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Abs t rac t .  DIALOGS (Dialogue-based Inductive and Abductive LOGic 
program Synthesizer) is a schema-guided synthesizer of recursive logic 
programs; it takes the initiative and queries a (possibly computationally 
naive) specifier for evidence in her/his conceptual language. The specifier 
m u s t  know the answers to such simple queries, because otherwise s/he 
wouldn't even feel the need for the synthesized program. DIALOGS call be 
used by any learner (including itself) that detects, or merely conjectures, 
the necessity of invention of a new predicate. Due to its foundation on a 
powerful codification of a '~recursion-theory" (by means of the template 
and constraints of a divide-and-conquer schema), DIALOGS needs very 
little evidence and is very fast. 

1 I n t r o d u c t i o n  

This paper results from a study investigating (i) what is the minimal knowledge 
a specifier must have in order to want a (logic) program for a certain concept, 
and (ii) how to convey exactly the corresponding information, and nothing else, 
to a (logic) program synthesizer (be it automated or not). I argue that  "knowing 
a concept" means that  one can act as a decision procedure for answering certain 
kinds of simple queries [1] about that  concept, but that  it doesn't  necessarily 
imply the ability to actually write such a decision procedure. More provoca- 
tively, I could argue [13] that  writing a complete formal specification is often 
tan tamount  to writing such a decision procedure (because it actually features 
a naive or inefficient algorithm), and is thus often beyond the competence of a 
"computationally naive" specifier. But the reader need not agree on the latter 
claim, so let's assume, for whatever reasons, that  some specifier wants to, or can 
only, give incomplete information about a concept for which s /he wants a (logic) 
program. This is an innovative program development technique, especially aimed 
at two categories of users: 

- e x p e r i e n c e d  p r o g r a m m e r s  would often rather just provide a few carefully 
chosen examples and have a synthesizer "work out the details" for them; 

- e n d  u s e r s  are often computationally naive and cannot provide more than 
examples, but  this should allow them to do some basic programming tasks, 
such as the recording of macro definitions, etc. 
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As this project is not about natural language processing, let's also assume that 
the specification language is nevertheless formal. 

The synthesizer must thus be of the inductive and/or abductive category. 
However~, many (but not all) such synthesizers have the drawback of requiring 
large amounts of ground positive (and negative) examples of the intended con- 
cept, especially if the resulting program is recursive. The reasons are that ground 
examples are a poor means of communicating a concept to a computer, and/or 
that the underlying ~recursion theory" is poor. To address the first reason, some 
researchers have successfully experimented with non-ground examples [18], if not 
Horn clauses [9, 12] or even full clauses [6], as evidence language. To address the 
second reason, schema-guided synthesis has been proposed [9, 12]. 

Especially since the advent of ILP (Inductive Logic Programming), the learn- 
ing/synthesis ofnon-recursive programs (or concept descriptions) has made spec- 
tacular progress, but not so the synthesis of recursive programs. I have therefore 
decided to focus on the latter class of programs, to the point where my synthe- 
sizers even a s s u m e  that there exists a recursive logic program for the intended 
concept. Even though this seems counterproductive, because a synthesizer can't 
decide in advance whether a concept has a recursive program or not, there are 
two good reasons for this focus and assumption. First, as advocated by Biermann 
[3], I believe it is more efficient to try a suite of fast and reliable class-specific 
synthesizers (and, if necessary, to fall back onto a general-purpose synthesizer) 
than to simply run such a slow, if not unreliable, general-purpose synthesizer. 
It is thus worthwhile to study the properties of any sub-class of programs and 
hardwire its synthesis. Second, as the recent interest in constructive induction 
[10, 20] shows, necessarily-invented predicates have recursive programs. It is thus 
worthwhile to study the class of recursive programs, because any learner (even 
a general-purpose one) can use such a specialized recursion-synthesizer once it 
has detected, or merely conjectured, the necessity of a new predicate. 

Finally, let's assume that our specifier is "lazy," that is s/he doesn't want to 
take the initiative and type in evidence of the intended concept without knowing 
whether it will be "useful" to the synthesizer or not. So we need an interactive 
synthesizer, and even one that takes the initiative and queries the specifier only 
for strictly necessary evidence. This is actually another solution to the mentioned 
example voraciousness of many learners. The query and answer languages need 
to be carefully designed, though, so that even a computationally naive specifier 
can use the system. For instance, during the synthesis of a sorting program, the 
specifier cannot be queried about an insertion predicate (assuming the synthesis 
"goes towards" an insertion-sort program), because this is an auxiliary concept 
that is not necessarily known to the specifier, her/his "mental" sorting algorithm 
being not necessarily the insertion-sort one. Also note that such an interaction 
scenario does not necessarily assume a human specifier. 

I plan to combine all of the mentioned ideas into one system. So, in sum- 
mary, I aim at an interactive, inductive/abductive, schema-guided synthesizer of 
recursive programs, that takes the initiative and minimally queries a (possibly 
computationalty naive) specifier for evidence in her/his conceptual language. 
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Example 1. After analyzing my previous work (in a different mindset [9, 10, 12]), 
I decided on the following target scenario. Assume a (possibly computationally 
naive) specifier somehow has (an equivalent of) the following informal specifica- 
tion in mind: 
so r t (L ,S)  iff S is a non-decreasing permutation of L, 

where L, S are integer-lists. 
Now imagine a logic program synthesizer that takes this specifier through the 
following annotated dialogue, where questions are in t e l e t y p e  font, default an- 
swers (if any) are between curly braces "{... }", the specifier's actual answers 
are in italics, the comma "," stands for conjunction, and the semi-colon ";" 
stands for disjunction: 

P r e d i c a t e  d e c l a r a t i o n ?  sort(L : list(int), S : iist(int)) 
If the specifier is ever to use a logic program for sor t ,  s/he must be able to give 
such a predicate declaration, because the predicate symbol, the sequence of for- 
mal parameters, and their types must be known to her/him. Minimal knowledge 
about the system, its syntax, and its type system is thus unavoidable. 

Induction parameter? {L} L 
Result parameter? {S} S 
Decomposition operator? {L= [HL[TL] } L = [HLITL ] 

The last three queries seem to require some programn~ng knowledge (see Sec- 
tion 2 for the terminology), which would go counter a scenario with a computa- 
tionally naive specifier. However, note that the system proposes default answers~ 
so that such a specifier may indeed ignore these queries by simply accepting their 
default answers. 

What conditions on <S> must hold such that sort([],S) holds? 
S=D 

The specifier must know what the sorted version of the empty list is, because 
otherwise s/he wouldn't even have the need for a sort program. 

What conditions on <A,S> must hold such that sort([A] ,S) holds? 
S = [A] 

Also, the specifier must know what the sorted version of the one-element list is. 
What conditions on <A,B,S> must hold such that sort([A,B],S) 
holds? S = [A, B], A _ B; S = [B, A], A > B 

Finally, the specifier must know what the sorted version of a two-element list is, 
and why it is so. The answer may look complicated (due to the use of variables, 
conjunction, and disjunction), but note that it only embodies minimal knowl- 
edge about sor t ,  which is independent of any sorting algorithms. Note how the 
specifier was "forced" to use the </2  and >/2  predicates, as they are essential 
to the concept of number sorting. Soon afterwards, the system reports: 

A possible logic program for sort is: 
sort(L,S) +- L=[] ,S=[] 
sort(L,S) +- L=[HLITL],sort(TL,TS), insert(HL,TS,S) 
insert(I,L,R) +- L=[],R=[I] 
insert(I,L,R) ~- L=[HLITL],I_<HL, R=[I,HLITL] 
insert(I,L,R) ~-- L=[HLITL] ,I>HL, insert(I,TL,TR),R=[HLITR] 

This is insertion-sort. Obviously (to us), the implicit informal specification of 
i n s e r t  is as follows: 
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i n s e r t ( I , L , R )  iffR is L with I inserted into it, 
where I is an integer and L, R are non-decreasing integer-lists. 

But the specifier need not know this. The system doesn't know this either, 
and actuMly uses predicate symbol dpcSort  instead (see the naming scheme in 
Section 2), as well as other parameter names. 

