
Inductive Logic Program Synthesis
with DIALOGS

Pierre Flener

Department of Computer Engineering and Information Science
Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

Emaih pf~cs.bilkent.edu.tr Voice: -{-90/312/266-4000 ext. 1450

Abs t rac t . DIALOGS (Dialogue-based Inductive and Abductive LOGic
program Synthesizer) is a schema-guided synthesizer of recursive logic
programs; it takes the initiative and queries a (possibly computationally
naive) specifier for evidence in her/his conceptual language. The specifier
m u s t know the answers to such simple queries, because otherwise s/he
wouldn't even feel the need for the synthesized program. DIALOGS call be
used by any learner (including itself) that detects, or merely conjectures,
the necessity of invention of a new predicate. Due to its foundation on a
powerful codification of a '~recursion-theory" (by means of the template
and constraints of a divide-and-conquer schema), DIALOGS needs very
little evidence and is very fast.

1 I n t r o d u c t i o n

This paper results from a study investigating (i) what is the minimal knowledge
a specifier must have in order to want a (logic) program for a certain concept,
and (ii) how to convey exactly the corresponding information, and nothing else,
to a (logic) program synthesizer (be it automated or not). I argue that "knowing
a concept" means that one can act as a decision procedure for answering certain
kinds of simple queries [1] about that concept, but that it doesn't necessarily
imply the ability to actually write such a decision procedure. More provoca-
tively, I could argue [13] that writing a complete formal specification is often
tan tamount to writing such a decision procedure (because it actually features
a naive or inefficient algorithm), and is thus often beyond the competence of a
"computationally naive" specifier. But the reader need not agree on the latter
claim, so let's assume, for whatever reasons, that some specifier wants to, or can
only, give incomplete information about a concept for which s /he wants a (logic)
program. This is an innovative program development technique, especially aimed
at two categories of users:

- e x p e r i e n c e d p r o g r a m m e r s would often rather just provide a few carefully
chosen examples and have a synthesizer "work out the details" for them;

- e n d u s e r s are often computationally naive and cannot provide more than
examples, but this should allow them to do some basic programming tasks,
such as the recording of macro definitions, etc.

176

As this project is not about natural language processing, let's also assume that
the specification language is nevertheless formal.

The synthesizer must thus be of the inductive and/or abductive category.
However~, many (but not all) such synthesizers have the drawback of requiring
large amounts of ground positive (and negative) examples of the intended con-
cept, especially if the resulting program is recursive. The reasons are that ground
examples are a poor means of communicating a concept to a computer, and/or
that the underlying ~recursion theory" is poor. To address the first reason, some
researchers have successfully experimented with non-ground examples [18], if not
Horn clauses [9, 12] or even full clauses [6], as evidence language. To address the
second reason, schema-guided synthesis has been proposed [9, 12].

Especially since the advent of ILP (Inductive Logic Programming), the learn-
ing/synthesis ofnon-recursive programs (or concept descriptions) has made spec-
tacular progress, but not so the synthesis of recursive programs. I have therefore
decided to focus on the latter class of programs, to the point where my synthe-
sizers even a s s u m e that there exists a recursive logic program for the intended
concept. Even though this seems counterproductive, because a synthesizer can't
decide in advance whether a concept has a recursive program or not, there are
two good reasons for this focus and assumption. First, as advocated by Biermann
[3], I believe it is more efficient to try a suite of fast and reliable class-specific
synthesizers (and, if necessary, to fall back onto a general-purpose synthesizer)
than to simply run such a slow, if not unreliable, general-purpose synthesizer.
It is thus worthwhile to study the properties of any sub-class of programs and
hardwire its synthesis. Second, as the recent interest in constructive induction
[10, 20] shows, necessarily-invented predicates have recursive programs. It is thus
worthwhile to study the class of recursive programs, because any learner (even
a general-purpose one) can use such a specialized recursion-synthesizer once it
has detected, or merely conjectured, the necessity of a new predicate.

Finally, let's assume that our specifier is "lazy," that is s/he doesn't want to
take the initiative and type in evidence of the intended concept without knowing
whether it will be "useful" to the synthesizer or not. So we need an interactive
synthesizer, and even one that takes the initiative and queries the specifier only
for strictly necessary evidence. This is actually another solution to the mentioned
example voraciousness of many learners. The query and answer languages need
to be carefully designed, though, so that even a computationally naive specifier
can use the system. For instance, during the synthesis of a sorting program, the
specifier cannot be queried about an insertion predicate (assuming the synthesis
"goes towards" an insertion-sort program), because this is an auxiliary concept
that is not necessarily known to the specifier, her/his "mental" sorting algorithm
being not necessarily the insertion-sort one. Also note that such an interaction
scenario does not necessarily assume a human specifier.

I plan to combine all of the mentioned ideas into one system. So, in sum-
mary, I aim at an interactive, inductive/abductive, schema-guided synthesizer of
recursive programs, that takes the initiative and minimally queries a (possibly
computationalty naive) specifier for evidence in her/his conceptual language.

177

Example 1. After analyzing my previous work (in a different mindset [9, 10, 12]),
I decided on the following target scenario. Assume a (possibly computationally
naive) specifier somehow has (an equivalent of) the following informal specifica-
tion in mind:
so r t (L ,S) iff S is a non-decreasing permutation of L,

where L, S are integer-lists.
Now imagine a logic program synthesizer that takes this specifier through the
following annotated dialogue, where questions are in t e l e t y p e font, default an-
swers (if any) are between curly braces "{... }", the specifier's actual answers
are in italics, the comma "," stands for conjunction, and the semi-colon ";"
stands for disjunction:

P r e d i c a t e d e c l a r a t i o n ? sort(L : list(int), S : iist(int))
If the specifier is ever to use a logic program for sor t , s/he must be able to give
such a predicate declaration, because the predicate symbol, the sequence of for-
mal parameters, and their types must be known to her/him. Minimal knowledge
about the system, its syntax, and its type system is thus unavoidable.

Induction parameter? {L} L
Result parameter? {S} S
Decomposition operator? {L= [HL[TL] } L = [HLITL]

The last three queries seem to require some programn~ng knowledge (see Sec-
tion 2 for the terminology), which would go counter a scenario with a computa-
tionally naive specifier. However, note that the system proposes default answers~
so that such a specifier may indeed ignore these queries by simply accepting their
default answers.

What conditions on <S> must hold such that sort([],S) holds?
S=D

The specifier must know what the sorted version of the empty list is, because
otherwise s/he wouldn't even have the need for a sort program.

What conditions on <A,S> must hold such that sort([A] ,S) holds?
S = [A]

Also, the specifier must know what the sorted version of the one-element list is.
What conditions on <A,B,S> must hold such that sort([A,B],S)
holds? S = [A, B], A _ B; S = [B, A], A > B

Finally, the specifier must know what the sorted version of a two-element list is,
and why it is so. The answer may look complicated (due to the use of variables,
conjunction, and disjunction), but note that it only embodies minimal knowl-
edge about sor t , which is independent of any sorting algorithms. Note how the
specifier was "forced" to use the </2 and >/2 predicates, as they are essential
to the concept of number sorting. Soon afterwards, the system reports:

A possible logic program for sort is:
sort(L,S) +- L=[] ,S=[]
sort(L,S) +- L=[HLITL],sort(TL,TS), insert(HL,TS,S)
insert(I,L,R) +- L=[],R=[I]
insert(I,L,R) ~- L=[HLITL],I_<HL, R=[I,HLITL]
insert(I,L,R) ~-- L=[HLITL] ,I>HL, insert(I,TL,TR),R=[HLITR]

This is insertion-sort. Obviously (to us), the implicit informal specification of
i n s e r t is as follows:

178

i n s e r t (I , L , R) iffR is L with I inserted into it,
where I is an integer and L, R are non-decreasing integer-lists.

But the specifier need not know this. The system doesn't know this either,
and actuMly uses predicate symbol dpcSort instead (see the naming scheme in
Section 2), as well as other parameter names.

Do you want another logic program for sort? {yes} Yes, please!
Backtracking ...
Decomposit ion operator? {L= [HLIT], partit ion (T, HL, TLI, TL~) }
L : [HLIT], partition(T, HL, TL1, TL2)

Assume that p a r t i t i o n is a system primitive (whose program is known to the
system) informally specified as follows:
p a r t i t ion (L, P, S, B) iff S (resp. B) contains the elements of L that are smaller

than (resp. bigger than or equal to) P,
where L, S, B are integer-lists and P is an integer.

