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Abstract

With wind energy becoming a major source of energy, there is a pressing need to

reduce all associated costs to be competitive in a market that might be fully subsidy-

free in the near future. Before thousands of wind turbines were installed all over

the world, research in e.g. understanding aerodynamics, developing new materials,

designing better gearboxes, improving power electronics etc., helped to cut down

wind turbine manufacturing costs. It might be assumed, that this would be sufficient

to reduce the costs of wind energy as the resource, the wind itself, is free of costs.

However, it has become clear that the operation and maintenance of wind turbines

contributes significantly to the overall cost of energy. Harsh environmental conditions

and the frequently remote locations of the turbines makes maintenance of wind

turbines challenging. Just recently, the industry realised that a move from reactive

and scheduled maintenance towards preventative or condition-based maintenance

will be crucial to further reduce costs.

Knowing the condition of the wind turbine is key for any optimisation of operation

and maintenance. There are various possibilities to install advanced sensors and

monitoring systems developed in recent years. However, these will inevitably incur

new costs that need to be worthwhile and retro-fits to existing turbines might not

always be feasible. In contrast, this work focuses on ways to use operational data as

recorded by the turbine’s Supervisory Control And Data Acquisition (SCADA) system,

which is installed in all modern wind turbines for operating purposes – without

additional costs. SCADA data usually contain information about the environmental

conditions (e.g. wind speed, ambient temperature), the operation of the turbine

(power production, rotational speed, pitch angle) and potentially the system’s health

status (temperatures, vibration). These measurements are commonly recorded in

ten-minutely averages and might be seen as indirect and top-level information about

the turbine’s condition.

Firstly, this thesis discusses the use of operational data to monitor the power perform-

ance to assess the overall efficiency of wind turbines and to analyse and optimise

maintenance. In a sensitivity study, the financial consequences of imperfect main-

tenance are evaluated based on case study data and compared with environmental
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effects such as blade icing. It is shown how decision-making of wind farm operators

could be supported with detailed ‘what-if’ scenario analyses.

Secondly, model-based monitoring of SCADA temperatures is investigated. This

approach tries to identify hidden changes in the load-dependent fluctuations of drive-

train temperatures that can potentially reveal increased degradation and possible

imminent failure. A detailed comparison of machine learning regression techniques

and model configurations is conducted based on data from four wind farms with

varying properties. The results indicate that the detailed setup of the model is very

important while the selection of the modelling technique might be less relevant than

expected. Ways to establish reliable failure detection are discussed and a condition

index is developed based on an ensemble of different models and anomaly measures.

However, the findings also highlight that better documentation of maintenance is

required to further improve data-driven condition monitoring approaches.

In the next part, the capabilities of operational data are explored in a study with

data from both the SCADA system and a Condition Monitoring System (CMS) based

on drivetrain vibrations. Analyses of signal similarity and data clusters reveal signal

relationships and potential for synergistic effects of the different data sources. An

application of machine learning techniques demonstrates that the alarms of the

commercial CMS can be predicted in certain cases with SCADA data alone.

Finally, the benefits of having wind turbines in farms are investigated in the context

of condition monitoring. Several approaches are developed to improve failure

detection based on operational statistics, CMS vibrations or SCADA temperatures.

It is demonstrated that utilising comparisons with neighbouring turbines might be

beneficial to get earlier and more reliable warnings of imminent failures.

This work has been part of the Advanced Wind Energy Systems Operation and

Maintenance Expertise (AWESOME) project, a European consortium with companies,

universities and research centres in the wind energy sector from Spain, Italy, Germany,

Denmark, Norway and UK. Parts of this work were developed in collaboration with

other fellows in the project (as marked and explained in footnotes).
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1Background

In this chapter, the background of the thesis is presented in terms of a brief introduc-

tion to the topic, a simplified overview of the wind turbine system, a summary of

wind turbine failure statistics, an overview of general monitoring approaches and a

detailed literature review of wind turbine monitoring with operational data. The

chapter concludes with a definition of the research problem. 1

1.1 Introduction
The global capacity of installed wind power stood at 539 GW at the end of 2017

(GWEC, 2018). The industry has long moved on from small clusters of turbines where

maintenance access was relatively straightforward and the overhead of sending a

maintenance team in at regular intervals was not excessive. In the case of offshore

wind farms, in particular, the cost of maintenance relative to the levelised cost of

energy (LCOE) is significantly increased compared to onshore. According to Tavner,

2012, the typical cost of operation and maintenance (O & M) as a fraction of the

LCOE is between 18 % and 23 % for offshore compared to 12 % for onshore. More

recent studies suggested European offshore O & M costs amounting to between 30

and 45 Euros/MWh (Milborrow, 2014). The restrictions imposed by the offshore

environment as well as the increasingly large number of machines in a typical wind

farm means that maintenance is moving from what in the past would have been

scheduled or responsive to a regime that is more predictive and proactive. A key

element in this move has been the more intelligent monitoring of wind turbine state

of health, generally termed condition monitoring.

So-called condition monitoring systems (CMS) have been developed by a number of

manufacturers. These monitor several key parameters including drive train vibration,

oil quality and temperatures in some of the main subassemblies. Such systems are

normally installed as additional ‘add-ons’ to the standard turbine configuration. The

significant costs of CMS – usually more than 11,000 Euros per turbine (Yang, Court

et al., 2013) – has deterred operators from installing these systems, although the

financial benefit of early fault detection by CMS has been proven (Yang, Tavner et al.,

1Content from this chapter has been published in Tautz-Weinert and Watson, 2017e and is reproduced
by permission of the Institution of Engineering & Technology. Some sections also contain excerpts
from Tautz-Weinert, Yürüşen et al., 2019 and Reder, Tautz-Weinert et al., 2018.
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Figure 1.1.: Sketch of main wind turbine subsystems (from Tchakoua et al., 2014, under
Creative Commons BY-NC-SA 3.0).

2014). However, all large utility scale wind turbines have a standard Supervisory

Control and Data Acquisition (SCADA) system principally used for performance

monitoring. Such systems provide a wealth of data at normally 10-minute resolution,

though the range and type of signals recorded can vary widely from one turbine type

to another. As SCADA data are a potentially low cost solution requiring no additional

sensors, this thesis discusses using these data for monitoring turbine condition and

improving maintenance.

1.2 Overview of the wind turbine system
Modern wind turbines consist of a rotor of three blades and a nacelle mounted on

a high tower as sketched in Figure 1.1. The turbine generates electrical energy

from wind by using blades made of light composites using e.g. glass and carbon

fibres. The blades are formed in specific shape, called aerofoil, to create lift similar

to aeroplane wings. The lift is used to generate torque on the rotor and a horizontal

shaft. The mechanical rotation is subsequently transformed to electrical energy with

a generator. Commonly, a multi-stage gearbox is used to convert the low speed

of the rotor to a higher speed that is more suitable for the generator. However,

other ‘direct-drive’ designs work without gearbox and use a larger generator with

more pole pairs instead. The shaft, gearbox and generator are supported by various

bearings. A yaw system enables the rotation of the whole nacelle and rotor to adjust

to different wind directions, whereas a pitch system might be installed to change

the angle of the blades and thereby modify the aerodynamic properties. A hydraulic

system is commonly used for lubrication and cooling of the gearbox, whereas the

generator is often air-cooled.

1.2 Overview of the wind turbine system 2
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The generated power of wind turbines varies with the cube of the energy resource,

the wind. The aerodynamic power P can be described as

P = 1
2cpρv

3A (1.1)

with the power coefficient cp, the air density ρ, the wind speed v and the rotor

area A. The power coefficient cp describes the aerodynamic efficiency, which is

always lower than 16/27 ≈ 0.593, the Betz limit, according to the actuator disc and

momentum theory. The electric power can be by calculated by considering the losses

of all mechanical and electrical systems involved.

As the turbine will only tolerate a certain level of loads, the generated power is

limited by defining a nominal value, the rated power. Two main concepts exist to

limit the power and loads for higher wind speeds, namely ‘stall’ and ‘pitch’. Stall-

regulated turbines use a passive system, the stalling of the wind flow at the aerofoil

due to a changed angle-of-attack, the angle of acting wind speed on the aerofoil.

However, modern turbines use pitching, an active changing of the blade angles to

limit the lift in a more controlled way.

The energy generated by wind turbines is usually fed into the electrical grid. The

grid demands a constant frequency of 50 Hz (in Europe) which implies that the

generator speed cannot vary if directly connected. Older, usually also stall-regulated

wind turbines operate accordingly with fixed rotational speed. Modern turbines use

doubly-fed induction generators or permanent magnet synchronous generators with

power converters to be able to vary the rotational speed. This has the benefit of

operating the aerofoils at optimal lift-to-drag ratios for all wind speeds below rated

power.

If wind speeds are very low, the turbine is idling. The turbine starts to produce

power above the so-called cut-in wind speed (approx. 3 m/s). In very high winds

the turbine will shutdown to prevent damage. This is done at the cut-out wind

speed (approx. 25 m/s), although new grid stability demands call for ramping of this

action. Pitch-regulated turbines will brake by using blade pitching and aerodynamic

forces, however a mechanical brake might be installed in addition.

Further details about the general wind turbine system can be found in Burton et al.,

2001; M. O. L. Hansen, 2008; Hau, 2008; Gasch and Twele, 2010, etc.

1.2 Overview of the wind turbine system 3



1.3 Wind turbine failure statistics
In terms relevant to condition monitoring, Isermann, 2011 defined the following:

• ‘A fault is an unpermitted deviation of at least one characteristic property

(feature) of the system from the acceptable, usual standard condition.’

• ‘A failure is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.’

• ‘A malfunction is an intermittent irregularity in the fulfillment of a system’s

desired function.’

In this context, failures are the main focus of this work. Several surveys of wind

turbine failures have been conducted in the last two decades to identify failure

rates and associated downtime for different subassemblies. However, the different

taxonomies used by different turbine manufacturers, wind farm operators and

researchers make comparisons between these surveys challenging.

The evaluation of 15 years of data from the German ‘250 MW Wind’ programme

(Hahn et al., 2007) and >95% of all the turbines operating between 1997 and 2005

in Sweden (Ribrant and Bertling, 2007) gave first insights into the reliability of

modern onshore turbines. The German turbines had an average availability of about

98%. An average failure rate of 0.4 failures per turbine per year resulted in an

average downtime of 130 hours per turbine per year for the Swedish turbines. A

distinctive difference between failure rate and downtime distribution in subassembly

groups was identified. The electrical and electronic control systems were identified

as the most failure-prone, but gearbox and generator failures caused the longest

downtime.

An evaluation of the Windstats newsletter providing statistics for turbines in Denmark

and Germany for a similar time range revealed differences in failure rates of wind

turbines in the two countries (Tavner et al., 2007). Higher failure rates for the

German turbine population were traced back to the different age and the newer

(but less mature) variable speed and pitch control technology employed in German

turbines. The electrical system was the most failure-prone subassembly in the

German turbine population, whereas the Danish population was mostly affected

by yaw system and so-called ‘unclassified’ failures. Records of the Chamber of

Agriculture in Schleswig-Holstein, Germany, confirmed the failure rates for German

wind turbines (Spinato et al., 2009). The different studies up to this time agreed that

the gearbox had been the source of failure with the longest downtime (Pinar Pérez

et al., 2013). An analysis of the first operating years of the UK Round 1 offshore

1.3 Wind turbine failure statistics 4



wind farms revealed availabilities of only 80.2%. The main causes for this relatively

low availability were found to be gearbox and generator bearing problems (Y. Feng,

Tavner et al., 2010).

A more recent failure survey was conducted as part of the Reliawind project (Wilkin-

son and Harman, 2011). In this survey, 35,000 downtime events from 350 turbines

were evaluated. The order of the subsystem failure rates was found to be led by

the power module assembly followed by rotor module, control system, nacelle and

drive train in descending order. The three most failure-prone subassemblies were

identified as the pitch system, frequency converter and the yaw system. The down-

time hierarchy was very similar to the failure rate order. This finding was in contrast

to previous studies, which found that the gearbox was the greatest contributor to

unscheduled turbine downtime.

A report from the National Renewable Energy Laboratory (NREL) in the US (Sheng,

2013) stated that approx. 70% of gearbox failures were caused by bearing failures

and approx. 26% by gear teeth failures based on a database of 289 failure events

collected from 20 partners since 2009. Carroll et al., 2015b compared failure rates

in the first five years of 1822 turbines with Doubly-Fed Induction Generators (DFIGs)

with 400 turbines using a Permanent Magnet Generator (PMG) and a fully rated

converter. For the PMG turbines, a lower generator failure rate was found to be

accompanied by a much higher failure rate in the converter.

A recent analysis of failure statistics from Carroll et al., 2015a looked at data

from around 350 relatively new offshore turbines from one manufacturer recorded

over a five-year period at 5-10 wind farms. The failure rates were highest for the

pitch/hydraulic subassembly, followed by ‘other components’ and the generator, but

only those failures were considered where unscheduled maintenance visits were

made. Analysis of the failure rate by year of operation showed a decrease in the first

five years. A comparison with onshore turbines (Carroll et al., 2015b) suggested

higher failure rates offshore, but not as high as expected given the different turbine

populations and environmental characteristics. Analysis of average repair times,

material costs and the number of required technicians indicated that blades, hub

and gearbox were the most critical subassemblies in this context.

A broad failure review of 4300 onshore turbines from 14 different manufacturers

by Reder, Gonzalez et al., 2016 identified a lower failure rate for direct-drive

technologies (0.19 failures per turbine and year) and a higher failure rate for geared

turbines (0.52 for turbines ≥1 MW). The downtime ranking was led by gearbox and

generator failures for geared turbines as shown in Figure 1.2. In direct-drive turbines,

1.3 Wind turbine failure statistics 5



Figure 1.2.: Normalised failure rates and downtimes for geared turbines ≥1 MW from
Reder, Gonzalez et al., 2016 (under Creative Commons BY 3.0). The percentage
depicts the contribution to the total failure rate of 0.52 failures per turbine and
year and the total downtime of 44.51 hours per turbine and year, respectively.

however, generator and blade failures were more dominant. Remarkably, the direct-

drive turbines suffered also from a significantly higher number of controller failures

and downtime.

It can be concluded, that although various studies have found different failure rates

and contributions of the subsystems, gearbox and drivetrain problems are certainly

a major challenge to be addressed in order to further reduce downtime.

1.4 Maintenance and monitoring
Maintenance of wind turbines can be categorised in terms of two major approaches:

corrective and preventative maintenance. Corrective maintenance applies a run-

to-failure approach which bears the risk of more severe damage due to cascading

failures. In addition, this approach is also susceptible to long downtime because of

potential delays in maintenance scheduling and spare part ordering. In contrast,

the preventive maintenance philosophy aims to repair a system before it fails and

covers two sub-strategies: calendar-based and condition-based. Calendar-based

maintenance is usually performed by annual and semi-annual visits or scheduled

replacements based on the age of the turbine. Ideally, a more effective approach

lies in condition-based maintenance, i.e. repair based on the health of the turbine

or part. This strategy usually aims to be also predictive, i.e. estimating when a

failure will occur in future and adapt the maintenance accordingly. An accurate

prediction of remaining useful life is however very challenging for complex systems

with various failure modes. Condition-based maintenance can be established with

1.4 Maintenance and monitoring 6
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off-line inspections or on-line condition monitoring systems (Coronado and Fischer,

2015).

Three general requirements of condition monitoring systems can be defined accord-

ing to Wiggelinkhuizen et al., 2008 as:

1. Detection of failure mechanism

2. Detection on time – early enough to schedule maintenance

3. Measurable criteria – presented in a simple way e.g. a green, yellow or red

light

Due to the fact that a wind turbine consists of structural, mechanical and electrical

components, various signals and monitoring methodologies have been investigated

for monitoring the turbine’s health.

Detection of faults in the tower and blades is usually covered under the term

Structural Health Monitoring and addressed by measuring e.g. strains, vibrations

or using thermography and ultrasound. Electrical components can be monitored by

thermography or visual inspections (Tchakoua et al., 2014; Qiao and Lu, 2015a).

Most attention has been dedicated to the rotating machinery in the wind turbine,

i.e. bearings, main shaft, gearbox, generator etc. Traditional monitoring techniques

include here vibration analysis, oil particle, acoustic emission, torque measurement

and electrical signals (Tchakoua et al., 2014; Yang, Tavner et al., 2014; Qiao and Lu,

2015b). The majority of commercial condition monitoring systems focus, however,

on vibration analysis (Crabtree et al., 2014) due to the understanding that it will

give the earliest failure indication as visualised in Figure 1.3.

According to the GL standard for wind turbine condition monitoring (GL Renewables

Certification, 2013) a minimal equipment of geared turbines shall include one

vibration sensor for the main bearing, two sensors for generator bearings and

five sensors for the gearbox. The sensors are usually mounted on the housing of

respective bearings or gearbox stages. A typical setup is sketched in Figure 1.4.

Piezo-electric accelerometers are most common for this purpose due to their wide

frequency range from 0.1 Hz to 30 kHz (BSI, 2002). A brief overview of common

techniques to analyse vibration data for failure detection is given below.

Analysing raw vibration measurements is a rather difficult task and has limited

benefit for failure detection. Measurements need to be processed before being

analysed in detail. Common processing techniques include time-domain analysis,

such as Hilbert transform, statistical analysis (root mean square amplitude (RMS))

and envelope analysis; frequency domain techniques like the Fast-Fourier-Transform
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Figure 1.3.: Signal capabilities for early detection of mechanical failures according to Tchak-
oua et al., 2014 (under Creative Commons BY-NC-SA 3.0).

Figure 1.4.: Sketch of typical condition monitoring sensor equipment (from Yang, Tavner
et al., 2014, copyright ©2014 John Wiley and Sons.)
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(FFT) and Cepstral analysis, as well as time-frequency techniques, e.g. wavelet-

transform (Qiao and Lu, 2015a).

The FFT is the most widely used technique to obtain the frequency spectrum by

transforming time domain signals into the frequency domain. Changes in certain

harmonics of the frequency spectrum can then be directly related to degradation

processes or faults of specific wind turbine components (Fischer and Coronado,

2015). An FFT can be used to discover faults in stationary signals, but non-stationary

signals might result in indistinct FFT results. As wind turbines operate in highly non-

stationary conditions, several approaches have been developed to ensure stationarity

before applying an FFT, such as a binning of vibration measurements in active power

intervals (IEC, 2010), synchronous sampling algorithms (Sheng, 2012; Gong and

Qiao, 2013) or applying a synchrosqueezing transform and local mean decomposition

(Y. Guo et al., 2017).

Another frequently applied signal processing technique is called Envelope analysis,

which helps to detect fault frequencies that might not be present in the spectrum

generated by the FFT, such as shock impulse repetition and their harmonics (Geropp,

1997). A bandpass filter is applied to the time domain signal that centres on the

desired frequency energy region. Then amplitude demodulation is performed on

the filtered time signal, in order to extract the repetition rate of the impact. By

taking the FFT of the enveloped signal the characteristic ‘impact frequencies’ and

their modulations, such as sidebands, can be derived.

Cepstrum analysis is carried out by taking the inverse Fourier transform of the

logarithmic power spectrum. It is very similar to auto-correlation analysis, however,

being performed on the logarithm of the power spectrum, the Cepstrum – in contrast

to the auto-correlation – is mainly considering the lower level harmonics (Sheng,

2012; Fischer and Coronado, 2015).

In rotating machinery, fault frequencies can usually be distinguished from other

frequencies by identifying harmonics or sidebands. While Envelope analysis is

performed to find sidebands through amplitude demodulation, Cepstrum analysis is

used to distinguish between the different harmonic families (Spectra Quest, 2006).

Combining techniques such as FFT, Envelope and Cepstrum analysis can lead to good

failure detection, as they are able to identify distinct forms of failures. Hence, many

commercially available solutions for vibration analysis for wind turbine condition

monitoring rely on RMS, FFT, Envelope and Cepstrum analysis for fault diagnosis

(Crabtree et al., 2014). These tools usually require an expert to interpret the results

and decide whether a fault is apparent. Some research has tried to automate fault
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detection with vibration data, e.g. by deriving features like side band energy and

kurtosis (Koukoura et al., 2017), applying deep learning convolutional networks

(Bach-Andersen et al., 2018) or proposing a monitoring strategy based on a classific-

ation with wind and rotor speeds (Ha et al., 2017). However, there is still a need

for more generic approaches for fault detection with vibration data and machine

learning techniques, which require the least possible human interaction.

Many specialised techniques for wind turbine condition monitoring have been

developed recently. Roller bearing failures have been detected based on vibration

signals and feature extraction with support vector machine (Fernández-Francos et al.,

2013) or wavelet variance and neural networks (Ziaja et al., 2016). Gearbox failures

have been detected with vibration signals and Vold-Kalman filters focussing on

nonstationary conditions (Z. Feng and Liang, 2014) and complex wavelet transforms

(Teng et al., 2016). Other approaches use analyses of angular velocity measurements

(Nejad et al., 2014), investigation of the jerk, i.e. acceleration change (Z. Zhang,

Verma et al., 2012) or electrical signature analysis (Artigao et al., 2017; Ibrahim,

Watson et al., 2018).

While condition monitoring systems have been used in several industries over many

years, only in recent years have wind farm operators started to install dedicated

condition monitoring systems in their wind turbines. This is due to the fact that

these systems are rather expensive (Yang, Court et al., 2013) and thus might not be

profitable for all wind farms. It could, however, be a financially attractive investment

for wind farms, where the benefits of early failure detection can outweigh the

initial cost of installation. Another challenge lies in the reliability of such condition

monitoring, as there is a high risk of false alarms (Tchakoua et al., 2014), which

can result in high costs if technicians are sent to turbines without reason. The

round robin study on gearbox monitoring showed that it is still challenging to

detect and diagnose the various possible failure modes without false alarms (Sheng,

2012). Accordingly, it is possible that some operators install condition monitoring

systems only due to insurance requirements without trust in the system’s capabilities.

Yang, Tavner et al., 2014 state that 60-80% correct diagnosis will be required to be

cost-effective.

1.5 SCADA-based condition monitoring
Due to the high costs of dedicated condition monitoring systems based on mainly

vibration measurements, the use of data from the turbine SCADA system for condition

monitoring is appealing. This section discusses recent research using SCADA data
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Table 1.1.: Basic SCADA parameters.

Environmental Electrical characteristics Part temperatures Control variables

Wind speed Active power output Gearbox bearing Pitch angle
Wind direction Power factor Gearbox lubricant oil Yaw angle
Ambient temperature Reactive power Generator winding Rotor shaft speed
Nacelle temperature Generator voltages Generator bearing Generator speed

Generator phase current Main bearing Fan speed / status
Voltage frequency Rotor shaft Cooling pump status

Generator shaft Number of yaw movements
Generator slip ring Set pitch angle / deviation
Inverter phase Number of starts / stops
Converter cooling water Operational status code
Transformer phase
Hub controller
Top controller
Converter controller
Grid busbar

for failure detection and condition monitoring, focussing on approaches which

have already proved their ability to detect anomalies in data from real turbines.

Approaches are categorised as (i) trending, (ii) clustering, (iii) normal behaviour

modelling, (iv) damage modelling, (v) assessment of alarms and expert systems and

(vi) performance monitoring.

The parameters typically recorded by SCADA systems of geared-drive turbines are

listed in Table 1.1. Although, the configuration might vary for different turbine

and SCADA makes, it can be assumed that the sensor placing follows roughly the

configuration shown in Figure 1.4. Temperature sensors might be thermocouples

due to their low costs or more accurate resistance temperature detectors mounted on

housings of bearings or similar. In general, SCADA records are 10-minute averages

of 1 Hz sampled values. However, maximum, minimum and standard deviation are

often recorded as well. The number of starts and stops and alarm logs recorded

by the SCADA system can also be seen as part of condition monitoring (Godwin

and P. Matthews, 2013). Vibrations (Yang, Court et al., 2013), oil pressure level

and filter statuses (Y. Feng, Qiu et al., 2013) could be recorded by a wind turbine

SCADA system too, but these are commonly recorded separately in what might

be termed a ‘dedicated’ condition monitoring system. There is no such thing as

a standard set of monitoring equipment or measurement nomenclature for the

different turbine populations seen today. Nevertheless, a general trend has been seen

for the installation of more sensors in modern turbines. An overview of commercially

available SCADA systems is given in Yang, Tavner et al., 2014.
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1.5.1 Trending

Although SCADA systems have not been developed specifically for the purposes of

condition monitoring, using SCADA data to monitor the health of turbines has been

investigated as soon as optimising maintenance became a high priority in the wind

industry. One main motivation for looking into SCADA signals has been seen in the

potential of temperature measurements. Although abnormal heat might give a very

late warning according to Figure 1.3, changes in the thermodynamic behaviour of

the system can relate to changes of the efficiency. This can be demonstrated for

a rotating mechanical system of the wind turbine such as a bearing according to

Y. Feng, Qiu et al., 2011; Y. Feng, Qiu et al., 2013. The first law of thermodynamics

states

∆U = Q−W (1.2)

with the change of the internal energy ∆U , the heat supplied to the system Q and

the work done W . Under quasi-stationary conditions, it can be assumed that the

internal energy does not change. The work can be described as the difference of

kinetic energy Ekin taken from and supplied to the system

W = Ekin,out − Ekin,in (1.3)

As the investigated system is mainly transferring the energy, the output energy can

be described as with the efficiency of the bearing η

Ekin,out = ηEkin,in (1.4)

In this case, the kinetic energy is rotational energy with

Ekin = 1
2Iω

2 (1.5)

with inertia I and angular speed ω. The heat flow can be described by

Q = −k∆T (1.6)

with the temperature change ∆T and the heat transfer rate k for the material

compound. Combining the above equations, the temperature change derives as

∆T = (1− η)ω2 I

2k (1.7)

This means, that ∆T is a function of η and ω, 2k/I being constant. The measured

surface temperature Tsurf is approx. proportional to ∆T . If efficiency is assumed to
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Figure 1.5.: Relationship of bearing temperature and active power in operating wind turbine
(from Yang, Tavner et al., 2014, copyright ©2014 John Wiley and Sons.)

be constant, Tsurf ∝ ω2. Since the electrical power Pel is proportional to ω2, it can

be concluded that Tsurf ∝ Pel, which is illustrated for operating data in Figure 1.5.

In contrast, if ω is constant, any increase in Tsurf is then caused by decreased η.

Changes in efficiency directly relate to mechanical degradation and losses through

friction. Accordingly, a monitoring of the temperature to power ratio could be an

indicator for the part condition.

However, this simplified example does not consider the complexity of several in-

teracting mechanical parts, thermal inertia and heat transfer along the drivetrain.

It is likely that increased heat generation at e.g. one stage in the gearbox will

affect sensors nearby. Changes of the ambient temperature, sunshine etc. will affect

the basic nacelle temperature. In addition, measured temperatures are effected by

lubrication and cooling systems. Accordingly, the main challenge lies in how to

interpret trends given the variability in the operational conditions of modern wind

turbines. A change in the value of a SCADA parameter is not necessarily evidence

for a fault. One of the simplest approaches is to collect data over a long period

and monitor ratios of SCADA parameters such as drivetrain temperature over active

power and how they change over time. Past studies have involved trying to find

early signs of degradation by using such trending approaches.

Research in the Condition Monitoring for Offshore Wind Farms (CONMOW) pro-

ject carried out from 2002 to 2007 included SCADA-based monitoring techniques

(Wiggelinkhuizen et al., 2008). Simple trending methods e.g. using regression lines

in scatter diagrams of temperature against power or three-dimensional visualisations

including the ambient temperature were suggested. Manual interpretation of filtered

SCADA data comparisons was seen as beneficial for detecting anomalies. Y. Feng, Qiu

et al., 2013 showed that if the gearbox efficiency decreases, the gearbox temperature

rise (compared to the ambient temperature) will increase – up to 6 months before

a catastrophic planetary gear failure. Yang, Court et al., 2013 proposed a trending
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method using bin averaging by wind speed, generator speed or output power. A

quantifying criterion based on a correlation model of historic and current data was

proposed as a way of detecting levels of damage, though the value of the criterion

had a different scale depending on the damage mode and dependent parameter.

Wilkinson, Harman et al., 2014 investigated different methods of using SCADA data

for condition monitoring. One approach included a simple comparison of temperat-

ure trends of different turbines in a particular wind farm. The authors ultimately

dismissed this approach due to inaccuracy resulting from differing environmental

conditions or operational modes in a wind farm. However, it can be argued that a

comparison of trends in turbines might be helpful if the differing conditions in some

turbines are addressed with more advanced approaches.

Trending of SCADA parameters, especially drive train temperatures, can reveal the

development of a failure using historical data. However, several studies have shown

that changes in temperature are highly case-specific and require manual interpreta-

tion. Using a numerical description of the trend instead of visual interpretation of

scatter diagrams did not prove to be beneficial. If trending is to be used for online

monitoring, difficulties in the interpretation of changes and the setting of thresholds

will most likely result in high uncertainties and possibly false alarms.

1.5.2 Clustering

Visual interpretation of trends can be problematic if a large fleet of wind turbines

operating under very different conditions is to be monitored cost-effectively. A next

step in the evolution of monitoring with SCADA data was the application of clustering

algorithms to automate the classification of ‘normal’ and ‘faulty’ observations.

Z. Zhang and Kusiak, 2012 analysed wind turbine vibrations using SCADA records

including drive train and tower acceleration. Vibrations were grouped by a modified

k-means clustering algorithm conditioned on the wind speed. Abnormal vibra-

tions were detected by measuring the Euclidean distance between data and cluster

centroids built in an initial training period. Limitations in determining the boundar-

ies of clusters and the missing description of temporal changes were acknowledged

and subsequently a normal behaviour modelling approach was pursued (described

in the following section).

Catmull, 2011 and Kim et al., 2011 were the first to apply an artificial neural network

(ANN) self-organising map approach to SCADA data. The method builds clusters

by rearranging neurons on a regular grid during the training process in a way that

neighbouring neurons denote similar input data. A unified distance matrix can be
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Figure 1.6.: Model-based monitoring with the input u(t) for both the process G(t) and its
model Ĝ their outputs y(t) and ŷ(t), respectively, and the final error or residual
e(t). Sketch adapted from Garlick et al., 2009.

used to visualise the clustering. In combination with projections of parameters, this

enables interpretation of the clustering. Catmull used only normal operational data

for training and proposed the calculation of the distance between new input data

and the best matching neuron, called quantisation error, for abnormality detection.

Kim et al. used a training data set, which included failures. They were then able

to assign subsequent wind turbine failures to corresponding clusters. Wilkinson,

Harman et al., 2014 pursued Catmull’s approach and presented some examples of

detecting gearbox failures comparing the quantisation error for multiple turbines.

From the evidence reviewed, the clustering of healthy and faulty observations has

not shown a clear advantage in terms of condition monitoring compared to trending

algorithms, as the interpretation of results is again difficult. In addition, using fault

data for training is not necessarily feasible in an industrial setting.

1.5.3 Normal Behaviour Modelling

Normal Behaviour Modelling (NBM) uses the idea of detecting anomalies from

normal operation as used in the previous methods, but tries to empirically model

the measured parameter based on a training phase. Figure 1.6 illustrates the idea

of model-based monitoring. The residual of measured minus modelled signal acts

as a clear indicator for a possible fault: it is assumed to be approx. 0 with a given

tolerance for normal conditions and not equal to 0 for changed conditions or failures.

Two main concepts for NBM can be differentiated: Full Signal ReConstruction (FSRC,

term introduced by Schlechtingen and Santos, 2010), where only those signals, other

than the target are used to predict the target, and AutoRegressive with eXogenous

input modelling (ARX), where historic values of the target are also used. Both, ARX

and FSRC models might use historic values of the (exogenous) inputs to consider

thermal inertia of the system.
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Linear and polynomial models

The simplest form of NBM is based on linear or polynomial models, which can

be described with the model target y, the model output f , input variables x =
x1, x2, ...xm and an error ε as

f(xi, β) = β01 + β1x1 + β2x2 + ...+ βmxm = y + ε (1.8)

based on coefficients β = (β0, β1, ...βm). The least squares method can be used to

estimate the coefficients in case of an overdetermined system by minimising

S(β) =
n∑
i=1

(yi − f(xi, β))2 (1.9)

The coefficients can be determined by setting the partial derivatives of S to zero. In

matrix notation, i.e. with bold characters for vectors and bold capitals for matrices,

the model is y = Xβ + ε and the least square estimation of the coefficient can be

written as

β = (XTX)−1y (1.10)

Garlick et al., 2009 used a linear ARX model to detect generator bearing failures in

the bearing temperature. The model was described with a transfer function as

y(t) = B(z−1)
A(z−1)u(t) + ε(t)

A(z−1) (1.11)

with the input u, the output y and white noise ε as function of the time or sample t

as well as polynomials A and B as

A(z−1) = 1 + a1z
−1 + a2z

−2 + ...+ anz
−n (1.12)

B(z−1) = 1 + b1z
−1 + b2z

−2 + ...+ bmz
−m (1.13)

with the backward shift operator z−1 and n,m defining the maximal backward shift.

Training was conducted based on the least squares method. The correlation analysis

determined that the generator winding temperature was the best exogenous input.

Different numbers of polynomial parameters were investigated and evaluated with

the coefficient of determination and Akaike’s Information Criterion. Three years of

SCADA data for 12 turbines were evaluated with a three-parameter model trained

with one day of data. Observed rising trends and frequent spikes in the residual were

found to correlate with fault log reports of high generator and slip ring temperatures
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and documented repairs. However, it was not conclusively demonstrated whether

the monitoring gave a clear advance warning of problems as anomalies were visible

throughout the observation periods.

Wilkinson, Harman et al., 2014 developed higher order polynomial FSRC models for

NBM of drive train temperatures with different SCADA inputs based on correlation

analysis and the physics of the system. Data from the same turbine, different

turbines at the same site as well as different turbines at different sites were used.

The developed algorithms were blind tested on 472 turbine years of data from five

different wind farms. Examples of successful detection of gearbox and main bearing

failures by modelling of a bearing or gearbox temperature with rotor speed, power

output and the nacelle temperature were presented. Overall, 24 of 36 component

failures were detected with only three false alarms with accuracy highly dependent

on the wind farm. The algorithm resulted in detection of failures from one month to

two years in advance.

Schlechtingen and Santos, 2010 developed a linear model based on up to 14 months

of SCADA data from ten 2 MW offshore turbines. The linear FSRC model for the

generator bearing temperature built with generator power output, nacelle temper-

ature and shaft speed as inputs predicted the target temperature with an accuracy

of ±4 ◦C after filtering. A catastrophic generator bearing failure of one turbine was

successfully detected. The use of daily averages of the residual was demonstrated to

be plausible for the purposes of fault detection. The first alarm limit violation was

25 days prior to the damage.

Dienst and Beseler, 2016 proposed an automated linear NBM approach based on in-

put selection based on the Least Absolute Shrinkage and Selection Operator (LASSO)

and all available SCADA signals. LASSO conducts automatic feature selection by

min
β
||y −Xβ||2 subject to

d∑
j=1
|βj | < λ (1.14)

with d as number of inputs and λ as a factor defining the regularisation. An addition

of non-linear features of the data like squares, square roots and logarithms was

suggested. The application of the approach to data from 80 offshore turbines helped

identifying minor faults and sensor problems. A full study of major failures was not

presented due to the young age of the wind farm discussed.

Bach-Andersen et al., 2016 tested linear modelling of a bearing temperature in FSRC

and ARX setting based on data from 45 and 22 turbines with and without a failure,

respectively. Inputs for modelling were selected based on a physical understanding
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Figure 1.7.: Sketch of a feed-forward ANN with 3 inputs, one hidden layer with 6 neurons
and one output.

resulting in the selection of active power, generator speed and gearbox oil, ambient

and nacelle temperatures. It was shown, that although the ARX setting resulted in

lower prediction errors (RMSE of approx. 0.3 compared to approx. 1.5 ◦C), failure

indication was earlier for the FSRC models. The linear model was further compared

to a ANN setup as detailed below.

Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are a way of determining non-linear relationships

between observations inspired by the analytical function of the human brain. The

basic architecture contains one input layer, a variable number of hidden layers and

one output layer, as sketched in Figure 1.7 for a simple network. Most commonly,

networks are feed-forward, i.e. using only links from lower to higher layers, in

contrast to recurrent architectures (Du, 2010).

A network layer consists of a certain number of neurons, which are fed by inputs or

other neuron outputs from the previous layer. Each neuron performs a summation

of weighted inputs and a bias. Subsequently, a transfer (or activation) function is

applied. Mathematically, this corresponds to the neuron output a as

a = φ(w1p1 + w2p2 + ...+ wnpn + b) = φ(z) (1.15)

with neuron inputs p1, p2, ..., pn, respective weights w1, w2, ..., wn, bias b and the

transfer function φ(z) applied to z, the summation of weighted inputs and bias.

Various transfer functions can be applied as summarised in Table 1.2. In a multi-

layer network, the output of one layer is the input of the next layer. This can be
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Table 1.2.: Common transfer functions φ(z) (Hagan et al., 2014).

Name Function

Hard limit φ =
{

0 if z < 0
1 if z ≥ 0

Symmetrical hard limit φ =
{
−1 if z < 0
1 if z ≥ 0

Linear φ = x

Saturating linear φ =


0 if z < 0
z if 0 ≤ z ≤ 1
1 if z > 1

Symmetric saturating linear φ =


−1 if z < −1
z if − 1 ≤ z ≤ 1
1 if z > 1

Log-sigmoid φ = (1 + e−z)−1

Hyperbolic tangent sigmoid φ = (ez − e−z)(ez + e−z)−1

Positive linear φ =
{

0 if z < 0
z if z ≥ 0

Competitive φ =
{

1 neurons with max z
0 all other neurons

noted by giving the layer number as superscript, e.g. for the layer k + 1, the output

is defined in vector notation as

ak+1 = φk+1(Wak + bk+1) (1.16)

The basic learning of the network involves the changing of parameters in an iterative

approach called back-propagation. Initially, weights and biases are selected randomly.

In the next step, the input is propagated through the network to calculate the error

using a cost function. The error is then propagated back through the network for

an update of the weights and biases of all neurons. This procedure is repeated

iteratively until a stopping criterium such as a sufficiently small error is reached. The

number of times the training data is fed through the network is denoted as ‘epochs’.

A common cost function is the mean squared error, which is defined for a single

output aO as

E = 1
2m

m∑
j=1

(yi − aOi )2 (1.17)

with m denoting the number of inputs and y as actual target signal. In the following,

only the updating of the weights is discussed as the procedure for bias is similar.

The bias could also be seen as an additional weight wn+1 belonging to a constant
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input pn+1 = 1. The update of weights according to the gradient descent algorithm

requires the partial derivates of the cost, i.e for the weight connecting neuron i with

neuron j on layer m in the iteration k + 1 the weight is updated by

wmi,j(k + 1) = wmi,j(k)− α ∂E

∂wmi,j
(1.18)

with a predefined learning rate α. The calculation of the partial derivative can be

conducted by using the chain rule so that

∂E

∂wmi,j
= ∂E

∂amj

∂amj
∂zmj

∂zmj
∂wmi,j

(1.19)

This can be further simplified as the last two factors are known to be

∂zmj
∂wmi,j

= am−1
i (1.20)

and
∂amj
∂zmj

=
∂φ(amj )
∂zmj

= φ′(amj ) (1.21)

which requires the transfer function to be differentiable. Focussing on the configur-

ation with one hidden layer, the input, hidden and output layer are denoted with

superscripts I, H and O, respectively. If the neuron is in the output layer, the first

factor of Equation 1.19 is simply

∂E

∂aOj
= y − aO (1.22)

The complete partial derivative is accordingly

∂E

∂wOi,j
= (y − aO)aHi φ′(aOj ) (1.23)

For later reference, it can be defined that

δj = ∂E

∂aOj

∂aOj
∂zmj

= (y − aO)φ′(aOj ) (1.24)
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If weights of inner layers are calculated, a recursive approach is required. Assuming

that t neurons in the output layer receive the output of the neuron of interest in the

hidden layer, the respective derivative can be calculated as

∂E

∂aHj
=

t∑
l=1

(
∂E

∂zOj

∂zOj
∂aOj

)
=

t∑
l=1

(
∂E

∂aOj

∂aOj
∂zOj

wOj,l

)

=
t∑
l=1

δlw
O
j,l

(1.25)

In summary, the partial derivative of the weight in the hidden layer is

∂E

∂wHi,j
=
(

t∑
l=1

δlw
O
j,l

)
aHi φ

′(aHj ) (1.26)

An alternative training algorithm is Levenberg-Marquardt back-propagation which

uses an approximation of the Hessian matrix in order to to combine the basic gradient

descent principle and Newton’s method for faster convergence (Marquardt, 1963).

The reader is referred to the literature dedicated to the ANN methodology for a more

detailed explanation of the training algorithms such as e.g. Du, 2010; Hagan et al.,

2014. ANN training is at risk of overfitting, i.e. a model that follows the training

data very accurately, but has a significantly higher error with other data. This is

commonly addressed by splitting training data in two sets, one for the actual training

and a separate set for validation with unseen data. Another risk lies in the possibility

of finding local minima of the cost function instead of the global minimum. One

approach is to train multiple networks with different (random) initial conditions to

find the best solution (Hagan et al., 2014).

Multiple authors investigated ANNs for monitoring of wind turbine signals. Garcia

et al., 2006 developed a system for predictive maintenance called SIMAP based on

ARX NBM with ANNs. Gearbox bearing temperature, cooling oil temperature and the

difference in the cooling temperature before and after the gearbox were modelled

with selected inputs determined by cross-correlation and impulse response analyses.

A confidence level of 95% was proposed resulting in lower and upper bands for the

detection of anomalies by comparison with measured values. Garcia et al. did not

provide details of the ANN configuration and training algorithm or any results of a

detailed case study.

Zaher et al., 2009 investigated ANN based gearbox bearing and cooling oil temperat-

ure modelling and demonstrated its ability using 2 years of SCADA data for 26 Bonus

0.6 MW stall-regulated turbines. An ANN with 3 neurons in the hidden layer was

presented as the best architecture. The inputs for the two investigated FSRC models
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were based on cross-correlation. Input from previous time-steps were included to

consider the thermal inertia of the system. Roughly 13,000 training data points were

manually chosen to represent normal behaviour. Zaher et al. were able to detect a

gearbox fault in one turbine with the trained model. Overheating problems were

detected almost 6 months before the failure of one turbine. The interpretation of

the highly fluctuating residual with several spikes was not conclusively explained, as

no simple threshold would result in the depicted diagnosis.

Brandão, J. a. B. Carvalho et al., 2010; Brandão and J. A. B. Carvalho, 2015 applied

a FSRC ANN approach to gearbox and generator fault detection in a Portuguese

wind farm with 13 turbines with 2 MW rated power and an US farm consisting

of 69 turbines with 1.5 MW rated power. The inputs were chosen based on cross-

correlation and included appropriate delays. It was stated that at least 6 months’

training data were needed, but details of settings were not provided. A fixed value of

the mean absolute error was used as an alarm level, although this value was specific

and not valid after maintenance actions.