Do you want another logic program for sort? {yes} Yes, please! 
Backtracking ... 
Decomposit ion operator? {L= [HLIT], partit ion (T, HL, TLI, TL~) } 
L : [HLIT], partition(T, HL, TL1, TL2) 

Assume that  p a r t i t i o n  is a system primitive (whose program is known to the 
system) informally specified as follows: 
p a r t  i t  ion (L, P, S, B) iff S (resp. B) contains the elements of L that  are smaller 

than (resp. bigger than or equal to) P, 
where L, S, B are integer-lists and P is an integer. 

After a short while, the system announces: 
h possible logic program for sort is: 

sort(L,S) 4- L=[],S=[] 
sort(L,S) 4- L=[HLIT], partition(T,HL,TL1,TL2), sort(TL1,TSl), 

sort (TL~, TS2), combine (HL, TSI, TS2, S) 
combine(E,A,B,C) 4- A=[] ,C=[EIB ] 
combine(E,A,B,C) 4- A=[HAITA], combine(E,TA,B,TC),C=[HAITC] 

This is the quick-sort program. The implicit informal specification of combine 
is as follows: 
combine(E,A,B,C) iff append(A, [EIB] ,C), 

where A, B, C are lists and E is a term. 
Again, the system actually uses predicate symbol dpcSort  instead of combine. 
Also note that  no further queries were posed to the specifier, and yet the system 
came up with a completely different program. 

Do you want another logic program for sort? {yes} Yes, sure! 
Backtracking . . .  
Decomposition operator? {L=[_,J~],halves(L,TLi,TL=)} 
L = [-,-I-l, halves(L, TL1, TL2) 

Assume that  ha lves  is a system primitive informally specified as follows: 
h a l v e s ( L , F , S )  iff F is the first half of L, and S is the second half of L, such 

that  S has maximum one element more than F, where L, F, S are lists. 
Soon, the system proclaims: 

A possible logic program for sort is: 
sort(L,S) 4- L:[],S:[] 
sort(L,S) 4- 
sort(L,S) 4- 

merge(A,B,C) 
merge(A,B,C) 
merge(A,B,C) 

merge(A,B,C) 

L= [~], S=L 
L= [_, -I J, halve s (L, TLI, TL2), sort (TL I, TS 1 ), 
sort (TL2, TS2 ), merge (TSI, TS2, S) 

4- C=[] ,A=[] ,B : [ ]  
4-- C= [HCITC], merge (TA, TB, TC), TB= [], A= [HCITA], B=TB 
4-- C=[HC]TC] ,merge(TA,TB,TC) ,TB=[HIJ ,HC_<H, 

A= [HCITA] ,B=TB 
+- C= [HC ITC], merge (TA, TB, TC), TA= [], A=TA, B= [HC[TB] 



179 

merge(A,B,C) +- C=[HC[TC] ,merge(TA,TB,TC) ,TA=[H[J ,H>HC, 
A=TA, B= [HCITB] 

This is the merge-sort program. The implicit informal specification of merge is 
as follows: 
merge(A,B,C) iff C is the merger of A and B, 

where A, B, C are non-decreasing integer-lists. 

The system actually uses the predicate symbol dpcSort  instead of merge. Again 
note that although no further queries were posed to the specifier, the system 
produced yet another completely new program. 

Do you want another logic program for sort? {yes} No 
This ends the target scenario. 

In the remainder of this paper, I first discuss, in Section 2, the notion of logic 
program schema, and then, in Section 3, I show how such schemata are the key to 
building the DIALOGS system (Dialogue-based Inductive and Abductive LOGic 
program Synthesizer), such that it has all the wanted features. The refinement 
of DIALOGS is incremental, introducing more advanced features only as the need 
arises and as the basic mechanism is already explained. Finally, in Section 4, I 
look at related work, outline future work, and conclude. 

2 L o g i c  P r o g r a m  S c h e m a t a  

Programs can be classified according to their synthesis methodologies, such as 
divide-and-conquer, generate-and-test, top-down decomposition, globM search, 
and so on, or any composition thereof. Informally, a program schema consists, 
first of all, of a template program with a fixed dataflow, but without specific in- 
dications about the actual computations, except that they must satisfy certain 
constraints, which are the second component of a schema. A program schema 
thus abstracts a whole family of particular programs that can be obtained by 
instantiating the place-holders of its template to particular computations, using 
the program synthesized so far and the specification, so that the constraints 
of the schema are satisfied. It is therefore interesting to guide program syn- 
thesis by a schema that captures the essence of some synthesis methodology. 
This reflects the conjecture that experienced programmers actually instantiate 
schemata when programming, which schemata are summaries of their past pro- 
gramming experience. For a more complete treatise on this subject, please refer 
to my survey [11]. In ILP, for instance, schemata are used as a form of declar- 
ative bias by XOANON [22], MOBAL [16], CLINT/CIA [6], GRENDEL [5], SYNAPSE 
[9, 12], MISST [21], CILP [17], METAINDUCE [15], and others. 

For the purpose of illustration only, I will focus on the divide-and-conquer 
synthesis methodology (which yields recursive programs), and I will restrict my- 
self to predicates of maximum arity 3. 

A divide-and-conquer program for a predicate R over parameters X, ¥, and Z 
works as follows. Assume X is the induction parameter, Y the (optional) result 
parameter, and Z the (optionM) auxiliary parameter. If X is minimal, then ¥ 
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is directly computed from X, possibly using Z. Otherwise, that is if X is non- 
minimal, decompose (or: divide) X into a vector HX of hx heads HXi and a 
vector TX of t tails TX~, the tails TXi being each of the same type as X, as 
well as smaller than X according to some well-founded relation. The tails TX 
are recursively associated with a vector TY of t tails TYi of Y, the auxiliary 
parameter Z being unchanged in recursive calls (this is the conquer step). The 
heads HX are processed into a vector HY of hy heads HY~ of Y, possibly using Z. 
Finally, Y is composed (or: combined) from its heads HY and tails TY, possibly 
using Z. For X non-minimal, it is sometimes unnecessary or insufficient (if not 
wrong) to perform a recursive call, because Y can be directly computed from 
HX and TX, possibly using Z. One then has to discriminate between such 
cases, according to the values of HX, TX, Y, and Z. If the underlying relation is 
non-deterministic given X, then such discriminants may be non-complementary. 
In the non-recursive non-minimal case, several (say v) subcases with different 
solving operators may emerge; conversely, in the recursive case, several (say w) 
subcases with different processing and composition operators may emerge: one 
then has to discriminate between all of these subcases. 

Each of the 1 +v-t-w clauses of logic programs synthesized by this divide-and- 
conquer methodology is covered by one of the second-order clause templates of 
Template 1. Note that an "accidental" consideration of a parameter W as a result 
parameter rather than as an auxiliary parameter does not prevent the existence 
of a program (but the converse is true): W will be found to be always equal to 
its tail TW~ and post-synthesis transformations can yield the version that would 
have been synthesized with W being considered as an auxiliary parameter. For 
convenience, if hx, t, by, v, or w is particularized to constant 1, then I will often 
drop the corresponding indices. Also, I will often refer to the predicate variables, 
or their instances, as operators. 

R(X,Y,Z) ~-- 
Minimal(X), 
SolveMin (X, Y, Z) 

R(X,Y,Z) e-- 
NonMinimal (X), 
Decompose(X,HX,TX), ~, HX=HX1 .... ,HXh~ 
Discr iminate j  (HX,  TX,Y, Z), ~. TX=TX1 . . . .  ,TXt 
SolveNonMinj (HX, TX, Y, Z) 

R(X,Y,Z) ~- 
NonNinimal (X), 
Decompose(X,HX,TX), 
D i s cr iminat ek (HX,  TX,  Y, Z ), 
R(TX1 ,TY1 ,Z) . . . . .  R(TXt,TYt ,Z),  
Pro ce s sk (HX,  HY,  Z), Z HY=HY1 . . . .  , HYhy 
Compo s ek (HY,  T Y ,  Y, Z) Z TY=TY 1 . . . . .  TYt 

Template 1: Divide-and-conquer clause templates (1 ~ j ~_ v, v < k ~ v ÷ w) 

The constraints to be verified by first-order instances of this template are 
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listed elsewhere [11]. The most important one is that there must exist a well- 
founded relation "<" over the domain of the induction parameter, such that the 
instance of Decompose guarantees that TXi "<" X, for every 1 < i < t. Other 
important constraints will be seen in Section 3.2. 