After a short while, the system announces:
h possible logic program for sort is:

sort(L,S) 4- L=[],S=[]
sort(L,S) 4- L=[HLIT], partition(T,HL,TL1,TL2), sort(TL1,TSl),

sort (TL~, TS2), combine (HL, TSI, TS2, S)
combine(E,A,B,C) 4- A=[] ,C=[EIB]
combine(E,A,B,C) 4- A=[HAITA], combine(E,TA,B,TC),C=[HAITC]

This is the quick-sort program. The implicit informal specification of combine
is as follows:
combine(E,A,B,C) iff append(A, [EIB] ,C),

where A, B, C are lists and E is a term.
Again, the system actually uses predicate symbol dpcSort instead of combine.
Also note that no further queries were posed to the specifier, and yet the system
came up with a completely different program.

Do you want another logic program for sort? {yes} Yes, sure!
Backtracking . . .
Decomposition operator? {L=[_,J~],halves(L,TLi,TL=)}
L = [-,-I-l, halves(L, TL1, TL2)

Assume that ha lves is a system primitive informally specified as follows:
h a l v e s (L , F , S) iff F is the first half of L, and S is the second half of L, such

that S has maximum one element more than F, where L, F, S are lists.
Soon, the system proclaims:

A possible logic program for sort is:
sort(L,S) 4- L:[],S:[]
sort(L,S) 4-
sort(L,S) 4-

merge(A,B,C)
merge(A,B,C)
merge(A,B,C)

merge(A,B,C)

L= [~], S=L
L= [_, -I J, halve s (L, TLI, TL2), sort (TL I, TS 1),
sort (TL2, TS2), merge (TSI, TS2, S)

4- C=[] ,A=[] ,B : []
4-- C= [HCITC], merge (TA, TB, TC), TB= [], A= [HCITA], B=TB
4-- C=[HC]TC] ,merge(TA,TB,TC) ,TB=[HIJ ,HC_<H,

A= [HCITA] ,B=TB
+- C= [HC ITC], merge (TA, TB, TC), TA= [], A=TA, B= [HC[TB]

179

merge(A,B,C) +- C=[HC[TC] ,merge(TA,TB,TC) ,TA=[H[J ,H>HC,
A=TA, B= [HCITB]

This is the merge-sort program. The implicit informal specification of merge is
as follows:
merge(A,B,C) iff C is the merger of A and B,

where A, B, C are non-decreasing integer-lists.

The system actually uses the predicate symbol dpcSort instead of merge. Again
note that although no further queries were posed to the specifier, the system
produced yet another completely new program.

Do you want another logic program for sort? {yes} No
This ends the target scenario.

In the remainder of this paper, I first discuss, in Section 2, the notion of logic
program schema, and then, in Section 3, I show how such schemata are the key to
building the DIALOGS system (Dialogue-based Inductive and Abductive LOGic
program Synthesizer), such that it has all the wanted features. The refinement
of DIALOGS is incremental, introducing more advanced features only as the need
arises and as the basic mechanism is already explained. Finally, in Section 4, I
look at related work, outline future work, and conclude.

2 L o g i c P r o g r a m S c h e m a t a

Programs can be classified according to their synthesis methodologies, such as
divide-and-conquer, generate-and-test, top-down decomposition, globM search,
and so on, or any composition thereof. Informally, a program schema consists,
first of all, of a template program with a fixed dataflow, but without specific in-
dications about the actual computations, except that they must satisfy certain
constraints, which are the second component of a schema. A program schema
thus abstracts a whole family of particular programs that can be obtained by
instantiating the place-holders of its template to particular computations, using
the program synthesized so far and the specification, so that the constraints
of the schema are satisfied. It is therefore interesting to guide program syn-
thesis by a schema that captures the essence of some synthesis methodology.
This reflects the conjecture that experienced programmers actually instantiate
schemata when programming, which schemata are summaries of their past pro-
gramming experience. For a more complete treatise on this subject, please refer
to my survey [11]. In ILP, for instance, schemata are used as a form of declar-
ative bias by XOANON [22], MOBAL [16], CLINT/CIA [6], GRENDEL [5], SYNAPSE
[9, 12], MISST [21], CILP [17], METAINDUCE [15], and others.

For the purpose of illustration only, I will focus on the divide-and-conquer
synthesis methodology (which yields recursive programs), and I will restrict my-
self to predicates of maximum arity 3.

A divide-and-conquer program for a predicate R over parameters X, ¥, and Z
works as follows. Assume X is the induction parameter, Y the (optional) result
parameter, and Z the (optionM) auxiliary parameter. If X is minimal, then ¥

t80

is directly computed from X, possibly using Z. Otherwise, that is if X is non-
minimal, decompose (or: divide) X into a vector HX of hx heads HXi and a
vector TX of t tails TX~, the tails TXi being each of the same type as X, as
well as smaller than X according to some well-founded relation. The tails TX
are recursively associated with a vector TY of t tails TYi of Y, the auxiliary
parameter Z being unchanged in recursive calls (this is the conquer step). The
heads HX are processed into a vector HY of hy heads HY~ of Y, possibly using Z.
Finally, Y is composed (or: combined) from its heads HY and tails TY, possibly
using Z. For X non-minimal, it is sometimes unnecessary or insufficient (if not
wrong) to perform a recursive call, because Y can be directly computed from
HX and TX, possibly using Z. One then has to discriminate between such
cases, according to the values of HX, TX, Y, and Z. If the underlying relation is
non-deterministic given X, then such discriminants may be non-complementary.
In the non-recursive non-minimal case, several (say v) subcases with different
solving operators may emerge; conversely, in the recursive case, several (say w)
subcases with different processing and composition operators may emerge: one
then has to discriminate between all of these subcases.

Each of the 1 +v-t-w clauses of logic programs synthesized by this divide-and-
conquer methodology is covered by one of the second-order clause templates of
Template 1. Note that an "accidental" consideration of a parameter W as a result
parameter rather than as an auxiliary parameter does not prevent the existence
of a program (but the converse is true): W will be found to be always equal to
its tail TW~ and post-synthesis transformations can yield the version that would
have been synthesized with W being considered as an auxiliary parameter. For
convenience, if hx, t, by, v, or w is particularized to constant 1, then I will often
drop the corresponding indices. Also, I will often refer to the predicate variables,
or their instances, as operators.

R(X,Y,Z) ~--
Minimal(X),
SolveMin (X, Y, Z)

R(X,Y,Z) e--
NonMinimal (X),
Decompose(X,HX,TX), ~, HX=HX1 ,HXh~
Discr iminate j (HX, TX,Y, Z), ~. TX=TX1 ,TXt
SolveNonMinj (HX, TX, Y, Z)

R(X,Y,Z) ~-
NonNinimal (X),
Decompose(X,HX,TX),
D i s cr iminat ek (HX, TX, Y, Z),
R(TX1 ,TY1 ,Z) R(TXt,TYt ,Z),
Pro ce s sk (HX, HY, Z), Z HY=HY1 , HYhy
Compo s ek (HY, T Y , Y, Z) Z TY=TY 1 TYt

Template 1: Divide-and-conquer clause templates (1 ~ j ~_ v, v < k ~ v ÷ w)

The constraints to be verified by first-order instances of this template are

181

listed elsewhere [11]. The most important one is that there must exist a well-
founded relation "<" over the domain of the induction parameter, such that the
instance of Decompose guarantees that TXi "<" X, for every 1 < i < t. Other
important constraints will be seen in Section 3.2.

Note that, at the logic program level (and at the schema level), I 'm not inter-
ested in the control flow: these are not Prolog programs, and there is complete
independence of the execution mechanism.

