lab. The

details of the work I have done are listed below.

• Key part of the RASP 3.0 design and layout team with Richard Wunderlich,

Farhan Adil and Stephen Nease.

• Led the testing effort for 3.0 chip along with Sihwan Kim, Michelle Collins, Sahil

Shah and Farhan Adil. This system was then presented and speech classifier

demonstrated at ISSC 2015.

• Designer for FPAA synthesis tool vpr2swcs with Richard Wunderlich. Added

specialized macroblocks to the architecture to enable use of dedicated blocks.

Helped first few circuit examples using the tools.

• Higher level tools infrastructure called sci2blif developed along with Michelle

Collins which helps translate high level blocks in xcos to BLIF format.

• Detailed digital simulations of MSP430 processor with peripherals and memory.

Completed Back-annotated delay simulations to verify operation of the proces-

sor with memory interfaces. Designed and implemented a memory controller

for the same.

• Preliminary testing on the RASP3.0 along with Sihwan Kim for programming

algorithm for FGs.

• Dendrite Modeling: Worked actively with Stephen Nease to build bio-physically

modeled dendrites. Developed a mathematical model and implemented it in

MATLAB SIMULINK to be able to simulate n-tap dendrites. The simulation

137

model was found to be closely matching the results from the hardware. It was

also pivotal for future design choices.

• Demonstrated first Wordspotting application using dendrites. This demo was

also selected for presentation at BIOCAS 2011. Analyzed dendrite line results

and implemented THE classifier structure on the RASP 2.8a. Mathematical

proofs were done along with Scott Koziol.

• Designed the AER module layout for Neuron2 chip. Lead designers on this chip

were Shubha Ramakrishnan and Richard Wunderlich. Helped with implement-

ing classifier using dendrites on the chip.

• Co-architect on the Neuron 3.0 design and layout along with Shubha Ramakr-

ishnan. Richard Wunderlich, Stephen Nease, Farhan Adil also contributed to

this chip.

• Led Design layout for 40nm SRAM 16K bank along with Richard Wunderlich

and Sihwan Kim. Completed digital simulation for 40nm processor and memory

peripherals.

• Design layout for standard cells, peripherals and small blocks in 40nm along

with Richard Wunderlich, Michelle Collins and Sihwan Kim.

• Helped in the design process for the new FPAA class board. Lead designer was

Michelle Collins.

• Co-taught ECE 6435 graduate course ‘Neuromorphic Analog VLSI circuits’ in

Spring 2014 along with Prof. Hasler.

8.3 Vision going forward

I’m very excited to pursue the research path I have started on and know there is a lot

of potential to take these systems further. Below I detail my vision for the broad areas

138

of neuromorphic systems and applications as well as building reconfigurable hardware.

8.3.1 Neuromorphic Systems

I plan to build a hybrid neuromorphic machine. This system would include analog,

digital and neuromorphic elements; an amalgamation of all of the above results in

a very powerful processing machine. Neuromorphic systems though considered non-

traditional have a lot of potential to look into real world problems as well as model

biology. My goal will be to build an efficient neuromorphic processor. I will focus

my research on building systems that leverage both digital, analog and bio-inspired

circuits. The goal being to build a powerful prototype for a neuromorphic processor.

Dendritic Computation: I will continue to research dendrites and build classifier

using them for solving spatio-temporal problems. I hope to further investigate various

configurations of the dendrite such as, passive dendrite cables, with NMDA synapses

and active channels. I hope to investigate the classifier with the following configu-

rations of the dendrite: passive dendrite cable, with NMDA synapses, with active

channels, and with NMDA synapses and active channels. We believe that using this

dendrite-based neuromorphic classifier and other front-end techniques, we can build

an effective audio recognition system which can be used for a wide variety of appli-

cations in speech/audio processing.

RASP 3.0N system: The RASP 3.0N has some specialized types of synapse like

the STDP, inhibitory, NMDA and non-STDP synapses. I plan to test these with

the dendritic line. We believe that NMDA synapses have a multiplicative effect on

the dendritic line thus making the HMM like dendrite line more robust. It will be

interesting to study the effects of active channels on the dendrite line as well. The

RASP 3.0N architecture allows us to easily do that.

Neuron Network implementation: There are some interesting networks like

139

Liquid State Machine with dendritically enhanced output(LSM-DER) [25] and the

Synaptic Kernel Inverse(SKIM) model for pattern recognition [31] that I would like

to test on the RASP 3.0N . The fundamental blocks of these systems are synapses,

dendrites and WTA network.

In-silico Brain: The ultimate goal is to build a system that matches or exceeds the

complexity of the human brain. It is advantageous to build smaller applications em-

ulating functionality of basic elements using silicon models of the neurons, synapses,

and dendrites to build networks. Learning can be implemented on these networks us-

ing floating gate (FG) transistor technology, which can be used as a memory element

that simulates learning. Building a neuromorphic supercomputer is indeed a grand

challenge of the twenty-first century.

8.3.2 Applications of Neuromorphic systems

One of the goals of my research is to not only to mimic biology in silicon, but also

utilize these bio-inspired systems to solve real world problems like speech classifica-

tion, pattern recognition, and robotics.

Speech Recognition: I have demonstrated a YES/NO classifier using dendrites and

a Winner Take All (WTA) circuit using our VLSI chip. I believe that by using this

dendrite based neuromorphic classifier and other front end techniques, I can build an

effective audio recognition system which can be used for a wide variety of applications

in speech/audio processing particularly for phoneme recognition.