Note that, at the logic program level (and at the schema level), I 'm not inter- 
ested in the control flow: these are not Prolog programs, and there is complete 
independence of the execution mechanism. 

Example 2. The insertion-sort program of Example 1 is a rewriting of the pro- 
gram obtained by applying the second-order substitution 

{ R/hA,B,C.sort(h,B), ~ projection: no auxiliary parameter! 
Minimal/hA. A= [], SolveMin/hA, B, C. B= [], 
NonMinimal/hA. 3H, T. A= [HIT] , Decompose/hA, H, T. A= [HIT], 
Discrimina~e/~H, T, B, C. true, 
Process/hA,B,C.B=A, Compose/~H,T,B,C.insert(H,T,B) } 

to the {v/O, w/1, hz/1, t/1, hy/1}-particularization of Template 1. This means 
that there is no non-recursive non-minimal case, and one recursive case, which 
features decomposition of the induction parameter L into one head, ItL, and one 
tail, TT., the latter giving rise to one tail, TS, of the result parameter S. There is 
no auxiliary parameter, o 

Example 3. The i n s e r t  program of Example 1 is a rewriting of the program 
obtained by applying the second-order substitution 

{ R/hA,B,C.insert(C,A,B), 7, re-ordering of formal parameters! 
Minimal/hA. A= [3, SolveMin/~A, B, C. B= [CJ, 
NonMinimal/AA. 3H, T. A= [HIT], De compose/hA, H, T. A= [HIT] 
Dis criminatel/hH, T, B, C. C<H, SolveNonMin/hH, T, B, C. B= [C, HIT], 
Discriminate2/hH,T,B, C. C>H, 
Process/AA,B,C.B=A, Compose/AH,T,B,C.B=[H)T] } 

to the {v/1, w/1, hx/1, t/1, hy/1}-particularization of Template 1. This means 
that there is one non-recursive non-minimal case and one recursive case, both 
featuring decomposition of the induction parameter L into one head, ttL, and one 
tail, TL, the latter giving rise to one tail, TR, of the result parameter R. Auxiliary 
parameter I is used in the discriminants and in the solving operators, and passed 
around unchanged in the recursive calls; it is however not used in the process 
and compose operators of the recursive case. o 

A more general template is needed to cover the combine program of Section 1; 
it would cover logic programs for n-ary predicates with arbitrary numbers of re- 
sult parameters and auxiliary parameters. Such a template is actually to be used 
by any serious implementation of the synthesis mechanism exposed hereafter. 

In the following, Template 1 will turn out to have too much information, 
as we will not be able to distinguish between the instances of the operators in 
the first two clause templates, nor between the instances of NonMinimal, the 
Discriminatek,  the Process~, and the Compose~ in the third clause template: 
I'll thus unite these operators into DSj (with parameters X, Y, Z) and DPCk (with 
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parameters HX,  T Y ,  Y, Z; note that H Y  has disappeared altogether, and that 
discrimination must now be on TY),  respectively. Moreover, I will want to iden- 
tify the predicate, say R, in whose logic program a certain operator appears, and 
this by just looking at the predicate symbol of that operator: therefore, I'll keep 
every operator name short and suffix their names by "-R" or "It", at the tem- 
plate level and at the instance level. Since nothing in A-calculus mechanizes such 
a naming scheme when moving to the instance level, I will enforce it manually. 
Also note the convenient naming scheme of the internal variables of each clause: 
every head or tail of some formal parameter has a name syntactically dependent 
on the name of that parameter (heads are prefixed by "H" and tails by "T"); this 
helps tracing the role of each variable. If a predicate is declared by the specifier 
as r(A,B,C), then I will automatically apply the renaming substitution {X/A, 
Y/B, Z/C, H X / H A ,  T X / T A ,  T Y / T B }  to instances of the template (assuming 
A is chosen as induction parameter, B as result parameter, and C as auxiliary 
parameter), so that the specifier (and reader) can relate to such instances. All 
this yields Template 2 as a version that is more adequate for my present pur- 
poses. I'll refer to instances of its first clause template as primitive cases, and to 
instances of the other one as non-primitive cases. 

R(X,Y,Z) ~-- 
DS-Rj (X,Y,Z) 

R(X,Y,Z) ~-- 
DecR(X,HX,TX) • HX=HX1 . . . . .  HXh~ 
R(TX1,TYI,Z) . . . . .  R(TXt,TYt,Z), Z TX=TX1 . . . . .  TXt 
DPC-Rk (HX, TY, Y, Z) Z TY=TYI ..... TYt 

Template 2: Divide-and-conquer clause templates (1 < j _< v, i < k < w) 

Example ~. The insertion-sort program of Example I is a slight rewriting of the 
program obtained by applying the second-order substitution 

{ R/AA,B,C.sort(A,B), DS-R/AA,B,C.A=[] ,B=[], 
DocR/AA,H,T.A=[H]T], DPC-R/AH,T,B,C.dpcSor~;(H,T,B) } 

to the {v/1, w/1, hx/1, t/1}-particularization of Template 2, provided the first- 
order renaming substitution {X/L, Y/S, HX/HL, TX/TL, TY/TS} is indeed automat- 
ically applied in this process, o 

Example 5. The insert program of Example I is a slight rewriting of the pro- 
gram obtained by applying the second-order substitution 

{ R/AA,B,C.insert(C,A,B), DS-RI/AA,B,C.A=[] ,B=[C], 
DS-R2/AA, B, C. 3H, T. A= [HIT], B= [C ,HIT], C<H, 
De cR/AA, H, T. A= [HIT], DPC-R/AA, B, C, D. 3H, T. B= [HIT], C= [A, HIT], D >A } 

to the {v/2, w / l ,  h~c/1, t/1}-particularization of Template 2. o 

3 T h e  DIALOGS S y s t e m  

A DIALOGS synthesis is divided into two phases. The first phase performs a full 
particularization of Template 2 (instantiation of all its form variables, namely 
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hx, t, v, and w, which yields a second-order logic program) and an instantiation 
of some of its predicate variables (all except the DS-Rj and the DPC-rtk), and is 
explained in Section 3.1. The second phase performs an instantiation of the DS-Rj 
and the DPC-Rk (that is the computations constructing the result parameter in 
each case), and is explained in Section 3.2. 

3.1 Full Part icular izat ion  and Partial  Ins tant ia t lon  of t he  Templa te  

Predicate declaration. DIALOGS first prompts the specifier for a predicate dec- 
laration. Assume, without loss of generality, that the specifier answers with a 
predicate declaration for a ternary predicate, say p(A:T1,B:T2,C:T3), where p 
is a new predicate symbol, A, B, C are different variable names, and the types T~ 
are in the set {atom, i n t ,  na t ,  l i s t  (_) , . . .  }. The actual type system is of no 
importance here, and the reader may guess the meanings of these type names. 

Dialogue issues. DIALOGS needs to obtain a full particularization of Template 2. 
This means that the form variables hx, t, v, and w need to be bound to inte- 
gers. These are technical decisions, but they must be feasible without technical 
knowledge, because the specifier might be computationally naive or might not 
even exist (which is an extreme case of naivet~)! Let me explain: the need for 
a program for p might arise during the synthesis/learning of a program that 
uses p, in which case nobody can answer queries phrased in terms of p. (Of 
course, giving a predicate declaration for p is always possible.) This situation 
arises when a synthesizer/learner detects or conjectures the necessity of a new 
predicate p; for instance, a Coraposek operator of a divide-and-conquer program 
might itself have a recursive program, so the synthesizer could call itself to find 
this program. So I need to devise a dialogue mechanism, for this first phase, with 
at least three features: (i) the provision of "reasonable" default answers; (i/) the 
runnability in two modes, namely aloud (where a computationally naive specifier 
may simply select the default answers, and any other specifier may answer with 
personal preferences) and mute (where a non-existing specifier is simulated by 
automatic selection of the default answers), and (iii)backtrackability, because 
there might be several reasonable default answers to certain queries, or because 
an answer may lead to failure at the second phase. 