Schlechtingen and Santos, 2010 compared a linear model (as described earlier) with

two different ANN model configurations in a study of up to 14 months’ SCADA data

from ten 2 MW offshore wind turbines. The FSRC model used the generator stator

temperature, nacelle temperature, power output and generator speed to predict

the generator bearing temperature. The second model, an ARX approach, used

additional historic values of the generator bearing temperature. A feed-forward

network with one hidden layer with 5 or 6 neurons for FSRC and ARX modelling,

respectively, was trained with three months of data. Input pre-processing was applied

including: checking against the means of data ranges, checking for large changes in

observations, normalisation of data, exclusion of records with missing data and lag

removal based on cross-correlation. The accuracy of the FSRC model was comparable

with the linear approach, whereas the ARX model showed errors of only ±2 ◦C most

of the time. Using daily average prediction errors was demonstrated to be beneficial.

All models were able to detect bearing damage prior to a catastrophic failure. The

alarm was triggered earlier in the case of the ANN models compared to the linear

model. A further disadvantage of the linear model was seen in a strong seasonality

of the prediction error. Two other investigated bearing damage events were detected

by the ANNs about 185 days ahead with up to 5 days difference between FSRC and

ARX models. The FSRC model allowed easier identification of the bearing failures

due to larger shifts in the mean. Another advantage of the FSRC model was seen

in the possible identification of sensor problems due to the monitoring of absolute
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changes in the reconstructed signal. Higher false alarm rates were expected for the

FSRC model, however.

Kusiak and Verma, 2012 studied bearing fault detection using four months’ SCADA

data with 10 s resolution from 24 1.5 MW turbines. The input parameters for the

FSRC model were selected firstly using physical understanding of the system and

next by one of three data mining algorithms: wrapper with genetic search, wrapper

with best first search and boosting tree algorithm. The differences between the five

tested ANN configurations were in the number of neurons (5-25) and activation

functions (tanh, exponential, identity, logistics). The best configuration consisted

of 18 neurons, logistic hidden activation and identity output activation. NBM was

successfully demonstrated and abnormal bearing behaviour during one week of data

for one turbine was analysed.

Z. Zhang and Kusiak, 2012 modelled drive train and tower accelerations from

SCADA data at 10 s resolution. Two fault code situations were studied using a few

days of data from six variable speed 1.5 MW turbines. The models used for fault

detection were ANN, ANN ensemble, boosting regression tree, SVM, random forest

with regression, standard classification and regression tree and k-nearest-neighbour

ANN. Modelling used several time-steps of wind speed, ‘wind deviation’ (assumed to

stand for yaw error), blade pitch angle, generator torque and previous time-steps

of the target variable as inputs using an ARX approach. Details of the algorithm

settings were not provided, but results under normal conditions showed that the

ANN and the ANN ensemble performed best for modelling drive train and tower

acceleration, respectively. In a second approach, the accelerations were successfully

modelled with inputs from two different turbines (here called virtual sensor concept).

Detection of two anomalies in the data set was demonstrated.

Z.-Y. Zhang and K.-S. Wang, 2014 applied ARX ANN modelling to the main shaft

rear bearing temperature in direct-drive turbines. Based on approx. one year of data

from two 3 MW turbines in a 17 wind turbine farm, a failure in one turbine was

detected three months ahead with a model using output power, nacelle temperature

and turbine speed as exogenous inputs. The anomaly threshold was set to 1.5 ◦C for

the residual and was validated with normal operation from a second turbine.

J. Li et al., 2014 built a monitoring system utilising an ANN for modelling component

temperatures, power output and rotor speed based on data from 34 1.5 MW turbines.

Temperatures were modelled in an ARX approach using current wind speed, ambient

temperature and the output power as exogenous inputs. The authors stated that

a specific model needs to be tuned to each individual turbine and is influenced
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by seasonal variations of wind speed and ambient temperature. A mean absolute

error for normal conditions of 0.67 – 0.91 ◦C was stated. Failure detection using a

‘health degree’ measure utilised penalty factors for residuals in the outer regions

of a probability distribution. P. Sun et al., 2016 investigated a revised system with

additional models trained using either samples from a time period one year before

or measurements on other turbines. Although the traditional models trained with

up-to-date data of the same turbine perform best, the other models were beneficial

in anomaly detection, where their prediction errors were weighted based on the

accuracy under normal conditions. Two case studies highlighted the advantages

of the anomaly detection system compared to simple residual thresholds or single-

model based assessment. A further 14 fault cases were identified with 93.25 %
detection accuracy.

Bangalore and Tjernberg, 2015 applied an ANN for NBM of gearbox bearing temper-

atures in an ARX configuration. The selection of the training data was automated by

using filtering and selection. Self-evolution by automatically updating the ANN after

maintenance actions was suggested (Bangalore and Tjernberg, 2014). Anomalies

were detected by considering residual and target distributions from the training

period in a Mahalanobis distance, a metric to describe the distance from a point to

a distribution, here from one sample to the history of the signal. Five ANNs were

built to model temperatures of five bearings in a common gearbox based on data

from an onshore 2 MW turbine. All ANNs used power, gearbox oil temperature,

nacelle temperature and the rotational speed as inputs as well as up to two addi-

tional temperatures of the other investigated bearings. The Mahalanobis distance

was averaged over three days and compared with a threshold defined by training

results. A recorded gearbox failure due to spalling in one bearing was successfully

detected by the approach one week before the vibration-based system identified the

failure. Comparison with root mean square errors emphasised the advantage of the

Mahalanobis distance in detecting anomalies earlier. Further on, the pre-processing

of training data was refined by a clustering approach and alarm generation defined

as a 12-hourly average from the best 100 out of 300 trained models (Bangalore,

Letzgus et al., 2017).

Bach-Andersen et al., 2016 investigated ANN models with 256 neurons in the hidden

layer in a FSRC and ARX setting for rotor bearing monitoring. The performance of the

ANN models in normal behaviour modelling and failure detection was comparable

to the linear model. The finding that there was no benefit of the ARX setup in failure

detection was similarly true in the ANN case. It can be questioned whether such a
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(a)

(b)

Figure 1.8.: Sketch of a) Sugeno fuzzy reasoning and b) corresponding ANFIS model (from
Jang, 1993, copyright ©1993 IEEE.)

high number of neurons in the hidden layer is truly beneficial as it bears the risk of

overfitting.

Other approaches

Schlechtingen, Santos and Achiche, 2013b proposed an Adaptive Neuro-Fuzzy

Inference System (ANFIS) for NBM. ANFIS can be described as network-based

learning of membership functions of fuzzy inference systems as introduced by Jang,

1993. A fuzzy inference system evaluates inputs with ‘if-then rules’ based on fuzzy

logic, i.e. degrees of truth instead of Boolean logic (true/false). Membership

functions define how inputs are mapped to a fuzzy value. ‘If-then rules’ are built of

two parts: the ‘if’ – the ‘antecedent’ with the evaluation of the input membership(s)

and the ‘then’ – the ‘consequence’ applying the rule and returning a fuzzy output or

an output as a function of the inputs (Sugeno fuzzy model). Sugeno fuzzy reasoning

and its corresponding ANFIS model is sketched in Figure 1.8 for two inputs with two

membership functions and a single output.

Schlechtingen, Santos and Achiche, 2013b used three years of SCADA data from 18

onshore 2 MW turbines for NBM with ANFIS models. Two rules with generalised

normal distribution membership functions were applied for each input. Depending

on the target variable and its physical properties, reconstruction with signals of

a different sensor type or of the same type (cross prediction, e.g. temperature of
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another phase of the generator) were chosen. Hybrid gradient descent and least

squares estimation learning was used for training. A comparison with ANN modelling

similar to the approach described above by the same authors (Schlechtingen and

Santos, 2010) showed that the prediction accuracy in terms of the standard deviation

of the error was comparable. ANFIS required less time for training, however. For

failure diagnosis, the prediction errors were averaged to daily values and compared

with a probability limit of 0.01 %. An alarm was raised when at least three daily

values violated the threshold within a week. Successful detection of a hydraulic

oil leakage, gearbox oil temperature increases, converter fan malfunctions, an

anemometer offset and a controller malfunction were demonstrated (Schlechtingen

and Santos, 2014).

Y. Wang and Infield, 2012 proposed a non-parametric, non-linear state estimation

technique (NSET) for NBM using SCADA data. This approach was based on an

estimation of the target value by using a state memory matrix of inputs. The input

variables considered for building the state memory matrix were chosen using physical

understanding of the system and correlation analysis. A data selection algorithm

was applied to reduce the number of states for each variable. Welchs’s t-test, as a

distance measure for populations with different variances, or a one-sided hypothesis

test was used for anomaly detection. In a case study, Wang and Infield investigated

gearbox failures using 3 month of SCADA data from 10 turbines. Data from different

turbines were used for training (7 turbines), validation (1 turbine) and testing data

(2 turbines with failures). The target gearbox cooling oil temperature was modelled

with the gearbox bearing temperature, the power output, the nacelle temperature

and the oil temperature itself. Using this approach, alarms were reported almost

a month before the final gearbox failures. A comparison with a four-input four-

output ANN approach similar to Garcia et al., 2006; Zaher et al., 2009 demonstrated

better performance for the NSET. P. Guo et al., 2012 investigated NSET to model a

generator bearing temperature, but did not actually apply the approach to failure

detection.

Tan and Z. Zhang, 2016 investigated different ways of sampling training data for

NBM and various modelling techniques based on data used already in Z. Zhang and

Kusiak, 2012. However, the need for selecting a subset of data for training can be

questioned, due to the fact that usually little data without failures is available anyway.

The comparison of modelling techniques showed an advantage of Multi-Adaptive

Regression Splines (MARS) over ANN, SVM and other techniques.
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Discussion

Multiple studies have proven that NBM can be used to detect failures. Although

the concept of evaluating a residual of measured minus modelled signal provides

a failure indicator which is easy to interpret, the dependency on training data

and manually set thresholds can result in undetected changes or frequent false

alarms. Different NBM concepts as ARX and FSRC, different techniques based

on linear models, ANN, ANFIS etc. and different anomaly detections as simple

thresholds, Mahalanobis distance or health degree approaches have been tested, but

sufficiently comprehensive comparisons are needed to evaluate which solution is

best. Additionally, there is a need for a universal strategy to select inputs for NBM.

1.5.4 Damage modelling

The NBM approaches described above tend to be ‘black-box’ based with little or

no insight into the physical processes which drive failure. Instead of comparing

measured signals with empirical models of normal behaviour, interpreting measured

signals using physical models can potentially better represent damage development

and give more accurate results.

Gray and Watson, 2010 presented a Physics of Failure approach for damage calcula-

tion and failure probability estimation, i.e. developing a damage model based on a

physical understanding of the particular failure mode of interest. For failure modes,

which manifest themselves through accumulated damage, such as fatigue, the prob-

ability of an imminent breakdown can be estimated. The approach was applied in

a field study using two years of SCADA data from a wind farm consisting of 160

fixed-speed 1 MW turbines in order to study gearbox failures. A Lundgren-Palmgren

damage model for gearbox bearings was proposed and linear damage accumulation

assumed. Constants were calibrated by comparison of the assumed design lifetime

and the actual lifetime of the failed bearings. An assessment of the resulting damage

in the full turbine distribution for the wind farm revealed that the failed turbines

show higher damage values than 75 % of the population. The widely distributed

values showed that it would be difficult to accurately predict which turbines were

about to fail, but nonetheless could be used to help prioritise maintenance actions

within a large fleet of turbines. The approach was also applied to yaw failures for

the same wind farm (Watson et al., 2011).

Breteler et al., 2015 proposed a general framework for a Physics of Failure approach

with an additional load generator module to consider external factors. A gearbox

failure in a helical gear due to bending fatigue of a gear tooth was investigated

1.5 SCADA-based condition monitoring 27



in a case study. Laser measurements of the misalignments were used to calculate

loads using a finite element method calculation. Number of cycles and forces were

calculated from averaged ten minute SCADA power output and generator speed

measurements. The resulting remaining lifetime showed large differences not only

between reference state and failure, but also between three different turbines.

Qiu, W. Zhang et al., 2015 and Qiu, Y. Feng, J. Sun et al., 2016 built a theoretical

model for a turbine with gearbox and a DFIG based on thermodynamic principles and

combined it with temperature trending approaches. Steady-state rotor aerodynamics

was combined with simplified rigid drivetrain dynamics and an electromagnetic

torque formula. In a case study of a 1.5 MW turbine, a gearbox gear teeth failure, a

generator ventilation fault and generator winding unbalance were examined. SCADA

data trends were used to validate the simulated degradation. Diagnostic rules were

determined for the investigated faults based on the power transmission efficiency

and generator winding or lubricant temperature gradients.

Borchersen and Kinnaert, 2016 developed a mathematical model for three generator

coil temperatures. The model for the switching generator cooling and heating

system was built without knowledge of the actual system. Parameters were found

by applying an extended Kalman filter. The anomaly detection utilised residuals of

model parameters for the different coils with a cumulative sum algorithm. In a case

study with 3 years of SCADA data from 43 offshore turbines, 16 out of 18 cooling

faults were successfully detected with only one false alarm.

Comparing measured signals with physical turbine or damage models has been

successfully applied to fault detection, although challenges to get sufficient detec-

tion accuracy remain. Due to a lack of studies with sufficiently large numbers of

failures, different failure modes or different turbines, the potential for using damage

modelling in condition monitoring is not yet fully established.

1.5.5 Assessment of alarms and expert systems

Different systems have been proposed in order to better interpret outputs from

SCADA control alarms or NBM results.

Status code processing

Qiu, Y. Feng, Tavner et al., 2012 developed two approaches to condense SCADA

alarms based on up to two years of data from two different wind farms with more

than 400 turbines in total and two different manufacturers. The different types of

1.5 SCADA-based condition monitoring 28



alarms were classified as general, system operation, environmental and communic-

ation/connection/software alarms. The average alarm rate was about 10-20 per

ten-minute interval, but high maximum rates of up to 1500 alarms per ten minutes

occurred. Remotely resetting was possible for only about 24% of the alarms (consid-

ering only one turbine type). An alarm time-sequence analysis was used to identify

cases where one alarm triggered another. In a second approach, probabilities were

analysed using Bayes’ theorem and probabilistic patterns were compared using a

Venn diagram. Although the time-sequence analysis was found to be useful when

few data were available, root causes were better identified with the probability based

analysis.

Chen, Qiu et al., 2011 utilised a binary ANN to map from alarm pattern to faults. A

hidden layer size of 50 neurons was found to be optimal in the prediction of a pitch

fault. The training data included 221 alarm patterns of 31 SCADA alarms from one

turbine with an electrical pitch system. Tests using alarms from four other turbines

showed a detection accuracy of only 8-47%. The training data dependency of this

approach was highlighted and possible extrapolation errors discussed. Chen, Tavner

et al., 2012 continued the probabilistic approach and proposed a Bayesian network

to find root causes. Good reasoning capabilities were demonstrated with the same

data.

Godwin and P. Matthews, 2013 post-processed SCADA status codes for the purpose

of pitch fault detection. The expert system developed based on logical rules learned

using a RIPPER algorithm was able to concentrate the amount of information. Kusiak

and W. Li, 2011 predicted status codes, their severity and specific code types (in

this case, a malfunction of the diverter) by mapping codes to wind speed and power

output. Training and testing data were taken from three months of SCADA data

with five-minute resolution from four turbines. Neural Network Ensemble, Standard

Classification, Regression Tree and Boosting Tree Algorithm Difference methods were

found to extract the required information best. Faults were predicted 60 minutes

ahead.

Chen, P. C. Matthews et al., 2013 utilised an a priori knowledge-based ANFIS to

detect pitch faults. Based on six fault cases from two turbines, a knowledge base

was built by finding relationships between rotor speed, blade angle, pitch motor

torque and power output. This knowledge was included in the ANFIS structure

to supplement modelling in cases of insufficient training data. Testing with main-

tenance records of 28 months from 26 turbines in a Spanish farm demonstrated

the advantage of this approach compared to simple alarm counting. For a 21 days’
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prognostic horizon, the model detected 62.2% of the cases that required mainten-

ance. Tests using data from a US wind farm with 160 fixed speed 1 MW turbines

resulted in less accurate fault prognosis however (Chen, P. C. Matthews et al., 2015).

Unclear maintenance reports, missing torque signals and curtailments due to low

grid demands were seen as causes.

Gonzalez, Reder et al., 2016 proposed a categorisation of alarms mapping them to

sub-systems, assemblies and sub-assemblies (or component unrelated) and merged

the alarm data with failure information. Time-sequence and probability-based

analyses were conducted (as in Qiu, Y. Feng, Tavner et al., 2012). In a case study

covering 3 years from 23 turbines of various technologies it was found that the

success of the approach seemed to be dependent on the SCADA system. Case studies

of gearbox and yaw failures demonstrated the capabilities of root cause identification

for cascading alarms.

Leahy et al., 2017 suggested to group alarms in batches for each stoppage event and

stated that attributing this to the first alarm (time-sequence analysis) agrees well

with the maintenance log. A prediction of pitch faults was conducted with Random

Forests showing some potential for successful prediction, although the detection rate

was not sufficiently high for reliable monitoring.

The evaluation of status codes for condition monitoring has been proven to be

beneficial for better alarm assessment. However, the lack of any details concerning

algorithms used in recent commercial products and the differences in status code

generation of different software manufacturers hinders any clear assessment of the

progress achieved in this field.

Using expert systems to interpret alarms or modelling results

Garcia et al., 2006 applied an expert system to assess the output of their ANN

modelling. Manually implemented fuzzy rules were used to diagnose causes of

anomalies. The evolution of health was proposed to be used as a method for the

prediction of remaining lifetime. Planning of maintenance as well as evaluation of

its effectiveness and cost were also discussed. Failure history needed to be available

for proper training of the system.

Cross and Ma, 2015 applied fuzzy inference to their temperature modelling. Trapezoidal

and triangular membership functions based on fixed values for the residual size and

duration were used to generate a three-stage status output.
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Schlechtingen, Santos and Achiche, 2013b proposed an expert system to process their

ANFIS modelling results. Prediction errors were passed to a fuzzy inference system

only if three anomalies were detected by the daily probability threshold during one

week. Triangular membership functions defined by occurrence probabilities and

manual definitions in a master threshold table were used. Manually implemented

fuzzy rules generated three stage condition statements as well as potential root

causes.

H. Li et al., 2013 proposed a fuzzy assessment system, which was tested on a 850 kW
variable speed turbine. A deterioration degree was defined using polynomial func-

tions up to third order of the wind speed for setting normal limits of temperatures.

Trapezoidal and triangular membership functions were used with weights for differ-

ent temperatures to build a fuzzy synthetic assessment system with linguistic results

from ‘excellent’ to ‘danger’. A case study was presented including normal operation,

a gearbox fault and a stop due to a high generator winding temperature.

J. Li et al., 2014 and P. Sun et al., 2016 used a similar framework of fuzzy synthetic

evaluation to assess the results from several ANN models for different targets or

based on different training data. Nine different faults were used for the allocation of

the abnormal level indices to fuzzy memberships. The implementation of weights

considered the share of each ANN model in the ‘health degree’ (J. Li et al., 2014)

and/or the prediction accuracy under normal conditions of the ANN models (P. Sun

et al., 2016).

De Andrade Vieira and Sanz-Bobi, 2013 proposed a risk indicator concept based on

their ANN modelling (Garcia et al., 2006). Residuals of modelling were integrated

over time, if the residual was outside a confidence band. Results of different ANN

models were combined in a weighted sum based on quality of models. A cost-

effective maintenance model was proposed adapted to the ongoing observed life

with a variable threshold depending on a risk indicator growth rate.

Gray, Koitz et al., 2015 suggested abductive diagnosis, i.e. reasoning that forms

possible hypotheses based on examples, to link SCADA errors or modelling results

with expert knowledge. Assessed failure modes, their location, operational mode and

resulting indicator changes were used to create a so-called Propositional Horn Clause

Abduction Problem which is able to provide fault diagnoses using a computational

process.

The usage of expert systems clearly simplifies the interpretation of NBM results.

Health degrees or risk indicators can play an important role in integrating SCADA

condition monitoring approaches in maintenance strategies.
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1.5.6 Performance monitoring

Performance monitoring is usually not only interested in estimating the turbine’s

health, but rather evaluating the power performance which can be used in means of

comparing turbine makes, assessing energy generation for potential sites or control of

turbines. However, it is also applicable to operation of wind turbines and potentially

suited to monitor the condition of the turbine on a higher level.

The common way of addressing the performance, is defined in IEC, 2016 as deriving

a power curve using 0.5 m/s bins of the wind speed and calculating mean values

of the power production for each bin. Improving the method of bins by accounting

for the non-linear power vs wind speed relationship and deriving multiple curves

for different direction sectors has been discussed (Llombart et al., 2005). Other

work compared different types of parametric power curves and found exponential

and cubic equations resulting in the smallest error (Carrillo et al., 2013). Further

non-parametric models have been developed by applying machine learning and

data mining techniques to wind turbine power curves (Kusiak, Zheng et al., 2009;

Jafarian and Ranjbar, 2010; Lydia, Selvakumar et al., 2013; Lydia, Kumar et al.,

2014). Kernel methods and Gaussian Processes have been applied due to their

advantages in handling data with uncertainty and noise (Skrimpas et al., 2015;

Pandit and Infield, 2018).

Other work has also investigated multivariate models, i.e. models that do not only

consider wind speed as an input, but also other signals. Schlechtingen, Santos and

Achiche, 2013a showed the advantage of an ANFIS model considering the ambient

temperature and wind direction. Janssens et al., 2016 discussed a multivariate

model with wind speed, rotational speed, yaw angle, wind direction and pitch angle

as inputs and investigated different models with a focus on tree-based approaches.

It was shown that the benefit of the additional inputs varies for different turbines in

the data set. In case of the univariate model, the IEC method of bins was almost as

accurate as the more advanced k-nearest neighbour model and stochastic gradient

boosted regression trees. The different tree-based models performed showed similar

levels of accuracy in case of multivariate models.

Gonzalez, Stephen et al., 2017 focussed on the failure detection capabilities of

performance monitoring by using raw SCADA data, i.e. 4-second data as sampled by

the system without averaging every 10 minutes. A model-based monitoring approach

was followed with k-nearest-neighbour, random forest and quantile regression forest

models in a multivariate setting. A successful detection of a gearbox problem in

advance of the failure showed promise that the higher resolution data might help in
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predicting failures. However, it was also shown that environmental effects like e.g.

storms show similar anomalies and need to be considered.

Various research in performance monitoring has been dedicated to yaw misalignment

(Marathe et al., 2016), wakes (Mittelmeier et al., 2017), icing (Skrimpas et al., 2015;

Davis et al., 2016) or turbulence and atmospheric conditions (K. S. Hansen et al.,

2012). However, the different causes of underperformance have not been thoroughly

compared or assessed in financial terms. In addition, the impact of operational

decisions has rather been studied with simulations (Martin et al., 2016), instead of

based on performance monitoring.

Performance monitoring is clearly beneficial for assessing the overall condition of

the turbine and some research indicates that failure detection might be possible with

SCADA data of higher resolution. There is also a potential to apply performance

monitoring for optimisation of maintenance strategies and decisions.

1.6 Research problem
Different approaches to utilise SCADA data for condition monitoring of wind turbines

were reviewed in this chapter.

The current state-of-the-art in vibration-based condition monitoring relies on ad-

vanced signal processing techniques and expert assessment. There is little emphasis

on automation of condition monitoring and linking the analysis to SCADA data.

In terms of the SCADA-based condition monitoring, the simple trending of SCADA

data has demonstrated good abilities to detect anomalies. Case specific configuration

and interpretation seem to be required, however. Automated monitoring based on

trending will most likely struggle to be accurate enough and avoid false alarms.

Clustering, as a more advanced technique of finding the differences between normal

operation and anomaly, has the same disadvantage. Additionally, extensive historical

failure data are required, if the methods are able to reliably diagnose failures. It

is unlikely that the full range of fault stages will be available in any training data

period in practice.

Normal Behaviour Modelling (NBM) has been the focus of recent research using

SCADA data for condition monitoring due to the advantage of relatively easy an-

omaly detection using the residual of modelled minus measured variables after

training under normal conditions. Models based on polynomial equations, ANN,

ANFIS or NSET demonstrated good failure detection abilities. However, compre-

hensive comparisons of the techniques are lacking in order to be able to assess
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which technique is best. From the different studies, it is hard to assess whether

a good accuracy and fault detection is based on a certain technique, on the NBM

concept being ARX or FSRC, or even on further detailed settings. However, it is not

satisfactorily shown that the (computational) effort of machine learning techniques

like ANN, ANFIS or NSET is reasonable as only one case study compares linear

modelling with ANN. On the other hand, most publications criticising ANN training

as too time-consuming do not consider the ongoing improvements in computational

resources in common desktop computers. The required detail configuration of ANN

models remains unclear also in consideration of possible overfitting. There is lack of

published NBM performance metrics for different case studies in order to be able

to properly evaluate required effort and performance in terms of normal behaviour

prediction, true failure detections and false alarms for all of the techniques.

The damage modelling approaches show potential for condition monitoring of wind

turbines focussing on physical causes of failures. However, the development of

reliable and accurate damage models for all failure modes of a wind turbine will

be a very difficult task. As only a few studies have been published in this area, the

feasibility of using such models for online monitoring of different turbines, possibly

from different manufacturers and in different locations, cannot be assessed yet.

Status code processing with probabilistic approaches or physical rules shows promise

to condense a large number of alarms into helpful information. However, the studies

reviewed do not discuss recent industrial developments, which might have already

solved the problems discussed. Expert systems with fuzzy inference can be used to

automate interpretation of modelling results and deliver easy to understand outputs.

Complete asset monitoring and maintenance planning will require assessment of

monitoring alarms and decision making as supported by such systems.

Performance monitoring is a powerful tool to analyse variation in the power output

resulting from changes in the environment, operation and possibly condition of the

turbine if data in higher resolution are available. There is also a need to utilise

performance monitoring to assess and compare the different causes of underper-

formance in operational practice as this might help in optimising operation and

maintenance.
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Based on the review presented of recent monitoring approaches with SCADA data,

the research problem is defined in four topics which are addressed in different

chapters of this thesis:

(A) Performance monitoring

• comparing the basic method of bins with a multivariate model in more

challenging conditions, like complex terrain

• assessing different causes of underperformance in operational practice

• investigating ways to optimise maintenance planning based on perform-

ance analysis

(B) Model-based monitoring of temperatures – NBM

• comparing the prediction accuracy of different approaches as many pub-

lications have claimed to have the best solution for SCADA condition

monitoring, but do not comprehensively compare them with other tech-

niques;

• testing approaches using data from a range of different wind farms and

turbine types as most studies have only considered one farm or one wind

turbine manufacturer

• comparing proposed anomaly detection techniques such as using a Ma-

halanobis distance, multiple alarms over a given period, a health degree

based on probability, etc., independent of modelling technique

• refining the assessment of alarms to increase the reliability of the approach

(C) Fusion of SCADA data with vibration data from the CMS system

• investigating how the data from the systems can be merged

• exploring ways to improve failure detection based on the merged data

(D) Automation of condition monitoring

• exploring possibilities to optimise condition monitoring by considering

the whole wind farm as most previous work has developed solutions for

a single turbine

• testing farm-level solutions with different data, such as basic operational

statistics, vibrations or temperatures

The subsequent thesis chapter addresses objective (A) by investigating mainten-

ance optimisation with performance monitoring techniques. Chapter 3 discusses

model-based monitoring of SCADA temperatures with a focus on the two first aspects

of objective (B). The further evaluation of NBM results is discussed in Chapter 4.
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Chapter 5 turns to objective (C) by investigating the condition monitoring capabilit-

ies of combined CMS and SCADA data. Objective (D) is addressed in Chapter 6 with

an exploration of farm-wide condition monitoring techniques. Finally, Chapter 7 con-

cludes this work and lists opportunities for future work that could not be addressed

in the scope of this thesis.

The key contributions of this thesis can be summarised following the objectives (A)

to (D):

(A) • Comparison of various power curves based on the method of bins and

multivariate ANFIS modelling for turbines with high level of uncertainty.

• Development of a framework to analyse the power performance and

investigate hypothetical performance changes in time series.

• Analysis of sensitivity studies of underperformance and financial losses to

support maintenance decision making with a case study on sub-optimal

pitch angles and environmental effects in stall-regulated turbines.

(B) • Comparison of NBM accuracy and failure detection capabilities of linear

models, ANN, ANFIS, multi-adaptive regression splines (MARS), Gaussian

process regression (GPR), support vector machines (SVM) and NSET as

well as four model input cases.

• Assessment of NBM potential with analysis of 5 different farms with

different turbine technologies and various gearbox, generator and bearing

replacements.

• Comparison of various distances and filtering lengths to get clearer warn-

ings from noisy NBM residuals.

• Development and testing of a condition index to describe the risk of

failure with a simple numeric descriptor based on NBM residuals.

• Identification of remaining challenges in NBM as finding the adequate

configuration, inappropriate maintenance documentation and possibly

too many false alarms.

(C) • Development of a framework to merge high-frequency CMS data with

SCADA date for failure detection purposes.

• Analyses of signal relationships in merged data with Hierarchical Cluster-

ing (HC) and Dynamic Time Warping (DTW) distances.

• Demonstration of capabilities of SCADA data to detect drive train prob-

lems after data-driven learning with CMS alarms.

(D) • Test of cumulative statistical approaches on key performance indicators

derived from SCADA data to identify critical turbines in a farm.
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• Development and validation of a novel Distance-based Automated Vibra-

tion Evaluation (DAVE) framework to automate failure detection from

CMS data based on comparisons within the wind farm.

• Proposal and demonstration of a new monitoring concept with Abnormal

Similarity Factor (ASF) and Abnormal Dissimilarity Factor (ADF) to in-

vestigate SCADA signal-to-signal relationships while considering similarly

operating turbines in the farm.

Parts of this work or initial findings have been published in journal articles

• J. Tautz-Weinert and S. J. Watson (2017e). ‘Using SCADA data for wind turbine

condition monitoring – a review’. In: IET Renewable Power Generation 11.4,

pp. 382–394. DOI: 10.1049/iet-rpg.2016.0248,

• J. Tautz-Weinert, N. Y. Yürüşen et al. (2019). ‘Sensitivity study of a wind farm

maintenance decision - a performance and revenue analysis’. In: Renewable

Energy 132, pp. 93–105. DOI: 10.1016/j.renene.2018.07.110

and peer-reviewed conference articles

• J. Tautz-Weinert and S. J. Watson (2016). ‘Comparison of different modelling

approaches of drive train temperature for the purposes of wind turbine failure

detection’. In: Journal of Physics: Conference Series 753. The Science of

Making Torque from Wind (TORQUE) conference, 2016, p. 072014. DOI:

10.1088/1742-6596/753/7/072014,

• J. Tautz-Weinert and S. J. Watson (2017d). ‘Condition monitoring of wind

turbine drive trains by normal behaviour modelling of temperatures’. In:

Conference for Wind Power Drives (CWD 2017). Ed. by A. T. Werkmeister.

Aachen: Dirk Abel, Christian Brecher, Rik W. De Doncker, Kay Hameyer, Georg

Jacobs, Antonello Monti, Wolfgang Schröder [pub], pp. 359–372,

• J. Tautz-Weinert and S. J. Watson (2017b). ‘Challenges in Using Operational

Data for Reliable Wind Turbine Condition Monitoring’. In: Proceedings of the

Twenty-seventh (2017) International Offshore and Polar Engineering Conference

(ISOPE),

• J. Tautz-Weinert and S. J. Watson (2017c). ‘Combining model-based monitor-

ing and a physics of failure approach for wind turbine failure detection’. In:

30th Conference on Condition Monitoring and Diagnostic Engineering Manage-

ment (COMADEM 2017), pp. 239–247,

• L. Colone et al. (2017). ‘Optimisation of Data Acquisition in Wind Turbines

with Data-Driven Conversion Functions for Sensor Measurements’. In: Energy
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Procedia 137. 14th Deep Sea Offshore Wind R&D conference (DeepWind),

2017, pp. 571–578. DOI: 10.1016/j.egypro.2017.10.386,

• N. Y. Yürüşen et al. (2017). ‘The Financial Benefits of Various Catastrophic

Failure Prevention Strategies in a Wind Farm: Two market studies (UK-Spain)’.

In: Journal of Physics: Conference Series 926. WindEurope conference, 2017,

p. 012014. DOI: 10.1088/1742-6596/926/1/012014 and

• E. Gonzalez, J. Tautz-Weinert et al. (2018). ‘Statistical Evaluation of SCADA

data for Wind Turbine Condition Monitoring and Farm Assessment’. In: Journal

of Physics: Conference Series 1037. The Science of Making Torque from Wind

(TORQUE) conference, 2018, p. 032038. DOI: 10.1088/1742-6596/1037/3/

032038.

Furthermore, preliminary results and related work have been presented in conference

contributions and reports

• J. Weinert and S. J. Watson (2015). ‘Wind Turbine Fault Detection by Normal

Behaviour Modelling’. In: Midlands Energy Consortium Postgraduate Student

Conference. Poster. Loughborough, UK,

• J. Weinert and S. J. Watson (2016). ‘Condition monitoring by neural network

modelling of drive train temperature’. In: 12th EAWE PhD Seminar on Wind

Energy in Europe. Poster. Lyngby, Denmark,

• R. Ibrahim, J. Tautz-Weinert et al. (2016). ‘Neural networks for wind turbine

fault detection via current signature analysis’. In: WindEurope Summit 2016

Proceedings. Hamburg, Germany,

• E. A. Andicoberry et al. (2016). 1st Joint Industry Workshop Scientific report.

Tech. rep. 642108. Melero, J. J., M. Muskulus and U. Smolka (editors), pp. 1–

43. URL: http://awesome-h2020.eu/2016/02/20/1st-joint-industry-

workshop-scientific-report/ (visited on 05/06/2018) and

• J. Tautz-Weinert and S. J. Watson (2017a). ‘How can we use operational data

for condition monitoring of wind turbines?’ In: 13th EAWE PhD Seminar on

Wind Energy in Europe. Poster. Cranfield, UK.

A further journal paper has been submitted for publication (M. Reder, J. Tautz-

Weinert et al. (2018). Automated Fault Detection Algorithms for Wind Turbines using

CMS and SCADA Data. Tech. rep. Journal paper in submission).
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2Maintenance optimisation through

performance monitoring

In this chapter, the capabilities of operational data are explored in terms of analysing

the power performance of turbines and investigating the financial impact of imperfect

maintenance in comparison with environmental effects.

Case studies based on real data can give an insight into the complexity and sensitivity

of decisions that simulation tools cannot provide. Here, a sensitivity study is conduc-

ted to analyse a maintenance decision in a Spanish onshore wind farm, namely a

preventative blade repair to avoid catastrophic failure. The intervention caused a

temporary underperformance of the turbine. The energy losses are quantified in a

performance analysis and revenue is evaluated with a discounted cash flow. Possible

alternatives to the decision taken are investigated and compared with the sensitivity

to environmental effects such as icing and wind directional distribution. The impact

of country characteristics such as electricity prices, subsidies and taxes is discussed

and compared for three countries: Spain, UK and Netherlands. 2

2.1 Introduction
To analyse the impact of maintenance decisions, the wind turbine performance

has to be evaluated. The industrial solution of assessing the performance is the

method of bins (IEC, 2016). However, it is of interest whether multivariate modelling

can improve the assessment. The proposed adaptive neuro-fuzzy inference system

(ANFIS) from Schlechtingen, Santos and Achiche, 2013a serves as a good benchmark

due to the fact that the authors provided metrics scaled to the turbine rated power.

The performance analysis in this chapter focusses on quantifying losses due to

imperfect maintenance in comparison with environmental causes such as icing

(Davis et al., 2016).

2This chapter is based on a collaboration with Nurseda Yildirim Yürüşen (CIRCE / University of
Zaragoza). We were equally responsible for the development of the idea and conducting the
research, but Nurseda’s expertise was used for to the financial setup and re-analysis data (NCEP),
whereas I was more responsible for the maintenance and performance analysis. Preliminary results
were presented in Yürüşen et al., 2017. Content from this chapter has been published in Renewable
Energy (Tautz-Weinert, Yürüşen et al., 2019). Findings of this study will also be part of Nurseda’s
PhD thesis entitled ‘Wind Farm Management Decision Support Systems for Short Term Horizon’.
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If the financial impact of underperformance is to be analysed, the details of the

income generation need to be considered. Most European wind farms sell electricity

to the electricity market and/or might get some form of country-specific subsidy. In

general, electricity markets are based on the selection of the generation with the

lowest marginal costs, also known as merit order. In many cases, there are wholesale

electricity markets for different temporal dimensions such as forward and future,

day-ahead and intra-day markets. In this study, day-ahead market data are used. The

day-ahead market is often a spot market with contracts for energy generation in an

hourly time resolution. Spot markets can differ by country, e.g. half hourly trading

in the UK, the use of flexible block lengths in the Netherlands and the possibility

of complex bids for generators with e.g. load gradients and scheduled stops in

Spain (Roldan-Fernandez et al., 2016; APX Group, 2017). Although, there has been

recently some attempt to harmonise and liberalise state aid in the EU (European

Commission, 2015), there are still various subsidy frameworks for wind energy in

force such as fixed feed-in tariffs, premiums, green certificates and tax exemption

rules (International Energy Agency, 2017).

2.2 Case study data
The study is conducted based on data from a Spanish wind farm with stall-regulated

turbines with a rated power of 900 kW which were commissioned in 2002. The

turbines are located on ridges in complex terrain at altitudes of approximately 1500 m.

One turbine is selected for this analysis, but the observations are representative for

many turbines in the farm. Figure 2.1 illustrates the farm layout. An assessment of

the terrain according to IEC, 2017 with the slopes of three planes fitted with the

selected turbine (0 to 5, 5 to 10 and 10 to 20 times the turbine diameter, respectively)

is given in Figure 2.2. It can be seen that the terrain slopes are mostly higher than

10 % with values up to 30 % for some sectors. The selected wind turbine has wake

free sectors for 93° to 210° and 306° to 355°, with the latter corresponding to the

predominant wind direction as shown in Figure 2.3.

Available operational data consist of SCADA records and meteorological (met)

mast measurements from mid-2012 to mid-2017 as collected by the wind farm

operator. Missing information is approximated with data from a met station at

approx. 35 km distance (AEMET, 2017) and NCEP reanalysis results for the turbine

location (Kemp et al., 2012). The financial studies are conducted with hourly

day-ahead electricity market prices from the European Network of Transmission

System Operators, 2017 and interest rates given by the Organisation for Economic
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Figure 2.1.: Overview of wind farm with selected turbine and met mast location highlighted
(anonymised map, not all turbines shown).
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Figure 2.2.: The terrain complexity for
the selected turbine.

Figure 2.3.: Wind rose for the selected
turbine and July 2012 – May
2017.
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Table 2.1.: Summary of case study data

Category Variable Resolution

Turbine SCADA Wind speed mean 10 min
Wind speed variance 10 min
Active power mean 10 min
Ambient temperature mean 10 min
Generator speed mean 10 min
Nacelle direction mean1 10 min

Wind farm met mast Pressure 10 min2

Met station Pressure3 1 day4

NCEP Relative humidity (at 850 mbar) 6 hours
ENTSOE Day-ahead market price Spain 1 hour

Day-ahead market price UK 1 hour
Day-ahead market price Netherlands 1 hour

OECD Consumer price index 1 month
Long-term interest rate 1 month

1: Approximation for unavailable wind direction.
2: Incomplete data for 2013, 2014 and June 2016.
3: Substitute for missing data, altitude corrected.
4: Average of daily minimum and maximum recording.

Co-operation and Development, 2016. The data variables used are summarised in

Table 2.1.

Maintenance has been documented in service reports and unstructured comments

in spreadsheets. A simplified summary of the maintenance history for mid-2012 to

2015 is given in Table 2.2 excluding routine services. The major interventions are the

replacement of the blades in May 2015, illustrated in Figure 2.4, and a re-pitching of

the blades in September 2015. For optimal performance, wind turbine blades need

to be installed with a precise pitch angle to achieve the desired aerodynamic lift and

stall for the respective wind speeds. A variation of one degree or less might already

strongly affect the performance. This task is even more challenging due to variations

in blades caused by manufacturing deviations. Accordingly, it is observed that in the

current industry practice for stall-regulated turbines, blades are often replaced with

a pitch angle which does not result in the desired aerodynamic behaviour. In the

subsequent months the operator checks the performance with a focus on matching

the designed rated power of the generator in high winds. Then a re-pitching takes

place to generate more lift to increase the power output or to reduce the lift in

order to limit the load and decrease the power output in high winds. In the farm

investigated, the re-pitching was required to increase the power output. Re-pitching

of blades is feasible from inside the nacelle without a crane. This optimisation

procedure is currently based on the technician’s experience and involves a degree of

‘trial and error’.
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Table 2.2.: Maintenance history of the investigated turbine

Number Date Type Event

1 09/2012 Repair Brake pad replacement
2 05/2013 Inspection Blade inspection
3 07/2013 Repair Anemometer replacement

07/2013 Inspection Main bearing inspection
4 09/2013 Repair Blade repair on site
5 04/2014 Repair Tower repair
6 08/2014 Repair Communication repair
7 10/2014 Repair Converter repair
8 05/2015 Major repair Preventative blade replacement

05/2015 Repair Repair of brake pumps
9 09/2015 Optimisation Re-pitching of blades

Figure 2.4.: Photograph of a blade replacement in the wind farm investigated (copyright,
CETASA).
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2.3 Methodology
This study aims to analyse the detailed impact of a blade replacement. The impact is

evaluated by firstly analysing the power performance with respect to the maintenance

history. Subsequently, a what-if sensitivity study is conducted in which different

maintenance timing scenarios are compared in terms of the energy generated and

the net present value of a cash flow for the maintenance investment and revenue

from energy generation.

2.3.1 Performance monitoring

Performance monitoring of wind turbines is different to monitoring other machines,

as the expected power is fluctuating and a function of the unobserved wind speed in

front of the turbine. To properly analyse the efficiency of the turbine, environmental

effects should be first excluded. The most critical assessment of the turbine’s per-

formance is usually conducted in the period after the installation of the machine,

based on additional met masts, and standard procedures (IEC, 2017). In operation,

wind farm owners might focus on collecting the turbine’s power production, nacelle

wind speed and temperature data inside the turbine as maintaining met masts and

meteorological sensors over the turbine’s lifetime is costly. Consequently real ambi-

ent temperature, pressure, relative humidity, precipitation and icing data might not

be recorded continuously. Guidance on performance evaluation based on nacelle

measurements and influencing external effects is given in the dedicated IEC standard

(IEC, 2016). However, these procedures are not necessarily applied in practice and

detailed guidelines for pre-processing data are lacking.

The IEC power curve (IEC, 2016) can be derived by calculating mean values of the

electrical power production for each 0.5 m/s bin of the wind speed covering all wind

speeds from cut-in until cut-out (or up to the highest bin with at least three samples).

This procedure generates a look-up table for the power curve. Sufficient data from

representative operation are needed to derive a power curve representing all seasons.

If different power curve modelling techniques shall be compared, a second period

is required for validation of the prediction performance. Two periods of one year

were identified that were at least affected by maintenance intervention: September

2013 to August 2014 (training) and October 2015 to September 2016 (validation).