Wearable Low Power Technology: Collecting biometrics from regular items like

cellphones, clothing, glasses etc to compute useful information for the user in a very

power efficient manner. I will focus on building low power systems that utilize sub-

threshold dynamics of CMOS transistors to do very efficient computation. The goal

is to use these systems to compute basic day to day metrics that we need as we go

about our tasks. These will be wearable devices that monitor sound, touch or even

140

Figure 77: In the future I see myself continue to build and scale reconfigurable and
neuromorphic systems to apply to a wide variety of applications like pattern recog-
nition, health monitoring systems to name a few. Interesting tangents could be in
music technology and orca research (build useful electronics for one of my favorite
species).

body heat. For this we can use existing technology and use hardware to compute

something meaningful with it.

For testing these systems I plan to use reconfigurable FPAA SoCs that I have

helped build to test prototypes. One can test many interesting ideas on these devices.

I also see this as an excellent avenue to collaborate with people already working on

building sensors or front end signal detection, which my systems can then classify.

Building bio-applications: We have done some initial testing to help implement

post-processing circuits for the wearable ballistocardiography system on the FPAA [9].

I plan to continue to develop such a system.

8.3.3 Reconfigurable Mixed Signal Architectures

The backbone of my research that enables building such systems has been reconfig-

urable hardware and a software CAD toolset. Using FG as the switch element, adds

141

the properties of non-volatility and compactness.

FPAA sensor ICs: I have been instrumental in developing and testing a new

generation of Reconfigurable Analog Signal Processor (RASP) 3.0 family of SoCs de-

signed by our research group, fabricated in the 350 nm technology. This design effort

addressed a lot of the interfacing questions and made our systems more compact. The

neural IC is a variation of this as it contains not just analog and digital blocks, but

neuron blocks as well. These are very powerful SoCs that I plan to use as well as build

ICs that can be used to interface with these SoCs. I also hope for students to learn

IC design by building chips through MOSIS. I hope to build RASP peripherals for

these chips that can specialize as sensor blocks that interface with the existing IC. //

Hardware Software Codesign/CAD tool: I was also instrumental in developing

a new CoDesign environment x2c for simulating and programming reconfigurable FG

based mixed signal SoCs. These SoCs consist of an integrated processor, I/O pe-

ripherals, and a Field Programmable Analog Array (FPAA) comprised of analog and

digital components. This novel open source tool platform empowers the user to seam-

lessly CoDesign low power analog and digital systems in a single environment. This

approach integrates multiple open source tools to develop a coherent user friendly de-

sign flow. Scilab is the graphical front end for system level block design, which invokes

Verilog to Routing (VTR)/ Versatile Place and Route (VPR) tools. Custom software

generates and integrates these tools to program and test the IC. We demonstrated

several mixed signal examples, as well as how to perform useful computation using

the routing fabric. This is a very powerful open source platform that is now open to a

wider audience and will be very effective for teaching in the classroom. The tool can

be extended to any new family of ICs that I build in my future research group. //

Scaling FG devices: We had the opportunity to build an FPAA on TSMC 40nm

process with a heterogeneous fabric with an RF frontend, RF CABs and Baseband

CABs/CLBs. I helped build the digital infrastructure of the chip such as the SRAM,

142

processor and peripheral blocks. We got some very promising initial results and the

floating gates have been shown to retain charge on this process node. However, the

processor testing revealed some errors due to which we could not test the chip and it

requires fixes. However, it was a good proof of concept for floating-gates devices on

scaling the process node and I hope to utilize this experience in the future.

In conclusion, though the first question that came to my mind as a young graduate

student ‘Can My Chip Behave Like My Brain? ’ seemed very naive, we have made

some inroads towards figuring out the problem. Yes, we still have a lot more to

discover and innovate but I’m excited about the path ahead full of myriad possibilities.

Or on a lighter note as my good friend Alex remarked, “I’m not sure if my chip can

behave like my brain, but I know my brain can behave like a chip!”.

143

REFERENCES

[1] Allman, W. F., Apprentices of Wonder: Inside the Neural Network Revolution.

Bantam Books, 1989.

[2] Basu, A., Brink, S., Schlottmann, C., Ramakrishnan, S., Petre, C.,

Koziol, S., Baskaya, F., Twigg, C., and Hasler, P., “A Floating-Gate-

Based Field Programmable Analog Array,” IEEE Journal of Solid-State Circuits,

vol. 45, pp. 1781–1794, 2010.

[3] Farquhar, E., Abramson, D., and P.Hasler, “A Reconfigurable Bidirec-

tional Active 2 Dimensional Dendrite Model,” IEEE International Symposium

on Circuits and Systems, vol. 1, pp. 313–316, 2004.

[4] George, S. and Hasler, P., “Hmm classifer using biophysically based cmos

dendrites for wordspotting,” BIOCAS, 2011.

[5] Hasler, J. and Marr, B., “Finding a roadmap to achieve large neuromorphic

hardware systems,” Frontiers in neuroscience, vol. 7, 2013.

[6] Hasler, P., Smith, P., Anderson, D., and Farquhar, E., “A Neuromor-

phic IC Connection Between Cortical Dendritic Processing and HMM Classifica-

tion,” IEEE 11th Digital Signal Processing and 2nd Signal Processing Education

Workshop, pp. 334–337, 2004.

[7] Hasler, P., Foundations of Learning in analog VLSI. PhD thesis, California

Institute of Technology, 1997.

