820 research outputs found

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Design and real time implementation of nonlinear sliding surface with the application of super-twisting algorithm in nonlinear sliding mode control for twin rotor MIMO system

    Get PDF
    This paper proposes the design of a nonlinear sliding surface based on the principle of variable damping concept for 2-degree of freedom Twin Rotor Multiple input Multiple output System (2-dof TRMS). The implementation of the designed nonlinear sliding surface in real time is demonstrated. Super-twisting algorithm is applied in nonlinear sliding mode control. The nonlinear sliding surface enables the system trajectory to be highly robust and with the application of super-twisting algorithm in nonlinear sliding mode controller (SMC), the designed controller has minimized the problem of chattering considerably. The system is modeled in such a way that it includes all nonlinearities and coupling effects. A decoupler is designed to nullify the coupling effect. This scheme is capable of reducing both the settling time and peak overshoot simultaneously for 2-dof TRMS. The scheme also reduces the chattering. The proposed method is compared with the design using PID controller. The applicability of the designed nonlinear sliding surface and nonlinear SMC with super-twisting algorithm have been tested both in simulation and in real time. This research paper is mainly dealing with the modeling of Twin rotor MIMO system by including all nonlinearities and coupling effects, the decoupler design for 2-dof TRMS, the design of nonlinear sliding surface for 2-dof TRMS and application of super-twisting algorithm in nonlinear sliding mode control for 2-dof TRMS

    Wind turbines controllers design based on the super-twisting algorithm

    Get PDF
    The continuous increase in the size of wind turbines (WTs) has led to new challenges in the design of novel torque and pitch controllers. Today’s WT control design must fulfill numerous specifications to assure effective electrical energy production and to hold the tower vibrations inside acceptable levels of operation. Hence, this paper presents modern torque and pitch control developments based on the super-twisting algorithm (STA) by using feedback of the fore- aft and side-to-side acceleration signals of the WT tower. According to numerical experiments realized using FAST, these controllers mitigate vibrations in the tower without affecting the quality of electrical power production. Moreover, the proposed controllers’ performance is better than the baseline controllers used for comparison.Postprint (author's final draft

    Dynamic Smooth Sliding Control Applied to UAV Trajectory Tracking

    Full text link
    This paper proposes a sliding mode controller with smooth control effort for a class of nonlinear plants. The proposed controller is created by allowing some constant parameters of the earlier smooth sliding control (SSC) to vary as a function of the output tracking error, improving the control chattering alleviation in practical implementations. Furthermore, during the sliding mode, the new scheme can synthesize a range of controllers, such as fixed gain PI controllers and approximations of the standard Super-Twisting Algorithm (STA), as well as, the variable gain Super-Twisting Algorithm (VGSTA). A complete closed-loop stability analysis is provided. In addition, realistic simulation results with an unmanned aerial vehicle (UAV) model, incorporating aerodynamic effects and internal closed-loop controllers, are obtained and validated via experiments with a commercial hexacopter

    Speed control of a five-phase induction motor drive using modified super-twisting algorithm

    Get PDF
    The present work proposes an alternative for the inner current control based on the modified super-twisting algorithm with time delay estimation. Simulation results were carried out to verify the performance of the proposed robust control strategy for a five-phase induction motor drive. A stability analysis is also presented.CONACYT – Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Real time observer and control scheme for a wind turbine system based on a high order sliding modes

    Get PDF
    The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.The authors are very grateful to the Basque Government by its support through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputacion Foral de Alava (DFA) by its support through the project CONAVANTER, to Gipuzkoako Foru Aldundia by its support through the project Etorkizuna Eraikiz 2019, and to the UPV/EHU by its support through the project GIU20/063

    A fixed-time second order sliding mode observer for a class of nonlinear systems

    Get PDF
    This paper presents a second order fixed time sliding mode observer based on an extension of the super-twisting algorithm. This observer can be applied to a class of nonlinear system with a block-wise representation. The block structure provides a straightforward form to the application of the proposed second order sliding mode algorithm, yielding to finite-time convergence with a settling time independent to the system initial conditions. Finally, as numerical simulation example, the case of a linear induction motor is studied, exposing the efficiency and feasibility of the proposal
    corecore