It should be noted that this implies that the validation takes place after the blade

replacement of the turbine, but a better test case was not feasible. Evaluation of

2.3 Methodology 44



model performance is usually assessed by evaluating (some of) the following metrics

for an original variable x and its approximation x̂, with n samples each:

• Mean Error (ME), based on the arithmetic mean as

ME = 1
n

n∑
i=1

xi − x̂i (2.1)

• Standard Deviation (SD) of the error, describing the variation with

SD = σ(x− x̂)

√√√√ 1
n− 1

n∑
i=1

((xi − x̂i)−ME)2 (2.2)

• Mean Absolute Error (MAE), focussing on the absolute error with

MAE = 1
n

n∑
i=1
|xi − x̂i| (2.3)

• Mean Absolute Percentage Error (MAPE), a relative error as

MAPE = 100 %
n

n∑
i=1

∣∣∣∣xi − x̂ixi

∣∣∣∣ (2.4)

• Root-Mean Squared Error (MAE), an alternative to the MAE as

RMSE =

√√√√ 1
n

n∑
i=1

(xi − x̂i)2 (2.5)

• Coefficient of Determination, R2, ranging from 0 to 1 with higher values

indicating a better fit, with σ2(x) as the variance of x, i.e. the square of the

standard deviation:

R2 = 1− σ2(x− x̂)
σ2(x) (2.6)

The power curve errors in the validation period were derived by comparing the

power production with the power curve value for the respective wind speed bin.

The overall error was calculated as the weighted average of all bins, considering the

number of samples in each bin.

The prediction accuracy of the models was evaluated with metrics scaled to the

turbine rated power as proposed in Schlechtingen, Santos and Achiche, 2013a, i.e.

the scaled mean absolute error (sMAE) = MAE / rated power. Scaled mean error
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(sME), root mean squared error (sRMSE) and standard deviation (sSD) are derived

with the same normalisation.

If the wind speed is measured on the top of the nacelle, the characteristics of the

flow are changed due to the interaction of the turbine itself, though some attempt

is often made to adjust measurements using a nacelle transfer function during the

certified power curve testing at a test site. Procedures to generate a ‘free-stream’

wind speed from nacelle measurements require an initial calibration with a met-mast

(IEC, 2016), but this is not necessarily feasible for a farm in complex terrain.

The air density affects the generated power linearly and a correction of the power to

a reference density might be appropriate. Air density is usually indirectly derived

with supporting variables such as pressure, temperature and relative humidity. The

IEC standard (IEC, 2016) derives the air density ρ by

ρ = 1
T

(
B

R0
− φPw

( 1
R
− 1
Rw

))
(2.7)

with the pressure B , the absolute Temperature T (Kelvin), the relative humidity

φ, the gas constant dry air R0 (287.05 J K/kg), the gas constant of water vapour

Rw (461.5 J K/kg) and the vapour pressure Pw as a function of the temperature

(0.0000205 exp(0.0613846T )).

Alternative equations have been proposed that partially allow a calculation of the

air density with fewer variables. Griffiths, 2016 give an approximation based on

standard pressure and an altitude correction as

ρ = B∗

R0∗T
((1− φmol)wair + φmolwwater) (2.8)

with the molecular weight of air wair (28.9645 g/mol) and the molecular weight of

water wwater (18.015 28 g/mol). The location pressure B∗ is defined by

B∗ = Bsea(1− 2.25577 · 10−5h)5.25588 (2.9)

with the constant sea level pressure Bsea (101 325 Pa) and the mole fraction of water

in air φmol as

φmol = 105 · 10(A1−A2/(A3+T−273.15))φ (2.10)

with the Antoine coefficients (A1 = 4.6543, A2 = 1435.264, A3 = 208.312).
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Figure 2.5.: Trend of air density based on IEC formulation, Equation 2.7.

Olauson and Bergkvist, 2015 propose an approximation of the air density with

reference values from sea level converted to the altitude of interest h by

ρ = ρ0T0
B0T

Bsea∗e
− Mg

R0∗T ≈ 0.003484Bsea∗
T

e−
0.003416h

T (2.11)

with subscript ‘0’ and ‘sea’ for standard conditions and sea level, respectively, and the

mole-based gas constant R0∗, molar mass of air M and gravitational acceleration g.

The sea level pressure Bsea∗ is a time series (here taken from NCEP re-analysis data).

Soetaert et al., 2016 use the simplified formulation based on pressure and temperat-

ure as

ρ = B

R0T
(2.12)

If necessary, missing data might be complemented by nearby meteorological stations

and atmospheric re-analysis databases such as NCEP (Nieto et al., 2004). Where

humidity, temperature or pressure measurements are missing or incomplete, air

density calculations rely, in the case of this farm, on secondary information as listed

in Table 2.1.

A short analysis of the air density was conducted with data from 2013 to 2016.

Applying the IEC equation resulted here in a mean air density of 1.0219 kg/m3 with

a standard deviation of 0.0274 kg/m3 (note the altitude of approx. 1500 m). The

trend of air density is shown in Figure 2.5.

Table 2.3 shows the deviation of various density estimations by giving the MAPE

with respect to the IEC. It can be seen that the densities are similar, with errors

below 1 % for two of the other definitions although they use fewer inputs. Figure 2.6
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Figure 2.6.: Differences in air density due to varying calculation.

shows the relative deviation of the alternative to the IEC equation. Here it is visible

that the air density time series based on Equation 2.11 has a strong offset which

might be introduced by the re-analysis pressure.

The impact of density on the power production can be corrected with a factor using

the instantaneous density ρ in 10 min resolution and a constant reference density ρ0

as

Pn = P
ρ0
ρ

(2.13)

with P as the power production in 10 min resolution and Pn as the density-corrected

power production (IEC, 2016). The improvement of the power curve accuracy

if using density correction can be evaluated by comparing the power curve error

in the validation period. Here, the density correction is applied to training and

validation data with the ρ0 as the mean air density of the training period. The mean

IEC air density for the training and validation period derives as 1.0256 kg/m3 and

1.0168 kg/m3 (−0.86 %). The observed variation of air density resulted in power

correction of the ten-minutely samples up to +7 % or −8 %.

In the investigated case, density correction did not result in any improvement of the

power curve accuracy, but actually increased the sMAE as shown in Table 2.3. This

might be due to the use of secondary information for relative humidity and pressure.

Based on these findings, it was decided to omit density correction in the further part

of this study.
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Table 2.3.: Comparison of air density formulations

Approach Dependency Density MAPE Power curve sMAE

none - - 4.0743 %
IEC, 2016 f(T,B, φ) Reference 4.1489 %
Griffiths, 2016 f(T, φ, h) 0.7250 % 4.0745 %
Olauson and Bergkvist, 2015 f(T,B∗, h) 19.216 % 4.1162 %
Soetaert et al., 2016 f(T,B) 0.4580 % 4.1529 %
T : ambient temperature, φ: relative humidity, h: altitude, B: pressure, B∗: sea level pressure.

Table 2.4.: Comparison of icing exclusion rules

Rule Validation period Icing month
Events sMAE Events sMAE

None 0 4.0743 % 0 12.4162 %
(i) 2928 3.3613 % 1659 6.5669 %
(ii) 1673 3.8017 % 751 9.2723 %
(iii) 1632 3.6145 % 1231 6.8574 %
(iv) 35 4.0647 % 41 12.1840 %

Periods that coincide with icing of blades should be filtered in advance of any

power performance analysis (IEC, 2016). Since precipitation and icing data are not

available in this case study, four exclusion rules were studied as defined in Equation

2.14 with a logical icing paramter α(t) as a function of time t and u, as the nacelle

wind speed.

α(t) =



1, if T (t) < 2 ◦C, rule (i)

1, if T (t) < 5 ◦C ∧ φ > 90 %, rule (ii), (METEOTEST, 2016)

1, if T (t) < 2 ◦C ∧ φ > 80 %, rule (iii), (MEASNET, 2009)

1, if f(T (t), φ(t), u(t)) > 0, rule (iv), (Kann et al., 2009)

0, otherwise

(2.14)

Table 2.4 shows the number of icing events and the resulting power curve perform-

ance for the validation period and a month where icing probably occurred (February

2015). It can be seen that for the validation period, a whole year of data, the

exclusion rules filtered from 35 to 2928 events (equivalent to 0.2 to 20.3 days) with

decreasing rejection from rules (i) to (iv). The best power curve performance was

seen for rule (i) with the most stringent filtering in both validation period and icing

month. However, rule (iii) showed a similar sMAE while rejecting a smaller number

of samples. Accordingly, rule (iii) was used for this study as a more complete data

set is preferable.
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The wake of neighbouring wind turbines might slightly affect the performance due

to changed turbulence, but the study is not limited to the sectors that are unaffected

by a wake in order to get a complete picture of the turbine’s performance in reality.

Further environmental effects on the wind turbine performance are wind turbulence

and gusts, wind shear and atmospheric stability, three-dimensionality of flow and

topographic effects. These effects are rarely measured or analysed in operation, but

may have a significant impact (Wagner et al., 2009; St. Martin et al., 2016).

A standard power curve based on the method of bins was compared with two mul-

tivariate versions of the method of bins considering seasonality and wind directions,

respectively. The seasonality is addressed by deriving one power curve for each

three-month season, i.e. December to February, March to May, June to August and

September to November. The effect of wind direction was considered by classifying

in 12 wind direction sectors, i.e. 30° each, and deriving an individual power curve

for each one. The overall error for multiple power curves for seasons or directions

was calculated as a weighted average from the quarterly or directional curves with

respect to the frequency of occurrence.

Furthermore, the ANFIS model as proposed in Schlechtingen, Santos and Achiche,

2013a was reproduced with four configurations addressing the same multidimen-

sional characters of performance:

a) Univariate model: wind speed

b) Multivariate model: wind speed, temperature

c) Multivariate model: wind speed, nacelle direction

d) Multivariate model: wind speed, temperature, nacelle direction

All ANFIS models were configured with a grid partition of the input data and three

bell shaped membership functions per input. A linear membership function was used

for the model output, the power production. The hybrid least-squares estimation

and back-propagation solver was applied with stopping criteria as 10 epochs or a

training error of zero. The calculation of the validation errors was based on a time

series comparison as the models generated full time series instead of a look-up table.

2.3.2 Sensitivity study setup

What-if studies were conducted to analyse the financial impact of a maintenance

intervention with the main consequence of underperformance due to a sub-optimal

pitch angle. This underperformance was studied by changing the delay of the
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optimisation and the timing in the year. In addition, scenarios with downtime,

i.e. total losses, were analysed to better assess the significance of losses. The

financial consequences were compared with results of performance changes due to

variations of environmental conditions, namely icing occurrence and wind direction.

The impact of country characteristics was evaluated by comparing Spain, UK and

Netherlands with different taxes and subsidies.

Decisions on the financial viability of various projects are usually made based on

a Net Present Value (NPV) calculation using a discounted cash flow (Berk et al.,

2013). The most profitable option derives then from the option with the highest

NPV considering all expenditure and income. The NPV is calculated as

NPV (i,N) =
N∑
t=0

Ct
(1 + i)t (2.15)

with t as time step, C as the cash flow, i as the interest rate and N as the total

number of time periods. Common time steps are one year, one quarter or one month.

A monthly cash flow was established in this case to consider the timing in the year.

The financial evaluation was set with a cash flow focussing on the maintenance

action, the blade replacement and the re-pitching of blades. As the real cash flow

in a wind farm is very complex and case specific, a simplified chronology was used

with an initial investment for the repair costs which was paid off in the subsequent

years. The acquisition of the turbine was neglected and all generated income was

utilised to balance the maintenance expenses. The utilised energy sales were limited

to two years to consider that in reality income is not only used for the maintenance

costs. The resulting cash flow was not realistic in terms of the final NPV, but serves

for a relative comparison. The repair costs were back-dated to 2014 as spare blades

needed to be acquired before the actual repair could take place. Energy sales were

considered starting from May 2015 as this period covers the blade replacement.

For the baseline of the sensitivity study, the energy production in the two years

was taken as recorded by the SCADA system without any filtering except for invalid

signals. For the study of the various conditions, such as correcting to normal perform-

ance, underperformance due the sub-optimal pitch angle, icing and performance

for certain wind directions, the power production was modified by conducting the

following steps:

1. Define power curve for normal performance (reference) and each applicable

condition of the turbine (see section 2.4.2)

2. Check which conditions apply in the investigated time period
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3. Interpolate power production according to reference power curve with wind

speed measurement

4. Interpolate power production according to power curve for first applicable

condition with wind speed measurement

5. Derive difference of interpolated power production as power correction

6. Check for applicability of power correction: turbine must be in operation and

the actual production must not be higher than the respective value in the

power curve for this condition in case of power increase. In case of a power

decrease the actual production is not allowed to be lower than the power curve

of the condition.

7. Filter the correction to allow only up to 5 % deviation from the new power

curve (with only upper limit for power increase and only lower limit for power

decrease)

8. Repeat steps 4-7 for all conditions and apply the power correction resulting in

the lowest power production for each time step.

This procedure was undertaken to avoid that the power performance was modified

to idealistic behaviour strictly following power curves. Instead the procedure should

make sure that the original variability in performance due to further (unaccounted)

effects remained. It also ensured that the worst power curve was applied if multiple

causes of underperformance happened simultaneously.

The performance modifications due to different maintenance scenarios were purely

calendar-based. For the investigation of different timings of the intervention in

the year, the duration of the underperformance was unchanged, i.e. the underper-

formance was only ‘shifted’ by a number of months. Scenarios involving additional

icing were set by applying the condition to the dates with lowest temperatures. The

variation of the turbine performance related to wind direction was applied only to

the two selected wind direction sectors (representing the main wind directions).

Figure 2.7 shows an exemplary workflow for the generation of the scenarios with

varying optimisation delay. The manipulation of the power production signal is

further visualised in Figure 2.8.

In the next step, income was generated by applying the power production to the

electricity prices. Production values were grouped to fit the hourly time resolution

of the market data. A monthly cash flow was established considering the inflation

and interest rates. Figure 2.9 shows the trends of electricity prices, consumer price

index and long-term interest rates for the investigated years.
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Figure 2.7.: Workflow for manipulation of power production. Solid lines represent workflow,
dashed lines represent flow of data.
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Figure 2.9.: Monthly financial parameters: (a) Electricity price average and spread (note
that UK maximums up to 999 GBP/MWh are not shown), (b) long-term interest
and (c) inflation rate.

The comparison of country dynamics was implemented under the assumption that

the market prices were not correlated to the wind conditions of the country. To

justify this assumption, the Kendall correlation of the electricity market price with the

wind energy production as given by the European Network of Transmission System

Operators, 2017 is shown in Table 2.5. In addition, the correlation of the market

price with the wind speed at the location of selected large onshore wind farms

(Spain: Marachon, Netherlands: Westereems, UK: Whitelee) taken from NCEP is

given. It can be seen that wind speed and wind energy production are both negatively

correlated with the market prices. The correlation is somehow significant in Spain,

but negligible in Netherlands and UK. That means that applying Netherlands and

UK electricity prices to a Spanish farm with possibly different wind speeds, should

not introduce significant bias. Investigating UK country characteristics requires a

conversion of the initial investment from EUR to GBP. The final NPV results are

converted back to EUR for comparability. A fixed exchange rate of 1 EUR = 0.7871

GBP as the average from May 2014 to May 2017 was used for both conversions.

The taxable income can be calculated by deducting expenses from energy sales and

thus depends on the operator’s financial situation. For simplicity, corporation tax

was applied to 10 %, 20 % and 30 % of the sales revenue. The tax rate varies in the
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Table 2.5.: Correlation of market prices p (EUR), onshore wind production ew (MW), and
wind speed v (m/s) for 2015.

Country p ew v

Spain p 1 −0.371 −0.279
ew 1 0.535
v 1

Netherlands p 1 −0.121 −0.079
ew 1 0.570
v 1

UK p 1 −0.145 −0.068
ew 1 0.452
v 1

countries being 25 % to 28 % for Spain, 25 % in Netherlands and 20 % to 21 % for UK

depending on the year (European Commission, 2017).

Simplified subsidies were applied based on the farm commissioning date of 2002. In

Spain, two schemes had been available for the operator to choose: a fixed feed-in

tariff of 77.47 EUR/MWh or a premium based tariff with a guaranteed rate of 75.41

EUR/MWh and an upper cap of 89.87 EUR/MWh. Both subsidy schemes were

investigated separately. Although subsidy schemes are available in the Netherlands,

the combination of the commissioning date and the age of the farm resulted in no

subsidies for 2015–2017. In UK, the Renewable Obligation scheme were applicable

for this farm with one issued certificate per generated MWh. The monthly lowest

auction price for the certificates recorded by the Non-Fossil Purchasing Agency, 2017

was applied as a premium.

2.4 Performance analysis
Different modelling approaches were compared in a first step of the performance

analysis. Thereafter, the evolution of performance was analysed by discussing power

curves for various conditions.

2.4.1 Comparison of different power curve models

A clear impact of the different wind directions can be identified in Figure 2.10 for

power curves obtained by the method of bins for individual wind direction sectors in

the training period as described in section 2.3.1. The turbine shows better perform-

ance when the wind is from south to east and is slightly underperforming when the

wind is from northerly directions. It could be imagined that underperformance is
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Figure 2.10.: Power performance for different wind direction sectors.

linked to more inhomogeneous winds due to wakes and terrain. However, the farm

layout does not give a straightforward clue as northerly wind directions are linked

to fewer wakes and less steep terrain slopes (cp. Figure 2.2). It is possibly that this

the effect caused by different wind shear and turbulence due to local weather and

winds. (Argandoña et al., 2003). An analysis of the turbulence intensity estimated

from the wind speed variance and mean shows 10.74 % for the northerly winds and

15.92 % for the south-easterly winds, i.e. better performance with higher turbulence.

However, it can be questioned whether the measurements of the nacelle anemometer

give a good picture of the turbulence in front of the rotor as the rotor will affect the

measurement and only horizontal velocity is measured.

A seasonal variation of the performance can be seen in Figure 2.11 with a comparison

of quarterly power curves in the training period. The performance is lower in summer,

but similarly high for winter, spring and autumn. An obvious cause would be the

seasonal variation of the air density. However, the illustrated behaviour remains

similar if the previously discussed density correction is applied and is also visible

in other years. The analysis of estimated turbulence intensity based on the nacelle

anemometer can not fully explain this effect (autumn: 12.76 %, spring: 12.35 %,

summer: 13.98 % and winter: 15.63 %). It is possible that this effect is caused by

differences in atmospheric stability, which cannot be identified due to the lack of

appropriate measurements.

The prediction errors for the different univariate and multivariate models as in-

troduced in Section 2.3.1 are given in Table 2.6 for the validation period (using

weighted averages for grouped power curves). It can be seen that different rankings
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Figure 2.11.: Seasonal variation in
power performance.

Figure 2.12.: Power curve uncertainty
shown with 5 and 95 per-
centiles for each bin.

Table 2.6.: Prediction errors of approaches (as percentage of the turbine rated power).

Model sMAE sME sRMSE sSD

Method of bins 3.6145 -0.4111 6.8775 6.6700
Quarterly method of bins 3.4427 -0.6267 6.5605 6.1583
Directional method of bins 3.0902 -0.6348 6.5983 5.9494
ANFIS a: wind speed 3.4767 -0.3647 6.7972 6.7875
ANFIS b: wind speed, temperature 3.4283 -0.5776 6.5470 6.5216
ANFIS c: wind speed and direction 2.9188 -0.6219 6.4825 6.4527
ANFIS d: wind speed and direction, temperature 2.8991 -1.0687 6.4304 6.3411

ANFIS d in Schlechtingen, Santos and Achiche, 2013a 1.60 - 2.30 2.30

of the models emerge for the various metrics. There is a marginal improvement

for quarterly and directional power curves for all metrics except sME, though it

should be stressed that these models may not satisfactorily predict the power for

the entire range of wind speeds. For example, 1 % of predictions are undefined for

the directional power curves as they did not see certain higher wind speeds in the

training dataset. The different ANFIS models show lower errors when considering

temperature and wind direction for most metrics. However, there is no significant

benefit of using the ANFIS model instead of the method of bins.

The ANFIS prediction errors (scaled to the turbine rated power) from Schlechtingen,

Santos and Achiche, 2013a are added to Table 2.6 for comparison. It is apparent that

they achieved far lower errors, although it has to be noted that this was obtained

from a pitch regulated turbine and fewer data. Other research attempting to model

power curves for small stall-regulated turbines showed a clearly higher sMAE of

5.3 % of rated power (S. Li et al., 2001).

In conclusion, it can be seen that the power curve of this turbine shows a large

degree of spread in power output at higher wind speeds as shown in Figure 2.12 for

the reference of the method of bins. This uncertainty is not sufficiently addressed

by any of the models used. Accordingly, the simple method of bins is used for the

subsequent part of the study.
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2.4.2 Performance in different conditions

The derived reference power curve can be used to assess the evolution of the power

performance. In Figure 2.13 the performance is illustrated for July 2012 until April

2017 by showing the monthly averaged deviation of power produced per wind

speed bin. For this visualisation, the pre-processing included only filtering of invalid

signals and non-operation. The maintenance interventions listed in Table 2.2 are

marked and labelled with the corresponding number. The power curve is based

on the performance within the marked training period. The majority of the bins

and months appear to show a slight underperformance of approx. 10 %. There

are several periods with power curve deviations of up to −50 % (red–black colour).

Performance significantly better than the reference is however limited (green–blue).

High deviations from the power curve at lower wind speeds are not necessarily

significant for the overall performance due to the low amount of energy in this

region. In addition, wind speeds are not uniformly distributed across the bins, i.e.

the underperformance in a frequently occurring bin is financially more important

than if the turbine is not fulfilling the expectation in an infrequent wind speed bin. To

better address the significance of underperformance, Figure 2.14 shows the monthly

deviation from the expected energy. It can be seen that the losses are as high as four

rated power hours per wind speed bin and month. The apparent underperformance

in May to June 2013 was probably caused by a faulty anemometer which was

replaced in the subsequent month (maintenance intervention 3). In February 2015 a

significant energy loss is recorded, but disappears if possible icing is filtered according

to rule (iii) in Equation 2.14 as shown in Figure 2.15. A third underperformance is

clearly visible in May 2015, i.e. after the blade replacement, but before the blade

re-pitching (maintenance interventions 8 and 9). Noticeably, the energy loss in June

to August is not as high as in May although the re-pitching did not take place before

September 2015. The relative deviation from the power curve remained however

high (cp. Figure 2.13). This can be explained by the lower wind speeds, i.e. less

expected energy, in June to August 2015.

For the sensitivity study, several power curves were derived representing certain

performance conditions. The first additional curve was generated for the sub-optimal

pitch angle by selecting data between maintenance interventions 8 and 9. A second

power curve was built for icing underperformance by using all icing events in the

training period according to rule (iii) in Equation 2.14. Two further power curves

were defined to analyse the effect caused by the differences in performance of wind

directions, here with sectors of 45° for north-northwest (NNW) and west-southwest

(WSW). Figure 2.16 shows the resulting power curves in the various conditions. Icing
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Figure 2.13.: Deviation from power curve per month.

Figure 2.14.: Deviation from expected energy per month.

Figure 2.15.: Icing-filtered deviation from expected energy per month.
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Figure 2.16.: Power curves for several conditions.

Table 2.7.: List of evaluated scenarios.

Category Scenario group Baseline value Tested values

Maintenance timing Optimisation delay 141 days 0, 30, 180 days
Additional downtime 0 days 15, 30, 60, 90 days
Shifting of the intervention 0 months 1, 2, 3, ... 12 months

Environmental condition Icing 19.7 days 0, 26.7, 33.7, 40.7 days
Wind direction 124/203 days WSW/NNW 327 days WSW, 327 days NNW

Country dynamics Country Spain Netherlands, UK
Taxed revenue 0 % 10 %, 20 %, 30 %
Subsidy no scheme 1, scheme 2

and the sub-optimal pitch angle result in large losses in wind speeds above 10 m/s,
whereas the wind direction affects mostly the lower wind speeds. It should be

noted that these power curves are only intended for conducting a what-if sensitivity

study, but are not necessarily accurate representations of the performance as the

uncertainty is significant.

2.5 Sensitivity study results
The sensitivity study discusses what-if scenarios for the effects of maintenance timing,

environmental conditions and country dynamics as listed in Table 2.7.

2.5.1 Effect of maintenance timing

In a first step, the effect of maintenance timing was investigated. Therefore, the

baseline, which represents a delay in the optimisation of 141 days (May to Septem-

ber), was compared with scenarios of varying optimisation delay, additional down-

time and shifting of the intervention (as listed in Table 2.7). Figure 2.17 compares
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Figure 2.17.: Effect of maintenance timing – energy

the energy generated over the two years for the various scenarios. Here, the en-

vironmental conditions are unchanged from the baseline, i.e. original blade icing

and wind direction properties. Figure 2.18 gives NPV for the scenarios based on

Equation (2.15) with baseline country dynamics, i.e. Spain, no tax and no subsidy

applied.

It can be seen that a direct optimisation (after 0 days) increases the NPV from

102,549 EUR for the baseline to 104,683 EUR (+2,130 EUR). In contrast, 180 days

delay in optimisation result in an NPV of 101,812 EUR (−737 EUR). More dramatic

losses are seen for downtime with a NPV reduction to 86,805 EUR (−15,740 EUR) for

90 days of downtime. The relative change of the NPV per day of underperformance

or downtime is shown in Figures 2.19 and 2.20. It can be seen, that the NPV

change per day is not constant, but varies with the length of underperformance or

downtime, which can be explained by varying wind speeds. Downtime results in an

NPV change per day that is approx. ten times larger than the respective loss for the

underperformance of the sub-optimal pitch angle.

The results of shifting the (preventative) maintenance intervention to different

months in the year showed that a shift to one month later (underperformance from

June to October) results in more energy generated due to the high winds in May,

but all other shifts are less favourable (see Figure 2.17). Applying the electricity

market dynamics changed this finding, as shifts of 1, 2, 9, 10 or 11 months result in

a higher NPV than the baseline (see Figure 2.18). The gain for 11 months shift as

the best solution is comparable to a delay in optimisation of only 60 days (instead of

141 days for the baseline).
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Figure 2.18.: Effect of maintenance timing – NPV
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Figure 2.19.: Sensitivity of NPV to optim-
isation delay.

Figure 2.20.: Sensitivity of NPV to down-
time.

2.5 Sensitivity study results 63



95 96 97 98 99 100 101 102 103 104 105 106

NPV compared with baseline (1000 EUR)

  0d

 180d

Optimisation delay

 15d

 30d

Downtime

  0d

26.7d

33.7d

40.7d

Icing

WSW

NNW

Wind direction

Figure 2.21.: Effect of environment on NPV. Selected maintenance timing scenarios added
for comparison.

2.5.2 Effect of environmental conditions

The effects of environmental variations are shown in Figure 2.21 in comparison

with the baseline, which represents 19.7 days of icing and wind direction fractions

of 17.36 % for WSW (124 days) and 28.27 % for NNW (203 days). It can be seen

that icing-free conditions result in an increase of the NPV that is comparable to the

maintenance timing scenario with only 30 days’ delay in the optimisation. Again, it

can be seen that the losses due to icing are not fully proportional to the length of

icing due to the varying wind resource (relative NPV change per day of −0.0486 %
to −0.0139 %).

The change in the performance for certain wind directions has a very strong effect.

If the NNW performance is applied to all winds from NNW and WSW, the NPV

is decreased to a value that is even lower than 15 days of added downtime. If

the better performance of WSW is used, a higher NPV is achieved than for all

other discussed scenarios. The relative NPV change is however similar to the

other underperformances with an NPV change per day of 0.0154 % and −0.0184 %,

respectively.

2.5.3 Effect of country dynamics

It was found that consideration of taxes and subsidies did not significantly change the

NPV variation due to underperformance, but mainly affected the value representing

the baseline in terms of maintenance timing and environmental conditions. The
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Table 2.8.: Effect of corporation tax and subsidies on NPV for each country, baseline main-
tenance timing and environmental conditions.

Country Taxed revenue (%) Subsidy type NPV (1000 EUR)

Spain 0 none 102.5
10 none 97.9
20 none 93.3
30 none 88.7
0 premium 214.9
0 fixed 221.7

Netherlands 0 n/a 104.1
10 n/a 99.7
20 n/a 95.3
30 n/a 90.8

UK 0 none 150.7
10 none 145.3
20 none 139.8
30 none 134.4
0 premium 151.0

summary in Table 2.8 shows that higher NPV were seen for UK and Netherlands

compared to the baseline of Spain. As expected, the higher the percentage of taxed

revenue, the lower the NPV. Applying Spanish subsidy schemes results in an NPV

larger than two times of the baseline value. However, the effect of the UK subsidy is

less significant.

The slight effects of the country dynamics on the relative change of the NPV due

optimisation delay are shown in Figure 2.22 for selected scenarios. For most scenarios

a trend to lower NPV losses per day of underperformance can be observed if the

absolute NPV is higher than the baseline. However, this is not true for the comparison

of Netherlands with the baseline. Here, the absolute NPV is higher for Netherlands,

but the daily NPV loss is slightly bigger than in Spain.

Figure 2.23 summarises the results of the maintenance shifting for the different

settings indicating that the ranking of the best options varies somewhat. In all cases,

a shift of 1, 2 or 11 months gives a higher NPV than without shift.

2.6 Discussion and conclusion
O & M of a stall-regulated turbine in complex terrain was analysed using SCADA

data, maintenance logbooks, electricity market prices and financial indicators such

as interest rates. Performance monitoring was established based on the industrial

standard, the method of bins. However, the obtained power curve showed significant
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Figure 2.22.: Sensitivity of NPV to delay in optimisation for different frameworks and coun-
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uncertainty. Density correction was investigated but failed to improve the accuracy

of the power curve compared with actual data. Underperformance due to blade icing

was identified by applying rules based on the temperature and relative humidity. The

simple method of bins was subsequently compared with variants for split seasons or

wind directions and also multivariate ANFIS models. The metrics for the validation

data showed that although the various models had differing accuracies, no clear best

model was identifiable. The analysis of the performance during nearly five years of

operation revealed several periods of underperformance which were traced back to

a replacement of the anemometer, blade icing and most importantly a sub-optimal

pitch angle after a preventative replacement of blades. This underperformance can

be considered as a direct consequence of a maintenance decision and was selected

for a detailed scenario analysis to explore possibilities of optimising O & M.

A discounted cash flow was established balancing the maintenance cost with en-

ergy sales revenue. The resulting NPV was used to compare various scenarios of

different lengths of underperformance. It was shown that the financial losses of

each ten days of underperformance due to the sub-optimal pitch angle account

to a value comparable to approx. one day of downtime. In the case investigated,

any investment in direct optimisation that is less than 2,130 EUR would pay off.

Possibly, such optimisation could be implemented by blade angle determination with

image-capturing. Alternatively, careful monitoring of the power performance in a

shorter period before optimising the pitch angle might be a good compromise. If

high wind speeds are observed, monitoring of one week might be sufficient.

Furthermore, the timing of this preventative maintenance intervention was invest-

igated. It was tested whether there was potentially a better date to do change the

blades by applying the underperformance at various starting points throughout a

year. The results indicated that the timing was nearly optimised in terms of the

seasonal wind resource trends. However, if electricity prices were considered, a

shifting to earlier spring appeared to be more profitable. Although it was attempted

to represent the complex cash flow as realistic as possible, these findings were

based on some significant simplifications that might affect the final optimisation. A

comparison of country dynamics highlighted the challenge a multinational operator

might face, namely to prioritise maintenance if owning farms in various countries.

For the case studied, electricity market prices were higher in the UK and Netherlands

compared to Spain with a reversed trend if subsidies were considered.

The sensitivity of the financial results to environmental uncertainty was investigated

by testing scenarios with varying length of icing and testing performance variations

due to wind directions. The results indicated that these effects change the NPV
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significantly. A lack of information about environmental conditions was identified

to analyse this further. Measuring turbulence intensity and wind shear would be

essential to understand the trends observed.

In conclusion, this study highlighted the complexity of a single maintenance decision.

It was demonstrated how operational data can be used to quantify power losses due

to various causes and optimise decision-making in maintenance.
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3Model-based monitoring of

temperatures

SCADA data often include temperature signals from different locations in the wind

turbine nacelle, in particular the drive train and the subassemblies gearbox and

generator. In this chapter, the usage of these signals is discussed by applying a

model-based monitoring approach as introduced in Chapter 1.

The development of condition monitoring based on operational data is highly de-

pendent on historical data to validate and test proposed algorithms. For this section,

data from four different wind farms is introduced and discussed in terms of the

quality and appropriateness for such studies. The case studies are used for a com-

prehensive comparison of possible modelling techniques such as various variants

of linear models, artificial neural networks, adaptive neuro-fuzzy inference system,

multi-adaptive regression splines, Gaussian process regression, support vector ma-

chines and non-linear state estimation. Four different input settings are tested for

each modelling technique while predicting a gearbox temperature. The performance

of all configurations is compared for normal behaviour – where the least error is

advantageous – and in the case of nine gearbox replacement throughout the farms –

where the earliest and clearest failure indication is crucial. 3

3.1 Introduction
The heat flow in a wind turbine nacelle gives valuable information about the efficien-

cies of the sub-assemblies and parts. Assuming stationarity, any change in thermal

losses is caused by changed efficiencies, which could indicate wear and possible

imminent failure (Y. Feng, Qiu et al., 2013). As the wind turbine is a complex system

of interacting forces and systems, measured temperatures are affected by multiple

factors such as the non-stationary wind speed, turbulence and gusts, wind turbine

control, unsymmetrical blade loading due to wind shear and heterogeneous wind

fields, power curtailment with pitching, heating based on ambient temperature and

sunshine, natural convection, conduction, oil cooling systems, thermal inertia effects,

etc. Accordingly, temperature signals from drivetrain parts are non-stationary and

3Preliminary results from this chapter have been presented in conference papers Tautz-Weinert and
Watson, 2016; Tautz-Weinert and Watson, 2017d; Tautz-Weinert and Watson, 2017b
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Figure 3.1.: Example of gearbox temperature fluctuation in power production mode (farm
Beta)
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Figure 3.2.: Example of gearbox temperature variation in a farm (farm Beta).

might vary significantly in normal operation as shown in Figure 3.1. The complex

interaction might be turbine-specific not only because of differing wind speeds, but

also due to other effects such as the quality of lubrication or individual control

settings. A comparison of temperatures in a farm is given in Figure 3.2.

High temperature warning systems are commonly implemented in SCADA systems

for emergency shutdown to prevent damage by overheating. In terms of condi-

tion monitoring however, temperatures are often seen as giving alarms too late

in comparison with common vibration-based monitoring (Tchakoua et al., 2014).

However, higher temperatures may be seen well in advance, as shown in Figure 3.3

and Figure 3.4. High temperatures could occur due to extreme loads, temporary

malfunctions or as a result of an ongoing degradation and imminent failure. Careful

analysis and adequate monitoring approaches are required to provide reliable alarms.

Recent research has shown that monitoring of the temperature behaviour can indeed

give early warnings, possibly even earlier than vibration-based systems (Bangalore

and Tjernberg, 2015).

Model-based monitoring is an approach to identify problems in a system by com-

paring measurements with model outputs. This general tool has been used for

supervision and failure detection in many applications such as e.g. drives, actuators,
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Figure 3.3.: Example of anomalously high gearbox temperatures 80 days before replacement
of the gearbox (farm Beta, turbine 4).

Figure 3.4.: Relationship of gearbox temperature and active power, in the case of a gearbox
replacement (farm Beta, turbine 4).
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machines and plants (Isermann, 2011) and is also known as Normal Behaviour

Modelling, Virtual Clone, Digital Twin or by similar derivations describing a real

system which is monitored with an artificial model.

Although the basic heat generation in the drivetrain can be traced back to mechanical

and electrical losses as a function of the acting wind and the rotational speed (as

discussed in Section 1.5.1), the system is affected by more complex interaction of

effects which make analytical modelling difficult. Some research has investigated

physical models to monitor selected sub-systems (Qiu, W. Zhang et al., 2015; Borch-

ersen and Kinnaert, 2016). However, challenges in reliable failure detection and the

variety of configurations became visible.

Garcia et al., 2006 introduced data-driven model-based monitoring approach to

wind turbine SCADA temperatures. Data-driven monitoring bears the risk of being

only representative for the trained conditions and ‘black-box’ behaviour, i.e. lacking

transparency and causality for the developed model. The advantage of data-driven

models can be seen in the flexibility and power of models which can be set up with

little resources and without detailed knowledge of system specifications.

Several works proposed new techniques and discussed case studies for data-driven

monitoring of wind turbine drivetrains (Garlick et al., 2009; Zaher et al., 2009;

Schlechtingen and Santos, 2010; Schlechtingen, Santos and Achiche, 2013b; Ban-

galore and Tjernberg, 2015; P. Sun et al., 2016). However, further research is

required to compare the different modelling techniques and configurations, verify

approaches using data from different farms and investigate the early warning capab-

ilities. This chapter systematically addresses these objectives based on case study

data as described in the next section.

3.2 Case study data
Data from wind farms were available for four different locations as listed in Table

3.1. Full details of the farm specifications and real names cannot be revealed due

to commercial interests. Although the turbines were from different manufacturers,

all turbines were geared, variable speed and pitch controlled. The turbines covered

the 1.5 MW and the 2-3 MW classes and operated onshore. The turbines were

equipped with typical SCADA systems, but with varying level of detail, i.e. number

of sensors. In general, configuration followed Table 1.1 and temperature sensors can

be assumed to be placed on housings of bearings, gears etc. as sketched in Figure 1.4

for accelerometers. All data consisted of recorded averages for each ten minutes,

presumably from measurements sampled every second or few seconds. Maximum,
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Table 3.1.: Investigated wind farm data.

Farm Location Capacity Turbines Years Temp. signals Major replacements

Alpha USA 1.5 MW 108 0.5 7 Unknown
Beta UK ≈2 MW 12 2.5 16 5 gearboxes, 3 generators, 5 generator bearings
Gamma Europe ≈2 MW 25 3.0 10 2 gearboxes, 7 generator bearings
Delta Europe ≈2 MW 11 4.7 19 2 gearboxes, 6 generator bearings

minimum and standard deviation of measurements were also available in certain

cases.

The records investigated ranged from only half a year to nearly five years and

from 11 to 102 turbines in a farm. The number of valid temperature signals per

turbine varied from 7 to 19. Reports of replacements were available for three of four

farms indicating several major replacements of gearboxes, generators and bearings.

Although data from farm Alpha were not supported by sufficient reports for failure

detection analysis, the modelling performance could be tested and compared based

on the SCADA data.

3.3 Data quality
Retrospective failure detection based on operational data was conducted with two

main types of information: SCADA records available in an SQL database or spread-

sheets and a service record in a spreadsheet. The data quality of both SCADA records

and the maintenance documentation from real wind farms can be challenging.

Although signals in SCADA records are usually named, the labelling of the signals is

not necessarily sufficient for clear identification of the sensor properties. As there

is neither a common set of available signals nor a generally accepted taxonomy,

different SCADA systems use different names and abbreviations. Although unam-

biguous signals like the power output, wind speed, blade pitch angle etc. are always

easily identifiable, other signals require more details for complete identification. In

particular, the location of temperature sensors is often insufficiently described. In the

data investigated, the labelling ranged from only numbering all temperature sensors

(e.g. temperature 2, farm Beta), giving the name of the subassembly (e.g. gearbox

temperature, farm Alpha), specifying a part type in a subassembly (e.g. gearbox

bearing temperature, farm Gamma) to providing approx. location of the sensor at a

part (e.g. gearbox bearing high speed shaft gearbox [vicinity / side], farm Delta)

and thereby following the semantics in the standard IEC, 2007. Even in the farm

with the most detailed labelling, the locations were open to interpretation: e.g. there

are two generator bearing sensors labelled 1 and 2 or oil temperatures are labelled

basis, level 1 and 2. Detailed knowledge of the turbine configuration or a technical
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Figure 3.5.: Example of gearbox temperature fluctuation in power production mode (farm
Gamma, turbine 6, high speed bearing)

drawing including the sensor locations would certainly ease the analysis but was

not available for this work. Reasons can be found in insufficient documentation and

confidentiality issues applicable to academic studies with commercial data.

SCADA systems usually record with 1 Hz sampling frequency and store an average

and possibly maximum, minimum and standard deviation for each window of

10 minutes. Most systems round temperatures to integers in this process (farms

Beta-Delta). Data from farm Alpha however, contained temperatures as decimal

numbers with a higher probability of integers. A possible cause might be the

averaging of integer measurements of 1 Hz which remain mostly constant over 10

minutes. Temperature measurements based on thermocouples can be expected to

have measurement errors up to approx. 1 ◦C, if resistance temperature detectors

were used the accuracy would be rather approx. 0.1 ◦C. In addition, mounting

errors could result in further inaccuracies. The IEC standard demands a combined

uncertainty of less than 3 ◦C for the ambient temperature measurement (IEC, 2016).

The accuracy of other SCADA parameters is also affected by mounting, calibration

and measurement precision. Uncertainties of up to 0.15 m/s and 3 % can be expected

for wind speed, whereas the power output has an uncertainty of approx. 0.6 %
and wind directions might have sensor misalignment of 2° and data acquisition

uncertainty of approx. 0.1° (IEC, 2016). Detailed specifications are not available for

the sensors used.

Although missing, invalid and poorly processed data hinder the analysis, the most

serious problems are caused by inconsistencies. Any change in the behaviour of a

sensor might be interpreted as a change of the monitored part. In data from farm

Delta, changes of the maximum occurring values can be observed as shown for

example in Figure 3.5.

Sensor specifications or detailed information about the operation were not available.

It is assumed that the step observed in June could be caused by unreported mainten-
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ance or a change in control and operation. An actual change of the performance of

the monitored part without any interaction by the operator is unlikely due to the

rapid change. Additionally, the temperatures in the illustrated example are lower

after the step, i.e. the losses would be reduced which is contrary to the effects of

wear. To allow analysis if inconsistencies occur, data should be split into windows

without steps which are investigated separately. A systematic way of detecting steps

might be required for automated splitting and applying the training and testing

procedure of normal behaviour modelling.

Insufficient documentation plays a major role if monitoring techniques are evaluated

with real data. The service record consisted in the investigated case study of a list

of stoppages in the best case (farm Beta). Comments were added only for major

replacements or occasionally for other maintenance actions describing the reason

for the stoppage time. Assumed reasons for replacements and interpretations of

alarms, stoppages and inspections were generally missing. Accordingly, the list of

replacements was not a list of failures. Replacements could have been done as

preventative interventions or after a failure which had caused the turbine to stop.

Additionally, the time of replacement was not necessarily the time of the failure

or the detection of the failure. For the other investigated data, the failure record

consisted only of a list of replacements (farm Gamma and Delta) or was not available

at all (farm Alpha).

Although it can be assumed that the operator or service provider has always full

access to all reports, the shortcoming of incomplete or incomprehensible service re-

ports is widely acknowledged. Accordingly, service providers are currently focussing

on the digitisation of reporting and implementation of procedures to improve the

data quality e.g. by using mobile devices for documentation (Deutsche Windtechnik,

2018).

Monitoring techniques based on operational data have to be developed and tested

with real data. It is very rare to get data of good quality and complete information

in terms of turbine and sensor specifications or operation and maintenance reports.

As this will be true for industrial application as well as for research, any modelling

technique has to cope with incomplete information. However, the impact of data

quality problems should be carefully considered when findings are generalised.

3.4 Comparison of modelling techniques
Several data-driven modelling techniques are compared in this section in terms of

their prediction performance.
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Figure 3.6.: SCADA target temperature prediction in three different configurations.

3.4.1 Model structure and input selection

A temperature signal for the gearbox was selected as target for each farm. This was

‘bearing A’ signal for farm Alpha, temperature ‘no. 6’ – a signal related to gearbox

problems for farm Beta, a gearbox bearing temperature for farm Gamma and a

gearbox bearing temperature on the high-speed shaft side of the gearbox for farm

Delta.

