
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

An architecture and an Abstract Data Type for an Inductive Schema-Guided Logic
Program Synthesizer

Bauvir, Christophe

Award date:
1996

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/an-architecture-and-an-abstract-data-type-for-an-inductive-schemaguided-logic-program-synthesizer(0d34652a-ee99-4a9a-8e3c-3ce7f57ddf9f).html

An Architecture and an Abstract Data Type
for an Inductive Schema-Guided Logic

Program Synthesizer•

Christophe Bauvir

August 30, 1996

• This paper is the result of my work at Bilkent University (Ankara) under the supervision of Professor Pierre
Flener and at the Facultés Universitaires Notre-Dame de la Paix (Namur) under the supervision of Professor
Naji Habra. I would like to thank both of them for the continuous help they gave me and the interest they show
for my work.

Résumé

Un synthétiseur inductif de programmes logiques guidé par schéma est un logiciel permettant
d'automatiser le développement de programmes logiques à partir de spécifications. Pour
synthétiser un programme logique, le logiciel est guidé par un schéma, qui englobe de la
connaissance en conception d'algorithmes, et utilise principalement des règles d'inférence
inductive pour extraire de l'information des spécifications. Premièrement, nous introduisons le
domaine de recherche appelé la synthèse de programmes et donnons une vue d'ensemble de
l'outil utilisé pour implémenter les différentes parties du synthétiseur. Deuxièmement, nous
expliquons la notion de schéma et décrivons un type de donnée abstrait permettant de
représenter des schémas ainsi que des services créant, manipulant et instantiant des schémas.
Finalement, nous proposons une architecture modulaire pour un synthétiseur inductif de
programmes logiques guidé par schéma appelé DIALOGS.

Abstract

An inductive schema-guided logic program synthesizer is a software allowing to automate
the development of logic programs from specifications. To synthesize a logic program, the
software is guided thanks to a schema, which embodies algorithm design knowledge, and
mainly uses inductive inference rules to extract information from specifications. First, we
introduce the program synthesis field of research and give an overview of the tool used to
implement the different parts of the synthesizer. Second, we explain the notion of schema and
describe an abstract data type representing schemas together with services to construct,
manipulate and instantiate schemas. Finally, we propose a modular architecture for an
inductive schema-guided logic program synthesizer called DIALOGS.

Contents

1 Introduction to Program Synthesis
1.1 An Overview of Godel

3

5

I An Abstract Data Type for Logic Algorithm Schemas 7

2 Introduction

2.1 Logic Algorithm Schemas

2.2 An Example of Logic Algorithm Schema

3 Services Offered by the Module Sobjects
3.1 Indexed Variable .

3.2 Vector of Variables

3.3 Indexed Predicate .

3.4 Conjunction

3.5 Disjunction

3.6 Redefinition of Predicate

3.7 Conclusion

4 Services Offered by the Module Schemas
4.1 String Representation .

4.2 Program Derivation .

4.3 Types Translation .

5 Schema Substitution

5.1 Introduction

5.2 Kinds of Bindings

5.2.1 Variable/Term Binding .

5.2.2 Predicate Variable/ >.-Term Binding

5.2.3 Form Variable/Integer Binding

5.3 Restrictions of a Schema Substitution . . .

1

9

9

11

13

14

15

17

18

20
21

22

23

23

24

25

26

26

27
27
27
32

32

5.4 Conclusion

6 Conclusion and Future Work

II A Modular Architecture for an Inductive Schema-Guided

33

34

Logic Program Synthesizer 36

7 Description of the Blocks Composing the Architecture 38
7.1 Overview of the Synthesizer 38

7.2 Specification Block ... 38

7.3 Schemas Creation Block 41

7.4 Methods Block 42

7.5 Strategies Block . 43

7.6 Synthesizer block 44

8 Blocks lmprovements 50

8.1 Specification Block 50

8.2 Schemas Creation Block 53

8.3 Methods Block 54

8.4 Strategies Block . 54

9 Conclusion 56

2

Chapter 1

Introduction to Program Synthesis

The programming task is viewed as a sequence of activities starting from non-formal in

tentions and finally producing a program. This programming task is presented via the

following software life-cycle:

• elaboration of a specification from non-formal intentions;

• development of a program that is correct with respect to the specification.

The development phase is not always achieved and often produces a program that seems

correct with respect to the specification. A third phase is needed:

• validation of the program so that it is correct with respect to the specification.

This validation phase can be done using two approaches. A first approach is called ret

rospective program verification where one checks the correctness of a given program with

respect to its specification. This approach is extremely bard and difficult to put in practice

with huge programs. The other approach is program testing and consists of comparing the

current results given by a program from specific inputs with the expected results obtained

from the same inputs when examining the specification of the program. This second ap

proach cannot guarantee that the program will give the correct results with all possible

inputs.

Moreover, specifications must evolve over time as intentions change. A fourth phase is,

then, added to our software life-cycle:

• maintenance of the specification and maintenance of the program so that it is correct

with respect to the new specification.

3

Program synthesis, also called automatic programming, is a field of research concerned

with the automation of the development phase of the software life-cycle. The main idea of

program synthesis is to build a software, called a synthesizer, developping correct programs

from specifications. The benefits of the program synthesis approach is a disappearance of

the validation phase from the software life-cycle. The development phase being less costly

thanks to the use of synthesizers, a programmer will have the opportunity to mainly focus

on the "elaboration of a specification" phase.

A wide variety of synthesizers have been developped. The synthesizers can be classified

according to the predominent kind of reasoning used to extract information from specifi

cations.

Here is a possible classification:

• inductive synthesizers;

• deductive synthesizers;

• abductive synthesizers;

• analogical synthesizers.

Remark: For a general description of inductive and deductive synthesizers, see [4] .

A synthesizer, like a programmer, needs knowledge together with a specification to achieve

its task.

This knowledge is mainly composed of:

• algorithm design knowledge;

• domain knowledge which is knowledge about the application domain of the future

synthesized program;

• meta-knowledge which is knowledge about how and when to use the previous two

knowledges;

• efficiency knowledge which is knowledge guiding the synthesizer to produce an effi-

cient program.

The algorithm design knowledge can be codified using schemas. A schema is a template

algorithm representing a whole family of particular algorithms designed according to a

specific synthesis methodology like Divide-and-Conquer, Generate-and-Test , ...

The work presented in this paper consists of two parts. First, we define the notion

of schema and describe an abstract data type allowing its representation. This abstract

4

data type is constructed thanks to schema objects which are detailed in section 3. Sec

tion 4 lists the services available to manipulate schemas and section 5 presents a tool to

instantiate schemas: the schema substitution. Finally, we propose a modular architecture

for an inductive schema-guided logic program synthesizer, called DIALOGS, composed

of five blacks: the specification block, the schemas creation block, the methods block, the

strategies block and the synthesizer block. An overview of Godel , which was chosen as the

tool to implement the parts of the synthesizer, follows this section.

1.1 An Overview of Godel

Godel is a relational programming language offering a type system, a module system,

contrai and meta-programming facilities. Godel is the tool chosen to implement the syn

thesizer.

Godel is a typed language based on many-sorted first-order logic. Each constant, fonc

tion, proposition and predicate has to be specified with a type declaration. By contrast ,

variables have their types inferred from their context. Godel allows the declaration of new

types and the declaration of parametric types.

Godel facilitates the development of huge programs thanks to the structurate view

offered by the concept of module. A module hides implementation details and avoids

problems like name clashes. A module is generally composed of two parts:

• the export part gathering the declarations of symbols (types, constants, fon ctions,

propositions and predicates) available for internai use and for use in other modules

which import them;

• the local part gathering the declarations of symbols, available for internai use only,

and the definition of propositions and predicates declared in this module.

Godel has a flexible computation rule. lt can be guided by means of DELAY declara

tions which cause certain calls to be delayed until they are sufficiently instantiated. Godel

has also a pruning operator.

Godel offers modules which provide meta-programming facilities via the ground repre

sentation. The module Syntax provides a number of abstract data types for representing

object-level expressions and predicates for manipulating terms of these types. The module

Programs provides the abstract data type PROGRAM for representing Godel programs

and predicates for manipulating terms of this type.

Remark: Godel has adopted the opposite notation of Prolog to distinguish predicates

and constants from variables. ln Godel, variable symbols start with a lowercase letter.

Predicate and constant symbols start with an uppercase letter.

5

Remark: For a detailed description of the language Godel, see [6], and for the ground

representation used in Godel, see [1] and [5].

6

Part I

An Abstract Data Type for Logic

Algorithm Schemas

7

First, we define the notion of schema and explain its purpose in a synthesis process. Sec

ond, we present the objects needed to construct schemas. Third, we list different services

available to manipulate schemas. Fourth, we describe an important tool for instantiat

ing schemas: the schema substitution. Finally, we conclude and state improvements for a

future implementation of this abstract data type.

8

Chapter 2

Introduction

Algorithms can be classified according to their synthesis methodologies, such as Divide

and-Conquer, Generate-and-Test, Top-Down Decomposition, Global Search and so on.

Informally, an algorithm schema is a template algorithm with a fixed control and data flow,

but without specific indications about the actual parameters or the actual computations.

An algorithm schema, thus, abstracts a whole family of particular algorithms that can be

obtained by instantiating its placeholders to particular parameters or computations, using

the specification, the algorithm synthesized so far and the constraints of the schema.

First, we define the notion of logic algorithm schema. Then, we give an example of

logic algorithm schema representing the Divide-and-Conquer synth<~sis methodology.

Remark: This section is heavily inspired from the work of Pierre Flener, especially [3]

and [4].

2.1 Logic Algorithm Schemas

Before defining the logic algorithm schema concept, we need the notion of logic algorithm.

Definition: A logic algorithm defining a predicate p/n is a closed well-formed formula of

the form:

where the Xi are distinct variables (i = Ln) and B is a well-formed formula in prenex

disjunctive normal form, whose only free variables are X 1 , ... , Xn, The atom p(X1, . .. , Xn)

is called the head and B[X 1 , ... , Xn] is called the body of the logic algorithm.

Example: The member problem can be specified like this: member(E, L) iff E is an

element of L, where E is a term and L is a list. A possible logic algorithm for member /2

is as follows:

VE VL member(E, L) {=? ":JH ":JT

9

L= □
V L= [HIT] &

& false

E=H

E-=/-H V L = [HIT] & & member(E, T)

Remark: In the following, we drop the universal quantifications in front of the heads, as

well as any existential quantifications at the beginning of bodies of logic algorithms. For

a detailed description of logic algorithms, see [2].

Informally, a logic algorithm schema is a second-order logic algorithm and its place

holders are first/second-order variables. A particular logic algorithm, called an instance of

the schema, is then obtained by instantiating the variables of the schema.

Example: Here is a logic algorithm schema for the Generate-and-Test methodology:

R(X, Y) {::} Generate(X, Y) & Test(Y)

where X and Y are the first-order variables of the schema and R, Generate and T est are

the second-order variables of the schema (also called predicate variables).

The logic algorithm

sort(L, S) {::} permutation(L, S) & ordered(S)

is an instance of this Generate-and-Test schema, namely via the second-order substitution

{R/sort, X/ L, Y/ S, Generate/permutation, Test/ordered}.

This logic algorithm schema covers a set of logic algorithms restricted to binary predicates.

To have the possibility to instantiate more complex logic algorithms, we must introduce

form variables in our schemas together with first/second-order variables. The form vari

ables allow predicate variables of any arity, conjunctions and disjunctions of any length to

appear in a schema.

Definition: A logic algorithm schema defining a second-order predicate Ris a well-formed

formula of the form:

and a set S of constraints relating R and the variables of B, where n is a form variable or

a constant, the Xi are distinct variables (i = 1.. n), R is a predicate variable and B is a

well-formed formula in prenex disjunctive normal form, whose free first-order variables are

X1 , .. . , Xn. Ali predicate variables are free. The atom R(X1, ... , Xn) is called the head

and B[X1 , ... , Xn] is called the body of the logic algorithm schema.

A logic algorithm schema without predicate variables and form variables is a logic

algorithm.

Definition: An instance of a logic algorithm schema is a logic algorithm obtained by the

following sequence of operations:

10

1. permutation of the parameters, conjuncts, disjuncts and quantifications of the

schema;

2. application of a schema substitution to the resulting schema, such that all predicate

variables and form variables are instantiated to first-order abjects, and such that the

constraints are satisfied;

3. application of unfold transformations.

This process is called instantiation of a schema.

The purpose of a logic algorithm schema is to guide synthesis according to a spe

cific synthesis methodology. A logic algorithm schema embodies high-level programming

knowledge under the form of the schema itself and the set of constraints attached to it.

