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A Fixed-Time Second Order Sliding Mode Observer for a Class of

Nonlinear Systems

Juan Diego Sánchez-Torres and Alexander G. Loukianov

Abstract— This paper presents a second order fixed time
sliding mode observer based on an extension of the super-
twisting algorithm. This observer can be applied to a class of
nonlinear system with a block-wise representation. The block
structure provides a straightforward form to the application
of the proposed second order sliding mode algorithm, yielding
to finite-time convergence with a settling time independent to
the system initial conditions. Finally, as numerical simulation
example, the case of a linear induction motor is studied,
exposing the efficiency and feasibility of the proposal.

I. INTRODUCTION

The sliding mode (SM) algorithms are applied with

the idea to drive the dynamics of a system to a sliding

manifold that is an integral manifold with finite reaching

time [1]. Generally, this approach exhibits very interesting

and desirable features such as the work with reduced

observation error dynamics, the possibility to decompose

the design problem into two sub problems of the reduced

order, the robustness of the closed-loop system in presence

of parameter variations and external disturbances and, finite-

time stability [2]–[4].

Considering the observation error as a sliding variable, the

SM algorithms can be considered as an effective solution

to the problem of observers design for nonlinear systems

[5], specially when finite-time convergence of the observed

states to the real ones is required. An important class of SM

observers use the equivalent control method [6] to obtain

information of the system by means of continuous equivalent

values of the discontinuous observer inputs in SM motion

[7]. With this idea, several designs have been proposed as

the cascade observers [8], step-by-step observers [9], a SM

observer where the estimation of unknown inputs problem

has been considered [10], fixed time designs [11], among

others.

Another class of SM observers are based on the

second order SM feature of the super-twisting algorithm

(STA) [12]. Those attractive characteristics of the STA

algorithm have been exploited and extended for fixed time

convergent methods [13]–[15], adaptive controllers [16]–

[21], multivariable structures [22], most of them based on

the stability studies presented in [23]–[29]. For the case of

observers, a design for mechanical systems is presented in

[30] being extended to electrical drives [31], more general
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forms as in [32] and systems with noisy measurements [33],

[34].

All these methods present high performance. However,

most of them are presented in scalar form. And, the

multivariable structure introduced in [22] converges in finite

time but not fixed.

Under that consideration, this paper is aimed to present a

SM observer for a class of nonlinear systems based on a fixed

time STA with fixed time convergence. This design allows

the problem to be solved without the individual selection of

each stabilizing input, instead a multivariable function, based

on the unit control [2], [35], is used. On the other hand, the

fixed time stability [13], [36] ensures the existence of a finite

time independent to the initial conditions in which the system

converges. Thus, the proposed approach have very attractive

features as: fixed time convergence to the observed variables

and a fixed parameters number (six for this case), regardless

of the state dimension.

The linear induction motor is considered as case study.

The effectiveness the proposed observer is demonstrated by

means of numerical simulation, showing a good performance

of this proposal.

This paper is organized as follows: Section II introduces a

multivariable fixed time stable STA . Section III describes the

proposed observers. The simulations are presented in Section

IV. Finally, in Section V the conclusions are given.

II. PRELIMINARY RESULT

Let the vectors x1, x2 ∈ R
n. Now, consider the system

ẋ1 = −k1
x1

‖x1‖
1/2

− k2x1 − k3x1 ‖x1‖
1/2 + x2 +∆1

ẋ2 = −k4
x1

‖x1‖
− k5x1 − k6x1 ‖x1‖

1/2
+∆2

(1)

where k1, . . . , k6 > 0, and the disturbances are regarded as

‖∆1‖ ≤ δ1 ‖x1‖ and ‖∆2‖ ≤ δ2 with δ1, δ2 > 0.