Three different model structures were investigated as sketched in Figure 3.6. In a Full

Signal Reconstruction (FSRC, term introduced by Schlechtingen and Santos, 2010)

setting the model works without information about the target variable, whereas the

closed AutoRegressive with eXogenous input (ARX) configuration uses the prediction

of the previous time step (t− 1) and the open ARX approach utilises the history of

the target itself.

In this study, a selection of modelling inputs based on correlation of signals is in-

vestigated. The correlation gives a statistic for the relationship of two data sets. If
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Pearson correlation is used, linearity and a Gaussian distribution are assumed. Other

statistics include Kendall and Spearman correlation which investigate monotonic

relationships without assuming linearity. Pearson correlation coefficients range from

−1 to 0 and +1, representing negative correlation, no correlation and positive cor-

relation, respectively. It is based on the covariance (cov) of the two sets normalised

by the standard deviations (σ), i.e.

ρx,y = cov(x, y)
σ(x)σ(y) = 1

n− 1

n∑
i=1

(
xi − x̄
σ(x)

)(
yi − ȳ
σ(y)

)
(3.1)

with the signals x and y, their means x̄, ȳ and the number of samples n. Four cases

were discussed for selecting the exogenous inputs:

a) two inputs based on the strongest correlation with the target signal in training

time

b) three inputs based on the strongest correlation with the target signal in training

time

c) mean power output and mean rotational speed

d) mean power output, mean rotational speed and additionally ambient temper-

ature.

The automatic selection of inputs for cases a) and b) was turbine-specific, i.e. each

turbine could select a different input signal. Table 3.2 shows the details of the

configurations. It can be seen that the automated selection chose temperature sig-

nals in the proximity of the target sensor such as Bearing B Temperature for farm

Alpha, Temperature 3 in farm Beta (which is believed to be linked to the gearbox),

the Gearbox oil temperature in farm Gamma and various gearbox temperatures

in farm Delta. There is the possibility that these highly correlated inputs behave

like the monitored target temperature and accordingly cannot represent the normal

behaviour in faulty conditions. This risk needs to be evaluated by comparing these

cases with the cases c) and d) without temperature signals as inputs. However, even

th power and rotational speed signals in cases c) and d) might have correlations up

to 0.92 as shown in Table 3.3. In addition to the signals next to the target sensor, the

automated approach chose other SCADA parameters such as ambient temperature

(farm Alpha) or rotational speeds (farms Beta and Gamma). Interestingly, occasion-

ally ten-minute maximums were chosen instead of the averages of generator speeds

or power. The aforementioned limitations of the sensor specifications apply, and

some signals cannot be fully identified.

All models were trained with 3 months’ data and the normal behaviour prediction

performance was evaluated by blind testing with further 3 months’ data. Initial tests
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Table 3.2.: Overview of selected inputs for gearbox temperature modelling in cases a) and
b) showing a share of how often the signal was chosen in the farm and the
mean correlation if selected in case b).

Farm Signal Share case a) (%) Share case b) (%) Correlation (-)

Alpha Bearing B temperature 99 100 0.89
Ambient temperature 41 42 0.83
Generator 1 temperature 39 73 0.81
Generator 2 temperature 21 79 0.81
‘Tran’ temperature 0 6 0.85

Beta Temperature 3 (gearbox?) 92 92 0.95
Generator speed 67 92 0.88
Temperature 15 17 33 0.88
Temperature 4 (generator?) 17 33 0.87
Generator speed max 8 17 0.88
Generator speed min 0 17 0.88
Power max 0 8 0.85
Wind speed 0 8 0.89

Gamma Gearbox oil temperature 100 100 0.96
Rotor speed 92 100 0.92
Rotor speed max 8 72 0.91
Rotor speed min 0 28 0.90

Delta Gearbox high speed, generator temperature 100 100 0.99
Gearbox high speed, mid temperature 55 91 0.97
Gearbox oil temperature 46 100 0.96
Generator bearing 2 temperature 0 9 0.94

Table 3.3.: Mean correlation of chosen inputs for gearbox temperature modelling in case
d).

Farm Signal Correlation (-)

Alpha Power 0.52
Generator speed 0.43
Ambient temperature 0.73

Beta Power 0.76
Generator speed 0.88
Temperature 2 (ambient?) -0.06

Gamma Power 0.72
Rotor speed 0.92
Ambient temperature 0.08

Delta Power 0.89
Generator speed 0.82
Ambient temperature -0.11
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Table 3.4.: SCADA signal validity check.

Signal type Lower limit Upper limit

Wind speed mean / minimum / maximum / standard deviation 0 35 / 35 / 50 / 10 m/s
Pitch / Yaw / Nacelle angles 0 360°
Active power output mean / maximum / minimum 100 kW slightly above rated power
Temperatures 0 180°C (or lower if more details are known)
All others Based on common extrema or Schlechtingen, Santos and Achiche, 2013b

with varying training lengths confirmed that this selection has a good compromise

of accurate prediction and data loss. Automated re-training was not applied in this

comparative study due the short testing time and less prominence of steps in the

selected signals.

3.4.2 Pre-processing

Signals must be checked for their validity to exclude outliers with unphysical values.

In the absence of detailed turbine and measurement specifications, validity checks

were implemented based on the limits described in Table 3.4. Filtering of down-time

events is beneficial to improve the modelling accuracy and was implemented by

checking the power output against a small value as e.g. 100 kW (P. Sun et al., 2016).

Interpolation of missing values (Bangalore, Letzgus et al., 2017) was not applied,

but resulting effects were considered in the post-processing (as detailed below).

Multiple signals in the database might be empty or invalid for long periods. To avoid

losing a significant amount of data, exclusion of a whole sample with all signals was

conducted based on checking only the signals used in the model.

3.4.3 Modelling techniques

The most promising modelling techniques in published studies and further techniques

and variations were selected for a comparison. The focus of the comparison was on

FSRC modelling due to the risk of adapting to new trends in case of ARX approaches.

Closed ARX, open ARX and a similar approach were only tested with a single

technique.

The objective of model-based monitoring of temperatures is a typical regression

task from a computer science perspective. Classification and regression are common

approaches to identify the affiliation of data samples to a category or number,

respectively. These techniques are supervised, i.e. the relationship is learned in a

training phase where the target category or number is given. In this thesis, mostly

regression problems are discussed. There are various advanced techniques for

regression such as Artificial Neural Networks, Support Vector Machine, Gaussian

Process Regression, Adaptive Neuro-Fuzzy Inference Systems, etc.
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Support Vector Machine (SVM) classification can be explained in a simplified way as

finding the hyperplane separating two classes while maximising the margin between

points. Only the samples which define the margin, the support vectors, are required

for further classification. ε-SVM regression aims in a similar way for a maximum

error ε while preferring a flat regression (small coefficients). The linear model is

usually extended to non-linearity by using kernels.

Multi-adaptive regression splines (MARS) are a tool for stepwise regression that is

based on linear models, but automatically adapts for non-linearities. The final model

is a weighted sum of basis functions, which can be a constant, a ‘hinge’ function or a

product of multiple ‘hinge’ functions. A ‘hinge’ function is here the difference of the

variable and a constant or 0 if the former is negative.

Gaussian process regression (GPR) is a probabilistic method based on the general-

isation of Gaussian distributions to Gaussian processes, where function properties

are described. Covariance functions (or kernels) control the properties of Gaussian

processes. Regression with Gaussian processes uses weighted averages of known

values, which can also be described as Bayes inference with prior distributions over

functions.

Nonlinear State Estimation Technique (NSET) is a regression approach based on a

state memory matrix of inputs. The NSET algorithm uses a product of the memory

matrix and a weighting vector to estimate each new operational state. The weighting

vector can be determined using a least squares approach for minimising the residuals

of estimated and measured output utilising a Euclidean distance operator. To find a

good compromise of better accuracy for more states and reasonable computational

effort for fewer states, P. Guo et al., 2012 proposed a data selection algorithm. The

algorithm requires a distance less than δ away from a regular grid of 100 sections of

the normalised input.

Various other regression techniques could also be used, such as k-nearest neighbour,

random forests or the simpler linear and polynomial regression. This comparison

could not cover all possible modelling techniques as a wide variety of variants are

available. Instead, models already proposed for this purpose and most popular al-

ternatives were compared. The following modelling configurations were investigated

in a MATLAB implementation:

• LIN – Linear with an intercept and linear terms for each input. Ordinary least

squares are used for fitting (similar to Schlechtingen and Santos, 2010).

• LINi – Linear with interactions as variation of LIN allowing additionally

products of inputs.
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• LINf – Linear with features in stepwise regression. Cube root, square root,

square, cube and logarithm of each input were fed additionally to the model

(as proposed in Dienst and Beseler, 2016). Backward stepwise regression

was applied to reduce the model size based on the sum of squared residuals.

Intercept and linear terms were allowed for the model itself.

• ANN1 – A feed-forward Artificial Neural Network with 10 neurons with a

hyperbolic tangent sigmoid (tansig) transfer function in one hidden layer. 80%

of the training data were used for the actual ANN training and the remaining

for validation. Internal pre-processing included a scaling to the range of −1 to

1. Training was conducted with Levenberg-Marquardt backpropagation until

one of the training parameters is reached with 10 validation check fails, a

performance gradient of 10−7 or 1000 epochs as the most important criteria

(similar to e.g. Kusiak and Verma, 2012). Three models were trained for each

run due to the randomness of ANNs and the risk of finding local minima.

• ANN2 – ANN as above, but with 20 neurons in the hidden layer.

• ANN5 – ANN as above, but with 50 neurons in the hidden layer.

• ANNh – ANN as above, but with two hidden layers with 20 neurons each.

• ANFIS – Adaptive neuro-fuzzy inference system with two generalized bell-

shaped membership functions per input and a linear output (similar to Schlechtin-

gen, Santos and Achiche, 2013b). Training in hybrid least square and back-

propagation until 10 epochs or an error of 0.

• MARS – Multi-adaptive regression splines with the ARESLab toolbox (Jekab-

sons, 2016) and a maximum of 21 basis functions and maximal interactions

set to 2 to enable products of hinge functions (similar to Tan and Z. Zhang,

2016).

• GPR – Gaussian Process Regression with a constant basis function and a

squared exponential kernel.

• SVM – Support Vector Machine with a Gaussian kernel function and a Sequen-

tial Minimal Optimisation solver.

• ANNc – ANN in a closed ARX configuration with a feedback of the previous

time step and 20 neurons in the hidden layer (similar to e.g. Bangalore,

Letzgus et al., 2017). All other settings as above for ANN; 3 models trained.

• NSET – Nonlinear State Estimation Technique with a δ of 0.001 in the selection

algorithm, implemented according to P. Guo et al., 2012.

• ANNa – ANN in open ARX setting using the previous time step from the target

measurement as feedback (similar to P. Sun et al., 2016). All other settings as

above for ANN; 3 models trained.
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Figure 3.7.: Example of post-processing filtering

3.4.4 Post-processing and metrics

Only turbines without known major replacements were considered for the evaluation

of the prediction performance. For farm Alpha turbines with extraordinarily long

down times were excluded in the absence of more detailed information. Predictions

from 102, 7, 18 and 6 turbines remained for the performance evaluation for farms

Alpha, Beta, Gamma and Delta, respectively.

Due to the pre-processing of the signals used, the time series might consist of

originally incoherent samples, i.e. a signal with gaps in the time which were deleted.

This can cause jumps in the target, prediction or finally the residual signal. In

the post-processing, the target, prediction and residual time series were checked

for jumps of 5 ◦C. In Figure 3.7 it can be seen that samples after gaps are only

excluded if the temperature has changed significantly. Using this approach enables

the removal of high, but unphysical residuals while keeping the loss of information

as low as possible.

To evaluate the normal prediction performance, performance metrics and statistical

parameters were calculated from the residual of each turbine. The mean absolute

error (MAE), root mean square error (RMSE), standard deviation (STD), coefficient

of determination (R2) and the kurtosis (k) were used. In case of multiple ANN

models with identical settings, the best metric value was selected for each turbine.

3.4.5 Normal Behaviour Modelling results

The normal prediction performance of the different modelling techniques was com-

pared with evaluating metric values in box plots. Figure 3.8 shows the MAE box

plots for farm Alpha and the four input cases. Figures 3.10 to 3.12 represent farms

Beta, Gamma and Delta, respectively. The box plots illustrate the distribution of

turbine metrics for each farm. The interquartile range is shown with a box and the
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median value with an inner horizontal line. Whiskers show the range up to minimum

and maximum, but are limited to 1.5 times the interquartile range (99.3 percent

coverage for normal distribution). All values outside these limits were considered

as outliers and marked individually. Marks at the top dashed line indicate outliers

outside the scale of the graph and are supported with a label giving the number of

truncated outliers. For farms Beta and Delta, box plots might mislead due to the

limited sample size, i.e. small number of turbines. Whiskers are not displayed here

and all turbines’ values are given with dots for easier interpretation. In addition to

the MAE box plots, median values of all metrics are given in Tables 3.5 to 3.8 for

the four farms. Figure 3.9 shows examples of very accurate predictions for a single

turbine in all farms and linear models. Further time series examples are given in

Figures A.1 to A.12 in the Appendix.

Predicting normal behaviour of farm Alpha resulted in an MAE of approx. 1 ◦C to

8 ◦C for most FSRC techniques and input case a). There were only small differences

in the median MAEs, which range from 2.08 ◦C for ANN1 to 2.56 ◦C for SVM. The

closed ARX implementation ANNc, however, failed to predict the target (median

MAE of 20.06 ◦C). In contrast, the other ARX techniques gave median MAE values as

low as 0.22 ◦C and 0.40 ◦C for NSET and ANNa, respectively. If the different input

cases were compared, for the majority of techniques case b) was most accurate,

followed by case a) which was nearly as accurate. Case d) had a higher error

than case a), but was clearly better than case c), where MAEs of the order of 10 ◦C
indicated that prediction of the target failed. The ranking of the cases is identical

for all techniques except SVM, NSET and ANNa. For SVM, case b) was worse than

a) and for the NSET and ANNa very similar median MAEs were seen with a slight

improvement for case c) and d) for NSET and ANNa, respectively. The median

kurtosis indicated that the residual distributions of ARX techniques were dominated

by outliers (k >15). Further high values of the kurtosis were seen for the cases of

SVM and ANN5 modelling. Among the configurations with low MAEs, ANFIS in case

a) had the lowest median kurtosis, followed by LIN in cases a) and b).

If the different variants of modelling techniques are compared, the results indicate

that LINi was slightly better than LIN. LINf showed marginal advantages compared to

LIN, but these diminished if RMSE and STD were also considered. The performance

of all ANN configurations was similar, but the accuracy decreased with an increasing

number of neurons and added complexity. The overall best prediction for FSRC

techniques in farm A was found for the ANFIS model and case b) with a median

MAE of 1.91 ◦C, an RMSE of 2.75 ◦C, an STD of 2.08 ◦C and an R2 of 0.91. However,
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Figure 3.8.: Prediction performance of different techniques – farm Alpha.

3.4 Comparison of modelling techniques 84



Table 3.5.: Median metric results – farm Alpha.

Technique Case MAE (°C) RMSE (°C) STD (°C) R2 (-) k (-)

LIN a) 2.47 3.25 2.40 0.87 4.88
b) 2.25 3.14 2.16 0.88 4.90
c) 11.35 12.99 6.28 0.30 2.82
d) 3.10 4.20 2.69 0.80 3.50

LINi a) 2.23 3.01 2.13 0.89 4.98
b) 2.01 2.80 1.95 0.92 5.21
c) 11.34 13.01 6.26 0.30 2.84
d) 3.01 4.09 2.66 0.81 3.89

LINf a) 2.25 3.22 2.27 0.89 5.52
b) 2.04 3.07 2.18 0.89 5.92
c) 11.02 12.71 6.21 0.31 2.96
d) 3.10 4.16 2.71 0.80 3.53

ANN1 a) 2.08 2.98 2.23 0.90 6.23
b) 1.92 2.80 2.20 0.90 6.34
c) 9.66 11.72 6.83 0.22 2.44
d) 3.07 4.21 2.86 0.80 3.85

ANN2 a) 2.16 3.37 2.40 0.88 7.88
b) 2.00 3.06 2.35 0.89 8.81
c) 9.30 11.53 6.75 0.22 2.47
d) 3.14 4.29 2.83 0.79 3.95

ANN5 a) 2.45 3.82 2.79 0.83 10.34
b) 2.09 3.48 2.58 0.86 9.82
c) 9.16 11.49 6.84 0.21 2.47
d) 3.13 4.39 2.98 0.77 4.34

ANNh a) 2.26 3.55 2.68 0.86 8.92
b) 2.09 3.42 2.61 0.87 9.26
c) 8.80 11.10 6.75 0.19 2.45
d) 3.22 4.43 2.93 0.78 4.12

ANFIS a) 2.12 2.93 2.15 0.89 4.69
b) 1.91 2.75 2.08 0.91 5.14
c) 10.49 12.15 6.22 0.32 2.75
d) 2.82 3.93 2.51 0.82 4.12

MARS a) 2.15 3.30 2.39 0.88 6.92
b) 2.07 3.05 2.30 0.88 7.07
c) 9.98 11.72 6.33 0.30 2.88
d) 3.03 4.17 2.77 0.81 3.81

GPR a) 2.36 3.62 2.70 0.86 7.87
b) 2.20 3.55 2.75 0.86 9.78
c) 8.62 10.77 6.53 0.27 2.63
d) 3.04 4.26 2.85 0.79 3.83

SVM a) 2.56 4.29 3.12 0.81 10.19
b) 2.73 4.63 3.34 0.81 10.31
c) 10.25 12.04 6.34 0.31 2.74
d) 3.37 4.80 3.28 0.75 4.94

ANNc a) 20.06 23.23 8.13 0 2.86
b) 15.06 17.80 8.25 0 3.28
c) 16.29 19.15 9.37 0 3.00
d) 14.90 17.87 7.67 0 3.17

NSET a) 0.22 0.43 0.36 1.00 16.84
b) 0.25 0.47 0.38 1.00 18.51
c) 0.18 0.45 0.41 1.00 34.59
d) 0.24 0.51 0.44 1.00 23.62

ANNa a) 0.40 0.70 0.57 0.99 15.31
b) 0.37 0.60 0.47 0.99 17.47
c) 0.36 0.59 0.44 1.00 15.23
d) 0.33 0.53 0.38 1.00 16.15
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Figure 3.9.: Examples of good prediction performance of linear modelling techniques –
input case a).
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it has to be noted that the 75 % percentile of the turbine’s MAEs using ANFIS was

clearly higher than for ANN1 with a similarly small median MAE.

The results of the 7 turbines in farm Beta showed improved prediction perform-

ance for all techniques compared to farm Alpha. All FSRC techniques resulted in

comparable accuracy in case a) with median MAEs ranging from 1.06 ◦C for ANN5

to 1.18 ◦C for LIN and LINi. NSET and ANNa showed median MAEs of 0.26 ◦C and

0.58 ◦C, respectively, and ANNc had a MAE of8.13 ◦C. Adding a third input to the

modelling as in case b) improved the accuracy of modelling and resulted in median

MAEs as low as 0.84 ◦C (ANN1). In case c) higher errors occurred than in case a).

Adding a third selected input, case d), improved the modelling again, but still gave

MAEs slightly higher than the baseline case a). This pattern was seen in the results

of nearly all the modelling techniques. However, ANNc and NSET showed higher

errors in case d) than in c). For the NSET modelling, case c) in fact performed best.

The prediction performance of ANNa modelling seemed to be less affected by the

choice of inputs. The evaluation of the median kurtosis indicated residuals with

significant outliers for LINf, MARS and all ANN variations in at least on case and

NSET in all cases. The comparison of the variations of the modelling techniques

showed that LIN and LINi gave nearly identical errors. The median MAE for LINf

was slightly lower in cases a) and c), but not only higher in the other cases, but also

the distribution of MAEs was skewed to higher values in three of the four cases. All

variations of the ANN modelling resulted in very similar accuracy. Although ANN5

had a slightly lower median MAE in case a), the maximum MAE was distinctly higher

than for ANN1.

The overall best prediction for FSRC techniques in farm Beta was found in MARS

and case b) with a median MAE of 0.83 ◦C, an RMSE of 1.05 ◦C, an STD of 0.63 ◦C
and an R2 of 0.95.

The evaluation of farm Gamma resulted in similar patterns as before. In case a)

the median MAEs of FSRC techniques ranged from 0.87 ◦C for ANN and MARS

techniques to 1.00 ◦C for LIN modelling. ANNc showed again a poor prediction

performance with a median MAE of 6.82 ◦C. The ARX techniques NSET and ANNa

predicted the temperature more accurately than FSRC techniques with a median

MAE of 0.36 ◦C and 0.60 ◦C, respectively. If input cases a) and b) are compared, the

latter resulted in lower errors for all techniques. Cases c) and d) resulted in higher

median MAEs than the first two cases with generally lower errors for d). However,

ANN5, ANNh and SVM showed a reversed trend. NSET, case c) was best with such

a low error that the (rounded) coefficient of determination was equal to one. In

contrast, case d) resulted in higher errors for NSET than for all FSRC techniques. The
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Figure 3.10.: Prediction performance of different techniques – farm Beta.
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Table 3.6.: Median metric results – farm Beta.

Technique Case MAE (°C) RMSE (°C) STD (°C) R2 (-) k (-)

LIN a) 1.18 1.38 0.73 0.93 3.15
b) 1.02 1.25 0.69 0.93 4.44
c) 1.57 1.96 1.21 0.85 5.27
d) 1.28 1.60 1.00 0.88 5.54

LINi a) 1.18 1.39 0.73 0.93 3.20
b) 1.01 1.24 0.67 0.94 3.73
c) 1.56 1.94 1.21 0.86 5.38
d) 1.24 1.54 0.96 0.88 5.16

LINf a) 1.13 1.35 0.74 0.93 6.24
b) 1.08 1.27 0.69 0.93 4.40
c) 1.53 1.92 1.21 0.86 5.14
d) 1.36 1.77 1.13 0.85 17.28

ANN1 a) 1.11 1.33 0.74 0.93 4.31
b) 0.84 1.12 0.68 0.94 5.00
c) 1.52 1.91 1.21 0.86 5.07
d) 1.33 1.73 1.10 0.84 23.54

ANN2 a) 1.13 1.43 0.90 0.91 12.91
b) 0.98 1.23 0.74 0.93 7.71
c) 1.51 1.95 1.21 0.86 5.12
d) 1.20 1.66 1.01 0.85 16.33

ANN5 a) 1.06 1.33 0.81 0.93 4.89
b) 0.86 1.17 0.72 0.93 14.36
c) 1.53 1.89 1.21 0.86 5.12
d) 1.23 1.74 1.09 0.85 21.25

ANNh a) 1.09 1.31 0.73 0.94 3.74
b) 0.96 1.17 0.72 0.93 8.31
c) 1.52 1.91 1.20 0.86 5.17
d) 1.24 1.65 1.04 0.86 12.21

ANFI a) 1.15 1.36 0.72 0.93 3.42
b) 0.87 1.08 0.66 0.93 5.22
c) 1.54 1.93 1.21 0.86 5.15
d) 1.18 1.46 0.95 0.89 6.13

MARS a) 1.09 1.31 0.73 0.93 3.53
b) 0.83 1.05 0.63 0.95 4.01
c) 1.51 1.92 1.20 0.86 5.17
d) 1.28 1.61 0.99 0.89 15.84

GPR a) 1.10 1.34 0.80 0.92 19.43
b) 0.86 1.13 0.77 0.93 5.86
c) 1.53 1.93 1.21 0.86 5.09
d) 1.24 1.63 0.99 0.88 6.89

SVM a) 1.13 1.38 0.85 0.92 15.05
b) 0.97 1.24 0.88 0.92 17.25
c) 1.59 1.98 1.21 0.85 5.09
d) 1.25 1.71 1.17 0.85 21.39

ANNc a) 8.13 10.27 6.30 0 5.20
b) 7.89 8.75 3.78 0 3.08
c) 8.83 11.48 7.33 0 2.41
d) 10.64 11.04 4.66 0 4.59

NSET a) 0.26 0.40 0.31 0.99 16.83
b) 0.29 0.41 0.30 0.99 21.91
c) 0.10 0.22 0.18 1.00 33.28
d) 0.81 1.06 0.68 0.95 9.21

ANNa a) 0.58 0.74 0.48 0.98 8.28
b) 0.55 0.72 0.45 0.98 6.98
c) 0.55 0.77 0.54 0.97 6.49
d) 0.57 0.73 0.49 0.97 10.15
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Figure 3.11.: Prediction performance of different techniques – farm Gamma.
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Table 3.7.: Median metrics results – farm Gamma

Technique Case MAE (°C) RMSE (°C) STD (°C) R2 (-) k (-)

LIN a) 1.00 1.25 0.74 0.93 2.84
b) 0.93 1.15 0.66 0.94 3.04
c) 1.36 1.69 1.00 0.85 3.39
d) 1.07 1.33 0.80 0.85 3.47

LINi a) 0.97 1.20 0.68 0.93 2.86
b) 0.91 1.13 0.67 0.94 3.20
c) 1.36 1.69 1.01 0.85 3.38
d) 1.03 1.32 0.81 0.86 3.59

LINf a) 0.90 1.13 0.66 0.95 3.62
b) 0.87 1.06 0.62 0.95 3.62
c) 1.36 1.69 1.01 0.85 3.37
d) 1.28 1.57 1.04 0.83 3.75

ANN1 a) 0.88 1.08 0.66 0.95 4.02
b) 0.85 1.04 0.61 0.95 3.93
c) 1.36 1.69 1.00 0.85 3.37
d) 1.25 1.68 1.11 0.83 3.99

ANN2 a) 0.87 1.09 0.65 0.95 4.11
b) 0.86 1.05 0.62 0.95 4.00
c) 1.36 1.69 1.01 0.85 3.38
d) 1.29 1.81 1.21 0.81 4.75

ANN5 a) 0.87 1.09 0.67 0.94 4.17
b) 0.85 1.05 0.63 0.95 4.08
c) 1.36 1.69 1.01 0.85 3.33
d) 1.93 3.01 2.31 0.38 5.34

ANNh a) 0.88 1.09 0.66 0.95 4.18
b) 0.86 1.05 0.63 0.95 4.25
c) 1.36 1.69 1.02 0.85 3.33
d) 2.03 2.96 2.13 0.53 5.82

ANFIS a) 0.93 1.15 0.66 0.94 3.29
b) 0.87 1.07 0.63 0.95 3.81
c) 1.37 1.70 1.00 0.85 3.39
d) 1.18 1.51 0.98 0.86 3.54

MARS a) 0.87 1.07 0.64 0.95 4.09
b) 0.85 1.04 0.62 0.95 3.80
c) 1.36 1.69 1.00 0.85 3.36
d) 1.06 1.34 0.84 0.85 3.54

GPR a) 0.88 1.10 0.66 0.95 4.02
b) 0.85 1.05 0.62 0.95 4.07
c) 1.36 1.69 1.00 0.85 3.37
d) 1.21 1.57 1.02 0.82 3.75

SVM a) 0.91 1.12 0.67 0.94 4.03
b) 0.87 1.06 0.63 0.95 4.20
c) 1.35 1.70 1.03 0.85 3.36
d) 1.42 1.90 1.27 0.74 4.34

ANNc a) 6.82 8.02 2.42 0.21 4.08
b) 5.40 6.02 3.33 0 3.27
c) 8.33 9.68 3.35 0 2.85
d) 6.97 8.84 3.98 0 2.55

NSET a) 0.36 0.47 0.29 0.99 5.74
b) 0.34 0.43 0.26 0.99 5.68
c) 0.09 0.17 0.13 1.00 45.01
d) 1.52 2.35 1.79 0.76 6.85

ANNa a) 0.60 0.74 0.43 0.97 4.92
b) 0.59 0.72 0.42 0.97 4.73
c) 0.58 0.72 0.44 0.97 5.12
d) 0.61 0.81 0.53 0.96 5.98
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differences of the MAEs of the input cases were again marginal for ANNa. Noticeably,

the differences of the MAEs of the different techniques were distinctively higher in

case d). This model variant was also far more affected by outliers than all other cases.

The median kurtosis values indicate that nearly all techniques produced residual

distributions with only limited outliers, i.e. comparable to Gaussian distributions.

The ARX techniques showed a residual slightly more affected by outliers with NSET

in case c) showing an extreme tendency to outliers (k=45). If the variations of

the linear modelling techniques are compared, LINi was slightly better than LIN.

Although LINf showed a further reduced median MAE for cases a) and b), the

errors were significantly higher in case d). All ANN techniques predicted with very

similar accuracy for cases a) – c). In case d), however, ANN1 outperformed all other

variations which tend to have more outliers the more neurons were used.

ANN1 in input case b) had the overall best prediction of FSRC techniques with a

median MAE of 0.85 ◦C, an RMSE of 1.04 ◦C, an STD of 0.61 ◦C and an R2 of 0.95.

However, most of the other techniques showed very similar accuracy.

For farm Delta, the evaluation of the prediction performance of the six turbines

showed again a similar pattern as before. For input case a), the median MAEs of

the FSRC techniques ranged from 0.86 ◦C for ANN5 to 1.33 ◦C for LIN. In this case,

ARX techniques showed only partially more accurate prediction with median MAEs

of 0.90 ◦C and 0.73 ◦C for NSET and ANNa, respectively. ANNc again gave a low

prediction accuracy with a median MAE of 7.85 ◦C. Adding a third input (case b)

improved the accuracy of prediction for all techniques except NSET. For the first time,

ANNc predicted the target with a reasonable accuracy with a median MAE of 1.06 ◦C
in case b). Prediction based on the selected inputs (case c) was slightly less accurate

for the FSRC techniques, although the difference to case a) was marginal. There

was no clear pattern in case d) as some techniques showed improved prediction

compared with case c) as e.g. LIN and ANN1, but for the majority of techniques

the contrary was true with higher errors for case d). Assessing the kurtosis of the

residuals indicated that the prediction of NSET was affected by outliers.

LINi predicted only more accurately than LIN in cases a) and b). LINf gave an even

lower MAE in all cases. All ANN techniques resulted in similar MAEs for cases a) –

c), but more neurons again worsened the prediction performance in case d).

The overall best FSRC prediction was found in ANN5 and case b) with a median

MAE of 0.74 ◦C, an RMSE of 0.97 ◦C, an STD of 0.61 ◦C and an R2 of 0.98.

The computational effort of the models was compared in terms of the runtime on a

common desktop PC (64-bit operating system with a four core CPU with 2.8 GHz
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Figure 3.12.: Prediction performance of different techniques – farm Delta)
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Table 3.8.: Median metrics results – farm Delta

Technique Case MAE (°C) RMSE (°C) STD (°C) R2 (-) k (-)

LIN a) 1.33 1.79 1.04 0.94 3.12
b) 0.93 1.24 0.72 0.97 3.31
c) 1.36 1.67 0.97 0.95 4.42
d) 1.24 1.57 0.96 0.95 4.50

LINi a) 1.04 1.40 0.88 0.96 5.24
b) 0.83 1.05 0.64 0.98 4.20
c) 1.39 1.71 0.99 0.95 4.34
d) 1.35 1.70 1.03 0.95 4.19

LINf a) 0.91 1.17 0.73 0.98 4.73
b) 0.81 1.04 0.64 0.98 4.05
c) 1.00 1.32 0.87 0.97 6.56
d) 1.07 1.64 1.11 0.95 8.01

ANN1 a) 0.85 1.09 0.67 0.98 4.77
b) 0.74 0.94 0.58 0.98 4.64
c) 1.00 1.34 0.89 0.97 6.20
d) 0.97 1.29 0.85 0.97 4.45

ANN2 a) 0.86 1.11 0.69 0.98 5.37
b) 0.75 0.94 0.58 0.98 4.41
c) 0.98 1.32 0.88 0.97 6.19
d) 1.02 1.34 0.87 0.97 4.79

ANN5 a) 0.86 1.11 0.72 0.98 7.36
b) 0.74 0.97 0.61 0.98 5.78
c) 1.00 1.33 0.89 0.97 6.19
d) 1.37 2.02 1.28 0.94 4.88

ANNh a) 0.87 1.13 0.73 0.98 5.80
b) 0.76 0.98 0.62 0.98 7.25
c) 1.00 1.33 0.89 0.97 6.17
d) 1.40 2.36 1.51 0.92 5.02

ANFIS a) 0.94 1.19 0.73 0.97 4.13
b) 0.80 1.01 0.62 0.98 7.64
c) 0.99 1.32 0.87 0.97 6.41
d) 1.04 1.38 0.90 0.97 6.42

MARS a) 0.90 1.15 0.72 0.98 5.63
b) 0.80 1.01 0.61 0.98 4.31
c) 0.98 1.32 0.88 0.97 6.43
d) 0.98 1.30 0.85 0.97 6.43

GPR a) 0.88 1.12 0.71 0.98 5.74
b) 0.77 0.99 0.61 0.98 4.64
c) 0.98 1.31 0.87 0.97 6.32
d) 1.06 1.40 0.91 0.96 5.55

SVM a) 0.84 1.08 0.69 0.98 5.70
b) 0.78 1.00 0.62 0.98 7.06
c) 0.98 1.32 0.89 0.97 6.28
d) 2.35 3.56 2.48 0.79 4.37

ANNc a) 7.85 9.25 3.41 0.56 2.29
b) 1.06 1.48 1.04 0.96 3.06
c) 6.65 8.16 3.35 0.24 2.18
d) 2.42 3.37 1.90 0.82 2.53

NSET a) 0.90 1.28 0.74 0.98 11.73
b) 1.08 1.49 0.85 0.98 7.18
c) 0.12 0.21 0.17 1.00 37.12
d) 0.51 0.95 0.73 0.99 8.10

ANNa a) 0.71 0.90 0.56 0.99 5.14
b) 0.61 0.79 0.50 0.99 4.57
c) 0.56 0.74 0.50 0.99 6.49
d) 0.54 0.75 0.51 0.99 6.08
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clock rate and 32 GB memory). Table 3.9 compares the computational effort of

the modelling techniques by giving the mean training time per turbine. Repeated

trainings, as used for ANN models, were not considered here. The training time of

LIN and LINi was insignificant with training taking only 0.02 s or less. LINf required

slightly more computational effort with mean training of 0.5 – 4.5 s, with higher

values for cases b) and d). ANN1 models were trained in approx. 1.5 – 2.8 s without

a clear pattern for the different farms and cases. Similar, although slightly higher,

values were found for ANN2 and ANN5. ANNh training was conducted in 4 – 12 s

on average. ANFIS showed very consistent mean training times depending on the

number of inputs with 4.4 and 5.4 s for 2 and 3 inputs, respectively. Training of

MARS was as fast as 0.72 s in one case, but took up to 59 s on average in another

case. There was a trend towards longer training for farm Alpha and in cases b)

and d). GPR training was conducted in approx. 20 – 24 s per turbine without

significant deviations in any case. Similarly homogeneous training times were seen

for SVM, taking only 4 – 7 s on average. ANNc modelling required extraordinarily

long training times up to an average time of 162 s per turbine. In contrast, NSET

was trained in usually 1 – 10 s with consistently low training times in farm Alpha.

ANNa modelling required 3 – 8 s training.

3.4.6 Discussion

Testing the different modelling techniques for normal behaviour prediction showed

mostly consistent findings in the four farms. The best median MAE of FSRC tech-

niques was similar for farms Beta, Gamma and Delta with values of 0.83 ◦C, 0.85 ◦C
and 0.74 ◦C, respectively. Only in farm Alpha was the target less accurately predicted

with an MAE of 1.91 ◦C. It might be assumed that the reason for this poorer per-

formance in farm Alpha was the unknown status of the turbines. As even the best

turbines in farm Alpha showed a higher error than the median of the other farms,

this is unlikely to be the only cause. Possibly, the lower number of temperature

sensors and the different positioning of the sensors played an important role.

The metrics of all FSRC techniques in all farms indicated that using two inputs based

on the correlation results in more accurate prediction than using the selected inputs

power and rotational speed. Adding a third input clearly improved the accuracy for

correlation based inputs (case b). If the ambient temperature was added as a third

selected input (case d), the prediction performance was improved in most cases,

although this was not true for all configurations.

Comparing the different FSRC modelling techniques, the differences in the MAEs

were clearly lower than if the different input selection cases were compared. The

3.4 Comparison of modelling techniques 95



Table 3.9.: Mean training time of different techniques and farms in seconds per turbine.

Technique Case Farm Alpha Farm Beta Farm Gamma Farm Delta

LIN a) 0.01 0.02 0.01 0.02
b) 0.01 0.02 0.01 0.02
c) 0.01 0.01 0.02 0.01
d) 0.01 0.02 0.02 0.02

LINi a) 0.02 0.02 0.02 0.02
b) 0.02 0.02 0.02 0.02
c) 0.02 0.02 0.02 0.02
d) 0.02 0.02 0.02 0.02

LINf a) 0.61 0.86 0.34 0.34
b) 1.82 2.16 0.84 0.67
c) 0.32 0.90 0.55 0.71
d) 4.49 3.57 3.06 2.06

ANN1 a) 2.27 2.28 1.98 2.78
b) 2.72 1.83 2.65 2.58
c) 2.63 1.47 1.64 1.66
d) 1.99 1.55 1.93 1.63

ANN2 a) 2.47 1.71 2.16 3.14
b) 3.50 2.05 2.62 2.55
c) 2.48 1.61 2.06 1.65
d) 2.11 1.64 2.02 2.31

ANN5 a) 3.75 2.22 3.03 3.86
b) 5.42 2.44 3.13 3.86
c) 2.90 1.99 2.53 1.95
d) 2.83 2.13 2.71 2.41

ANNh a) 9.18 6.91 7.42 6.23
b) 12.97 5.61 5.41 7.43
c) 9.09 4.13 4.84 3.66
d) 4.98 3.63 5.12 4.19

ANFIS a) 4.43 4.43 4.44 4.44
b) 5.44 5.46 5.45 5.47
c) 4.42 4.43 4.43 4.44
d) 5.44 5.46 5.47 5.47

MARS a) 24.20 5.94 1.45 0.72
b) 46.65 12.94 2.36 1.12
c) 47.23 25.86 17.20 10.87
d) 59.21 28.14 20.08 19.98

GPR a) 21.44 20.21 22.29 23.20
b) 23.06 20.74 23.33 24.03
c) 24.59 20.37 21.21 20.46
d) 20.57 20.56 21.14 21.82

SVM a) 4.83 6.35 7.13 5.05
b) 4.91 6.32 6.76 4.74
c) 6.25 5.88 6.30 4.22
d) 5.91 6.23 6.91 5.23

ANNc a) 9.72 162.35 55.23 10.29
b) 33.69 11.81 31.34 19.41
c) 16.02 10.06 19.77 32.44
d) 123.65 69.63 108.59 38.55

NSET a) 1.24 2.54 1.86 2.88
b) 1.81 4.35 2.54 3.80
c) 1.21 4.89 3.99 9.12
d) 1.81 5.94 4.91 10.86

ANNa a) 7.50 3.77 5.43 8.42
b) 7.23 3.25 4.26 5.39
c) 6.55 3.68 5.89 4.64
d) 5.16 3.06 3.67 4.98
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differences between the best and worst techniques were as low as e.g. 0.12 ◦C in the

median MAE of farm Beta and case a). The results indicated that if the prediction

was less accurate in a specific turbine, this was equally true for all techniques. Slight

advantages of ANN modelling were visible throughout the four farms combined with

reasonable computational effort. However, linear modelling was distinctly faster

and produced similarly accurate predictions. No clear benefit of ANFIS and SVM

modelling could be seen at this stage, although their performance was nearly as

good as ANNs’. A major drawback of GPR and MARS modelling was visible in the

high computational effort. Limiting the complexity of MARS might be a way of

reducing the training time in a possible trade-off with reduced accuracy.

A closed loop ARX configuration was not successful in predicting the target in this

case study. Open loop ARX predicted the target very accurately with MAEs as low as

0.09°C for NSET and 0.33°C for ANNa. Noticeably, NSET was generally less accurate

if three instead of two inputs were used. In contrast, ANNa seemed to predict the

target with similar accuracy independently of the input selection. Residuals of both

ARX configurations were prone to outliers as visible in high kurtoses. Whether

the advantage of ARX techniques in accurate prediction is similarly true for failure

prediction needs to be assessed as there is a risk of adaption to any change instead

of always representing the normal behaviour.

If the variations of linear modelling are compared, adding interactions slightly

improved the normal prediction accuracy without a significant difference in the

computational effort. In contrast, adding features in a stepwise regression did not

help in all cases and required far more computational effort. Adding more neurons

to ANNs did not automatically contribute to better prediction as ANN1 performed

better than ANN2 and ANN5 in most cases. However, the mean training times for

these three configurations did not rise proportionally to the number of neurons but

were rather similar. Using two hidden layers as in ANNh did not prove to have

any advantage for normal behaviour prediction and was computationally more

expensive.

3.5 Identifying failures
The evaluation of the normal behaviour modelling accuracy and computational

effort gave a first insight in the adequacy of a modelling technique for model-based

monitoring. However, the eventual difference of the signal to the modelled normal

behaviour in case of a failure is most important. In this section, model residuals are

discussed and compared for turbines with major failures.
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(a) Case a) (b) Case b)

(c) Case c) (d) Case d)

Figure 3.13.: Residual and moving average (red) using LIN modelling for replacement 1.

3.5.1 Results

As the target temperature in section 3.4 was a gearbox temperature, gearbox replace-

ments were selected for this assessment. In contrast to section 3.4, testing involved

now all available data after training.

Gearbox replacement 1: Farm Beta, turbine 2

The first investigated gearbox replacement took place in July, i.e. high ambient

temperatures can be expected. Figure 3.13 shows the residual of LIN modelling

in cases a) – d) for 15 months before the replacement. A moving average with a

window length of 7 days was applied to visualise general trends. There was no clear

change of the residual pattern that highlights possible gearbox degradation in any of

the cases. Although the results of cases a) to c) possibly show increasing residuals

in the last 150 days before the replacement, variations in a similar range are seen

throughout the whole 450 days. An alternative interpretation is that the rise in the

last 150 days is just a restoration of earlier levels. In addition, the lack of an increase

in case d) with ambient temperature as input might indicate that this trend was due

to an ambient temperature rise and not caused by gearbox degradation.

If all other modelling techniques and the four cases are evaluated, there is no clear

advantage of any approach. The residuals of selected runs are given in Figure 3.14.

LINi and LINf showed very similar patterns compared to LIN and the four cases.

However, three prominent spikes were visible for LINf in case d), which might be

related to problems as one was directly before the replacement, see Figure 3.14b.
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These spikes were also visible in the residuals of ANN1 modelling, Figure 3.14c. In

one of the ANN2 repetitions and case a), high residuals were observed up to 63 days

in advance of the replacement, Figure 3.14d. This was similarly true for ANN5 and

ANNh, see Figures 3.14e and 3.14f, respectively. As these spikes were of the order of

15 ◦C or higher, it is questionable whether this is a true prediction or rather a failing

model. But even the information that the model fails, might be an indirect indication

for a fault in the gearbox (or a sensor problem). ANFIS, GPR, and SVM did not

show clear advantages over LIN modelling, although again some prominent spikes

in GPR and SVM occur, see Figures 3.14g – 3.14i. In some cases ANNc prediction

deviated significantly from the observed temperature trend. If the prediction was

more accurate, a clear indication of a fault could not be identified, see Figure 3.14j.