Choice of  the parameter roles. The first step towards particularization of hx and 
t is the choice of the roles of the parameters: one of them must be the induc- 
tion parameter, the others may be either result or auxiliary parameters, if any. 
Choosing an induction parameter can be done heuristically: any parameter of 
an inductively defined type such as nat  or l i s t ( _ )  is a good candidate. From 
the predicate declaration, DIALOGS can create a sequence of potential induction 
parameters, keep the first one as the (first) default answer, and the remaining 
ones as default answers upon backtracking. Similarly for the result parameter (if 
any), which is also likely to be of an inductively defined type: from the remaining 
parameters (if any), DIALOGS can create a sequence of potential result parame- 
ters, keep the first one as the (first) default answer, and the remaining ones as 
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default answers upon backtracking. Finally, DIALOGS can propose as the auxil- 
iary parameter (if any) the remaining parameter (if any). Note that an auxiliary 
parameter is likely, but not certain, not to be of an inductively defined type, a 
good counter-example being I of inset1;, which is an integer, but has nothing to 
do with the "inductive nature" of inserting something into a list. Also remember, 
from Section 2, that an auxiliary parameter may inadvertently be considered as 
a result parameter, without any influence on the existence of a correct program 
(but the synthesis is likely to be a bit slower). In the following, I will implicitly 
drop all occurrences of Z in Template 2 in case there is no auxiliary parameter. 

Instantiation of It. Assuming, without loss of generality, that B is chosen as in- 
duction parameter, C as result parameter, and A as auxiliary parameter, DIALOGS 
can now apply the second-order substitution {R/XU, 7, W. p (W, U, 7) } and the re- 
naming substitution { X / B , Y / C , Z / A , H X / H B , T X / T B , T Y / T C }  to Template 2, 
hence (partly) instantiating the heads and the recursive calls of the templates. 

Instantiation of DeeR and particularization ofhx and t. The choice of an instance 
of DeeR will finally particularize hx and t. DIALOGS can simply use a type-specific 
predefined sequence of potential instances of DeeR, keep the first one as the (first) 
default answer, and the remaining ones as default answers upon backtracking. 
Assuming induction parameter B is of type l i s t  ( i n t ) ,  the sequence could be 

DecR/)~L,H,T. L= [HIT] hx/1, t/1 
DecR/)~L, H1, H2, T. L= [H1, H2JT] hx]2, t/1 

DecR/)~L,H,T1,T2.3T.L= [HIT] ,par t i t ion(T,H,T1 ,T2) hx/1, t/2 
DecR/)~L, T1, T~. L= [_, _J_.], halves (L, T1, T2 ) hx/O, t/2 

Similar sequences are pre-defined for every type, such that they enforce the well- 
foundedness constraint. 

Particularization of v and w. Definitely the hardest particularization is to de- 
cide, in advance, how many subcases there are for each case. A safe approach is to 
conjecture that there is one primitive case (v = 1), as well as one non-primitive 
case (w = 1), and to have the remainder of synthesis refine this: if either of 
these cases turns out to have subcases, which means that the instance of DS-R 
or DPC-R is a disjunctive formula, then set v or w to the number of disjuncts in 
this instance and rewrite the overall program accordingly. 

So far so good. This terminates the first phase: in Template 2, all form variables 
and M1 predicate variables except DS-R and DPC-R are by now instantiated. 
From a programming point of view, all creative decisions have been taken, but 
alternative decisions are ready for any occurrence of backtracking (either because 
some decision leads to failure of the second phase, or because the specifier wants 
another program after successful completion of the second phase). The remaining 
instantiations are performed by the second phase, which is discussed in the next 
subsection. 
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3.2 I n s t a n t i a t i o n  o f  t h e  So lv ing  C o m p u t a t i o n s  

The instantiation of the remaining predicate variables (namely DS-R and DPC-R) 
also is interactive and is based on the notions of abduction through (naive) 
unfolding and querying, and induction through computation of most-specific 
generalizations (or: least-general generalizations). 1 

Basic principle. In a nutshell, the basic principle is as follows. Assume, for con- 
creteness and simplicity, that  the first phase produced the following instantiation 
of Template 2 (without auxiliary parameter), with list A being the induction pa- 
rameter, divided by head-tail decomposition, and B being the result parameter: 

p(A,B) <-- DS-p(A,B) 
p(A,B) 4- A=[HAITA] ,p(TA,TB),DPC-p(HA,TB,B) 

The possible computation "traces" for various most-general values of the induc- 
tion parameter are: 

p([] ,DI) <-- DS-p([] ,Di) 
p([EI],FI) 4- DS-p([E1],FI) 
p([E1],FI) 6- p([],F1),DPC-p(EI,FI,F1) 
p([G1,G1],Ht) 4- DS-p([GI,GI],HI) 
p( [G1 ,GI] ,Hi) 4- p( [GI] ,HI) ,DPC-p(G1,HI ,H1) 

The strategy is to (a) query the specifier for an instance of the last atom of each 
trace, using previous answers to resolve recursive calls, (b) inductively infer an 
instance of DS-p from some of the answers, and (c) inductively infer an instance of 
DPC-p from the other answers. The criterion of how to establish such a partition 
of the answers follows from the dataflow constraints of the schema (see below)• 

The specifier must  know what S is when A is the empty list. A query is 
generated by instantiating the first clause to 

p([],DI) +- DS-p([],DI) (I) 
Unfolding of second-order atoms is impossible, so the unfolding process stops 
here. The query 

What c o n d i t i o n s  on <Do> must ho ld  such t h a t  p ( [ ]  ,D0) ho lds  ? 
can be extracted from this clause. The answer should thus be a formula }'[Do], 
where only Do may be free, explaining how to compute Do from [] such that  
p( [] ,Do) holds. In other words, DS-p( [] ,Do) should be "equivalent" to ~-[Do]. 
Instantiating the second clause when A is the empty list would lead to failure of 
the unfolding process at the equality atom. 

The specifier must  also know what B is when A has one element. A query is 
generated by instantiating the second clause to 

p([E1] ,FI) 4- [EI]=[HA[TA] ,p(TA,TB) ,DPC-p(HA,TB,FI) 
Unfolding the equality atom gives 

1 Term g is more general than term s if there is a substitution 0 such that s = gO. We 
also say that s is more specific than g. The most-specific generalization (abbreviated 
msg) of terms a and b is a term m that is more general than both a and b, and such 
that no term more specific than m (up to renaming) is more general than both a and 
b. The msg of a non-empty set of terms is defined similarly. See [19] for more details. 
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p([E1] ,F1) 4- p( [ ]  ,TB) ,DPC-p(E1,TB,F1) 
Unfolding the p atom, using clause (1) with the newly obtained evidence of DS-p 
as a "shortcut," gives 

p([El] ,FI) 4- F[TB] ,DPC-p(EI,TB,FI) 
Recursively unfolding all the atoms in .T[TB] eventually reduces this clause to 

p([El] ,FI) ~-- DPC-p(EI,tbI,FI) (2) 
where tb0 represents the value of TB after this "execution" of }'[TB].The query 

What conditions on <EI,FI> must hold such that p([El] ,FI) holds7 
can be extracted from this clause. The answer should thus be a formula G [El, FI], 
where only E1 and F1 may be free, explaining how to compute F1 from [El] such 
that p([E1] ,F1) holds. In other words, DPC-p(EI,tbo,F1) should be "equiva- 
lent" to G[E1 ,F1]. Instantiating the first clause when A is a one-element list 
would yield the same query, so we can directly establish that DS-p([E1] ,F1) 
should also be "equivalent" to G [El, F1]. 