144

[8] Hasler, P., Koziol, S., Farquhar, E., and Basu, A., “Transistor Channel

Dendrites implementing HMM classifiers,” Circuits and Systems, 2007. ISCAS

2007. IEEE International Symposium on, vol. 1, pp. 3359 – 3362, 2007.

[9] Inan, O. T., “Recent advances in cardiovascular monitoring using ballisto-

cardiography,” in Engineering in Medicine and Biology Society (EMBC), 2012

Annual International Conference of the IEEE, pp. 5038–5041, IEEE, 2012.

[10] Juang, B. H. and Rabiner, L. R., “Hidden markov models for speech recog-

nition,” Technometrics, vol. 33, pp. 251–272, 1991.

[11] Koch, C., Biophysics of Computation. New York, NY: Oxford University Press,

1999.

[12] Lazzaro, J., Wawrzynek, J., and Lippmann, R., “A micropower Analog

VLSI HMM State Decoder for Wordspotting,” Advances in Neural Information

Processing Systems 9, vol. M. C. Mozer, M. I. Jordan, and T. Petsche, Eds.

Cambridge, Massachusetts: MIT Press, pp. 727–733, 1996.

[13] Lippmann, R. P., C. E. I. and Jankowski, C. R., “Wordspotter training

using figure-of-merit back-propagation,” Proceedings International Conference

on Acoustics, Speech, and Signal Processing, vol. 1, pp. 389–392, 1994.

[14] London, M. and Hausser, M., “Dendritic computation,” Annual Review of

Neuroscience, vol. 28, pp. 503–532, July 2005.

[15] Luu, J., Goeders, J., Wainberg, M., Somerville, A., Yu, T.,

Nasartschuk, K., Nasr, M., Wang, S., Liu, T., Ahmed, N., Kent, K. B.,

Anderson, J., Rose, J., and Betz, V., “VTR 7.0: Next Generation Archi-

tecture and CAD System for FPGAs,” vol. 7, pp. 6:1–6:30, June 2014.

145

[16] Marr, H. B., Degnan, B., Hasler, P., and Anderson, D., “Minimization

of energy per op in an asynchronous pipeline above and below threshold,” in

IEEE Trans. on VLSI, Accepted 2011.

[17] Mead, C., Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley,

1989.

[18] Mel, B. W., “What the synapse tells the neuron,” Science, vol. 295, p. 1845,

2002.

[19] Nease, S., George, S., Halser, P., and Koziol, S., “Modeling and im-

plementation of Voltage-Mode CMOS dendrites on a reconfigurable analog plat-

form,” IEEE Transactions on Biomedical Circuits and Systems, accepted for

publication.

[20] Polsky, A., Mel, B. W., and Schiller, J., “Computational subunits in thin

dendrites of pyramidal cells,” Nature Neuroscience, vol. 7, pp. 621–627, 2004.

[21] R. Chawla, A. Bandyopadhyay, V. S. P. H., “A 531 nw/mhz, 128 x 32

current-mode vector matrix multiplier with over 2 decades of linear range,” in

IEEE Conference on Custom Integrated Circuits , pp. 29-4-1-29-4-4., October

2004.

[22] Ramakrishnan, S., Basu, A., Chiu, L. K., Hasler, P., and Anderson,

D., “Speech processing on a reconfigurable analog platform,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, p. In Press, 2012.

[23] Ramakrishnan, S., Basu, A., Chiu, L. K., Hasler, P., Anderson, D.,

and Brink, S., “Speech processing on a reconfigurable analog platform,” in

Subthreshold Microelectronics Conference (SubVT), 2012 IEEE, pp. 1 –3, oct.

2012.

146

[24] Ramakrishnan, S. and Hasler, P., “The vmm and wta as an analog classi-

fier,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, p. Ac-

cepted, 2012.

[25] Roy, S., Basu, A., and Hussain, S., “Hardware efficient, neuromorphic den-

dritically enhanced readout for liquid state machines,” in Biomedical Circuits

and Systems Conference (BioCAS), 2013 IEEE, pp. 302–305, IEEE, 2013.

[26] Schlottmann, C. and Hasler, P., “A highly dense, low power, pro-

grammable analog vector-matrix multiplier: The fpaa implementation,” IEEE

JetCAS, vol. In Print, 2011.

[27] Schlottmann, C., Petre, C., and Hasler, P., “A High-Level Simulink-

Based Tool for FPAA Configuration,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. Issue:99, pp. 1–1, 2010.

[28] Schlottmann, C. R. and Hasler, P. E., “‘a highly dense, low power, pro-

grammable analog vector-matrix multiplier: The fpaa implementation,” IEEE

JetCAS, 2011.

[29] Segev, I. and London, M., “Untangling dendrites with quantitative models,”

Science, vol. 290, p. 744, 2000.

[30] Shapero, S. and Hasler, P., “Precise programming and mismatch compen-

sation for low power analog computation on an FPAA,” IEEE Transactions on

Circuits and Systems I, vol. 1, p. 1, submitted for review.

[31] Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila,

Y., Wang, R. M., Hamilton, T. J., and van Schaik, A., “Synthesis of

neural networks for spatio-temporal spike pattern recognition and processing,”

Frontiers in neuroscience, vol. 7, 2013.

147

[32] Wang, Y. and Liu, S.-C., “Input evoked nonlinearities in silicon dendritic cir-

cuits,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 2894

– 2897, 2009.