Although the residuals were generally smaller for NSET and ANNa, no advantage

for failure detection could be identified, see example Figures 3.14k and 3.14l.

Gearbox replacement 2: Farm Beta, turbine 3

For the second replacement that happened in August in turbine 3, the evaluation

of all residuals revealed that in most cases it is again difficult to visually identify

any failure-related pattern. However, an increase of the residual in case c) of LIN

and ANN1 modelling possibly indicated the problem, see Figure 3.15a and 3.15b.

Additionally, spikes were visible in ANN1 and case d), as shown in Figure 3.15c.

Figure 3.16 and 3.17 show the first and second spike event, respectively, in more

detail. It can be seen that the model predicts the gearbox temperature to drop

although the measured temperature stays constant or is peaking. A comparison

with the input parameters (power, rotational speed, ambient temperature) does

not give a conclusive explanation. It seems likely that the model underestimates

the impact of the ambient temperature during particularly hot summer days and

even learnt an inverse relationship reducing the prediction for very high ambient

temperatures. In this case, the spike should be considered as a result of a failing

model, but uncertainty remains whether the event could still be an indication of

anomalous behaviour.

Gearbox replacement 3: Farm Beta, turbine 4

The third replacement took place in May. Similar patterns were visible in all FSRC

modelling techniques with a raised averaged residual approx. 35 days in advance in

case b), see 3.18a, and significant spikes 82 days in advance in case d), see 3.18b.
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(a) LINi, case b) (b) LINf, case d)

(c) ANN1, case d) (d) ANN2, case a)

(e) ANN5, case a) (f) ANNh, case a)

(g) ANFIS, case b) (h) GPR, case d)

(i) SVM, case d) (j) ANNc, case d)

(k) NSET, case a) (l) ANNa, case a)

Figure 3.14.: Residual and moving average (red) of various setups for replacement 1.
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(a) LIN, case c) (b) ANN1, case c)

(c) ANN1, case d)

Figure 3.15.: Residual and moving average (red) for selected setups and replacement 2.

Jun 09, 18:00 Jun 10, 04:00 Jun 10, 14:00 Jun 11, 00:00 Jun 11, 10:00 Jun 11, 20:00 Jun 12, 06:00

40

45

50

55

60

65

G
e

a
rb

o
x
 t

e
m

p
e

ra
tu

re
 (

°C
)

Target

Prediction

Jun 09, 18:00 Jun 10, 04:00 Jun 10, 14:00 Jun 11, 00:00 Jun 11, 10:00 Jun 11, 20:00 Jun 12, 06:00

Time

0

0.2

0.4

0.6

0.8

N
o

rm
a

lis
e

d
 v

a
ri
a

b
le

 (
-)

15

20

25

T
e

m
p

e
ra

tu
re

 (
°C

)

Power

Rotational speed

Ambient

Figure 3.16.: Target, prediction and inputs for significant difference of target and prediction
on Jun 10, 11:00 to 15:00, corresponding to first spike event highlighted in
Figure 3.15c
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Figure 3.17.: Target, prediction and inputs for significant difference of target and prediction
on Jul 19, 10:00 to 18:00, corresponding to second spike event in Figure 3.15c

Noticeably, these spikes were also visible in NSET and ANNa modelling, whereas in

case b) NSET and ANNa showed a decrease of the residual instead of an increase,

see Figure 3.18c. A detailed analysis of the spike event, Figure 3.19, shows that this

is unlinked to any ambient temperature peak and indeed indicates anomalously high

gearbox temperatures.

Gearbox replacement 4: Farm Beta, turbine 7

For the fourth gearbox replacement that took place in July, a clear upward trend in

the last 100 days could be seen in the residuals for all techniques except ANNc and

cases a) and b), see Figure 3.20. In this case, LINf gave a clearer pattern change than

LIN and LINi. The residual from NSET modelling did not only change on average,

but also increased fluctuation was visible before the replacement.

Gearbox replacement 5: Farm Beta, turbine 12

Only 7.5 months of testing data were available before the fifth replacement in

February. All techniques failed to produce a visually detectable change in the

residual pattern, as shown in Figure 3.21a. However, it is unclear whether an

increasing number of outliers in NSET modelling residuals indicated the problem,

see Figure 3.21b.
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(a) LIN, case b) (b) LIN, case d)

(c) ANNa, case b)

Figure 3.18.: Residual and moving average (red) for selected setups and replacement 3.
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Figure 3.19.: Target, prediction and inputs for significant difference of target and predic-
tion from Feb 11, 11:00 on, corresponding to spike event highlighted in
Figure 3.18b
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(a) LINf, case a) (b) ANN1, case a)

(c) LIN, case b) (d) NSET, case b)

Figure 3.20.: Residual and moving average (red) for selected setups and replacement 4.

(a) LIN, case a) (b) NSET, case a)

Figure 3.21.: Residual and moving average (red) for selected setups and replacement 5.
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(a) ANN, case a) (b) NSET, case a)

Figure 3.22.: Residual and moving average (red) for selected setups and replacement 6.

(a) LIN, case c) (b) LIN, case d)

Figure 3.23.: Residual and moving average (red) for selected setups and replacement 7.

Gearbox replacement 6: Farm Gamma, turbine 7

The sixth gearbox replacement was not visually detectable in the residuals of any of

the modelling techniques, see examples in Figure 3.22.

Gearbox replacement 7: Farm Gamma, turbine 24

In Figure 3.23, one prominent spike 17 days before the replacement (in September)

might indicate the gearbox problem. This high residual event was visible in the case

c) or d) residuals of all modelling techniques.

Gearbox replacement 8: Farm Delta, turbine 5

There was no clear pattern indicating the eighth gearbox replacement in any of the

models’ residuals, see examples in Figure 3.24.

(a) LIN, case b) (b) LIN, case d)

Figure 3.24.: Residual and moving average (red) for selected setups and replacement 8.

3.5 Identifying failures 105



(a) GPR, case d) (b) MARS, case b)

Figure 3.25.: Residual and moving average (red) for selected setups and replacement 9.

Gearbox replacement 9: Farm Delta, turbine 8

In case d), a small peak in the averaged residual approx. 30 days in advance

of the ninth gearbox replacement (in February) might indicate the problem, see

Figure 3.25a. This peak was visible in the residuals of LINf, ANN1 (only one

repetition run), ANN2, ANFIS, GPR and ANNa modelling. Additionally, there was

an increasing number of spikes in some residuals from case b) – most prominent in

MARS modelling as shown in Figure 3.25b. However, it should be noted that these

features are not prominent enough for a clear fault indication.

3.5.2 Discussion

The visual analysis of gearbox temperature modelling residuals revealed the chal-

lenges of early detection of gearbox problems. As the residuals strongly fluctuate,

not all deviations from the expected value of zero can be considered as indicators

for problems. Three specific features are gathered that potentially indicate a fault:

• ‘Rise’ – a slow increase of the averaged residual – time scale of the feature:

weeks

• ‘Spike’ – a fast, coherent increase of the residual – time scale of the feature:

hours

• ‘Spread’ – stronger fluctuation of the residual

Table 3.10 summarises the identified features detailing the input case, modelling

technique and date when the feature starts. For seven out of nine replacements,

features were seen. Although five ‘rise’ features were observed that start up to

150 days in advance of the replacement, four of them were not distinct. Six ‘spike’

features showed anomalies 10 to 80 days before the replacement, but it remains

possible that some occurred due to failing models unrelated to the gearbox problem.

Two ‘spread’ features were seen to start 50 and 80 days before the replacement.

Only three features were visible in the residuals of all techniques (except ANNc)

with one further feature produced by all FSRC techniques. The remaining instances
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were observable in only a few techniques each with no modelling technique able to

generate all features.

Table 3.10.: Visual failure detection summary.

Replacement Feature Distinct Case Modelling technique Days in advance

1 – Beta, turbine 2 rise no a), b), c) LIN, LINi 100
spike no d) LINf, ANN1, (GPR, SVM) 40 (10)
spike yes a) ANN2, ANN5, ANNh 60

2 – Beta, turbine 3 rise no c) LIN, ANN1 150
spike yes d) ANN1 60

3 – Beta, turbine 4 rise no b) all FSRC 50
spike yes d) all FSRC, NSET, ANNa 80

4 – Beta, turbine 7 rise yes a), b) all FSRC, NSET, ANNa 100
spread yes b) NSET 80

5 – Beta, turbine 12 spread no a) NSET 50
6 – Gamma, turbine 7 -
7 – Gamma, turbine 24 spike no c), d) all 10
8 – Delta, turbine 5 -
9 – Delta, turbine 8 rise no d) LINf, ANN2, ANFIS, GPR, ANNa, (ANN1) 30

spike yes b) MARS 60

Overall, ANN1 and ANN2 modelling techniques were involved in most of the iden-

tified features. LIN, LINf, MARS, and NSET were also essential in some of the

replacements. In contrast, LINi, ANN5, ANNh, ANFIS, SVM, ANNc and ANNa did

not show a clear advantage over the other techniques in any instance. All four input

cases contributed – e.g. for different features in the different cases and the same

replacement.

In terms of the different farms, more features were seen for the gearbox replacements

in farm Beta. Beside the likelihood of different failure modes, this potentially

suggests that the sensor location in farm Beta was more suitable for this monitoring

approach. In farms Gamma and Delta, only one of the several gearbox temperatures

was investigated in this comparison. Potentially, other signals might show further

indication of failure.

3.6 Conclusion
Temperature prediction with mean absolute errors of less than one degree Celsius

was shown to be feasible using non-autoregressive techniques. The choice of the

modelling techniques was here less important for accurate prediction than the

characteristics of the measurement setup in the farm and the selection of modelling

inputs. Partly autoregressive techniques predicted the gearbox temperature even

more accurately.

If model-based monitoring was used to identify gearbox failures, most accurate

prediction was not important, but rather the observation of a clear change in the

residual. For seven out of nine gearbox replacements, features in the residual of the
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investigated signal were visually identified that possibly indicated the problem in

advance. Different modelling techniques and also various input selections contrib-

uted to the possible indication of failures. The risk of selecting inputs that might

be too similar to the monitored target could not be fully assessed based on these

results. A more advanced input selection should be investigated in order to find a

model that always represents normal behaviour. An optimal technique could not

be determined, but the advantage of partly autoregressive modelling techniques in

the prediction accuracy did not result in better failure detection. At this stage, ANN

modelling techniques showed the most failure indicating features. There was no

clear best configuration among the four investigated input cases, but some anom-

alies were visible in all settings. However, it is obvious that a visual analysis of the

residual is not an efficient and unambiguous way of determining the turbine’s health.

Automated and reliable alarm generation is required for any on-line application of

model-based monitoring in an industrial setting.
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4Condition index for model-based

monitoring

Model-based monitoring of SCADA temperatures has proved its potential to indicate

imminent failures in the drivetrain, as preliminarily discussed in the previous chapter.

However, manual interpretation of residuals of modelled and measured temperatures

was seen to be both time-consuming and ambiguous. Approaches for automating

alarm generation are discussed in this chapter. 4

In a first step, a potential measure to better describe the deviation from normal

behaviour is sought. Simple averages of the residual are compared with Minkowski,

Mahalanobis and Dynamic Time Warping distances as well as an abnormal level

index. Secondly, a quantifying condition index is established and applied to the

results of various modelling techniques (introduced in Section 3.4). Finally, an

ensemble of models is investigated to analyse all available drive train temperatures

for failure detection.

4.1 Introduction
Whereas much effort has been put into proposing various modelling techniques for

model-based monitoring of SCADA signals, less attention was given to automating

alarm generation based on such models. The concept of indicating deterioration of

components was often proven in selected cases with clearly changing residuals, but

this cannot demonstrate the overall reliability of condition monitoring using this

approach. Results in section 3.5 showed that it might be difficult to differentiate

between normal fluctuation of a residual and any abnormal behaviour. In addition,

three different features were observed: slow increases of the averaged residual (rise)

that might be linked to slow degradation, fast and coherent increases of the raw

residual (spike) that show temporary anomalous behaviour e.g. in high load periods

and stronger fluctuation in the raw residual (spread) that might indicate unusual

dynamics.

4Preliminary results from this chapter have been presented in conference papers Tautz-Weinert and
Watson, 2017d and Tautz-Weinert and Watson, 2017b.
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Different approaches for anomaly detection and triggering alarms have been invest-

igated. Some research suggested fixed thresholds like 1.5 ◦C (Z.-Y. Zhang and K.-S.

Wang, 2014), while others have demonstrated that a probability-based threshold

might be more suitable (Schlechtingen, Santos and Achiche, 2013b). Furthermore,

utilisation of a Mahalanobis distance (Bangalore and Tjernberg, 2015) or an ab-

normal level index based on penalties for deviation from zero (P. Sun et al., 2016)

have been discussed for advanced analysis of the residual. A thorough comparison

of possible anomaly detection techniques is required to allow assessment of the

capabilities of the various methods.

In addition, it has been shown that averaging residuals (or derived measures) might

be beneficial to increase the reliability of the status. However, different time window

lengths such as 2 hours, (P. Sun et al., 2016), 12 hours (Bangalore, Letzgus et al.,

2017), one day (Schlechtingen and Santos, 2010) or three days (Bangalore and

Tjernberg, 2015) have been proposed. A filter for consecutive alarms might be

plausible (Schlechtingen, Santos and Achiche, 2013b). Potential solutions need to

be compared and discussed, also with a focus on the three observed features in the

visual residual analysis (rise, spike and spread).

4.2 Measures for anomaly identification
Various approaches were investigated to derive a measure from the model-based

monitoring that gives a clearer indication of the anomaly as the unfiltered resid-

ual. The arithmetic mean a of the residual provides a simple solution and is only

dependent on the window length nW , the number of samples to be averaged. Altern-

atively, the distance from target to prediction can be calculated based on splitting in

windows. Distances are a tool to describe the similarity of two data sets.

The most common Euclidean distance describes the straight-line connection between

two points in three-dimensional space. It can also be used in higher dimensions,

e.g. to compare two vectors with n components, to describe similarity. Here, the

generalised Minkowski distance dMink was used as

dMink =
(
nW∑
i=1
|xi − yi|p

)1/p

(4.1)

with the target x, prediction y and the exponent p defining the kind of distance with

e.g. 2 for the Euclidean distance (or root mean square error).
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In addition, further tests included the Dynamic Time Warping (DTW) distance dDTW ,

which might be advantageous due to the inherent flexibility in terms of unaccounted

thermal inertia. DTW is a method to measure similarities in two time-dependent

signals which may have characteristics that are out of phase. The method re-aligns

the signals by finding the best ‘warping’ path that results in the lowest sum of

pairwise distances. Formally, the DTW is gained by creating a matrix with distances

such that the element at position i, j is

Di,j = d(x(i), y(j)) (4.2)

with d as a selected distance measure and x(i) and y(j) denoting the ith and jth

entry of the target and prediction time series with n entries. Accordingly, the matrix

entries correspond to alignments of the two time series. The warping path represents

a path through the matrix, i.e. starting at the upper left corner and finishing at the

lower right corner

W (x, y) = D1,1, . . . , Do,p, . . . , Dn,n (4.3)

The warping path is required to be monotonic and continuous, i.e. from Do,p it

is only allowed to proceed to Do+1,p, Do,p+1 or Do+1,p+1. In addition, boundaries

might be set to limit the alignment (closeness to diagonal in matrix). Then the final

DTW distance is gained by finding the path with the minimal cost

dDTW = min
(∑
i=1

Wi(x, y)
)

(4.4)

The DTW configuration is not only dependent on the window length, but also a

function of the maximum adjustment length nadj and was applied with a Euclidean

distance.

The Mahalanobis distance was investigated as an alternative measure that considers

a distribution of samples as reference. In general, the Mahalanobis distance dMahal

is defined as

dMahal =
√

(X − µ)C−1(X − µ)T (4.5)

with an observation X and its corresponding mean µ and covariance matrix C from

the reference, here training phase. The observation can consist of only the residual

(here called variant 1) or of a combination of residual and target signal as suggested

by Bangalore and Tjernberg, 2015 (variant 2). The derived distance per sample can

be averaged for certain window lengths, e.g. 12 hours, nW = 72 (Bangalore, Letzgus

et al., 2017) or three days, nW = 432 (Bangalore and Tjernberg, 2015).
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The abnormal level index (ALI) proposed by P. Sun et al., 2016 is based on the sum of

weights depending on the probabilities derived from the training data, resulting in an

indicator from 0 to 1, for minimum and maximum abnormal behaviour, respectively.

The authors derived the ALI as

ALI = 1− C1N1
C1N1 + C2N2 + C3N3

(4.6)

with

Nk =
nW∑
i=1

wi (4.7)

wi =

1 if(xi − yi) ∈ Ak

0 if(xi − yi) /∈ Ak
(4.8)

for k as {1,2,3} and the sets of residuals from training as A1 for the innermost

region: in between of 25 and 75 %, A2 as the subsequent regions: 2.5 to 25 or 75 to

97.5 % and A3 for everything smaller than 2.5 or bigger than 97.5 %. The penalties

C1, C2 and C3 were defined as 1, 3 and 5, respectively. A window length of two

hours, nW = 12, was suggested.

A comparison of the various measures for better anomaly identification is clearly

dependent on the applied window length. Based on the proposed solutions, all

measures were tested with window lengths from two hours to three weeks, i.e.

nW = 12, 72, 144, 288, 432, 1008, 2016, 3024. It should be noted, that the averages

were applied on the number of available samples, i.e. they do not match completely

with the calendar duration due to filtered or missing samples.

4.2.1 Comparison of measures for rise feature

For mechanical degradation and consequently increased friction and losses, a slow

rise of the residual is the expected indication. In this case, the selection of the

window length might be as important as the choice of a measure in order to get an

early and unambiguous indication of the failure.

In a first study, the introduced measures were compared for a failure, where a distinct

rise of the residual had been identified in the visual analysis, gearbox replacement

4, farm Beta, turbine 7. The evolution of the five measures tested with different

settings based on the ANN1 modelling and input case b) are given in Figures 4.1

to 4.7 (not all window lengths are shown for all configurations). At this stage, a

probablity-based threshold is not defined to evaluate the clarity of the measures

independently of a chosen threshold. To enable easier assessment, however, a dashed
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Figure 4.1.: Anomaly measure: average for replacement 4, case b), ANN1 modelling.

reference line is added that marks the maximum of the measure before −150 days

which is here assumed to be not related to the failure of interest (a ‘false alarm’).

It can be seen in Figure 4.1, that although the simple average shows an upward trend

before the replacement, the rise is not very distinct compared with the reference

maximum (‘false alarm’). An average indicating the fault that is also higher than

the reference is seen as early as 69 to 83 days in advance of the replacement for all

chosen window lengths except nW = 288 (37 days). For the average of two weeks

(nW = 2016), the value is continuously above the reference from 69 days before the

replacement on.

Very similar patterns are seen for the Euclidean distance (i.e. Minkowski distance

with p = 2) in Figure 4.2. However, the values before the replacement seem to

separate a bit more clearly than for the average with e.g. a value consistently higher

than the reference starting at −69 days in the case of nW = 1008. Figure 4.3 shows
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Figure 4.2.: Anomaly measure: Minkowski distance with p = 2 for replacement 4, case b),
ANN1 modelling.
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Figure 4.3.: Anomaly measure: Minkowski distance with p = 6 for replacement 4, case b),
ANN1 modelling.
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Figure 4.4.: Anomaly measure: DTW distance with nadj = 12 for replacement 4, case b),
ANN1 modelling
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Figure 4.5.: Anomaly measure: Mahalanobis distance, version one, for replacement 4, case
b), ANN1 modelling
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Figure 4.6.: Anomaly measure: Mahalanobis distance,version two, for replacement 4, case
b), ANN1 modelling
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Figure 4.7.: Anomaly measure: ALI for replacement 4, case b), ANN1 modelling

that the fault is indicated earlier with p = 6 in the Minkowski distance for some

window lengths (78 days ahead for nW = 1008). The separation of the last values is

even clearer than in the previous case and also visible in nW = 432.

The results of the DTW distance, Figure 4.4, are very comparable to the simple

Euclidean distance. However, the separation seems to be a bit better for some

window lengths.

The Mahalanobis distance in version one (only using the residual) shows a pattern

that is again comparable to the patterns observed with the Euclidean distance, see

Figure 4.5. The spike at around −35 days is however slightly more prominent. If the

target signal is also considered (version two), Figure 4.6, the observed patterns do

not change dramatically, but the separation of the values before the replacement is

even weakened for some window lengths.

In Figure 4.7, the results of the ALI do not prove that this measure is giving any clear

separation of the period before the replacement and the first 300 days. In fact, values

close to one are seen throughout the observation period with some fluctuation.
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(e) Mahalanobis distance, version one
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(f) Mahalanobis distance, version two

Figure 4.8.: Various anomaly measures for nW = 12, replacement 3, case d), ANN1 model-
ling.

4.2.2 Comparison of measures for spike feature

If a spike in the residual is to be detected, a longer window length is less favourable.

However, some averaging might be advantageous to lower the risk of misinterpreting

outliers as faults. In Figures 4.8 and 4.9 the measures are compared for a failure with

a distinct ‘spike’, gearbox replacement 3, farm Beta, turbine 4 and ANN1 modelling

in case d). Results of the ALI are not presented due to the poor performance of this

measure.

Results are presented for window lengths of 2 and 6 hours in Figures 4.8 and 4.9,

respectively. It can be argued, that in the case of detecting ‘spike’ features, the

prominence of the spike should be maximised. This can be described by the ratio of

the peak and the reference line. In the raw residual the ratio was 12.8/6.3 ≈ 2 (not

shown here) and ratios around 3 are visible for most measures. The Mahalanobis

distances, however, show an increased ratio of 4-8 with a better performance for

version one. There is no significant reduction of the ratio if the window length is

increased from nW = 12 to nW = 72.
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(e) Mahalanobis distance, version one
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Figure 4.9.: Various anomaly measures for nW = 72, replacement 3, case d), ANN1 model-
ling.

4.2.3 Comparison of measures for spread feature

The observation of increased spread of the residual before a failure in certain cases

is briefly investigated based on gearbox replacement 4, farm Beta, turbine 7, NSET

and case b). Figures 4.10 and 4.11 show the measures (excluding ALI) for window

lengths of two hours and one day, respectively. It can be seen, that the failure

indication is not very distinct for the shorter window length with best separation in

case of the DTW distance. If the window is longer, the Mahalanobis distance shows

the best separation of the peaks from normal fluctuation.

4.2.4 Conclusion measures for anomaly identification

Average, Minkowski distance (in two variants), DTW distance, Mahalanobis distance

(in two variants) and ALI were compared for different kinds of anomalous residual

behaviour. The results indicated that different measures and window lengths might

be appropriate for identifying rises, spikes and spread events. Minkowski distance

with p = 6, DTW distance and Mahalanobis distance in version one seemed best

suited to detect a slow rise in the residual. Longer window lengths such as nW = 1008
(7 days) or nW = 2016 (14 days) resulted here in better separation between fault-
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(c) Minkowski distance, p = 6
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(e) Mahalanobis distance, version one
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(f) Mahalanobis distance, version two

Figure 4.10.: Various anomaly measures for nW = 12, replacement 4, case b), NSET
modelling.
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(d) DTW distance
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(e) Mahalanobis distance, version one
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Figure 4.11.: Various anomaly measures for nW = 144, replacement 4, case b), NSET
modelling.
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free and faulty behaviour. In contrast, the Mahalanobis distance showed the clearest

fault indication for short spikes in the residual which might be explained by the

consideration of the history in the Mahalanobis distance. In this case, shorter window

lengths like nW = 12 (2 hours) or nW = 72 (6 hours) seemed more appropriate. If

a ‘spread’ of the residual is to be detected, similar window lengths showed good

results in combination with a DTW or Mahalanobis distance. There was no benefit

of using the simple average, the Minkowski distance with p = 2 or the Mahalanobis

distance in version two. ALI failed to separate fault-free and faulty behaviour.

In the following, the analysis is limited to certain features and window lengths:

• Rise: Minkowski (p = 6), DTW and Mahalanobis (version one) distances

nW = 1008
• Spike and spread: Mahalanobis (version one) and DTW distances, nW = 72

4.3 Quantifying the condition
In the next step, the condition of the monitored part needs to be described in a

generic way. This could be done by generating a binary status (alarm) with setting

a threshold. In general, the threshold should to be derived only from the model

training phase (in contrast to the previously displayed reference line) and should be

flexible to account for the varying accuracies for different models and configurations.

The results from the training phase can be used to derive a threshold from a fitted

Weibull distribution and a selected probability (Bangalore and Tjernberg, 2015).

This approach could be less prone to outliers than just selecting the maximum from

the training phase. However, the derived distances do not necessarily form a Weibull

distribution. A further challenge lies in the selection of the probability of occurrence

as there is no generic solution, e.g. 1 % or 0.1 % would result in different alarms.

If a window length of one or two weeks is used, only few samples are available from

a three-month training phase that hardly represent any distribution properly. For

the detection of spikes and spread, a very robust threshold would be advisable in

order to consider only significant events. It can be assumed, that such a spike does

not occur in the training phase and a threshold is accordingly hard to extrapolate

from a fitted distribution. This can be demonstrated with the Mahalanobis distance

shown in Figure 4.9e where an intuitive definition of the threshold (after knowing

the evolution of the measure) would be possibly around 10 or higher. In contrast, the

probability of 2−52 (the floating point accuracy of MATLAB) from the fitted Weibull

distribution of the training phase corresponds to a distance of approx. 6.5.
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Further tests revealed that the setting of thresholds based on probabilities or per-

centiles in the training phase for one turbine, resulted in e.g. permanent alarms if

applied in another case.5 It can be concluded that a threshold based on the training

phase does not necessarily generate a reliable representation of the condition. A

further validation and fine-tuning after the training phase seems necessary. In ad-

dition, a quantification of the condition in more than two categories (alarm or no

alarm) might be helpful for decision-making in the light of wear and degradation as

cumulative damage.

The idea of a normalised anomaly index as proposed by P. Sun et al., 2016 is

appealing, although the suggested definition was not successful in this study. Here,

a condition index is proposed considering the distribution of the measure up to the

current time step with an adaptive approach inspired by Kalman filtering. The index

was designed to account for two features: firstly, a high value in the measure and

secondly, a rising trend in the measure. A range of the index was fixed to 0 (for

healthy) to 100 % (for abnormal). In detail, the condition index θ was defined as

θ = a1ζ + a2η (4.9)

with factors a1 and a2 summing to one and the two characterising numbers ζ and η

as derived below with exponential scaling.

ζ(t) = exp
(
p(d,D) ln(100)

100

)
(4.10)

Here, p(x,X) is a ranking function that can be described as the inverse percentile,

i.e. for each value x and a set of samples X, it will return the percentile of X to

which x belongs. If x is bigger than the maximum of X, we define p = 100 and if it

is smaller than the minimum of X, p = 0. The measure of each timestamp d(t) is

compared to the set of measures D(t) compromised of all available measures up to

the previous time stamp, including the training phase. The second characterising

measure η represents the trend of the measure and was defined as

η(t) = exp
((p(e, E)− 50) ln(100)

50

)
(4.11)

with

e(t) =
m−1∑
j=0

(
∆j −max(∆jε{1,2,...,m−1})

)
(4.12)

5This is not shown here in detail for brevity, but can be seen in preliminary studies presented in
Tautz-Weinert and Watson, 2017c.
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Figure 4.12.: Anomaly measure and derived condition index: Minkowski distance with
p = 6 for replacement 4, case b), ANN1 modelling.

and the first difference of the measure, ∆j = d(t− j)− d(t− j − 1). In words, e is

the sum of the slope of the last m time stamps excluding the biggest value. The set

E is comprised of the historical slopes (including training), but excluding all values

from t− 2m onwards.

In Figure 4.12, the condition index is shown for the previously discussed rise before

replacement 4 with the Minkowski distance (as shown in Figure 4.3) and factors

defined as a1 = a2 = 0.5, m = 3. It can be seen, that the two objectives of the index

are met, i.e. the index considers whether the model differs significantly at some

point in time and whether there is an increasing trend.

Further examples of the condition index are given in Figure 4.13 with identical

configuration for the index for the window length of one week, but a1 = 1/3 and

a2 = 2/3 in case of the shorter window length of six hours. It can be seen, that the

evolution of the index is very similar for the different measures and identical window

lengths. In order to further reduce the complexity, in the following equations the

condition index is further defined as the maximum of the different measures, i.e.

θ72 = max({θ(dDTW , θ(dMahal)})|nW = 72 (4.13)

θ1008 = max({θ(dDTW ), θ(dMink), θ(dMahal)})|nW = 1008 (4.14)

for the two selected window lengths of 72 and 1008 samples (12 hours and 7 days)

and the setting of the weights a1 and a2 as in the example above.

4.4 Comparison of modelling techniques
The developed condition index was tested on all gearbox replacements and modelling

techniques discussed in Section 3.4 (ANNc is not discussed here due to the unstable

modelling results). Figures 4.14 to 4.22 show the evolution of θ in the last 200 days

before the failure for the 9 replacements in the data, respectively. The colouring
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(a) Replacement 1 (Beta, 2, d) (b) Replacement 4 (Beta, 7, b)

(c) Replacement 7 (Gamma, 24, d) (d) Replacement 9 (Delta, 8, d)

Figure 4.13.: Condition index for selected replacements and ANN1 modelling (content in
parentheses denotes farm, turbine number and input case).

indicates the value of the condition indices with yellow–red–brown for values from

60 to 100 %. It has to be noted, that high condition index values also occurred further

in advance of the replacement, but are not shown here for the sake of readability of

the figures. In case of repeated runs of ANN techniques, the median index value of

the three runs was selected at each time step.

There is no clear indication of a problem in the condition indices in case of the

first gearbox replacement, Figure 4.14. First high values of the indices are seen at

approx. 165 days ahead in θ72 in input cases a) and b) and modelling techniques

such as LIN, LINi, ANFIS, MARS, GPR and NSET. These are however not reaching

the limit of 100 % and are not reflected in the value of θ1008. Some significant values

of θ1008 are visible at −55 days in ANN2, MARS and ANNa as well as at approx.

−40 days in ANFIS, MARS and GPR. Further high values of θ72 are seen in various

techniques in the last 80 days before the replacement without clear matches between

different techniques. However, all condition indices do not remain on a high level

and thereby do not give a clear warning. Due to the design, the indicator would only

stay high if the anomaly gets stronger.

Figure 4.15 shows the second gearbox replacement with a clear indication of the

fault in all modelling techniques (less prominent in GPR and ANNa) at around

15 days before replacement. A clear pattern is recognisable for most techniques

indicating that the abnormality is clearest in input cases b) and c). In addition,

further extreme index values can be seen around 60-80 days with NSET, ANN5 and

ANNh generating the earliest extreme values of θ.
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Figure 4.14.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 1 (farm Beta, turbine 2).

Figure 4.15.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 2 (farm Beta, turbine 3).
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Figure 4.16.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 3 (farm Beta, turbine 4).

The condition index trend for the third gearbox replacement is detailed in Figure 4.16.

There is a clear indication of the problem at around −75 days in all techniques and

input cases. However, earlier warning is given in LIN (−100 days), ANN5, ANNh,

ANFIS and GPR (all: −85 days), in combination with input case b).

Replacement 4 was the basis for the condition index definition. In Figure 4.17 it can

be seen, that all techniques give a clear fault indication in θ1008 at around 60-75 days

before the replacement, usually for input cases a), b) and c). In contrast, input case

d) showed even earlier warning in θ72, most notably in LINf, ANN1, ANFIS and GPR

modelling (−95 days).

The failure resulting in the fifth replacement, Figure 4.18, might be indicated 160-

180 days in advance with high condition indices in nearly all techniques and input

cases. Here, LINf and NSET show the first maximum values of θ1008. Further

high index scores appear at −85 days in LIN, LINf, ANN1, ANFIS, MARS and GPR

modelling results in case d).

Replacement 6, happening in farm Gamma, is not accompanied by many extreme

condition index values in the last 100 days before the replacement, see Figure 4.19.
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Figure 4.17.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 4 (farm Beta, turbine 7).

Figure 4.18.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 5 (farm Beta, turbine 12).
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Figure 4.19.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 6 (farm Gamma, turbine 7).

However, θ72 is remarkably high at around −175 days in all techniques (except

NSET) and all input cases (for most techniques).

The second gearbox exchange in farm Gamma, replacement 7, is hardly indicated in

advance, see Figure 4.20. Only a few scattered high values can be found with a high

θ1008 for GPR in case d) as the most prominent.

A similar picture arises for replacement 8, that took place in farm Delta, Figure 4.21.

Although the condition indices are not constantly below 50 %, it is difficult to identify

a reliable indication of a fault. Some high values are seen e.g. in ANNh, ANFIS,

MARS and ANNa results.

Finally, gearbox replacement 9 is shown in Figure 4.22 with again scattered colours

indicating little agreement between the techniques. However, θ1008 is more often

larger than 80 % than in the previous cases. Input case b) seems to show most

of the high values. The earliest high θ is seen in LIN, LINi, LINf, SVM and NSET

modelling at around −160 days. Gaps in ANN5 and ANNh results indicate that too

many modelling results were filtered to enable a condition index calculation.

The findings of the comparison are summarised in Table 4.1. Although, applying

the condition index resulted in improved failure detection compared to the visual
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Figure 4.20.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 7 (farm Gamma, turbine 24).

Figure 4.21.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 8 (farm Delta, turbine 5).
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Figure 4.22.: Condition index evolution for all modelling techniques and input cases for
gearbox replacement 9 (farm Delta, turbine 8).

residual analysis (as in Chapter 3.5), ambiguity remains in the context of distin-

guishing a high condition index that is truly indicating the gearbox problem from

possibly false alarms. In addition, it might be questioned whether the design of

the condition indicator was ideal as alarms would only remain if the anomaly gets

stronger. Accordingly, it is difficult to assess the capabilities of the different modelling

techniques and input cases. However, some conclusions can be drawn from the

comparison:

• ARX techniques show some failures, but miss others where all FSRC techniques

detect the problem.

• Linear models perform reasonably well while being computationally less costly.

• LIN, LINi and LINf result in different condition indices without there clearly

being a best option among the three.

• ANN techniques are involved in many failure detections with different contri-

bution for the configurations ANN1, ANN2, ANN5 and ANNh.

• Some fault indications are only visible in ANFIS, MARS, GPR or SVM, which

happen to agree for some failures.

• Input cases b) and d) seem to be more appropriate for fault detection.
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Table 4.1.: Condition index failure detection summary.

Replacement Case Modelling technique Days in advance Comment

1 – Beta, turbine 2 a), b) LIN, LINi, ANFIS, MARS, GPR, NSET 165 θ72
a) / b) ANN2, MARS, ANNa 55 θ1008
d) ANFIS, MARS, GPR 40 θ1008

2 – Beta, turbine 3 c) ANN2, ANN5, ANNh, GPR, NSET 75 θ1008
b), c) all (varying clarity) 65 θ72
b), some: c) all except GPR, ANNa (varying clarity) 15 θ1008

3 – Beta, turbine 4 b) LIN 100 θ1008
b) ANN5, ANNh, ANFIS, GPR (and more) 85 θ1008
a), b), c), d) all 75 θ1008

4 – Beta, turbine 7 d) LINf, ANN1, ANFIS, GPR 95 θ72
a), b), c) all 60-75 θ1008

5 – Beta, turbine 12 a), b), some: c) all except ANNa (LINf and NSET clearest) 170 θ1008, also θ72, θ1008, d) delayed
d) LIN, LINf, ANN1, ANFIS, MARS, GPR 85s θ1008

6 – Gamma, turbine 7 a), b), c), d) all except NSET 175 θ72
7 – Gamma, turbine 24 d) GPR 10 θ1008
8 – Delta, turbine 5 b) ANFIS, MARS, ANNh, ANNa various scattered
9 – Delta, turbine 8 a) / b) LIN, LINi, LINf, SVM, NSET 160 θ1008

b) / d) LINi, ANFIS, GPR, SVM, ANNa 60-90 θ1008, scattered
b) / d) all except LINi, ANN1 10-60 θ1008, scattered, (gaps in ANN5, ANNh)

4.5 Utilising all temperature signals
The previous sections discussed only gearbox replacements while monitoring only

a single temperature signal. In this section, all documented replacements were

investigated with a higher number of signals. Furthermore, the contribution of

different modelling input selections was utilised to possibly improve the reliability

of monitoring.

4.5.1 Ensemble of models

All relevant temperature signals were monitored. For each target signal, 17 different

configurations were tested with different inputs as detailed in Table 4.2. The

automated input selection in Section 3.4 was based on the strongest correlation

which bears the risk of taking inputs that are too similar to the target. Here, two new

approaches were added: excluding all temperatures except the ambient temperature

and excluding the five signals with the strongest correlation to the target. It was

made sure that only one of the available ten-minute mean, min, max or std for each

signal was used. Only LIN and ANN1 modelling were selected for this analysis.

The modelled and monitored signals were used to derive the condition indices θ1008

and θ72. Finally, the results from all models for each target temperature were merged

by making an ensemble of the condition indices using a weighted sum approach

ξ = 1
k

∑
i

θibi (4.15)

4.5 Utilising all temperature signals 130



Table 4.2.: Input configurations for detailed study.

No Inputs Configuration Weight bi

1 2 Excluding all temperatures (except ambient) 0.7
2 3 Excluding all temperatures (except ambient) 0.7
3 5 Excluding all temperatures (except ambient) 0.7
4 10 Excluding all temperatures (except ambient) 0.7
5 1 Only ambient 1.0
6 2 Only ambient, power 1.0
7 3 Only ambient, power, pitch 1.0
8 4 Only ambient, power, pitch, rotor speed 1.0
9 5 Only ambient, power, pitch, rotor speed, yaw 1.0
10 2 All possible 0.1
11 3 All possible 0.1
12 5 All possible 0.1
13 10 All possible 0.1
14 2 excluding all inputs from run #12 0.2
15 3 excluding all inputs from run #12 0.2
16 5 excluding all inputs from run #12 0.2
17 10 excluding all inputs from run #12 0.2

with all relevant condition indices θi, respective weights bi and a scale factor k. The

weighted sum of indices ξ was further normalised to a range of 0 to 100 by applying

a sigmoid function

ψ = 100
1 + e−ς1(ξ−ς2) (4.16)

with the two shape parameters ς1 and ς2 and the final ensemble condition index ψ.

The weights bi as given in Table 4.2, were selected based on the assumed credibility

of the model configuration, i.e. giving more trust in models that were based on

inputs other than temperatures. The selection of scale factor and shape parameters

should rather control more easily the visualisation of ψ than influence the failure

detection performance. Here, k = 17, ς1 = 25 and ς2 = 80 were chosen after initial

tests.

For the purpose of this section, farm Delta was selected due to the most detailed

recordings in this case. The analysis of data from farm Delta covered 11 turbines

and roughly 5 years. The available maintenance documentation listed twelve major

replacements as detailed in Table 4.3.

Additional data were analysed from a further farm, that consists of more than 70

turbines located in Europe with a rated capacity of approx. 2 MW. This farm is

called ‘Epsilon’ in the following. Each turbine recorded more than 200 signals with

14 relevant temperature measurements for the drive train. The data covers three

periods of 3-4 months each, with one major replacement in the second and third
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Table 4.3.: Replacements in farm Delta.

Turbine Anonymised date Description

1 12/04/2039 Generator drive-end bearing
2 03/03/2037 Generator non-drive-end bearing
4 07/04/2039 Generator slip ring
5 01/11/2037 Generator drive-end loose bearing
5 01/11/2037 Gearbox
6 15/04/2039 Generator drive-end bearing
8 01/12/2038 Generator non-drive-end bearing
8 12/02/2039 Gearbox
9 12/05/2037 Generator drive-end bearing
10 01/03/2037 Gearbox magnet/sensor
10 21/05/2039 Generator drive-end bearing
10 15/02/2039 Generator slip ring

period each. Turbine 25 and 50 in farm Epsilon were affected by a gearbox and high

speed bearing replacement, respectively.

4.5.2 Results

For each turbine in farm Delta, 15 temperatures were monitored with the 17 different

configurations and two modelling techniques. The resulting ensemble condition in-

dex ψ evolutions are shown in Figures 4.23 to 4.31 for all turbines with replacements

and one reference without noted maintenance. Here, the value of ψ is illustrated by

colours from blue to red with a simultaneous shift in the y-axis for easier readability.

The target signal labels use the following abbreviations: temp - temperature, gear -

gearbox, gen - generator, hyd - hydraulic, bear - bearing, ls - low speed, hs - high

speed, lvl - level. Due to the scale applied, this analysis of the figures is more

focussed on very early warnings of problems, i.e. several months ahead.

In turbine 1, Figure 4.23, maximum values of ψ can be seen for all targets, although

with varying frequency. Most targets show high ensemble condition indices in the

first year after training the models. However, only a few drive train temperatures

show ongoing trends of high ψ, with the strongest occurrence for the generator

bearing temperature 2. In this case, the suspicious pattern ends with the generator

bearing replacement. However, high condition index values remain for gearbox

bearing signals and the generator slip ring temperature.

Figure 4.24 shows that a similar pattern of ensemble condition indices first showing

alarms in the first year occurring also in turbine 2. A significant pattern of high ψ

for nearly all gearbox signals is visible about one year after the replacement (mid

2037).
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Figure 4.23.: Evolution of ψ for various temperatures in turbine 1 of farm Delta (bearing
replacement highlighted with vertical line, dates anonymised).

Figure 4.24.: Evolution of ψ for various temperatures in turbine 2 of farm Delta (bearing
replacement highlighted with vertical line, dates anonymised).
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Figure 4.25.: Evolution of ψ for various temperatures in turbine 4 of farm Delta (slip ring
replacement highlighted with vertical line, dates anonymised).

In turbine 4, Figure 4.25, a series of maximum values of ψ can be observed in the

first year. Longer trends of indices indicating faults are shown in generator and

gearbox temperatures (as e.g. gearbox bearing low speed rotor side) and mostly end

with the replacement of the slip ring. However, it is unlikely that a fault in the slip

ring alone will show up in the gearbox temperatures.

Ensemble condition indices indicating faults are only occasionally seen in the first

three years for turbine 5, Figure 4.26. Noticeably, an increased frequency of high

values is observed after the gearbox replacement, in particular in the hydraulic

oil temperature. This cannot be explained, but might be related to unrelated and

undocumented maintenance such as hydraulic oil change conducted with the gearbox

replacement.

In the case of turbine 6, Figure 4.27, high values of ψ are visible for gearbox bearing

temperatures on the low speed shaft and the hydraulic oil that persist for more

than one year and somehow end with the generator bearing replacement. However,

there are still ensemble condition indices indicating faults in other targets after the

replacement.
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Figure 4.26.: Evolution of ψ for various temperatures in turbine 5 of farm Delta (replace-
ments highlighted with vertical line, dates anonymised).

Figure 4.27.: Evolution of ψ for various temperatures in turbine 6 of farm Delta (bearing
replacement highlighted with vertical line, dates anonymised).
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Figure 4.28.: Evolution of ψ for various temperatures in turbine 8 of farm Delta (replace-
ments highlighted with vertical lines, dates anonymised).

There is an increased number of high ensemble condition indices before the bearing

and gearbox replacement in turbine 8, Figure 4.28. However, most gearbox signals

show even more values of ψ indicating faults after the gearbox replacement – possibly

due to changed conditions that might require re-training. A persisting high ensemble

condition index in the generator bearing temperature 2 ends with the bearing

replacement.

