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Abstract

This thesis explores image compression in the wavelet transform domain. This the-

sis considers progressive compression based on bit plane coding. The first part of the

thesis investigates the scalar quantisation technique for multidimensional images such

as colour and multispectral image. Embedded coders such as SPIHT and SPECK are

known to be very simple and efficient algorithms for compression in the wavelet do-

main. However, these algorithms require the use of lists to keep track of partitioning

processes, and such lists involve high memory requirement during the encoding process.

A listless approach has been proposed for multispectral image compression in order to

reduce the working memory required. The earlier listless coders are extended into three

dimensional coder so that redundancy in the spectral domain can be exploited. Listless

implementation requires a fixed memory of 4 bits per pixel to represent the state of

each transformed coefficient. The state is updated during coding based on test of sig-

nificance. Spectral redundancies are exploited to improve the performance of the coder

by modifying its scanning rules and the initial marker/state. For colour images, this

is done by conducting a joint the significant test for the chrominance planes. In this

way, the similarities between the chrominance planes can be exploited during the cod-

ing process. Fixed memory listless methods that exploit spectral redundancies enable

efficient coding while maintaining rate scalability and progressive transmission. The

second part of the thesis addresses image compression using directional filters in the

wavelet domain. A directional filter is expected to improve the retention of edge and

curve information during compression. Current implementations of hybrid wavelet and

directional (HWD) filters improve the contour representation of compressed images,

but suffer from the pseudo-Gibbs phenomenon in the smooth regions of the images. A

different approach to directional filters in the wavelet transforms is proposed to remove

such artifacts while maintaining the ability to preserve contours and texture. Imple-

mentation with grayscale images shows improvements in terms of distortion rates and

the structural similarity, especially in images with contours. The proposed transform

manages to preserve the directional capability without pseudo-Gibbs artifacts and at

the same time reduces the complexity of wavelet transform with directional filter. Fur-

ther investigation to colour images shows the transform able to preserve texture and

curve.

ii



Declaration

I declare that this thesis is my own work and it has not been previously

submitted, either by me or by anyone else, for a degree or diploma

at any educational institute, school or university. To the best of my

knowledge, this thesis does not contain any previously published work,

except where another person’s work used has been cited and included

in the list of references.

Ruzelita Ngadiran

iii



Contents

Abstract iii

Declaration iv

Contents iv

List of Figure x

List of Tables xii

Acronyms xii

1 Introduction 1

1.1 Motivation for the study . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview image compression systems . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Image Representation and Transform Coding 9

2.1 Image representation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Transform based compression framework . . . . . . . . . . . . . . 11

2.2.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Compression performance measurement . . . . . . . . . . . 16

2.3 Discrete cosine transform . . . . . . . . . . . . . . . . . . . . . . 18

iv



CONTENTS

2.4 Discrete wavelet transform . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Wavelet bases . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Multidimensional image compression . . . . . . . . . . . . 25

2.5 Scalable wavelet coding . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 EZW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 SPIHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 SPECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.4 EBCOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Listless Implementation for Embedded Colour Image Coding 36

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Background and review . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 JPEG2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Colour coding in the wavelet domain . . . . . . . . . . . . 41

3.3.3 Reduced memory coder . . . . . . . . . . . . . . . . . . . . 42

3.3.4 CSPECK . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 The proposed coder . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Linear indexing . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 State marker . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Sorting algorithm . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 The proposed algorithm . . . . . . . . . . . . . . . . . . . 49

3.5 Numerical results and discussion . . . . . . . . . . . . . . . . . . . 52

3.5.1 Coding performance . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Memory requirement and algorithm complexity analysis . . 56

3.5.3 Lossless performance . . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Listless Implementation for Embedded 3D Image Coder 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 3D SPECK coder . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 3D listless SPECK . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



CONTENTS

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Working memory . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Comparison of lossy compression performance . . . . . . . 75

4.4.3 Comparison of lossless compression performance . . . . . . 79

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Beyond Wavelet - The Directional Filter Bank 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 The limitations of wavelet and the new approaches . . . . . . . . 85

5.2.1 Curvelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Bandelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Contourlet . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.4 Wavelet based contourlet transform . . . . . . . . . . . . . 89

5.2.5 Directional filter bank for image decomposition . . . . . . 90

5.3 Hybrid wavelet and directional filter bank . . . . . . . . . . . . . 90

5.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Computational complexity . . . . . . . . . . . . . . . . . . 93

5.4 Application and results . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Non-linear approximation . . . . . . . . . . . . . . . . . . 100

5.4.2 Image coding performance . . . . . . . . . . . . . . . . . . 106

5.4.3 Fingerprint application . . . . . . . . . . . . . . . . . . . . 111

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Wavelet and Directional Filter Bank in Colour Image Compres-

sion 116

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Colour image compression . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Directional transforms in the wavelet domain . . . . . . . . 119

6.2.2 Embedded colour image coding . . . . . . . . . . . . . . . 122

6.3 Numerical results and discussion . . . . . . . . . . . . . . . . . . . 122

6.3.1 Performance measurement . . . . . . . . . . . . . . . . . . 122

6.3.2 Memory requirement and complexity analysis . . . . . . . 132

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



CONTENTS

7 Conclusions 134

7.1 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 137

A Examples of test images 146

B List of publications 147

vii



List of Figures

1.1 A general image compression framework . . . . . . . . . . . . . . 4

1.2 Representation of geometrical transforms against wavelet . . . . . 6

2.1 Various image structure . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Compression and decompression . . . . . . . . . . . . . . . . . . . 12

2.3 Example of DCT compression, baseline JPEG . . . . . . . . . . . 19

2.4 Example of dyadic decomposition . . . . . . . . . . . . . . . . . . 20

2.5 Multiresolution space representation . . . . . . . . . . . . . . . . . 21

2.6 Wavelet and scaling function biorthogonal 4.4 . . . . . . . . . . . 26

2.7 3D compression example . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Refinement in SPIHT zerotree and comparison with EZW . . . . 29

2.9 Partitioning process in SPECK . . . . . . . . . . . . . . . . . . . 32

2.10 JPEG2000 compression using EBCOT . . . . . . . . . . . . . . . 33

3.1 Core encoder of JPEG2000 for colour image coding . . . . . . . . 40

3.2 Compressed colour bit-streams : conventional and embedded . . . 43

3.3 SPECK partitioning rule . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Morton ordering for Y Plane . . . . . . . . . . . . . . . . . . . . . 45

3.5 Linear indexing to YCbCr plane . . . . . . . . . . . . . . . . . . . 46

3.6 Bit interleaving in Y plane . . . . . . . . . . . . . . . . . . . . . . 46

3.7 The modified scanning order . . . . . . . . . . . . . . . . . . . . . 47

3.8 Bit interleaving in chrominance plane . . . . . . . . . . . . . . . . 47

3.9 Scanning order for chrominance plane . . . . . . . . . . . . . . . . 47

3.10 State marker initialisation for Cb and Cr in L-CSPECK . . . . . 48

viii



LIST OF FIGURES

3.11 State marker initialization for both Cb and Cr in proposed algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 4 Subset in chrominance plane . . . . . . . . . . . . . . . . . . . . 51

3.13 Partitioning and state marker update . . . . . . . . . . . . . . . . 51

3.14 Reconstructed Barbara at rate of 0.25 bpp . . . . . . . . . . . . . 58

3.15 Reconstructed part of Lenna at rate of 1 bpp . . . . . . . . . . . . 58

3.16 Working memory comparison . . . . . . . . . . . . . . . . . . . . 59

4.1 Structure of 3D SPECK . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Morton scan in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Sorting pass for listless 3D SPECK . . . . . . . . . . . . . . . . . 70

4.4 Compression of volumetric Vessel image . . . . . . . . . . . . . . 73

4.5 Comparison of memory required during coding process . . . . . . 75

4.6 The spectral properties for Moffet image . . . . . . . . . . . . . . 78

4.7 Reconstructed Urban image band 1 at bit rate 0.1 . . . . . . . . . 80

4.8 Original 3D source (Slice image) . . . . . . . . . . . . . . . . . . . 81

5.1 Example of compression artefact in wavelet . . . . . . . . . . . . . 85

5.2 Wavelet versus the new scheme: fewer refinements in the new

scheme at contours or edges . . . . . . . . . . . . . . . . . . . . . 87

5.3 DFB in contourlet . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 The 2D isotropic wavelet and the approximative support . . . . . 93

5.5 One level 2D isotropic wavelet decomposition . . . . . . . . . . . 93

5.6 Cascade decomposition . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Laplacian decomposition . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Ladder structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Rate distortion result for NLA comparison . . . . . . . . . . . . . 101

5.10 Barbara at 2048 coefficients (zoom) . . . . . . . . . . . . . . . . . 104

5.11 Lenna at 4096 coefficients (zoom) . . . . . . . . . . . . . . . . . . 105

5.12 Zerotree relation used in CSPIHT HWD . . . . . . . . . . . . . . 106

5.13 PSNR comparison for greyscale image compression with entropy

coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 Barbara at bit rate 0.0625 (zoom) . . . . . . . . . . . . . . . . . . 110

5.15 Fingerprint (f14) at bit rate 0.25 . . . . . . . . . . . . . . . . . . . 112

ix



LIST OF FIGURES

5.16 Zoom fingerprint (f14) at bit rate 0.25 . . . . . . . . . . . . . . . 112

6.1 Proposed colour image coding . . . . . . . . . . . . . . . . . . . . 119

6.2 Encoding technique used for the proposed transform . . . . . . . . 119

6.3 Schematic diagram of proposed HWD transform to luminance plane120

6.4 The schematic plot of the transforms with 4 levels of dyadic wavelet

decomposition and 8 (23) directions at the two finest level . . . . 120

6.5 Overall PSNR in RGB over wavelet+SPECK coding . . . . . . . . 124

6.6 Comparison of part of Barbara image at low bit rates . . . . . . . 127

6.7 Comparison of part of Lenna image at 0.125 bit rates . . . . . . . 129

6.8 Comparison of part of Lenna image at 0.25 bit rates . . . . . . . . 129

6.9 Comparison of part of Baboon image at 0.5 bit rates . . . . . . . 130

6.10 Comparison of part of Ariel image at 0.5 bit rates . . . . . . . . . 131

6.11 Comparison of part of Ariel image at 0.25 bit rates . . . . . . . . 131

A.1 Greyscale images . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x



List of Tables

2.1 SNR (in dB) of generated images when using different wavelet

families/filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Two sets of linear phase, biorthogonal wavelet filter coefficients . . 25