Example 2. The insertion-sort program of Example 1 is a rewriting of the pro-
gram obtained by applying the second-order substitution

{ R/hA,B,C.sort(h,B), ~ projection: no auxiliary parameter!
Minimal/hA. A= [], SolveMin/hA, B, C. B= [],
NonMinimal/hA. 3H, T. A= [HIT] , Decompose/hA, H, T. A= [HIT],
Discrimina~e/~H, T, B, C. true,
Process/hA,B,C.B=A, Compose/~H,T,B,C.insert(H,T,B) }

to the {v/O, w/1, hz/1, t/1, hy/1}-particularization of Template 1. This means
that there is no non-recursive non-minimal case, and one recursive case, which
features decomposition of the induction parameter L into one head, ItL, and one
tail, TT., the latter giving rise to one tail, TS, of the result parameter S. There is
no auxiliary parameter, o

Example 3. The i n s e r t program of Example 1 is a rewriting of the program
obtained by applying the second-order substitution

{ R/hA,B,C.insert(C,A,B), 7, re-ordering of formal parameters!
Minimal/hA. A= [3, SolveMin/~A, B, C. B= [CJ,
NonMinimal/AA. 3H, T. A= [HIT], De compose/hA, H, T. A= [HIT]
Dis criminatel/hH, T, B, C. C<H, SolveNonMin/hH, T, B, C. B= [C, HIT],
Discriminate2/hH,T,B, C. C>H,
Process/AA,B,C.B=A, Compose/AH,T,B,C.B=[H)T] }

to the {v/1, w/1, hx/1, t/1, hy/1}-particularization of Template 1. This means
that there is one non-recursive non-minimal case and one recursive case, both
featuring decomposition of the induction parameter L into one head, ttL, and one
tail, TL, the latter giving rise to one tail, TR, of the result parameter R. Auxiliary
parameter I is used in the discriminants and in the solving operators, and passed
around unchanged in the recursive calls; it is however not used in the process
and compose operators of the recursive case. o

A more general template is needed to cover the combine program of Section 1;
it would cover logic programs for n-ary predicates with arbitrary numbers of re-
sult parameters and auxiliary parameters. Such a template is actually to be used
by any serious implementation of the synthesis mechanism exposed hereafter.

In the following, Template 1 will turn out to have too much information,
as we will not be able to distinguish between the instances of the operators in
the first two clause templates, nor between the instances of NonMinimal, the
Discriminatek, the Process~, and the Compose~ in the third clause template:
I'll thus unite these operators into DSj (with parameters X, Y, Z) and DPCk (with

182

parameters HX, T Y , Y, Z; note that H Y has disappeared altogether, and that
discrimination must now be on TY), respectively. Moreover, I will want to iden-
tify the predicate, say R, in whose logic program a certain operator appears, and
this by just looking at the predicate symbol of that operator: therefore, I'll keep
every operator name short and suffix their names by "-R" or "It", at the tem-
plate level and at the instance level. Since nothing in A-calculus mechanizes such
a naming scheme when moving to the instance level, I will enforce it manually.
Also note the convenient naming scheme of the internal variables of each clause:
every head or tail of some formal parameter has a name syntactically dependent
on the name of that parameter (heads are prefixed by "H" and tails by "T"); this
helps tracing the role of each variable. If a predicate is declared by the specifier
as r(A,B,C), then I will automatically apply the renaming substitution {X/A,
Y/B, Z/C, H X / H A , T X / T A , T Y / T B } to instances of the template (assuming
A is chosen as induction parameter, B as result parameter, and C as auxiliary
parameter), so that the specifier (and reader) can relate to such instances. All
this yields Template 2 as a version that is more adequate for my present pur-
poses. I'll refer to instances of its first clause template as primitive cases, and to
instances of the other one as non-primitive cases.

R(X,Y,Z) ~--
DS-Rj (X,Y,Z)

R(X,Y,Z) ~--
DecR(X,HX,TX) • HX=HX1 HXh~
R(TX1,TYI,Z) R(TXt,TYt,Z), Z TX=TX1 TXt
DPC-Rk (HX, TY, Y, Z) Z TY=TYI TYt

Template 2: Divide-and-conquer clause templates (1 < j _< v, i < k < w)

Example ~. The insertion-sort program of Example I is a slight rewriting of the
program obtained by applying the second-order substitution

{ R/AA,B,C.sort(A,B), DS-R/AA,B,C.A=[] ,B=[],
DocR/AA,H,T.A=[H]T], DPC-R/AH,T,B,C.dpcSor~;(H,T,B) }

to the {v/1, w/1, hx/1, t/1}-particularization of Template 2, provided the first-
order renaming substitution {X/L, Y/S, HX/HL, TX/TL, TY/TS} is indeed automat-
ically applied in this process, o

Example 5. The insert program of Example I is a slight rewriting of the pro-
gram obtained by applying the second-order substitution

{ R/AA,B,C.insert(C,A,B), DS-RI/AA,B,C.A=[] ,B=[C],
DS-R2/AA, B, C. 3H, T. A= [HIT], B= [C ,HIT], C<H,
De cR/AA, H, T. A= [HIT], DPC-R/AA, B, C, D. 3H, T. B= [HIT], C= [A, HIT], D >A }

to the {v/2, w / l , h~c/1, t/1}-particularization of Template 2. o

3 T h e DIALOGS S y s t e m

A DIALOGS synthesis is divided into two phases. The first phase performs a full
particularization of Template 2 (instantiation of all its form variables, namely

]83

hx, t, v, and w, which yields a second-order logic program) and an instantiation
of some of its predicate variables (all except the DS-Rj and the DPC-rtk), and is
explained in Section 3.1. The second phase performs an instantiation of the DS-Rj
and the DPC-Rk (that is the computations constructing the result parameter in
each case), and is explained in Section 3.2.

3.1 Full Part icular izat ion and Partial Ins tant ia t lon of t he Templa te

Predicate declaration. DIALOGS first prompts the specifier for a predicate dec-
laration. Assume, without loss of generality, that the specifier answers with a
predicate declaration for a ternary predicate, say p(A:T1,B:T2,C:T3), where p
is a new predicate symbol, A, B, C are different variable names, and the types T~
are in the set {atom, i n t , na t , l i s t (_) , . . . }. The actual type system is of no
importance here, and the reader may guess the meanings of these type names.

Dialogue issues. DIALOGS needs to obtain a full particularization of Template 2.
This means that the form variables hx, t, v, and w need to be bound to inte-
gers. These are technical decisions, but they must be feasible without technical
knowledge, because the specifier might be computationally naive or might not
even exist (which is an extreme case of naivet~)! Let me explain: the need for
a program for p might arise during the synthesis/learning of a program that
uses p, in which case nobody can answer queries phrased in terms of p. (Of
course, giving a predicate declaration for p is always possible.) This situation
arises when a synthesizer/learner detects or conjectures the necessity of a new
predicate p; for instance, a Coraposek operator of a divide-and-conquer program
might itself have a recursive program, so the synthesizer could call itself to find
this program. So I need to devise a dialogue mechanism, for this first phase, with
at least three features: (i) the provision of "reasonable" default answers; (i/) the
runnability in two modes, namely aloud (where a computationally naive specifier
may simply select the default answers, and any other specifier may answer with
personal preferences) and mute (where a non-existing specifier is simulated by
automatic selection of the default answers), and (iii)backtrackability, because
there might be several reasonable default answers to certain queries, or because
an answer may lead to failure at the second phase.

Choice of the parameter roles. The first step towards particularization of hx and
t is the choice of the roles of the parameters: one of them must be the induc-
tion parameter, the others may be either result or auxiliary parameters, if any.
Choosing an induction parameter can be done heuristically: any parameter of
an inductively defined type such as nat or l i s t (_) is a good candidate. From
the predicate declaration, DIALOGS can create a sequence of potential induction
parameters, keep the first one as the (first) default answer, and the remaining
ones as default answers upon backtracking. Similarly for the result parameter (if
any), which is also likely to be of an inductively defined type: from the remaining
parameters (if any), DIALOGS can create a sequence of potential result parame-
ters, keep the first one as the (first) default answer, and the remaining ones as

184

default answers upon backtracking. Finally, DIALOGS can propose as the auxil-
iary parameter (if any) the remaining parameter (if any). Note that an auxiliary
parameter is likely, but not certain, not to be of an inductively defined type, a
good counter-example being I of inset1;, which is an integer, but has nothing to
do with the "inductive nature" of inserting something into a list. Also remember,
from Section 2, that an auxiliary parameter may inadvertently be considered as
a result parameter, without any influence on the existence of a correct program
(but the synthesis is likely to be a bit slower). In the following, I will implicitly
drop all occurrences of Z in Template 2 in case there is no auxiliary parameter.

Instantiation of It. Assuming, without loss of generality, that B is chosen as in-
duction parameter, C as result parameter, and A as auxiliary parameter, DIALOGS
can now apply the second-order substitution {R/XU, 7, W. p (W, U, 7) } and the re-
naming substitution { X / B , Y / C , Z / A , H X / H B , T X / T B , T Y / T C } to Template 2,
hence (partly) instantiating the heads and the recursive calls of the templates.

