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Abstract:
Visual inspection of electricity transmission and distribution networks relies on flying a helicopter around
energized high voltage towers for image collection. The sensed data is taken offline and screened by
skilled personnel for faults. This poses high risk to the pilot and crew and is highly expensive and
inefficient. This paper reviews work targeted at detecting components of electricity transmission and
distribution lines with attention to unmanned aerial vehicle (UAV) platforms. The potential of deep
learning as the backbone of image data analysis was explored. For this, we used a new dataset of high
resolution aerial images of medium-to-low voltage electricity towers. We demonstrated that reliable

classification of towers is feasible using deep learning methods with very good results.

1 INTRODUCTION

Aerial surveillance of electricity network compo-
nents is currently an active area of research. We
review recent work on vision-based inspection of
electricity network components from aerial images.
We then demonstrate a novel application of deep
learning for tower image classification. Specifi-
cally, we classify towers as being either suspen-
sion (S-type) or tension (T-type) towers. This clas-
sification, in terms of tower configuration, will be
useful as a step in the inspection of other tower
parameters, e.g., components around the cross-arm
(insulators, clamps, shackles, etc.). Tower classifi-
cation is achieved by first classifying each of the
multiple images of a tower and then using voting
to determine the tower class. Since many images
do not contain the relevant part of the tower, we
introduce a third unknown (U) image class, and
train 3-class image classifiers. Identification of U
images, which tend to be of the body and leg re-
gions of a tower, is a useful step in the inspection of
concrete muffs, warning signs, vegetation cover and
anti-climbing devices, which are localized around
these regions.

2 MOTIVATION

Globally, societies depend on continuity of service
from critical systems such as electrical networks.
Electrical networks support other critical services
like transportation, telecommunications, food, wa-
ter and healthcare. Electricity is generated and
transmitted over a system of transmission and dis-
tribution network infrastructure. The networks are
made up of high rising metal towers or pylons and
span hundreds of thousands of kilometres (Ander-
sson et al., 2005; Jones, 2005) along rivers, lakes,
hills and lowlands and sometimes across dense
vegetation (Liu et al., 2015). To ensure effective
management , a set of standards is put in place
and regulated. One such regulator is the Office
of Gas and Electricity Markets (Ofgem) in the UK.
The major role of this body is to ensure the enforce-
ment of a uniform level of performance from all the
distribution network operators (DNOs) within the
industry (McGonigle, 2017).

To operate within these standards, DNOs make
huge investment in asset acquisition and manage-
ment. The United States alone requires about $2
trillion investment for upgrades by 2030 (Bronski
et al., 2015). There was over £16 billion of invest-
ment on electricity networks from 2010 and £34
billion needed up to 2020 (DECC, 2015). This
trend is likely to continue in the coming decade



as most of the transmission and distribution net-
work infrastructure has served the better part of
its lifespan. Disruptions reported in Europe, Asia
and America within the last fifteen years (Bakshi,
A., Velayutham, A., Srivastava, 2012; Schmidthaler
& Reichl, 2016) point to the fact that electricity
assets are aging and in need of constant monitor-
ing. Making this situation worse is the increasing
demand for energy. To mitigate the huge loss in
finances and patronage associated with such fail-
ures, evolving new and effective management tools
has become inevitable.

The current state-of-the-art for inspection of
electricity transmission and distribution assets re-
lies on visual aerial images. These are usually col-
lected from helicopters (Matikainen et al., 2016).
Other sensing alternatives like light detection and
ranging (LiDAR) are in use. The deployment on
helicopters has safety shortcomings and high op-
erational costs. The current advancement in UAV
technology for remote sensing offers advantages
and has increasingly gained popularity in aerial
photography and surveillance. The benefits of
UAVs include their flexibility (Herwitz et al., 2004)
and low cost of operation (Cai & Walker, 2010).

Given the large numbers of components and in-
spection parameters, a robust data management
architecture is needed. Solutions should com-
bine historical data, current conditions and en-
ergy demand to advise on a preferred course of
action. There is an ongoing discussion towards
Big Data architecture for smart grid (IEEE-Smart-
Grid, 2017) and the role of machine learning and
artificial intelligence is prominent.

3 LITERATURE REVIEW

Electricity assets are the valuable components
(tangible and intangible) of the network, which are
integral to the profitable delivery of the services
that businesses depend upon (Clarke, 2011). These
include transformers, high voltage towers, con-
ductors, insulators, suspension clamps, connecting
links, etc. For an asset to remain relevant, its
health state should be inspected for signs of fail-
ure or degradation, so as to maximize availability,
performance and reliability. Eyre-Walker et al.
(2015) presented application of advanced condi-
tion assessment and asset management techniques
for overhead electricity network asset monitoring
to involve data acquisition and analysis.