[33] Wunderlich, R. B., Adil, F., and Hasler, P., “Floating gate-based field

programmable mixed-signal array,” Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, vol. 21, no. 8, pp. 1496–1505, 2013.

[34] C. Mead, “Neuromorphic electronic systems”, IEEE Proceedings, vol. 78, no. 10,

1990, pp. 1629-1636.

[35] J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hard-

ware systems,” Frontiers in Neuromorphic Engineering, September 2013. pp.

1-29. doi:10.3389/fnins.2013.00118.

[36] H. B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling Energy Per Op-

eration via an Asynchronous Pipeline,” IEEE Trans. on VLSI, Vol. 21, No. 1,

January 2013, pp. 147-151.

[37] C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A Digitally-Enhanced Re-

configurable Analog Platform for Low-Power Signal Processing,” IEEE Journal

of Solid State Circuits, September 2012, vol. 47, no. 10, pp. 2174-2184

[38] R. Wunderlich, F. Adil, and P. Hasler, “A Floating Gate Based Field Pro-

grammable Mixed-Signal Array,” IEEE Transactions on VLSI, vol. 21, no. 8,

2013, pp. 1496-1505.

[39] OpenMSP430 Project: open core MSP430.

http://opencores.org/project,openmsp430

[40] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F.

Baskaya, C. M. Twigg, and P. Hasler, “Floating-gate based Field Programmable

148

Analog Array,” IEEE Journal of Solid State Circuits, vol. 45, no. 9, September

2010, pp. 1781-1794.

[41] A. Basu and P. E. Hasler, “A Fully Integrated Architecture for Fast and Accurate

Programming of Floating Gates over Six decades of Current,” IEEE Transactions

on VLSI, June 2010.

[42] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M.

Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose and V. Betz

”VTR 7.0: Next Generation Architecture and CAD System for FPGAs,” ACM

TRETS, Vol. 7, No. 2, June 2014, pp. 6:1 - 6:30.

[43] Baskaya, F. and Anderson, D.V. and Hasler, P. and Lim, S.K., “A generic re-

configurable array specification and programming environment (GRASPER)”,

Europen Conference on Circuit Theory and Design, 2009.

[44] C. R. Schlottmann, C. Petre, and P. E. Hasler, “Simulink Framework for Design

to and Automated Conversion on Large-Scale FPAA Devices,” IEEE Transac-

tions on VLSI, February 2011.

[45] C. R. Schlottmann and J. Hasler, , “High-Level Modeling of Analog Computa-

tional Elements for Signal Processing Applications,” IEEE Transactions on VLSI

Systems, 2014.

[46] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, S. Ramakrishnan, P.

Hasler “Hardware and Software Infrastructure for a Family of Floating-Gate

FPAAs,” IEEE IEEE International Symposium on Circuits and Systems, June

2010. Winner of the best demonstration paper award.

[47] C. Twigg and P. Hasler, “Incorporating Large-Scale FPAAs Into Analog Design

and Test Courses,” IEEE Transactions on Education, Vol. 51, No. 3, 2008, pp.

319-324.

149

[48] P. Hasler, C. Schlottmann, S. Koziol, S. Ramakrishnan, S. Brink, and A. Basu,

“FPAA chips and tools as the center of an Design-Based Analog Systems Edu-

cation,” IEEE MSE, San Deigo, June 2011.

[49] C. Twigg, J. Gray, and P. Hasler, “Programmable Floating-gate FPAA switches

are not dead weight,” International Symposium on Circuits and Systems, May

2007, pp. 169-72.

[50] C. Schlottmann, and P. Hasler, “A highly dense, low power, programmable

analog vector-matrix multiplier: the FPAA implementation,” IEEE Journal of

Emerging CAS, vol. 1, 2012, 403411.

[51] J. Lazzaro, S. Ryckebusch, M. A. Mahowald and C. A. Mead, Winner-take-

all networks of O(N) complexity, in Advances in Neural Information Processing

Systems 1, Morgan Kaufmann Publishers, CA, 1989.

[52] S. Ramakrishnan and J. Hasler, “Vector-Matrix Multiply and Winner-Take-All

as an Analog Classifier,” IEEE transactions on VLSI, vol. 22, no. 2, 2014, pp.

353-361.

[53] S. Ramakrishnan, A. Basu, L.K. Chiu, J. Hasler, D. Anderson, and S. Brink,

“Speech processing on a reconfigurable analog platform,” IEEE VLSI Systems,

vol 22, no. 2, Feb. 2014, 430-433.

[54] L. Itti, C. Koch, E. Niebur, A Model of Saliency-Based Visual Attention for

Rapid Scene Analysis, IEEE Transactions on Pattern Analysis and Machine In-

telligence, Vol. 20, No. 11, pp. 1254-1259, Nov 1998.

[55] L. Itti, and C.Koch, “Computational Modeling of Visual Attention,” Nature

Neuroscience, vol. 2, March 2001, pp. 1.

150

[56] J. Hasler, “Physics based computing enabling energy efficiency past Moore’s

law,” IEEE GlobalSIP, 2013, pp. 679 - 682

[57] S.Kim, J. Hasler and S. George “Integrated Floating-Gate Programming Envi-

ronment for System-Level ICs,” IEEE TVLSI, 2015, Submitted

[58] M. A. Sivilotti, Wiring Considerations in Analog VLSI Systems, With Appli-

cation to Field-Programmable Networks (VLSI), Ph.D., California Institute of

Technology, Pasadena, CA, 1991.

