108 research outputs found

    The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Get PDF
    Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR). According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO), which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    A review of infrared thermography applications for ice detection and mitigation

    Get PDF
    Ice accretion on various onshore and offshore infrastructures imparts hazardous effects sometimes beyond repair, which may be life-threatening. Therefore, it has become necessary to look for ways to detect and mitigate ice. Some ice mitigation techniques have been tested or in use in aviation and railway sectors, however, their applicability to other sectors/systems is still in the research phase. To make such systems autonomous, ice protection systems need to be accompanied by reliable ice detection systems, which include electronic, mechatronics, mechanical, and optical techniques. Comparing the benefits and limitations of all available methodologies, Infrared Thermography (IRT) appears to be one of the useful, non-destructive, and emerging techniques as it offers wide area monitoring instead of just point-based ice monitoring. This paper reviews the applications of IRT in the field of icing on various subject areas to provide valuable insights into the existing development of an intelligent and autonomous ice mitigation system for general applications

    Improved wind turbine monitoring using operational data

    Get PDF
    With wind energy becoming a major source of energy, there is a pressing need to reduce all associated costs to be competitive in a market that might be fully subsidy-free in the near future. Before thousands of wind turbines were installed all over the world, research in e.g. understanding aerodynamics, developing new materials, designing better gearboxes, improving power electronics etc., helped to cut down wind turbine manufacturing costs. It might be assumed, that this would be sufficient to reduce the costs of wind energy as the resource, the wind itself, is free of costs. However, it has become clear that the operation and maintenance of wind turbines contributes significantly to the overall cost of energy. Harsh environmental conditions and the frequently remote locations of the turbines makes maintenance of wind turbines challenging. Just recently, the industry realised that a move from reactive and scheduled maintenance towards preventative or condition-based maintenance will be crucial to further reduce costs. Knowing the condition of the wind turbine is key for any optimisation of operation and maintenance. There are various possibilities to install advanced sensors and monitoring systems developed in recent years. However, these will inevitably incur new costs that need to be worthwhile and retro-fits to existing turbines might not always be feasible. In contrast, this work focuses on ways to use operational data as recorded by the turbine's Supervisory Control And Data Acquisition (SCADA) system, which is installed in all modern wind turbines for operating purposes -- without additional costs. SCADA data usually contain information about the environmental conditions (e.g. wind speed, ambient temperature), the operation of the turbine (power production, rotational speed, pitch angle) and potentially the system's health status (temperatures, vibration). These measurements are commonly recorded in ten-minutely averages and might be seen as indirect and top-level information about the turbine's condition. Firstly, this thesis discusses the use of operational data to monitor the power performance to assess the overall efficiency of wind turbines and to analyse and optimise maintenance. In a sensitivity study, the financial consequences of imperfect maintenance are evaluated based on case study data and compared with environmental effects such as blade icing. It is shown how decision-making of wind farm operators could be supported with detailed `what-if' scenario analyses. Secondly, model-based monitoring of SCADA temperatures is investigated. This approach tries to identify hidden changes in the load-dependent fluctuations of drivetrain temperatures that can potentially reveal increased degradation and possible imminent failure. A detailed comparison of machine learning regression techniques and model configurations is conducted based on data from four wind farms with varying properties. The results indicate that the detailed setup of the model is very important while the selection of the modelling technique might be less relevant than expected. Ways to establish reliable failure detection are discussed and a condition index is developed based on an ensemble of different models and anomaly measures. However, the findings also highlight that better documentation of maintenance is required to further improve data-driven condition monitoring approaches. In the next part, the capabilities of operational data are explored in a study with data from both the SCADA system and a Condition Monitoring System (CMS) based on drivetrain vibrations. Analyses of signal similarity and data clusters reveal signal relationships and potential for synergistic effects of the different data sources. An application of machine learning techniques demonstrates that the alarms of the commercial CMS can be predicted in certain cases with SCADA data alone. Finally, the benefits of having wind turbines in farms are investigated in the context of condition monitoring. Several approaches are developed to improve failure detection based on operational statistics, CMS vibrations or SCADA temperatures. It is demonstrated that utilising comparisons with neighbouring turbines might be beneficial to get earlier and more reliable warnings of imminent failures. This work has been part of the Advanced Wind Energy Systems Operation and Maintenance Expertise (AWESOME) project, a European consortium with companies, universities and research centres in the wind energy sector from Spain, Italy, Germany, Denmark, Norway and UK. Parts of this work were developed in collaboration with other fellows in the project (as marked and explained in footnotes)

    A survey of sag monitoring methods for power grid transmission lines

    Get PDF
    The transmission line is a fundamental asset in the power grid. The sag condition of the transmission line between two support towers requires accurate real-time monitoring in order to avoid any health and safety hazards or power failure. In this paper, state-of-the-art methods on transmission line sag monitoring are thoroughly reviewed and compared. Both the direct methods that use the direct video or image of the transmission line and the indirect methods that use the relationships between sag and line parameters are investigated. Sag prediction methods and relevant industry standards are also examined. Based on these investigation and examination, future research challenges are outlined and useful recommendations on the choices of sag monitoring methods in different applications are made

    Applications of Power Electronics:Volume 1

    Get PDF

    Automatic vision based fault detection on electricity transmission components using very highresolution

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesElectricity is indispensable to modern-day governments and citizenry’s day-to-day operations. Fault identification is one of the most significant bottlenecks faced by Electricity transmission and distribution utilities in developing countries to deliver credible services to customers and ensure proper asset audit and management for network optimization and load forecasting. This is due to data scarcity, asset inaccessibility and insecurity, ground-surveys complexity, untimeliness, and general human cost. In this context, we exploit the use of oblique drone imagery with a high spatial resolution to monitor four major Electric power transmission network (EPTN) components condition through a fine-tuned deep learning approach, i.e., Convolutional Neural Networks (CNNs). This study explored the capability of the Single Shot Multibox Detector (SSD), a onestage object detection model on the electric transmission power line imagery to localize, classify and inspect faults present. The components fault considered include the broken insulator plate, missing insulator plate, missing knob, and rusty clamp. The adopted network used a CNN based on a multiscale layer feature pyramid network (FPN) using aerial image patches and ground truth to localise and detect faults via a one-phase procedure. The SSD Rest50 architecture variation performed the best with a mean Average Precision of 89.61%. All the developed SSD based models achieve a high precision rate and low recall rate in detecting the faulty components, thus achieving acceptable balance levels F1-score and representation. Finally, comparable to other works of literature within this same domain, deep-learning will boost timeliness of EPTN inspection and their component fault mapping in the long - run if these deep learning architectures are widely understood, adequate training samples exist to represent multiple fault characteristics; and the effects of augmenting available datasets, balancing intra-class heterogeneity, and small-scale datasets are clearly understood
    • …
    corecore