Regular and effective inspection and manage-
ment requires high financial commitment from own-
ers and operators in the industry. This has trig-

gered increased collaboration with researchers to
find improved and cost-effective ways of conduct-
ing power-line inspection (Martinez et al,, 2014). A
major direction is improvement of alternative sens-
ing platforms and the drive to automate the process
(Matikainen et al., 2016).

Various events along power distribution lines
may lead to power outages. The most common
causes of outages are: (1) failure of power-line
components (Larsson & Ek, 2004) and (2) interfer-
ence with surrounding vegetation (Andersson et al.,
2005). Causes of the 2003 major grid blackouts
in North America and Europe included inadequate
vegetation management (i.e. tree trimming). The
use of line men for checking the encroachment of
trees along power distribution lines is still prac-
ticed today. This is not only costly but inefficient.
Remote alternatives have been introduced (Ahmad
et al,, 2015; Zhang et al.,, 017b).

The inspection of specific components accounts
for the largest propotion of inspection tasks. These
include conductors (Zhang et al,, 017a; Chen et al,,
2016; Sharma et al,, 2014; Li et al,, 2010), towers
(Martinez et al., 2014) and insulators (Oberweger
et al,, 2014; Li et al., 2012; Salustiano et al., 2014).

3.1 UAV Navigation

Safe flight of a UAV along a power-line corridor
is key to successful inspection. Although a pilot is
dedicated to this task, there have been crashes due
to system, human or environmental factors. System
and human errors can be controlled but environ-
mental impacts could come from several sources,
e.g. gust wind. To solve the problem posed by gust
wind, Liu et al. (2015) proposed the creation of a
no-fly-zone along the distribution network corridor
using GPS coordinates of the towers.

Sa et al. (2015) demonstrated the use of verti-
cal take-off and landing of UAVs for the inspection
of pole-like structures. They combined monocular,
inertia and sonar data for navigation information
and Extended Kalman Filters to maintain a safe
distance from the pole even in the presence of en-
vironmental disturbances. Essentially, this is a de-
tect and follow algorithm.

Golightly & Jones (2005) combined Hough
transform and Kalman filters to quide a rotor-
craft along detected powerlines. A follow-up study
(Jones et al., 2006) extended this using an air vehi-
cle simulator (AVS) to demonstrate that visual data
can be used to determine, and hence requlate ve-
hicle position relative to the overhead lines. Cerdn
et al. (2018) developed a system that detects and



follows powerlines from images.
3.2 Obstacle Detection and Avoidance

The detection of obstacles such as vegetation and
buildings along powerlines has been investigated
(Zhang et al., 2012, 017a,b). Low altitude pho-
togrammetry has been explored in these studies to
extract 3D point clouds of the power-line corridor.
The distance between the powerlines and the 3D
point cloud is taken as a criterion for automati-
cally locating obstacles. Zhang et al. (2012) used
monocular measurement and inertia to estimate the
position of landmarks as well as the position and
orientation of the UAVs.

3.3 Detection of Towers

Detection of electricity pylons was studied by
(Dutta et al,, 2015) and (Jiang et al,, 2017). The
main contribution of (Dutta et al, 2015) was to
minimize clutter due to heterogeneous background
using optimized mean shift-based segmentation.
The resulting image was divided into a grid of rect-
angular patches called granules. The best gran-
ules were selected using gradient density and clus-
ter density-based thresholding. The clusters cor-
responding to pylon regions within key granules
were merged through shared boundary criterion.
Finally, pylons were detected using context infor-
mation. Results were encouraging. On the other
hand, Jiang et al. (2017) explored the use of an
unmanned aerial vehicle (UAV) for outdoor data
acquisition. They achieved this using an oblique
photogrammetric system integrated with a low-
cost double-camera imaging system, an on-board
dual-frequency Global Navigation Satellite Sys-
tem (GNSS) receiver and a ground master GNSS
station in fixed position.

The use of UAVs in a cooperative way was pro-
posed by (Pirbodaghi et al., 2015). This system
used two robotic platforms that were heteroge-
neous and cooperative in executing tasks. While a
rob-on-wire inspected the lines by moving on them,
an octocopter served as a wireless relay node es-
tablishing data transfer between rob-on-wire and
the ground station and carried out inspection at
the same time on the towers.

In addition to the detection of towers, there is
a need to identify defects in its components. A
method for estimating corrosion on towers was pre-
sented in (Tsutsumi et al., 2009). It was based on a
support vector machine using the radial basis func-
tion kernel. Some synthetic images using colour

temperature and brightness were added to augment
the training data. This was evaluated using 1,427
images of 8 towers. Detection of other defects on
towers has not been adequately explored.