[59] Pankiewicz, B.; Wojcikowski, M.; Szczepanski, S.; Yichuang Sun, A field pro-

grammable analog array for CMOS continuous-time OTA-C filter applications,

IEEE Journal of Solid-State Circuits, vol. 37, no. 2, Feb 2002, pp. 125-126.

[60] E.K.F Lee amd Gulak, P.G., Field programmable analogue array based on MOS-

FET transconductors, Electronics Letters, vol. 28, no. 1, 1992, pp. 28 29.

[61] C.A. Looby and C. Lyden, A CMOS Continuous-Time Field Programmable Ana-

log Array, FPGA, 1997.

[62] Vincent Gaudet and Glenn Gulak. 10 MHz Field Programmable Analog Array

Prototype Based on CMOS Current Conveyors, Micronet, 1999.

[63] T. Hall, Twigg, P. Hasler, and D. V. Anderson, Application performance of

elements built in a Floating-gate FPAA, International Symposium on Circuits

and Systems, May 2004.

[64] Joachim Becker, Yiannos Manoli, “A Continuous-Time Field Programmable

Analog Array (FPAA) consisting of Digitally Reconfigurable Gm-Cells,” ISCAS

2004.

[65] G. Cowan, R. Melville, and Y. Tsividis, “A VLSI analog computer/math co-

processor for a digital computer, IEEE ISSCC, pp. 82 83, 2005.

151

[66] C. Twigg and P. Hasler, “A Large-Scale Reconfigurable Analog Signal Processor

(RASP),” Custom Integrated Circuits Conference, 2006.

[67] PSoC5 Data Sheet, Cyprus Semi, 2011.

[68] P. Lajevardi, A. P. Chandrakasan, and H.-S. Lee, “Zero-Crossing Detector Based

Reconfigurable Analog System,” IEEE Journal of Solid State Circuits, vol. 46,

no. 11, Nov. 2011, pp. 2478-2487.

[69] S. Brink, J. Hasler, and R. Wunderlich, “ Adaptive Floating-Gate Circuit En-

abled Large-Scale FPAA,” IEEE VLSI Systems, 2014.

[70] W. Wolf, “Hardware-software co-design of embedded systems,” Proceedings of

the IEEE, 1994, 967–989.

[71] C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, A Digitally- Enhanced

Reconfigurable Analog Platform for Low-Power Signal Processing, IEEE Journal

of Solid State Circuits, vol. 47, no. 10, 2012, pp. 2174-2184.

[72] J. Becker and Y. Manoli. A continuous-time field programmable analog array

(FPAA) consisting of digitally reconfigurable G M-cells. IEEE ISCAS, vol. 1,

pages I–1092. IEEE, 2004.

[73] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,

F. Baskaya, C. Twigg, and P. Hasler. A Floating-Gate-Based Field Pro-

grammable Analog Array. IEEE JSSC, 45:1781–1794, 2010.

[74] G. Cowan, R. Melville, and Y. Tsividis. A VLSI analog computer/math co-

processor for a digital computer. Columbia University, 2005.

[75] R. B. Wunderlich, F. Adil, and P. Hasler. Floating gate-based field programmable

mixed-signal array. IEEE TVLSI, vol. 21, no. 8, 2013, pp. 1496–1505.

152

[76] P. Lajevardi, A. P. Chandrakasan, and H.-S. Lee. Zero-crossing detector based

reconfigurable analog system. JSSC, 46(11):2478–2487, 2011.

[77] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr,

S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and V. Betz.

VTR 7.0: Next Generation Architecture and CAD System for FPGAs. volume 7,

pages 6:1–6:30, June 2014.

[78] S. Ramakrishnan and P. Hasler. The VMM and WTA as an analog classifier.

IEEE Trans on VLSI, 2013.

[79] B. Rumberg and D. W. Graham. Reconfiguration Costs in Analog Sensor Inter-

faces for Wireless Sensing Applications. In Midwest CAS, 2013 pages 321–324.

[80] C. R. Schlottmann and J. Hasler, High-Level Modeling of Analog Computational

Elements for Signal Processing Applications IEEE Trans on VLSI, 2014.

[81] Scilab Enterprises. Scilab: Free and Open Source software for numerical compu-

tation. Scilab Enterprises, Orsay, France, 2012.

[82] http://it.mathworks.com/solutions/fpga-design/

[83] C. Twigg, J. Gray, and P. Hasler, “Programmable Floating-gate FPAA switches

are not dead weight,” International Symposium on Circuits and Systems, May

2007, pp. 169-72.

[84] G. DeMicheli and R. K. Gupta, “Hardware/Software Co-Design,” Proceedings

of the IEEE, Vol. 85, no. 3, 1997, pp. 349-365.

[85] R. Gupta, “Hardware Software Co-design: Tools for Architecting Systems-On-A-

Chip,” Asia and South Pacific Design Automation Conference, 1997, pp. 285-289

153

[86] G. Schirner , A. Gerstlauer , and R. Domer, “System-level Development of Em-

bedded Software,” Asia and South Pacific Design Automation Conference, 2010,

pp. 903-909.

[87] R. K. Gupta and F. Brewer, “High-level synthesis: A retrospective,” in P. Coussy

and A. Morawiec, High-Level Synthesis: From Algorithm to Digitial Circuit,

Springer Netherlands, Chapter 2, 2008, pp 13-28.

[88] L. Shang and N. K. Jha, “Hardware-Software Co-Synthesis of Low Power Real-

Time Distributed Embedded Systems with Dynamically Reconfigurable FP-

GAs,” International Conference on VLSI Design (VLSID02), 2002.