2.2 An Example of Logic Algorithm Schema

We focus on the Divide-and-Conquer methodology to illustrate the notion of schema. The

Divide-and-Conquer methodology salves a problem by the following steps:

1. divide a problem into similar subproblems, unless it can be trivially solved;

2. conquer the subproblems by solving them recursively;

3. combine the solutions to the subproblems into a solution to the initial problern.

A Divide-and-Conquer algorithm for a binary predicate r over parameters X and Y works

as follows. Let X be the induction parameter. If X is minimal , then Y is (usually) easily

found by directly solving the problem. Otherwise, that is if X is non-minimal , decompose

X into a vector of variables HX of heads of X and into a vector of variables TX of tails

of X, the tails being of the same type as X, as well as srnaller than X according to sorne

well-founded relation. The tails TX recursively yield tails TY of Y. The heads HX are

processed into a vector of variables HY of heads of Y. Finally, Y is composed frorn its

heads HY and tails TY.
We can quantify the vectors of variables as follows. There are hx heads of X, hy heads of

Y and t tails of X, hence t tails of Y. We can note that hx, hy and t are form variables

not constants (as introduced previously).

A logic algorithm schema obtained from the Divide-and-Conquer algorithm discussed

above is as follows:

R(X, Y){=>

11

Minimal(X) & Solve(X, Y)

V NonMinimal(X) & Deccnnpose(X,HX, TX)

& R(TX, TY)

& Process(HX,HY)

& Ccnnpose(HY, TY, Y)

where R(TX, TY) stands for A}=1 R(T Xi, T"Yj) (j is called an index).

This logic algorithm schema is constructed with specific objects like vectors of variables

representing a fini te sequence of variables without a fixed length (e.g. HX), conjunctions

(e.g. A}=1 R(T Xi, T"Yj)), ... These objects are explained in detail in the next section.

A set of constraints S relating R and the variables of the schema is attached to this

Divide-and-Conquer schema. This set contains the following constraints:

• the instance of X, that is the selected induction parameter, must be of an inductive

type. This means that type(X, T) & T E { integer, list , tree, . .. } must be valid.

The decomposition of X into tails that are each smaller than X according to some

well-founded relation would otherwise be impossible and the Divide-and-Conquer

methodology not applicable.

• the minimal and non-minimal forms must be mutually exclusive over the domain of

the induction parameter. This means that Minimal(X) {:} ,NonJ\1inimal(X) must

be valid.

• the decomposition of X must yield tails T Xi that are each smaller than X according

to some well-founded relation <. This means that

Decompose(X, HX, TX1 , . . . , TXt)

=> :3 < \fi E {l , . .. , t} TXi < X

must be valid. It ensures termination of the algorithm in the all-ground mode.

Remark: The Divide-and-Conquer schema presented here is not sufficient to cover a wide

variety of logic algorithms but its purpose is to illustrate the concept defined in this section.

Other examples of logic algorithm schemas can be found in [2], [3] and [4]. A functional

algorithm schema for the Divide-and-Conquer methodology is proposed in [10].

12

• the schema abjects have to allow the construction of complex schemas;

• there has to exist services to manipulate schema abjects;

• the schema abjects have to be easy to understand and to use.

We have defined schema abjects as abstract data types, that is to say, we have services to

create and manipulate them but we do not know how they are represented in reality.

First, we present each object separately. Second, we explain why we need a redefinition

of the object representing a predicate. Finally, we conclude and state a limitation of the

current version of Godel.

Remark: The words predicate and atom will be used throughout the text to denote the

same concept.

3.1 Indexed Variable

An indexed variable is composed of two parts:

• a variable (called the root);

• an index.

The main manipulation of an indexed variable is called index replacement.

Definition: Let X 1 be an indexed variable of index j, the replacement of an index i by

an integer a applied to X1 gives:

• Xa if i = j
where X a is a variable constructed with the root X of the indexed variable and the

integer a;

• x1 if i -=1- j.

The service Relndex!Var allows index replacement 1 to indexed variables. The scope of the

index replacement is restricted to indexed variables having their index equal to the index

to replace. There exist services to create an indexed variable, to test if an object is an

indexed variable, to obtain the different components of an indexed variable and to create

the string representing an indexed variable.

1The way of constructing a variable with the root of an indexed variable and an integer is defined
explicitly in the specification of the service RelndexIVar.

14

3.2 Vector of Variables

A problem arising when constructing a schema is the non-fixed number of arguments of

a second-order predicate. The purpose of the vector of variables is to represent a finite

sequence of variables without a fixed length.

Example: The Decompose predicate in our Divide-and-Conquer schema has to represent

any kind of decomposition of the induction parameter. The decomposition of the induction

parameter varies according to the type of the parameter (it can even vary for induction

parameters of the same type) . The head-tail decomposition of an induction parameter

of type LIST, decomplist(L, HL, TL), has three arguments . The decomposition of an

induction parameter of type TREE, decomptree(T, L, LST, RST), has four arguments.

We will, thus, define a Decompose predicate allowing the representation of any kind of

decomposition and having its number of arguments not fixed thanks to vectors of variables.

The Decompose predicate, Decompose(X, H X, TX), has two vectors of variables: HX

and TX. These vectors represent a non-fixed number of head arguments and a non-fixed

number of tail arguments respectively.

A vector of variables is composed of three parts:

• a variable (called the root of the vector);

• a lower bound;

• an upper bound.

A bound is either a natural number or a variable. The root is ranging between the lower

and upper bounds.

Example: X[l..n] is a vector of variables where X is the root, 1 the lower bound and n

the upper bound of the vector.

During the synthesis process, we obtain information about the number of arguments of

a predicate. It leads to the instantiation of bounds, which are variables, by a natural

number.

Definition: a vector is instantiated if its lower and upper bounds are, both, natural num

bers.

The service Vectorlnstantiated tests if a vector is instantiated. \Vhen a vector is instanti

ated, we can replace it by the sequence of variables ranging between the lower and upper

bounds. This replacement is called expansion of the instantiated vector.

Definition: Let X[i .. j] be an instantiated vector of variables (i,j E IN), the expansion

of X[i .. j] is defined as follows:

• xi, xi+1, . .. , xj if i < j;

• xi if i = j ;

15

• the empty sequence if i > j.

Remark: An instantiated vector having its lower bound greater than its upper bound will

disappear from the arguments of a predicate.

Definition: The length of an instantiated vector X[i .. j], denoted Length(X[i .. j]) , is de

fined as follows:

• Length(X[i .. j]) = j - i + l if i ::; j ;

• Length(X[i .. j]) = 0 if i > j.

The root of a vector being a variable is too restrictive to represent all possible cases. We

will generalize the notion of vector of variables to vectors having their root being a variable,

an ïndexed variable or a vector of variables. We need to extend the previous definitions to

this generalized notion of vector.

Definition: Variables and indexed variables are instantiated .

A vector is instantiated if its lower and upper bounds are natural numbers and if its root

is instantiated.

The service Vectorlnstantiated tests if a vector respects this definition.

Definition: Let S be a sequence Em , Em+l, ... , En ,

S L_ i = Emi, Em+li,,, . , Eni ·

Definition: Let X [i .. j] be an instantiated vector of variables (i, j E IN) where X is a

variable, the expansion of X [i .. j] is defined as foll ows:

• x i if i = j ;

• the empty sequence if i > j.

Let Xk[i .. j] be an instantiated vector of variables (i, j E IN) where Xk is an indexed

variable , the expansion of Xk [i .. j] is defined as follows:

• xki, xki+1, .. . , xkj if i < j ;

• Xki if i = j;

• the empty sequence if i > j.

Let V[i .. j] be an instantiated vector of variables where V is a \·ector, the expansion of

V[i .. j], denoted Expand(V [i .. j]) is defined as follows:

• Expand(V) L_ i , Expand(V) L_ i + 1, . . . , Expand(V) L_ j if i < j ;

16

• Expand(V) L_ i if i = j;

• the empty sequence if i > j .

The service ExpandVector expands an instantiated vector.

Example: The expansion of the instantiated vector X[2 .. 3l[l..2] is obtained like this:

Expand(X[2 .. 3]) L_ l, Expand(X[2 .. 3]) L_ 2

Definition: Let X be a variable, an indexed variable or a vector of variables, the length

of X, denoted Length(X), is defined as follows:

• Length(X) = l if X is a variable or an indexed variable;

• Length(X) = (Length(R)) x (j - i + 1) if X is a vector R(i .. j] and i ~ j;

• Length(X) = 0 if X is a vector R[i .. j] and i > j.

Example: The length of the vector X[2 .. 3l[l..2] is:

(1) X (3 - 2 + 1) X (2 - 1 + 1) = 4

There exist services to create a vector of variables , to test if an object is a vector of variables,

to obtain the different components of a vector and to create the string representing a Yector.

3.3 Indexed Predicate

An indexed predicate is composed of three parts:

• a predicate variable;

• an index;

• a list of arguments.

Example: Pk(X1 , ..• , Xn) is an indexed predicate where P is the predicate variable, k

the index and X 1 , ... , Xn the list of arguments of the indexed predicate.

The list of arguments of an indexed predicate contains terms and/or indexed variables

and/or vectors of variables.

Definition: The set of terms, indexed variables and vectors of variables is called schema

terms.

17

We need to extend the definition of the index replacement to schema terms and indexed

predicates.

Definition: The replacement of the index i by the integer a applied to a schema term T,

denoted Replacei-+a (T), is defined as follows:

• Replacei-+a (T) = T if T is a term;

• Replacei-+a (T) = X a if T is an indexed variable Xi and i

variable);

• Replacei-+a (T) = Xj if T is an indexed variable Xi and i =f. j;

• Replacei➔a(T) = (Replacei➔a(R))[lb .. ub] if Tisa vector R[lb .. ub].

J (where Xa is a

Definition: Let Pk(X1 , ... , Xn) be an indexed predicate, the replacement of the index i

by the integer a applied to Pk(X1 , ... , Xn) gives:

• the second-order predicate Pa(Y1 , ... , Yn) if i = k

where Ys = Replacei➔a(Xs) (s = l..n);

• the indexed predicate Pk (Yi, ... , Yn) if i =f. k

where Ys = Replacei➔a(Xs) (s = l..n).

The service RelndexIAtom allows index replacement to indexed predicates.

Example: The replacement of the index k by the integer 3 applied to the indexed predicate

Pk(Xk[2 .. n], Y;-, 7, W) gives the second-order predicate P3(X3 [2 .. n], 0 , 7, W).

The scope of an index replacement is restricted to indexed predicates and indexed variables

having their index equal to the index to replace.

Definition: Let Pk(X1 , ... , Xn) be an indexed predicate, the expansion of Pk(X1, ... , Xn)

gives the indexed predicate Pk(Y1 , ... , Ym) where all the instantiated vectors of variables

belonging to the list of arguments X 1 , ... , Xn have been expanded.

The service ExpandIAtom expands an indexed predicate. An indexed predicate represents

second-order predicates having equivalent semantics but which will be instantiated with

different first-order predicates. There exist services to create an indexed predicate, to test

if an object is an indexed predicate, to obtain the different components of an indexed

predicate and to create the string representing an indexed predicate.

3.4 Conjunction

A conjunction is composed of four parts:

• an A D-formula;

18

• a lower bound;

• an upper bound;

• an index.

The AND-formula can be constructed with predicates, indexed predicates, their negation

and/or conjunctions associated thanks to AND-connectives.

Example: NJ!ib Pi(L, HL, TL) & Q(Xj, Y) is a conjunction where Pj(L , HL, TL)

& Q(Xj, Y) is the AND-formula, lb the lower bound, ub the upper bound and j the index

of the conjunction.

Remark: A parallelism exists between this object and the mathematical notation of the

sum I:,1J=1 XiYi.
The purpose of a conjunction is to represent an AND-formula of a finite but non-fixed

length and containing indexed abjects (indexed variables and/or indexed predicates). The

indexed abjects having their index equal to the index of the conjunction are ranging be

tween the lower and upper bounds of the conjunction.

Remark: At least one indexed object belonging to the AND-formula of a conjunction

has its index equal to the index of the conjunction. If it is not the case, the conjunction

is useless. This idea is, also, present for the mathematical notation of the sum where

I:,1J=1 xi = xi. We will only consider conjunctions respecting this idea in the rest of the

text.

During the synthesis process, we obtain information about the length of a conjunction. It

leads to the instantiation of bounds, which are variables, by a natural number.

Definition: A conjunction is instantiated if its lower and upper bounds are, both, natural

numbers.

The service Conjlnstantiated tests if a conjunction is instantiated.

When a conjunction is instantiated, we can replace it by the AND-formula ranging between

the lower and upper bounds. This replacement is called expansion of the conjunction. Be

fore defining the expansion of a conjunction, we have to introduce the notion of index

replacement applied to AND-formulas.