Next query the specifier for what B is when A has two elements. Again, s/he 
must  know the answer. A query is generated by now instantiating the second 
clause to 

p( [GI ,GI] ,HI) 4- [G 1 ,GI]=[HA[TA] ,p(TA,TB) ,DPC-p(HA,TB,HI) 
Unfolding the equality atom gives 

p([GI,GI],HI) 4- p([G1],TB),DPC-p(GI,TB,HI) 
Unfolding the p atom, using clause (2) with the newly obtained evidence of 
DPC-p as a "shortcut," gives 

p( [GI, GI],H1) 4-- G [GI,TB],DPC-p(GI, TB,HI) 
Recursively unfolding all the atoms in G [G2 ,TB] will reduce this clause to 

p([GI,GI],H1) 4- DPC-p(GI,tbI,HI) 
where tbl represents the value (possibly using G2) of TB after this "execution" of 
Q [G2, TB]. The query 

What conditions on <GI,G2,H2> must hold such that p([GI,G2] ,H2) 

holds? 

can be extracted from this clause. The answer should thus be a formula 7/[GI ,G2, 
H2], where only 61, G~., and H2 may be free, explaining how to compute H2 
from [G1, G2] such that p ( [61, G2], H2) holds. In other words, DPC-p (Sl , tb l ,  H2 ) 
should be "equivalent" to 7/[G1,62 ,H2]. Instantiating the first clause when A is 
a two-element list would yield the same query, so we can directly establish that 
DS-p( [G1 ,G2] ,H2) should also be "equivalent" to 7/[61 ,a~ ,H2]. 

One may continue like this for an arbitrary number of times, gathering more 
and more evidence of DS-p and DPC-p. As of now, I do not have a clear heuris- 
tic for when to stop gathering evidence. The current implementation simply 
goes through the loop a constant number of times and lets the specifier give 
"skip" answers (at her/his risk!) when tired or bored. Overcoming this is con- 
sidered future work. Sooner or later thus, some inductive inference has to be 
done from this evidence. For example, if ~, 7/, . . .  are conjunctions of iiterals 
(for other situations, see below), then it "often" (see below) suffices to com- 
pute the most-specific generalization of an "adequate" subset of the tuple set 
(considering all predicate symbols and the connectives " ,"  and "-~" as functors) 
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{(El,tb0,Fl,~), (Gl,tbl,H2,7/), . . .  }, say (ha,tb, b, ¢~d), and the binding of DPC-p 
to AT,U,V.T=ha,U=tb,V=b,,Ad can then complete the synthesis of the second 
clause. Similarly, compute the msg of the "counterpart complementary subset" 
of the tuple set {( [] ,D0,Jc), ( [Eli ,F1 ,G>, ( I'G~, G2] ,H2,7/),... }, say ( a, b, A4), and 
the binding of DS-p to AT,U.T=a,U=b,A4 can then complete the synthesis of the 
first clause. I call this (and its refinement hereafter) the MSG Method [9, 12, 8]. 

This presentation of the basic principle is of course very coarse, as it side- 
tracks or leaves open many important issues, which will be discussed next. In 
any case, notice how query generation and answering actually abduce evidence 
of the still missing operators. 

Unfolding issues. In general thus, the principle of query generation is to succes- 
sively instantiate every clause for most-general values of the induction parameter 
and to unfold its first-order body atoms (until only a second-order atom remains), 
so that a query in terms of the target predicate only can be extracted, hiding 
the fact that the specifier actually has to answer a query about the second-order 
atom. Answers to previously posed queries are made available during this unfold- 
ing process as shortcuts, avoiding thus that the same query is generated twice. 
Naive unfolding is sufficient here, as I am only interested in the logic, not in the 
control, of logic programs. Also, I assume there is a system program for every 
primitive (such as =/2). 

As usual, unfolding uses all applicable clauses (except when shortcuts are 
available, in which case only the shortcut clauses are used), so that several 
clauses may result from an unfolding step; unfolding then continues from all of 
these clauses, with the same stopping criterion and the same spawning process. 
Moreover, it is sometimes unnecessary to recursively unfold until only a second- 
order atom is left. 

Example 6. Both of these phenomena can be illustrated by means of the d e l 0 d d s  
predicate, which is informally specified as follows: 
d e l 0 d d s  (L,R) iff R is L without its odd elements, where L, R are integer-lists. 

Suppose L is chosen as induction parameter, which is divided by head-tail de- 
composition, and R is chosen as result parameter. The following first two queries 
are posed to the specifier: 

What conditions on <Ro> must hold such that delOdds([] ,R0) 
holds? R0 ---- D 
What conditions on <AI,RI> must hold such that delOdds([Al] ,RI) 
holds? odd(A1), R1 = O; "~odd(A1), R1 = [A1] 

Note that the second answer is disjunctive, and that it not only says how the 
result is computed, but also when~why it is so. Now, during the generation of 
the query about what happens when L has two elements, the following clauses 
are obtMned after some unfolding: 

delOdds([Bi,Bl],Rl) %- odd(Bl),DPCdelOdds(Bl,[],Rl) 
delOdds([Bi,Bl] ,RI) ~ ~odd(Bl),DPCdelOdds(Bl, [BI] ,RI) 

Note that the unfolding yielded two clauses (using the shortcuts established from 
the second query). The primitive predicate odd being introduced by the specifier, 
we need not unfold it. Therefore, the queries 
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Nhat conditions on <BI,B2,R2> must hold such that 
del0dds([Bi,B~] ,R2) holds, assuming odd(B2)? 
odd(B1), R2 = D; -~odd(B1),/~2 = [BI] 
Nhat conditions on <BI,B2,R2> must hold such that 
del0dds([Bl~B2] ,R2) holds~ assuming -~odd(B2)? 

odd(B1), R2 = [B2];-~odd(B1), R~ = [B1, B2] 
should be extracted: note the new sub-sentences introduced by the keyword 
assuming. <> 

Instantiation of DS-R and DPC-R through the MSG Method. Above, I wrote that 
it "often" suffices to compute msgs in order to help instantiate DS-R and DPC-R 
(in case their evidence involves only conjunctions of literals); so what is the 
criterion for doing so? And how to choose the "adequate" tuple subsets over 
which msgs are computed? To answer these, we first have to analyze the dataflow 
of divide-and-conquer programs in even greater detail than so far, namely inside 
the DS-R and DPC-R operators [9, 12, 8]. 

Let's start with the discriminate-process-compose operator. Essentially, it is 
Y that is "constructed from" HX, TY, and Z. "Constructing" a term "from" 
others means that its constituents (constants and variables) are taken from the 
constituents of these other terms; functors can safely be ignored here, due to 
their "decorative" role in logic programming. For example, in i n s e r t  (HL, TS, S), 
which is the DPC-R operator of the insertion-sort program in Section 1, result S is 
constructed from IlL and TS. But we know more: all the constituents of T Y  must 
be used for constructing Y or for discriminating between different constructions of 
Y, because otherwise the recursive computations of TY would have been useless; 
but the constituents of HX and Z only might be used in this construction of Y. For 
example, in i n s e r t  (HL, TS, S), result S is indeed constructed from the "entire" 
TS, but also from HL; however, in R=[HL[TR], which is the DPC-R operator of the 
i n s e r t  program in Section 1, result R is indeed constructed from TR, and fromttL, 
but not from auxiliary parameter I; and there are programs with constructions 
of Y that involve TY and Z but not HX, or even only TY. Finally: Y can only 
be constructed from the constituents of HX, TY, and Z, but may not "invent" 
other constituents, except maybe for the type-specific constants (such as 0, n i l ,  
. . .  ), although this is not always the case. All these observations can be gathered 
in the following definition (which is a particular case of Erdem's version [8], 
which itself is a powerful and generic extension of my old version [9, 12]): a 
tuple (hx, ty,  y, z, ~r> is admissible (for building a discriminate-process-compose 
operator) iff 

constituents(ty) C constituents((y,:7 )) A 

const.uents(y) C const.uents({hx, ty,  z>) U {0, na , . . . }  

where terms ty,  y, and z are optional, and first-order formula ~" is a conjunc- 
tion of literals without any equality atoms. From such an admissible tuple, we 
can build an admissible instance of DPC-R by binding this predicate variable to 
AT, U,V, W. T=hx,  U=ty,  Vfy,Wfz, ~ r . 
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Let's continue with the discriminate-solve operator. Essentially, it is Y that 
is constructed from X and Z. But the constituents of X and Z only might be 
used in this construction of Y. Finally, Y may even "invent" new constituents: I 
here restrict invented constituents to the type-specific constants (0, n i l ,  . . . ) ,  
although this is not always the case. All these observations can be gathered 
in the following definition [8]: a tuple (~, y, z, Y) is admissible (for building a 
discriminate-solve operator) iff 

constituents(y) C_ constituents( (z, z)) U {0, nil,...} 

where terms y and z are optional, and first-order formula ~" is a conjunc- 
tion of literals without any equality atoms. From such an admissible tuple, we 
can build an admissible instance of DS-R by binding this predicate variable to 
AT,U,V.T=x,U=y,V=z,Y. 