2.3 SPIHT test using various filters . . . . . . . . . . . . . . . . . . . 31

2.4 Summary of scalable coding algorithms . . . . . . . . . . . . . . . 34

3.1 Overall RGB PSNR performance for compressed colour image . . 55

3.2 SSIM measure for compressed colour image . . . . . . . . . . . . . 57

3.3 Lossless Performance Based on Compression Ratio . . . . . . . . . 61

3.4 Memory requirement for lossless(in bits) & saving . . . . . . . . . 62

4.1 Rate distortion performance with various types of 3D source . . . 77

4.2 Lossy compression of multispectal images . . . . . . . . . . . . . . 79

4.3 Predictive weight of S+P transform . . . . . . . . . . . . . . . . . 81

4.4 Lossy reconstruction of reversible transform . . . . . . . . . . . . 82

4.5 Final bit rate of lossless compression . . . . . . . . . . . . . . . . 82

4.6 Memory used (MegaBytes) and its saving in lossless application . 83

5.1 Comparison of computational complexity . . . . . . . . . . . . . . 99

5.2 PSNR values of the NLA performance . . . . . . . . . . . . . . . 102

5.3 SSIM values of the NLA experiment . . . . . . . . . . . . . . . . . 103

5.4 Performance of the proposed coder without entropy coding . . . . 107

5.5 PSNR and SSIM performance of proposed coder with entropy coder108

5.6 Fingerprint compression . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Performance of the proposed colour coder . . . . . . . . . . . . . . 125

xi



Acronyms

3D three dimensional.

bpp bits per pixel.

DCT discrete cosine transform.

DFB directional filter bank.

DWT discrete wavelet transform.

EBCOT embedded block coding with optimized truncation.

EZW embedded zerotree wavelet.

HWD hybrid wavelet and directional filter banks.

JPEG Joint Photographic Experts Group.

KLT Karhunen Love transform.

LIP list of insignificant pixel.

LIS list of insignificant set.

LsK listless specK.

LSP list of significant pixel.

LZC listless zerotree coder.

xii



Acronyms

MSB most significant bit.

MSE mean squared error.

NLA non-linear approximation.

NLS no-list SPIHT.

PSNR peak signal-to-noise ratio.

SPECK set partitioned embedded block coder.

SPIHT set partitioning in hierarchical trees.

SSIM structural similarity.

WBChh wavelet-based contourlet in high frequency domain.

WBCT wavelet-based contourlet transform.

xiii



Chapter 1

Introduction

The digital representation of images and videos allows processing and archiving

tasks to be integrated in multimedia platforms, computing and communications.

The increasing demand for multimedia content such as digital images and video

has led to great interest in research into compression techniques. The develop-

ment of higher quality and less expensive image acquisition devices has produced

steady increases in both image size and resolution, and a greater consequent

for the design of efficient compression systems. Although storage capacity and

transfer bandwidth has grown accordingly in recent years, many applications still

require compression.

In general, this thesis investigates still image compression in the transform do-

main. Multidimensional, multispectral and volumetric digital images are the

main topics for analysis. The main objective is to design a compression system

suitable for processing, storage and transmission, as well as providing acceptable

computational complexity suitable for practical implementation. The basic rule

of compression is to reduce the numbers of bits needed to represent an image.

The motivation for this study is discussed in detail in the next section, followed

by a short introduction to image compression. Following this, the detailed objec-

tives of the thesis are presented. An overview of this thesis is given in the final

section of this chapter.

1



1.1 Motivation for the study

1.1 Motivation for the study

Digital image compression algorithms exploit the redundancy in an image so

that it can be represented using a smaller number of bits while still maintaining

acceptable visual quality. Factors related to the need for image compression

include:

• The large storage requirements for multimedia data

• Low power devices such as handheld phones have small storage capacity

• Network bandwidths currently available for transmission

• The effect of computational complexity on practical implementation

Recent progress in image compression research offers various solutions to reduce

storage requirements based on a wide range of techniques, including predictive

coding, transform coding, block truncation coding, subband coding and hierar-

chical coding. Wavelet-based compression allows the compression parameters to

be changed at the time of decoding. This is also known as rate scalability, which

refers to the capability of decoding a compressed sequence at different rates. Rate

scalability is useful for the transmission of compressed data between different de-

vices. However, the challenges faced in image and video compression research

are not limited to absolute storage and bandwidth concerns. An acceptable level

of computational complexity in coding and decoding is also important for prac-

tical applications. As image resolution grows, the memory requirements for the

compression algorithms might also grow in such a way that would limit the us-

age of compression techniques in embedded applications such as high resolution

printers and scanners. The memory needed will be higher when using composite

techniques for multispectral images. So, lower and fixed memory requirements

during coding would be a good solution if the rate scalable properties of mul-

tispectral images could be maintained. This thesis investigates these problems,

considering multispectral properties such as colour and satellite images and three

dimensional medical images.

The efficient representation of visual information is at the centre of image com-

pression systems. The efficiency of a representation refers to the capture of sig-

nificant information about an object of interest in a smaller description. Recent

research suggest that separable wavelet transform is not efficient in representing

2



1.2 Overview image compression systems

singularities such as contours and edges in images. However, traditional separable

wavelet transform benefits from available coding techniques that are efficiently

able to capture the significant coefficient. This thesis investigates available so-

lutions for directional coding in wavelet domain and their implementation for

colour image compression.

1.2 Overview image compression systems

This section provides a brief overview of digital images and compression systems.

The basic framework of image compression is discussed; although further details

regarding image transforms/representations and coding are presented in Chapter

2. A digital image represents a two-dimensional array of samples, where each

sample is called a pixel. Precision is determined by how many levels of intensity

can be represented, and this is expressed as the number of bits per pixel (bpp).

The value of bpp reflects different components of the colour systems used. For

example, in greyscale images the values represent brightness or luminance reso-

lution and range from 1,2,4,8,12 or 16 bpp. For RGB colour images, the values

represent the intensity of each colour space, and resolution is usually 24 bpp.

An ideal image compression would remove redundant and irrelevant information

before the coding process. Redundancy in images can be classified as statisti-

cal redundancy or psychovisual redundancy[1]. Statistical redundancy can be

classified into three types[2] :

• Spatial, due to the correlation between neighbouring pixels in an image;

• Spectral, from orrelation between colour planes or spectral bands;

• Temporal, in terms of correlation between neighbouring frames in a se-

quence of images.

Irrelevant information or psycho-visual redundancy refer to the limitations of or

variations in the human visual system (HVS) in responding to certain stimuli

under certain viewing conditions. In image compression systems, different colour

components are often compressed separately as different greyscale images, and

they can be represented with different spatial resolutions. However, the imple-

mentation of composite methods can further exploit spectral redundancy and

3



1.2 Overview image compression systems

Figure 1.1: A general image compression framework

introduce rate scalable colour image coding. Image compression can be classi-

fied as lossless and lossy compression. The basic framework of both types of

compression system is shown in Figure 1.1 [2]. Lossless compression is bit pre-

serving compression, where the reconstructed image is numerically identical to

the original image. This type of compression is important for applications such

as medical and satellites imaging, where distortion or loss of information is un-

acceptable. However, lossless compression can only achieve a modest degree of

compression at ratios of around 2 v 5 : 1 with a completely reversible process.

Lossless algorithms usually compress the source to bit-rates close to its entropy.

The quantisation process is removed in lossless compression so that the image

can be recovered exactly. However, this thesis investigates lossless compression

with progressive capability, where image preview is available during transmission

or download, thus quantisation process is applied. On the other hand, lossy com-

pression allows information loss so that images can be represented with reduced

bit-rates, which enables higher compression ratios. This type of compression

is suitable for transmission over limited bandwidths to different platforms. In

general, a suitable transform is required to represent the image with a reduced

dynamic range and removing redundant information. After that, the coefficient

generated can be efficiently coded using quantisation techniques to reduce the

bits needed to represent the images. Further entropy coding will compress the

generated bit before transmission or storage.

Transform based coding has become popular since the introduction of dicrete

cosine transforms (DCT) to Joint Photographic Experts Group (JPEG) image

compression standards. DCTs have also been incorporated into various image

and video compression standards such as MPEG1/2, H.261 and H.263. A dis-

crete cosine transform has decorrelation properties that able to packs the energy

in the fewest number of coefficients. This enables many coefficients to be dis-

carded during the quantisation process before encoding. The DCT in a JPEG is
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1.2 Overview image compression systems

applied in a 8 × 8 unit block and compressed separately. As a result, blocking

artefact obvious in compressed image when the compression ratio is high due to

the differences between blocks. The JPEG standard supports colour images by

compressing different colour components of the YUV colour space separately and

by scaling down the chrominance components spatially by a factor of two in both

dimensions. Subsequently, during the 1990s, wavelet-based compression became

a heavily researched topic. The distribution values for wavelet coefficients usu-

ally centre around zero with very few large coefficients, which means that almost

all of the information is concentrated in a small fraction of coefficients and can

be compressed efficiently. Embedded zerotree wavelet (EZW) [3] was the first

algorithm developed to show the full power of wavelet-based image compression

algorithm[4]. Embedded coding is a process of encoding the transform magnitudes

that allows for the progressive transmission of the compressed image. Zerotrees

allow for a concise encoding of the positions of the significant values resulting from

the embedded coding process. Encoding using EZW is generally fast but it does

not achieve the greatest degree of compression. Set partitioning in hierarchical

trees (SPIHT) [5] is a more highly refined version of the EZW. Introduced by Said

and Pearlman in 1996, it gives the highest peak signal-to-noise ratio (PSNR) for a

given compression ratio and is the most widely used wavelet-based algorithm for

image compression. It is now the basic standard of comparison for all subsequent

algorithms. A more recent image compression standard known as JPEG2000 is

related to wavelet-based compression. JPEG2000 uses a block-based algorithm

called embedded block coding with optimized truncation (EBCOT) to encode the

transform coefficients [6]. JPEG2000 is targeted at a wide range of image com-

pression applications, including general still image coding, video coding, variable

quality coding, volumetric imaging, document imaging and wireless applications.

