39 research outputs found

    Rate scalable image compression in the wavelet domain

    Get PDF
    This thesis explores image compression in the wavelet transform domain. This the- sis considers progressive compression based on bit plane coding. The rst part of the thesis investigates the scalar quantisation technique for multidimensional images such as colour and multispectral image. Embedded coders such as SPIHT and SPECK are known to be very simple and e cient algorithms for compression in the wavelet do- main. However, these algorithms require the use of lists to keep track of partitioning processes, and such lists involve high memory requirement during the encoding process. A listless approach has been proposed for multispectral image compression in order to reduce the working memory required. The earlier listless coders are extended into three dimensional coder so that redundancy in the spectral domain can be exploited. Listless implementation requires a xed memory of 4 bits per pixel to represent the state of each transformed coe cient. The state is updated during coding based on test of sig- ni cance. Spectral redundancies are exploited to improve the performance of the coder by modifying its scanning rules and the initial marker/state. For colour images, this is done by conducting a joint the signi cant test for the chrominance planes. In this way, the similarities between the chrominance planes can be exploited during the cod- ing process. Fixed memory listless methods that exploit spectral redundancies enable e cient coding while maintaining rate scalability and progressive transmission. The second part of the thesis addresses image compression using directional filters in the wavelet domain. A directional lter is expected to improve the retention of edge and curve information during compression. Current implementations of hybrid wavelet and directional (HWD) lters improve the contour representation of compressed images, but su er from the pseudo-Gibbs phenomenon in the smooth regions of the images. A di erent approach to directional lters in the wavelet transforms is proposed to remove such artifacts while maintaining the ability to preserve contours and texture. Imple- mentation with grayscale images shows improvements in terms of distortion rates and the structural similarity, especially in images with contours. The proposed transform manages to preserve the directional capability without pseudo-Gibbs artifacts and at the same time reduces the complexity of wavelet transform with directional lter. Fur-ther investigation to colour images shows the transform able to preserve texture and curve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Wavelet Based Image Coding Schemes : A Recent Survey

    Full text link
    A variety of new and powerful algorithms have been developed for image compression over the years. Among them the wavelet-based image compression schemes have gained much popularity due to their overlapping nature which reduces the blocking artifacts that are common phenomena in JPEG compression and multiresolution character which leads to superior energy compaction with high quality reconstructed images. This paper provides a detailed survey on some of the popular wavelet coding techniques such as the Embedded Zerotree Wavelet (EZW) coding, Set Partitioning in Hierarchical Tree (SPIHT) coding, the Set Partitioned Embedded Block (SPECK) Coder, and the Embedded Block Coding with Optimized Truncation (EBCOT) algorithm. Other wavelet-based coding techniques like the Wavelet Difference Reduction (WDR) and the Adaptive Scanned Wavelet Difference Reduction (ASWDR) algorithms, the Space Frequency Quantization (SFQ) algorithm, the Embedded Predictive Wavelet Image Coder (EPWIC), Compression with Reversible Embedded Wavelet (CREW), the Stack-Run (SR) coding and the recent Geometric Wavelet (GW) coding are also discussed. Based on the review, recommendations and discussions are presented for algorithm development and implementation.Comment: 18 pages, 7 figures, journa

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Iterative enhanced multivariance products representation for effective compression of hyperspectral images.

    Get PDF
    Effective compression of hyperspectral (HS) images is essential due to their large data volume. Since these images are high dimensional, processing them is also another challenging issue. In this work, an efficient lossy HS image compression method based on enhanced multivariance products representation (EMPR) is proposed. As an efficient data decomposition method, EMPR enables us to represent the given multidimensional data with lower-dimensional entities. EMPR, as a finite expansion with relevant approximations, can be acquired by truncating this expansion at certain levels. Thus, EMPR can be utilized as a highly effective lossy compression algorithm for hyper spectral images. In addition to these, an efficient variety of EMPR is also introduced in this article, in order to increase the compression efficiency. The results are benchmarked with several state-of-the-art lossy compression methods. It is observed that both higher peak signal-to-noise ratio values and improved classification accuracy are achieved from EMPR-based methods

    An efficient JPEG-2000 based multimodal compression scheme

    Get PDF
    In this paper, a wavelet-based multimodal compression method is proposed. The method jointly compresses a medical image and an ECG signal within a single codec, i.e., JPEG-2000 in an effective and simple way. The multimodal scheme operates in two main stages: the first stage, consists of the encoder and involves a mixing function, aiming at inserting the samples of the signal in the image according to a predefined insertion pattern in the wavelet domain. The second stage represented by a separation function, consists of the extraction process of the ECG signal from the image after performing the decoding stage. Both the cubic spline and the median edge detection (MED) predictor have been adopted to conduct the interpolation process for estimating image pixels

    Contemporary Affirmation of SPIHT Improvements in Image Coding

    Get PDF
    Set partitioning in hierarchal trees (SPIHT) is actually a widely-used compression algorithm for wavelet altered images. On most algorithms developed, SPIHT algorithm from the time its introduction in 1996 for image compression has got lots of interest. Though SPIHT is considerably simpler and efficient than several present compression methods since it's a completely inserted codec, provides good image quality, large PSNR, optimized for modern image transmission, efficient conjunction with error defense, form information on demand and hence element powerful error correction decreases from starting to finish but still it has some downsides that need to be taken away for its better use therefore since its development it has experienced many adjustments in its original model. This document presents a survey on several different improvements in SPIHT in certain fields as velocity, redundancy, quality, error resilience, sophistication, and compression ratio and memory requirement

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information

    Get PDF
    It has been shown that image compression based on principal component analysis (PCA) provides good compression efficiency for hyperspectral images. However, PCA might fail to capture all the discriminant information of hyperspectral images, since features that are important for classification tasks may not be high in signal energy. To deal with this problem, we propose a hybrid compression method for hyperspectral images with pre-encoding discriminant information. A feature extraction method is first applied to the original images, producing a set of feature vectors that are used to generate feature images and then residual images by subtracting the feature-reconstructed images from the original ones. Both feature images and residual images are compressed and transmitted. Experiments on data from the Airborne Visible/Infrared Imaging Spectrometer sensor indicate that the proposed method provides better compression efficiency with improved classification accuracy than conventional compression methods

    Comparative analysis of preprocessing algorithms for hyperspectral Data compression

    Get PDF
    Проведен сравнительный анализ алгоритмов предварительной обработки, применяемые для сжатия гиперспектральных данных. Проанализированы достоинства и недостатки представленных подходов. A comparative analysis of preprocessing algorithms used to compress hyperspectral data is carried out. The advantages and disadvantages of the presented approaches are analyzed
    corecore