With the Lyapunov function

V = 2k3 ‖x1‖+ k4 ‖x1‖
2
+

1

2
‖x2‖

2
+ νT ν (2)

where ν = k1
x1

‖x1‖
1/2 + k2x1 + k3x1 ‖x1‖

1/2
− x2, it is

possible to show there exists constants γ1 = γ1(θ), γ2 =
γ2(θ) > 0, θ = (k1, k2, k3, k3, k4, k5, k6, δ1, δ2), such that

V̇ ≤ −γ1V
1/2 − γ2V

3/2. (3)

Therefore, from (2)− (3), the system (1) is globally fixed

time stable [36].
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III. FIXED-TIME SECOND ORDER SLIDING MODE

OBSERVER

A. Observer Design

Consider the system written in the following block-wise

form:

ẋ1 = B1(x1)x2 + f1(x1, u)

ẋ2 = B2(x1)x2 + f2(x1) (4)

y = x1

where x = [x1 x2]
T and the vectors x1, x2 ∈ R

n. The

matrix B1(x1) is considered to be invertible.

Based on the system (4), the following observer is

proposed in order to provide a uniform finite estimation of

the state x:

˙̂x1 = B1(x1)x̂2 + f1(x1, u) + φ1(x̃1)

˙̂x2 = B2(x1)x̂2 + f2(x1) +B−1
1 (x1)φ2(x̃1) (5)

where x̂1 and x̂2 are the estimates of x1 and x2, respectively

and, the observer errors are given by x̃1 = x̂1 − x1 and

x̃2 = x̂2 − x2. The observer inputs φ1(x̃1), and φ2(x̃1) are

defined as

φ1(x̃1) =k1
x̃1

‖x̃1‖
1/2

+ k2x̃1 + k3x̃1 ‖x̃1‖
1/2

φ2(x̃1) =k4
x̃1

‖x̃1‖
+ k5x̃1 + k6x̃1 ‖x̃1‖

1/2
(6)

where k1, . . . , k6 > 0.

B. Convergence Analysis

To analyze the observer convergence, consider the

dynamics of the errors x̃1 and x̃2. From (4) and (5) it follows

˙̃x1 = B1(x1)x̃2 − φ1(x̃1)

˙̃x2 = B2(x1)x̃2 −B−1
1 (x1)φ2(x̃1). (7)

Defining q = B1(x1)x̃2, the system (7) is transformed to

˙̃x1 = φ1(x̃1) + q

q̇ = φ2(x̃1) +B(x1)q (8)

where B(x1) =
[

Ḃ1(x1) +B1(x1)B2(x1)
]

B−1
1 (x1).

Considering ‖B(x1)q‖ < δ where δ > 0, with a suitable

choice of the gains k1, . . . , k6, it follows from (2)− (3) that

the system (8) is globally fixed time stable. Therefore, the

observer variables converges to the real ones in fixed time.

IV. NUMERICAL SIMULATION RESULTS

This section shows numerical simulations results of the

proposed observer for a linear induction motor. The measured

variables are the velocity and the currents. The observed

variables are the flux and the load torque, introduced as step

form. This is motivated, due the difficulty of the flux and

torque direct measurement [37].

The model for the induction can be described by equations

for the stator current and rotor fluxes in stationary reference

frame αβ as follows:

dΘ

dt
= d1 (λαriβs − λβriαs)− d2Γ− d3Θ

dλαr

dt
= −η1λαr + η2Θλβr + η3iαs

dλβr

dt
= −η1λβr − η2Θλαr + η3iβs (9)

diαs
dt

= −η4iαs + η5λαr − η6Θλβr + η7vαs

diβs
dt

= −η8iβs + η9λβr + η10Θλαr + η11vβs

where λαr and λβr are the rotor magnetic-flux-linkage

components, respectively; iαs and iβs are the stator current

components, respectively, vαs and vβs are the voltage of α
and β axes in the stator, respectively.