For low complexity coding option in JPEG2000, set partitioned embedded block

coder (SPECK) coding that uses block-based partitioning was introduced by Is-

lam et al[7]. SPECK was 4.6 to 15.7 times faster than VM 3.2A in encoding due

to its simplicity in encoding but of reduced in term of PSNR performance of 0.48

dB for entropy-coded versions to a maximum of 0.85 dB for non-entropy-coded

versions from that of VM 3.2A. SPECK was incorporated into the JPEG2000 cod-

ing framework with the name subband hierarchical block partitioning (SBHP).
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Figure 1.2: Representation of geometrical transforms against wavelet

Efficient transform or representation should be properly matched well with the

quantisation method used. This has been proven through the introduction of

wavelet-based transforms and the various types of zerotree and zeroblock coding

that enable the significant coefficients to be captured efficiently. However, this

does not eliminate the demand for more efficient image representation/transforms

for compression purpose. Recent studies have shown that separable two dimen-

sional (2D) wavelets fail to represent images optimally [8, 9]. As a result, re-

cent research has focused on transforms with directionality. This new type of

transform, also known as the geometrical image transform, aims to represent

singularities in terms of smooth contours and edges in natural images (Figure

1.2[15]). Some of the leading approaches so far are the curvelet [10, 11], bandelet

[12, 13, 14], contourlet [15, 9] and wavelet-based contourlet transform (WBCT)

[16, 17, 18, 19]. Each approach provides directional information while maintaining

some of the wavelet properties, such as the ability to provide perfect reconstruc-

tion, multiresolution representation and localised analysis.

1.3 Objectives

The main objectives of the present research can be summarised as follows :

• Review and analyse available techniques for image compression.
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• Develop an efficient, rate scalable and progressive image compression tech-

nique that requires low level of working memory and has the ability to

exploit redundancy in the spectral domain.

• Develop an efficient, rate scalable and progressive 3D image compression

technique using zeroblock partitioning with lower and fixed working mem-

ory.

• Study and analyse the problem of singularities in the wavelet domain and

available solutions to solve such problems.

• Develop a hybrid directional filter bank and a wavelet transform for com-

pression to improve the singularities (contours or edges) representation for

low bit rate image coding.

• Investigate a directional filter bank in wavelet domain for progressive colour

image compression using listless embedded coding.

1.4 Thesis outline

This chapter briefly introduces the motivation for the study and the desirable

features of wavelet-based coders. It also includes related work and gives an out-

line of this thesis.

Chapter 2 provides an overview of still image coding algorithms. The transform

based image compression scheme is described and a brief review of wavelet trans-

forms with bit plane coding are given. This includes a review and analysis of

the coding mechanisms in some popular hierarchical set partition algorithm such

as SPIHT and SPECK. In general, chapter 2 provides the fundamental aspects

related in understanding this thesis.

Chapter 3 focused on the implementation of fixed memory listless coder to im-

prove the efficiency of progressive colour image coding. A listless SPECK ap-

proach to colour image is proposed with the additional exploitation of chromi-

nance similarities to improve the resulting coding.

Chapter 4 introduces the three dimensional (3D) extension to listless implemen-

tation. The aim is to reduce the memory required during 3D image coding,

where zeroblock coding exploits the clustering energy in hierarchical structures

of transformed images. Significant coefficients are likely to cluster together after
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1.4 Thesis outline

its 3D transforms, providing efficient compression compared to conventional 2D

approach.

Chapter 5 investigates the limitations of the wavelet transform with multidi-

mensional signals. Problems in representing curves in smooth images have been

highlighted in a previous research, leading to the development of a directional fil-

ter bank to improve the transforms. A hybrid directional filter bank with wavelet

transform is introduced to improve image coding performance. The transform is

implemented with a listless coder for additional efficiency during coding.

Chapter 6 then investigates the implementation of the directional filter bank in

wavelet domain for colour images. The proposed implementation in Chapter 5 is

tested for composite colour image coding.

Finally, Chapter 7 presents the conclusions of the thesis and provides guidelines

and suggestion for further investigation.
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Chapter 2

Image Representation and

Transform Coding

This chapter explains the process involves in image representation and transform

coding techniques, with the focus on wavelet-based image compression. First,

digital image representation is described, and then, the basics of image coding

and the popular transforms for compression, dicrete cosine transforms (DCT)

and discrete wavelet transform (DWT), are explained. A subsequent overview

of wavelet-based coding techniques leads to discussion of the motivation for the

present work. The information from this chapter has been collected from various

sources with diverse notation conventions; the representation has been unified in

order to be able to provide a consistent summary without going into unnecessary

details. Performance measurement is also discussed, to prepare the ground for

later experiments comparing coding algorithms and compression performance.

2.1 Image representation

A digital image is a rectangular array of dots, or picture elements arranged in m

rows and n columns. The expression m × n is called the image resolution, and

each dot is called a pixel. Bit depth is a number used to represent the value of

each dot/pixel which values depends on the intensity of the images, known as bits

per pixel (bpp). Based on image precision or intensity, images can be classified
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2.1 Image representation

into the following types [20]:

• Binary images, 1 bpp. Usually facsimile or black and white photographs.

• Computer graphics, 4 bpp. Lower precision images, often used in early

generations of computers.

• Greyscale images, 8 or 16 bpp. Higher precision, 16 bpp usually used in

medical and remote sensing images

• Colour images, 24 bpp. Consist of three different colour channels of primary

colours for example red green blue (RGB). Can go up to 16 bits per channel

for modern high resolution colour images, 48 bpp.

Colour images can also be represented in an alternative system which is also

known as different colour space or device-dependent colour spaces. Some example

of popular colour spaces are RGB, CIELAB, HSV and YUV. Since human visual

system (HVS) are less sensitive to colour images than to luminance or brightness,

RGB space has the advantage of providing equal luminance to human vision, since

luminance component is present in each colour component. However, it is possible

that luminance information is separated from colour information in other types

of colour spaces [21]. As defined by the National Television Systems Committee

(NTSC), YIQ colour spaces separate greyscale information from colour data. This

enables the same signal to be used for black and white settings. YIQ component

are luminance(Y), hue (I) and saturation (Q). Greyscale information is expressed

as luminance (Y), and colour information as chrominance, which is both hue (I)

and saturation (Q). YIQ/NTSC colour space is used in television systems.

YCbCr is another colour space that has widely been used for digital video. Here,

similar to YIQ, luminance information is stored as a single component (Y), and

chrominance information is stored as two colour-difference components (Cb and

Cr). Cb represents the difference between the blue component and a reference

value, whereas Cr represents the difference between the red component and a

reference value. Another type of colour space is CMYK which is used in colour

printers. The primaries in this colour space are cyan (C), magenta (M), yellow

(Y) and black (K). Resolution in an image refers to the capability to represent

the finer details. Higher resolutions require more complex imaging systems to

represent the images in real time. Various image structures are shown in Figure
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2.2 Transform based compression framework

Figure 2.1: Various image structure

2.1 [20]. A direct representation of the image would require a vast amount of data,

for example, an image at a resolution of 512 × 512 that consisting of 24 pixels

occupies 786,432 bytes. At a resolution of 1024 × 1024 it becomes four times as

big, requiring 3,145,728 bytes. The larger storage requirements of high-definition

television images of a resolution of 1280×720 at 60 frames per second amounts to

more than 1250 megabits per second (Mbit/s). So, the direct transmission of these

video images without any compression through today’s communication channels

in real-time would be a difficult proposition. Even if there was enough storage

available, real-time playback would be very difficult due to insufficient speed of

storage devices. Compression makes the storage and transmission of multimedia

content feasible. Efficient compression has therefore becomes very important

due to the exponential availability of various multidimensional multimedia data,

as a result of advances in image acquisition technology such as scanning and

imaging technology like cameras. Although the computing performance in terms

of speed and storage has increased, bottlenecks still occur in existing transmission

channels.

2.2 Transform based compression framework

The definition of the transform in mathematics is to change a mathematical

quantity (a number, a vector, a function, or anything else) into another form,

where it may look unfamiliar but may have useful properties. The transformed
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quantity is used to solve a problem or to perform a calculation, and the result is

then transformed back to the original form. The useful properties of transform

for compression are decorrelation and energy compaction, leaving only a small

number of significant coefficients. Transforms by themselves do not provide any

compression. However, by reallocating the energy of original data in compact,

transforms provide the possibilities for compression. Techniques in quantisation

and entropy coding applied to transform coefficients have resulted in a significant

reductions in bit rates.

2.2.1 Transformation

Figure 2.2: Compression and decompression

The basic operations of a transform based image compression system are rep-

resented in Figure 2.2. The main processes in encoding are signal (image) repre-

sentation or transformation, quantisation and binary encoding. Binary encoding

generate a compressed bit-stream suitable for transmission channel or storage.

In this research, binary encoding also referred as entropy coding. In decoding,

the inverse process is needed to get the reconstructed image: binary decoding,

inverse quantisation and inverse transform/representation.

Redundancies in images exist in terms of statistical redundancy and irrelevancy.

The transformation process will remove or suppress the redundant parts of the

data in order to generate new coefficients that are independent or uncorrelated.
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2.2 Transform based compression framework

In this way, scalar coding can be more efficient in the transform domain than in

the original signal space. In the transform domain, the information is mixed and

contained in different samples so that each transform coefficient contains part of

the information of all of the original pixels. The original signal or image can then

be reconstructed even without all the coefficients. The transform domain can be

represented by the equation below [22], where fn, the signal, refers to an image:

fn
forward−−−−−→
transform

a [m 〈f, ψm〉] ∈ R (2.1)

A forward transform applied the signal with ψm basis to the signal, where discrete

basis is represented by 〈f, ψm〉 in a space of real domain, R. Two of the most

popular kinds of transform used for compression are the DCT and DWT. DCT

became a popular approach for image compression due to the simplicity and low

complexity implementation, and it was adopted in the Joint Photographic Ex-

perts Group (JPEG) compression standard. Despite its coding efficiency, DCT is

well known for its limitations with block based algorithm that generates blocking

artefacts especially at higher compression ratios. The discrete wavelet transform

was later introduced to provide an alternative solution to these problems at the

cost of higher complexity. The DWT algorithm is typically more memory inten-

sive and time consuming compared to a DCT based coder like JPEG. Despite

this, DWT offers benefits such as :

• Allowing image multiresolution representation

• Allowing progressive transmission / rate scalability

• Higher efficiency in term of quality of compressed image and compression

ratio.