Instantiation of DeeR and particularization ofhx and t. The choice of an instance
of DeeR will finally particularize hx and t. DIALOGS can simply use a type-specific
predefined sequence of potential instances of DeeR, keep the first one as the (first)
default answer, and the remaining ones as default answers upon backtracking.
Assuming induction parameter B is of type l i s t (i n t) , the sequence could be

DecR/)~L,H,T. L= [HIT] hx/1, t/1
DecR/)~L, H1, H2, T. L= [H1, H2JT] hx]2, t/1

DecR/)~L,H,T1,T2.3T.L= [HIT] ,par t i t ion(T,H,T1 ,T2) hx/1, t/2
DecR/)~L, T1, T~. L= [_, _J_.], halves (L, T1, T2) hx/O, t/2

Similar sequences are pre-defined for every type, such that they enforce the well-
foundedness constraint.

Particularization of v and w. Definitely the hardest particularization is to de-
cide, in advance, how many subcases there are for each case. A safe approach is to
conjecture that there is one primitive case (v = 1), as well as one non-primitive
case (w = 1), and to have the remainder of synthesis refine this: if either of
these cases turns out to have subcases, which means that the instance of DS-R
or DPC-R is a disjunctive formula, then set v or w to the number of disjuncts in
this instance and rewrite the overall program accordingly.

So far so good. This terminates the first phase: in Template 2, all form variables
and M1 predicate variables except DS-R and DPC-R are by now instantiated.
From a programming point of view, all creative decisions have been taken, but
alternative decisions are ready for any occurrence of backtracking (either because
some decision leads to failure of the second phase, or because the specifier wants
another program after successful completion of the second phase). The remaining
instantiations are performed by the second phase, which is discussed in the next
subsection.

185

3.2 I n s t a n t i a t i o n o f t h e So lv ing C o m p u t a t i o n s

The instantiation of the remaining predicate variables (namely DS-R and DPC-R)
also is interactive and is based on the notions of abduction through (naive)
unfolding and querying, and induction through computation of most-specific
generalizations (or: least-general generalizations). 1

Basic principle. In a nutshell, the basic principle is as follows. Assume, for con-
creteness and simplicity, that the first phase produced the following instantiation
of Template 2 (without auxiliary parameter), with list A being the induction pa-
rameter, divided by head-tail decomposition, and B being the result parameter:

p(A,B) <-- DS-p(A,B)
p(A,B) 4- A=[HAITA] ,p(TA,TB),DPC-p(HA,TB,B)

The possible computation "traces" for various most-general values of the induc-
tion parameter are:

p([] ,DI) <-- DS-p([] ,Di)
p([EI],FI) 4- DS-p([E1],FI)
p([E1],FI) 6- p([],F1),DPC-p(EI,FI,F1)
p([G1,G1],Ht) 4- DS-p([GI,GI],HI)
p([G1 ,GI] ,Hi) 4- p([GI] ,HI) ,DPC-p(G1,HI ,H1)

The strategy is to (a) query the specifier for an instance of the last atom of each
trace, using previous answers to resolve recursive calls, (b) inductively infer an
instance of DS-p from some of the answers, and (c) inductively infer an instance of
DPC-p from the other answers. The criterion of how to establish such a partition
of the answers follows from the dataflow constraints of the schema (see below)•

The specifier must know what S is when A is the empty list. A query is
generated by instantiating the first clause to

p([],DI) +- DS-p([],DI) (I)
Unfolding of second-order atoms is impossible, so the unfolding process stops
here. The query

What c o n d i t i o n s on <Do> must ho ld such t h a t p ([] ,D0) ho lds ?
can be extracted from this clause. The answer should thus be a formula }'[Do],
where only Do may be free, explaining how to compute Do from [] such that
p([] ,Do) holds. In other words, DS-p([] ,Do) should be "equivalent" to ~-[Do].
Instantiating the second clause when A is the empty list would lead to failure of
the unfolding process at the equality atom.

The specifier must also know what B is when A has one element. A query is
generated by instantiating the second clause to

p([E1] ,FI) 4- [EI]=[HA[TA] ,p(TA,TB) ,DPC-p(HA,TB,FI)
Unfolding the equality atom gives

1 Term g is more general than term s if there is a substitution 0 such that s = gO. We
also say that s is more specific than g. The most-specific generalization (abbreviated
msg) of terms a and b is a term m that is more general than both a and b, and such
that no term more specific than m (up to renaming) is more general than both a and
b. The msg of a non-empty set of terms is defined similarly. See [19] for more details.

186

p([E1] ,F1) 4- p([] ,TB) ,DPC-p(E1,TB,F1)
Unfolding the p atom, using clause (1) with the newly obtained evidence of DS-p
as a "shortcut," gives

p([El] ,FI) 4- F[TB] ,DPC-p(EI,TB,FI)
Recursively unfolding all the atoms in .T[TB] eventually reduces this clause to

p([El] ,FI) ~-- DPC-p(EI,tbI,FI) (2)
where tb0 represents the value of TB after this "execution" of }'[TB].The query

What conditions on <EI,FI> must hold such that p([El] ,FI) holds7
can be extracted from this clause. The answer should thus be a formula G [El, FI],
where only E1 and F1 may be free, explaining how to compute F1 from [El] such
that p([E1] ,F1) holds. In other words, DPC-p(EI,tbo,F1) should be "equiva-
lent" to G[E1 ,F1]. Instantiating the first clause when A is a one-element list
would yield the same query, so we can directly establish that DS-p([E1] ,F1)
should also be "equivalent" to G [El, F1].

Next query the specifier for what B is when A has two elements. Again, s/he
must know the answer. A query is generated by now instantiating the second
clause to

p([GI ,GI] ,HI) 4- [G 1 ,GI]=[HA[TA] ,p(TA,TB) ,DPC-p(HA,TB,HI)
Unfolding the equality atom gives

p([GI,GI],HI) 4- p([G1],TB),DPC-p(GI,TB,HI)
Unfolding the p atom, using clause (2) with the newly obtained evidence of
DPC-p as a "shortcut," gives

p([GI, GI],H1) 4-- G [GI,TB],DPC-p(GI, TB,HI)
Recursively unfolding all the atoms in G [G2 ,TB] will reduce this clause to

p([GI,GI],H1) 4- DPC-p(GI,tbI,HI)
where tbl represents the value (possibly using G2) of TB after this "execution" of
Q [G2, TB]. The query

What conditions on <GI,G2,H2> must hold such that p([GI,G2] ,H2)

holds?

can be extracted from this clause. The answer should thus be a formula 7/[GI ,G2,
H2], where only 61, G~., and H2 may be free, explaining how to compute H2
from [G1, G2] such that p ([61, G2], H2) holds. In other words, DPC-p (Sl , tb l , H2)
should be "equivalent" to 7/[G1,62 ,H2]. Instantiating the first clause when A is
a two-element list would yield the same query, so we can directly establish that
DS-p([G1 ,G2] ,H2) should also be "equivalent" to 7/[61 ,a~ ,H2].

One may continue like this for an arbitrary number of times, gathering more
and more evidence of DS-p and DPC-p. As of now, I do not have a clear heuris-
tic for when to stop gathering evidence. The current implementation simply
goes through the loop a constant number of times and lets the specifier give
"skip" answers (at her/his risk!) when tired or bored. Overcoming this is con-
sidered future work. Sooner or later thus, some inductive inference has to be
done from this evidence. For example, if ~, 7/, . . . are conjunctions of iiterals
(for other situations, see below), then it "often" (see below) suffices to com-
pute the most-specific generalization of an "adequate" subset of the tuple set
(considering all predicate symbols and the connectives " ," and "-~" as functors)

187

{(El,tb0,Fl,~), (Gl,tbl,H2,7/), . . . }, say (ha,tb, b, ¢~d), and the binding of DPC-p
to AT,U,V.T=ha,U=tb,V=b,,Ad can then complete the synthesis of the second
clause. Similarly, compute the msg of the "counterpart complementary subset"
of the tuple set {([] ,D0,Jc), ([Eli ,F1 ,G>, (I'G~, G2] ,H2,7/),... }, say (a, b, A4), and
the binding of DS-p to AT,U.T=a,U=b,A4 can then complete the synthesis of the
first clause. I call this (and its refinement hereafter) the MSG Method [9, 12, 8].