Admissibility of the instances of the DS-Rj and the DPC-Rk gives us thus other 
(dataflow) constraints of the divide-and-conquer schema. They are enforced as 
follows: 

1. partition the tuple set for DPC-R into a minimal number of subsets (called 
cliques) of which any two elements have an admissible msg; 

2. analyze every such clique: if the msg of the counterpart subset of the tuples 
for DS-R is also admissible, then delete the clique from the tuples for DPC-R; 
otherwise delete that counterpart subset from the tuples for DS-R; 

3. take the msgs of the remaining cliques for building admissible instances of 
the DPC-Rk, and set w to the number of these cliques; 

4. partition the remaining tuple set for DS-R into a minimal number of cliques, 
build admissible instances of the DS-Rj from their msgs, and set v to the 
number of these cliques. 

This is essentially my old MSG Method [9, 12], but run with the extended 
definitions of admissibility. 

Example 7. The synthesis of del0dds, as started in Example 6, continues as fol- 
lows. The first answer adduces the following evidence of DSdel0dds Cleft column) 
and DPCdelOdds (right column): 
i.([], [] ,true> (not applicable) 
The second answer abduces the following evidence of DSdelOdds and DPCdelOdds: 

2. ( ['All, ['], odd(A1) ) (A1, ['], ['], odd(A1) > 
3° ( ['All , FAI'] , ~odd (A1) ) (A1, ['], ['All, ~odd (A1)) 

The third and fourth answers abduce the following evidence of DSdelOdds and 
DPCdelOdds: 

4. ( CBI, B2], C], (odd(Bl),  odd(B2) )) 
5. ( [BI ,B2], CBI], (~odd(B1), odd(B2) )) 
6. ( [ l l  ,B2], CB2], (odd ( l l ) ,  ~odd(B2) )) 
7. ([B1 ,B23, Ca1 ,B~], (~odd(B1), ~odd (B2))) 

(B1, [ ] ,  [] ,odd(Bl)) 
(BI, [ ] ,  [BI] ,~odd(Bl))  
(BI, [B2], CB2], odd(Bl) ) 
(B1, [B2], CB1,B2] ,~odd(B1)) 



190 

Note that tuples 4 and 5 for DPCdelOdds are just variants of its tuples 2 and 3, 
respectively; they could thus be eliminated. In fact, DIALOGS detects this dur- 
ing query generation and never even poses the third query to the specifier; the 
corresponding tuples are non-interactively abduced using the answer to the sec- 
ond query as shortcut. At step (1), the msg of all the tuples for DPCdelOdds 
is (HL,TR,R,P). Since there is a predicate variable in the fourth slot, namely P, 
this tuple is not admissible. So we should partition the tuple set into a minimal 
number of cliques of which any two elements have an admissible msg. A par- 
tition into two cliques of three elements each (with tuples 2, 4, 6, and 3, 5, 7, 
respectively) achieves this, with the following msgs: 

( [HLITL], R, P> 
< [HL[TL] ,R,Q> 

(HL,TR, TR, odd(HL)> 
(HL,TR, [HLITR] ,-~odd(HL)> 

There are no other partitions yielding two cliques. The partitions yielding three 
to six cliques are obviously uninteresting, as each of their cliques is properly 
contained in some clique of the bi-partition. 

At step (2), the counterpart six pieces of evidence of DSdel0dds can be 
deleted, because their two msgs (in the left column above) are not admissible 
(due to the presence of predicate variables). 

At step (3), w is set to 2, and DPCdel0ddsl is bound to AT,U,V.T=HL,U=TR, 
V=TR, odd(HL), while DPCdel0dds2 is bound to )~T,U,V.T=HL,U=TR,V=[HLITR], 
-~odd(HL). 

At step (4), v is left to be 1, and DSdel0dds is bound to AT,U.T=[] ,U=[],  
t rue ,  using the only remaining evidence for DSdel0dds. o 

What if the answers to the queries are not conjunctions of literals? For sim- 
plicity, and without loss of power, I restrict the answer language to the connec- 
tives not ("'~"), and (","),  and or (";"),  and I require answers to be in disjunctive 
normal form, with the variables appearing in the query being implicitly free, all 
others being implicitly existentially quantified. Therefore, it suffices to break up 
disjunctive answers into their conjunctions of literals, and to apply the MSG 
Method. This was actually illustrated in the del0dds example. 

lnstantiation of DPC-R through recursive synthesis. Instantiating DPC-R via the 
MSG Method assumes that there is a finite non-recursive axiomatization of that 
operator. But such is not always the case; take for example the i n s e r t  predicate 
used in the insertion-sort program in Section 1: its program is recursive and 
hence not synthesizable through the MSG Method. So another method needs 
to be devised for detecting and handling such situations of necessary predicate 
invention [20, 10]. Since the MSG Method has been devised to always succeed 
(indeed, in the worst case, it partitions a tuple set into cliques of one element 
each), a heuristic is needed for rejecting the results of the MSG Method and thus 
conjecturing the necessity of predicate invention. A good candidate heuristic is 
[9, 8]: if there are "too few" cliques for DPC-R, then reject the results of the MSG 
Method. The interpretation of "too few" is implementation-dependent, and could 
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be user-controlled by system-confidence parameters; the current implementation 
only rejects when w is 0. 

Example 8. After the three queries of the insertion-sort synthesis of Example 1 
(assuming L is chosen as induction parameter, which is divided by head-tail 
decomposition, and S is chosen as result parameter), the abduced tuples for 
DSsort and DPCsort respectively are (after some renaming): 

( [] ,  [],true> 
( [A1], [A1] ,true) 
( [B1 ,B2], [B1 ,B2] ,BI_<B2> 
([B1,B~], [B2,B1] ,BI>B2) 

(not applicable) 
(A1, [ ] ,  [A1] , t rue )  
(BI, [B2], [B1 ,B2"] ,BI<B2> 
(B1, [B2], [B2,BI] ,BI>B2) 

The MSG Method partitions, at step (1), the three tuples for DPCsort into three 
cliques of one element each; at step (2), these tuples are removed because their 
counterparts for DSsort are admissible as well; at step (3), no evidence is left 
for DPCsort, so w is set to 0; finally, at step (4), the four tuples for DSsort are 
partitioned into three cliques, so v is set to 3. This result is however rejected 
by the heuristic above: it is conjectured that DPCsort cannot be instantiated 
through the MSG Method (that is, a program for i n s e r t  cannot be found by 
this way). o 

So how to proceed? This is a situation of necessary predicate invention, which 
is precisely one of the situations targeted by DIALOGS, which is a recursion- 
synthesizer (due to its foundation on Template 2). So the idea is for DIALOGS to 
re-invoke itself, under the assumption that a divide-and-conquer program exists 
for the missing operator. 

The instantiations done by steps (3) and (4) of the MSG Method need to be 
undone. The latter is thus revised as follows: steps (3) and (4) only create the 
instances, but the actual bindings are deferred until acceptance by the rejection 
heuristic. 

Using Template 2 and the declaration of the current predicate (see below), 
the variable DPC-R is bound to )~T, U, V, W. dp cR (T, U, V, W), and the predicate dec- 
laration dpcR (H" T4, T: T3, R: T3, A: T1 ) is elaborated (assuming that the elements 
of induction parameter B'T2 are of type T4, that hx = t = 1, and that ¢'T3 is 
the result parameter and A:T1 the auxiliary parameter). Indeed, under these as- 
sumptions, the call to the new predicate wilt be dpcR(HB, TC, C, A). Note that this 
doesn't necessarily create a predicate of maximum arity 3, but, as said earlier, 
a generalization of Template 2 should be used for any serious implementation. 
Moreover, the variable DS-R is instantiated according to the msgs of the tuples 
that have no counterparts among the tuples for DPC-R. For the insertion-sort syn- 
thesis, this gives the declaration dpcSort  ( I : i n t ,  L : l i s t  ( in t  ) ,  R: l i s t  ( i n t )  ), 
while variable DSsort is bound to AA,B,C.A=[] ,B=[], and variable DPCsort is 
bound to AH,T,B,C.dpcSort(H,T,B), just  like in Example 4. 