Further details on both types of transform are given in Sections 2.3 and 2.4. These

sections aim to summarise the concepts that are necessary for understanding the

structure of transformed coefficients.

2.2.2 Quantisation

The quantisation process follows transformation. The most suitable quantisation

process depends on the choice of transform used. A quantiser is a non-linear
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2.2 Transform based compression framework

device that chooses representative values for ranges of input data coming from

the transform, either one at a time, which is called scalar quantisation, or several

at a time, called vector quantisation [23]. Quantisation is the fundamental step

in achieving lossy compression. It reduces the magnitude of coefficients or rounds

them to the nearest integer so that fewer bits are required to represent the im-

age. Image frequencies are important here, because low frequencies correspond

to important image features, whereas high frequencies correspond to details of

the image which are less important. Thus, when a transform isolates the various

image frequencies, pixels that correspond to high frequencies can be quantised

heavily, whereas pixels that correspond to low frequencies should be quantised

lightly or not at all. This is how a transform can compress an image very effec-

tively by losing information, but only information associated with less important

image details [24]. For approximation process during encoding, quantisation pro-

cess corresponds to rounding the coefficients to an integer using a stepsize T > 0

as represented in Equation 2.2 [22]:

q[m] = QT (a[m]) ∈ Z where QT (x) sign(x)

⌊
|x|
T

⌋
(2.2)

where q[m] represent the quantized coefficients in subset of integers, Z. This

quantiser has a two times larger zero bin, so that coefficients in [−T, T ] are set

to zero. The quantiser not only set to zero small coefficients that are smaller

than T in magnitude, but it also modifies larger coefficients by rounding them.

Then the resulting integer values are stored in a binary file of length R, which

corresponds to a number of bits. The bits are then passed to different approach

for transformation from integer into bits. For wavelet based transforms, this is

the step where embedded coding occur. The aim of the process is to reduce

the number of bits, R as much as possible. Further details regarding embedded

coding can be found in Section 2.5. For decoding, dequantisation is the reverse

process of retrieving the quantised coefficients. Equation 2.3 shows the values

retrieved from quantisation at the center of the quantisation bins.

â [m] = sign (q [m])

(
|q [m]|+ 1

2

)
T (2.3)
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Based on the quantised bits, fR the reconstructed image, using R bits can be

represented as:

fR =
∑
m∈IT

â [m]ψm =
∑
m∈IT

QT (〈f, ψm〉)ψm (2.4)

where ψm is the orthogonal basis and the image are generated in linear domain,

IT following the quantization process, QT . This produces a decompression error

|f − fR| which is comparable to non-linear approximation(NLA) and is the first

indicator used to test the suitability of any transform for compression. More

discussion on NLA is given in Section 5.4.1.

2.2.3 Entropy coding

The next step is binary encoding/entropy coding, which is lossless and reduces

the number of bits further based on the statistical redundancy of the quantised

value. Two of the most common entropy encoding techniques are Huffman coding

and arithmetic coding. One of the main types of entropy coding creates and as-

signs a unique prefix code to each unique symbol that occurs in the input. These

entropy encoders then compress data by replacing each fixed-length input sym-

bol with the corresponding variable-length prefix codeword. The length of each

codeword is approximately proportional to the negative logarithm of the proba-

bility. According to Shannon’s source coding theorem, the optimal code length

for a symbol is −logbP , where b is the number of symbols used to make output

codes and P is the probability of the input symbol. Therefore, the most common

symbols use the shortest codes. Entropy coding can be measured/estimated using

the equation below:

E = −
n∑
i=1

p (xi) log2p (xi) ; (2.5)

where E is expected value, i is the information content of x and p denotes prob-

ability mass function of x.
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2.2.4 Compression performance measurement

The performance of the transform coder is evaluated by the quality of the recon-

structed image. The most common measures used in the literature for lossy com-

pression are mean squared error (MSE) and peak signal-to-noise ratio (PSNR),

which are also be known as the error and logarithmic measures or rate distortion

performance. For lossless compression, performance is based on the compres-

sion ratio and final bit rate. Another more recent measure, structural similarity

(SSIM) is also used in the present study.

Error and logarithmic measurement

MSE is defined as:

MSE =
1

NxNy

Nx∑
i=1

Ny∑
i=1

(
C(x, y)− Ĉ(x, y)

)2
(2.6)

where Ĉ is the reconstructed image with size Nx×Ny and C is the original image.

The rate distortion measure or PSNR is expressed in decibels (dB):

PSNR = 10log
2552

MSE
(2.7)

where for an 8 bit greyscale image 28 − 1 = 255 is the maximum value, or peak,

of the signal. PSNR is a logarithmic measure, so a high value of PSNR indicates

low distortion. It is worth noting that PSNR has limitations when comparing

different compression systems and techniques [21].

Final bit rate

For lossless compression, the MSE value is equal to zero, thus resulting to an

infinite PSNR value. The compression ratio is used as a measure of compression

performance, and is based on the total bits required to reconstruct the image
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numerically similar to the original image.

compression ratio =
compressed bits

original bits
(2.8)

Structural similarity

The SSIM index introduced by Wang et al in 2004 [25] is a method for measuring

the similarity between two images. SSIM is based on the assumption that human

visual perception is highly adapted for extracting structural information [25]. The

three components measured in SSIM are luminance similarity, contrast similarity

and structural similarity, and the combination of these gives the value of SSIM.

The SSIM metric is calculated using various windows of an image. The measure

between two windows x and y of common size N ×N is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.9)

where

µx is the average of x;

µy is the average of y;

σ2
x is the variance of x;

σ2
y is the variance of y;

σxy is the covariance of x and y;

c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabilise the division with weak

denominator;

L is the dynamic range of the pixel-values (typically this is 2#bits per pixel − 1);

and

k1 = 0.01 and k2 = 0.03 by default.

In order to evaluate image quality this formula is applied only to luminance. The

resulting SSIM index is a decimal value between -1 and 1, and a value of 1 is only

achievable in the case of two identical sets of data. Typically it is calculated on

window sizes of 8× 8. The window can be displaced pixel-by-pixel on the image,

but the original authors propose to use only a subgroup of possible windows to

reduce the complexity of the calculation [25]. The calculation of SSIM in this
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2.3 Discrete cosine transform

study is based on the Matlab implementation [26]. For colour images, if the

images are in RGB colour, the Matlab function rgb2gray is used to convert the

images to greyscale.

2.3 Discrete cosine transform

The one dimensional dicrete cosine transforms (DCT) was first introduced in

1974 [27]. Since then, it has been extensively used in applications such as data,

image/video and multimedia. Indeed it is also incorporated in various image

and video compression standards such as JPEG, MPEG1/2, H.261 and H.263.

DCT is a unitary transform which preserves the energy of a signal. In terms

of energy packing capability, the principal component transform (also known

as the Karhunen Love transform (KLT)) is optimal in the sense that it dis-

tributes the largest amount of signal energy into the direction of the eigenvector

of the largest eigenvalue (the direction of largest sample variance), and the sec-

ond largest amount of signal energy into the second largest eigenvector direction,

and so on [4]. However, the KLT has a high computational cost. DCT, on the

other hand, maintains the capability to decorrelate the image signal and it can

be efficiently implemented in software and hardware thanks to the introduction

of various DCT fast algorithms.

For image compression, DCT is applied to a block image N ×N where N is typ-

ically 8 and the DCT type-II (forward) the formula in Equation 2.10 is applied

to each row and column of the block.

C (k, l) = α (k, l)
N−1∑
i=0

N−1∑
i=0

f (i, j) cos
(2i+ 1) kπ

2N
cos

(2j + 1) lπ

2N
(2.10)

where α (k, l) =


1

N
for k, l = 0

2

N2
for k, l = 1, 2....N − 1

The result is an 8 × 8 transform coefficient array in which the (0,0) element

(top-left) is the DC (zero-frequency) component and entries with increasing ver-

tical and horizontal index values represent higher vertical and horizontal spatial
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frequencies. So, the decorrelated signals can be easily quantised to reduce the

overall DCT coefficients.

JPEG

Figure 2.3: Example of DCT compression, baseline JPEG

JPEG is the ISO/IEC 10918-1 standard for the ’digital compression and cod-

ing of continuous tone still images’ [29]. Figure 2.3[28] illustrates the JPEG’s

baseline compression algorithm, where each 8 bit sample is level shifted by sub-

tracting 28−1=7 = 128 before being coded. This is known as DC level shifting.

The 64 DCT coefficients are then uniformly quantised according to the step-

size given in the application-specific quantisation matrix [28]. The quantisation

matrix allows different weights to be applied according to the sensitivity of the

human visual system to a coefficients of the frequency. Then, the quantised co-

efficients are then run length encoded (RLE) based on zigzag scan before being

entropy coded using either Huffman or arithmetic coding. The clever approach

of computing this transform makes the DCT extremely competitive in terms of

complexity. However, the block based segmentation of the source image is a fun-

damental limitation of DCT based compression systems. This is also known as

the blocking effect.
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2.4 Discrete wavelet transform

The discrete wavelet transform provides a multiresolution representation using

a set of analysing functions that are dilations and translations of a few func-

tions. A wavelet cuts up data into different frequency components and studies

each component with a resolution matched to its scale, also known as multires-

olution analysis [30]. The distribution value for wavelet coefficients is usually

around zero, with very few large coefficients and this means that almost all the

information is concentrated in a small fraction of coefficients and therefore can

be efficiently compressed. Unlike DCT-based compression, the wavelet transform

operates on each frame as a whole, thus eliminating the blocking effect.

Wavelet decomposition arises from the iteration of lowpass filtering and decima-

tion steps of a multirate filterbank. In dyadic decomposition, the iteration is on

the lowpass output. An example is shown in Figure 2.4, where dyadic decomposi-

tion for 2D source image generates four subset in the first decomposition. Further

decomposition is in lowpass domain to get the coarse approximation of the image.