3.4 Detection of Insulators

Detection of insulators and insulator defects has
been studied (Oberweger et al.,, 2014; Zhai et al,
2017; Liu et al,, 2017). Saliency and adaptive mor-
phology were the bases for insulator fault detec-
tion. Liu et al. (2017) detected insulators and ham-
mers using a multi-layer perceptron. Jabid & Ahsan
(2018) detected insulators using rotation invariant
local directional pattern (RI-LDP) features. These
features were used by an SVM to classify regions
of insulator and predict their faults.

3.5 Detection of Conductors

The detection of conductors has been addressed in
several studies. In (Yang et al., 2012), video frames
were binarised through an adaptive thresholding
approach and a Hough transform was used to de-
tect line candidates. This was followed by a fuzzy
C-means clustering algorithm to discriminate the
conductor lines from other detected line patterns
like roads, river banks and vegetation. Li et al.
(2008) used a pulse coupled neural network filter
to remove background noise from images prior to
Hough transform being employed to detect straight
lines. Thereafter, knowledge-based line clustering
was applied to refine the detection results. Bhu-
jade (2013) and Sharma et al. (2014) suppressed
the natural surroundings (regions of sky and vege-
tation) and used a Hough transform. In (Tian et al,,
2015), conductors were extracted based on direc-
tional constraints using a double-side filter, and an
improved Hough transform with parallel constraint
was used for conductor recognition. Their re-
sults show significant improvement because of the
addition of direction and parallelism constraints.
Similarly, Zhu et al. (2013) presented a double-
side filter-based conductor recognition method for
a UAV vision system. This method was based on
linear object enhancement and parallel lines con-
straints as in (Tian et al,, 2015). A Radon transform
was used to find the parallel lines. Real-time de-
tection of conductors from video was presented in
(Liu & Mejias, 2012). Ippolito et al. (2016) also
showed a real-time method but with 3D scanning
using LiDAR. This utilized a voxel-based method
with a series of classifiers to identify and recon-
struct conductors. A mini UAV mounted with LiDAR



was proposed in (Santos et al., 2017) for sensing
the powerline corridor.

Most studies reviewed in this section focus
on detecting conductors without considering defect
detection or analysis. Zhang, F. et al. (2016) pre-
sented a technique to detect and remove fog from
an image to enhance detection. Zhat et al. (2017)
compared the capability of three edge detection al-
gorithms using images of towers. Xie et al. (2017)
suggested the use of multiple sensors from a large
UAV. Qin et al. (2018) based their approach on
a cable inspection robot to improve the payload
and power capabilities of their inspection platform.
Menendez et al. (2016) presented a simulation of
a UAV-based line tracking system and mounted a
visual sensor on a robotic arm that detected and
tracked lines.

In summary, some components of the power-line
corridor including towers, insulators and conduc-
tors have been studied in the literature. The use of
computer vision techniques is popular and several
machine learning algorithms (e.g. multi-layer per-
ceptron, pulse coupled neural network) have been
used. The potential of deep learning as the back-
bone for analyzing the sensed data has not been
sufficiently covered partly due to lack of suitably
labelled data. Nguyen et al. (2018) and Zhang
et al. (2018) have highlighted the huge potential
of this approach. Recent success of deep learning
for the detection and classification of objects di-
rectly from images presents an exciting opportunity
for real-time inspection of components of electricity
transmission and distribution networks.

4 CLASSIFICATION OF TOWERS
FROM AERIAL IMAGES

4.1 Data Formation

The dataset used for this study was collected using
helicopters mounted with high resolution cameras.
Each image has 5616x3744 pixels. The images are
of towers from low-to-medium voltage lines. Each
line is identified by a unique line number (e.g. A54,
A74). Along each line are multiple towers (e.g.
A54(002), A54(003), etc).

Images are taken of each tower from differ-
ent views (e.g. right and left circuit) across the
crossarm, body and foot regions. All the images
of a tower are grouped into a tower 'bag’ with a
unique identifier (tower number). Each tower bag
has been inspected and labelled by an expert. It
is important to emphasize that although multiple

images of each tower were acquired, a single la-
bel has been assigned to the entire bag. Some
suspension (S-type) towers are shown in Figure
1 (row 1), i.e., different tower structures with sus-
pended cables. Row 2 of Figure 1 shows some T-
type (tension) towers. These towers also have dif-
ferent structures with cables pulling on the struc-
ture. With respect to how the data is formed, most
image-based classification and detection problems
(datasets) have one label per image. Here, tower
images were captured to have good representation
of the components and conditions but labelled as
a bag. This bulk labelling presents the following
challenges: (1) In each tower bag there are a mix
of cross-arm images (rows 1 and 2 of Figure 1) and
images of body and leg regions (row 3 of Figure
1); (2) Images of tower body or leg regions (row 3
of Figure 1) have no features identifying them as
S-type or T-type. Therefore, attempting to classify
such images independently as being of S-type or
T-type towers will cause errors.