Definition: Let R be an AND-formula, the replacement of the index i by the integer a

applied to R, denoted FormReplacei➔aR, gives:

• P(Replacei➔aT1, ... , Replacei➔aTn) if Ris a predicate P(T1, ... , Tn);

• Pa(Replacei➔aT1 , ••• , Replacei➔aTn) if Ris an indexed predicate Pk(T1, ... , Tn) and

i = k;

• Pk(Replacei➔aT1 , ... , Replacei➔aTn) if Ris an indexed predicate Pk(T1, ... , Tn) and

i =/. k;

19

• ,(FormReplacei➔aP) if R is a formula ,(P) where P is a predicate or an indexed

predicate;

• /\1j!1b(FormReplacei➔aA) if R is a conjunction /\1j!1b A;

• FormReplacei➔aP & FormReplacei➔aQ if R is a formula P & Q.

Definition: Let NJtib R be an instantiated conjunction (lb, ub E IN), the expansion of the

conjunction is defined as follows:

• FormReplacej➔lb(R) & FormReplacej➔lb+i(R) & ... & FormReplacej➔ub(R)

if lb< ub;

• FormReplacej➔lb(R) if lb= ub;

• True if lb > ub.

The service ExpandConj expands an instantiated conjunction.

Example: The expansion of the instantiated conjunction

2

/\ Predj(TXj, TY) & Atom(Wi)
j=l

is obtained like this:

FormReplacej➔1(Predj(TXj, TY) & Atom(vVi))

& FormReplacej➔2 (Predj(T Xj, TY) & Atom(Wi))

Pred1(TX1, TY) & Atom(Wi) & Pred2(TX2, TY) & Atom(Wi)

There exist services to create a conjunction, to test if an object is a conjunction, to ob

tain the different components of a conjunction and to create the string representing a

conj unction.

3.5 Disjunction

A disjunction is composed of four parts:

• an AND-formula;

• a lower bound;

• an upper bound;

• an index.

20

The AND-formula can be constructed with predicates, indexed predicates, their negation

and/or conjunctions associated thanks to AND-connectives.

Example: V1J~1b Pi(L, HL, TL) & Q(Xi, Y) is a disjunction where Pj(L , HL, TL)

& Q(Xj, Y) is the AND-formula, lb the lower bound, ub the upper bound and j the index

of the disjunction.

The purpose of a disjunction is similar to the purpose of a conjunction. A disjunction allows

the representation of an OR-formula (AND-formulas associated thanks to OR-connectives)

of a finite but non-fixed length and containing indexed objects (indexed variables and/or

indexed predicates). The indexed objects having their index equal to the index of the

disjunction are ranging between the lower and upper bounds of the disjunction.

Remark: At least one indexed object belonging to the AND-formula of a disjunction has

its index equal to the index of the disjunction. If it is not the case, the disjunction is

useless. We will only consider disjunctions respecting this idea in the rest of the text.

During the synthesis process, we obtain information about the length of a disjunction. It

leads to the instantiation of bounds, which are variables, by a natural number.

Definition: A disjunction is instantiated if its lower and upper bounds are, both, natural

numbers.

The service Disjlnstantiated tests if a disjunction is instantiated.

Definition: Let V1J~1b R be an instantiated disjunction (lb, ub E IN), the expansion of the

disjunction is defined as follows:

• FormReplacej➔lb(R)v FormReplacej➔lb+i(R)v .. . V FormReplacej➔ub(R) if lb< ub:

• FormReplacei➔lb(R) if lb= ub;

• False if lb > ub.

The service ExpandDisj expands an instantiated disj unction. There exist services to create

a disjunction, to test if an object is a disjunction, to obtain the different components of a

disjunction and to create the string representing a disjunction.

3.6 Redefinition of Predicate

The object representing a predicate is already defined in the module Syntax provided by

Godel. We need to redefine this object to allow the representation of first-order predicates

and second-order predicates.

A first-order predicate is composed of two parts:

• a predicate symbol;

• a list of terms.

21

The service JslnstAtom tests if an object is a first-order predicate.

A second-order predicate is composed of two parts:

• a predicate variable;

• a list of schema terms.

A second-order predicate can be instantiated by a schema substitution to a first-order

predicate (or even a formula). The instantiation of ail the second-order predicates of a

schema with adequate first-order predicates is the main purpose of a synthesis.

Definition: Let P(X1 , ... , Xn) be a second-order predicate,

the expansion of P(X1 , ... , Xn) gives the second-order predicate P(Y1 , ... , Ym) where ail

the instantiated vectors of variables belonging to the list of arguments X 1 , ... , Xn have

been expanded.

The service ExpandAtom expands a second-order predicate. There exist services to create

a predicate, to test if an object is a predicate, to obtain the different components of a

predicate and to create the string representing a predicate.

3. 7 Conclusion

We have seen the different objects available in the module Sobjects together with the

services allowing their creation and manipulation. By gathering these schema objects with

objects allowing the representation of terms and formulas , we can now construct schemas.

The services presented in this section are the basic blocks for constructing new services

allowing the manipulation of schemas. These new services are described in the next section.

Remark: If we examine the arguments of most of the services belonging to the module

Sobjects, we see that we need the representation of a Godel program. This is due to a

feature of the current version of Godel. Godel offers a facility called overloading. It allows

the definition of symbols (types, constants, fonctions, proposit ions and predicates) with

the same name. The only condition is the following: distinct symbols cannot be declared

in the same module with the same category, name and arity. This facility allows us to

define, for example, the addition of two reals and the addition of two integers with the

same name: +. To identify a symbol, we need more information than only its name. vVe

also need the module where the symbol has been declared, the category of the symbol

and its arity. The identifier of the constant Nil is the tuple (NAME: Nil,MODULE:

Lists, CATEGORY : Constant, ARITY : 0). An identifier is a complex object and its

manipulation is restricted. There are no services to construct an identifier for a symbol.

The only service available is the extraction of the name we need from the representat ion

of a Godel program. An argument of type PROGRAM is present in most of the services

of the module Sobjects to allow the extraction of the names needed.

22

Chapter 4

Services Offered by the Module

Schemas

We have defined the notion of schema and we will now focus on services available to

manipulate schemas. These services are not specific to a particular schema like Divide

and-Conquer, Generate-and-Test, ... They can, thus, be used with any schema respecting

the framework defined in the introduction, that is to say, a schema has to be of the form

H ead ,ç:::> Body where H ead is an atom and Body a formula in disjunctive normal form

and a schema has to be constructed with abjects belonging to the modules Syntax and/or

Sobjects. We will present services which give the string representing a schema, which

create the program corresponding to a schema in a target language and which translate

the type SCHEMA into the type FORMULA (and vice versa). The service allowing the

instantiation of a schema is described in the next section.

4.1 String Representation

The service SchemaToString gives the representation of a schema with a string of char

acters. It facilitates the display of a schema on screen and its printing. Each abject

composing a schema has to be represented in an unambiguous manner.

Example: This is the representation of the Divide-and-Conquer schema when using the

service SchemaToString:

23

R(X,Y) <->

Minimal(X)

& Solve(X,Y)

OR NonMinimal(X)

& Decompose(X,HX[1 .. hx] ,TX[1 .. t])

AND[i=<j=<t] R(TXj,TYj)

& Process(HX[1 .. hx] ,HY[1 . . hy])

& Compose(HY[1 .. hy] ,TY[1 .. t] ,Y)
The representation of a schema is possible at any state of instantiation.

The service InstSchemaToString gives the representation of the instantiated part of a

schema with a string of characters.

Definition: The instantiated part of a schema is composed of the instantiated predicates

belonging to the schema and the logical A D /OR-connectives keeping the structure of the

schema for these predicates.

Example: This is the representation, when using the service InstSchemaToString, of

the Divide-and-Conquer schema where its predicates R , Minimal, NonMinimal and

Decompose have been instantiated:
sort(X,Y) <->

X = []

OR Not (X = [])

& X = [HXITX]
This service allows a step-by-step view of the synthesis process.

4.2 Program Derivation

An executable program can be derived from a schema resulting of the synthesis process.

The services SchemaToGoedel and SchemaToProlog create the representation of the pro

grams corresponding to an instantiated schema in the target languages Gode! and Prolog

respectively.

Definition: An instantiated schema is a schema where ail its predicate variables and form

variables have been instantiated.

The service InstantiatedSchema tests if a schema respects this definition. The representa

tion of the programs obtained thanks to these services are stored in files . Only Gode! and

Prolog are supported but it is easy to add a service which can create the representation of

a program for another language. An instantiated schema can be seen as a logic algorithm

and its derivation into an executable program as a mechanical process (for t he definition

of logic algorithm, see [2]).

Remark: The derivation of a program from an instantiated schema is reduced to a purely

24

syntactical process in this case and does not correspond to the process defined in [2] in

volving complex manipulations like type checking, directionality checking and multiplicity

checking.

4.3 Types Translation

The service FormulaSchema allows to obtain the formula corresponding to a schema and

vice versa. Pragmatic reasons have guided the construction of this service. It is not

possible in Godel to redefine the name of a type (to give a synonym for a type). We used

a constructor to enclose a formula and then obtain a schema. But, by doing this, we can't

use the facilities offered for formulas anymore. The service FormulaSch ema allows to use

the facilities offered for both formulas and schemas.

The specifications of all these services are in the appendix.

25

Chapter 5

Schema Substitution

A schema substitution is an object allowing the representation of information to instantiate

a schema. The application of a schema substitution to a schema instantiates placeholders in

the schema. Instantiating all the placeholders of a schema leads to the desired synthesized

logic algorithm. First, we give an introduction of the notion of schema substitution and

its objective in the abstract data type Schema. Second, we describe the different kinds of

bindings belonging to a schema substitution. Third, we state the restrictions of a schema

substitution compared to a term substitution. Finally, we conclude and give an overview

of the implementation of the schema substitution using the facilities offered by Gode!.

5.1 Introduction

A schema substitution is a finite sequence of bindings. There are three different kinds of

objects that can be instantiated in a schema:

• first-order variables;

• second-order variables (also called predicate variables);

• form variables.

There are three different kinds of bindings in a schema substitut ion corresponding to t hese

three objects:

• variable/term binding;

• predicate variable/ À-term binding;

• form variable/integer binding.

26

A binding contains information to instantiate a schema. This information is provided by

methods. Briefly, a method receives a part of the specification of the desired algorithm to

synthesize, a predicate variable and gives information to instantiate this predicate variable

and possibly to instantiate variables and form variables. After the instantiation of all the

variables, predicate variables and form variables of a schema thanks to different methods,

we obtain, from the specification, the desired synthesized logic algorithm. The objective

met by the notion of schema substitution is offering an object unifying the representation

of the results given by different methods and allowing the instantiation of different abjects

in a schema. The schema substitution supports the essential services of the abstract data

type Schema.

5.2 Kinds of Bindings

A schema substitution is composed of three kinds of bindings. We will present each binding

separately.

5.2.1 Variable/Term Binding

The variable/ term binding is the binding of the classical term substitution. Let 0 =
{Vi/T1 , V2/T2 , ... , Vn/Tn} be a schema substitution where the ½/Ti are variable/term

bindings (i = l..n) and S be a schema. Then the application of 0 to S (noted S0) gives

the schema S' which is obtained from S by simultaneously replacing each occurrence of the

variable½ in S by t he term Ti (i = l..n). A schema substitution strictly composed of vari

able/term bindings can be seen as a term substitution where its application is restricted

to schemas (for a detailed description of the term substitution, see [8]).

5.2.2 Predicate Variable/ À-Term Binding

A predicate variable is a second-order variable. The instantiation of a predicate variable

is more complex than a substitution of predicate symbols. Throughout this paper, a

predicate variable will start with an uppercase letter and a predicate symbol will start

with a lowercase letter.

Example: the Generate-and-Test schema

R(X, Y) {=> Generate(X, Y) & T est(Y)

leads to the logic algorithm sort/2

sort(X, Y) {=> permutation(X, Y) & ordered(Y)

27

via the substitution predicate variable/predicate symbol

{ R/ sort, Generate/permutation, Test/ ordered}

This approach is not satisfactory because we need more powerful facilities like the permu

tation of arguments in a predicate, the elimination of useless arguments , the introduction

of new arguments and the instantiation of a predicate variable by a formula. The notion

of À-terms allows us to obtain these facilities.

Definition: Assume that there is given an infinite set of distinct symbols called vari

ables, and an infini te set of distinct symbols called constants. The set of expressions called

À-terms is defined inductively as follows:

• All variables and constants are À-terms (called a toms);

• If M and N are any À-terms, then (MN) is a À-term (called a À-application) ;

• If M is any À-term and x is any variable, then (Àx. M) is a À-term (called an ab-

straction).