[89] Digital Partitioning for Field-ProgrammableMixed Signal Systems* Sree Gane-

san and Ranga Vemuri ARVLSI, 2001, pp. 172- 185

[90] Exploration-Based High-Level Synthesis of Linear Analog Systems Operating

at Low/Medium Frequencies Alex Doboli, Member, IEEE, and Ranga Vemuri,

Senior Member, IEEE 1556 - 1568 IEEE TRANSACTIONS ON COMPUTER-

AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22,

NO. 11, NOVEMBER 2003

[91] D. Rossi, C. Mucci, M. Pizzotti, L. Perugini, R. Canegallo, and R. Guerrieri,

“Multicore Signal Processing Platform with Heterogeneous Configurable hard-

ware accelerators,” IEEE Trans. on VLSI, vol. 22, no. 9, 2014, pp. 1990-2003.

[92] Qian Zhao, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga and Toshinori

Sueyoshi, “An Automatic FPGA Design and Implementation Framework,” DAC,

2013.

[93] M. Weinhardt, A. Krieger, T. Kinder, “A Framework for PC Applications with

Portable and Scalable FPGA Accelerators ,” DAC, 2013.

154

[94] Zynq: All Programmable SoC Architecture, 2012.

http://www.xilinx.com/products/silicon-devices/soc/index.htm.

[95] SoC FPGAs: Integration to Reduce Power, Cost, and Board Size, 2012.

http://www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html.

[96] http://www.altera.com/products/software/products/dsp/dsp-builder.html

[97] K. Huang1, S. Han2,3, K. Popovici3, L. Brisolara4, X. Guerin3, “Simulink-Based

MPSoC Design Flow: Case Study of Motion-JPEG and H.264,”

[98] Lei Li1, Xiaolang Yan1, Soo-Ik Chae2, Luigi Carro4, Ahmed Amine Jerraya,

DAC 2007, 39-42.

[99] Allman, W. F., Apprentices of Wonder: Inside the Neural Network Revolution.

Bantam Books, 1989.

[100] Basu, A., Brink, S., Schlottmann, C., Ramakrishnan, S., Petre, C.,

Koziol, S., Baskaya, F., Twigg, C., and Hasler, P., “A Floating-Gate-

Based Field Programmable Analog Array,” IEEE Journal of Solid-State Circuits,

vol. 45, pp. 1781–1794, 2010.

[101] Hasler, J. and Marr, B., “Finding a roadmap to achieve large neuromorphic

hardware systems,” Frontiers in neuroscience, vol. 7, 2013.

[102] Luu, J., Goeders, J., Wainberg, M., Somerville, A., Yu, T.,

Nasartschuk, K., Nasr, M., Wang, S., Liu, T., Ahmed, N., Kent, K. B.,

Anderson, J., Rose, J., and Betz, V., “VTR 7.0: Next Generation Archi-

tecture and CAD System for FPGAs,” vol. 7, pp. 6:1–6:30, June 2014.

[103] Mead, C., Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley,

1989.

155

[104] Ramakrishnan, S. and Hasler, P., “The vmm and wta as an analog classi-

fier,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, p. Ac-

cepted, 2012.

[105] Schlottmann, C. and Hasler, P., “A highly dense, low power, pro-

grammable analog vector-matrix multiplier: The fpaa implementation,” IEEE

JetCAS, vol. In Print, 2011.

[106] Schlottmann, C., Petre, C., and Hasler, P., “A High-Level Simulink-

Based Tool for FPAA Configuration,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. Issue:99, pp. 1–1, 2010.

[107] Wunderlich, R. B., Adil, F., and Hasler, P., “Floating gate-based field

programmable mixed-signal array,” Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, vol. 21, no. 8, pp. 1496–1505, 2013.

[108] Ananda Maiti et.al, “Merging Remote Laboratories and Enquiry-based Learn-

ing for STEM Education,” IJOE, 2014.

[109] V.J. Harward et. al, “The iLab Shared Architecture: AWeb Services Infrastruc-

ture to Build Communities of Internet Accessible Laboratories,” Proceedings of

the IEEE, 2008.

[110] D. Lowe et. al, “Evolving Remote Laboratory Architectures to Leverage Emerg-

ing Internet Technologies,” IEEE Transactions on Learning Technologies, 2009.

[111] N. Suosa et. al, ’An Integrated Reusable Remote Laboratory to Complement

Electronics Teaching’, IEEE Transactions on learning technologies 2010

[112] M. A. Bochicchio et. al, “Hands-On Remote Labs: Collaborative Web Lab-

oratories as a Case Study for IT Engineering Classes”, IEEE Transactions on

Learning Technologies, 2009

156

[113] M. Cooper et. al, “Remote Laboratories Extending Access to Science and En-

gineering Curricular”, IEEE Transactions on Learning Technologies, 2009.

[114] M. Collins, J. Hasler, and S. George, “An Open-Source Toolset enabling Analog-

Digital-Software Codesign,” Submitted to IEEE Transactions on VLSI, Decem-

ber 2014.

[115] W. Wolf, “Hardware-software co-design of embedded systems,” Proceedings of

the IEEE, 1994, 967–989.

[116] J. Becker and Y. Manoli. A continuous-time field programmable analog array

(FPAA) consisting of digitally reconfigurable G M-cells. IEEE ISCAS, vol. 1,

pages I–1092. IEEE, 2004.