To address the problem of bulk label assign-
ment, all images of tower body/leg regions were
labelled as U images (unknown). At image level,
there are thus three class labels: S, T, and U.

It is required that images found in the training
set are not present in the testing set. Considering
that in our dataset each tower has several images
(bag of examples), training and testing sets have
been assigned tower-wise.

There are 28231 images for training, 4593 for
validation and 4240 images for testing. The break-
down of towers and images across class labels is
presented in Table 1.

Table 1: Distribution of data for training, validation and
testing sets.

Towers (Number) [ Tmages (Number) |

Training | > type 019) SQ ((132160221))
T-type (270) T(9166)

U (3343)

Validation S-type (79) SU((179(§393;)
T-type (41) T (1469)

U (452)

. S-type (80 S (1829
Testing ype (80) U((551))
T-type (39) T (1219)

U (645)

4.2 Training

We fine-tuned a VGG16 network (Simonyan & Zis-
serman, 2015) using ImageNet weight initializa-



Figure 1: Top: images of S-type towers. Middle: images of T-type towers. Bottom: images from which tower type is

not apparent.

tion. We replace the fully connected layers with
a new fully connected output layer with 3 nodes
(3 classes). We also trained from scratch a ResNet
with 86 layers and based on pre-activation of resid-
ual modules (He et al., 2016).

The images are 5616x3744x3 in size (colour).
They were resized to 244x244x3 to fit our target
input shape. The input images were randomly aug-
mented and fed into the model. To ensure that
the model sees different sets of images each time
they were sampled, we applied width and height
shifts, zooming and flipping. The model was op-
timized using Stochastic Gradient Descent (SGD)
with learning rate of Te-3.

4.3 Evaluation

There are 118 towers comprising of 4240 images in
the test set. The distribution of towers and images
for testing is shown in Table 1. The VGG-based
classifier predicted 97.04%, 97.69% and 96.32% of
S, T and U test images correctly. The ResNet clas-
sified 96.99%, 96.54% and 95.65% of S, T and U test
images correctly.

Figure 2 shows some examples of S, T, and U
images that were correctly classified. Figure 3
shows examples of incorrect classifications. Com-
paring the results, one notices that close-range
images with relatively clean backgrounds are cor-
rectly classified. Some characteristics of the incor-
rectly classified images are (1) long-range images,
(2) heavy background clutter, e.g. houses, trees, (3)
instances of multiple objects e.g., Figure 3, row 1,
image 3, and (4) cases of wrong labels e.g., Figure
3, row 3, images 3, 4 and 5.

4.4 Voting Mechanism for Tower Level
Classification

An aim of this study is to classify towers as sus-
pension (S-type) or tension (T-type). Each tower is
presented as a bag of images. Within each bag are
20-30 instances. We use a majority voting mech-
anism. This samples all the image predictions for
each bag and counts the number of occurrences of
S and T labels. The label with the highest count
is returned as the final prediction for the bag (i.e.
tower level classification). We envisaged a situa-
tion in which there is a tie (equal predictions of
targets). However, there was no tie in our experi-
ments. As shown in Table 2, the VGG-based model
misclassified one S-type tower as T-type. On the
other hand, ResNet predicted all the towers cor-
rectly as shown in Table 3.

Table 2: Fine-tuned VGG model: Confusion matrix with
majority voting for tower level classification

Predictions
S-type | T-type
S-type 79 1
Acual 706 T 0 38

Table 3: ResNet: Confusion matrix with majority voting
for tower level classification

Predictions
S-type | T-type
S-type 80 0
Acual 406 T 0 38




Figure 2: Examples of test images that were correctly classified. Top: S class. Middle: T class. Bottom: U class.

.

(c) U images misclassified as T

Figure 3: Examples of test images incorrectly classified.

5 CONCLUSION

We reviewed methods for electricity network as-
set inspection. This included the use of machine
learning, computer vision and the potential of deep
learning. We presented the classification of elec-
tricity towers based on their configuration. To the
best of our knowledge, there is no previous report
of a deep learning-based classification of tower
images. Our method of electricity tower and im-
age classification is a precursor for the inspection
of other power-line components and condition pa-
rameters: (1) inspection of components around the
cross-arm (insulators, clamps, shackles, conductors,
etc.), (2) inspection of concrete muffs, DODs, tower
name plates, etc.
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