The first phase of the sub-synthesis must be run in mute mode, as the specifier 
doesn't know what kind of program the system is synthesizing and therefore can't 
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be expected to answer queries about its operators, let alone about the operators 
used in synthesizing these operators. 

However, some hints for the first phase of this sub=synthesis could be ex- 
pressed: in general, it seems reasonable to hint at T as induction parameter, R as 
result parameter, and H, A as auxiliary parameters. A reasonable hint could also 
be expressed for instantiation of DeeR, but I do not go into these details here. 
In any case, these hints beg a fourth feature of the dialogue mechanism (see 
"Dialogue issues" above), namely: (iv)preference of hints (if any) over defaults 
in mute mode. In general, DIALOGS is thus also called with a possibly empty hint 
list, rather than with only a predicate declaration. 

The second phase of this sub-synthesis should not generate queries about the 
new predicate. It shouldn't even synthesize a program for the new predicate by 
explicit induction on the parameter hinted at, because not every value of that 
induction parameter is "reachable" by values of the induction parameter of the 
super-synthesis: queries about the new predicate can't always be formulated in 
terms of the old one. For example, a factorial program needs to invent a multi- 
plication predicate, but actually only uses a sparse subset of the multiplication 
relation [17]. The "trick" to make DIALOGS generate queries about the top-level 
predicate (see below) such that the answers actually pertain, unbeknownst to 
the specifier, to that new predicate is quite simple: the first phase of the sub= 
synthesis should add the obtained clauses to those of the super-synthesis, rather 
than work with these new clauses only. 

Thus, in general, DIALOGS is called with a start program as an additional 
argument: this is the empty set in the case of a new synthesis (for the top-level 
predicate), or a set of clauses for a (unique) top-level predicate and its (directly 
or indirectly) used predicates, in case DIALOGS is used (possibly by itself) for 
a necessary invention of a predicate that is (directly or indirectly) used by the 
top-level predicate. The first phase gets a predicate declaration for the current 
predicate and builds the current program by adding the new clauses to the start 
program. Query generation in the second phase is always done for the top-level 
predicate, but unfolding will eventually "trickle down" to a missing operator 
of the current predicate and extract a question for it in terms of the top-level 
one. The answers to queries help instantiate a missing operator of the current 
predicate, through either the MSG Method or further recursive synthesis. 

Example 9. Let's continue the synthesis of the insertion-sort program (from Ex- 
ample 1 and Example 8). DIALOGS calls itself recursively in mute mode with 

s o r t ( L , S )  +-- L=[_],S=[] 
so r t (L ,S )  +-- L=[HLITL] ,sor t (TL,TS),dpcSort(HL,TS,S)  

as start program, so r t  as top-level predicate, d p c S o r t ( I : i n t , L : l i s t ( i n t ) ,  
R: l i s t ( i n t )  as declaration for current predicate dpcSort ,  parameter L as pre- 
ferred induction parameter, parameter R as preferred result parameter, and pa- 
rameter I as preferred auxiliary parameter. Assume the first phase builds the 
current program by adding to the start program the following clauses: 

dpcSort(I,L,R) 4- DSdpcSort (I,L,R) 
dpcSort (I,L,R) +- L=[HLITL] ,dpcSort(I ,TL,TR) ,DPCdpcSort (HL,TR,K, I) 
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In the second phase, query generation for most-general one-element and two- 
element lists as induction parameter L of the top-level predicate s o r t  leads, 
without interaction (due to the second and third queries of the super-synthesis), 
to the following tuples for DSdpcgort and DPCdpcgort, respectively: 

(Al,[],[A1],true) 
(BI,[B2],[B1,B2],B1 ~B2) 
(BI,[B2],[B2,BI],BI >B2) 

(not applicable) 
(B2,[B1],[B1,B2],B1,B1 ~B2) 
(B2,[B1],EB2,B1],B1,B1 >B2) 

This is scanty evidence to continue from, so one could decide to generate a 
query about what happens when induction parameter L of the top-level predicate 
s o r t  has three elements. This would yield an extension to the target scenario of 
Example 1; the ensuing computations are too long to reproduce here, but they 
eventually lead to the correct binding (just as in Example 5) of DSdpcSortl to 
AA,B,C.A= [],B= [C], of DSdpcSort2 to ,~A,B, C. 3H,T. A= [HIT] , B=[C,HIT], C<H, 
and of DPCdpcSort to AA, B, C, D. 3H, T. B= [HIT], C= [A, HtT],D>A. Note that v is 
2, and w is 1. A more "daring" move would be to directly infer these instances 
from the tuples above, and thus to stay within the targeted scenario. Indeed, 
the first tuple can directly lead to the instantiation of DSdpcSortl, based on 
the observation that there is no counterpart evidence of DPCdpcSort; the second 
tuple can directly lead to the instantiation of DSdpcSort2 (by generalization 
of constant n i l  to a variable), based on the observation that the counterpart 
evidence of DPCdpcSort forces the "breaking up" of the second parameter in 
order to construct the third one; conversely, the third tuple can directly lead to 
the instantiation of DPCdpcSort (by generalization of constant n i l  to a variable), 
based on the observation that the counterpart evidence of DSdpcSort forces the 
"breaking up" of the second parameter in order to construct the third one. 
Formalizing this, and hence reducing dialogues, is considered future work. o 

A high-level DIALOGS algorithm can be found in the Appendix. 

4 Conclusion 

In this paper, I have first motivated and then incrementally reconstructed the 
reasoning that led to the design of the DIALOGS system, which is a dialogue- 
based, inductive/abductive, schema-guided synthesizer of recursive logic pro- 
grams, that takes the initiative and minimally queries a (possibly computation- 
ally naive) specifier for evidence in her/his conceptual language. DIALOGS can 
be used by any learner (including itself) that detects, or merely conjectures, the 
necessity of invention of a new predicate. 

Queries are kept entirely in terms of the specifier's conceptual language, 
and are simple, because they only ask what "happens" when some parameter 
has a finite number of "elements." Even better, the specifier must know the 
answers to such queries, because otherwise s/he wouldn't even feel the need 
for the synthesized program. Answers are thus also in the specifier's conceptual 
language, and are independent of the synthesized program. Answers are stored 
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so that synthesis can proceed with minimal querying. Indeed, a query can be 
generated more than once, albeit with different "intentions" (that is, aiming at 
gathering evidence of different operators): the aimed-at operators are either the 
ones of the top-level predicate or the ones of the current predicate (when the 
top-level predicate needs to invent the current predicate). 

A competent specifier assumption only holds in the second phase, because 
of the backtrackability feature of the dialogue in the first phase: the specifier 
(if any!) can answer just about anything during the first phase, because wrong 
answers will lead to failure in the second phase. 

Note the elegant ways by which DIALOGS avoids the "background knowledge 
re-use bottleneck" [13]: first, it only tries to re-use the = /2  primitive (by the 
MSG Method); moreover, other primitives (such as < /2  or odd) used by the 
specifier in answers to queries end up in the synthesized program (which prevents 
the sometimes automa-g-ic flavor of inductive synthesis); finally, the system re- 
uses the primitives occurring in its knowledge base for DecK. Overall thus, these 
primitives do not "compete" in re-use situations. 

Due to its foundation on an extremely powerful codification of a "recursion- 
theory" (by means of the template and constraints of a divide-and-conquer 
schema), the current prototype implementation needs very little evidence and is 
very fast. An even faster and more powerful implementation is planned. 

The time-complexity of synthesis is essentially linear in the complexity of the 
synthesized program, due to the repeated unfolding of the synthesized program 
for various most-general values of some parameter. Steps (1) and (4) of the MSG 
Method amount to partitioning a graph into a minimal number of cliques, which 
is known to be an NP-complete problem; however, this should not be an issue, 
as the graphs under investigation only have a few nodes. 

