40 research outputs found

    Biomedical semantics in the Semantic Web

    Get PDF
    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences

    Semantic Web Applications and Tools for the Life Sciences:SWAT4LS 2010

    Get PDF
    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data

    Logic-based assessment of the compatibility of UMLS ontology sources

    Get PDF
    Background: The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. Results: In this paper, we argue that UMLS-Meta’s current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. Conclusions: Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents

    Linking the Resource Description Framework to cheminformatics and proteochemometrics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic web technologies are finding their way into the life sciences. Ontologies and semantic markup have already been used for more than a decade in molecular sciences, but have not found widespread use yet. The semantic web technology Resource Description Framework (RDF) and related methods show to be sufficiently versatile to change that situation.</p> <p>Results</p> <p>The work presented here focuses on linking RDF approaches to existing molecular chemometrics fields, including cheminformatics, QSAR modeling and proteochemometrics. Applications are presented that link RDF technologies to methods from statistics and cheminformatics, including data aggregation, visualization, chemical identification, and property prediction. They demonstrate how this can be done using various existing RDF standards and cheminformatics libraries. For example, we show how IC<sub>50</sub> and K<it><sub>i</sub></it> values are modeled for a number of biological targets using data from the ChEMBL database.</p> <p>Conclusions</p> <p>We have shown that existing RDF standards can suitably be integrated into existing molecular chemometrics methods. Platforms that unite these technologies, like Bioclipse, makes this even simpler and more transparent. Being able to create and share workflows that integrate data aggregation and analysis (visual and statistical) is beneficial to interoperability and reproducibility. The current work shows that RDF approaches are sufficiently powerful to support molecular chemometrics workflows.</p

    Using registries to integrate bioinformatics tools and services into workbench environments

    Get PDF
    The diversity and complexity of bioinformatics resources presents significant challenges to their localisation, deployment and use, creating a need for reliable systems that address these issues. Meanwhile, users demand increasingly usable and integrated ways to access and analyse data, especially within convenient, integrated “workbench” environments. Resource descriptions are the core element of registry and workbench systems, which are used to both help the user find and comprehend available software tools, data resources, and Web Services, and to localise, execute and combine them. The descriptions are, however, hard and expensive to create and maintain, because they are volatile and require an exhaustive knowledge of the described resource, its applicability to biological research, and the data model and syntax used to describe it. We present here the Workbench Integration Enabler, a software component that will ease the integration of bioinformatics resources in a workbench environment, using their description provided by the existing ELIXIR Tools and Data Services Registry

    Structuring and extracting knowledge for the support of hypothesis generation in molecular biology

    Get PDF
    Background: Hypothesis generation in molecular and cellular biology is an empirical process in which knowledge derived from prior experiments is distilled into a comprehensible model. The requirement of automated support is exemplified by the difficulty of considering all relevant facts that are contained in the millions of documents available from PubMed. Semantic Web provides tools for sharing prior knowledge, while information retrieval and information extraction techniques enable its extraction from literature. Their combination makes prior knowledge available for computational analysis and inference. While some tools provide complete solutions that limit the control over the modeling and extraction processes, we seek a methodology that supports control by the experimenter over these critical processes. Results: We describe progress towards automated support for the generation of biomolecular hypotheses. Semantic Web technologies are used to structure and store knowledge, while a workflow extracts knowledge from text. We designed minimal proto-ontologies in OWL for capturing different aspects of a text mining experiment: the biological hypothesis, text and documents, text mining, and workflow provenance. The models fit a methodology that allows focus on the requirements of a single experiment while supporting reuse and posterior analysis of extracted knowledge from multiple experiments. Our workflow is composed of services from the 'Adaptive Information Disclosure Application' (AIDA) toolkit as well as a few others. The output is a semantic model with putative biological relations, with each relation linked to the corresponding evidence. Conclusion: We demonstrated a 'do-it-yourself' approach for structuring and extracting knowledge in the context of experimental research on biomolecular mechanisms. The methodology can be used to bootstrap the construction of semantically rich biological models using the results of knowledge extraction processes. Models specific to particular experiments can be constructed that, in turn, link with other semantic models, creating a web of knowledge that spans experiments. Mapping mechanisms can link to other knowledge resources such as OBO ontologies or SKOS vocabularies. AIDA Web Services can be used to design personalized knowledge extraction procedures. In our example experiment, we found three proteins (NF-Kappa B, p21, and Bax) potentially playing a role in the interplay between nutrients and epigenetic gene regulation

    Imaging ontology, contributing to "reasonable" semantics for biomedical repositories

    Get PDF
    Ontologies are required for precise description of image resources in repositories. The Imaging Ontology describes image acquisition instruments as used in the life sciences and complements ontologies that are used for describing the content. We show how we can reason over optical resolution to assist in experiment planning or knowledge discovery. Use of adjacent classes helps the overall structure of the ontology and its extendibility.Computer Systems, Imagery and Medi

    SIFR BioPortal : Un portail ouvert et générique d’ontologies et de terminologies biomédicales françaises au service de l’annotation sémantique

    Get PDF
    National audienceContexte – Le volume de données en biomédecine ne cesse de croître. En dépit d'une large adoption de l'anglais, une quantité significative de ces données est en français. Dans le do-maine de l’intégration de données, les terminologies et les ontologies jouent un rôle central pour structurer les données biomédicales et les rendre interopérables. Cependant, outre l'existence de nombreuses ressources en anglais, il y a beaucoup moins d'ontologies en français et il manque crucialement d'outils et de services pour les exploiter. Cette lacune contraste avec le montant considérable de données biomédicales produites en français, par-ticulièrement dans le monde clinique (e.g., dossiers médicaux électroniques). Methode & Résultats – Dans cet article, nous présentons certains résultats du projet In-dexation sémantique de ressources biomédicales francophones (SIFR), en particulier le SIFR BioPortal, une plateforme ouverte et générique pour l’hébergement d’ontologies et de terminologies biomédicales françaises, basée sur la technologie du National Center for Biomedical Ontology. Le portail facilite l’usage et la diffusion des ontologies du domaine en offrant un ensemble de services (recherche, alignements, métadonnées, versionnement, vi-sualisation, recommandation) y inclus pour l’annotation sémantique. En effet, le SIFR An-notator est un outil d’annotation basé sur les ontologies pour traiter des données textuelles en français. Une évaluation préliminaire, montre que le service web obtient des résultats équivalents à ceux reportés précedement, tout en étant public, fonctionnel et tourné vers les standards du web sémantique. Nous présentons également de nouvelles fonctionnalités pour les services à base d’ontologies pour l’anglais et le français
    corecore