Definition: A restricted abstraction is an abstraction (Àx.M) where M is an atom, a

À-application not containing an abstraction or a restricted abstraction.

Example: (Àx.(Ày.(xy))) is a restricted abstraction but (Àx.(z(Àw.w))) is nota restricted

abstraction.

In the following, we will only use restricted abstractions.

Definition: The number of arguments of a À-term T, noted NbArg(T), is defined induc

tively as follows:

• NbArg(T) = 0 where T is an atom or a À-application ;

• NbArg(Àx.M) = l + NbArg(M) where Àx. lvf is a restricted abstraction.

Definition: Let T be a À-term containing an occurrence of the form ((Àx.lvf)N), the

process of replacing this occurrence by M { x / N} in T (where { x / N} is a term substitution)

is called reduction. The application of a schema substitution composed of a predicate

variable/ À-term binding to a schema uses this notion of reduction.

Example: The application of the schema substitution

{ Pred/ ÀA.A = []}

to the schema

R(X, Y) {=? Pred(X)

gives the following reduction

R(X, Y){=? ((ÀA .A = □)(X))

28

R(X, Y){::} (A= []{A/X})

R(X, Y) {::} X = □
Remark: The number of arguments of the predicate Pred has to be equal to the number

of arguments of the À-term (for a detailed description of the notion of À-term, see [7], and

for the idea of using À-terms in logic programming, see [9]).

Remark: The services to create and manipulate À-terms are gathered in the module

Sobjects.

We will now examine in detail the facilities obtained by the use of À-terms.

Permutation of Arguments.

The instantiation of a predicate variable by a À-term allows us to permute the order of the

arguments in the predicate.

Example: The Divide-and-Conquer schema

R(X, Y){::}

Minimal(X) & Solve(X, Y)

V NonMinimal(X) & Decompose(X, HX, TX)

& R(TX, TY)

& Process(HX,HY)

& C ompose(HY , TY, Y)

induces that the induction parameter is X, the first argument of R. If we want to synthesize

an algorithm for the predicate member(E, L) where E is a term and L is a list of terms,

we have to permute the order of the arguments in R, the induction parameter L being the

second argument. The application of the schema substitution

{R/ÀA.ÀB.member(B, A)}

to our Divide-and-Conquer schema will give the following schema

member(Y, X) {::}

Minimal(X) & Solve(X, Y)

V Nonlvlinimal(X) & Decompose(X,HX, TX)

& member(TY, TX)

& Process(HX, HY)

& Compose(HY , TY, Y)

This facility allows not only a permutation of two arguments but a complete reorder of the

arguments in a given n-ary predicate.

Remark: In the following examples, we will always apply a schema substitution to this

Divide-and-Conquer schema.

29

Elimination of U seless Arguments.

The instantiation of a predicate variable by a À-term allows us to eliminate useless argu

ments in the predicate. This elimination is also called projection.

Example: the schema substitution

{ Compose/ >.A.>.B.>.C.B = C}

applied to our previous Divide-and-Conquer schema (where TX and TY are not vectors of

variables but simply variables) leads to the schema

R(X, Y){::}

Minimal(X) & Solve(X, Y)

V NonMinimal(X) & Decompose(X,HX,TX)

& R(TX,TY)

& Process(HX, HY)
& TY=Y

The argument HY has disappeared in the instantiation of the predicate Compose. The

number of arguments of the predicate Compose(HY, TY, Y) is equal to the number of

arguments of the À-term >.A.>.B.>.C.B = C.

Introduction of New Arguments.

Similarly, it is possible to introduce new arguments when instantiating a predicate variable

by a À-term.

Example: the schema substitution

{Minimal/ >.A.lengt h(A, 0)}

applied to our Divide-and-Conquer schema leads to the following schema

R(X, Y){:}

length(X, 0) & Solve(X, Y)

V N onlvlinimal(X) & Decompose(X, HX: TX)

& R(TX,TY)

& Process(HX,HY)

& C ompose(HY , TY, Y)

The predicate length is binary as opposed to Minimal which is unary.

Remark: When introducing new variables in a predicate using this facility, we must keep

in mind that these variables can interfere with variables already in the schema. Introducing

a new variable X in a Divide-and-Conquer schema will blur the distinction between this

one and the variable X representing the induction parameter.

30

Instantiation of a Predicate Variable by a Formula.

In the previous examples, we have seen the possibilities of instantiating a predicate variable

by a predicate where the arity of this predicate and the position of its arguments can be

different from the predicate variable. We are not restricted to predicates only. It is also

possible to instantiate a predicate variable by a formula.

Example: the schema substitution

{NonMinimal/>..A.length(A, Lg) & Lg > O}

applied to our Divide-and-Conquer schema leads to the following schema

R(X, Y) ç}

Minimal(X) & Solve(X, Y)

V length(X, Lg) & Lg > 0

& Decompose(X, HX, TX)

& R(TX, TY)

& Process(HX,HY)

& Compose(HY, TY, Y)

We restricted the formula in a >..-term to be in disjunctive normal form. The possibility

of having an OR-connective (or several) in a >..-term will lead to the normalization of the

schema being instantiated. The normalization is necessary because we want to respect the

definition of a schema (its body being a formula in disjunctive normal form) .

Remark: Representing a formula with >..-terms is possible. The logical connectives belong

to the set of constants (for a complete discussion, see [9]) .

Argument N ame Independence.

To facilitate the construction of an abstraction, we have to ensure an important property:

the argument name independence. When constructing an abstraction to bind with a pred

icate variable, we don't want to bother about the representation of the arguments of the

predicate to instantiate.

Example: the application of the schema substitution

{Pred/>.. B.>..C.>.. A.B = C}

to a schema S containing the predicate Pred(A, B, C) has to result in a schema S' which

is obtained from S by simultaneously replacing all the occurrences of Pred by A = B.

Because of name clashes, we obtain in fact a schema S" which is obtained from S by

simultaneously replacing all the occurrences of Pred by C = B. The desired elimination of

the third argument results in fact in the elimination of the first argument. This problem

has been solved with an automatic renaming of the arguments of the abstraction causing

clashes before the application.

31

5.2.3 Form Variable/Integer Binding

During the synthesis of a logic algorithm, we obtain information about the numbers of

arguments for a predicate, the number of recursive calls, . .. This information allows us

to precise the final form of a schema and is represented using the form variable/integer

binding. In our Divide-and-Conquer schema, the form variables are hx, hy and t. They

are the upper bounds of the vectors of variables and of the conjunction appearing in the

Divide-and-Conquer schema. When instantiating a predicate variable, a method gives also,

implicitly or explicitly, information to instantiate form variables.

Example: From the choice of instantiating Decompose with the head-tail decomposition

(assuming that the induction parameter X is a list) X = [HXJTX], we can extract the

fact that the numbers of heads and tails of X will be equal to one. We obtain, thus , this

schema substitution {hx/l, t/1}.

Example: The application of the schema substitution

{ hx/l, t/2, Decompose/ >..T.>..L.>..LST.>..RST.T = Tree(L , LST, RST)}

to our Divide-and-Conquer schema leads to a schema

R(X, Y){=}

Minimal(X) & Solve(X, Y)
V NonMinimal(X) & X=Tree(HX,TX1,TX2)

& R(TXl, TYl)

& R(TX2, TY2)

& Process(HX, HY)

& Compose(HY, TYl , TY2, Y)

Knowing that the induction parameter X is decomposed into one head and two tails

automatically leads to two recursive calls, one for each tail.

5.3 Restrictions of a Schema Substitution

The restrictions of a schema substitution compared to a term substitution are the order of

the bindings in a substitution and the composition of substitutions.

A schema substitution is not a set of bindings as for a term substitution but a sequence

of bindings. A schema substitution is composed of different kinds of bindings. Let 0 be a

schema substitution, T be the schema substitution 0 where two bindings (or more) ha\·e

been permuted and S be a schema, we can't assure that

se= ST

32

in general.

Example: The schema substitution

{t/2, Decompose/>.T.>.L.>.LST.>.RST.T = Tree(L, LST, RST), hx/1}

when applied to our Divide-and-Conquer schema S will lead to a schema where Decompose

has been instantiated. If we decide to permute the two first bindings, the application of this

schema substitution to S will fail (the number of arguments of the Decompose predicate

being different from the number of arguments of the abstraction).

The composition of schema substitutions is more delicate than the composition of term

substitutions because a schema substitution gathers different kinds of bindings. We must

ensure that the bindings will not mix each other.

Example: The composition of the schema substitutions {Minimal/>.J.J = O} and {J/2}

does not have to lead to {Minimal/>.2.2 = [], J/2}.

The problem of the composition has not been tackled completely. A service of concatena

tion of schema substitutions is supported.

5.4 Conclusion

We have seen the notion of schema substitution, the three kinds of bindings that can

appear and the restrictions compared to the classical term substitution. This object has

been implemented in Gode!. The objective of reusing the facilities offered by the language

has guided the construction of this object. A schema substitution is represented as a term

substitution {Vi/T1 , Vi/T2 , ... , Vn/Tn}· The first-order variables, second-order variables

and form variables are represented with the variables of Gode! in ground representation.

The term Ti is encapsulated in a constructor showing the kind of binding represented

(i = l..n). The application of the schema substitution is done sequentially (binding after

binding) and differs according to the kind of binding.

33

Chapter 6

Conclusion and Future Work

We have defined, in this part, the notion of schema and stated the objective this notion is

fulfilling in the synthesis. Then, we have presented the schema objects needed to construct

complex logic algorithm schemas. Finally, we have listed the different services available to

manipulate schemas and to instantiate them via schema substitutions. The abstract data

type representing logic algorithm schemas is one of the basic blocks of the architecture

presented in the next part.

There are several ways of improving the abstract data type representing logic algori thm

schemas defined in this part.

First, we can relax the restriction stated for bounds, that is to say, a bound is either a

natural number or a variable. We can allow a bound to be an arithmetic expression too.

The effect of this improvement is that it takes care of specific constraints .

Example: The following schema

R(X,Y) {:}

Vj=1 NonMinimal(X) &

v;=k+l NonMinimal(X) &

expresses that there exists a relation between the upper bound of the first disjunction

and the lower bound of the second one. The current implementation only allows this

schema to be represented using a variable k' for the lower bound of the second disjunction

instead of the arithmet ic expression k + l. The constraint k + l = k' has to be ensured

"manually" when instantiating k and k'. By allowing arithmetic expressions for bounds,

we can represent the schema above easily. The instantiation of k automatically respects

the constraint existing between the two bounds. Another advantage of this solution is that

it only requires the instantiation of the variable k instead of two different instantiations

(one for k and another for k') .

Second, the schema substitution is a sequence of bindings and nota set as for a classical

term substitution. The application of a schema substitution is order-sensitive. We have,

34

thus, to ensure that the different bindings are in a certain order to obtain the result of the

application we desired. A solution to remove this inconvenience is to define an order for

the bindings of a schema substitution and to sort the schema substitution given to obtain

the one we will finally apply.

Remark: The definition of an order for the bindings is not a trivial task. The sorting is

dependent on the kind of schema being instantiated and also on other information.

Example: If a second-order predicate Pred(X, Y) has to be instantiated by the following

schema substitution:

{ ... , Pred/>.A.>.B.>.C.split(A, B, C) , ... }

where X and Y represent respectively the vectors of variables X [l..hx] and Y[l..hy], we

can observe that the number of arguments of the second-order predicate is different from

the number of arguments of the À-term. We know that a form variable/integer binding has

to be placed before the predicate variable/ À-term binding. But if the schema substitution

contains the bindings hx/2 and hy/2, we still don't know which one of these two has to be

placed before the predicate variable/ À-term binding and which one has to be placed after.

35

Part II

A Modular Architecture for an

Inductive Schema-Guided Logic

Program Synthesizer

36

The architecture for an inductive schema-guided logic program synthesizer called

DIALOGS, presented in this section, is composed of five main blocks:

• the specification block;

• the schemas creation block;

• the methods block;

• the strategies block;

• the synthesizer block.

The objective guiding the construction of this modular architecture is the following: the

architecture has to allow the definition and the addition of new methods, new schemas, new

strategies and even new specification frameworks without a redesign of the synthesizer. The

synthesizer is viewed as a workbench with a disparate toolbox containing highly specialized

methods for a set of schemas.

First, we present each block separately and illustrate their content with an example

corresponding to the SYNAPSE synthesizer defined in [4]. Second, we explain how to

define and add new abjects to each block to improve the synthesizer constructed in the

previous section. Finally, we conclude and introduce this synthesizer as a complete tool in

a logic programs development environment.

37

Chapter 7

Description of the Blocks

Composing the Architecture

First, we give the insight of how the synthesizer is working and the role of the blocks

proposed. Then, we define each block composing the architecture of the inductive schema

guided logic program synthesizer DIALOGS.