[117] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,

F. Baskaya, C. Twigg, and P. Hasler. A Floating-Gate-Based Field Pro-

grammable Analog Array. IEEE JSSC, 45:1781–1794, 2010.

[118] G. Cowan, R. Melville, and Y. Tsividis. A VLSI analog computer/math co-

processor for a digital computer. Columbia University, 2005.

[119] R. B. Wunderlich, F. Adil, and P. Hasler. Floating gate-based field pro-

grammable mixed-signal array. IEEE TVLSI, vol. 21, no. 8, 2013, pp. 1496–1505.

[120] P. Lajevardi, A. P. Chandrakasan, and H.-S. Lee. Zero-crossing detector based

reconfigurable analog system. JSSC, 46(11):2478–2487, 2011.

[121] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and

V. Betz. VTR 7.0: Next Generation Architecture and CAD System for FPGAs.

volume 7, pages 6:1–6:30, June 2014.

157

[122] S. Ramakrishnan and P. Hasler. The VMM and WTA as an analog classifier.

IEEE Trans on VLSI, 2013.

[123] B. Rumberg and D. W. Graham. Reconfiguration Costs in Analog Sensor Inter-

faces for Wireless Sensing Applications. In Midwest CAS, 2013 pages 321–324.

[124] C. R. Schlottmann and J. Hasler, High-Level Modeling of Analog Computa-

tional Elements for Signal Processing Applications IEEE Trans on VLSI, 2014.

[125] Scilab Enterprises. Scilab: Free and Open Source software for numerical com-

putation. Scilab Enterprises, Orsay, France, 2012.

[126] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich, S.

Nease and S. Ramakrishnan “A Programmable and Configurable Mixed-Mode

FPAA SOC,” Submitted to IEEE Journal of Solid State Circuits, December

2014.

[127] S. George, R. Wunderlich and J. Hasler, “CAD Synthesis Tools for Heteroge-

neous SoCs ” Submitted to IEEE Transactions on CAD, December 2014.

[128] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley,

1989.

[129] C. Koch and I. Segev, “The role of single neurons in information processing,”

Nature Neuroscience, vol. 3, pp. 1171–1177, Nov. 2000.

[130] M. London and M. Hausser, “Dendritic computation,” Annual Review of Neu-

roscience, vol. 28, pp. 503–532, Jul. 2005.

[131] J. G. Elias, “Artificial dendritic trees,” Neural Computation, vol. 5, pp. 648 –

663, 1993.

158

[132] C. Rasche and R. J. Douglas, “Forward- and backpropagation in a silicon den-

drite,” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 386 – 393,

Mar. 2001.

[133] Y. Wang and S.-C. Liu, “Input evoked nonlinearities in silicon dendritic cir-

cuits,” IEEE International Symposium on Circuits and Systems, pp. 2894 – 2897,

2009.

[134] C. Koch, Biophysics of Computation. New York, NY: Oxford University Press,

1999.

[135] B. Hille, Ion Channels of Excitable Membranes, Third Edition. Sunderland,

MA: Sinauer Associates, Inc, 2001.

[136] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI:

Circuits and Principles. Cambridge, MA: The MIT Press, 2002.

[137] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,

F. Baskaya, C. Twigg, and P. Hasler, “A floating-gate-based field programmable

analog array,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 1781–1794, 2010.

[138] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate fpaa switches are

not dead weight,” Circuits and Systems, 2007. ISCAS 2007. IEEE International

Symposium on, pp. 169–172, May 2007.

[139] E. K. F. Lee and W. L. Hui, “A novel switched-capacitor based field-

programmable analog array architecture,” Analog Integrated Circuits and Signal

Processing, vol. 17, no. 1-2, pp. 35–50, 1998.

[140] I. Segev, J. Rinzel, and G. M. Shepherd, The Theoretical Foundation of Den-

dritic Function: Selected Papers of Wilfrid Rall with Commentaries. Cambridge,

MA: The MIT Press, 1995.

159

[141] C. Petre, C. Schlottmann, and P. Hasler, “Automated conversion of simulink

designs to analog hardware on an fpaa,” Circuits and Systems, 2008. ISCAS

2008. IEEE International Symposium on, pp. 500–503, May 2008.

[142] F. Baskaya, D. Anderson, P. Hasler, and S. K. Lim, “A generic reconfigurable

array specification and programming environment,” Circuit Theory and Design,

2009. ECCTD 2009. European Conference on, pp. 619–622, Aug. 2009.

[143] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, B. Degnan, S. Ramakr-

ishnan, P. Hasler, and A. Balavoine, “Hardware and software infrastructure for a

family of floating-gate based fpaas,” Circuits and Systems (ISCAS), Proceedings

of 2010 IEEE International Symposium on, pp. 2794–2797, May 2010.

[144] S. Shapero and P. Hasler, “Precise programming and mismatch compensation

for low power analog computation on an fpaa,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, submitted for review.

[145] T. Branco, B. A. Clark, and M. Hausser, “Dendritic discrimination of temporal

input sequences in cortical neurons,” Science, vol. 329, no. 5999, pp. 1671–1675,

September 2010.

[146] A. Destexhe, “Dendrites do it in sequences,” Science, vol. 329, no. 5999, pp.

1611–1612, September 2010.

[147] P. Hasler, S. Koziol, E. Farquhar, and A. Basu, “Transistor channel dendrites

implementing hmm classifiers,” Circuits and Systems, 2007. ISCAS 2007. IEEE

International Symposium on, pp. 3359 – 3362, 2007.