This presentation of the basic principle is of course very coarse, as it side-
tracks or leaves open many important issues, which will be discussed next. In
any case, notice how query generation and answering actually abduce evidence
of the still missing operators.

Unfolding issues. In general thus, the principle of query generation is to succes-
sively instantiate every clause for most-general values of the induction parameter
and to unfold its first-order body atoms (until only a second-order atom remains),
so that a query in terms of the target predicate only can be extracted, hiding
the fact that the specifier actually has to answer a query about the second-order
atom. Answers to previously posed queries are made available during this unfold-
ing process as shortcuts, avoiding thus that the same query is generated twice.
Naive unfolding is sufficient here, as I am only interested in the logic, not in the
control, of logic programs. Also, I assume there is a system program for every
primitive (such as =/2).

As usual, unfolding uses all applicable clauses (except when shortcuts are
available, in which case only the shortcut clauses are used), so that several
clauses may result from an unfolding step; unfolding then continues from all of
these clauses, with the same stopping criterion and the same spawning process.
Moreover, it is sometimes unnecessary to recursively unfold until only a second-
order atom is left.

Example 6. Both of these phenomena can be illustrated by means of the d e l 0 d d s
predicate, which is informally specified as follows:
d e l 0 d d s (L,R) iff R is L without its odd elements, where L, R are integer-lists.

Suppose L is chosen as induction parameter, which is divided by head-tail de-
composition, and R is chosen as result parameter. The following first two queries
are posed to the specifier:

What conditions on <Ro> must hold such that delOdds([] ,R0)
holds? R0 ---- D
What conditions on <AI,RI> must hold such that delOdds([Al] ,RI)
holds? odd(A1), R1 = O; "~odd(A1), R1 = [A1]

Note that the second answer is disjunctive, and that it not only says how the
result is computed, but also when~why it is so. Now, during the generation of
the query about what happens when L has two elements, the following clauses
are obtMned after some unfolding:

delOdds([Bi,Bl],Rl) %- odd(Bl),DPCdelOdds(Bl,[],Rl)
delOdds([Bi,Bl] ,RI) ~ ~odd(Bl),DPCdelOdds(Bl, [BI] ,RI)

Note that the unfolding yielded two clauses (using the shortcuts established from
the second query). The primitive predicate odd being introduced by the specifier,
we need not unfold it. Therefore, the queries

188

Nhat conditions on <BI,B2,R2> must hold such that
del0dds([Bi,B~] ,R2) holds, assuming odd(B2)?
odd(B1), R2 = D; -~odd(B1),/~2 = [BI]
Nhat conditions on <BI,B2,R2> must hold such that
del0dds([Bl~B2] ,R2) holds~ assuming -~odd(B2)?

odd(B1), R2 = [B2];-~odd(B1), R~ = [B1, B2]
should be extracted: note the new sub-sentences introduced by the keyword
assuming. <>

Instantiation of DS-R and DPC-R through the MSG Method. Above, I wrote that
it "often" suffices to compute msgs in order to help instantiate DS-R and DPC-R
(in case their evidence involves only conjunctions of literals); so what is the
criterion for doing so? And how to choose the "adequate" tuple subsets over
which msgs are computed? To answer these, we first have to analyze the dataflow
of divide-and-conquer programs in even greater detail than so far, namely inside
the DS-R and DPC-R operators [9, 12, 8].

Let's start with the discriminate-process-compose operator. Essentially, it is
Y that is "constructed from" HX, TY, and Z. "Constructing" a term "from"
others means that its constituents (constants and variables) are taken from the
constituents of these other terms; functors can safely be ignored here, due to
their "decorative" role in logic programming. For example, in i n s e r t (HL, TS, S),
which is the DPC-R operator of the insertion-sort program in Section 1, result S is
constructed from IlL and TS. But we know more: all the constituents of T Y must
be used for constructing Y or for discriminating between different constructions of
Y, because otherwise the recursive computations of TY would have been useless;
but the constituents of HX and Z only might be used in this construction of Y. For
example, in i n s e r t (HL, TS, S), result S is indeed constructed from the "entire"
TS, but also from HL; however, in R=[HL[TR], which is the DPC-R operator of the
i n s e r t program in Section 1, result R is indeed constructed from TR, and fromttL,
but not from auxiliary parameter I; and there are programs with constructions
of Y that involve TY and Z but not HX, or even only TY. Finally: Y can only
be constructed from the constituents of HX, TY, and Z, but may not "invent"
other constituents, except maybe for the type-specific constants (such as 0, n i l ,
. . .), although this is not always the case. All these observations can be gathered
in the following definition (which is a particular case of Erdem's version [8],
which itself is a powerful and generic extension of my old version [9, 12]): a
tuple (hx, ty, y, z, ~r> is admissible (for building a discriminate-process-compose
operator) iff

constituents(ty) C constituents((y,:7)) A

const.uents(y) C const.uents({hx, ty, z>) U {0, na , . . . }

where terms ty, y, and z are optional, and first-order formula ~" is a conjunc-
tion of literals without any equality atoms. From such an admissible tuple, we
can build an admissible instance of DPC-R by binding this predicate variable to
AT, U,V, W. T=hx, U=ty, Vfy,Wfz, ~ r .

189

Let's continue with the discriminate-solve operator. Essentially, it is Y that
is constructed from X and Z. But the constituents of X and Z only might be
used in this construction of Y. Finally, Y may even "invent" new constituents: I
here restrict invented constituents to the type-specific constants (0, n i l , . . .) ,
although this is not always the case. All these observations can be gathered
in the following definition [8]: a tuple (~, y, z, Y) is admissible (for building a
discriminate-solve operator) iff

constituents(y) C_ constituents((z, z)) U {0, nil,...}

where terms y and z are optional, and first-order formula ~" is a conjunc-
tion of literals without any equality atoms. From such an admissible tuple, we
can build an admissible instance of DS-R by binding this predicate variable to
AT,U,V.T=x,U=y,V=z,Y.

Admissibility of the instances of the DS-Rj and the DPC-Rk gives us thus other
(dataflow) constraints of the divide-and-conquer schema. They are enforced as
follows:

1. partition the tuple set for DPC-R into a minimal number of subsets (called
cliques) of which any two elements have an admissible msg;

2. analyze every such clique: if the msg of the counterpart subset of the tuples
for DS-R is also admissible, then delete the clique from the tuples for DPC-R;
otherwise delete that counterpart subset from the tuples for DS-R;

3. take the msgs of the remaining cliques for building admissible instances of
the DPC-Rk, and set w to the number of these cliques;

4. partition the remaining tuple set for DS-R into a minimal number of cliques,
build admissible instances of the DS-Rj from their msgs, and set v to the
number of these cliques.

This is essentially my old MSG Method [9, 12], but run with the extended
definitions of admissibility.

Example 7. The synthesis of del0dds, as started in Example 6, continues as fol-
lows. The first answer adduces the following evidence of DSdel0dds Cleft column)
and DPCdelOdds (right column):
i.([], [] ,true> (not applicable)
The second answer abduces the following evidence of DSdelOdds and DPCdelOdds:

2. (['All, ['], odd(A1)) (A1, ['], ['], odd(A1) >
3° (['All , FAI'] , ~odd (A1)) (A1, ['], ['All, ~odd (A1))

The third and fourth answers abduce the following evidence of DSdelOdds and
DPCdelOdds:

4. (CBI, B2], C], (odd(Bl), odd(B2)))
5. ([BI ,B2], CBI], (~odd(B1), odd(B2)))
6. ([l l ,B2], CB2], (odd (l l) , ~odd(B2)))
7. ([B1 ,B23, Ca1 ,B~], (~odd(B1), ~odd (B2)))

(B1, [] , [] ,odd(Bl))
(BI, [] , [BI] ,~odd(Bl))
(BI, [B2], CB2], odd(Bl))
(B1, [B2], CB1,B2] ,~odd(B1))

190

Note that tuples 4 and 5 for DPCdelOdds are just variants of its tuples 2 and 3,
respectively; they could thus be eliminated. In fact, DIALOGS detects this dur-
ing query generation and never even poses the third query to the specifier; the
corresponding tuples are non-interactively abduced using the answer to the sec-
ond query as shortcut. At step (1), the msg of all the tuples for DPCdelOdds
is (HL,TR,R,P). Since there is a predicate variable in the fourth slot, namely P,
this tuple is not admissible. So we should partition the tuple set into a minimal
number of cliques of which any two elements have an admissible msg. A par-
tition into two cliques of three elements each (with tuples 2, 4, 6, and 3, 5, 7,
respectively) achieves this, with the following msgs:

([HLITL], R, P>
< [HL[TL] ,R,Q>

(HL,TR, TR, odd(HL)>
(HL,TR, [HLITR] ,-~odd(HL)>

There are no other partitions yielding two cliques. The partitions yielding three
to six cliques are obviously uninteresting, as each of their cliques is properly
contained in some clique of the bi-partition.