No clear ahead warning can be identified for the bearing replacement in turbine 9,

Figure 4.29. Longer periods of high ensemble condition indices are seen in the years

after the replacement in generator and gearbox temperatures.

Figure 4.30 shows several longer periods of high ψ values in various targets for

turbine 10 with three different replacements during the observation period. It

remains unclear, whether any of these are directly linked to the replacements.

The last figure for farm Delta, Figure 4.31, gives an example of frequent high values

of the ensemble condition indices in a turbine without major replacement happening

in the observation period.

The ensemble condition indices of the drive train temperatures of the turbines

in farm Epsilon are shown in Figures 4.32 and 4.33 for the turbines affected by
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Figure 4.29.: Evolution of ψ for various temperatures in turbine 9 of farm Delta (bearing
replacement highlighted with vertical line, dates anonymised).

Figure 4.30.: Evolution of ψ for various temperatures in turbine 10 of farm Delta (gearbox
magnet, generator drive end bearing and generator slip ring replacements
highlighted with vertical lines, dates anonymised).
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Figure 4.31.: Evolution of ψ for various temperatures in turbine 11 of farm Delta (no major
replacement, dates anonymised).

replacements. An example of a turbine without recorded replacement is given in

Figure 4.34. The sensor setup differs from farm Delta and additional abbreviations

are used as MainB - main bearing, IMS - intermediate speed shaft, Ge - gearbox,

G/Gn/Gen - generator, Rot/R - rotor, Brk - brake, Be - bearing, Tm/Tmp/Temp -

temperature.

There is no indication of a high speed bearing problem in turbine 25 before the

replacement happens, see Figure 4.32. However, the behaviour seems to change

due to the repair as high ψ values occur after the replacement for the respective

temperatures. There are some ensemble condition indices indicating faults before

the gearbox replacement in turbine 50, in particular in high speed shaft and hub

temperatures. But even stronger peaks of ψ can be seen for turbines without

replacements, as shown in Figure 4.34.

4.6 Discussion and conclusion
In this chapter automation of anomaly detection was addressed based on the results

from normal behaviour modelling of SCADA temperatures in Chapter 3.
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Figure 4.32.: Evolution of ψ for various temperatures in turbine 25 of farm Epsilon (gearbox
replacement highlighted with vertical line).

Figure 4.33.: Evolution of ψ for various temperatures in turbine 50 of farm Epsilon (bearing
replacement highlighted with vertical line).
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Figure 4.34.: Evolution of ψ for various temperatures in turbine 1 of farm Epsilon (no major
replacement).

Different ways of calculating a measure for the anomaly from the measured and

modelled target temperature were introduced and compared for selected gearbox

replacements. It was found that, a slow rise in the residual was clearest in measures

that combine results from one or two weeks each. A Minkowski distance with

an exponent of 6, a Dynamic Time Warping (DTW) distance and a Mahalanobis

distance were slightly better than a simple average of the residual. Short peaks

of the residual (spikes) and a fluctuating residual (spread) were best separated

from normal behaviour in DTW and Mahalanobis distances with window lengths

of less than a day. An abnormal level index (ALI) failed to give clear warnings if

configured as suggested by P. Sun et al., 2016. No advantage could be identified

if the Mahalanobis distance considered not only the residual, but also the target

temperature as proposed in literature (Bangalore and Tjernberg, 2015).

In the next step, a quantifying condition index was derived based on Minkowski,

DTW and Mahalanobis distances. In contrast to previously suggested anomaly

monitoring techniques, this condition index uses the full history of the model-based

monitoring and not only the training phase of the model to be able to continuously

adapt and better learn the normal behaviour. The condition index was defined

with two parts to consider whether the model differs significantly at the current
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time step and whether there is an increasing trend. Normalising was applied based

exponential scaling of percentiles. It was demonstrated, that the derived condition

index gives a better anomaly warning than the original measure. Maximum values

were selected from the Minkowski, DTW and Mahalanobis distances to reduce the

monitoring to two condition indices for two different window lengths, 12 hours and

one week.

The defined condition indices were subsequently used to conduct a comparison

of all investigated modelling techniques for gearbox replacements in farms Beta,

Gamma and Delta as introduced in Section 3.4. For seven out of nine replacements

high condition indices were identified that might indicate the gearbox problems in

advance. However, the alarm patterns were not sufficiently clear to be confident that

in all cases the fault is the underlying cause. Scattered high values of the condition

indices implied that the separation of normal behaviour from anomalies is still not

very good. But it has to be noted, that the available maintenance documentation

did not include routine inspections, oil changes or minor repairs that might cause

anomalies as well. In terms of the comparison of modelling techniques, there is

hardly a best technique identifiable. Linear models, ANN models and other models

seemed to be able to identify the problems without a single technique and input

configuration that was advantageous in all cases. It can be concluded, that there

might be no need to train very complex and computationally expensive models.

Finally, a full study of all documented replacements was conducted by monitoring

all drive-train temperature signals. An ensemble of models was designed to utilise

17 different input configurations as well as linear and ANN modelling for each target

temperature. The setup was tested on five years of 11 turbines in farm Delta with

12 replacements. For some of the replacements, ensemble condition indices that

indicate a fault were observed for two or more years in advance. Based on the

available information, it is hard to determine whether this is a true indication or

unrelated to the cause of the replacement. In other cases, high indices do not agree

with the noted problems and might be ‘false alarms’. The patterns of ensemble

condition indices indicating a fault suggested that further adjustments to normal

behaviour were required in the first year of operation in nearly all models. In

addition, it was clearly visible, that re-training would be needed after replacements

as the behaviour changed. In a further test with data from wind farm Epsilon, no

clear advance indication of the two replacements could be seen. It might be possible,

however, that the models learnt already anomalous behaviour instead of normal

behaviour as the training period was 1-2 years before the replacement.
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(a) (b)

(c) (d)

Figure 4.35.: Gearbox temperatures with a gearbox replacement at the end of zone 1 and a
replacement of the thermostatic bypass valve at the end of zone 2. For turbine
O1, a further significant change is visible from zone 3 to zone 4, which is out
of the range of available maintenance documentation.

It can be seen, that the importance of a complete knowledge and understanding of

all maintenance actions and operational interventions is crucial for optimal condition

monitoring. This can be shown for gearbox replacements in a further farm (with

turbines of less than 1 MW). The raw temperature measurements of the gearbox

oil and at a gearbox bearing in two turbines are presented in Figure 4.35. Clearly

rising trends can be observed with rapid changes of behaviour at 2-3 points in time.

A detailed study of the full maintenance history as documented in service orders

reveals that some significant changes are caused by minor repair, the replacement of

a thermo-static valve, which probably regulates whether the gearbox oil is flowing

through a cooler or finer particle filter (Dvorak, 2013). If the maintenance knowledge

is reduced to major replacements, such effects cannot be identified and developed

algorithms might show ‘false alarms’ or are even trained in conditions that are not

normal.
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In this context, the call of leading scientists in data-driven monitoring of wind

turbines for more data sharing (Kusiak, 2016) must be repeated. In addition, one

reason for the disagreement of this work with some findings in literature could

be caused by the differences of the turbine and SCADA configurations. In relation

to this matter, a round robin test of the same SCADA data by various researchers

and industry stakeholders could be a milestone in improving condition monitoring

with operational data. The same blind-testing procedure for vibration-based failure

detection proved to be very valuable (Sheng, 2012).
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5Fusion of SCADA and CMS data

for fault detection

Wind turbines are often also monitored by analysing spectral properties of high

frequency (kHz range) vibrations using a dedicated Condition Monitoring System

(CMS). So far, this approach has been investigated separately, but there could be

clear benefits in combining CMS and SCADA data for improved failure prediction

and simplified data processing.

In this chapter, a framework for merging the CMS vibration records with ten-minutely

SCADA data to build a consistent database is proposed. Based on real data from

an onshore wind farm, the possibilities of using these merged data for failure

detection are explored. Clustering and distance-based techniques are employed to

investigate relationships between different signals. In addition, failure prediction

is investigated in a data-driven learning framework with four classification and

regression techniques. 6

5.1 Introduction
Both SCADA systems and CMS can give important information on the health of

wind turbine components as shown in Figure 5.1. However, as massive amounts

of data are generated by the turbines, it becomes increasingly difficult and costly

to derive useful information from these systems. In a top-down approach, suitable

data mining and machine learning techniques can be used in order to handle the

data and to generate meaningful, human-readable results. Relationships between

the data generated from both systems need to be discovered to eliminate redundant

information and to select appropriate inputs for further analyses.

6This chapter is based on a collaboration with Maik Reder (CIRCE / University of Zaragoza) and
Lorenzo Colone (Technical University of Denmark), initiated by the AWESOME 1st Joint Industry
Workshop (Andicoberry et al., 2016). We were equally responsible for the development of the idea
and conducting the research, but focussed on different parts in terms of writing the code. I mainly
worked on the analysis of relationships between data, while Maik implemented the data merging
framework and focussed on the prediction of CMS alarms. A further approach of predicting CMS
alarms with CMS data was developed by Lorenzo and Maik, but is not detailed here as I did not
significantly contribute to this work. The findings of this study were also used in Maik’s PhD thesis
(Reder, 2018) and form a journal paper in submission (Reder, Tautz-Weinert et al., 2018).
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Figure 5.1.: Example of high RMS values from the CMS and high temperatures from the
SCADA system before a main bearing failure.

CMS and SCADA data have been compared for failure detection (Y. Feng, Qiu et al.,

2013; Yang, Tavner et al., 2014), but combining data from the different sources has

not been explored as yet. There have been efforts to combine SCADA and vibration

measurements (Kusiak and Z. Zhang, 2010; Lind et al., 2017) but this has been

limited to the time-domain information in vibrations also recorded in the SCADA

system. The synergies within different SCADA channels have been analysed by the

authors (Colone et al., 2017). In the present work, the aim was to couple SCADA

and full CMS data. This could eventually lead to advanced knowledge of the wind

turbine health and remaining lifetime as pointed out previously (Kuik et al., 2016).

Firstly, a framework is proposed for merging vibration data from the CMS with

the ten-minute recordings from the SCADA system to provide useful input to data

analyses and machine learning algorithms. The processed data were then used for

the following objectives7:

• Understanding relationships between data: explore similarities of different

signals in the merged dataset.

• Prediction of CMS alarms: evaluate the possibility of generating warnings like

the CMS system based on data-driven learning and only SCADA data.

– Count of alarms: predict the number of alarms to investigate the possibility

of substituting condition monitoring systems.

– Time dependent probability of alarm: predict the probability of failures as

an approach for early warnings.

7A further objective was defined as developing solutions for automated failure detection based on
CMS data, which is detailed in Section 6.3.1 of this thesis.
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5.2 Case study data
This study was carried out using data from 13 turbines (referred to as T01 to T13)

located in an onshore wind farm in Denmark, subsequently noted as farm Zeta.

All turbines were three bladed and pitch regulated machines with 2.3 MW rated

capacity. The data were recorded throughout an observation period from January

2013 to December 2016. The dataset was comprised of:

• SCADA data with 155 channels of 10-minute resolution.

• A log containing the alarms produced by the SCADA system.

• CMS vibration data consisting of multiple FFT, Envelope (Env), Cepstrum and

RMS records in non-uniform sampling intervals obtained from accelerometers.

Details of the measurement setup are not available, but it can be assumed that

the configuration follows the requirements of GL Renewables Certification,

2013. The vibration records are labelled with characteristic sampling frequen-

cies and bandwidths, e.g. ‘FFT1000’ for an FFT with frequencies between 0

and 1000 Hz. The measurements were taken in seven different active power

intervals in order to classify conditions under quasi-stationary operating condi-

tions in line with IEC, 2010. The vibrations of seven wind turbine components

were measured (compare also Figure 1.4):

1. Generator Drive End bearing (GDE),

2. Generator Non-Drive End bearing (GNDE),

3. High Speed Shaft bearing (HS),

4. Intermediate Speed Shaft bearing (IMS),

5. Main Bearing (MB),

6. Planetary gear (P),

7. Tower top acceleration, which only contained RMS.

• Alarms per component as triggered by the commercial CMS.

Examples of the raw data as given from the CMS are shown in Figure A.17 in the

Appendix.

Main bearing failures in turbine T01, T03 and T08 were indicated by both CMS

and SCADA systems and were followed by significant downtime. There were no

further confirmed major replacements, but various CMS alarms of different severity.

The SCADA alarms used in this study were high temperature alarms related to the

main bearing, which were raised automatically by the SCADA system when a critical

temperature value was reached. The CMS alarms were triggered when the vibration

level of the component indicated by the Envelope, FFT, Cepstrum or RMS exceeded
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a certain threshold. In the present case of main bearing failures, the CMS used the

RMS as an indicator as also shown in Figure 5.1.

Note, that for better readability ‘spectra’ and ‘frequency’ are used subsequently to

describe CMS records, but these terms shall also imply the equivalents in Cepstrum

analysis. Also, the term CMS data will be used to refer exclusively to vibration data

obtained from the CMS as opposed to other data which can sometimes be measured

by such systems such as acoustic signals, temperatures, strain measurements, etc.

5.3 Methodology
In this section the techniques used to achieve the different objectives of this work are

discussed. Firstly, the data merging process is explained, which lays the foundation

for the subsequent applications. Then, the techniques used to understand the

relationships between the different types of data are introduced. Subsequently, the

data-driven prediction of CMS alarms is explained.

5.3.1 Merging CMS and SCADA

CMS and SCADA data usually have different temporal resolutions. While SCADA

measurements are often averaged over 10-minute intervals, CMS measurements are

taken once a day or once a week. Hence, the data need to be processed to build a

uniform database for thorough analysis and the application of data driven prediction

algorithms.

The different spectra can give information on deteriorating components, indicated

by spectral peaks such as their fault frequencies, side-bands and harmonics. For

analysing the deterioration of a component, it is necessary to examine the evolution

of the amplitudes of different spectral peaks over time in order to determine whether

there is a notable trend in their behaviour.

At present, this is done manually by experts, by using plots similar to Figure 5.2,

which shows an example for an Envelope spectrum obtained before and after a main

bearing failure followed by a significant downtime. One can clearly see that the

amplitude rises for certain frequencies continuously until the failure occurs (in April

2016).

If the CMS records like FFT, Cepstrum and Envelopes are going to be used in a

machine learning application, a reduction of complexity is advisable. Furthermore,

including the entire spectrum in the algorithms would lead to an excessively high

number of channels.
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Figure 5.2.: Example of Envelope records plotted in the time-frequency domain (log-log
axes) for manual analysis by experts. There can be seen significant indicators
of a failure happening in April 2016.
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(b) Binned spectrum

Figure 5.3.: The binning process visualised.

A binning approach was chosen to pre-process the CMS records. Each FFT spectrum,

Cepstrum or Envelope record was split into bins of frequencies and subsequently the

integral of each bin was calculated. After analysing the different CMS records (FFT,

Cepstrum and Envelope), a total number of 17 bins was selected. With this resolution,

it was possible to capture the different peaks in the spectrum, which indicate different

fault frequencies, harmonics and side-bands, while still reducing the dimensionality

of the spectrum significantly. The bins were labelled in alphabetical order A,B,...,Q.

Figure 5.3 visualises this process.

Figure 5.4 shows Box-Whisker plots of the binned Envelope and FFT spectra obtained

in a healthy and faulty state of a wind turbine main bearing. It can be seen that

the mean values and the variations obtained in a faulty state differ significantly

from those obtained in healthy condition. As both techniques, however, treated the

raw signal differently, the changes occured in different regions of the spectra. Thus,
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(a) FFT (b) Envelope

Figure 5.4.: Comparing binned FFT and Envelope records in a healthy and faulty state of a
wind turbine main bearing.

the binning approach allowed a significant reduction of the dimensionality of the

spectra, whilst still distinguishing between faulty and healthy states.

For the final merging of the processed CMS records with the SCADA data, the

temporal resolution needed to be matched. As the measurement intervals of the

vibrations were distinct from those of the SCADA data and fewer CMS measurements

were available, the CMS values were kept constant (i.e. assumed not to change)

if no measurements were available and were updated as soon as there were new

measurements. Both, SCADA and CMS data were standardised for all applications

discussed in the following sections, i.e.

s∗ = s− µ(s)
σ(s) (5.1)

with the standardised signal s∗ derived from the raw signal s, its mean mu(s) and

standard deviation σ(s).

5.3.2 Understanding relationships between data

Relationships between SCADA and CMS data were analysed with a focus on how

the similarities change in the case of a component failure. This knowledge can help

to understand which signals are appropriate for data-driven failure detection and

which signals can be omitted. Simple correlation analyses were susceptible to failure

because of the irregular temporal resolution of CMS data and the large number of

signals (3375). Instead, Hierarchical Clustering (HC) and Dynamic Time Warping

(DTW) were applied.

In general, a cluster analysis can show which signals are similar, i.e. joined in

a cluster, and which signals are more different, i.e. in separated clusters. The

assignment to clusters is based on distance calculations. HC is a tool to group data
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either bottom-up (agglomerative) or top-down (divisive) without pre-defining a

number of clusters. In contrast, e.g. k-means clustering tries to group the data in

exactly k sets. Here, an agglomerative approach was chosen. In HC, the process of

building the clusters is more important than the final result due to the fact that all

signals are eventually joined to one cluster. The approach consists of three steps:

1. Calculate distance (or dissimilarity) of each pair of data

2. Group data into a hierarchical tree

3. Cut, visualise and interpret tree

In the first step, one measure (d) needs to be selected to describe all pairwise

relationships of the observations. Possible distances include the City block distance,

Euclidean distance, Minkowski distance, Mahalanobis distance, etc. (compare also

Section 4.2). The pairwise relationships are gathered in a distance matrix, D, such

that the element at position i, j is

Di,j = d(xi, xj) (5.2)

with xi and xj as two of the m vectors of observations. Each observation is described

by n dimensions or categories. The distance matrix has size m×m, is symmetrical

and has zeros on the diagonal.

Subsequently, clusters are formed from the distance matrix. The first cluster can be

found by just selecting the minimum from the distance matrix. However, in the next

step an approach of describing dissimilarities between clusters is required. This is

defined by ‘linkage’. Different linkage methods are available, such as Single linkage

as the smallest distance of all objects in the clusters, i.e.

distSingle(R,S) = min(d(ri, sj)) (5.3)

with the distance dist between clusters R and S and ri and sj as the objects inside

the clusters. Complete linkage uses the opposite, the maximal distance, i.e.

distComplete(R,S) = max(d(ri, sj)) (5.4)

In contrast to the two approaches looking in the extreme distances, the Average

linkage considers all objects with

distAverage(R,S) = 1
nrns

nr∑
i=1

ns∑
j=1

d(ri, sj) (5.5)
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with nR and nS as the number of objects in the clusters R and S, respectively. Further

methods include Centroid linkage, Median linkage, Ward’s linkage, etc. (Everitt,

2011; Mathworks, 2018). In each step, agglomerative HC merges the two clusters

with the lowest distance between clusters until all data form one final cluster.

In the third step, the HC process is analysed. HC is usually described by listing all

objects of a cluster and the cluster distances for merged clusters. A dendrogram

visualises how clusters are formed by connecting two ‘leaves’, i.e. sub-clusters,

to form the next cluster. Here, the x-axis represents the sub-clusters or in the

lowest level all signals and the y-axis represents the cluster distances. A horizontal

line represents the joining of two clusters. The height in the y-axis represents the

difference of the two joined sub-clusters in terms of the selected distance, i.e. a

dendrogram with vertically close clusters indicates very similar signals.

An example of a dendrogram is shown in Figure 5.5 for the Fisher Iris data set, a

common test case with 50 samples for each of three species of Iris described by four

features (Fisher, 1936). In this dendrogram all 150 objects are shown on the x-axis,

but for a larger dataset it is common to cut the dendrogram at a certain number

of leaves to focus on the clusters that are joined last. It can be seen that the two

clusters that are joined last (blue and the merged green and red clusters) are very

dissimilar. The distance between the red and green cluster is however smaller. If the

dendrogram was analysed with the available categorical data, it would be found that

the three coloured clusters matched mostly with the species for each observation.

However, from the dendrogram alone it is hard to conclude that the data describes

three clusters as only two are clearly separated.

For the purpose of the analysis of merged CMS and SCADA data, an agglomerative

HC was used with the average linkage method and Euclidean distances. Data was

split in periods of three months to analyse the changes in the clustering in fault-free

and faulty conditions. The setup of the observation vectors was counter-intuitively

in this analysis due to the objective of clustering signals. Accordingly, each signal

in the merged dataset built one observation vector with measurements forming

dimensions.

In a second step, CMS data were analysed in more detail to investigate the possible

similarities of measurements from the seven active power bins. This analysis was

focussed on the MB spectra. As the different records in the CMS data might have

similar peaks but with offsets in time, DTW distances as introduced in Section 4.2

were used to account for this variability. Each spectrum was taken as a group of

signals without differentiation of the individual bins, i.e. all signals of the spectrum
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Figure 5.5.: Example of dendrogram for HC of the Fisher Iris data with average linkage and
Euclidean distance. Colouring based on cut of three clusters.

were stretched together. The DTW distance was then calculated by comparing with

another spectra measured in a different active power interval. Here, the calculated

distance was normalised by the number of samples in the signal for better readability.

DTW was applied with a Euclidean distance and a maximum adjustment window of

two weeks.

5.3.3 Prediction of CMS alarms

CMS alarms are often triggered significantly before the component actually fails.

Being able to predict these CMS alarms with only SCADA data could lead to signific-

ant benefits. This objective is addressed with a classical machine learning approach.

Only main bearing (MB) alarms are discussed here as there have been observed

failures in three turbines. For the prediction of CMS alarms, two different approaches

were investigated: (1) The count of CMS alarms was modelled. (2) The probabilities

of having an alarm over time were obtained.

Four probabilistic regression and classification techniques were used:

• Generalised Linear Model (GLM)

• Random Forests (RF)

• Gradient Boosting Machines (GBM)

• Artificial Neural Network (ANN)
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GLM (Nelder and Wedderbu, 1972) is, as the name suggests, a generalisation of

the linear model as introduced in Chapter 1.5.3. The model is formed of a selected

distribution for the prediction, a linear combination of the inputs and a ‘link’ function.

Various distributions could be used such as Gaussian, binomial, Poisson, Gamma or

inverse Gaussian. For the application in this chapter, a Poisson distribution is used to

predict non-negative integers (the count of alarms) and a Binomial distribution is

used for a classification task (the probability of an alarm). The probability density

function of the Poisson distribution is

pdf(y, µ) = µy
y! e
−µ (5.6)

with the response variable y and its mean µ. The binomial distribution can be

described with

pdf(y|q) =
(
q

y

)
py(1− p)q−y (5.7)

with y is the number of successes when running q trials with probability p. The linear

combination of inputs η is in analogy to the simple linear model such that

η = xβ (5.8)

with the vector of inputs x and a regression vector β. A link function g(x) describes

the expected value of the prediction by

E(y) = µy = g−1(η) (5.9)

For the Poisson distribution a logarithmic link function is used

g(x) = log(x) (5.10)

whereas the binomial distribution is commonly applied with a ‘logit’ link, i.e.

g(x) = log
(

x

1− x

)
(5.11)

For the objective of this chapter, a GLM was applied with a penalised likelihood

estimation technique using the least absolute shrinkage and selection operator

(LASSO) (cp. Section 1.5.3, Tibshirani, 1994). The obtained standardised coefficient

magnitudes served as indicators for the importance of each input variable.

RF (Ho, 1995; Breiman, 2001) are an ensemble of decision trees as visualised in

Figure 5.6. A decision tree is a sequence of logical queries to match data with a

category and thus forming a tree due to the splitting of data with each query (true-
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false). Each lowest node in a leaf represents a statement for the associated category.

If the decision tree is used for regression, leaf nodes represent the numerical response.

Decision trees are usually trained with a ‘greedy’ algorithm, i.e. recursively finding

the best splits by minimising a cost functions that evaluates the prediction error.

For RF, numerous decision trees are trained with subsets of the data in a bootstrap

aggregation (or bagging) approach, a repeated random sample with replacement.

Here the size of the subset is usually defined to be 2/3 of the whole data (Breiman,

2001). Not all inputs or features are used in all trees to avoid very correlated trees. A

common approach is that the number of used features in one tree d is set to d =
√
D

for classification problems or d = D/3 for regression techniques with D denoting

the total number of features. In later prediction, the responses of all trained decision

trees are combined using an average for regression problems or majority vote for

classification problems. In comparison to simple decision trees, RF have a lower risk

of overfitting due to the bagging approach.

For the analysis in this chapter, RF with 60 individual decision trees were used. The

importance of each input was estimated via permutation, a procedure of repeated

testing the trained RF with one of the inputs at a time replaced by random noise

(Hastie et al., 2009).

GBM (Friedman, 2001) are an alternative approach of using decision trees. GBM is a

sequential process where a new decision tree is added in each iteration – in contrast

to RF where a number of trees are learned in parallel. The boosting approach in

GBM is a model improvement by considering the residual from the previous iteration.

Therefore a loss function needs to be defined such as the mean squared error. The

algorithm aims to minimise the loss function by adding new trees. The boosting

bears the risk of overfitting and adequate regularisation techniques need to be taken

to mitigate the risk, such as using shallow trees or applying shrinkage, i.e. in each

iteration the model update is only considered to a certain degree as defined by a

learning rate. These measures increase the computational effort due to a higher

number of iterations required, but help for better generalisation of the model.

For the objectives of this chapter, GBM was applied with 100 decision trees with

a maximum depth of 10 levels. A learning rate of 0.1 was applied and a 10-fold

cross-validation was carried out to limit the risk of overfitting. The significance of

the different variables was obtained by permutation, as before.

A feed-forward ANN with three hidden layers of 50, 40 and 20 neurons respectively

was trained. This set-up showed the best performance in an iterative testing of

different configurations starting with one hidden layer and a small number of
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(a) Training of N decision trees

(b) Classification with trained RF

Figure 5.6.: Illustration of RF classification (from Machado et al., 2015, under Creative
Commons BY 4.0).
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neurons. The ANN complexity differs from the simple networks in Chapter 3 due

the task of processing 150 inputs. Other parameters for the ANN configuration were

selected as before, e.g. training with Levenberg-Marquardt backpropagation and a

sigmoid transfer function. The variable importance was determined using functional

analysis of the weight matrix, as introduced by Gedeon, 1997.

SCADA channels containing constant or cumulative values were eliminated for this

task, as they would contain unnecessary information.

Count of alarms

For the task of predicting the count of alarms, the previously mentioned algorithms

were used in a regression setup, i.e. predicting a discrete quantity output. Thus, the

GLM was set with a Poisson distribution and logarithmic link function. The other

algorithms were used as explained above.

After initial tests with various settings, two different concepts of defining training

and testing data were investigated in more detail:

• Random sampling of all data from all turbines with a ratio of 80% training

and 20% testing (labelled random sampling subsequently).

• Training with data from all turbines except one and blind testing on the

remaining turbine, i.e. approx. 92% training and 8% testing (labelled blind

testing subsequently).

As the number of samples containing entries for alarm events was much lower

than the samples where no alarms were observed, the regression techniques were

susceptible to learn only the relationships for no alarms. To address this, the class

distribution was adjusted using a method called ‘under-sampling’, i.e. selecting a

random subset of data with certain properties to balance the representativeness

(Chawla, 2009). The training dataset was under-sampled limiting the number of

time-steps without alarm to 80% of the data, in order to balance the representation of

different targets. It is important to note, that the testing set was not under-sampled

as this would create an unrealistic case which could not be used in practice.

Time dependent probability of alarms

Here, the aim was to generate a time-dependent probability of getting a CMS alarm

in a classification approach. For the training, the data were also under-sampled to

a ratio of 80% and 20% for the two respective classes {0,1}, which stands for {‘no
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alarm’,‘alarm’}. The blind testing approach was applied, as any random sampling

and testing would hinder a time-dependent evaluation. In this case, the algorithms

introduced above were used to solve a classification problem. Hence, GLM was

applied with a binomial error distribution and a logit link-function. When modelling

binary response variables, the learning algorithms can be used as probabilistic

classifiers. The output from the predictions was then a posterior class probability at

each point in time. To provide a comparison, the probabilistic output of the classifiers

was analysed for turbines with and without failure.

5.4 Results
In this section, the results for the application of the processed and merged CMS and

SCADA data are presented.

5.4.1 Understanding relationships between data

Figure 5.7 shows a dendrogram for fault-free conditions with the complete clustering

process shown. The high number of signals results in a graph that is not very

clear. Accordingly, the remaining analysis is limited to the last 20 leaves and the

lower levels are not shown. This does not hinder the analysis, as the focus of the

interpretation lies on the interpretation of the larger and most separate clusters.

The results of the HC analysis of all data per turbine are given in Figures 5.8 – 5.9

with simplified dendrograms and statistics of the most separated clusters.

In Figure 5.8a, it can be seen that there was no significant cluster separation for

fault-free time periods. The two clusters that are joined at the top of the dendrogram

consisted here of one big cluster and one smaller cluster with only a few signals

(the most separated cluster). The second most separated cluster (which is not a

sub-cluster of the most separated cluster) showed a similarly small number of signals.

In case of the MB failures, however, there was a clear separation of more signals

(Figures 5.8b and 5.9). It can be seen, that the two most separated clusters were

formed by many MB signals for T03 and T08. This proved that a number of signals

shows clearly deviating features before the failures. Noticeably, there were mainly

GNDE and not MB contributors in the case of the MB failure in T01.

In a second step, the relationships between the CMS spectra for different active

power intervals were evaluated with DTW distances. The complete analysis resulted

in pairwise distances for three different spectra (FFT1000, Env200 and FF35) and

seven active power intervals (<38%, 38-48%, 48-58%, 58-69%, 69-79% and >90%
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Figure 5.7.: Example of complete dendrogram for HC of 3375 signals, fault-free example
(T01, Oct-Dec 2015).
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Figure 5.8.: Simplified dendrogram and contribution to most separated clusters in T01.
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Figure 5.9.: Simplified dendrogram and contribution to most separated clusters in case of
MB failure for turbines T03 and T08.

of rated power). For each spectra-to-spectra relationship, a distance matrix T is

described by defining the element at position i, j as

Ti,j(rs) = dDTW (ri, sj) (5.12)

with the DTW distance dDTW , r and s as the two selected spectra, superscripts

describing the active power bin and i = 1, 2, 3, . . . , 7, j = 1, 2, 3, . . . , 7. This means,

for each of the r-s relationships a 7× 7 matrix can be written. As an example, the

FFT1000-Env200 relationship for the period of failure in T08 (Oct-Dec 2015) results

in the following:

T (FFT1000,Env200) =



0.137 0.144 0.145 0.142 0.137 0.141 0.167
0.113 0.112 0.118 0.114 0.109 0.109 0.179
0.115 0.116 0.119 0.115 0.111 0.110 0.181
0.102 0.101 0.109 0.103 0.099 0.106 0.175
0.103 0.107 0.110 0.107 0.106 0.109 0.178
0.109 0.107 0.116 0.111 0.105 0.116 0.188
0.221 0.223 0.220 0.222 0.224 0.215 0.219


(5.13)
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Six matrices were derived for each turbine and selected time window. Note that for

certain relationships the matrix was symmetric and filled with zeros on the diagonal,

e.g. for the same turbine and the relationship FFT1000-FFT1000

T (FFT1000, FFT1000) =



0 0.119 0.119 0.114 0.120 0.125 0.219
0.119 0 0.077 0.074 0.078 0.095 0.215
0.119 0.077 0 0.072 0.075 0.094 0.214
0.114 0.074 0.072 0 0.063 0.088 0.219
0.120 0.078 0.075 0.063 0 0.092 0.215
0.125 0.095 0.094 0.088 0.092 0 0.204
0.219 0.215 0.214 0.219 0.215 0.204 0


(5.14)

The pairwise comparison of spectra of different active power intervals showed that

in case of MB failures, spectra from all active power intervals became relatively

similar with some normalised distances as low as 0.05-0.15. In contrast, for fault-

free operation, normalised distances were usually >0.2, as demonstrated with the

FFT1000-Env200 relationship for T02 and Jan-Mar 2016 (no MB failure)

T (FFT1000,Env200) =



0.211 0.200 0.207 0.219 0.216 0.212 0.204
0.211 0.200 0.213 0.214 0.207 0.207 0.206
0.211 0.202 0.209 0.206 0.212 0.219 0.212
0.211 0.209 0.205 0.210 0.207 0.207 0.201
0.211 0.220 0.211 0.205 0.212 0.215 0.217
0.211 0.210 0.199 0.200 0.211 0.197 0.200
0.211 0.202 0.220 0.194 0.208 0.199 0.216


(5.15)

Table 5.1 gives an overview of the distances from one record to another in the case

of identical bins, i.e. all diagonals of T . These distances do not provide information

on the similarity of active power intervals, but rather describe the general similarity

of the records FFT1000, Env200 and FFT35.

The information for varying bins is further visualised in Figures 5.10 to 5.12 by

using directed graphs (Bang-Jensen and Gutin, 2007). The distance matrix T is

split into two adjacency matrices for the upper and lower triangle, respectively.

In the directed graph, each set of seven nodes represents the seven active power

intervals. The heading above each set of nodes identifies the two compared record

types according to the direction of the arrows connecting the nodes (always starting

at the lower number). The colour of the arrows shows the similarity of the two

connected spectra, as indicated by the DTW distance. With this, higher distances

imply higher dissimilarities.
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Table 5.1.: Pairwise DTW distances for three MB records and identical active power intervals
in the case of MB failure.

Turbine Record 1 Record 2 DTW distance (-)
Active power interval: 1 2 3 4 5 6 7

T01 FFT1000 Env200 0.211 0.086 0.087 0.069 0.074 0.146 0.095
FFT1000 FFT35 0.169 0.164 0.156 0.157 0.156 0.151 0.164
Env200 FFT35 0.211 0.142 0.133 0.148 0.132 0.122 0.135

T03 FFT1000 Env200 0.156 0.183 0.161 0.179 0.156 0.157 0.157
FFT1000 FFT35 0.176 0.194 0.189 0.183 0.184 0.189 0.185
Env200 FFT35 0.177 0.155 0.181 0.189 0.200 0.193 0.187

T08 FFT1000 Env200 0.137 0.112 0.119 0.103 0.106 0.116 0.219
FFT1000 FFT35 0.184 0.162 0.168 0.160 0.165 0.163 0.201
Env200 FFT35 0.182 0.169 0.186 0.175 0.163 0.161 0.219
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Figure 5.10.: DTW distances for three MB records with different active power intervals in
the case of a MB failure for T01 (Jan-Mar 2016). Arrows always connect from
the lower to the higher node as given by the heading.
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Figure 5.11.: DTW distances for three MB records with different active power intervals in
the case of a MB failure for T03 (Apr-Jun 2015). Arrows always connect from
the lower to the higher node as given by the heading.
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Figure 5.12.: DTW distances for three MB records with different active power intervals in
the case of a MB failure for T08 (Oct-Dec 2015). Arrows always connect from
the lower to the higher node as given by the heading.
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Cases with lower distances due to the MB failure are shown in Figure 5.10 for T01.

Noticeably, some spectra were only similar for certain power intervals. Very low

distances and accordingly similar features were seen for all intervals in the FFT1000

spectra. In contrast, interval 1 appeared to have unique features for Env200 spectra,

as they are not connected to any other node. If the different types of records are

compared, it can be seen that the FFT1000 and Env200 are more similar, but the

two FFT records FFT1000 and FFT35 are less similar.

Figures 5.11 and 5.12 show the DTW distances for the MB failures in T03 and T08,

respectively. The identified relationships in T08 are comparable to T01, except for

interval 7 with unique features (instead of interval 1). However, all FFT1000 and

Env200 distances were slightly larger in T08 – a trend that was amplified in T03

with even higher distances.

All in all, the DTW analysis confirmed that the CMS records from the different active

power intervals showed mostly similar features, i.e. using data from only one active

power interval is a reasonable compromise to handle a large number of records.

Thus, in the further, the study was based on data from the fourth active power

interval corresponding to 58-69% rated capacity.

5.4.2 Prediction of CMS alarms

This section presents and discusses the results of the approaches to predict CMS

alarms in supervised learning frameworks.

Count of alarms

In the following, the results for modelling the number of CMS alarms by only

using SCADA data are presented. The performance of the different algorithms was

evaluated with the Coefficient of Determination (R2), the mean absolute error (MAE)

and the root mean squared error (RMSE). The most important model covariates

for each set-up were determined. The evaluation metrics for training and testing

of each technique using random sampling are shown in Table 5.2. Figure 5.13

shows the recorded CMS alarms and the predictions obtained from each model.

The observations are shown in chronological order, but not necessarily without

gaps in time due to the random selection of testing data. RF and GBM performed

best, ANN showed intermediate results, while GLM resulted in poor performance.

Figure 5.14 shows the importance of the different variables in each of the models,

indicating the most important model covariate, which was in all cases the main

bearing temperature.
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 5.13.: Results for modelling of CMS alarm counts with random sampling.

The results for blind testing are displayed in Figure 5.15 and Table 5.3. During the

training phase, RF and GBM performed better than ANN and GLM. It can be seen that

the predictions using the testing dataset were characterised by substantially higher

errors than in the previous section. This may be due to turbine-dependent operational

and environmental conditions, since it is difficult to capture all of these variations if

one turbine is left out. It is also possible that the random sampling approach resulted

in unrealistically good results because the algorithm saw characteristics of most data.

Table 5.2.: Evaluation metrics for modelling CMS alarm counts using only SCADA data with
random sampling.

Metric RF GBM GLM ANN

Tr
ai

n R2 0.893 0.942 0.142 0.610
MAE 0.151 0.192 0.982 0.388
RMSE 1.261 0.929 3.573 2.438

Te
st MAE 0.149 0.224 0.982 0.379

RMSE 1.151 1.182 3.592 2.468
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 5.14.: Variable importance for the algorithms used for random sampling.

Table 5.3.: Evaluation metrics for modelling CMS alarm counts using only SCADA data with
blind testing.

Metric RF GBM GLM ANN

Tr
ai

n R2 0.979 0.989 0.218 0.549
MAE 0.028 0.053 0.504 0.195
RMSE 0.364 0.256 2.211 1.672

Te
st MAE 0.974 0.950 1.350 1.079

RMSE 4.698 4.689 5.640 5.498

The blind testing approach is seen as more representative of expected performance

if applied in real operation.

Time dependent probability of alarms

This section is concerned with predicting how the probability of having a CMS

alarm is evolving over time, based only on SCADA data. The results were evaluated

graphically by plotting the predicted probabilities over time, as well as the alarm

event. It was investigated how the probabilities behave before the event and which

algorithm was able to indicate an upcoming alarm more reliably. Figures 5.16a to

5.16c show the results for turbines T01, T03 and T08, for which MB CMS alarms

were recorded throughout the observation period. Furthermore, turbines T06, T10

and T11, which did not experience any main bearing CMS alarms, are displayed in
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 5.15.: Results for modelling of CMS alarm counts with blind testing.

Figures 5.16d to 5.16f. For easier interpretation of the graphs, the probabilities over

time were smoothed using a moving average filter.

It can be seen that GBM performed best. It indicated a rising probability towards the

time of occurrence of the actual alarms for all turbines, while resulting in a near-zero

probability for turbines T06, T10 and T11, which did not experience any CMS

alarms. The results for GLM and RF indicate quite a high probability of occurrence

of the alarm for T06. GLM performed poorly for all cases. A certain seasonality was

observed for the ANN predictions of T01 and T06 as well as the GLM predictions of

T01, T10 and T11. GBM and RF showed a peak in probability approximately one

year before the failure in T08, which could be caused by seasonality or a separate

problem in the MB. Further investigation is required to fully understand the observed

trends.

5.5 Discussion and conclusion
In this chapter, several methods have been explored for wind turbine failure detection

based on a database of merged CMS and SCADA data.
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(a) Turbine 01 (b) Turbine 03

(c) Turbine 08 (d) Turbine 06 (no alarm)

(e) Turbine 10 (no alarm) (f) Turbine 11 (no alarm)

Figure 5.16.: Probability of having a CMS alarm.
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The HC analysis of the whole data of one turbine highlighted that there is no strong

cluster separation in case of normal conditions, but separation of signals in case of

imminent failures. This confirmed that failures are clearly reflected in a number of

CMS signals, not only recorded at the failing part but also at other locations. For

some failures, SCADA signals were assigned to the same cluster, indicating a change

in behaviour. This gave first evidence of overlapping information in CMS and SCADA

data. Further refining of the clustering analyses, e.g. by cutting in shorter windows,

could have potential for failure prediction, but classification setups were considered

to be more efficient for this purpose.

The evaluation of DTW distances of different CMS records showed that the informa-

tion contained in the MB records is mostly similar for various active power intervals.

This information was used to focus the failure detection approaches on a subset of

the data. Similarly, this fact might be beneficial in industrial practice to limit the

monitoring efforts. However, the results also indicated some dissimilarities for cer-

tain records and active power intervals which should be investigated in more detail.

In addition, it is possible that other active power intervals might be appropriate for

different failure types, which should be analysed if data are available.

For predicting the CMS alarms, three distinct approaches were chosen to accomplish

different objectives. At first the number of CMS alarms were modelled with RF, GBM,

ANN and GLM by using only SCADA data as model inputs. This helped to understand

that it can be possible to anticipate the CMS alarms by only using SCADA data. It

was shown that the RF, GBM and ANN algorithms performed best. Furthermore,

the main bearing temperature was the most important model covariate. The blind

testing results indicated that the exact number of alarms is difficult to predict. It can

be argued, that this is not necessarily required in practice, but rather a prediction of

the failure by means of a probability.

The probability of having a CMS alarm over time was calculated only based on

SCADA data. It was found that the GBM algorithm reliably indicated a rise in the

probability of having an alarm several months ahead of the alarm. For the turbines

that did not suffer any alarm, the GBM algorithm indicated a probability close to

zero over the whole observation period. This setup could be used by operators as

a monitoring system, if CMS are not continuously available or as additional early

warning system. However, it should be investigated why the different classification

techniques performed so differently and whether GBM gives reliable results also

with other data.
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A continued analysis in this project investigated also a setup where the CMS alarms

were predicted using alarm time shifting (Reder, 2018). Here, the performances

of RF and ANN with different combinations of input data were examined using

Receiver Operating Characteristic (ROC) curves (Spackman, 1989). The alarms

were predicted with different lead times (0 and 40 hours) before the actual alarm

event. As expected, the use of combined CMS and SCADA data showed the best

results for predicting CMS alarms. Nonetheless, only using SCADA data still led to a

remarkably low number of false alarms. Future work needs to establish what lead

times are feasible, i.e. how much in advance can the problem be detected? Adequate

thresholds for alarms could be derived from the ROC curves to balance true and

false alarms.

There are a number of reasons for combining CMS and SCADA in one database to

enhance industrial O&M practice. Both data sources contain important information

on the health of the turbine and the operational and environmental conditions. Most

intuitively, the fact that one of the systems can fail at any time and that the fault

indicating sensor information of one system might not be available when needed

(Dienst and Beseler, 2016) results in the need for including different sources of

information in order to ensure a reliable fault detection. Furthermore, installing

CMS as well as storing and analysing their data is often quite expensive and time

consuming. Hence, failure detection based on SCADA data could be used as a first

and fast method to find faulty components. Since CMS data usually contain more

detailed information on the components’ health, the techniques based on vibration

measurements can be used to reduce uncertainty in the failure detection and to

further specify the failure modes. Nonetheless, also SCADA data contain information,

which is not present in the CMS data, such as operational variables like pitch angles,

active power production, temperatures, overloads, rotational speed, curtailment, etc.