[148] A. Sharma and S. Hauck, “Accelerating fpga routing using architecture-adaptive

a* techniques,” in Field-Programmable Technology, 2005. Proceedings. 2005

IEEE International Conference on. IEEE, 2005, pp. 225–232.

160

[149] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings,

“Rapidsmith: do-it-yourself cad tools for xilinx fpgas,” in Field Programmable

Logic and Applications (FPL), 2011 International Conference on. IEEE, 2011,

pp. 349–355.

[150] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc:

towards an open-source tool flow,” in Proceedings of the 19th ACM/SIGDA in-

ternational symposium on Field programmable gate arrays. ACM, 2011, pp.

41–44.

[151] F. Baskaya, S. Reddy, S. K. Lim, and D. V. Anderson, “Placement for large-

scale floating-gate field-programable analog arrays,” IEEE TVLSI, vol. 14, no. 8,

pp. 906–910, 2006.

[152] C. R. Schlottmann and P. E. Hasler, “A highly dense, low power, programmable

analog vector-matrix multiplier: The fpaa implementation,” Emerging and Se-

lected Topics in Circuits and Systems, IEEE Journal on, vol. 1, no. 3, pp. 403–

411, 2011.

[153] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,

F. Baskaya, C. Twigg, and P. Hasler, “A Floating-Gate-Based Field Pro-

grammable Analog Array,” IEEE Journal of Solid-State Circuits, vol. 45, pp.

1781–1794, 2010.

[154] J. Becker and Y. Manoli, “A continuous-time field programmable analog ar-

ray (FPAA) consisting of digitally reconfigurable G M-cells,” in Circuits and

Systems, 2004. ISCAS’04. Proceedings of the 2004 International Symposium on,

vol. 1. IEEE, 2004, pp. I–1092.

[155] G. Cowan, R. Melville, and Y. Tsividis, A VLSI analog computer/math co-

processor for a digital computer. Columbia University, 2005.

161

[156] P. Lajevardi, A. P. Chandrakasan, and H.-S. Lee, “Zero-crossing detector based

reconfigurable analog system,” Solid-State Circuits, IEEE Journal of, vol. 46,

no. 11, pp. 2478–2487, 2011.

[157] R. B. Wunderlich, F. Adil, and P. Hasler, “Floating gate-based field pro-

grammable mixed-signal array,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 21, no. 8, pp. 1496–1505, 2013.

[158] B. Rumberg and D. W. Graham, “Reconfiguration Costs in Analog Sensor

Interfaces for Wireless Sensing Applications,” in Circuits and Systems (MWS-

CAS), 2013 IEEE 56th International Midwest Symposium on. IEEE, 2013, pp.

321–324.

[159] C. Schlottmann, C. Petre, and P. Hasler, “A High-Level Simulink-Based Tool

for FPAA Configuration,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. Issue:99, pp. 1–1, 2010.

[160] S. Ramakrishnan and P. Hasler, “The VMM and WTA as an analog classi-

fier,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, p.

Accepted, 2012.

[161] S. Ramakrishnan, P. Hasler, C. Gordon “Floating-gate Synapses with spike-

time-dependent plasticity,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, p. Accepted, 2012.

[162] C. Schlottmann and P. Hasler, “A highly dense, low power, programmable

analog vector-matrix multiplier: The fpaa implementation,” IEEE JetCAS, vol.

In Print, 2011.

[163] C. M. Twigg, J. D. Gray, and P. E. Hasler, “Programmable floating gate fpaa

switches are not dead weight,” in Circuits and Systems, 2007. ISCAS 2007. IEEE

International Symposium on. IEEE, 2007, pp. 169–172.

162

[164] Brink, S., Nease, S., Hasler, P., Ramakrishnan, S., Wunderlich,

R., Basu, A., and Degnan, B., “A learning-enabled neuron array ic based

upon transistor channel models of biological phenomena,” Biomedical Circuits

and Systems, IEEE Transactions on, vol. 7, no. 1, pp. 71–81, 2013.

[165] Ramakrishnan, S., Wunderlich, R., Hasler, J., and George, S., “Neu-

ron array with plastic synapses and programmable dendrites,” Biomedical Cir-

cuits and Systems, IEEE Transactions on, vol. 7, pp. 631–642, 2013.

[166] Ramakrishnan, S., “A SYSTEM DESIGN APPROACH TO NEUROMOR-

PHIC CLASSIFIERS,” PhD thesis, Georgia Institute of Technology, 2013.

[167] Farquhar, E., and P.Hasler, “A bio-physically inspired silicon neuron,”

IEEE TCAS I, vol. 52, pp. 477-488, 2005.

163

VITA

Suma George completed her PhD and M.S. in Electrical and Computer Engineering

at Georgia Institute of Technology in 2015 and 2011 respectively. She completed her

B.Tech in Electronics and Communication Engineering at GGSIPU, New Delhi,India.

Her research interests are in the areas of neuromorphic systems, reconfigurable archi-

tectures, system IC design, mixed signal CAD tools, and speech recognition applica-

tions. She also has industry experience, working at Blackberry designing new system

architectures as well as being part of a startup nSys (later acquired by Synopsys)

modeling 100/40 GHz ethernet systems. In her spare time, she is an avid vocalist,

amateur guitarist, and loves to compose music. She is a merry lass from the historic

city of New Delhi. Her favorite sweets are Gulab Jamun and Jalebis!

164