A finite number of iterations will lead to discrete-time multiresolution analysis

Figure 2.4: Example of dyadic decomposition

with a lowpass frequency response
∏n

k=1H0

(
ω
2k

)
. If the lowpass filter, h0 satisfies

the orthonormality constraint of
∑

k h0 [k] = 1√
2
, and has a vanishing moment∑

k kh0 [k] = 0, then the infinite product, limn→∞
∏n

k=1H0

(
ω
2k

)
converges to a

function φ (ω), whose inverse Fourier transform is the continuous time function

φ (t) called the scaling function. The scaling function φ (t) is the solution to the

dilation equation:

φ (t) = 2
∑
k

h0 [k]φ (2t− k) (2.11)
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and it is orthogonal to its integer translates. The scaling function determines the

wavelet ω (t) by means of the highpass filter h1:

ω (t) = 2
∑
k

h1 [k]φ (2t− k) (2.12)

The set of dilates and translates {ω
(
2kt− 1

)
}k,l∈Z forms a tight frame for L2 (R).

The functional relations between Equations 2.11 and 2.12 introduce a new rela-

tionship between discrete and continuous time signal processing [4]. The span of

integer translates to the scaling function ψ (t) and the lowpass space V0, where

any continuous-time function,f (t) can be expanded as a linear combination,

f (t) =
∑

n v
0
nψ (t− n). Here, the superscript 0 denotes an expansion at scale

0. f (t) is completely described by the sequence {v0n}. So, its coarse approxima-

tion is computed with the low-pass filter of the wavelet filterbank:

v1n =
((
v0 ∗ h0

)
↓ 2
)

[n] (2.13)

This is implemented as low-pass filtering followed by downsampling in the two-

channel structure. The details are computed with the highpass filter h1 [n]. Hence

for a discrete sequence,vn to be coefficients of a signal f (t) at some fixed scale,

the discrete wavelet transform of vn will decompose the underlying signal f into

coarse scale components and details at several intermediate scales as shown in

Figure 2.5:

Figure 2.5: Multiresolution space representation
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V0 = V1 ⊕W1 = [V2 ⊕W2]⊕W1

= [[V3 ⊕W3]⊕W2]⊕W1 = .. = VJ ⊕
J∑
j=1

Wj (2.14)

In short, the signal is represented in terms of its coarse approximation at scale J

(with basis function ψ
(
2Jt− n

)
), and the J details (with basis function ω (2jt− n) , 1 ≤

j ≤ J). This representation matches the multiresolution models of human and

computer vision and lead to high quality image compression. This structure also

enables multi-scale access to information for applications such as image browsing

and the selective decoding of individual channels in multi-carrier systems [4].

2.4.1 Wavelet bases

Compression, applications such as noise removal, or high-speed calculations ex-

ploit the wavelet’s ability to efficiently approximate the function (signal) with

few non-zero coefficients [8]. Therefore, it is crucial to choose the wavelet bases,

ψ which produce the maximum number of wavelet coefficients, (f, ψj,n) that are

closest to zero. Three properties are key in choosing wavelet bases [8]:

• Regularity: The regularity of wavelet bases, ψ has mostly a cosmetic in-

fluence on the error introduced by thresholding or quantizing the wavelet

coefficients. If ψ is smooth, then generated error is a smooth error. For im-

age coding applications, a smooth error is often less visible than an irregular

error, even though they have the same energy. Better-quality images are

obtained with wavelets that are continuously differentiable from with the

discontinuous Haar wavelet. Wavelet regularity increases with the number

of vanishing moments. Mallat, [8] emphasizes that the number of vanish-

ing moments and the regularity of orthogonal wavelets are related but it is

the number of vanishing moments and not the regularity that affects the

amplitude of the wavelet coefficients at fine scales [8].

• Number of vanishing moments: this affects the amplitude of the wavelet

coefficients at fine scale. A wavelet has m vanishing moments if and only

if its scaling function can generate polynomials of degree smaller than or

equal to m.
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2.4 Discrete wavelet transform

• Size of wavelet bases support: these need to be reduced to minimise the

number of high amplitude coefficients.

Other properties related to wavelet bases are [8, 30]:

• Orthogonality, which can be defined as an attribute where the inner prod-

uct of the bases equals zero, which holds for higher dimensions as well.

Orthonormal bases are both orthogonal and normalise.

• Symmetry/anti symmetry wavelet is required to avoid creating large-amplitude

coefficients at the image border. Biorthogonal wavelet bases that are nearly

orthogonal can be constructed with symmetric or antisymmetric wavelets

bases. Therefore,they are used more often for image compression.

• Vanishing moment: for smooth regions, wavelet coefficients are small at fine

scales if the wavelet has enough vanishing moments to take advantage of

the image regularity. Therefore, the choice of optimal wavelet is a trade-off

between the number of vanishing moments and support size.

• Compact support: Compactly supported scaling functions and associated

wavelets lead to filters whose coefficients are zero outside of a finite support

range. So, a filter with a shorter support is computationally less expensive

than a filter with a longer support.

Wavelet with compactly supported properties include [8]:

• An isotropic Haar transform which recursively extracts details of wavelet

coefficients by performing local averages/differences along the whole axis.

Haar is the simplest form of wavelet filter.

• The Daubechies filters are characterised by a maximum number of vanishing

moments for a certain given support. One of the advantages of having a

high number of vanishing moments for the wavelet bases is that it leads to

high compressibility because the fine scale wavelet coefficients of a function

would be essentially zero where the function was smooth.

• The Coiflet is more symmetrical than the Daubechies wavelet.

• Symmlets are also wavelets within a minimum size of support for a given

number of vanishing moments, but they are as symmetrical as possible; as

opposed to the Daubechies filters which are highly asymmetrical. The index
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2.4 Discrete wavelet transform

number specifies the number of vanishing moments and is equal to half the

size of the support.

• Biorthogonal wavelets allow a greater number of degrees of freedom than

orthogonal wavelets. One additional degree of freedom gives the possibility

to construct symmetrical wavelet functions.

Different types of wavelet families and filters were tested to see whether the quality

of image reconstruction is affected. The preliminary test shows that wavelet filters

with a higher number of coefficients shows better quality compared to those with

fewer within the same families. Different families also give different results, as

seen in Table 2.1. This test confirms that the choice of different wavelet filters

also contributes to the quality of compressed images.

Table 2.1: SNR (in dB) of generated images when using different wavelet fami-
lies/filters.

Compression Ratio 10 100
Haar 29.4 19.9
Daubechies 4 31 21.8
Daubechies 8 31.4 22
Daubechies 12 31.5 22
Coiflet 31.2416 22.1161
Symmlet 4 31.7094 22.4627
Symmlet 10 31.8165 22.4975

Biorthogonal wavelet bases

The term biorthogonal is used to denote the case where the analysis filter set

{h0, h1} is different from the synthesis filter set {g0, g1}. Generally, the extra

freedom in the design of biorthogonal filters results in a more accurate design for

low-pass filters combined with perfect reconstruction. One of the advantages of

biorthogonal over orthonormal base filters is that they can both be symmetrical.

On the other hand, departures from orthogonality generally have a negative im-

pact on coding efficiency. Research by M. Barlaud [31] found that biorthogonal

bases close to an orthonormal bases are suitable for image coding, so the best
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2.4 Discrete wavelet transform

biorthogonal wavelet filters for image coding are usually nearly orthogonal [23].

The wavelet biorthogonal filter known as 9/7 and 5/3 are used for image com-

pression in JPEG2000 and often used in wavelet image-processing applications,

and are also known as Cohen-Daubechies-Feauveau 9/7 and Cohen-Daubechies-

Feauveau 5/3 [31]. The 5/3 biorthogonal wavelet has p1 = p2 = 2 vanishing

moments while the 9/7 wavelet has p1 = p2 = 4 vanishing moments. A filter-

bank with filter sizes 7 and 9 can have 6 and 2 vanishing moments when using

trivial factorization, or 4 and 4 vanishing moments as is the case for the JPEG2000

wavelet. The same wavelet may therefore be referred to as ”CDF 9/7” (based

on filter sizes) or ”biorthogonal 4.4” (based on vanishing moments). CDF 9/7 is

a non reversible wavelet transform which is suitable for lossy compression. An

analysis of filter coefficients for the CDF 9/7 and 5/3 filters, which are used for

dyadic decomposition, are given in Table 2.2[33]. CDF 5/3 is a reversible wavelet

transform and is used for lossless compression which requires no data to be lost

from rounding, and so it uses only rational filter coefficients. Figure 2.6 shows

both the decomposition and reconstruction of wavelet and scaling functions for

the CDF 9/7 filter [32] [32].

Table 2.2: Two sets of linear phase, biorthogonal wavelet filter coefficients

Filter Index
9/7 Filter 5/3 Filter

Coefficients Coefficients
h0 g0 h0 g0

0 0.852699 0.788486 1.060660 0.707107
-1,1 0.377402 0.418092 0.353553 0.353553
-2,2 0.110624 -0.040689 -0.176777
-3,3 0.023849 -0.064539
-4,4 0.037828

2.4.2 Multidimensional image compression

Multidimensional image sources can be images with multispectral frequency such

as satellite images, volumetric images such as medical images, or video sources

where the time domain is the third dimension. Colour images are the simplest

form of multispectral images and are usually referred to as multicomponent. For
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2.4 Discrete wavelet transform

(a) Decomposition scaling func-
tion

(b) Decomposition wavelet func-
tion

(c) Reconstruction scaling func-
tion

(d) Reconstruction wavelet func-
tion

Figure 2.6: Wavelet and scaling function biorthogonal 4.4

a continuous-tone (natural) image, the principle of image compression implies

that adjacent pixels have similar, although perhaps not identical, colours. How-

ever, similar colours do not mean similar pixel values [24] and therefore the colour

transform should provide efficient representation. An important feature of this

approach is to use a luminance-chrominance colour representation discussed in

Section 2.1 instead of the more common RGB. The advantage of luminance-

chrominance colour representation is that the eye is sensitive to small changes

in luminance but not in chrominance. This allows the loss of considerable data

for the chrominance components, while making it possible to decode the image

without a significant visible loss of quality.