7.1 Overview of the Synthesizer

We will now give an idea on how the synthesizer is working. First, the user constructs a

specification for a predicate p in a particular framework. Then , he can choose a schema (or

let the synthesizer choose a schema) that will be instantiated to obtain a logic algorithm for

the predicate p. The user can choose (or let the synthesizer choose) in the strategies related

to the schema used for the synthesis, the one to be applied. The strategy is a sequence

of steps instantiating the placeholders of a schema by using different methods provided by

a toolbox. After the application of the strategy, the synthesizer shows the resulting logic

algorithm for the predicate p to the user. The user can restart a synthesis with another

choice for the schema and/or the strategy or with a modification of bis specification for

the predicate p. If the resulting logic algorithm is what the user wants, he can obtain an

executable code from this algorithm in a target language.

7.2 Specification Black

The synthesis of a logic algorithm for a predicate p requires a specification of this predicate.

The module Specifs provides a framework allowing the definition of predicates to be

synthesized. It also provides services to extract specifications from a file (or from the

standard input stream) and services to manipulate specifications.

38

A possible framework for specifications is composed of:

• the predicate symbol and the arguments of the predicate for which the user wants a

logic algorithm;

• the types of the arguments of this predicate;

• a set of positive examples for which the predicate has to succeed;

• a set of axioms of this predicate.

Remark: This framework is the same as the one defined in [4] .

Example: Here is a specification of the predicate member /2 in the framework defined

above:

member(E, L)

E: Term

L : List(Term)

member(a, [al)
member(b, [a, b])

member(X, L) {= append(Pre, [XI P ost], L)

where the predicate append(A, B , C) is considered as a primit ive and can be informally

defined like this: C is the concatenation of B to the end of A.

The export part of the module Specifs is constructed like this:
EXPORT Specifs .

IMPORT Sobjects, Examples.

BASE Specif.

PREDICATE DialogConstructSpecif:

Specif. The representation of a

specification extracted from the

standard input via a dialog with

the user .

39

PREDICATE

PREDICATE

PREDICATE

ConstructSpecif:

String

* Specif.

ComponentsOfSpecif:

A string.

The representation of a

specification extracted from a

file having its root name equal

to the first argument and its

extension equal to ''spf.''

Specif The representation of a

specification.

* String

* List(Type)

* List(Example)

* List(Formula).

SpecifToString:

Specif

* String.

The specified predicate.

The list of types of the

arguments of the specified

predicate.

A list of positive examples for

which the specified predicate

has to succeed .

A list of axioms of the

specified predicate.

The representation of a

specification.

A string representing this

specification.
The keyword EXPORT indicates that we are in the export part of the module of name

Specifs. The keyword IMPORT indicates which services are available to the module Specifs

via the modules Sobjects and Examples (where the module Sobjects is the one defined

in the previous part and where the module Examples contains t he abstract data type

EXAMPLE and services to manipulate this abstract data type). The keyword BASE in

dicates which types are declared in this module. The type declared is Specif and it is

the type of a term representing a specification. The keyword PREDICATE indicates which

predicates are declared in the module Specifs together with the types of the arguments

of each predicate.

Remark: The type, fonction and predicate symbols start with an uppercase letter to

respect the convention of Gode!.

The local part of the module Specifs is constructed like this:

40

LOCAL Specifs.

FUNCTION Spcf: String* List(Type) * List(Example) * List(Formula)

-> Specif.

DialogConstructSpecif(spec) <-

ConstructSpecif(fname,spec) <-

ComponentsOfSpecif(spec,pred,ltype,lex,lform) <

SpecifToString(spec,str) <-
The keyword FUNCTION indicates which fonctions are declared in the local part of this

module. The purpose of the fonction Spcf is to give the type Specif to terms representing

a specification. The local part of the module Specifs also contains the definition of the

four predicates declared in its export part.

We can see that the module Specifs is simple and canuse the facilities offered by other

modules to manipulate specific objects composing a specification like Type, Example and

Formula.

7.3 Schemas Creation Black

The module Sobjects and Schemas have been described m the previous part. They

provide, respectively, services to create and manipulate schema objects and to manipulate

schemas. The module SchemasCreation gathers the service CreateSchema which allm,:s

the creation of specific schemas.

The export part of the module SchemasCreation is constructed like this:
EXPORT SchemasCreation.

IMPORT Schemas.

PREDICATE CreateSchema:

String A string.

* Schema. The representation of the schema having

its name equal to the first argument.
The local part of the module SchemasCreation is constructed like this:

LOCAL SchemasCreation.

CreateSchema(''DCi'',sch) <

CreateSchema(''GT'',sch) <

CreateSchema(''DC2'',sch) <-
Remark: Six different Divide-and-Conquer schemas have already been constructed

41

and are available in the module SchemasCreation.
The service CreateSchema allows a direct access to the representation of a particular

schema if its first argument is instantiated to a specific string. If its first argument is not

instantiated, the service CreateSchema will iterate on all the representations of schemas

contained in the module SchemasCreation. This feature allows the synthesizer to give

different logic algorithms starting from a single specification or to obtain the best suited

schema to synthesize a logic algorithm.

7.4 Methods Black

A method extracts, from a specification and possibly from background knowledge, informa

tion to instantiate placeholders of a schema. The simplest method existing is the method

extracting, from the specification, the predicate symbol for which the synthesizer tries to

produce a logic algorithm. A schema substitution is, then, created and binds the predicate

variable of the head of the schema to the predicate symbol extracted (which will be under

the form of a >.-term). We just have to apply this schema substitution to the schema to

instantiate a placeholder.

Example: The method A extracts from the specification, proposed in section 7.2 , the

predicate member(E, L). A schema substitut ion 0 = {R/ >.L.>.E.member(E, L)} is cre

ated and applied to our Divide-and-Conquer schema.

There exist more sophisticated methods that perform actual computations for inferring in

formation. Two methods, called the Most Specific Generalization method and the Proofs

as-Programs method, are explained in [4].

Remark: To be useful, a method must be independent from a specific schema. However,

the construction of a schema substitution is dependent on the schema chosen. The schema

substitution has to know the predicate variable of the head of the schema (R in the upper

example).

There are five distinct phases in the use of a method:

1. selection of the useful part of the specification for a particular method;

2. use of the method with several arguments (including a part of the specification) to

obtain information;

3. test to verify if the information given by the method is acceptable;

4. transformation of the information into a schema substitution;

5. application of the schema substitution obtained to a schema.

42

The export part of the module Methods is constructed like this:
EXPORT Methods.

IMPORT Schemas, Specifs.

PREDICATE MethodA: TArg1 * TArg2 * TArg3;

MethodB: TArg1 * TArg2;

The local part of the module Methods contains the definitions of the predicates de

clared in its export part.

7.5 Strategies Black

A strategy is a sequence of steps guiding the complete instantiation of a particular schema

S. Each step is a mapping between a method and a placeholder of the schema S. The

result given by a method is information to instantiate a placeholder. When all the place

holders of S have been instantiated, the synthesis is over and results in a logic algorithm.

Example: Here is a possible strategy for our Divide-and-Conquer schema:

1. instantiation of R using the method A;

2. instantiation of Minimal using the method B ;

3. instantiation of N onl\ll inimal using the method B ;

4. instantiation of Decompose using the method C;

5. instantiation of Solve using the method D;

6.

Remark: We can imagine another mapping between methods and placeholders or a re

order of the different steps of the strategy above. This leads to the creation of a new

strategy for the same schema. A schema can be instantiated by different strategies but a

strategy instantiates one and only one schema.

A strategy is represented under the form of a Godel program instead of being represented

under the form of a sequence of couples indicating which placeholder is instantiated thanks

to a particular method. This approach allows us to reuse the facilities already available

to manipulate Godel programs and to have a way to define more powerful strategies. A

strategy can be more complex than just a sequence of methods/placeholders couples. It is

43

sometimes important to test the result given by a method. If the result is not the one ex

pected, it must be possible to instantiate the placeholder with another method. A module

will be created for each strategy we want to add to the synthesizer.

The export part of a module describing a strategy is constructed like this:
EXPORT StrategyName.

IMPORT Specifs, SchemasCreation, Methods.

PREDICATE Strategy:

Schema The representation of a schema.

* Schema. The schema corresponding to the first

argument where all its predicate variables

and form variables have been instantiated.
Remark: Each strategy is a module having a name different from the other strategy

module names belonging to the synthesizer. But the predicate Strategy/2 is always present

in all the strategy modules.

The local part of a module describing a strategy is constructed like this:
LOCAL StrategyName.

Strategy(schema,result) <-

GetSpecifFileName(fname) &
ConstructSpecif(fname,spec) &
MethodA(_,_,_) &

Remark: A strategy has to take care of the extraction of the specification thanks to

the services available in the module Specifs. This is due to the fact that we want to have

the possibility to add new specification frameworks to the synthesizer. This feature will

be explained later.

A strategy is a complex object but its construction can be simplified with a huge and

well-designed library of methods.

7.6 Synthesizer black

We already have services to extract and manipulate specifications, services to create and

manipulate schemas. We have strategies to guide the instantiation of a schema thanks to

methods. The only object still needed is a tool executing the instantiation steps described

in a strategy to an adequate schema. This tool is a Godel interpreter and is the central

part of the synthesizer. The interpreter receives a strategy represented as a Godel program

44

and the goal

CreateSchema(schemaname, schema) & Strategy(schema, result)

and gives as a result an answer substitution containing the binding result/ algorithm.

Remark: In the goal above, schema and result are variables t hat will be present in the

answer substitution. But schemaname is not a variable. It is a string representing the

name of a particular schema. When a specific strategy is given to the interpreter, it has

to instantiate the schema linked to this strategy.

Starting from a Godel interpreter, we incrementally develop and explain the body of the

synthesizer DIALOGS.
Remark: An interpreter called MySucceed is already available from a meta-programming

module of Godel.

First, the service Strategylnterpreter is built above a classical Godel interpreter.

The export part of the module Dialogs is constructed like this:
EXPORT Dialogs.

IMPORT Schemas.

PREDICATE Strategylnterpreter:

String The name of a schema.

* String

* Schema.

The name of the module

containing a strategy S allowing

the instantiation of a schema

having its name equal to the

first argument .

An instantiated schema obtained

by the applicat ion of the

strategy S to a schema having

its name equal to the first

argument.
The local part of the module Dialogs is constructed like this:

45

LOCAL Dialogs.

IMPORT Interpreter, ProgramsIO.

Strategyinterpreter(schemaname,stratfile,algo) <-

ProgramCompile(stratfile,strategy) &
ConstructGoal(schemaname,goal) &
MySucceed(strategy,goal,tsubst) &

VariableName(result,''result'',O) &

BindinginîermSubst(result,resterm,tsubst) &

TermîoSchema(resterm,algo).
Remark: The modules imported by Dialogs contain services needed to construct the

body of the Strategylnterpreter predicate.

The ProgramCompile predicate produces, in its second argument, the representation of

a program when its first argument is the name of a file containing this program. The

ConstructGoal predicate produces, in its second argument, the representation of the goal

CreateSchema(schemaname, schema) & Strategy(schema, result)

where schemaname is obtained via its first argument. The MySucceed predicate is a

Godel interpreter using the SLDNF-resolution and the safe leftmost litera! computation

rule to produce an answer substitution (its third argument) from a Godel program (its first

argument) and a goal (its second argument). The VariableName predicate constructs the

representation of a variable named "result." The BindinglnTermSubst predicate extracts

from a term substitution (its third argument) the term (its second argment) which is bound

to the variable given as first argument. The TermToSchema predicate constructs from the

representation of a term of type SCHEMA (its first argument) the corresponding schema

(its second argument).

The service Dialogs is built above the Strategylnterpreter predicate presented upper.

The local part of the module Dialogs is modified as follows:

46

LOCAL Dialogs .

IMPORT Interpreter, ProgramsIO, SchemasCreation, FindStrategi es.

Strategyinterpreter(schemaname,stratfile , algo)

Dialogs ()

FetchSchemaName(schemaname)

schemaname =/= '' nil' '
FetchStrategyName(stratname)

stratname =/= ' 'nil' '

Strategyinterpreter(schemaname,stratname,algorithm)

SchemaToString(algorithm,stralgo)

WriteString(StdOut,stralgo).

<-

<-

&

&

&

&

&

&

Di alogs() <-

FetchSchemaName(schemaname) &
schemaname =!= '' nil' ' &

FetchStrategyName(stratname) &
stratname = ''nil' ' &
FindStrategyFile(schemaname,stratname) &

WriteString(StdOut, ''The strategy chosen i s '' ++ stratname) &
Strategyinterpreter(schemaname,stratname ,algorithm) &
SchemaToStri ng(algorithm,stralgo) &
WriteString(StdOut,stralgo) .