At step (2), the counterpart six pieces of evidence of DSdel0dds can be
deleted, because their two msgs (in the left column above) are not admissible
(due to the presence of predicate variables).

At step (3), w is set to 2, and DPCdel0ddsl is bound to AT,U,V.T=HL,U=TR,
V=TR, odd(HL), while DPCdel0dds2 is bound to)~T,U,V.T=HL,U=TR,V=[HLITR],
-~odd(HL).

At step (4), v is left to be 1, and DSdel0dds is bound to AT,U.T=[] ,U=[],
t rue , using the only remaining evidence for DSdel0dds. o

What if the answers to the queries are not conjunctions of literals? For sim-
plicity, and without loss of power, I restrict the answer language to the connec-
tives not ("'~"), and (","), and or (";"), and I require answers to be in disjunctive
normal form, with the variables appearing in the query being implicitly free, all
others being implicitly existentially quantified. Therefore, it suffices to break up
disjunctive answers into their conjunctions of literals, and to apply the MSG
Method. This was actually illustrated in the del0dds example.

lnstantiation of DPC-R through recursive synthesis. Instantiating DPC-R via the
MSG Method assumes that there is a finite non-recursive axiomatization of that
operator. But such is not always the case; take for example the i n s e r t predicate
used in the insertion-sort program in Section 1: its program is recursive and
hence not synthesizable through the MSG Method. So another method needs
to be devised for detecting and handling such situations of necessary predicate
invention [20, 10]. Since the MSG Method has been devised to always succeed
(indeed, in the worst case, it partitions a tuple set into cliques of one element
each), a heuristic is needed for rejecting the results of the MSG Method and thus
conjecturing the necessity of predicate invention. A good candidate heuristic is
[9, 8]: if there are "too few" cliques for DPC-R, then reject the results of the MSG
Method. The interpretation of "too few" is implementation-dependent, and could

191

be user-controlled by system-confidence parameters; the current implementation
only rejects when w is 0.

Example 8. After the three queries of the insertion-sort synthesis of Example 1
(assuming L is chosen as induction parameter, which is divided by head-tail
decomposition, and S is chosen as result parameter), the abduced tuples for
DSsort and DPCsort respectively are (after some renaming):

([] , [],true>
([A1], [A1] ,true)
([B1 ,B2], [B1 ,B2] ,BI_<B2>
([B1,B~], [B2,B1] ,BI>B2)

(not applicable)
(A1, [] , [A1] , t rue)
(BI, [B2], [B1 ,B2"] ,BI<B2>
(B1, [B2], [B2,BI] ,BI>B2)

The MSG Method partitions, at step (1), the three tuples for DPCsort into three
cliques of one element each; at step (2), these tuples are removed because their
counterparts for DSsort are admissible as well; at step (3), no evidence is left
for DPCsort, so w is set to 0; finally, at step (4), the four tuples for DSsort are
partitioned into three cliques, so v is set to 3. This result is however rejected
by the heuristic above: it is conjectured that DPCsort cannot be instantiated
through the MSG Method (that is, a program for i n s e r t cannot be found by
this way). o

So how to proceed? This is a situation of necessary predicate invention, which
is precisely one of the situations targeted by DIALOGS, which is a recursion-
synthesizer (due to its foundation on Template 2). So the idea is for DIALOGS to
re-invoke itself, under the assumption that a divide-and-conquer program exists
for the missing operator.

The instantiations done by steps (3) and (4) of the MSG Method need to be
undone. The latter is thus revised as follows: steps (3) and (4) only create the
instances, but the actual bindings are deferred until acceptance by the rejection
heuristic.

Using Template 2 and the declaration of the current predicate (see below),
the variable DPC-R is bound to)~T, U, V, W. dp cR (T, U, V, W), and the predicate dec-
laration dpcR (H" T4, T: T3, R: T3, A: T1) is elaborated (assuming that the elements
of induction parameter B'T2 are of type T4, that hx = t = 1, and that ¢'T3 is
the result parameter and A:T1 the auxiliary parameter). Indeed, under these as-
sumptions, the call to the new predicate wilt be dpcR(HB, TC, C, A). Note that this
doesn't necessarily create a predicate of maximum arity 3, but, as said earlier,
a generalization of Template 2 should be used for any serious implementation.
Moreover, the variable DS-R is instantiated according to the msgs of the tuples
that have no counterparts among the tuples for DPC-R. For the insertion-sort syn-
thesis, this gives the declaration dpcSort (I : i n t , L : l i s t (in t) , R: l i s t (i n t)),
while variable DSsort is bound to AA,B,C.A=[] ,B=[], and variable DPCsort is
bound to AH,T,B,C.dpcSort(H,T,B), just like in Example 4.

The first phase of the sub-synthesis must be run in mute mode, as the specifier
doesn't know what kind of program the system is synthesizing and therefore can't

192

be expected to answer queries about its operators, let alone about the operators
used in synthesizing these operators.

However, some hints for the first phase of this sub=synthesis could be ex-
pressed: in general, it seems reasonable to hint at T as induction parameter, R as
result parameter, and H, A as auxiliary parameters. A reasonable hint could also
be expressed for instantiation of DeeR, but I do not go into these details here.
In any case, these hints beg a fourth feature of the dialogue mechanism (see
"Dialogue issues" above), namely: (iv)preference of hints (if any) over defaults
in mute mode. In general, DIALOGS is thus also called with a possibly empty hint
list, rather than with only a predicate declaration.

The second phase of this sub-synthesis should not generate queries about the
new predicate. It shouldn't even synthesize a program for the new predicate by
explicit induction on the parameter hinted at, because not every value of that
induction parameter is "reachable" by values of the induction parameter of the
super-synthesis: queries about the new predicate can't always be formulated in
terms of the old one. For example, a factorial program needs to invent a multi-
plication predicate, but actually only uses a sparse subset of the multiplication
relation [17]. The "trick" to make DIALOGS generate queries about the top-level
predicate (see below) such that the answers actually pertain, unbeknownst to
the specifier, to that new predicate is quite simple: the first phase of the sub=
synthesis should add the obtained clauses to those of the super-synthesis, rather
than work with these new clauses only.

Thus, in general, DIALOGS is called with a start program as an additional
argument: this is the empty set in the case of a new synthesis (for the top-level
predicate), or a set of clauses for a (unique) top-level predicate and its (directly
or indirectly) used predicates, in case DIALOGS is used (possibly by itself) for
a necessary invention of a predicate that is (directly or indirectly) used by the
top-level predicate. The first phase gets a predicate declaration for the current
predicate and builds the current program by adding the new clauses to the start
program. Query generation in the second phase is always done for the top-level
predicate, but unfolding will eventually "trickle down" to a missing operator
of the current predicate and extract a question for it in terms of the top-level
one. The answers to queries help instantiate a missing operator of the current
predicate, through either the MSG Method or further recursive synthesis.