These could be very important input variables for the failure detection algorithms of

certain components, and thus, could enhance the failure prediction.
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6Using the wind farm to improve

condition monitoring

Although each wind turbine might be affected by slightly different environmental

conditions and individual maintenance history, some characteristics will be similar

for turbines of one wind farm. Most approaches of condition monitoring so far have

ignored this fact and used only data from one turbine.

In this chapter, three different approaches are explored to use data from the whole

farm to improve condition monitoring of individual turbines. Firstly, statistical evalu-

ation of general operational data is tested for its suitability for condition monitoring.

Secondly, the monitoring of vibration data from the condition monitoring system

(as introduced in Chapter 5) is automated by using comparisons within a farm. And

finally, full relationships in operational data are monitored in an approach that tries

to compare similarly operating turbines.

6.1 Introduction
Wind turbines are mostly installed in wind farms, i.e. a group of turbines in local

proximity. Each wind turbine in a farm will see slightly different wind speeds due

to various effects such as complex terrain, turbine wake, heterogeneous wind fields

and gusts. There might be differences in the manufacturing and assembling quality

from one turbine to another. In addition, specific maintenance actions might cause

differences of the condition within a farm. However, turbine characteristics such as

make, age and controller strategy will normally be the same and turbines within a

farm will experience the same generic weather-related conditions due to seasonal

and frontal systems.

Differences in loads and performance of wind turbines in a farm are frequently

considered for optimizing farm layouts and the commercial operation of wind

turbines. SCADA data have been analysed on a farm level for the purposes of

performance monitoring, e.g. by using machine learning to train a farm power curve

(Kusiak, Zheng et al., 2009), by comparing skewness and kurtosis of individual

wind turbine power curves (Kusiak and Verma, 2013) or by applying various models

to consider wakes (Staid et al., 2018). However, there has been little emphasis
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on farm-level solutions for condition monitoring. McLaughlin, 2009; Yang, Tavner

et al., 2014 discuss comparisons of temperatures in a farm and using a correlation

coefficient. However, a detailed concept or case study was not presented. Obdam et

al., 2010 proposed a ‘flight leader’ concept to measure loads only at selected turbines

in a farm and link these detailed measurements with SCADA data for estimating

loads and prioritising maintenance in the whole farm. Gray and Watson, 2010

investigated a physics of failure approach using a statistical analysis of operational

characteristics in a farm. Although the latter three were promising approaches

to improve condition-based maintenance strategies, there is further potential in

exploring the possible similarity of operational characteristics of turbines in a farm

with a focus on providing early failure detection.

6.2 Statistical assessment of basic operational data
The physics of failure approach by Gray and Watson, 2010 looked retrospectively at

statistical parameters such as average wind speed, hours at rated power, hours at

rated speed etc. and could prove that failing bearings had seen higher cumulative

loading. In this section, an analysis is made to see whether it is possible to monitor

various kinds of failure modes with statistical parameters.

6.2.1 Cumulative monthly statistics

As a first step, an attempt was made to validate the proposed cumulative statistical

approach with different data.8

Data from wind farm Beta as introduced in Section 3.2 were used. The turbines were

subject to five gearbox replacements, three generator replacements and six bearing

replacements. Seven statistical parameters were defined based on suggestions from

literature with an additional inclusion of parameters related to turbulence and

reactive power: Wind Speed (WS), Turbulence Intensity (TI), Rated Power ratio

(RP), High Wind speed ratio (HW), Power Factor inverse (PF), Power Dynamic (PD),

High rotational speed ratio (HS). It has to be noted that the wind turbulence was here

derived from the wind speed standard deviation, which is not a true representation

of the turbulence observed by the wind turbine, but rather describing the turbulence

after the rotor. Some suggested parameters such as ‘brake applications’ and ‘rotor

starts’ could not be calculated due to unavailable data. Other parameters such as

‘yaw movements’ or ‘power dynamic’ were omitted or slightly modified based on

initial results.

8Results of this section have been part of a conference paper (Tautz-Weinert and Watson, 2017c).
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The utilised SCADA data consist of ten-minutely averages, maximums and standard

deviation of power (P ), power factor (Φ), rotational speed (ω) and wind speed

(u). All parameters were calculated for operation only by filtering the data with the

power mean >10 % of rated power.

The parameters were defined as

WS = 1
n

n∑
i=1

umeani (6.1)

TI = 1
n

n∑
i=1

ustdi
umeani

(6.2)

RP = 1
n

n∑
i=1

f(Pi) with f(Pi) =

1, if Pmeani > 0.9 · Prated

0, else
(6.3)

HW = 1
n

n∑
i=1

f(ui) with f(ui) =

1, if umaxi > urated

0, else
(6.4)

PF = 1− 1
n

n∑
i=1

Φmean (6.5)

PD = 1
n

n∑
i=1

P std (6.6)

HS = 1
n

n∑
i=1

f(ωi) with f(ωi) =

1, if ωmeani > 0.9 · urated

0, else
(6.7)

with n as the number of samples, superscripts mean,max,std denoting the type of

ten-minutely signal and subscript ‘rated’ indicating the reference value for rated

power. Note that the n is not the number of samples in one month, but the cumulative

number of ten-minute samples up to the date investigated.

Due to the distribution of replacements in time, analysing statistics of the whole

data as done by Gray and Watson, 2010 would not be helpful. In contrast, the

parameters were calculated for each month accumulating all data up to this date. A

different scaling was required to enable visual comparisons in the range of 0.0 to

1.0 of parameters derived from varying data size. Here, a definition that allowed for

reproducibility was chosen instead of a normalisation fitted to data:

WS∗ = 2(WS− urated)
urated

(6.8)
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TI∗ = 5 · TI (6.9)

RP∗ = RP (6.10)

HW∗ = HW (6.11)

PF∗ = 100 · PF (6.12)

PD∗ = 10 · PD
Prated

(6.13)

HS∗ = HS (6.14)

The analysis of the statistical parameters showed that the cumulative approach

was not sufficient to generate reasonably constant parameter values. Instead, the

seasonal wind speed was still visible through changing parameter values during

the whole 2.5 years of data. This can be seen in Table 6.1 for WS∗ and further

Tables A.1 to A.6 in the Appendix. Nonetheless, it might be interesting to compare

the parameter values from all turbines for a given month.

Visual examples are given in Figure 6.1 for selected months. Here, each dot rep-

resents the parameter’s value of one of the twelve turbines in the farm. Turbines

with replacements in the selected month are highlighted and the range of each

parameter in the whole observation period is indicated with a plus symbol. The gen-

erator problem in turbine 4, Figure 6.1a, seems to be related to relatively high wind

speed and accordingly rated power operation and high rotational speed. However,

much higher winds and speeds were seen in other months. Noticeably, the reactive

power generation was exceptionally high in several turbines including the failing one

(translating to an average power factor of 0.9947). Although most of the bearing

replacements, Figures 6.1b and 6.1b, are linked to average parameter values, some

happened after higher wind speed or turbulence intensity. A slightly higher level

of turbulence could also have been the driver for the two gearbox replacements,

Figure 6.1d.

The results indicate that different damage drivers and failure modes were involved.

Particularly high values in turbulence, reactive power generation and wind speed

were found to correlate with some of the failed turbines. However, the relatively
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Table 6.1.: Results for cumulative analysis of WS∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.376 0.329 0.312 0.296 0.310 0.372 0.392 0.398 0.339 0.354 0.354 0.319
Aug-01 0.370 0.324 0.318 0.303 0.324 0.376 0.385 0.396 0.346 0.351 0.348 0.313
Sep-01 0.414 0.378 0.419 0.385 0.408 0.438 0.440 0.457 0.406 0.408 0.389 0.380
Oct-01 0.410 0.393 0.428 0.394 0.422 0.449 0.447 0.471 0.412 0.418 0.392 0.401
Nov-01 0.400 0.384 0.427 0.389 0.424 0.452 0.439 0.472 0.411 0.418 0.382 0.389
Dec-01 0.426 0.414 0.463 0.422 0.454 0.481 0.470 0.502 0.439 0.449 0.405 0.417
Jan-02 0.436 0.465 0.516 0.484 0.508 0.534 0.520 0.546 0.486 0.501 0.451 0.463
Feb-02 0.427 0.453 0.503 0.476 0.502 0.528 0.508 0.538 0.478 0.492 0.442 0.456
Mar-02 0.416 0.443 0.499 0.464 0.492 0.519 0.498 0.532 0.468 0.482 0.434 0.448
Apr-02 0.403 0.425 0.475 0.449 0.481 0.505 0.482 0.516 0.454 0.464 0.422 0.429
May-02 0.403 0.425 0.475 0.449 0.481 0.505 0.482 0.516 0.454 0.464 0.422 0.429
Jun-02 0.402 0.423 0.473 0.448 0.479 0.503 0.480 0.515 0.452 0.462 0.420 0.427
Jul-02 0.398 0.418 0.468 0.443 0.472 0.496 0.476 0.509 0.445 0.458 0.419 0.423
Aug-02 0.395 0.416 0.465 0.440 0.467 0.492 0.473 0.505 0.441 0.455 0.419 0.422
Sep-02 0.401 0.413 0.464 0.439 0.462 0.492 0.475 0.505 0.440 0.455 0.420 0.420
Oct-02 0.400 0.405 0.461 0.432 0.453 0.486 0.470 0.500 0.433 0.449 0.420 0.413
Nov-02 0.412 0.410 0.465 0.436 0.456 0.490 0.473 0.503 0.437 0.455 0.420 0.419
Dec-02 0.411 0.405 0.456 0.431 0.452 0.485 0.468 0.499 0.432 0.451 0.420 0.413
Jan-03 0.417 0.406 0.461 0.434 0.454 0.489 0.471 0.503 0.436 0.456 0.420 0.419
Feb-03 0.411 0.399 0.453 0.427 0.446 0.481 0.463 0.495 0.429 0.449 0.420 0.411
Mar-03 0.407 0.395 0.448 0.421 0.441 0.475 0.459 0.490 0.425 0.447 0.419 0.402
Apr-03 0.402 0.390 0.441 0.410 0.435 0.471 0.455 0.486 0.421 0.437 0.419 0.390
May-03 0.396 0.386 0.434 0.404 0.429 0.467 0.448 0.480 0.416 0.431 0.419 0.381
Jun-03 0.395 0.385 0.433 0.403 0.427 0.465 0.447 0.478 0.414 0.430 0.419 0.379
Jul-03 0.392 0.381 0.428 0.401 0.423 0.462 0.445 0.475 0.412 0.426 0.419 0.375
Aug-03 0.386 0.377 0.424 0.397 0.418 0.457 0.440 0.470 0.408 0.422 0.419 0.370
Sep-03 0.384 0.375 0.420 0.395 0.414 0.454 0.437 0.465 0.406 0.419 0.419 0.367
Oct-03 0.384 0.375 0.420 0.395 0.414 0.454 0.437 0.465 0.406 0.419 0.419 0.367
Nov-03 0.393 0.382 0.427 0.405 0.421 0.464 0.435 0.475 0.411 0.427 0.419 0.378
Dec-03 0.400 0.391 0.434 0.414 0.429 0.474 0.435 0.485 0.417 0.423 0.419 0.393
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Figure 6.1.: Statistical parameters of all turbines in farm Beta for selected months. Gener-
ator, bearing and gearbox replacements are marked with square, diamond and
circle, respectively. The extrema of the parameters in the whole observation
period are marked with a plus symbol.
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Table 6.2.: Major replacements in the case study data for short-term statistics

Wind farm Turbines Failures Faulty components

Eta A 33 2 Generator, Blades
Eta B 25 3 Blades, Gearbox, Generator
Eta C 30 11 Blades, Gearbox, Generator, Bearings (x4),

Hydraulic Group, Low Speed Shaft, Transformer, Other

small number of turbines and limited data length impeded statistical assessment.

It has to be concluded that the suitability of the proposed monitoring of statistical

parameters for failure detection purposes could not be validated. 9

6.2.2 Short-term statistics

In a further test, it was investigated whether failures can be seen in short-term

statistics of similar parameters applied in a different case study. 10

Data from three onshore wind farms located in Spain were analysed, which are

subsequently labelled Eta A, Eta B and Eta C. Data from only one year of operation

were available. This duration should already limit seasonality effects, although

an even longer observation period would have been clearly beneficial. All farms

were equipped with three-bladed, geared-drive and pitch-controlled turbines with

capacities in the 1.5 to 2.5 MW class. The number of wind turbines in each wind

farm varied from 25 to 33, see Table 6.2.

The available SCADA data comprised ten-minute average, minimum, maximum

and standard deviation of active power (P ), reactive power (Q), pitch angle (β),

rotational speed (ω), wind speed (u) and ambient temperature (T ). Additionally,

operational meteorological (met) masts were available at each wind farm, all fol-

lowing a similar configuration. Each met mast was equipped with a wind vane and

three cup anemometers, two of them installed at the top measurement height which

corresponds to the turbine hub height. As a result, met mast data were available

for each farm consisting of 10-min aggregated data of wind speed at two different

heights and wind direction (φ) at one height. Table 6.2 gives a summary of the

major failures registered during the period of the record.

In this study with a short observation period and multiple failures at various dates

of the year, a more flexible approach was required with statistics in windows with a

9A further assessment of farms Gamma and Delta was conducted in an MSc project at Loughbor-
ough University and struggled to find clear links of replacements to any significant deviations in
cumulative statistics.

10This work origins from a collaboration with Elena Gonzalez (CIRCE / University of Zaragoza) and
has been published in combination with a wider farm assessment discussing also environmental
characteristics, power performance and wakes (Gonzalez, Tautz-Weinert et al., 2018).
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Table 6.3.: Short-term statistical parameters applied to farms Eta A, B, C. Subscripts ‘std’
and ‘rat’ denote the 10-minute standard deviation measurement and a value
corresponding to rated power operation.

Direct averages Derived parameters
Wind speed (u) Maximum of mean wind speed MWS = max(u)
Reactive power (Q) Power dynamic PD = Pstd/P
Ambient temperature (T) Turbulence intensity TI = ustd/u
Met mast wind shear (α) Ratio of high wind speed HWS = mean(1, if u > urat, 0 else)

Ratio of full load FL = mean(1, if P > Prat, 0 else)
Ratio of high rotor speed HRS = mean(1, if ω > ωrat, 0 else)

defined length. The aggregation of all operational data might reveal key differences

in a farm, but some effects will only be recognised in shorter aggregation periods.

The raw 10-min statistics, however, are more affected by external dynamics and

aggregation in windows of at least one hour are more suitable to avoid transient

events and ensure that internal factors drive the dynamics of the system. In an

iterative process, a window length of one day was derived.

The statistical parameters were only slightly adapted to account for the available

data and also by using the reference wind and rotational speeds for rated power

condition, see Table 6.3. A performance ratio fP was derived for every turbine,

defined as the quotient between the actual and the theoretical power production.

The theoretical power production was estimated with three different power curve

models (as further detailed in Gonzalez, Tautz-Weinert et al., 2018).

For a selected turbine, the parameters were visualised by showing the deviation

of the parameter value from the farm mean. This was undertaken to allow easier

identification of anomalous behaviour.

An alternative approach to identify anomalous behaviour of a wind turbine was

developed based on the dissimilarity of signals as described by the multidimensional

Euclidean distance. For each turbine, each SCADA signal was compared with the

corresponding signal in all other turbines in the farm in pairwise distances, i.e.

di,j =
(

n∑
k=1

(pi(k)− pj(k))2
)1/2

(6.15)

with the SCADA signal p of length n for turbines i and j. Subsequently, the median

of the distance was used to describe the similarity compared with the farm behaviour,

i.e.

κ(p) = Median(Di(p)) with Di(p) = {di,1, di,2, . . . di,m} (6.16)
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(a) Generator failure, farm Eta A

(b) Gearbox failure, farm Eta B

(c) Blade failure, farm Eta C

Figure 6.2.: Parameter evolution for three different failures in the three farms. The red
shaded area indicates anomalous behaviour before the failure, whose occur-
rence is marked with a dotted line.

with the derived dissimilarity κ for signal p and m turbines in the farm.

This procedure was conducted with the data split in daily sets (n = 144) to allow an

assessment of trends over time. A high dissimilarity will indicate abnormal behaviour

as the given turbine is not behaving similarly to other turbines in the same farm.

On the contrary, a low dissimilarity value will mean wind turbine behaviour aligned

with the rest of the turbines in the farm. In comparison with the statistical parameter

defined in the previous section, the signal similarity might be able to better detect

shorter deviation in operational behaviour that might be unnoticed using an average.

Examples of three failures, one per wind farm, are illustrated in Figure 6.2 with

relevant statistical parameters (or the performance ratio) shown as deviation from

the farm average trend.

Failures of electrical components, especially generators, were found to be related to

short peaks of higher reactive power and hence lower power factor. A low power

factor can cause excessive current and higher overall loads. This could be therefore

interpreted as a sign of a faulty generator. Figure 6.2 (a) gives an example of a

generator failure with higher reactive power than the farm average before the failure.
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Figure 6.3.: Signal dissimilarity for Generator failure at wind farm Eta B with a high distance
of T during failure and anomalous behaviour in ω before and after the failure
(marked with a dotted line).

Wind turbines experiencing failures of mechanical components (Gearbox, Blades,

Bearings) were found to be more likely to exhibit underperformance prior to the

failure occurrence, as exemplified in Figure 6.2 (b). The turbine starts to deviate

significantly from the farm one month prior to the failure with some kind of repeating

behaviour. The example of the gearbox failure reveals also much higher cumulated

hours at full load of the failing turbine than the general farm trend in the period

before the performance drops. Indeed, excessive loads can instigate a failure in an

already damaged component.

In case of the blade failure in farm Eta C, Figure 6.2 (c), a very significant change in

the trend of the power dynamic is observed three months prior to the actual failure.

Some underperformance is also observed a month before the failure, but not as

significant. As blade failures generally develop in the long term, it is possible that

the performance was already affected by degradation during the training period.

Availability of earlier operational data would have allowed the power performance

degradation to be better tracked in this case. Some significant deviations were

also observed after the failure (farms Eta B and C), which were possibly linked to

downtime for maintenance activities.

The approach based on dissimilarities showed only limited capabilities in this setting.

Much fluctuation of the distances was seen throughout the farms. However, some

anomalous behaviour in terms of the rotational speed and reactive power was

observed before generator failures. Also, changed ambient temperatures were

seen after some failures. Possibly, the sensors were installed in a location were

maintenance actions in the nacelle could influence the measurements. An example

of a generator failure is presented in Figure 6.3. It can be seen that although ω

showed anomalous behaviour before the fault, further anomalies occurred later. This

might indicate that the seen feature is not directly related to the fault.

Table 6.4 summarises all observed statistical features and dissimilarities linked to

the failures which occurred in the three farms during the observed year of operation.

While some interesting patterns were identified from both approaches prior to
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Table 6.4.: Summary of observed features with an arrow (↑) and ‘a’ indicating a anomalous
behaviour before a failure and after the replacement, respectively.

Failure Turbine Statistical parameter Dissimilarity
fP Q α PD MWS FL u TI T Q ω T

Generator A 7 ↑ ↑ ↑
B 14 ↑ ↑ ↑ a
C 8

Blade A 15 ↑
B 10 ↑ ↑ ↑
C 15 ↑ a ↑ ↑

Gearbox B 3 ↑ ↑ a
C 4 ↑ a ↑

Bearings C 4
C 6 ↑
C 13 ↑
C 14 ↑ ↑ ↑

several failure occurrences, there were also similar anomalies after failures or in

wind turbines without any replacement. This demonstrates that the developed

approach is not directly capable of identifying the condition, but rather shows

anomalous behaviour of the turbine which may or may not result in faults. More

sophisticated approaches are needed to achieve effective fault detection and to

confirm the identified capabilities of statistical assessment of operational data.

6.3 Turbine comparisons for drivetrain vibrations
This section discusses a methodology to automate fault detection using CMS data.

The distance-based automated vibration evaluation (DAVE) tool presented here is a

generic tool for wind turbine health assessment based on the fact that it is unlikely

that all turbines in a farm have failures simultaneously. It detects deviations in the

vibration records measured at a wind turbine component from ‘healthy’ behaviour by

calculating pairwise distances of vibration records of all turbines. This section builds

on the CMS data processing and data from farm Zeta as introduced in Chapter 5. 11

6.3.1 Distance-based automated vibration evaluation

An approach was developed for automated evaluation of vibration data. The focus of

the approach is the analysis of a selected CMS spectrum by looking into its similarity

11The work presented in this section has been developed and conducted in collaboration with Maik
Reder (CIRCE / University of Zaragoza) in a project which also involved Lorenzo Colone (Technical
University of Denmark). The findings of this study were also included in Reder, 2018.
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Figure 6.4.: Example of DTW distances from turbine T04 to turbines T01, T02, T03, T06,
T07 and T08. Distances based on MB FFT1000 spectra, MB failures highlighted.

to the records from other turbines. The pairwise distance ∆i,j(s, t) can be denoted

as

∆i,j(s, t) = d(si(t), sj(t)) (6.17)

with an adequate distance d of the investigated record s from turbines i to j as a

function of time t. Here, the flexibility of Dynamic Time Warping (DTW) distances

(as introduced in Section 4.2) was utilised to consider that the spectra might have

slight offsets of peaks. Examples of such pairwise distances are given in Figure 6.4

for ∆4,j(MB FFT1000, t) and j = 1, 2, 3, 6, 7, 8.

A single pairwise distance from one turbine to another might show that there is an

anomaly, but it is impossible to conclude in which of the two turbines. A reference

turbine could be defined that represents the healthy state. This is however not

feasible in practise. Accordingly, a more automated approach was selected that

uses the complete set of pairwise distances to find the ‘origin’ of the anomaly.

Figure 6.5 visualises a matrix of pairwise distances with pairwise comparisons of

eight turbines. Although the scaling of the graphs does not allow more than a

qualitative interpretation of the distances, it can be seen how the knowledge of all
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Figure 6.5.: Example of matrix with several pairwise distances in the farm. Matrix element
i, j represents ∆i,j(MB FFT1000) against time. The dates of all failing turbines
are highlighted with red lines.

pairwise distances of one turbine can support the identification of the anomalous

turbine. If the distance from turbine A to B is anomalous, the turbine with the higher

number of anomalies in pairwise distance to all turbines in the farm will be most

likely the faulty turbine.

In a retrospective analysis, the distance matrix alone would be sufficient for fault

detection. For an automated and on-line evaluation, thresholds for anomalously high

distances are required. These can be derived from a fitted distribution and a selected

probability. Initial tests showed that a Weibull distribution fits reasonably well, as

illustrated in Figure 6.6 with the common plots for probability density, cumulative

distribution function, Q-Q and P-P for comparison of theoretical and empirical

distributions. The probability density function (pdf) of a Weibull distribution can be

described as

pdf(x) = k

λ

(
x

λ

)k−1
e−(x/λ)k

(6.18)

with the scale parameter λ and the shape parameter k (x,λ and k >0).
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Figure 6.6.: Example of Weibull fit to calculated DTW distances, distance form T01 to T02,
based on MB FFT1000. With Q-Q: quantile to quantile, P-P: probability to
probability, CDF: cumulative distribution function.

Based on the initial test, a complete procedure was proposed for the fault detection

tool DAVE. Here, the CMS records for each component were analysed separately. The

procedure involved, firstly, defining the initial detection setup using recorded data.

This setup was then used for the actual failure detection with on-line measurements

obtained for the same component. Figure 6.7 visualises the automated failure

detection process.

The developed procedure involves the following steps:

1. Initial setup: In this phase, thresholds are derived to identify anomalies from

normal operation. This could be done by an expert or be data-driven. The data-

driven approach uses data obtained during ‘healthy’ operation and includes

two sub-tasks:

a) Farm-level DTW calculation ∆i,j(s, t): At each time step t, the spectra s

of the vibration measurements of two turbines are compared (e.g. the

record of turbine T01 is compared to the one of T02, T03, etc.). Thus, for

each point in time and each combination of wind turbines the similarity of

two binned vibration spectra is assessed using DTW distances. Here, the

flexibility of the DTW algorithm is used to identify similar trends even if

there are slightly different peaks in the spectra. Accordingly, the warping

window is limited to a maximum adjustment of two neighbouring bins

(one at each side of the actual bin) to allow a slight shift of peaks without

considering peaks at opposite ends of the spectra as corresponding.
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Figure 6.7.: Distance-based Automated Vibration Evaluation (DAVE) workflow.

b) Distribution fit and threshold definition: By fitting a distribution to the

distances and setting a threshold for the healthy condition, anomalies are

defined for the subsequent on-line application. The threshold represents

a critical value which is set to a certain percentile of the distribution.

Thus, values higher than this critical value will subsequently be flagged

as anomalous.

2. Operation: The on-line data recorded during operation are then used for the

following steps:

a) Farm-level DTW calculation: For each point in time, a distance matrix of

all turbines is set up by calculating all pairwise distances, analogous to

step 1 (a).

b) Anomaly detection: Based on the threshold defined during the initial setup,

anomalies within the pairwise distances are identified.

c) Alarm assignment: To determine whether an alarm has to be triggered and

to which turbine it corresponds, the number of anomalies from pairwise

comparisons is counted for each turbine (at each time step). If the count

is larger than one, an alarm is issued. The alarm is assigned to the turbine

with the highest count.

d) Health status: Based on the above, alarms are generated for each turbine,

component and CMS record. The overall health status can be visualised

with a dashboard summarising all alarms.
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Table 6.5.: Number of days the different systems triggered alarms before the main bearing
failures (farm Zeta).

Turbine DAVE CMS SCADA
FFT1000 FFT35 Env200

T01 106.5 11.8 - 34.5 9.3
T03 119.9 - 105.1 110.1 0
T08 65.1 - 93.8 5.5 0

6.3.2 Results

The performance of the automated failure detection was demonstrated for the

standardised CMS records obtained for the main bearing. For the initial setup of

DAVE, the first two observed (healthy) years of the entire dataset were used to derive

thresholds directly from the wind turbine data. The threshold for the anomaly was

set to the 99.9 percentile of the fitted Weibull distribution.

Figure 6.8 shows the alarms, triggered by CMS, SCADA and DAVE (for FFT1000),

and the downtime caused by the failure during an observation period of four years.

Not all CMS alarms resulted in downtime of the turbine, which means that they were

either solved by minor repair, might result in failure after the observation period or

are false alarms. DAVE showed very early alarms for the three main bearing failures

in T01, T03 and T08. Also, no false positives were recorded with respect to the CMS

alarms during the four year period. All failing bearings were successfully detected,

i.e. no false negatives with respect to downtime events. The other main bearing

records, Env200 and FFT35 gave less reliable warnings. Table 6.5 shows the number

of days DAVE was able to anticipate the component problem in comparison to the

CMS and SCADA alarms. It can be seen that DAVE was capable of detecting the

problems up to 72 days prior to the CMS.

6.4 Monitoring data relationships
In this section, the ideas of the previous sections are combined and refined for the

objective of monitoring SCADA signals, in particular temperatures. An approach is

proposed that uses elements of cluster analysis and nearest-neighbour principles,

based on Euclidean distances of signals. Comparisons with other turbines in the

farm that operate in a similar matter are used to detect anomalous behaviour by

investigating pair-wise relationships of signals.
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Figure 6.8.: Results for the automated failure detection in farm Zeta with CMS, SCADA and
DAVE (FFT1000) alarms.
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6.4.1 SCADA signal similarity monitoring

The basis of the proposed procedure was deriving similarities of signals in windows of

a selected length. For each window and signal an abnormal dissimilarity factor (ADF)

and abnormal similarity factor (ASF) were calculated by following the procedure

visualised in Figure 6.9.

For each selected time window, the main steps were

1. Farm-level distances of wind speeds and power – calculation of distances between

signals of all turbines in a farm for mean wind speed and mean active power

production, i.e.

Γui,j = d(ui, uj) (6.19)

ΓPi,j = d(Pi, Pj) (6.20)

with Γi,j as the pairwise distance of wind speed mean u or power mean P for

turbines i, j and d as a selected distance such as the Euclidean distance. Note

that here – and also subsequently – superscripts denote the investigated signal

while subscripts denote the turbine.

2. Similarity check – stop the procedure, if the wind speed or power signal

distances from the selected turbine (i) to the most similar turbine are bigger

than 150 % of the distance from the most similar to the second most similar

turbine. Formally, the most similar turbine and the second most similar turbine

are noted with subscript a and b, respectively, such that

Γui,a(u) = min(Γui,j) with j ∈ {1, 2, . . . ,m} (6.21)

ΓPi,a(P ) = min(ΓPi,j) with j ∈ {1, 2, . . . ,m} (6.22)

Γui,b(u) = min(Γui,j) with j ∈ {1, 2, . . . ,m}¬a(u) (6.23)

ΓPi,b(P ) = min(ΓPi,j) with j ∈ {1, 2, . . . ,m}¬a(P ) (6.24)

with m as the number of turbines in the farm. The required similarity is

described with

Γui,a(u) <
3
2Γua(u),b(u) (6.25)
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Figure 6.9.: SCADA signal similarity monitoring workflow (for each time window of data).
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and

ΓPi,a(P ) <
3
2ΓPa(P ),b(P ) (6.26)

3. Power filtering – stop the procedure, if the turbine is not operating or decide

whether to use the similarity sorting based on power production distances or

based on the wind speed distances (near and above rated):

a, b =


not applicable if P < 100 kW

a(u), b(u) if P > 0.9 · Prated

a(P ), b(P ) else

(6.27)

4. Gather data – the selected turbine is compared with the two most similarly

operating turbines (i.e. turbines i,a and b).

5. Signal distances – calculate the pairwise distances from all signals for each

turbine dataset separately:

Ds
i (t) = d(si, ti) (6.28)

Ds
a(t) = d(sa, ta) (6.29)

Ds
b(t) = d(sb, tb) (6.30)

with s as the selected signal and t representing one signal from the set of n

other SCADA signals. All signals are standardised for this purpose.

6. Distance differences – derive the differences of the distances between the

selected turbine and the most similarly operating turbine (∆1) and between

the two similarly operating turbines (∆2):

∆1(t|i, s) = Ds
i (t)−Ds

a(t) (6.31)

∆2(t|i, s) = Ds
a(t)−Ds

b(t) (6.32)

Check that ∆2 is at least bigger than 20 % of the signal distances in the most

similarly operating turbine to avoid too low thresholds.

∆2(t|i, s) = min
(

∆2(t|i, s), D
s
a

5

)
(6.33)
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7. Calculate ADF and ASF - derive factors per signal by summing the number of

distances that are violating the thresholds defined by ∆2 multiplied with a

weight:

ADFsi =
n∑
k=1

g(∆1(k),∆2(k)) (6.34)

with

g(∆1(k),∆2(k)) =

1 if ∆1(k) > ws,kdis |∆2(k)|

0 else
(6.35)

and

ASFsi =
n∑
k=1

h(∆1(k),∆2(k)) (6.36)

with

h(∆1(k),∆2(k)) =

1 if ∆1(k) < −ws,ksim|∆2(k)|

0 else
(6.37)

and weights wdis and wsim for ADF and ASF, respectively.

A signal specific setting of the weights proved to be advantageous to give less

attention to weaker relationships. In this case, the weights of signal to signal

combinations that usually show high distances, as e.g. rotor speed to ambient

temperature, should be set appropriately to avoid firing in the ADF/ASF when

only slight changes occur. In addition, the weights for abnormal similarity and

dissimilarity do not need to be identical as the definition of abnormal behaviour is

not necessarily symmetrical.

6.4.2 Results farm Delta

The proposed signal similarity monitoring was applied to data from farm Delta

as introduced in Section 3.2 with the observed replacements listed in Table 4.3.

For easier testing, a Euclidean distance was selected, although later studies might

consider DTW distances to better capture dynamics. Various window lengths were

tested and a choice of one day (144 ten-minute samples) gave relatively good

anomaly detection results. However, setting the window to three days (432 samples)

was more practical for this study to visualise five years’ data. The weights wdis and

wsim were based on the overall correlation c of the respective signals i and j in a

reference turbine without known problems (turbine 3). In detail, the weights were

defined as

wdisi,j = 5− 3|ci,j |, wsimi,j = 6− 4|ci,j | (6.38)
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Figure 6.10.: ADF of various temperatures in turbine 1 with bearing replacement (marked
with vertical line), farm Delta.

resulting in weights between 2 and 6, depending on the strength of correlation.

The data of farm Delta were comprised of 43 signals. The similarity monitoring of

operational parameters such as rotational speeds, pitch and yaw angles did not reveal

any patterns that might be related to the observed gearbox and bearing replacements.

Accordingly, the 20 temperature signals were investigated in more detail. There

were only a few occasions with higher ASF, with most of them occurring for the

hydraulic oil temperature. As there were also a number of high ADF values for

the hydraulic oil temperature, this signal was considered to be less suited for this

monitoring approach.

Figure 6.10 shows the ADF evolution of all main temperatures over the five years of

operation in turbine 1. The value of ADF is illustrated with colours from blue to red

with a simultaneous shift in the y-axis for easier readability. Higher dissimilarities

in the generator cooling water temperature can be seen that might be related to

the generator drive end bearing replacement in April 2039 (anonymised date).

However, the anomalies start one year before the replacement and do not end with

the replacement, but some months earlier. Other anomalies are seen in the generator

slip ring temperature and seem to be independent of the bearing problem.

A generator slip ring replacement in turbine 4 is clearly linked with a high ADF for

the respective temperature about four months in advance, as shown in Figure 6.11.

Only a few scattered high ADFs are seen for the other temperatures.

Figure 6.12 shows the ADFs for turbine 5 with a gearbox replacement happening

halfway through the observation period. There is no clear advance indication of the

6.4 Monitoring data relationships 191



Figure 6.11.: ADF of various temperatures in turbine 4 with a slip ring replacement (marked
with vertical line), farm Delta.

problem in the ADFs, but a high factor in the middle high-speed gearbox bearing

temperature can be seen shortly before the replacement. Other anomalies are

visible in the generator bearing temperatures, but these are even stronger after the

replacement. There are a number of further anomalies in gearbox and generator

slip ring temperatures visible after the replacement. The gearbox repair seems to

be linked to a significant change of the signal relationships and thermodynamic

operation of the turbine. This could be intended, but it is also possible that this

deviation from typical operation indicates suboptimal repair.

Turbine 8 was subject to a replacement of a generator non-drive end bearing and

a further replacement of the gearbox just 1.5 months later. Gearbox problems are

visible in the middle high-speed gearbox bearing temperature up to five months

ahead, as seen in Figure 6.13. There are almost no other anomalies, except for the

aforementioned hydraulic oil temperature and a series of high ADF values for the

generator slip ring temperature that is in the last year of the observation possibly

related to a problem which is resolved later.

There are no high ADFs values which might indicate the problems for most of the

replacements happening in turbine 9 and 10 as shown in Figures 6.14 and 6.15. The

bearing replacement happening in turbine 10 was possibly indicated by some high

ADF values in the generator cooling water about one month ahead. Only limited

scattered high ADF values are seen for all other temperatures (except hydraulic oil).
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Figure 6.12.: ADF of various temperatures in turbine 5 with gearbox replacement (marked
with vertical line), farm Delta.

Figure 6.13.: ADF of various temperatures in turbine 8 with gearbox replacement (marked
with vertical line), farm Delta.
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Figure 6.14.: ADF of various temperatures in turbine 9 with generator bearing replacement
(marked with vertical line), farm Delta.

Figure 6.15.: ADF of various temperatures in turbine 10 with gearbox repair, generator slip
ring and bearing replacements (marked with vertical lines), farm Delta.
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Figure 6.16.: ADF of various temperatures in turbine 25 with gearbox replacement (marked
with vertical line), farm Epsilon.

6.4.3 Results farm Epsilon

The signal similarity monitoring was further tested on data from farm Epsilon as

introduced in Section 4.5 with two major replacements happening in records of three

periods of 3-4 months each. For this study, a window length of one day was selected

with definition of the weights wdis and wsim as before, but based on the correlations

in turbine 1 of farm Epsilon. Each turbine recorded 250 signals that were analysed

for similarity, although only mean temperatures showed relevant abnormalities.

Figure 6.16 shows the ADF for all mean temperature signals in case of turbine 25

with a gearbox replacement. The value of the ADF is indicated by the colouring from

blue to red. There is no clear advance indication of a problem in any of the signals,

but some temperatures show anomalies directly after the replacement.

Turbine 50 was subject to a high-speed bearing replacement and some high ADF

values are seen for the high-speed bearing temperatures, as shown in Figure 6.17.

The abnormalities do not give a reliable warning due to their short and intermittent

occurrence. However, there are also high ASF values visible for the respective

temperature as shown in the farm-wide comparison in Figure 6.18.

A further anomaly was observed in grid filter temperatures of turbine 21, which stood

out due to very high values persisting throughout all three observation periods and

the three relevant signals. Figure 6.19 shows this for the 2014 period in comparison

with the whole farm. There is no confirmation of any grid filter problem for this

turbine, but a minor repair might not have been recorded.
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Figure 6.17.: ADF of various temperatures in turbine 50 with high-speed bearing replace-
ment (marked respectively with vertical line), farm Epsilon.

Figure 6.18.: High-speed rotor temperature ASF in farm Epsilon, failing turbine highlighted.
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Figure 6.19.: Grid filter temperature ADF in farm Epsilon, turbine 21 highlighted (uncon-
firmed anomaly).

6.5 Discussion and conclusion
Attempts to use cumulative statistics of operational parameters as proposed in the

physics of failure approach failed to provide clear links of failures with certain

operating conditions in the investigated data. Farm Beta was affected by various

failures which seemed to be linked to different drivers and failure modes. However,

some observed patterns suggested that there might be potential for better observation

of wind turbulence and reactive power to detect bearing and generator problems,

respectively.

Short-term statistics were tested with data of farms Eta A, B and C. The observation

of the evolution of statistical parameters describing the environment and operation

revealed interesting patterns before failures. In particular, an increased reactive

power generation was observed before generator failures. Most mechanical problems

seemed to show some degree of agreement with higher loading than the farm

average in terms of rated power operation. However, anomalous behaviour was

also seen when no failure was recorded. The study showed the potential of certain

parameters for monitoring possible failure development, but it became evident that

more sophisticated tools and a full history of SCADA data is required to better assess

damage accumulation. The findings confirmed the potential of closer monitoring of

reactive power as again generator failures seemed to be linked with reactive power

anomalies.

A Distance-based Vibration Evaluation (DAVE) tool was developed that compared

FFT and Envelope spectra from all turbines in a farm. Alarms for individual turbines
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were derived by evaluating pairwise DTW distances and thereby cancelling patterns

seen in all turbines in the farm. The proposed algorithm was tested on main bearing

signals in farm Zeta and proved to outperform the alarms of the commercial CMS

by giving more reliable and earlier warnings for three failures. DAVE indicated the

problems up to 120 days before the replacement and up to 72 days before the CMS.

Future work is needed to validate the failure detection capabilities with other failure

modes and compare results with other state-of-the-art approaches.

A SCADA signal similarity monitoring framework was proposed based on Euclidean

distances of signals and comparisons with similarly operating turbines. For each

SCADA signal, an Abnormal Similarity Factor (ASF) and Abnormal Dissimilarity

Factor (ADF) were calculated indicating when a signal-to-signal relationship was

anomalous with respect to the same relationship in comparable turbines. The

proposed tool was tested with data from farms Delta and Epsilon. In farm Delta, in

five out of nine turbines high ADF values occurred before the replacement. Here,

the higher ADF was always seen in the respective temperature for the failing part

clearly allowing a diagnosis of what part might be faulty. Only a few patterns of

high ADF were found that possibly detected problems that were not documented

or were ‘false alarms’. A further test of the framework on data from farm Epsilon

did not give any advance warning for the gearbox replacement in one turbine. The

high-speed bearing problem was reflected in suspicious values of ADF and ASF of

the respective temperatures. However, it could be argued that the observed patterns

were not distinct enough for reliable monitoring. A further anomaly was seen for grid

filter temperatures which could not be verified based on the available maintenance

information.

Having a pool of wind turbines instead of a single turbine proved to be clearly

beneficial for failure detection purposes. The exploration of various frameworks

showed that comparisons within the farm can be used to improve the capabilities of

traditional CMS techniques and also for new promising approaches based on SCADA

data. However, data with more detailed maintenance documentation are required to

assess the full capabilities and fine-tune algorithms. In addition, it would be helpful

to establish the required similarity in the wind farm, e.g. will it work in complex

terrain?
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7Conclusions and future work

This work investigated the usage of operational data recorded in the SCADA system

to monitor the condition of the wind turbine and optimise its maintenance. After an

introduction to this research area, four main challenges were defined:

A) Utilise performance monitoring to optimise maintenance.

B) Investigate how model-based monitoring of temperatures should be configured

to detect drive-train failures more reliably.

C) Explore possibilities of merged vibration and operational data for fault detec-

tion.

D) Develop algorithms for automated fault detection considering the whole wind

farm.

In this section, the contribution and findings are discussed for each of the thesis

chapters addressing one of the research problems. Finally, recommendations for

further work are given.

7.1 Maintenance optimisation through performance
monitoring

The first objective of this thesis (A) covered aspects of monitoring of the power

performance of operating wind turbines, also called performance monitoring or

power curve monitoring.

It was observed that the industry uses a simple method of bins based on the wind

speed alone, whereas in literature more advanced models were suggested utilising

also other variables such as wind direction and ambient temperature. In this work,

a comparison of methodologies was investigated for a stall-regulated turbine in

complex terrain with varying performance. It was found, that in this case, there

was little difference in the accuracy of a univariate method of bins, a multivariate

version of the method of bins or a multivariate adaptive neuro-fuzzy inference

system (ANFIS). All tested approaches did not sufficiently account for the variations

observed in the challenging conditions.
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A further objective was defined as the exploration of ways to optimise maintenance

planning based on operational data. In this context, a detailed analysis of the

maintenance and performance of a wind turbine was conducted. Variations in per-

formance were traced back to maintenance interventions by analysing maintenance

logbooks. Further underperformance due to blade icing was diagnosed using filters

based on environmental conditions. Significant power losses were identified for an

imperfect maintenance action, a preventative blade replacement with sub-optimal

pitch angle applied and corrected 141 days later. The financial consequences of

this underperformance were revealed in a cash flow analysis in collaboration with

Nurseda Yildirim Yürüşen (CIRCE / University of Zaragoza). A sensitivity study

was conducted to analyse the possibility and potential of maintenance optimisation

while trying to simulate a realistic financial setup with day-ahead electricity prices,

inflation and interest rates. The power production of the turbine was manipulated

to represent selected conditions. Significant financial losses were identified for the

underperformance due to imperfect maintenance causing a net present value (NPV)

reduction comparable to approx. 14 days of downtime. An evaluation of alternative

timings of the maintenance intervention revealed that maintenance in earlier spring

resulted in a higher NPV. This indicated that the operator presumably planned the

action with a focus on seasonal wind resources, but seasonal trends of electricity

market prices were probably not considered. A comparison of electricity markets in

Spain, UK and Netherlands as well as various tax and subsidy frameworks showed

that although absolute NPV values were affected, most relative trends remained

unchanged. Fluctuations of environmental conditions were similarly significant for

the NPV and called for further investigations of performance variations for different

wind directions.