47

Dialogs() <-

FetchSchemaName(schemaname) &
schemaname = ''nil'' &
CreateSchema(schemaname,_) &
FindStrategyFile(schemaname,stratname) &
WriteString(StdOut, ''The schema chosen is '' ++ schemaname) &
WriteString(StdOut,''The strategy chosen is '' ++ stratname) &
Strategylnterpreter(schemaname,stratname,algorithm) &
SchemaToString(algorithm,stralgo) &
WriteString(StdOut,stralgo).

The predicate FetchSchemaName (resp. FetchStrategyName) obtains, via a dialogwith

the user, either the name of the schema (resp. the strategy) the user has chosen or the

fact 1 that the user let the synthesizer choose itself a schema (resp. a strategy). The

predicate SchemaToString is the predicate defined earlier in the section 4 which gives the

string representing a schema. The predicate WriteString is a predicate writing its second

argument on the standard output.

The FindStrategyFile predicate belongs to the module FindStrategies. This predicate

is needed if the user has no preference on the strategy to be used to synthesize a logic

algorithm. The FindStrategyFile predicate can be viewed as a table linking a strategy to

the schema it instantiates.

The export part of the module FindStrategies is constructed like this:
EXPORT FindStrategies.

IMPORT Strings.

PREDICATE FindStrategyFile:

String

* String.

The name of a schema.

The name of the module

containing a strategy allowing

the instantiation of a schema

having its name equal to the

first argument.
The local part of the module FindStrategies is constructed like this:

1 Represented here by a "nil" response of the user.

48

LOCAL FindStrategies.

FindStrategyFile(schemaname,stratfile) <-

(schemaname = ''DC1''

V (schemaname = ''GT''

V (schemaname = ''DC1''

V

49

& stratfile = ''DC1strat1'')

& stratfile = ''Gîstrategy'')

& stratfile = ''DC1strat2'')

Chapter 8

Blocks lmprovements

The five blocks composing the synthesizer architecture have been described. We now

explain how to add new specification frameworks, new schemas, new methods and new

strategies to improve the possibilities offered by the synthesizer DIALOGS.

8.1 Specification Block

Due to different reasons, the framework defined previously to specify a predicate is not ad

equate anymore to synthesize a logic algorithm for a particular predicate p. The following

new framework is needed:

• the predicate symbol and the arguments of the predicate for which the user wants a

logic algorithm;

• the types of the arguments of this predicate;

• a set of positive examples for which the predicate has to succeed;

• a set of negative examples for which the predicate has to fail ;

• a set of available primitive predicates that can be used to synthesize a logic algorithm

for the predicate p.

Example: Here is a specification of the predicate member /2 in the new framework defined

upper:

✓

50

member(E, L)

E: Term

L: List(Term)

member(a, [al)
member(b, [a, b])

,member (a, [])

,member(b, [a, c, dl)

=, -=/=
The export part of the module NewSpecifs is constructed like this:

EXPORT NewSpecifs.

IMPORT Sobjects, Examples, Primitives.

BASE NewSpecif.

PREDICATE DialogConstructNewSpecif:

NewSpecif.

PREDICATE ConstructNewSpecif:

String

* NewSpecif.

51

The representation of a

specification extracted

from the standard input via

a dialog with the user.

A string .

The representation of a

specification extracted

from a file having its root

name equal to the first

argument and its extension

equal to ''nsp. ''

PREDICATE ComponentsOfNewSpecif:

NewSpecif

* String

* List(Type)

* List(Example)

* List(Example)

* List(Primitive).

PREDICATE NewSpecifToString :

NewSpecif

* String .

The representation of a

specification .

The specified predi cate.

The list of types of the

arguments of the specified

predicate.

A list of positive examples

for which the speci fied

predicate has to succeed .

A list of negative examples

for which the speci fied

predicate has to fail.

A list of primitive

predicates that can be used

to synthes i ze a logi c

algorithm for the specif i ed

predicate.

The representat i on of a

specificati on.

A string represent i ng thi s

specificat i on.
The imported module Primitives contains the abstract data type PRIMITIVE and

services to manipulate this abstract data type.

The import part of the module NewSpecifs is constructed like this:
LOCAL NewSpecifs.

FUNCTION NSpcf: String* List(Type) * List(Example)

* List(Example) * List(Primit i ve) -> NewSpecif.

DialogConstructNewSpecif(spec)

ConstructNewSpecif(fname,spec)

<

<-

ComponentsOfNewSpecif(spec,pred,ltype ,pex,nex,lp) <

NewSpecifToString(spec,str) <-
The module NewSpecifs is not fundamentally different fo r the module Specifs. It

con tains services to extract specifications from a fil e (or from the st andard input stream)

and services to manipulate specifications. Giving the task of extracting a specification to a

52

strategy instead of the synthesizer has the advantage that the synthesizer is independent of

the framework chosen to specify a predicate. A strategy, being a sequence of methods used

to instantiate placeholders in a schema, is naturally dependent on the framework chosen

for the specification because each method composing the strategy has specific needs in

terms of specification. A method A extracts information from positive examples when a

method B extracts information from negative examples only.

Remark: Another advantage of giving to a strategy the task to extract itself a specification

is a specification dialog control. We implicitly propose a simple interaction, concerning

the specification, between the strategy and the user during synthesis. The user gives a

specification for a predicate p and, then, the strategy (through methods calls) uses the

specification to design a logic algorithm for the predicate p. Other strategies pilot a dialog

with the user of the synthesizer to obtain more information about the predicate for which

a logic algorithm is under construction. If a need for new negatives examples appears in

the middle of the synthesis, the strategy can ask for some to the user. The synthesizer

cannot handle beforehand all the variety of possible dialogs with a user. This specification

dialog control feature is important with synthesizers using inductive inference as a way to

extract useful information from specifications. Inductive inference starts with incomplete

and possibly ambiguous information, thus, the need for clarifying information exists.

8.2 Schemas Creation Black

Adding a new schema allowing, for example, the design of logic algorithms in the Global

Search synthesis methodology requires a modification of the local part of the module

SchemasCreation. The export part of this module is not affected by this change and

still only contains the declaration of the CreateSchema/2 predicate.

The local part of the module SchemasCreation is the following:
LOCAL SchemasCreation.

CreateSchema(''DC1'',sch) <

CreateSchema(''GT'' ,sch) <

CreateSchema(''DC2'',sch) <

CreateSchema(''GS'',sch) <-
The name identifying this new schema has to be different from the names of schemas

already existing in the module SchemasCreation. This requirement is important to avoid

problems such as the use of a strategy to instantiate a schema that is not suitable.

Remark: It is necessary to construct, at least, one strategy related to this new Global

Search schema. Otherwise, this new schema has no use because there is no indication on

how to instantiate its placeholders.

53

8.3 Methods Block

A method M has been designed to obtain information from negative examples. This

method had caused the need for a new specification framework discussed previously. To

add the method M to our toolbox, we just have to declare a predicate M in the export

part of the module Methods and to define it in the local part of the same module. The

toolbox containing a greater variety of methods will facilitate the design of future strategies.

Remark: There is no real obligation to add the method M to the module Methods. We

can create a new module containing this method. A strategy composed of the method

M and methods belonging to the module Methods must just import these two modules.

This feature, allowing to split the set of available methods into several modules, provides

a way to structurate the methods according to some criteria.

8.4 Strategies Block

In the previous sections, we have defined a new schema representing the Global Search

synthesis methodology, a new method extracting information from negat ive examples and

a new specification framework allowing a user to specify a predicate p with positive ex

amples, negative examples and primitive predicates. We must now const ruct a st rategy

instantiating the placeholders of the Global Search schema. This strategy is a Gode! pro

gram.

The export part of the module GSstrategy representing t he strategy instantiat ing a

Global Search schema is constructed like this:
EXPORT GSstrategy.

IMPORT NewSpecifs, SchemasCreation, Methods.

PREDICATE Strategy:

Schema

* Schema.

The representation of a Global Search schema .

The schema corresponding to the first

argument where all its predicate variables

and form variables have been instantiated.
To use the new framework of specification defined previously, this strategy has just to

import the module NewSpecifs.

The local part of the module GSstrategy is constructed like this:

54

LOCAL GSstrategy.

Strategy(schema,result) <-

GetSpecifFileName(fname) &

ConstructNewSpecif(fname,nspec) &
MethodA(_,_,_) &

The strategy instantiating a Global Search schema extracts the specification via the

ConstructN ewSpecif service.

Remark: When a strategy is chosen, either by the user or the synthesizer, this strategy

must find a file containing the specification of a predicate in the adequate framework.

If the user let the synthesizer choose a particular strategy, he is not aware beforehand

of the specification framework required by this future strategy. He has to construct as

many specifications for his predicate as there are specification frameworks. The Dialog

ConstructSpecif service (and other services having the same purpose) allows to avoid this

inconvenient.

After the definition of the strategy above allowing the instantiation of a Gloabl Search

schema, we must now modify the module FindStrategies to make this strategy available

to the synthesizer. The body of the FindStrategyFile predicate will be the following:
LOCAL FindStrategies.

FindStrategyFile(schemaname,stratfile) <-

(schemaname = ''DC1''

V (schemaname = ''GT''

V

& stratfile = ''DC1strat1'')

& stratfile = ''GTstrategy'')

V (schemaname = ''GS'' & stratfile = ''GSstrategy'') .
All the modifications and additions presented in this section have not perturbed the

functioning of the synthesizer. No redesign of the module Dialogs has taken place even if

a new specification framework , a new schema, a new method and a new strategy are now

available to a user of the synthesizer.

55

Chapter 9

Conclusion

We have proposed a modular architecture for an inductive schema-guided logic program

synthesizer composed of five main modules. We have also described how to add new abjects

to the main modules 1 without a redesign of the synthesizer.

The synthesizer DIALOGS can be incorporated in a logic programs development envi

ronment like FOLON. FOLON is the logic programs development environment support

ing the three steps of the methodology explained in [2]. This environment is an integrated

set of tools helping a user to:

1. elaborate a specification for a given problem;

2. construct a logic algorithm from the specification in pure logic;

3. derivate a logic program from the specification and the logic algorithm in a specific

logic programming language.

Adding the synthesizer DIALOGS to the FOLON environment allow a user to choose

between a manual construction or an automatic construction of a logic algorithm. It

will probably require a modification of the specification framework used in the FOLON

environment. The synthesizer can benefit from the tools already existing in FOLON
like the type checking, multiplicity checking and directionality checking used to deriYate a

multidirectional logic program from a logic algorithm.

1 Excepting the synthesizer module.

56

Bibliography

[1] A.F. BOWERS. Representing godel object programs in godel. Technical Report CSTR-

92-31, Department of Computer Science, University of Bristol, 1992.

[2] Y. DEVILLE. Logic Programming Systematic Program Development. Addison-Wesley,

1990.

[3] P. FLENER. Logic program schemata: Synthesis and analysis. Technical Report

BU-CEIS-9502, Bilkent University, Ankara, 1995.

[4] P. FLENER. Logic Program Synthesis from Incomplete Information. Kluwer Academic

Publishers, 1995.

[5] C.A. GURR. Specializing the ground representation in the logic programming language

godel. In Y. Deville, editor, Proceedings of the Third International Workshop on Logic

Program Synthesis and Transformation (LOPSTR '93). Springer-Verlag, 1994.

[6] P. HILL and J. LLOYD. The Godet Programming Language. The MIT Press, 1994.

[7] J .R. HINDLEY and J.P. SELDIN. Introduction to Combinators and >-.-Calculus. Student

Texts. Cambridge University Press, 1986.

[8] J. LLOYD. Foundations of Logic Programming. Springer-Verlag, second extended

edition, 1987.

[9] G. NADATHUR and D. MILLER. Higher order logic programming. In D. GABBAY,

C. HOGGER, and A. ROBINSON, editors, Ta be published in The Handbook of Logic in

Artificial Intelligence and Logic Programm-ing. Oxford University Press.

[10] D.R. SMITH. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelli

gence, (27):43- 96, 1985.

57

Appendix

EXPORT Sobjects .

% Module providing a number of abstract data types for representing schema
% abjects (using the Goedel ground representation) and predicates f o r
% manipulating these types .
%
% Description of the abstract data types:
%
% Indexed Variables (IVar) are compound variables. The first partis called
% the root variable and the second part the index variable.
% Exarnple : Xj where Xis the root variable and j the index variable .
% Remark: the representation of a variable in Goedel is also composed o f 2
% parts. The root which is a string and the index which is an
%
%
%
%

integer. To avoid arnbiguities, we will use the followi ng
terminology: the index (integer) will be called the mark o f the
variabl e .