Example 9. Let's continue the synthesis of the insertion-sort program (from Ex-
ample 1 and Example 8). DIALOGS calls itself recursively in mute mode with

s o r t (L , S) +-- L=[_],S=[]
so r t (L ,S) +-- L=[HLITL] ,sor t (TL,TS),dpcSort(HL,TS,S)

as start program, so r t as top-level predicate, d p c S o r t (I : i n t , L : l i s t (i n t) ,
R: l i s t (i n t) as declaration for current predicate dpcSort , parameter L as pre-
ferred induction parameter, parameter R as preferred result parameter, and pa-
rameter I as preferred auxiliary parameter. Assume the first phase builds the
current program by adding to the start program the following clauses:

dpcSort(I,L,R) 4- DSdpcSort (I,L,R)
dpcSort (I,L,R) +- L=[HLITL] ,dpcSort(I ,TL,TR) ,DPCdpcSort (HL,TR,K, I)

193

In the second phase, query generation for most-general one-element and two-
element lists as induction parameter L of the top-level predicate s o r t leads,
without interaction (due to the second and third queries of the super-synthesis),
to the following tuples for DSdpcgort and DPCdpcgort, respectively:

(Al,[],[A1],true)
(BI,[B2],[B1,B2],B1 ~B2)
(BI,[B2],[B2,BI],BI >B2)

(not applicable)
(B2,[B1],[B1,B2],B1,B1 ~B2)
(B2,[B1],EB2,B1],B1,B1 >B2)

This is scanty evidence to continue from, so one could decide to generate a
query about what happens when induction parameter L of the top-level predicate
s o r t has three elements. This would yield an extension to the target scenario of
Example 1; the ensuing computations are too long to reproduce here, but they
eventually lead to the correct binding (just as in Example 5) of DSdpcSortl to
AA,B,C.A= [],B= [C], of DSdpcSort2 to ,~A,B, C. 3H,T. A= [HIT] , B=[C,HIT], C<H,
and of DPCdpcSort to AA, B, C, D. 3H, T. B= [HIT], C= [A, HtT],D>A. Note that v is
2, and w is 1. A more "daring" move would be to directly infer these instances
from the tuples above, and thus to stay within the targeted scenario. Indeed,
the first tuple can directly lead to the instantiation of DSdpcSortl, based on
the observation that there is no counterpart evidence of DPCdpcSort; the second
tuple can directly lead to the instantiation of DSdpcSort2 (by generalization
of constant n i l to a variable), based on the observation that the counterpart
evidence of DPCdpcSort forces the "breaking up" of the second parameter in
order to construct the third one; conversely, the third tuple can directly lead to
the instantiation of DPCdpcSort (by generalization of constant n i l to a variable),
based on the observation that the counterpart evidence of DSdpcSort forces the
"breaking up" of the second parameter in order to construct the third one.
Formalizing this, and hence reducing dialogues, is considered future work. o

A high-level DIALOGS algorithm can be found in the Appendix.

4 Conclusion

In this paper, I have first motivated and then incrementally reconstructed the
reasoning that led to the design of the DIALOGS system, which is a dialogue-
based, inductive/abductive, schema-guided synthesizer of recursive logic pro-
grams, that takes the initiative and minimally queries a (possibly computation-
ally naive) specifier for evidence in her/his conceptual language. DIALOGS can
be used by any learner (including itself) that detects, or merely conjectures, the
necessity of invention of a new predicate.

Queries are kept entirely in terms of the specifier's conceptual language,
and are simple, because they only ask what "happens" when some parameter
has a finite number of "elements." Even better, the specifier must know the
answers to such queries, because otherwise s/he wouldn't even feel the need
for the synthesized program. Answers are thus also in the specifier's conceptual
language, and are independent of the synthesized program. Answers are stored

194

so that synthesis can proceed with minimal querying. Indeed, a query can be
generated more than once, albeit with different "intentions" (that is, aiming at
gathering evidence of different operators): the aimed-at operators are either the
ones of the top-level predicate or the ones of the current predicate (when the
top-level predicate needs to invent the current predicate).

A competent specifier assumption only holds in the second phase, because
of the backtrackability feature of the dialogue in the first phase: the specifier
(if any!) can answer just about anything during the first phase, because wrong
answers will lead to failure in the second phase.

Note the elegant ways by which DIALOGS avoids the "background knowledge
re-use bottleneck" [13]: first, it only tries to re-use the = /2 primitive (by the
MSG Method); moreover, other primitives (such as < /2 or odd) used by the
specifier in answers to queries end up in the synthesized program (which prevents
the sometimes automa-g-ic flavor of inductive synthesis); finally, the system re-
uses the primitives occurring in its knowledge base for DecK. Overall thus, these
primitives do not "compete" in re-use situations.

Due to its foundation on an extremely powerful codification of a "recursion-
theory" (by means of the template and constraints of a divide-and-conquer
schema), the current prototype implementation needs very little evidence and is
very fast. An even faster and more powerful implementation is planned.

The time-complexity of synthesis is essentially linear in the complexity of the
synthesized program, due to the repeated unfolding of the synthesized program
for various most-general values of some parameter. Steps (1) and (4) of the MSG
Method amount to partitioning a graph into a minimal number of cliques, which
is known to be an NP-complete problem; however, this should not be an issue,
as the graphs under investigation only have a few nodes.

The class of synthesizable programs is a subset of the class of divide-and-
conquer programs. It seems to depend on the knowledge base for DeeR, but a
"Devil's Advocate" argument against its completeness with respect to that class
may be countered by appealing to the ingenuity of a non-naive specifier when
answering the Doer question. The current (relaxable) assumptions are that DS-R
is non-recursively defined, and that DPC-R has a divide-and-conquer instance, if
a new predicate needs to be invented for it.

DIALOGS falls into the category of trace-based inductive synthesizers [9] (such
as [3], GRENDEL [5], SYNAPSE [9, 12], METAINDUCE [15], CILP [17], . . .) , because
it first explains its examples in terms of computation traces (that fit a certain
template), and then generalizes these traces into a recursive program. The main
innovation here is that DIALOGS generates its own, generalized examples. Note
that SPECTRE [4] and TRACY [2] are not trace-based synthesizers, as they don't
construct their candidate clauses in a truly schema-guided way. However, they
do use a form of declarative bias to enumerate and analyze (that is, accept
or reject) potential clauses, and they also feature unfolding/resolution in the
process of verifying the coverage of examples.

DIALOGS is most closely related to SYNAPSE [9, 12]: this non-interactive
schema-guided inductive/abductive synthesizer expects some positive (ground)

195

examples as well as Horn clause equivalents (called properties) of at least the
answers that DIALOGS would query for. In other words, DIALOGS is a simplifica-
tion of SYNAPSE, without any loss of power, but with less burden on the specifier
and with faster synthesis. The Proofs-as-Programs Method (which should have
been called Abductive Method) of SYNAPSE has disappeared, as it has become
the driving synthesis mechanism of the second phase of DIALOGS.

The ClLP [17] and METAINDUCE [15] systems essentially feature subsets of the
functionality of SYNAPSE and DIALOGS, in the sense that they have only examples
as input language, rely on a simpler divide-and-conquer schema, and use less
powerful MSG Methods, which cannot infer disjunctively defined operators.

The CLINT [6] and CLINT/CIA systems [7], aJthough they are model-based
inductive synthesizers [9], are also related to DIALOGS, in the sense that they
are also interactive, sometimes guided by (mono-clansal) templates, and have an
extended evidence language (full clauses, called integrity constraints). However,
these integrity constraints are not used constructively during a synthesis, but
only to accept or reject candidate programs.

As said before, a stopping criterion for the dialogue loop of the second phase
needs to be identified. Co-routining the abduction, induction, and evaluation
steps of that phase seems an approach towards this, as the loop can then be
exited when the msgs stop changing.

Future work will also aim at increased schema independence (it's already
largely achieved in the second phase, except for the hardwired verification of
the constraints), at least via the coverage of an even more powerful divide-and-
conquer schema (with support of compound induction parameters, . . .) and of
other schemata (tupling generalization [14], descending generalization [14], . . .).
Ideally, the schema would be a parameter of the system, and thus constitute a
real declarative bias.

Another plan is to integrate DIALOGS with a post-synthesis transforma-
tion/optimization tool; the preference will of course go to using schema-guided
transformers [14], as these can exploit much of the additional information (such
as "what is the instance of each operator?") generated by DIALOGS.

Acknowledgments
Many thanks to Esra Erdem for numerous stimulating discussions about the
MSG Method. The anonymous reviewers were constructive in suggesting some
improvements of the presentation. Esra Erdem, Halime B/iy/ikylldlz, and Serap
Yllmaz provided useful feedback on an earlier version of this paper, and con-
tributed to the implementation of a first prototype of the DIALOGS system, as
well as to the ordeal of typesetting this document in ISTEX.

R e f e r e n c e s

1. Angluin, D.: Queries and concept learning. Machine Learning 2(4):319-342, 1988.
2. Bergadano, F., Gunetti, D.: LearvSng clauses by tracing derivations. In S. Wrobel

(ed), Proc. of 1LP'9~{, pp. 11-29. GMD-Studien Nr. 237, Sankt Augustin, 1994.