In contrast to previous studies of maintenance decisions, which were mostly based

on simplified setups, the detailed sensitivity study of this real case gave valuable

insights into the complexity of wind farm operation. The suggested setup for

evaluating consequences of decisions and possible underperformance could be used

by wind farm operators to support their decision-making based on operational data.

The findings also highlighted that a more structured and detailed documentation

of maintenance would be useful to keep track of the maintenance history. In

addition, more investment in optimal maintenance could be financially attractive and

monitoring of environmental conditions might help to better understand fluctuations

in performance.
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7.2 Model-based monitoring of temperatures
The second objective of this work (B) was concerned with the capabilities of opera-

tional data to detect faults by applying model-based monitoring. Recent research

has suggested that Normal Behaviour Modelling (NBM) of drivetrain temperatures

might be a valid approach to detect wear and imminent failures. However, many

alternative modelling techniques have been proposed that have not been sufficiently

validated with more diverse data.

In this work, a comparison study was conducted using data from four wind farms

with varying turbine make and SCADA setup. The onshore wind farms were equipped

with geared, variable speed and pitch-regulated turbines of 1.5 MW or approx. 2 MW
capacity. Variants of linear models, artificial neural networks (ANN), ANFIS, multi-

adaptive regression splines (MARS), Gaussian process regression (GPR), support

vector machines (SVM) and non-linear state estimation (NSET) were compared in

their accuracy in predicting a gearbox temperature. Partly autoregressive (ARX)

models were evaluated as well as models using only exogenous variables (FSRC).

The comparison included four different input cases with 2 or 3 inputs selected based

on the strongest correlation or on physical considerations. After training the models

with 3 months’ data, they were blind tested with data covering further 3 months

under normal conditions. The results showed that the ARX configuration was able to

predict the target temperature more accurately with the farm median of the turbines’

mean absolute error (MAE) as low as 0.09 ◦C whereas FSRC configurations gave a

minimum median MAE of 0.74 ◦C. Three of the four wind farms showed comparable

accuracy, but in one farm a higher minimum median MAE of 1.91 ◦C occurred in

case of FSRC configuration. The comparison of the model input cases indicated that

for the FSRC setup, three signals based on the correlation (i.e. other temperature

signals) gave the lowest error. Finally, the comparison of the various modelling

techniques showed only marginal differences in accuracy with slight advantages of

ANNs in terms of the trade-off between accuracy and computational effort. These

findings highlight that the configuration of the NBM is clearly more important than

the selection of the modelling technique.

The final aim of NBM is not to have the most accurate model, but to have a model

that is helpful in detecting abnormal behaviour. Accordingly, the comparison of

modelling techniques and configurations was further extended to test the failure

detection capabilities. The model residual before nine gearbox replacements was

analysed and potential indicators of anomalies identified in slow rises of the (av-

eraged) residual, shorter spikes or spread of the residual. For seven out of nine
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replacements, some of these features were seen up to 150 days in advance. However,

the identification of the abnormalities was often ambiguous. There was no best

modelling technique identifiable, but most FSRC techniques agreed if the feature

was strong enough. Other patterns were seen only for some modelling techniques

and configurations. Interestingly, the advantage of the ARX configuration was no

longer apparent indicating that these models adapted to the abnormal behaviour.

The visual interpretation of model residual demonstrated that failure detection is

possible with NBM techniques, but also showed that automated alarm generation

techniques are required to avoid ambiguity.

7.3 Condition index for model-based monitoring
Improving the reliability of model-based monitoring was part of the second objective

(B) and was addressed in a separate chapter. The visual analysis of NBM residuals

in the previous chapter concluded that there is a need for automated detection of

anomalies to further validate and improve the failure detection capabilities. Various

approaches have been suggested in literature without a thorough comparison of

possible options published yet. This short-coming was addressed by comparing

measures such as Euclidean, Minkowski, Mahalanobis and Dynamic Time Warping

(DTW) distances and a so-called Abnormal Level Index (ALI).

The evaluation of the various measures before gearbox replacements highlighted

that the different abnormal features in the residual might require different measures.

In addition, the results did not confirm that proposed algorithms in literature are the

ideal solution in the case of the investigated data. A further challenge was identified

in finding probabilistic thresholds for alarms based on training data alone, as it was

observed that this did not result in reliable warnings. Accordingly, a new condition

index was proposed that makes use of all historic data (instead of only the training

data). An ensemble of Minkowski, DTW and Mahalanobis distances were used with

characteristic observation windows of 12 hours and 2 weeks.

The developed condition index was tested with all NBM modelling techniques and

configuration as introduced in the previous chapter. The evaluation of the gearbox

replacements showed that for seven out of nine failures a high condition index was

observed. Again, it was difficult to identify an advantageous modelling technique.

The observed condition indices were not sufficiently clear and possible ‘false alarms’

occurred. However, this analysis was only based on the monitoring of one gearbox

temperature while some of the turbines recorded gearbox temperatures at multiple

locations.
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In the next step, an approach to monitor all drivetrain temperatures was proposed

with an ensemble of linear and ANN models with various configurations. The model

results were combined in an ensemble condition index per target temperature. A

test with data from two farms with 14 replacements showed that although some

failures gave early warnings, doubts about the reliability of this monitoring approach

remained. The limitations of the available data became clear as it was impossible to

distinguish ‘false alarms’ from possible identification of undocumented problems.

The available maintenance documentation listed only major replacements for the

tested data. However, it was demonstrated with data from a different farm that

minor repair might significantly change the thermodynamic behaviour. Future work

needs to establish the full capabilities of NBM of drivetrain temperatures based

on better data. The developed solution to build an ensemble of various modelling

techniques and anomaly detection algorithms presents an important step towards

more reliable model-based monitoring.

7.4 Fusion of SCADA and CMS data for fault
detection

The third objective of this thesis (C) was defined as an exploration of a combination

of operational data with information from a vibration-based condition monitoring

system (CMS). Monitoring drive-train vibrations has been intensively investigated

in the last decades, however there is a need for more automated solutions to limit

the extensive manual interpretation of vibration spectra. The fusion of CMS data

with operational data might help building a framework for automated and early

warnings.

Main bearing failures in a farm of 13 onshore wind turbines were investigated in

a collaboration with Maik Reder (CIRCE / University of Zaragoza) and Lorenzo

Colone (Technical University of Denmark) using SCADA data and records from the

commercial CMS of the turbines. Due to the fact that the CMS records high-frequency

measurements in inconsistent time intervals, a solution was required to sync the two

data sources of different temporal resolutions. A framework was proposed to reduce

the dimensionality of the CMS records (such as FFT or Envelope spectra) by binning.

A ten-minutely database was built by keeping CMS records constant when no update

was available.

The merged database of SCADA and CMS data was then analysed to identify signal

relationships and possible overlapping information. Hierarchical clustering (HC)
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was utilised to understand the similarities of the various measurements for fault-free

and faulty conditions. It was seen that in fault-free conditions, the 3375 signals

formed many small clusters without significant separation. In the last months before

the main bearing replacements, a change in behaviour was identified with clearly

separated clusters. These clusters contained the information of the imminent failure

and were not only composed of CMS records dedicated to the main bearing, but

also CMS data for other parts such as e.g. the generator non-drive end bearing or

SCADA signals. This finding supported the hypothesis that there might be potential

in combining various signals for failure detection.

As wind turbines operate in a highly dynamic environment, procedures are required

to ensure quasi-stationarity for vibration monitoring. In the case of the commercial

CMS, measurements were grouped for seven active power intervals. A similarity

analysis based on DTW distances was conducted to understand whether the records

for the different active power intervals contain the same information. It was found

that the imminent failure was similarly visible in nearly all active power intervals.

However, for some cases data from the first and last interval showed dissimilarities

which could be caused by fewer data from these modes. This finding proved to be

very useful for selecting a subset of data for any further analysis.

The CMS generated automatic alarms based on a threshold violation in the root

mean squared vibration amplitude, which was presumably initiating further analysis

and action taken by the operator. It was investigated whether data-driven learning

could be used to predict these alarms with SCADA data alone. The application of

random forests (RF), gradient boosting machines (GBM), generalised linear models

(GLM) and ANNs showed that is possible to model the number of CMS alarms

reasonably well. In addition, predicting the probability of having an alarm with

GBM showed potential for warnings even before the CMS issued the alarm. As this

is based on learned relationships, it does not imply that the CMS is not necessary at

all, but rather that this method could be used for fast monitoring or if CMS data are

not consistently available due to sensor faults or high financial costs of analysis.

7.5 Using the wind farm to improve condition
monitoring

The fourth objective (D) of this work covered further aspects of automating fault

detection. Here, the focus was on potential benefits of using data from the whole

wind farm instead of analysing each turbine separately. Only limited research on

farm-level solutions for condition monitoring has been published yet. In a physics
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of failure approach, it was suggested to compare cumulative statistics of simple

operational variables such as wind speed, power production etc., to identify turbines

with a higher loading and damage accumulation.

In a first step of this work, cumulative statistics were applied to the data of one

wind farm and failed to give a consistent link between replacements and outliers

in the statistics of different turbines. Some identified features suggested that wind

turbulence and reactive power could potentially be helpful to detect bearing and

generator problems, respectively. However, the study was limited by the small farm

size and short length of data available. In a continuation with different data, the link

of reactive power anomalies and generator problems was confirmed. In addition, it

was shown that some anomalies were seen in terms of rated power production for

mechanical problems. But again, it was concluded that a longer record of data is

necessary to identify damage-driving conditions or damage accumulation.

Subsequently, a framework was proposed for assessing CMS vibrations. The Distance-

based Automated Vibration Evaluation (DAVE) utilised the consistent CMS database

as introduced in the previous chapter to compare spectra of all turbines in the farm

with DTW distances. Tests on the three main bearing failures in the farm showed

that DAVE was capable of detecting the problems in advance with consistently earlier

warnings than the commercial CMS. With the proposed solution, fluctuations in

vibrations due to (farm-wide) environmental effects could be balanced and already

small abnormalities in vibrations generated reliable alarms.

Finally, an algorithm was developed to analyse signal-to-signal relationships in

SCADA data. The proposed algorithm calculates an Abnormal Similarity Factor (ASF)

and an Abnormal Dissimilarity Factor (ADF) by comparisons with similarly operating

turbines in the farm. This approach proved to be very valuable for monitoring

temperatures and detecting drive-train failures. For a tested wind farm, several

gearbox and bearing problems were successfully identified. Again, the results suggest

that fluctuations in the farm might be cancelled out by comparisons within the farm

which improved the reliability of monitoring.

7.6 Final remarks and future work
This thesis aimed to identify the capabilities of operational data for maintenance

optimisation of wind turbines. Challenges of condition monitoring and mainten-

ance planning were identified and possible improvements investigated. It was

demonstrated that operational data are a valuable resource to support maintenance

decision making and optimisation through performance monitoring. The importance
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of model configuration for model-based monitoring of SCADA temperatures was

identified and a solution with an ensemble of techniques suggested. It was shown

that operational data might be capable of (partially) substituting vibration-based

monitoring after data-driven learning. The exploration of condition monitoring

approaches with comparisons within the wind farm showed that this approach might

significantly improve the reliability of monitoring.

However, this work was clearly limited by the data available. The capabilities of

operational data for improving maintenance could not be fully identified due to

lacking maintenance documentation and data availability. There is an urgent need

for industry and academia to establish better data recording and sharing frameworks

to further optimise the operation and maintenance of wind turbines.

Based on this work, several possibilities for future work arise:

(A) • Maintenance optimisation studies should rely on measurements of envir-

onmental conditions such as blade icing, turbulence intensity, wind shear

etc., as it was found that better understanding of these effects is required.

• Challenges in the uncertainty of common power curve monitoring with

the method of bins need to be addressed. Developing best practices for

data pre-processing and missing data might be beneficial.

• A more detailed financial analysis of maintenance decisions could consider

costs of labour, travel, renting equipment etc.

(B) • Most research on model-based monitoring of temperatures tested new

solutions on new data (due to lack of data sharing possibilities). A round-

robin study could be conducted where academic and industrial solutions

will be tested on the same data with relevant failures (as recently done

for vibration measurements).

• Further studies on model-based monitoring need to clarify what training

length is generally required and what measures can be taken if less data

are available.

• There is a need for establishing which kind of maintenance will require a

re-training of models.

• The capabilities of model-based monitoring given the different turbine

make and SCADA setup need to be fully understood. Possible improve-

ments to the sensor placing could be evaluated.

• The proposed condition index should be further validated and improved

by using more data with better maintenance documentation.
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(C) • Alternative approaches to build a database of CMS and SCADA data

should be explored and compared with the proposed workflow.

• Further analysis of data relationships should consider the detailed com-

position of clusters and DTW similarities inside these clusters.

• The framework for predicting the probability of having a CMS alarm with

SCADA should be validated with further failure data.

(D) • Cumulative statistics for assessing damage development need to be tested

with data ideally covering the lifetime of a turbine.

• The observed anomalies in reactive power production signals before gener-

ator failures call for more detailed studies to understand this phenomenon

and possibly develop monitoring approaches.

• The DAVE framework for CMS data could be evaluated for other fail-

ure modes and components. The results should be validated against

traditional CMS analysis.

• The monitoring of temperatures with an ADF and ASF should be tested

with further data and failure modes. An investigation in the required sim-

ilarity of operational conditions could help to understand the limitations

of this monitoring approach.

Other aspects of using operational data to optimise wind turbine maintenance were

identified in the literature review, but could not be discussed in this thesis. For

example, further work could validate the proposed damage models with other

turbine types and develop models for turbine components not yet studied. The

utilisation of higher resolution SCADA data for damage modelling could provide

higher accuracy. In the context of maintenance logs and SCADA status codes, it could

be interesting to apply the proposed time-domain and frequency-domain approaches

to subassemblies besides the pitch system. However, the state-of-the art in modern

industrial SCADA processing systems should also be established. Further work could

also discuss the potential differences in the discussed approaches in the case of

offshore wind turbines.

7.6 Final remarks and future work 207



Publications

Journal articles
Tautz-Weinert, J. and S. J. Watson (2017e). ‘Using SCADA data for wind turbine condition

monitoring – a review’. In: IET Renewable Power Generation 11.4, pp. 382–394. DOI:
10.1049/iet-rpg.2016.0248 (cit. on pp. 1, 37).

Tautz-Weinert, J., N. Y. Yürüşen, J. J. Melero and S. J. Watson (2019). ‘Sensitivity study of a
wind farm maintenance decision - a performance and revenue analysis’. In: Renewable
Energy 132, pp. 93–105. DOI: 10.1016/j.renene.2018.07.110 (cit. on pp. 1, 37, 39).

Peer-reviewed conference articles
Colone, L., M. Reder, J. Tautz-Weinert, J. J. Melero, A. Natarajan and S. J. Watson (2017).

‘Optimisation of Data Acquisition in Wind Turbines with Data-Driven Conversion Functions
for Sensor Measurements’. In: Energy Procedia 137. 14th Deep Sea Offshore Wind R&D
conference (DeepWind), 2017, pp. 571–578. DOI: 10.1016/j.egypro.2017.10.386
(cit. on pp. 37, 145).

Gonzalez, E., J. Tautz-Weinert, J. J. Melero and S. J. Watson (2018). ‘Statistical Evaluation
of SCADA data for Wind Turbine Condition Monitoring and Farm Assessment’. In: Journal
of Physics: Conference Series 1037. The Science of Making Torque from Wind (TORQUE)
conference, 2018, p. 032038. DOI: 10.1088/1742-6596/1037/3/032038 (cit. on pp. 38,
176, 177).

Tautz-Weinert, J. and S. J. Watson (2016). ‘Comparison of different modelling approaches of
drive train temperature for the purposes of wind turbine failure detection’. In: Journal
of Physics: Conference Series 753. The Science of Making Torque from Wind (TORQUE)
conference, 2016, p. 072014. DOI: 10.1088/1742-6596/753/7/072014 (cit. on pp. 37,
69).

– (2017b). ‘Challenges in Using Operational Data for Reliable Wind Turbine Condition
Monitoring’. In: Proceedings of the Twenty-seventh (2017) International Offshore and Polar
Engineering Conference (ISOPE) (cit. on pp. 37, 69, 109).

– (2017c). ‘Combining model-based monitoring and a physics of failure approach for wind
turbine failure detection’. In: 30th Conference on Condition Monitoring and Diagnostic
Engineering Management (COMADEM 2017), pp. 239–247 (cit. on pp. 37, 121, 171).

208

https://doi.org/10.1049/iet-rpg.2016.0248
https://doi.org/10.1016/j.renene.2018.07.110
https://doi.org/10.1016/j.egypro.2017.10.386
https://doi.org/10.1088/1742-6596/1037/3/032038
https://doi.org/10.1088/1742-6596/753/7/072014


Tautz-Weinert, J. and S. J. Watson (2017d). ‘Condition monitoring of wind turbine drive
trains by normal behaviour modelling of temperatures’. In: Conference for Wind Power
Drives (CWD 2017). Ed. by A. T. Werkmeister. Aachen: Dirk Abel, Christian Brecher, Rik
W. De Doncker, Kay Hameyer, Georg Jacobs, Antonello Monti, Wolfgang Schröder [pub],
pp. 359–372 (cit. on pp. 37, 69, 109).
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AAppendix

A.1 NBM model prediction visualisation
Figures A.1 to A.16 provide additional visualisations of the temperature modelling

results in Section 3.4. One randomly selected day is shown for the turbine with the

lowest MAE for LIN modelling in input case a). The visual comparison demonstrates

the similarity of most FSRC modelling outputs and highlights the differences of input

cases or farms.
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Figure A.1.: Example of prediction performance of different techniques – farm Alpha,
turbine 62, input case a).
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Figure A.2.: Example of prediction performance of different techniques – farm Alpha,
turbine 62, input case b).
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Figure A.3.: Example of prediction performance of different techniques – farm Alpha,
turbine 62, input case b).
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Figure A.4.: Example of prediction performance of different techniques – farm Alpha,
turbine 62, input case d).
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Figure A.5.: Example of prediction performance of different techniques – farm Beta, turbine
8, input case a).

A.1 NBM model prediction visualisation 227



00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

50

55

60

T
e
m

p
e
ra

tu
re

 (
°C

)

Target
LIN
LINi
LINf

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

50

55

60

T
e
m

p
e
ra

tu
re

 (
°C

)

Target
ANN1
ANN2
ANN5
ANNh

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

50

55

60

T
e
m

p
e
ra

tu
re

 (
°C

)

Target
ANFIS
MARS
GPR
SVM

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

48

50

52

54

56

58

60

62

T
e
m

p
e
ra

tu
re

 (
°C

)

Target
ANNc
NSET
ANNa

Figure A.6.: Example of prediction performance of different techniques – farm Beta, turbine
8, input case b).
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Figure A.7.: Example of prediction performance of different techniques – farm Beta, turbine
8, input case c).
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Figure A.8.: Example of prediction performance of different techniques – farm Beta, turbine
8, input case d).
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Figure A.9.: Example of prediction performance of different techniques – farm Gamma,
turbine 9, input case a).
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Figure A.10.: Example of prediction performance of different techniques – farm Gamma,
turbine 9, input case b).
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Figure A.11.: Example of prediction performance of different techniques – farm Gamma,
turbine 9, input case c).
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Figure A.12.: Example of prediction performance of different techniques – farm Gamma,
turbine 9, input case d).
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Figure A.13.: Example of prediction performance of different techniques – farm Delta,
turbine 1, input case a).
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Figure A.14.: Example of prediction performance of different techniques – farm Delta,
turbine 1, input case b).
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Figure A.15.: Example of prediction performance of different techniques – farm Delta,
turbine 1, input case c).
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Figure A.16.: Example of prediction performance of different techniques – farm Delta,
turbine 1, input case d).
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(a) Raw vibrations (b) FFT

(c) Envelope (d) Cepstrum

Figure A.17.: Example of data as provided by the commercial CMS for vibrations at the
planetary gear in turbine 1.

A.2 CMS data visualisation
Figure A.17 shows examples of data provided by the commercial CMS for analysis in

Chapter 5.
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Table A.1.: Results for cumulative analysis of TI∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.448 0.474 0.484 0.463 0.446 0.415 0.442 0.434 0.436 0.429 0.459
Aug-01 0.445 0.469 0.483 0.457 0.445 0.415 0.437 0.426 0.430 0.425 0.456
Sep-01 0.465 0.471 0.465 0.460 0.440 0.416 0.445 0.432 0.439 0.434 0.469
Oct-01 0.462 0.464 0.457 0.455 0.436 0.416 0.437 0.424 0.439 0.429 0.469
Nov-01 0.468 0.468 0.456 0.457 0.433 0.413 0.446 0.427 0.441 0.435 0.480
Dec-01 0.468 0.467 0.456 0.458 0.435 0.414 0.451 0.432 0.444 0.438 0.489
Jan-02 0.468 0.469 0.458 0.463 0.437 0.417 0.460 0.438 0.449 0.445 0.498
Feb-02 0.471 0.471 0.461 0.464 0.440 0.419 0.464 0.440 0.451 0.447 0.498
Mar-02 0.468 0.470 0.462 0.463 0.440 0.419 0.463 0.437 0.451 0.444 0.494
Apr-02 0.464 0.467 0.460 0.459 0.441 0.417 0.458 0.431 0.450 0.440 0.488
May-02 0.464 0.467 0.460 0.459 0.441 0.417 0.458 0.431 0.450 0.440 0.488
Jun-02 0.464 0.468 0.459 0.459 0.440 0.417 0.458 0.431 0.450 0.440 0.489
Jul-02 0.464 0.469 0.460 0.458 0.441 0.418 0.458 0.431 0.450 0.439 0.489
Aug-02 0.467 0.470 0.459 0.458 0.441 0.418 0.460 0.430 0.449 0.439 0.488
Sep-02 0.469 0.470 0.454 0.455 0.440 0.420 0.461 0.430 0.451 0.438 0.488
Oct-02 0.470 0.469 0.454 0.454 0.442 0.422 0.460 0.430 0.453 0.434 0.488
Nov-02 0.474 0.471 0.459 0.456 0.446 0.425 0.464 0.435 0.457 0.436 0.488
Dec-02 0.476 0.473 0.460 0.458 0.447 0.426 0.465 0.435 0.457 0.437 0.488
Jan-03 0.478 0.476 0.461 0.460 0.450 0.428 0.467 0.438 0.460 0.440 0.488
Feb-03 0.480 0.479 0.464 0.463 0.453 0.430 0.468 0.440 0.462 0.442 0.488
Mar-03 0.478 0.480 0.464 0.464 0.454 0.430 0.467 0.439 0.462 0.442 0.487
Apr-03 0.483 0.484 0.467 0.469 0.456 0.432 0.471 0.442 0.464 0.448 0.488
May-03 0.486 0.486 0.469 0.471 0.459 0.433 0.474 0.443 0.467 0.450 0.488
Jun-03 0.489 0.488 0.471 0.472 0.461 0.435 0.475 0.445 0.468 0.452 0.488
Jul-03 0.489 0.489 0.471 0.472 0.462 0.435 0.476 0.445 0.469 0.452 0.488
Aug-03 0.491 0.490 0.473 0.473 0.463 0.436 0.477 0.446 0.470 0.453 0.488
Sep-03 0.491 0.492 0.474 0.474 0.465 0.436 0.477 0.447 0.470 0.454 0.488
Oct-03 0.491 0.492 0.474 0.474 0.465 0.436 0.477 0.447 0.470 0.454 0.488
Nov-03 0.500 0.500 0.480 0.483 0.473 0.443 0.478 0.455 0.475 0.463 0.488
Dec-03 0.506 0.507 0.486 0.489 0.478 0.448 0.481 0.460 0.479 0.475 0.488

A.3 Cumulative monthly statistics
Tables A.1 to A.6 show the complete results of the cumulative statistics of farm Beta

as conducted in Section 6.2.1.
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Table A.2.: Results for cumulative analysis of RP∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.230 0.212 0.165 0.176 0.281 0.385 0.296 0.345 0.300 0.258 0.211 0.203
Aug-01 0.238 0.207 0.166 0.184 0.274 0.378 0.298 0.350 0.299 0.256 0.209 0.196
Sep-01 0.307 0.268 0.251 0.260 0.354 0.445 0.362 0.412 0.351 0.310 0.270 0.243
Oct-01 0.315 0.298 0.276 0.285 0.374 0.460 0.372 0.441 0.372 0.333 0.285 0.265
Nov-01 0.315 0.317 0.289 0.308 0.403 0.478 0.388 0.461 0.394 0.338 0.295 0.280
Dec-01 0.321 0.359 0.341 0.353 0.445 0.515 0.426 0.494 0.428 0.377 0.328 0.318
Jan-02 0.322 0.416 0.387 0.408 0.493 0.554 0.471 0.533 0.471 0.423 0.378 0.353
Feb-02 0.339 0.424 0.396 0.413 0.499 0.557 0.478 0.542 0.476 0.416 0.389 0.346
Mar-02 0.351 0.425 0.394 0.413 0.498 0.557 0.482 0.543 0.477 0.420 0.390 0.353
Apr-02 0.363 0.436 0.404 0.423 0.503 0.563 0.488 0.555 0.485 0.432 0.399 0.363
May-02 0.363 0.436 0.404 0.423 0.503 0.563 0.488 0.555 0.485 0.432 0.399 0.363
Jun-02 0.353 0.416 0.379 0.403 0.480 0.544 0.469 0.539 0.464 0.412 0.379 0.345
Jul-02 0.339 0.399 0.368 0.387 0.462 0.526 0.452 0.522 0.449 0.398 0.369 0.332
Aug-02 0.329 0.392 0.363 0.379 0.455 0.520 0.442 0.515 0.442 0.390 0.367 0.322
Sep-02 0.335 0.402 0.378 0.392 0.465 0.530 0.449 0.512 0.449 0.398 0.367 0.333
Oct-02 0.353 0.415 0.383 0.404 0.475 0.536 0.464 0.522 0.460 0.414 0.367 0.348
Nov-02 0.360 0.416 0.387 0.405 0.476 0.536 0.462 0.518 0.458 0.415 0.367 0.351
Dec-02 0.360 0.415 0.388 0.405 0.475 0.536 0.461 0.517 0.451 0.416 0.367 0.351
Jan-03 0.359 0.410 0.388 0.399 0.472 0.533 0.459 0.520 0.449 0.417 0.367 0.356
Feb-03 0.362 0.409 0.389 0.397 0.467 0.527 0.458 0.522 0.446 0.418 0.367 0.359
Mar-03 0.366 0.406 0.387 0.396 0.463 0.528 0.458 0.523 0.442 0.414 0.367 0.359
Apr-03 0.363 0.402 0.386 0.394 0.462 0.526 0.454 0.528 0.434 0.411 0.366 0.354
May-03 0.362 0.400 0.385 0.390 0.459 0.524 0.449 0.522 0.430 0.410 0.366 0.351
Jun-03 0.351 0.387 0.371 0.376 0.445 0.510 0.427 0.506 0.417 0.398 0.366 0.341
Jul-03 0.337 0.371 0.355 0.360 0.425 0.492 0.416 0.484 0.400 0.384 0.366 0.328
Aug-03 0.328 0.359 0.350 0.351 0.415 0.481 0.403 0.474 0.390 0.374 0.366 0.317
Sep-03 0.321 0.349 0.341 0.342 0.404 0.474 0.396 0.463 0.382 0.366 0.366 0.310
Oct-03 0.320 0.347 0.339 0.340 0.402 0.472 0.394 0.461 0.380 0.364 0.366 0.309
Nov-03 0.329 0.360 0.350 0.355 0.417 0.485 0.392 0.474 0.387 0.377 0.366 0.322
Dec-03 0.330 0.366 0.355 0.362 0.422 0.490 0.387 0.484 0.389 0.380 0.366 0.331
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Table A.3.: Results for cumulative analysis of HW∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.279 0.254 0.199 0.211 0.321 0.426 0.340 0.400 0.339 0.295 0.246 0.235
Aug-01 0.283 0.247 0.200 0.217 0.313 0.418 0.339 0.403 0.336 0.291 0.243 0.225
Sep-01 0.357 0.310 0.286 0.295 0.394 0.486 0.406 0.466 0.391 0.349 0.308 0.273
Oct-01 0.364 0.339 0.312 0.320 0.411 0.500 0.413 0.492 0.413 0.371 0.324 0.294
Nov-01 0.368 0.360 0.326 0.345 0.441 0.519 0.434 0.516 0.436 0.378 0.338 0.313
Dec-01 0.371 0.406 0.381 0.392 0.487 0.556 0.475 0.551 0.474 0.419 0.376 0.355
Jan-02 0.372 0.463 0.427 0.449 0.536 0.595 0.522 0.590 0.518 0.466 0.430 0.392
Feb-02 0.392 0.472 0.438 0.454 0.542 0.599 0.531 0.599 0.525 0.461 0.441 0.385
Mar-02 0.405 0.473 0.436 0.457 0.544 0.601 0.535 0.598 0.527 0.466 0.444 0.393
Apr-02 0.420 0.487 0.449 0.468 0.551 0.608 0.543 0.612 0.537 0.478 0.454 0.406
May-02 0.420 0.487 0.449 0.468 0.551 0.608 0.543 0.612 0.537 0.478 0.454 0.406
Jun-02 0.408 0.465 0.421 0.446 0.525 0.587 0.522 0.595 0.514 0.457 0.431 0.386
Jul-02 0.395 0.448 0.409 0.429 0.508 0.570 0.504 0.578 0.500 0.442 0.421 0.371
Aug-02 0.387 0.440 0.405 0.421 0.502 0.565 0.494 0.570 0.491 0.433 0.418 0.360
Sep-02 0.395 0.452 0.420 0.434 0.514 0.576 0.502 0.567 0.499 0.443 0.418 0.373
Oct-02 0.415 0.467 0.426 0.447 0.525 0.583 0.518 0.577 0.512 0.458 0.418 0.390
Nov-02 0.421 0.467 0.431 0.449 0.524 0.582 0.516 0.574 0.509 0.460 0.418 0.394
Dec-02 0.422 0.467 0.433 0.449 0.523 0.581 0.515 0.573 0.502 0.462 0.418 0.394
Jan-03 0.421 0.462 0.432 0.442 0.518 0.577 0.512 0.575 0.500 0.462 0.418 0.398
Feb-03 0.424 0.461 0.434 0.442 0.514 0.571 0.511 0.579 0.498 0.464 0.418 0.403
Mar-03 0.428 0.458 0.432 0.442 0.510 0.572 0.511 0.580 0.494 0.460 0.418 0.403
Apr-03 0.427 0.456 0.433 0.440 0.509 0.570 0.508 0.587 0.485 0.457 0.417 0.398
May-03 0.424 0.453 0.431 0.436 0.506 0.567 0.502 0.579 0.480 0.455 0.417 0.395
Jun-03 0.411 0.438 0.415 0.421 0.490 0.552 0.479 0.560 0.465 0.442 0.417 0.383
Jul-03 0.394 0.420 0.397 0.403 0.468 0.533 0.466 0.536 0.447 0.426 0.417 0.368
Aug-03 0.384 0.408 0.392 0.393 0.457 0.521 0.453 0.526 0.436 0.415 0.417 0.356
Sep-03 0.376 0.396 0.382 0.383 0.445 0.513 0.446 0.514 0.426 0.406 0.417 0.348
Oct-03 0.374 0.393 0.379 0.381 0.443 0.511 0.443 0.511 0.424 0.404 0.417 0.347
Nov-03 0.387 0.406 0.390 0.395 0.457 0.524 0.441 0.523 0.432 0.417 0.417 0.360
Dec-03 0.390 0.411 0.394 0.402 0.461 0.527 0.437 0.533 0.433 0.421 0.417 0.369
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Table A.4.: Results for cumulative analysis of PF∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.677 0.623 0.480 0.559 0.368 0.224 0.171 0.636 0.702 0.188 0.192 0.177
Aug-01 0.706 0.655 0.514 0.586 0.442 0.248 0.182 0.576 0.736 0.201 0.210 0.173
Sep-01 0.645 0.589 0.463 0.512 0.437 0.198 0.138 0.428 0.701 0.160 0.160 0.136
Oct-01 0.606 0.534 0.434 0.471 0.413 0.175 0.120 0.359 0.669 0.137 0.150 0.116
Nov-01 0.583 0.484 0.397 0.413 0.369 0.161 0.105 0.307 0.618 0.132 0.134 0.100
Dec-01 0.558 0.453 0.385 0.393 0.368 0.184 0.134 0.298 0.593 0.149 0.152 0.128
Jan-02 0.549 0.453 0.396 0.410 0.394 0.195 0.162 0.273 0.597 0.161 0.161 0.146
Feb-02 0.547 0.449 0.360 0.408 0.391 0.191 0.152 0.252 0.594 0.159 0.152 0.147
Mar-02 0.546 0.427 0.355 0.407 0.394 0.184 0.145 0.243 0.589 0.151 0.148 0.143
Apr-02 0.527 0.392 0.328 0.397 0.391 0.174 0.136 0.223 0.574 0.141 0.141 0.134
May-02 0.527 0.392 0.328 0.397 0.391 0.174 0.136 0.223 0.574 0.141 0.141 0.134
Jun-02 0.527 0.390 0.325 0.394 0.387 0.173 0.135 0.221 0.570 0.141 0.144 0.133
Jul-02 0.524 0.382 0.320 0.392 0.389 0.174 0.133 0.218 0.556 0.139 0.145 0.132
Aug-02 0.523 0.373 0.309 0.386 0.378 0.171 0.131 0.213 0.538 0.135 0.144 0.130
Sep-02 0.511 0.345 0.280 0.363 0.350 0.160 0.124 0.213 0.501 0.129 0.143 0.123
Oct-02 0.464 0.319 0.269 0.339 0.326 0.155 0.115 0.203 0.464 0.119 0.143 0.113
Nov-02 0.431 0.301 0.249 0.322 0.306 0.147 0.112 0.195 0.437 0.116 0.143 0.106
Dec-02 0.416 0.290 0.238 0.311 0.293 0.141 0.108 0.193 0.423 0.112 0.143 0.103
Jan-03 0.410 0.280 0.228 0.307 0.279 0.136 0.105 0.185 0.404 0.107 0.143 0.099
Feb-03 0.400 0.269 0.221 0.297 0.269 0.131 0.101 0.178 0.391 0.103 0.143 0.094
Mar-03 0.395 0.265 0.219 0.298 0.262 0.130 0.100 0.173 0.380 0.106 0.144 0.099
Apr-03 0.393 0.257 0.212 0.295 0.251 0.127 0.098 0.167 0.370 0.110 0.144 0.104
May-03 0.401 0.250 0.207 0.292 0.244 0.124 0.098 0.163 0.361 0.108 0.144 0.103
Jun-03 0.407 0.248 0.207 0.291 0.241 0.123 0.101 0.160 0.358 0.107 0.144 0.103
Jul-03 0.416 0.255 0.214 0.296 0.244 0.129 0.105 0.164 0.362 0.112 0.144 0.109
Aug-03 0.423 0.258 0.220 0.298 0.245 0.132 0.113 0.167 0.364 0.115 0.144 0.114
Sep-03 0.427 0.259 0.222 0.300 0.244 0.132 0.118 0.166 0.362 0.115 0.144 0.117
Oct-03 0.427 0.259 0.222 0.300 0.244 0.133 0.118 0.166 0.362 0.115 0.144 0.117
Nov-03 0.490 0.249 0.217 0.280 0.231 0.130 0.119 0.160 0.351 0.114 0.144 0.114
Dec-03 0.536 0.246 0.229 0.273 0.224 0.129 0.127 0.158 0.349 0.128 0.144 0.115
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Table A.5.: Results for cumulative analysis of PD∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.602 0.648 0.613 0.629 0.535 0.437 0.508 0.521 0.479 0.485 0.532 0.542
Aug-01 0.589 0.646 0.613 0.615 0.521 0.436 0.506 0.511 0.468 0.483 0.541 0.540
Sep-01 0.539 0.558 0.493 0.512 0.440 0.393 0.451 0.464 0.439 0.454 0.498 0.476
Oct-01 0.531 0.515 0.469 0.495 0.414 0.378 0.427 0.428 0.426 0.427 0.484 0.440
Nov-01 0.551 0.516 0.461 0.486 0.403 0.373 0.441 0.424 0.423 0.438 0.495 0.456
Dec-01 0.533 0.484 0.442 0.455 0.391 0.361 0.434 0.418 0.410 0.423 0.493 0.452
Jan-02 0.524 0.437 0.403 0.424 0.372 0.342 0.426 0.399 0.391 0.404 0.467 0.428
Feb-02 0.534 0.444 0.411 0.422 0.371 0.346 0.431 0.399 0.396 0.414 0.467 0.437
Mar-02 0.536 0.448 0.414 0.431 0.383 0.353 0.434 0.397 0.401 0.417 0.474 0.438
Apr-02 0.550 0.455 0.429 0.437 0.391 0.356 0.434 0.397 0.407 0.420 0.479 0.448
May-02 0.550 0.455 0.429 0.437 0.391 0.356 0.434 0.397 0.407 0.420 0.479 0.448
Jun-02 0.551 0.456 0.430 0.438 0.391 0.357 0.436 0.398 0.408 0.422 0.482 0.450
Jul-02 0.568 0.463 0.437 0.443 0.403 0.367 0.439 0.402 0.415 0.425 0.485 0.452
Aug-02 0.589 0.467 0.442 0.445 0.402 0.372 0.446 0.406 0.416 0.429 0.485 0.455
Sep-02 0.603 0.465 0.436 0.439 0.401 0.371 0.443 0.407 0.416 0.430 0.484 0.456
Oct-02 0.592 0.468 0.437 0.443 0.404 0.376 0.438 0.406 0.418 0.425 0.484 0.457
Nov-02 0.582 0.468 0.440 0.444 0.402 0.374 0.440 0.411 0.420 0.428 0.484 0.458
Dec-02 0.581 0.472 0.444 0.445 0.401 0.373 0.443 0.411 0.423 0.428 0.484 0.460
Jan-03 0.578 0.469 0.437 0.442 0.397 0.367 0.439 0.408 0.421 0.424 0.484 0.452
Feb-03 0.580 0.476 0.446 0.451 0.405 0.374 0.444 0.414 0.428 0.429 0.484 0.458
Mar-03 0.573 0.478 0.448 0.459 0.406 0.374 0.442 0.412 0.431 0.429 0.485 0.459
Apr-03 0.584 0.487 0.456 0.463 0.408 0.375 0.450 0.418 0.435 0.437 0.485 0.471
May-03 0.579 0.487 0.456 0.469 0.410 0.374 0.450 0.416 0.437 0.434 0.485 0.468
Jun-03 0.578 0.484 0.454 0.470 0.408 0.373 0.452 0.414 0.436 0.432 0.485 0.464
Jul-03 0.578 0.484 0.456 0.474 0.410 0.374 0.454 0.415 0.439 0.432 0.485 0.464
Aug-03 0.580 0.488 0.463 0.477 0.414 0.377 0.464 0.419 0.442 0.436 0.485 0.470
Sep-03 0.581 0.489 0.462 0.480 0.414 0.378 0.469 0.421 0.443 0.437 0.485 0.470
Oct-03 0.581 0.489 0.462 0.480 0.414 0.378 0.469 0.421 0.443 0.437 0.485 0.470
Nov-03 0.610 0.478 0.452 0.467 0.406 0.371 0.472 0.416 0.444 0.431 0.485 0.459
Dec-03 0.632 0.468 0.446 0.456 0.397 0.364 0.483 0.408 0.443 0.433 0.485 0.445
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Table A.6.: Results for cumulative analysis of HS∗ for all 12 turbines in farm Beta (denoted
with T01-T12), skipping the first four months.

Month T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12

Jul-01 0.275 0.247 0.197 0.207 0.316 0.423 0.337 0.396 0.338 0.293 0.243 0.233
Aug-01 0.280 0.240 0.198 0.213 0.309 0.416 0.337 0.399 0.335 0.290 0.240 0.223
Sep-01 0.354 0.304 0.284 0.291 0.390 0.484 0.403 0.462 0.389 0.347 0.305 0.271
Oct-01 0.361 0.333 0.310 0.317 0.408 0.498 0.410 0.488 0.411 0.369 0.321 0.291
Nov-01 0.364 0.355 0.324 0.341 0.438 0.516 0.431 0.512 0.434 0.376 0.334 0.310
Dec-01 0.367 0.401 0.377 0.388 0.483 0.552 0.472 0.547 0.471 0.416 0.373 0.352
Jan-02 0.368 0.457 0.423 0.443 0.530 0.588 0.517 0.584 0.514 0.462 0.425 0.388
Feb-02 0.387 0.466 0.434 0.449 0.536 0.592 0.526 0.593 0.521 0.457 0.436 0.381
Mar-02 0.400 0.468 0.432 0.452 0.538 0.595 0.530 0.593 0.524 0.462 0.439 0.389
Apr-02 0.415 0.482 0.445 0.463 0.545 0.602 0.538 0.607 0.534 0.474 0.449 0.402
May-02 0.415 0.482 0.445 0.463 0.545 0.602 0.538 0.607 0.534 0.474 0.449 0.402
Jun-02 0.403 0.460 0.418 0.442 0.519 0.581 0.517 0.590 0.510 0.453 0.427 0.382
Jul-02 0.390 0.443 0.406 0.425 0.503 0.564 0.499 0.573 0.496 0.439 0.417 0.368
Aug-02 0.383 0.436 0.401 0.417 0.497 0.559 0.490 0.565 0.488 0.430 0.414 0.357
Sep-02 0.390 0.448 0.417 0.431 0.508 0.569 0.498 0.562 0.495 0.439 0.414 0.369
Oct-02 0.410 0.463 0.423 0.443 0.520 0.576 0.513 0.572 0.509 0.455 0.414 0.386
Nov-02 0.416 0.463 0.428 0.446 0.519 0.575 0.512 0.569 0.506 0.457 0.414 0.390
Dec-02 0.417 0.463 0.430 0.446 0.518 0.575 0.510 0.568 0.499 0.458 0.414 0.391
Jan-03 0.415 0.458 0.428 0.439 0.514 0.570 0.507 0.570 0.497 0.459 0.414 0.395
Feb-03 0.419 0.457 0.431 0.438 0.509 0.565 0.507 0.574 0.495 0.461 0.414 0.400
Mar-03 0.423 0.454 0.429 0.438 0.505 0.566 0.507 0.575 0.491 0.456 0.414 0.400
Apr-03 0.422 0.452 0.430 0.436 0.505 0.564 0.504 0.582 0.481 0.453 0.413 0.395
May-03 0.419 0.450 0.428 0.432 0.502 0.561 0.498 0.574 0.477 0.452 0.413 0.391
Jun-03 0.406 0.435 0.412 0.416 0.486 0.546 0.475 0.555 0.462 0.439 0.413 0.380
Jul-03 0.389 0.417 0.395 0.398 0.464 0.527 0.462 0.532 0.443 0.423 0.413 0.365
Aug-03 0.380 0.404 0.389 0.389 0.453 0.516 0.448 0.521 0.433 0.412 0.413 0.353
Sep-03 0.371 0.392 0.379 0.378 0.441 0.508 0.440 0.509 0.423 0.403 0.413 0.345
Oct-03 0.369 0.390 0.377 0.376 0.439 0.506 0.438 0.506 0.421 0.401 0.413 0.344
Nov-03 0.379 0.403 0.387 0.391 0.453 0.518 0.436 0.518 0.429 0.415 0.413 0.357
Dec-03 0.379 0.407 0.391 0.397 0.457 0.522 0.430 0.528 0.429 0.418 0.413 0.365
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