For volumetric image like medical images, direct three dimensional (3D) trans-

form would benefit to frame decorrelation. So the redundancy between frames

can be exploited during quantisation. An example of a 3D transform on Matlab

using the wavelet toolbox developed by Gabriel Peyre [34] is shown in Figure 2.7.

The reconstructed volume is generated after the simple thresholding of wavelet
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2.5 Scalable wavelet coding

(a) Slice of 5 levels of DWT using Daubechies 8 and its
coefficients after linear thresholding

(b) Original (c) Reconstructed

Figure 2.7: 3D compression example

coefficients (linear thresholding). For multispectral images, the 3D transform

would decorrelate spectral redundancy to enable further exploitation during the

compression process.

2.5 Scalable wavelet coding

The scalable coding of still images means the ability to achieve the coding of more

than one quality or resolution simultaneously. Scalable coding involves generating

a coded representation or bit-stream in a manner which facilitates the derivation

of images of more than one quality or resolution. Bit-stream scalability is a prop-

erty that allows the decoding of appropriate subsets of a bit-stream to generate

complete pictures at levels of quality and/or resolution commensurate with the

proportion decoded. Decoders of different complexities (from low performance to

high performance) can coexist for a scalable bit-stream. While low performance
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2.5 Scalable wavelet coding

decoders may decode only small portions of the bit-stream, producing only basic

quality, high performance decoders may decode much more and produce signifi-

cantly higher quality. The most important types of scalability are signal-to-noise

ratio (SNR) scalability and spatial or resolution scalability [35].

Progressive or scalability coding in wavelet based compression lies in set parti-

tion coding. The basic principle of set partition coding is to collect the location

information of a large group of samples/pixels with maximum values below a

certain low threshold [36]. The storage requirements for samples of data depend

on their number of possible values which is called alphabet size. In the case of

image coding, alphabet size usually requires a number of bits per sample no less

than the base 2 logarithm of the number of possible integer values. For example,

greyscale images require 8 bits to represent each pixel for values between 0 and

255. The location information of each group together with its size and threshold

determine the bit savings of every group and hence the compression compared to

raw storage using a full alphabet size for each sample. Irrespective of how the

location information is gathered, the potential compression gains can be accessed

simply by adding the number of bits associated with the actual values of sam-

ples. This technique will be efficient in the transform domain where the source

primarily contains sets of samples with small maximum values. Set partition is a

class of methods that can take the properties of image transforms. The members

of this class differ in the method of forming the partitions and the ways in which

the location information of the partitions is represented. The first part of this

thesis deals with these two important classes (methods of forming partition and

representing location information) in order to apply set partition algorithms to

multidimensional multimedia signals.

2.5.1 EZW

The embedded zerotree wavelet (EZW) [3] was the first algorithm to show full

power wavelet based image compression. Embedded coding is the process of en-

coding the transform magnitudes, allowing for the progressive transmission of

a compressed image. Zerotree allows for a concise encoding of the positions of
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2.5 Scalable wavelet coding

(a) SPIHT [28] (b) EZW

Figure 2.8: Refinement in SPIHT zerotree and comparison with EZW

the significant values that result from the embedded coding process. The EZW

algorithm is developed in several steps. Since the wavelet transform provides

a pyramid-like multiresolution representation of the image, zerotree coding then

provides binary significance maps indicating the positions of the significant coeffi-

cients. This is followed by the process of ordering the coefficients that are deemed

significant. Figure 2.8(b) shows the zerotree relation exploited in EZW. It should

be noted that each root node in the top subband has three offspring, one in each

high frequency subband at the same decomposition level, and all other coefficients

have four children in the lower decomposition subband of the same orientation.

Encoding using EZW is rapid, but does not achieve the greatest compression.

Arithmetic encoding is recommended to further compress the bit-stream.

2.5.2 SPIHT

Set partitioning in hierarchical trees (SPIHT) is a highly refined version of EZW

[5]. It was introduced by Said and Pearlman and gives the highest PSNR for given

compression ratios. Packet transforms are selected to allow a different number

of decompositions between the spatial and temporal dimensions, enabling better

compression of the dyadic decompositions. The SPIHT algorithm refines the

EZW algorithms organisation of the wavelet coefficients across the subbands to

achieve a better coding of the significance maps (see Figure 2.8). It is the most
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2.5 Scalable wavelet coding

widely used wavelet based algorithm for image compression and has become the

basic standard benchmark for comparison with all subsequent algorithms. SPIHT

has been extended to the 3D area, and research into SPIHT has progressed in a

wide variety of fields. SPIHT utilizes three basic concepts [5]:

• Sets are searched for in spatial orientation trees in a wavelet transform. Spa-

tial orientation trees are groups of wavelet transform coefficients organised

into trees rooted in the lowest frequency or coarsest scale subband with

offspring in several generations along the same spatial orientation in the

higher frequency band. Each node consists of 2 × 2 adjacent pixels. Each

pixel in the node has 4 offspring except at the highest level of the pyramid.

Zerotree is introduced to exploit self similarity and magnitude localisation

properties.

• Partitioning the wavelet transform coefficients in these trees is defined by

the level of the highest significant bit in a bit plane representation of their

magnitudes.

• Coding and transmitting bits associated with the highest remaining bit

planes first

The SPIHT process consists of two main stages; sorting and refinement. The

sorting process involves a magnitude threshold of 2n being set, where n is the

level of significance.

1. If tested coefficients ≥ 2n, the significant coefficients is isolated in list of

significant pixel (LSP) and bit ’1’ is sent.

2. If tested coefficients ≤ 2n, the insignificant coefficients is isolated in list of

insignificant pixel (LIP) and bit ’0’ is sent.

3. All coefficients that are less than the set of insignificant coefficients is iso-

lated to list of insignificant set (LIS) so bit ’0’ is sent.

The refinement process involves:

• n lowered in unit increments from n (max). The current threshold value is

lowered.
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2.5 Scalable wavelet coding

• if the nth value of LSP if higher than, n, the value is emitted to code stream.

The significant coefficients is sent to bit stream.

• n decremented, n− 1, LIP is tested and the process is continued.

The SPIHT algorithm can be extended to a 3D transform by providing different

sorting tree algorithms suitable for the 3D wavelet coefficients generated. The

SPIHT algorithm is extended to 3D-based on the sorting of the 3D tree. A

3D node acts as a block of eight adjacent pixels with two extending into each

dimension, forming a node of 2 × 2 × 2 pixels. The refinement process is the

same as mentioned before. In general, when used with the CDF-9/7 wavelet,

SPIHT outperforms all other techniques. This is because it has a dedicated arith-

metic compression scheme that exploits the redundancies in the wavelet subbands.

However, this zerotree method is most suitable when the coefficients follow the

decaying spectrum hypothesis [3]. Low-frequency components generally follow

this trend but high frequency images do not. Thus, while we may see a higher

PSNR value with SPIHT on some images, this does not necessarily mean that the

image looks good, because it may have higher frequency content. A preliminary

test for SPIHT is conducted using the Matlab wavelet toolbox. The rate of the

compressed image is set at 1 bit per pixel. In this experiment, the differences

between image qualities based on the PSNR measure of each wavelet filter were

selected randomly. The results in the Table 2.3 verify the importance of selected

Table 2.3: SPIHT test using various filters

Type of wavelet filter PSNR (dB)
Bior6.8 39.92
Bior4.4 39.85
Haar 37.49
Coif1 39.06
Sym1 37.49
Sym2 38.95
Db8 39.63
Dmyer 39.83
Rbio6.8 39.58

wavelet bases to the quality of the compressed image with the SPIHT implemen-

tation. From Table 2.3, the tested filters show better results on filters with more
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2.5 Scalable wavelet coding

coefficients such as Bior6.8 and Bior4.4 and lower in simpler filter such as Haar.

2.5.3 SPECK

The set partitioned embedded block coder (SPECK) [37] is a block based embed-

ded coder which offers lower complexity than SPIHT. Like SPIHT, SPECK con-

sist of two main processes, sorting and refinement. Figure 2.9[37] summarises the

partitioning or sorting process in SPECK. The idea behind SPECK partitioning

Figure 2.9: Partitioning process in SPECK

is to exploit the hierarchical pyramidal structure of the subband decomposition,

where it is more likely that energy is concentrated at the uppermost levels of

the pyramid, and as one goes down the pyramid, the energy content decreases

gradually [37]. The term x in Figure 2.9 represents the image transformed co-

efficients, where S is for the lowest subband coefficients and I the insignificant

set. The sorting process is based on the test of significance. If set S is found to

be significant, it will be partitioned into four smaller subsets until the significant

coefficient is found. SPECK reduces the complexity of SPIHT because it uses

zeroblock instead of zerotree. Only two lists are required to track the coordinates

in SPECK, LIS and LSP. Fewer lists and simpler partitioning processes leads to

a faster encoding and decoding process in SPECK compared to SPIHT.
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2.5 Scalable wavelet coding

2.5.4 EBCOT

Embedded block coding with optimized truncation (EBCOT) [6] is a wavelet-

based image compression algorithm adopted for the JPEG2000 standard. The

EBCOT principle is to divide each subband into blocks (termed code-blocks) and

then code each individually. The bits resulting from coding several code-blocks

become a packet and the packets are the components of the bit-stream [6, 24].

The bit-stream also contain markers which can be used by the decoder to skip

certain areas of the bit-stream and to reach certain points/rates quickly. A vi-

sual representation of an EBCOT code-block is shown in Figure 2.10[8]. With

Figure 2.10: JPEG2000 compression using EBCOT

markers, EBCOT coding can display certain regions of the image before other

regions, a properties known as random access capabilities or Region of Interest

(ROI). These makers are also used to progressively decode (rate scalable) the im-

age in one of several ways. The EBCOT bit-stream is organized in layers, where

each layer contains higher-resolution image information which enable resolution

scalability. Thus, decoding the image layer by layer is a natural way to achieve

progressive image transmission and decompression [24]. Its use of layered block

coding, fractional bit planes, block-based rate distortion (R-D) optimization, and

context-based arithmetic coding means that EBCOT technique is able to gener-

ate a feature rich bit-stream which is rate scalable, resolution scalable and with

random access, but at the cost of high complexity. In this thesis, the state of

the art JPEG2000 standard that uses EBCOT is tested using the Kakadu Soft-

ware developed by Taubman [38]. Summary of the scalable coding algorithms

described previously is in Table 2.4.
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Table 2.4: Summary of scalable coding algorithms

Technique Bit partitioning Complexity
EZW Zerotree Low

SPIHT Zerotree High
SPECK Zeroblock Low
EBCOT Block Based Zerotree High

2.6 Summary

A significant breakthrough for wavelet based image and video coding was the dis-

covery of zerotrees for coding two dimensional wavelet coefficients. The zerotree

approach is commonly used since it achieves high performance and generates

a progressive bit-stream by exploiting the inter-subband dependency among in-

significant wavelet coefficients. This is achieved by reorganising the transformed

coefficients in space-scale trees.