The class of synthesizable programs is a subset of the class of divide-and- 
conquer programs. It seems to depend on the knowledge base for DeeR, but a 
"Devil's Advocate" argument against its completeness with respect to that class 
may be countered by appealing to the ingenuity of a non-naive specifier when 
answering the Doer question. The current (relaxable) assumptions are that DS-R 
is non-recursively defined, and that DPC-R has a divide-and-conquer instance, if 
a new predicate needs to be invented for it. 

DIALOGS falls into the category of trace-based inductive synthesizers [9] (such 
as [3], GRENDEL [5], SYNAPSE [9, 12], METAINDUCE [15], CILP [17], . . . ) ,  because 
it first explains its examples in terms of computation traces (that fit a certain 
template), and then generalizes these traces into a recursive program. The main 
innovation here is that DIALOGS generates its own, generalized examples. Note 
that SPECTRE [4] and TRACY [2] are not trace-based synthesizers, as they don't 
construct their candidate clauses in a truly schema-guided way. However, they 
do use a form of declarative bias to enumerate and analyze (that is, accept 
or reject) potential clauses, and they also feature unfolding/resolution in the 
process of verifying the coverage of examples. 

DIALOGS is most closely related to SYNAPSE [9, 12]: this non-interactive 
schema-guided inductive/abductive synthesizer expects some positive (ground) 
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examples as well as Horn clause equivalents (called properties) of at least the 
answers that DIALOGS would query for. In other words, DIALOGS is a simplifica- 
tion of SYNAPSE, without any loss of power, but with less burden on the specifier 
and with faster synthesis. The Proofs-as-Programs Method (which should have 
been called Abductive Method) of SYNAPSE has disappeared, as it has become 
the driving synthesis mechanism of the second phase of DIALOGS. 

The ClLP [17] and METAINDUCE [15] systems essentially feature subsets of the 
functionality of SYNAPSE and DIALOGS, in the sense that they have only examples 
as input language, rely on a simpler divide-and-conquer schema, and use less 
powerful MSG Methods, which cannot infer disjunctively defined operators. 

The CLINT [6] and CLINT/CIA systems [7], aJthough they are model-based 
inductive synthesizers [9], are also related to DIALOGS, in the sense that they 
are also interactive, sometimes guided by (mono-clansal) templates, and have an 
extended evidence language (full clauses, called integrity constraints). However, 
these integrity constraints are not used constructively during a synthesis, but 
only to accept or reject candidate programs. 

As said before, a stopping criterion for the dialogue loop of the second phase 
needs to be identified. Co-routining the abduction, induction, and evaluation 
steps of that phase seems an approach towards this, as the loop can then be 
exited when the msgs stop changing. 

Future work will also aim at increased schema independence (it's already 
largely achieved in the second phase, except for the hardwired verification of 
the constraints), at least via the coverage of an even more powerful divide-and- 
conquer schema (with support of compound induction parameters, . . . )  and of 
other schemata (tupling generalization [14], descending generalization [14], . . .  ). 
Ideally, the schema would be a parameter of the system, and thus constitute a 
real declarative bias. 

Another plan is to integrate DIALOGS with a post-synthesis transforma- 
tion/optimization tool; the preference will of course go to using schema-guided 
transformers [14], as these can exploit much of the additional information (such 
as "what is the instance of each operator?") generated by DIALOGS. 
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Append ix :  The  DIALOGS A l g o r i t h m  

% I n t e r a c t i v e  syn thes i s  of a r ecu r s ive  (divide-and-conquer)  pgm. 
dialogs <- 

set interaction mode to "aloud', 
read(PredDecl), % declaration for r, the top-level predicate 
Hints = {}, 
StartPgm= {}, 
dialogs(PredDecl,Hints,StartPgm,Pgm), 
write(Pgm), 
if the specifier wants more programs then fail else true. 

% Synthes is  ( in  case of de tec ted  or conjec tured  necessary  
predicate invention) of a recursive (divide-and-conquer) pgm 
for the current predicate declared in PredDecl, using Hints 
(if any), which program is used by and thus added to the 
context program StartPgmto yield the final program Pgm. 

dialogs(PredDecl,Hints,StartPgm,Pgm) <- 
phase I 

NewClauses = a set of divide-and-conquer clauses (accordin E to 
Template 2) for the current predicate (which is declared in 

PredDecl), where only the DecR operator has been instantiated, 
according to Hints (if any), 

CurrPgm = StartPgmunion NewClauses, 
phase 2 

abduce(CurrP~,DSev,DPCev), 
induce(DSev,DPCev,DSinsts,DPCinsts), 
evaluate(DSinsts,DPCinsts,CurrPgm,Pgm). 

% Interactive abduction of evidence sets DSev and DPCev for the 
uninstantiated operators DS-R and DPC-R in program pgm. 

abduce(Pgm,DSev,DPCev) <- 
DSev = {}, DPCev = {}, % initializations 
as often as "'needed'' do 

construct Goal, ~ a goal for the top-level predicate 
demo(Pgm,Goal,Assumptions,Residue), 
ask(Goal,Assumptions,Residue,DS-exs,DPC-exs), 
DSev = DSev union DS-exs, 
DPCev = DPCevunion DPC-exs 

od. 

An SLD-refutation of <- Goal in theory Pgm (augmented with 
shortcut clauses from previous queries) generates the conj 
Assumption, but is blocked by the unresolvability of the 
unit-goal Residue, because it has a predicate variable. 

demo(Pgm,Goal,Assumption,Residue) <- ... 
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The set DS-exs (resp. DPC-exs) contains the tuples for the 
predicate variable DS-R (resp. DPC-R) in second-order atom 
Residue, which tuples are extracted from the answer (by the 
specifier or by an oracle based on previous answers) to the 
query under what conditions atom Goal must hold, assuming 
that conjunction Assumption holds. 

ask(Goal,Assumption,Residue,DS-exs,DPC-exs) <- ... 

Inductive generalization of the evidence sets DSev and DPCev 
into lists of "'plausible'' instances (according to the 
admissibility criteria) DSinsts and DPCinsts for the operators 
DS-R and DPC-R. 

induce(DSev,DPCev,DSinsts,DPCinsts) <- ~ revised MSG Method 
partition(DPCev,DPCcliques), ~ step I (as in text) 
prune(DPCcliks,Ne,DPCcliks,DSev,NewDSev), ~ step 2 (as in text) 
buildInsts(NewDPCcliks,DPCinsts), ~ step 3 (revised) 
partition(NewDSev,DScliks), ~ step 4 (revised) 
buildInsts(DScliks,DSinsts). ~ step 4 (cont'd) 

Heuristic-based acceptance or rejection of the induced 
instances DSinsts and DPCinsts for the uninstantiated operators 
DS-R and DPC-R in second-order logic program CurrPgm, so as to 
instantiate the latter into a first-order program Pgm. 

evaluate(DSinsts,DPCinsts,CurrP~m,Pgm) <- 
if #DPCinsts=O then ~ reject! 

construct NewPredDecl ~ dec1. for dpcR, the new curt. pred. 
c o n s t r u c t  Me .Hin t s ,  ~ h i n t s  f o r  dpcR 
in  t h e  l a s t  two c l a u s e s  of  CurrPgm do 

i n s t a n t i a t e  t h e  DS-Rj (as  d e s c r i b e d  in  t e x t ) ,  
p a r t i c u l a r i z e  v a c c o r d i n g l y ,  
i n s t a n t i a t e  DPC-R t o  dpcR, 
p a r t i c u l a r i z e  w t o  1 

yielding NewStartPgm, 
set interaction mode to "mute', 
dialogs(NewPredDecl,NewHints,NewStartPgm,Pgm) ~ recursion! 

else ~ accept! 
in the last two clauses of CurrPgm do 
particularize v to #DSinsts, 
for l<=j<=v do instantiate DS-Rj using DSinsts[j], 
particularize w to #DPCinsts, 
for l<=k<=w do instantiate DPC-Rk using DPCinsts[k] 

yielding Pgm. 