% Vectors are terms composed of 3 parts. The first partis called the root o f
% the vector, the second part the lower bound of the vector and the third
% part the upper bound of the vector. The r oot can either be a variable, an
% indexed variable or a vector. The lower and upper bounds are either
% variables or non-negative integer constants .
% Exarnple : Z (1..n] , W (1..2) [m . . p]
%
%
%
%
%

Atoms are formulas of the form p(tl,t2, . . . ,tn) where pis cal l ed the narne
(predicate variable or predicate syrnbol) of the atom and tl,t2 , .. . ,tn
the arguments of the atom. The narne can either be a variable (representing
a p l aceholder) or a constant (representing an instantiated atom).

% The arguments are terms including indexed variables and vectors .
%
% Indexed Atoms (IAtom) are compound atoms of the form p k (tl,t2, ... ,tn)
% where pis called the narne (predicate variable) of the atom, k the index
% and tl,t2, . . . ,tn the arguments of the atom. The narne and the index are
% variables. The arguments are terms including indexed variables and vectors.
% Exarnple: Compose k (HY(l . . h'],TY(l .. t],Y)
%
%
%
%
%
%

Conjunctions (Conj) are formulas composed of 4 parts . the first part i s
called the list of atorns, the second part the index variable, the third
the lower bound and the fourth the upper bound . The list of atorns can
either be atoms, indexed atoms, their negation or conjunctions. The l ower
and upper bounds are either variables or non-negative integer constants.

% Exarnple: AND (l=<j=<t] R(TXj,TYj) & V(Z,W) where j is the index variable ,
% 1 the lower bound of the conjunction, t the upper bound of the conjunction
% and R(TXj,TYj) , V(Z,W) the list of atoms .
%
% Disjunctions (Disj) are formulas composed of 4 parts. The first partis
% called the list of atoms, the second part the index variable, the third
% the lower bound and the fourth the upper bound. The list of atoms can
% either be atoms, indexed atorns, their negation or conjunctions. The l ower
% and upper bounds are either variables or non-negative integer constants .
% Exarnple: OR (l=<j=<t] S(Tj) where j is the index variable,
% 1 the lower bound of the disjunction, t the upper bound of the disjunc ti on
% and S(Tj) the list of atoms .
%
% Abstractions (Abstr) are formulas composed of 2 parts. The first partis
% called the argument of the abstraction and the second is called
% the body of the abstraction. The argument is a variable and the body can
% either be a formula in disjunctive normal form or an abstraction.
% Th i s object is used to instantiate the placeholders of a schema .

2

IMPORT ProgramsIO, Nurnbers

PREDICATE FetchMyMod

Program.

PREDICATE CreateIVar

Program

* Term
* Term
* Term .

% The program containing the flat representation of the
% functions used by the abstract data types .

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of a variable.
% The representation of a variable.
% The representation of an indexed variable where the
% root is the second argument and the index is the third
% argument.

DELAY CreateIVar(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE IsIVar :

Program

* Term .

% The program containing t he flat representation of the
% functions used by this abstract data type.
% The representation of an indexed variable .

DELAY IsIVar(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE VariableOfIVar :

Term
* Term.

% The representation of an indexed variable.
% The root of this indexed variable.

DELAY VariableOfIVar(x,_) UNTIL GROUND(x).

PREDICATE IndexOfIVar :

Term
* Term.

% The representation of an indexed variable .
% The index of this indexed variable.

DELAY IndexOfIVar(x,_) UNTIL GROUND(x).

PREDICATE ReindexIVar :

Term
* Term
* Integer
* Term .

% The representation of an indexed variable Xj .
% The representation of a variable.
% A non negative integer .
% The representation of this indexed variable (if
% its index j is not equal to the second argument)
% or the representation of the root X where its mark
% has been modified by the third argument (if the
% index j of the indexed variable is equal to the
% second argument) . The modification of the mark is
% as follows : if the mark is equal to O then it is
% replaced by the third argument. If the mark is
% greater than O then the new mark is : third argument,
% actual mark .

DELAY ReindexIVar(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) .

PREDICATE IVarToString :

3

Term % The representation of an indexed variable.
* String . % The string representing this indexed variable .

DELAY IVarToString(x,_) UNTIL GROUND(x) .

PREDICATE CreateVector

Program %
%

* Term %
%

* Term %
%

* Term %
%

* Term. %
%
%

The program containing the flat representation of the
functions used by this abstract data type .
The representation of a variable, an indexed variable
or a vector.
The representation of a variable or a non-negative
integer constant.
The representation of a variable or a non-negative
integer constant .
The representation of a vector where the root is the
second argument, the lower bound is the third argument
and the upper bound is the fourth argument.

DELAY CreateVector(x,y,z,w,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)

PREDICATE IsVector

Program

* Term.

& GROUND(w) .

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of a vector.

DELAY IsVector(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE TermOfVector

Term
* Term .

% The representation of a vector.
% The root of this vector.

DELAY TermOfVector(x,_) UNTIL GROUND(x).

PREDICATE LowerBoundOfVector :

Term
* Term .

% The representation of a vector.
% The lower bound of this vector.

DELAY LowerBoundOfVector(x,_) UNTIL GROUND(x).

PREDICATE UpperBoundOfVector :

Term
* Term .

% The representation of a vector.
% The upper bound of this vector.

DELAY UpperBoundOfVector(x,_) UNTIL GROUND(x).

PREDICATE Vectorinstantiated:

Program

* Term .

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of a vector where its lower and
% upper bounds are both instantiated (lower and upper
% bounds are non-negative integer constants) . If the
% root is a vector then this vector must also be

4

% instantiated (and so on recursively).

DELAY Vectorinstantiated(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE ExpandVector

Program

* Term
* List(Term).

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of an instantiated vector
% The list [ROOT i] where root is the root of the vecto r
% with lb=<i=<ub where lb and ub are respectively the
% lower and upper bounds of this vector. If lb> ub,
% the list is empty.

DELAY ExpandVector(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE VectorToString :

Program

* Term
* String.

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of a vector.
% The s tring representing this vector.

DELAY VectorToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CreateAtom

Program

* Term
* List(Term)
* Formula .

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of a variable or a constant.
% A list of representations o f terms .
% The representation of an atom where the name of this
% atom is the second argument and the arguments of this
% atom the third argument.

DELAY CreateAtom(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) .

PREDICATE IsAtom:

Program

* Formula.

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of an atom .

DELAY IsAtom(x,y) UNTIL GROUND(X) & GROUND(y).

PREDICATE IsinstAtom

Program

* Formula.

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of an instantiated atom (the name
% of this atomisa constant and the arguments of this
% atom neither contain vectors of variables nor indexed
% variables) .

DELAY IsinstAtom(x,y) UNTIL GROUND(x) & GROUND(y) .

PREDICATE NameOfAtom

Formula
* Term.

% The representation of an atom.
% The name of this atom.

5

DELAY NameOfAtom(x,_) UNTIL GROUND(x).

PREDICATE ArgOfAtom

Formula
* List(Term).

% The representation of an atom.
% The arguments of this atom.

DELAY ArgOfAtom(x,_) UNTIL GROUND(x).

PREDICATE ReindexAtom:

Program

* Formula
* Term
* Integer
* Formula.

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of an atom.
% The representation of a variable.
% A non negative-integer.
% The representation of this atom where the indexed
% variables belonging to the arguments of the atom and
% having the same index as the third argument
% have been reindexed with the fourth argument.

DELAY ReindexAtom(x,y,z,w,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w) .

PREDICATE ExpandAtom

Program

* Formula
* Formula .

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of an atom.
% The representation of this atom where the instantiated
% vectors belonging to the arguments of the atom have
% been expanded.

DELAY ExpandAtom(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE AtomToString

Program

* Formula
* String.

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of an atom.
% The string representing this atom.

DELAY AtomToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE InstAtomToString

Program

* Formula
* String.

% The program contain ing the flat representation of the
% functions used by this abstract data type .
% The representation of an instantiated atom .
% The string representing this instantiated atom.

DELAY InstAtomToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CreateIAtom:

Program

* Term
* Term

% The program containing the flat representation of the
% functions used by this abstract data type .
% The representation of a variable .
% The representation of a variable .

6

* List(Term)
* Formula .

% A list of representations of terms .
% The representation of an indexed atom where the name
% of this indexed atom is the second argument, the index
% is the third and the arguments of this indexed atom
% the fourth argument.

DELAY CreateIAtom(x,y,z,w,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w) .

PREDICATE IsIAtom

Program

* Formula.

% The program containing the flat representati on of the
% functions used by this abstract data type .
% The representation of an indexed atom .

DELAY IsIAtom(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE NameOfIAtom:

Formula
* Term.

% The representation of an indexed atom.
% The name of this indexed atom.

DELAY NameOfIAtom(x,_) UNTIL GROUND(x).

PREDICATE IndexOfIAtom

Formula
* Term .

% The representation of an indexed atom.
% The index of this indexed atom.

DELAY IndexOfIAtom(x,_) UNTIL GROUND(x) .

PREDICATE ArgOfIAtom

Formula
* List(Term) .

% The representation of an indexed atom.
% The arguments of th i s indexed atom.

DELAY ArgOfIAtom(x,_) UNTIL GROUND(x).

PREDICATE ReindexIAtom

Program %
%

* Formula %
* Term %
* Integer %
* Formula. %

%
%
%
%
%
%
%
%
%
%
%
%

The program containing the flat representation of the
functions used by this abstract data type.
The representation of an indexed atom p k (tl, ... ,tn)
The representation of a variable.
A non negative integer.
The representation of an atom p' (ul, ... ,un) where
the name p' of this atom is equal to the name p of
the indexed atom with its mark modified by the fourth
argument and where the arguments ul, ... ,un of this
atom are equal to the arguments tl, . . . ,tn of the
indexed atom reindexed by the third and f ourth
argument (if the index k is equal to the third
argument).
Or the representation of an indexed atom
p k (ul, ... ,un) where its arguments ul, . . . un are equal
to the arguments tl, ... ,tn reindexed by the third and
fourth argument (if the index k is not equal to the
third argument) .

DELAY ReindexIAtom(x,y,z,w,_) UNTIL GROUND (x) & GROUND(y) & GROUND(z)

7

& GROUND(w).

PREDICATE ExpandIAtom:

Prograrn

* Formula
* Formula.

% The prograrn containing the flat representation of the
% functions used by this abstract data type .
% The representation of an indexed atom.
% The representation of this indexed atom where the
% instantiated vectors belonging to the arguments of
% the indexed atom have been expanded.

DELAY ExpandIAtom(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE IAtomToString :

Prograrn

* Formula
* String.

% The prograrn containing the flat representation of the
% functions used by this abstract data type .
% The representation of an indexed atom.
% The string representing this indexed atom.

DELAY IAtomToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CreateConj

Prograrn

* List(Fo rmula)

* Term
* Term

* Term

* Fo rmula.

% The prograrn containing the flat representation of the
% functions used by this abstract data type .
% A list containing the representation of atoms, indexed
% atoms, their negat i on and conjunctions .
% The representation of a variable .
% The representation of a variable or a non-negative
% integer constant.
% The representation of a variable or a non-negative
% integer constant.
% The representation of a conjunction where the list o f
% atoms is the second argument, the index the third
% argument, the lower bound the fourth argument and the
% upper bound the fifth argument.

DELAY CreateConj(x,y,z,w,u,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w) & GROUND(u).

PREDICATE IsConj

Prograrn

* Formula.

% The prograrn containing the flat representat ion of the
% functions used by this abstract data type.
% The representation of a conjunction.

DELAY IsConj (x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE ListAtomsOfConj :

Prograrn

* Formula
* List(Formula) .

% The prograrn containing the flat representation o f the
% functions used by this abstract data type.
% The representation of a conjunction .
% The list of atoms of this conjunction.

DELAY ListAtomsOfConj (x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE IndexOfConj :

8

Formula
* Term.

% The representation of a conjunction.
% The index of this conjunction.

DELAY IndexOfConj (x,_) UNTIL GROUND(x).

PREDICATE LowerBoundOfConj

Formula
* Term.

% The representation of a conjunction.
% The lower bound of this conjunction.

DELAY LowerBoundOfConj(x,_) UNTIL GROUND(x).

PREDICATE UpperBoundOfConj

Formula
* Term.

% The representation of a conjunction.
% The upper bound of this conjunction .

DELAY UpperBoundOfConj(x, _) UNTIL GROUND(x) .

PREDICATE Conjinstantiated

Formula. % The representation of a conjunction where its lower
% and upper bounds are both instantiated (lower and
% upper bounds are integer constants).

DELAY Conjinstantiated(x) UNTIL . GROUND(x) .