EZW was then improved with the SPIHT algorithm which exploits the spatial

orientation tree to find significant coefficients. In addition to the zerotree concept,

other techniques have been proposed such as SPECK which exploit intra-subband

coefficients in the wavelet domain. Another wavelet based coder is EBCOT [6],

which was adopted in the JPEG2000 standard [39], EBCOT combining layered

block coding, R-D optimisation, and context-based arithmetic coding in an effi-

cient and highly scalable way.

As with all other new technologies, various non-technical issues that play a part

in the adoption rate of new systems in addition to objective performance, in

determining commercial success. For example JPEG2000 standard struggles to

generate strong industrial friction more than five years after its introduction de-

spite the obvious technological advantages over the JPEG standard. This shows

that external industrial factors, such as licensing fees, the cost of technology

shifts, or increased computational complexity, are clearly as important when it

comes to the adoption of the technology.

This chapter has reviewed the transform-based image compression techniques.

Every aspect of compression plays an important role in improving its performance

in term of compression ratio and the rate of distortion when the compressed image
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reconstructed. In general, wavelet-based approaches and in particular, scalable

coding algorithms are emphasized. Details of each step in transform-based com-

pression have been explained. In particular, the wavelet transform and the state

of the art coding methods SPIHT and SPECK have been discussed in detail, and

these are used later as a benchmarks for the algorithm proposed in this study.
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Chapter 3

Listless Implementation for

Embedded Colour Image Coding

3.1 Motivation

Trivial methods of independently coding each of the resulting spectral planes

with high performance wavelet based greyscale image codecs such set partition-

ing in hierarchical trees (SPIHT)[5], JPEG2000 or subband block hierarchical

partitioning(SBHP)[7] is highly inefficient since nonlinear dependencies at high

transition regions (such as edges) remain among the spectral planes [40]. This

chapter proposes an efficient algorithm for composite colour image compression,

with listless implementation based on the set partitioned embedded block coder

(SPECK) partitioning rules. Listless coders such as no-list SPIHT(NLS) [41]

and listless specK(LsK)[42] have primarily been designed for greyscale image or

single component images. The objective of the present work is to develop an

algorithm that exploits redundancy in colour spaces while maintaining the em-

bedded properties and low complexity quadtree partitioning, but with reduced

memory requirements so as to be suitable for hardware implementation. Colour

images are first transformed to luminance chrominance (YCbCr) planes, and then

a wavelet transform is applied to each plane. A reduction in the memory required

is achieved with the introduction of a state marker that matches each colour plane

to eliminate the list from the original colour-SPECK(CSPECK). The dynamic
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memory required in CSPECK is replaced with a low memory and fixed state

marker. The location of wavelet coefficients is then mapped based on scanning

order or linear indexing that matches the transformed coefficients. The scanning

method used is the one dimensional Z-curve, also known as Morton order that is

very good at preserving spatial proximity. This one dimensional scanning method

also offers computational efficiency and algorithmic simplicity. The proposed al-

gorithm then encodes the decorrelated colour plane as one unit and generates

a mixed bit-stream. The indexing and markers are modified to jointly test the

chrominance planes. The resulting algorithm maintain full embeddedness and the

precise control of bit rate required for image reconstruction. The performance

of the proposed algorithm is tested on lossy and lossless compression of a 24

bit colour image. The performance of proposed coder is comparable to that of

CSPECK, SPIHT and JPEG2000.

This chapter is organised as follows. Section 3.2 is the introduction to this chap-

ter and followed by a background and reviews work related to colour coding, the

SPECK algorithm and the attractive listless coder in Section 3.3. Section 3.4

explains in detail the algorithm for the proposed coder. This is followed by a

presentation of the numerical results in Section 3.5, with performance compared

with that of the CSPECK coder, JPEG2000 and SPIHT. The performance mea-

surements include rate distortion analysis, memory used in the algorithm and

coder complexity. Finally, conclusions are drawn in Section 3.6.

3.2 Introduction

The increasing demand for multimedia content such as images and video has re-

sulted in great interest in research into compression techniques. Compression in

the wavelet domain has become significant since the introduction of embedded

coding algorithms such as embedded zerotree wavelet (EZW) [3] and SPIHT [5],

which offer the effective reordering and coding of transformed coefficients into

progressive and rate controllable bit-streams. Both algorithms use the simple

prioritisation and segregation of significant coefficients into ordered bit planes.

Further embedded coding technique has been introduced, which is based on a
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block partitioning (zeroblock) algorithm known as SPECK. SPECK offers an ap-

proach which is less complex and provides comparable performance to SPIHT,

but with faster encoding and decoding times [37] [7]. The SPECK algorithm prop-

erly and efficiently sorts sets of transform coefficients according to their maximum

magnitude with respect to a sequence of declining thresholds. The sorting mech-

anism is based on quadtree partitioning guided by a test of significance. This

allows the processing of different regions of the transformed image based on their

energy content.

The basic principle of set partition coding is to collect the location information of

large group of samples/pixels with maximum values below a certain low threshold

[36]. Irrespective of how it is gathered, the location information for each group

together with its size and threshold determines the bit savings involved. So,

compression is achieved through the bit savings for every group compared to the

actual bits which would be required to represent each pixel. If this technique was

applied directly to raw images, the addition of location information would require

more bits, so a transform is required to group together the samples with small

maximum values. Image transforms can provide highly effective methods of form-

ing partitions and representing the location information. These definitions have

led to the development of state of the art coders, such as SPIHT and SPECK.

SPIHT and SPECK, which gather the location information for groups of samples

at certain thresholds through the introduction of lists into the algorithm. Such

lists grow when the groups contains more samples if the threshold is lowered.

Due to the nature of these algorithms, the list is required to be added, removed

and moved, which leads to variables and data dependency, dynamic memory re-

quirement and memory management. Listless approaches were then introduced

to deal with these problems. Listless coders remove the need for location infor-

mation in the list through the introduction of scanning methods to identify the

location of the coefficients and sparse markers to represent the state information

of each coefficient. This state information is kept in an array of fixed size of 4

bits per coefficient, in order to enable the fast scanning of set partitions.

Fixed size state information or listless coders were developed by Lin et al - the

listless zerotree coder (LZC) [43, 44, 45, 46]; Wheeler - the NLS [41] and Latte et

al - the LsK [42]. The LZC performs an in-depth first search of the trees, and this
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algorithm was refined in the NLS that facilitates a breadth first search of zerotree.

The LsK, however, uses the SPECK approach to intra-subband exploitation us-

ing simpler algorithms and maintaining the breadth of the first search approach.

However, these coders can only be implemented with greyscale images. The im-

plementation of these coders is more complex with colour images, because the

independent implementation of colour channels introduces colour artefacts and

rate scalable coding is not supported . Colour artefacts can be avoided by using

appropriate colour spaces.

In the present study, an efficient SPECK based compression technique using

quadtree partitioning and a zeroblock coder is implemented for colour images.

The coder is modified to jointly encode the chrominance planes together, in order

to improve coder efficiency and reduce complexity. The fixed memory required for

this listless coder suggests that the algorithm is suitable for hardware implemen-

tation. The zeroblock coder also offers low complexity compared to conventional

zerotree coders. Lists are eliminated and replaced by a state marker. Instead

of searching the tree to find predictable significants, special markers are placed

on certain nodes of the trees during initialisation. These markers are updated

when new insignificants or significants are formed by the quadtree partitioning.

This sparse marking enables the coefficient to be scanned efficiently and skips

insignificant coefficients as the scan moves to a different subband.

3.3 Background and review

Full colour images are represented by three colour spaces: red, green and blue,

called RGB space. These colour planes are usually highly correlated, so less

correlated spaces such as luminance and chrominance are used for efficient com-

pression. In this work, the colour space of luminance and chrominance, YCbCr

for digital images is used, which is similar as defined for JPEG2000. In this colour

space, Y is the component of luminance while Cb and Cr provide the colour in-

formation. The colour information is stored as two colour difference components:

Cb and Cr.
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3.3.1 JPEG2000

Figure 3.1 shows a block diagram of the core encoder for colour image compression

using JPEG2000. Notice that JPEG200 first applies DC offset to RGB colour

components by 2B−1 to simplify certain processing to its coder [28]. The colour

Figure 3.1: Core encoder of JPEG2000 for colour image coding

transformation from RGB to Y CbCr used in JPEG2000 is defined as follows [28]: YCb
Cr

 =

 0.299 0.587 0.114

−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131


RG
B

 (3.1)

This colour transformation is called irreversible colour transform (ICT) as spec-

ified for lossy compression. It can only be used with the floating point wavelet

transform which is irreversible. For lossless compression the reversible colour

transform (RCT) is used with an integer transform which is reversible. RCT is

defined as follows [28]:  YCb
Cr

 =

0.25 0.5 0.25

15 −1 0

0 −1 1


RG
B

 (3.2)

The colour transform defined for both lossy and lossless compression in JPEG2000

is used for all types of coders developed in the present research, and this also ap-

plies to the wavelet transform used. JPEG2000 uses a 9/7 tap filter for lossy and

a 5/3 filter for lossless compression. After the wavelet transform, a quantisation

process takes place, (Q in Figure 3.1), where the sixe of each quantiser step can

vary from band to band. Moreover, since JPEG2000 uses image tiles which are
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coded independently, a quantiser step can also vary from tile to tile. Wavelet

coefficients are most efficiently coded when they are quantised by successive ap-

proximation, which is the bit plane representation of the quantised coefficients.

Therefore, JPEG2000 uses embedded block coding with optimized truncation

(EBCOT), coding as described in Section 2.5.4. Once the entire image is com-

pressed, the bit-stream generated by the individual code blocks is postprocessed

to facilitate various functionalities of the JPEG2000 standard (as represented by

the bit-stream formatter block in Figure 3.1).