For the three-phase linear induction motor in αβ frame,

the voltages are presented of the form

vαs = vs sin(ωt) (10)

vβs = −vs sin(ωt). (11)

Thus, for this case, the parameters are: η1 = Rr

Lr
,

η2 = np

(

π
τ

)

, η3 = RrLm

Lr
, η4 = Rs

(

Ls2Lr−LsLm2

LsLr

) +

1−
(

LsLr−Lm
2

LsLr

)

(

LsLr−Lm2

LsLr

)

Rr
Lr

, η5 = LmRr
(

LsLr−Lm2

LsLr

)

LsLr
2

, η6 =

np

(

π
τ

)

Lm
(

LsLr−Lm2

LsLr

)

LsLr

, η7 = 1
(

LsLr−Lm2

LsLr

)

Ls

, η8 = η4,

η9 = η5, η10 = η6, η11 = η7, d1 =
3npπLm

2LrτM
, d2 = 1

M ,

d3 = D
M where Rs and Ls are the resistance and inductance

of the stator, respectively. τ is the pole pitch, M is the total

mass of the moving element, D is viscous friction, Θ = υ
is the linear velocity and Γ = FL is the external force.

For the observer design, the availability of continuous

measurements of motor speed and currents is assumed.

In addition the mechanic load Γ is considered as

an unknown and slowly-varying perturbation to be

estimated, that is Γ̇ = 0. Thus, the system (9)

can be and, the blocks are x1 = [Θ iαs iβs]
T

and, x2 = [λαr λβr Γ]T , with u = [vαs vβs]
T .

Here B1(x1) =





d1iβs d1iαs −d2
η5 −η6Θ 0

η10Θ η9 0



, f1(x1, u) =





−d3Θ
η7vαs − η4iαs

η10Θ



, B2(x1) =





−η1 η2Θ 0
−η2Θ −η1 0
0 0 0



 and,

f2(x1) =





η3iαs
η3iβs
0



.

B−1
1 (x1) is the inverse of the matrix

B1(x1) and is given by B−1
1 (x1) =







0 η9

η6η10Θ2+η5η9

η6Θ
η6η10Θ2+η5η9

0 − η10Θ
η6η10Θ2+η5η9

η5

η6η10Θ2+η5η9

− 1
d2

d1(η9iβs+η10iαsΘ)
d2(η6η10Θ2+η5η9)

−
d1(η5iαs−η6iβsΘ)
d2(η6η10Θ2+η5η9)






.

For three-phase linear induction motor the parameter are

presented as [38]:



Three-phase linear

H.P. 4 Vs 180 (V )

f 60 (Hz) np 2

Rs 5.3685 (Ω) Rr 3.5315 (Ω)

Ls 0.02846(H) Lr 0.02846 (H)

Lm 0.02419 (H) M 2.78 (kg)

D 36.0455 (Kg/s) τ 0.027 (m)

Imax 14.2 (A)

µ1 1 µ2 1

m11 640 m12 640

m13 45 m21 64000

m22 64000 m23 20

The observer gains are chosen as k1 = 5, k2 = 10, k3 = 2,

k4 = 10, k5 = 5 and k6 = 1. The simulation results are

shown in the following figures:
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Fig. 1. Error of rotor flux λ̃αr and λ̃βr of TLIM.
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Fig. 2. Load torque estimated T̂L and error of load torque T̃L of TLIM.

In Figure 1 the time evolution of the rotor flux λ̃αr and λ̃βr

errors of induction motors are shown, while Fig. 2 presents

the time evolutions of the estimated load torque T̂L and the

load estimation error T̃L of induction motors cases.
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Fig. 3. Convergence time of both observers by growing initial condition
norm.

The Figure 3 presents a comparison of the proposed

observer with another which uses the mutivariable STA

[22], that means fixing k3 = 0 and k6 = 0 in (6).

Here is highlighted that the convergence time for the

multivariable STA grows unboundedly with the norm of the

initial condition, while the convergence time of the proposed

observer is asymptotically bounded by a constant for growing

initial condition’s norm.

V. CONCLUSIONS

In this work a fixed time convergent observer was

proposed. The scheme was applied to the model on the

stationary frame αβ for induction motors. The flux and

load torque were estimated, all of them are shown to give

appreciable results in order of convergence time to estimate

the rotor flux and the load torque.
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