PREDICATE ReindexConj :

Program

* Formula
* Term
* Integer
* Formula.

% The program containing the flat representation of the
% functions used by this abstract data type.
% The representation of a conjunction.
% The representation of a variable .
% A non negative integer .
% The representation of this conjunction where the atoms
% and indexed atoms belonging to the list of atoms of the
% conjunction have been reindexed with the third and
% fourth arguments . The third argument must be different
% of the index of the conjunction .

DELAY ReindexConj(x,y,z,w,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w) .

PREDICATE ExpandConj

Program % The program containing the flat representation o f
% the functions used by this abstract data type .

* Formula % The representation of an instantiated conjunction.
% /\[lb=<j=<ub] atoml, atom2, ... , atomp

* List(List(Formula)). % The list [list-of-atoms k] where list-of-atoms k is
% the list of atoms of the conjunction where all the
% atoms have been expanded and reindexed with the
% index of the conjunction and k = lb . . ub .
% The implicit connect i ve of these lists is the
% AND-connective.

DELAY ExpandConj(x ,y, _) UNTIL GROUND(x) & GROUND(y) .

PREDICATE ConjToString :

9

Program

* Formula
* String.

% The program containing the flat representation of
% the functions used by this abstract data type.
% The representation of a conjunction .
% The string representing this conjunction .

DELAY ConjToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CreateDisj :

Program %
%

* List(Fo rmula) %
%

* Term %
* Term %

%
* Term %

%
* Formula . %

%
%
%

The program containing the flat representation o f
functions used by this abstract data type.
A list containing the representation o f atoms ,
indexed atoms, their negation and conjuncti ons .
The representation of a variable .
The representation of a variable or a non-negative
integer constant.
The representation of a variable or a non - negative
integer constant .
The representation of a disjuncti on wher e the l i s t
of atoms is the second argument, the i ndex i s t he
third argument, the lower bound the f ourth and the
upper bound the fifth argument .

DELAY CreateDisj(x,y,z,w,u,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w) & GROUND(u) .

PREDICATE IsDi sj

Program

* Fo rmula .

% The program containing the flat representation o f
% the functions used by this abstract data type.
% The representation of a disjunction.

DELAY IsDisj (x,y) UNTIL GROUND(x) & GROUND(y) .

PREDICATE ListAtomsOfDisj

Program

* Fo rmula
* List(Formula) .

% The program containing the flat representation o f
% the functions used by this abstract data type.
% The representation of a disjunction.
% The list of atoms of this disjunction .

DELAY ListAtomsOfDisj (x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE IndexOfDisj :

Fo rmula
* Term.

% The representation of a disjunction .
% The index of this disjunction .

DELAY IndexOfDisj (x,_) UNTIL GROUND(x) .

PREDICATE LowerBoundOfDisj :

Formula
* Term.

% The representation of a disjunction.
% The lower bound of this disjunction.

DELAY LowerBoundOfDisj (X,_) UNTIL GROUND(x) .

PREDICATE UpperBoundOfDisj :

Formula % The representation of a disjunction .

10

* Term . % The upper bound of this disjunction .

DELAY UpperBoundOfDisj(x,_) UNTIL GROUND(x) .

PREDICATE Disjinstantiated:

Formula . % The representation of a disjunction where the lower
% and upper bounds have been instantiated.

DELAY Disjinstantiated(x) UNTIL GROUND(x) .

PREDICATE ExpandDisj :

Program

* Formula
* List(List(Formula)).

% The program containing the flat representation of
% the functions used by this abstract data type.
% The representation of an instantiated disjunction .
% The list [list-of -atoms k] where list-of-atoms k is
% the list of atoms of the disjunction where all the
% atoms have been expanded and reindexed with the
% index of the disjunction and k = lb .. ub .
% The implicit connective of these lists is the
% OR-connective.

DELAY ExpandDisj(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE DisjToString

Program

* Formula
* String.

% The program containing the flat representation o f
% the functions used by this abstract data type.
% The representation of a disjunction.
% The string representing this disjunction.

DELAY DisjToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CreateAbstraction :

Program

* Term
* Formula

* Formula.

% The program containing the flat representation of
% functions used by this abstract data type .
% The representation of a variable.
% The representation of a formula in disjunctive
% normal form or the representation of an abstraction.
% The representation of an abstraction where the
% argument of this abstraction is the second argument
% and the body of this abstraction the third argument .

DELAY CreateAbstraction(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE IsAbstraction :

Program

* Formula .

% The program containing the flat representation o f
% the functions used by this abstract data type .
% The representation of an abstraction .

DELAY IsAbstraction(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE VariableOfAbstraction :

Formula
* Term .

% The representation of an abstraction.
% The argument of this abstraction .

11

DELAY VariableOfAbstraction(x,_) UNTIL GROUND(x) .

PREDICATE Fo rmulaOfAbstraction :

Program % The program containing the flat representation o f
% the functions used by this abstract data type.

* Fo rmula % The representation o f an abstraction .
* Fo rmula. % The body of this abstraction.

DELAY FormulaOfAbstraction(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE CreateNilConstant :

Program % The program containing the flat repres entation o f
% the name of the constant nil .

* Te rm . % The representation of the constant nil .

DELAY Create NilConstant(x,_) UNTIL GROUND(x) .

PRED ICATE CreateCons :

Program % The program containing the flat representation o f
% the name of the func t ion Cons .

* Term % The representation of a term .
* Term % The representation of a term .
* Ter m. % The representation of the list where the head of

% the list is the second argument and the tail o f t he
% list is the third argument.

DELAY CreateCons(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE CreateTrue :

Program

* Formula .

% The program containing the flat representation o f
% the name of the proposition true.
% The representation of the proposition true .

DELAY CreateTrue(x,_) UNTIL GROUND(x) .

PREDICATE CreateFalse

Program

* Formula .

% The program containing the flat repres entation o f
% the name of the proposition false.
% The representation of the proposition f alse.

DELAY CreateFalse(x,_) UNTIL GROUND(x).

PREDICATE CreateEqualPredicate :

Program % The program containing the flat representation o f
% the name of the predicate equal.

* Term % The representation of a term.
* Term % The representation of a term.
* Formula . % The representation of the predicate equal where

% the arguments of this predicate are the second and
% the third argument.

DELAY CreateEqualPredicate(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) .

PREDICATE ConstantTointeger :

12

Program

* Term
* Integer.

% The program containing the flat representation
% of the name of integers.
% The representation of an integer constant.
% the integer corresponding to this constant.

DELAY ConstantTointeger(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE IntegerToConstant :

Program

* Integer
* Term .

% The program containing the flat representation
% of the name of int egers.
% An integer.
% The representation of the corresponding integer
% constant.

DELAY IntegerToConstant(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ConstantToString :

Program

* Term
* String .

% The program containing the flat representation
% of the name of strings .
% The representation of a string constant .
% The string corresponding to this constant.

DELAY ConstantToString(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE StringToConstant :

Program % The program contai ning the flat representation
% of the name of strings.

* String % A string .
* Term. % The representation of the corresponding string

% constant.

DELAY StringToConstant(x,y,_) UNTIL GROUND(x) & GROUND(y).

13

EXPORT Schemas.

% Module providing the abstract data type Schema (using the Goedel
% ground representation) and predicates for manipulating this type .

% Definitions:
%
%
%
%
%
%
%
%
%
%
%
%

An instantiated schema is a schema where the objects VECTOR, CONJUNCTION
and DISJUNCTION (available in the module Sobjects) have been expanded
and where all the placeholders have been instantiated.

Given a term T, VAR(T) is defined inductivel y as follows:

VAR(T)
VAR(T)
VAR(T)

= {} if Tisa constant;
= {T} if Tisa variable;
= UNION for i=l . . n VAR(Ti) where Tisa compound term

f (Tl, T2, . .. , Tn) .

% Given a substitution S = {Xl/Tl , X2/T2 ,
% RANGE(S) i s the UNION for i=l . . n VAR(Ti)

Xn/Tn}

%
%
%
%

Gi v en a substitution S = {Xl/Tl , X2/T2 ,
sis idempotent

, Xn/Tn} ,

IFF the intersection between {Xl , X2 , . .. , Xn} and RANGE(S) is empty .

IMPORT Sobjects.

BASE Schema,
SchemaSubst .

% Type of a term representing a schema .
% Type of a term representing a schema substitution.

PREDICATE FormulaSchema :

Formula

* Schema .

% The representation of a formula of the form
% HEAD<-> BODY where HEAD is an atom
% and BODY a well-formed formula in disjunctive normal
% form .
% The representation of the schema corresponding t o
% this formula .

PREDICATE FindAtominSchema

Schema
* Term

* List(Formula) .

% The representation of a schema .
% The predicate variable or predicate symbol of an atom.
% It can either be a variable or a constant res pectively .
% The list of the atoms belonging to the schema
% and having their predicate variable or predic ate symbol
% equal to the second argument.

DELAY FindAtominSchema(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE InstantiatedSchema :

Schema . % The representation of an instantiated schema .

DELAY InstantiatedSchema(x) UNTIL GROUND(x) .

14

PREDICATE SchemaToGoedel :

Schema
* List(String)

* List(String)

* String.

% The representation of an instantiated schema.
% The list of the types representing the type
% declaration of the instantiated schema. The order in
% this list of types must be the same as the order o f
% the arguments of the head part of the schema .
% The list of the names of the modules that will have t o
% be in the import part of the goedel representation o f
% the instantiated schema.
% The root name of the files that will contain the goedel
% representation of the instantiated schema. The
% extension of the files will be EXP for the file
% containing the export part and LOC for the file
% containing the local part .

% This predicate has a side-effect which consists in creating the files that
% will contain the goedel representation of the instantiated schema.

DELAY SchemaToGoedel(x,y,z,w) UNTIL GROUND(x) & GROUND(y) & GROUND(z)
& GROUND(w).

PREDICATE SchemaToProlog :

Schema
* String.

% The representation of an instantiated schema.
% The root name of the file that will contain the pro l og
% representation of the instantiated schema . The
% extension of this filename will be PRO.

% This predicate has a side-effect which consists in creating the file that
% will contain the prolog representation of the instantiated schema.

DELAY SchemaToProlog(x,y) UNTIL GROUND(x) & GROUND(y) .

PREDICATE SchemaToString :

Schema % The representation of a schema .
* string. % The string representing this schema (ASCII lower-128) .

DELAY SchemaTo String(x,_) UNTIL GROUND(x).

PREDICATE InstSchemaToString :

Schema
* String .

% The representation of a schema.
% The string representing the schema where only appear
% the placeholders which have been instantiated.

DELAY InstSchemaToString(x,_) UNTIL GROUND(x) .

PREDICATE EmptySchemaSubst :

SchemaSubst. % Representation of the empty schema substitution .

15

PREDICATE ApplySubstToSchema :

Schema
* SchemaSubst
* Schema .

% Representation of a schema.
% Representation of an idempotent schema substitution.
% Representation of the schema obtained by applying
% this substitution to th i s schema.

DELAY ApplySubstToSchema(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ComposeSchemaSubsts :

SchemaSubst

* SchemaSubst
* SchemaSubst.

% Representation of a schema substitution where the
% intersection between {Xl,X2, ... ,Xn} belonging t o the
% first argument and RANGE(secon argument) must be empty.
% Representation of a schema substitution.
% Representation of the substitution obtained by
% composing these two schema substitutions .
% third argument = second argument o first argument.

DELAY ComposeSchemaSubsts(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE BindingSVarToSchemaSubst :

Term
* Term
* SchemaSubst .

% Representation of a schema variable.
% Representation of a non-negative integer constant.
% Representation of the schema substitution containing
% just the binding in which this schema variable is
% bound to this constant .

DELAY BindingSVarToSchemaSubst(x,y,_) UNTIL GROUND (x) & GROUND(y) .

PREDICATE Bindi ngVarToSchemaSubst :

Term
* Term
* SchemaSubst .

% Representation of a variable.
% Representation of a term.
% Representation of the schema substitution containing
% just the binding in which this variable is b ound
% to this term.

DELAY BindingVarToSchemaSubst(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE BindingLTermToSchemaSubst :

Term

* Formula

* SchemaSubst .

% Representation of the predicate variable o f an atom.
% It has to be a variable .
% Representation of a well-formed formula in disjunctive
% normal form or representation of an abstraction
% (this object is available in the module Sobjects) .
% Representation of the schema substitution containing
% just the binding in which this predicate variable is
% bound to the second argument.

DELAY BindingLTermToSchemaSubst(x,y,_) UNTIL GROUND(x) & GROUND(y) .

PREDICATE IdempotentSchemaSubst :

SchemaSubst . % Representation of an idempotent schema substitution .

DELAY IdempotentSchemaSubst(x) UNTIL GROUND(x) .

16