196

3. Biermann, A.W.: Dealing with search. In A.W. Biermann, G. Guiho, and Y. Ko-
dratoff (eds), Automatic Program Construction Techniques, pp. 375-392. Macmil-
lan, 1984.

4. BostrSm, H., Idestam-Almquist, P.: Specialization of logic programs by pruning
SLD-trees. In S. Wrobel (ed), Proc. of ILP'9~, pp. 31-48. GMD-Studien Nr. 237,
Sankt Augustin, 1994.

5. Cohen, W.C.: Compiling prior knowledge into an explicit bias. In Proc. of ICML'92,
pages 102-110. Morgan Kaufmann, 1992.

6. De Raedt, L., Bruynooghe, M.: Belief updating from integrity constraints and
queries. Artificial Intelligence 53(2-3):291-307, February 1992.

7. De Raedt, L., Bruynooghe, M.: Interactive concept learning and constructive in-
duction by analogy. Machine Learning 8:107-150, 1992.

8. Erdem, E.: An MSG Method for Inductive Logic Program Synthesis. Senior Project
Final Report, Bilkent University, Ankara (Turkey), May 1996.

9. Flener, P.: Logic Program Synthesis from Incomplete Information. Kluwer, 1995.
10. Flener, P.: Predicate Invention in Inductive Program Synthesis. TR BU-CEIS-9509,

Bilkent University, Ankara (Turkey), 1995. Submitted.
11. Flener, P.: Synthesis of Logic Algorithm Schemata. TR BU-CEIS-96xx, Bilkent

University, Ankara (Turkey), 1996. Update of TR BU-CEIS-9502. In preparation.
12. Flener, P., DeviUe, Y.: Logic program synthesis from incomplete specifications.

Journal of Symbolic Computation 15(5-6):775-805, May/June 1993.
13. Flener, P., Pope]/nsk:~, L.: On the use of inductive reasoning in program synthesis.

In L. Fribourg and F. Turini (eds), Proc. ofMETA/LOPSTR'9$. LNCS 883:69-87,
Springer-Verlag, 1994.

14. Flener, P., Devine, Y.: Logic Program Transformation through Generalization
Schemata. TR BU-CEIS-96yy, Bilkent University, Ankara (Turkey), 1996. In
preparation. Extended abstract in M. Proietti (ed), Proc. of LOPSTR'95. LNCS
1048:171-173, Springer-Verlag, 1996.

15. Hamfelt, A., Fischer-Nilsson, J.: Inductive metalogic programming. In S. Wrobel
(ed), Proc. of ILP'9$, pp. 85-96. GMD-Studien Nr. 237, Sankt Augustin, 1994.

16. Kietz, J.U., Wrobel, S.: Controlling the complexity of learning in logic through
syntactic and task-oriented models. In S. Muggleton (ed), Inductive Logic Pro-
gramming, pp. 335-359. Volume APIC-38, Academic Press, 1992.

17. Lapointe, S., Ling, C., Matwin, S.: Constructive inductive logic programming. In S.
Muggleton (ed), Proc. of ILP'93, pp. 255-264. TR IJS-DP-6707, J. Stefan Institute,
Ljubljana (Slovenia), 1993.

18. Mnggletou, S., Buntine, W.: Machine invention of first-order predicates by inverting
resolution. In Proc. of ICML'88, pages 339-352. Morgan Kaufmann, 1988.

19. Plotldn, G.D.: A note on inductive generalization. In B. Meltzer and D. Michie
(eds), Machine Intelligence 5:153-163. Edinburgh University Press, 1970.

20. Stahl, I.: Predicate invention in ILP: An overview. TR 1993/06, Fakult~it Infor-
matik, Universit~it Stuttgart (Germany), 1993.

21. Sterling, L.S., Kirschenbaum, M.: Applying techniques to skeletons. In J.-M.
Jacquet (ed), Constructing Logic Programs, pp. 127-140. John Wiley, 1993.

22. Tinkham, N.L.: Induction of Schemata]or Program Synthesis. Ph.D. Thesis, Duke
University, Durham (NC, USA), 1990.

197

Append ix : The DIALOGS A l g o r i t h m

% I n t e r a c t i v e syn thes i s of a r ecu r s ive (divide-and-conquer) pgm.
dialogs <-

set interaction mode to "aloud',
read(PredDecl), % declaration for r, the top-level predicate
Hints = {},
StartPgm= {},
dialogs(PredDecl,Hints,StartPgm,Pgm),
write(Pgm),
if the specifier wants more programs then fail else true.

% Synthes is (in case of de tec ted or conjec tured necessary
predicate invention) of a recursive (divide-and-conquer) pgm
for the current predicate declared in PredDecl, using Hints
(if any), which program is used by and thus added to the
context program StartPgmto yield the final program Pgm.

dialogs(PredDecl,Hints,StartPgm,Pgm) <-
phase I

NewClauses = a set of divide-and-conquer clauses (accordin E to
Template 2) for the current predicate (which is declared in

PredDecl), where only the DecR operator has been instantiated,
according to Hints (if any),

CurrPgm = StartPgmunion NewClauses,
phase 2

abduce(CurrP~,DSev,DPCev),
induce(DSev,DPCev,DSinsts,DPCinsts),
evaluate(DSinsts,DPCinsts,CurrPgm,Pgm).

% Interactive abduction of evidence sets DSev and DPCev for the
uninstantiated operators DS-R and DPC-R in program pgm.

abduce(Pgm,DSev,DPCev) <-
DSev = {}, DPCev = {}, % initializations
as often as "'needed'' do

construct Goal, ~ a goal for the top-level predicate
demo(Pgm,Goal,Assumptions,Residue),
ask(Goal,Assumptions,Residue,DS-exs,DPC-exs),
DSev = DSev union DS-exs,
DPCev = DPCevunion DPC-exs

od.

An SLD-refutation of <- Goal in theory Pgm (augmented with
shortcut clauses from previous queries) generates the conj
Assumption, but is blocked by the unresolvability of the
unit-goal Residue, because it has a predicate variable.

demo(Pgm,Goal,Assumption,Residue) <- ...

198

The set DS-exs (resp. DPC-exs) contains the tuples for the
predicate variable DS-R (resp. DPC-R) in second-order atom
Residue, which tuples are extracted from the answer (by the
specifier or by an oracle based on previous answers) to the
query under what conditions atom Goal must hold, assuming
that conjunction Assumption holds.

ask(Goal,Assumption,Residue,DS-exs,DPC-exs) <- ...

Inductive generalization of the evidence sets DSev and DPCev
into lists of "'plausible'' instances (according to the
admissibility criteria) DSinsts and DPCinsts for the operators
DS-R and DPC-R.

induce(DSev,DPCev,DSinsts,DPCinsts) <- ~ revised MSG Method
partition(DPCev,DPCcliques), ~ step I (as in text)
prune(DPCcliks,Ne,DPCcliks,DSev,NewDSev), ~ step 2 (as in text)
buildInsts(NewDPCcliks,DPCinsts), ~ step 3 (revised)
partition(NewDSev,DScliks), ~ step 4 (revised)
buildInsts(DScliks,DSinsts). ~ step 4 (cont'd)

Heuristic-based acceptance or rejection of the induced
instances DSinsts and DPCinsts for the uninstantiated operators
DS-R and DPC-R in second-order logic program CurrPgm, so as to
instantiate the latter into a first-order program Pgm.

evaluate(DSinsts,DPCinsts,CurrP~m,Pgm) <-
if #DPCinsts=O then ~ reject!

construct NewPredDecl ~ dec1. for dpcR, the new curt. pred.
c o n s t r u c t Me .Hin t s , ~ h i n t s f o r dpcR
in t h e l a s t two c l a u s e s of CurrPgm do

i n s t a n t i a t e t h e DS-Rj (as d e s c r i b e d in t e x t) ,
p a r t i c u l a r i z e v a c c o r d i n g l y ,
i n s t a n t i a t e DPC-R t o dpcR,
p a r t i c u l a r i z e w t o 1

yielding NewStartPgm,
set interaction mode to "mute',
dialogs(NewPredDecl,NewHints,NewStartPgm,Pgm) ~ recursion!

else ~ accept!
in the last two clauses of CurrPgm do
particularize v to #DSinsts,
for l<=j<=v do instantiate DS-Rj using DSinsts[j],
particularize w to #DPCinsts,
for l<=k<=w do instantiate DPC-Rk using DPCinsts[k]

yielding Pgm.