3.3.2 Colour coding in the wavelet domain

The early implementation of SPIHT with colour images used the Karhunen

Love transform (KLT) to decorrelate spectral information prior to SPIHT coding

[5, 47, 48]. The evaluation of this method showed that the performance of KLT is

comparable to that of YUV method, but it has the disadvantages of higher com-

putational complexity than YUV and high dependency to its source. The CEZW

implements an embedded scalable colour image coder by exploiting the colour

components of the YUV plane [49]. The coding strategy of CEZW is similar to

that of EZW but with changes to the dominant pass. Luminance is scanned first

and appropriate symbols are assigned accordingly. Then the chrominance plane

is scanned alternately until all components are encoded. The rate of distortion

performance in CEZW is lower than that of the SPIHT algorithm.

The CSPIHT was then introduced by Kassim and Wei [50] with modifications

to the SPIHT spatial orientation tree (SOT) structure. The CSPIHT uses a

partially linked SOT across different spectral planes. This method embeds both

chrominance and luminance in the coded bit-stream and involves lower compu-

tational complexity than using SPIHT with KLT. CSPIHT also performs better

than SPIHT+KLT, especially with a five-level decomposition wavelet. Fouad

et al subsequently modified the SPIHT in [51, 52, 53, 54], providing a better

peak signal-to-noise ratio (PSNR) than the original version SPIHT [48], espe-

cially colour compression at very low bit rates. The main modification consisted

of grouping the trees within each chrominance plane in list of insignificant set

(LIS) during the sorting pass according to the virtual parent-descendants rela-
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tionships specific to the chrominance component [51]. The same authors also

implemented lossless colour/multispectral image coding using SPECK by joining

two correlated planes in the significance test of the blocks, resulting in a signifi-

cant improvement in the final bit rate [55, 56]. Other work then took the human

visual system (HVS) into account [57, 58] to improve compression performance.

Recent work by Bayazit [40] on colour image compression uses all three colour

planes during coding process introducing an adaptive spectral transform across

the colour plane of an image. This transform improves the performance of the

image compression with slight increase its coding complexity. Exploiting similar-

ities between the correlated colour planes brings significant improvements to the

rate of distortion performance, especially at low bit rates compression without

adding to the complexity of the coder.

3.3.3 Reduced memory coder

There have been several attempts to reduce the memory required in the process

of coding and decoding wavelet coefficients [41, 42, 43, 44, 45, 46, 57, 59, 60]. The

idea of listless significance map coding was initially proposed by Lin and Burgess

[43, 44, 45, 46] in their work on the LZC for colour images [43]. The concept

was then further developed by Shively et al. [59] and Wheeler and Pearlman

[41]. The LZC uses two significant bit maps with one bit per coefficient to store

the coordinates of significant coefficients and tree information, thus making its

implementation more hardware friendly. The PSNR performance of LZC is low,

at about 0.51 dB, compared with that of the SPIHT. Other recent listless algo-

rithms based on the SPIHT coder have also been implemented [60, 57]. A study

by Wheeler [41] improved the performance of the algorithm by implementing a

marking scheme that facilitated breadth first searching. As a result, the NLS

algorithm produced bit-streams with a similar number of bits (but in a different

order) and generated results that were practically identical to SPIHT. Among all

of the listless implementations described so far, only the LZC has been imple-

mented on still colour images to provide true scalable embedded coding.

The LsK is another low memory greyscale image coder that implements a struc-

ture similar to NLS but using the SPECK partitioning rule [42]. This approach
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offers lower computational complexity in terms of the partitioning rule while

maintaining the fixed memory approach of a listless coder. The proposed algo-

rithm is motivated by the development of previous listless coders such as LsK,

NLS and LZC, and with the efficient zeroblock partitioning rule for colour images,

with the aim of reducing the complexity of the scalable colour image coder.

3.3.4 CSPECK

The CSPECK is a block based hierarchical image coding scheme that is com-

pletely embedded, employs progressive transmission, and is low in computational

complexity. The SPECK outperforms SPIHT on images with high frequency

content, such as Barbara, while CSPECK outperforms JPEG2000 and SPIHT

for luminance components in most images [37]. In wavelet based progressive im-

age compression, SPECK can be considered the most efficient coder compared

to JPEG2000 and SPIHT, and previous reports indicate that it performs 4 to 8

times faster than JPEG2000 [37, 7]. The CSPECK treats all colour planes as one

unit at the coding stage and generates a mixed bit-stream as shown in Figure 3.2

it containing the information about each colour plane denoted by Y,U,V. This

maintains full embeddedness and precise control of bit rate because it can stop

at any point of the bit stream to reconstruct the colour image of every plane.

YYYYYYYUUUUUUUUVVVVVVVVVVVV
YUVYUVYUVYUVYUVYUVYUVYUVYUV

Figure 3.2: Compressed colour bit-streams : conventional and embedded

The SPECK only requires two lists, unlike SPIHT which requires three. In

CSPECK, one list of significant pixel (LSP) and one list of insignificant set (LIS)

are used for each transformed plane, and each is initialised with the corner coordi-

nates of its top level S as shown in Figure 3.3, which also represent the basis of the

SPECK partitioning rule. Significant points among the three planes are mixed

in the single LSP. When the threshold is lowered (n-1), the LIS sets of YUV are

visited in turn on the three lists for SPECK sorting passes. The refinement pass

takes place on a single LSP by sending nth bits of the binary expansion of magni-

tude found significant. The procedure is then repeated until the bit budget is met.
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Figure 3.3: SPECK partitioning rule

3.4 The proposed coder

In the coding algorithm in this study, the LsK [42] is expanded for implementation

with composite colour images. The algorithm treats all colour planes (YCbCr) as

one unit at the coding stage and generates a mixed bit-stream. For identification,

LsK for colour image is referred as Listless CSPECK (L-CSPECK). The proposed

algorithm maintains listless properties with modifications to jointly encode the

chrominance planes in order to exploit the similarities between them. As with the

original LsK [42], the proposed algorithm consists of three stages: initialisation,

sorting pass, and refinement. Originally, test of significance of blocks were con-

ducted for each YCbCr colour plane in the L-CSPECK. By combining the test

of significance in the chrominance plane, the algorithm becomes more efficient.

This is achieved by modifying the scanning order and initial state marker of the

chrominance plane. There are three main components of listless implementation:

linear indexing, the state marker and the sorting algorithm. Linear indexing is

a mapping technique of the transformed coefficients to a scan order and it is

applied during initialization stage. After that, the state marker is initialized to

generate a set of insignificant pixels and skipped coefficients. Further details of

each component are given in the following sections.
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3.4.1 Linear indexing

Application of the dyadic wavelet transform results in a hierarchical ordering of

wavelet coefficients (the subband pyramids). Their order is organised in such

a way that the coefficient’s magnitude tends to decrease with the depth of the

subband. This property is exploited by a bit plane encoding scheme with a

significance test, as shown in Equation (3.3).

Sn(B) =

{
1 ifmaxi,jεB|Cij | ≥ 2n

0 otherwise
(3.3)

Linear indexing provides an efficient way of mapping the transformed coefficients

to scan order during the partitioning process. The linear indexing used here is

based on Morton ordering or recursive Z. It generates a hierarchical order similar

to a subband pyramid as in Figure 3.4, and uses a single number to represent

the index of the coefficient which can be simply generated through bit interleav-

ing [41]. Morton ordering offers good locality-preserving behaviour and provides

suitable structures for mapping multidimensional data onto one dimension. This

indexing efficiently supports the treatment of coefficients with one operation, as-

suming the usual subband data arrangement. This particular format offers com-

putational and organisational advantages [41, 42, 61] and facilitates the breadth

first search algorithm. The straightforward approach for listless colour image is

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
33 34 37 38 49 50 53 54
35 36 39 40 51 52 55 56
41 42 45 46 57 58 61 62
43 44 47 48 59 60 63 64

Figure 3.4: Morton ordering for Y Plane

to apply similar ordering to each plane and enable rate scalable properties on the

recontructed colour image. The scan order for L-CSPECK is shown in Figure 3.5.
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The Morton ordering is generated by bit interleaving of each coordinate. Let say

Figure 3.5: Linear indexing to YCbCr plane

colour image is represented as f (x, y, c), each coefficients required log2 (x, y, c)

bits to identify the coordinate of each dimension. For 256× 256 image, 8 bits are

required to represent the coordinate. x0 → x7, y0 → y7 So, xo represents the first

bit of the X axes. This bit interleaving is shown in Figure 3.6 and 3.8.

The proposed algorithm requires different scanning decisions to combine the

x7, x6, x5, x4, x3, x2, x1, x0
y7, y6, y5, y4, y3, y2, y1, y0

x7y7, x6y6, x5y5, x4y4, x3y3, x2y2, x1y1, x0y0

Figure 3.6: Bit interleaving in Y plane

chrominance significant test, in order to exploit the similarities between chromi-

nance planes (CbCr). To do this, the scanning considers both chrominance planes

in the linear index. The bit interleaving of coordinates in plane Cb and Cr,

f(x, y, c) is used to generate the linear index for scan order. Figure 3.8 illus-

trates the bit interleaving to generate the joint scanning or linear index for the

chrominance planes, where c1 and c0 represent planes Cb and Cr respectively. An

example of the generated indexing is shown in Figure 3.9. Note that this type

of scanning ensures interchanging between chrominance planes during the signifi-

cant tests as shown in Figure 3.7. In terms of hardware considerations, Wheeler

and Settha [41, 61] have mentioned that this index conversion is trivial, but it is
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Figure 3.7: The modified scanning order

x7, x6, x5, x4, x3, x2, x1, x0
y7, y6, y5, y4, y3, y2, y1, y0

c1, c0
x7y7, x6y6, x5y5, x4y4, x3y3, x2y2, x1y1c1, x0y0c0

Figure 3.8: Bit interleaving in chrominance plane

Plane Cb Plane Cr

Figure 3.9: Scanning order for chrominance plane

not directly supported by general purpose CPU. Consequently, for faster software

conversion, this indexing/ordering can be implemented using a fixed lookup table

that maps one byte to two bytes with zero bits, padded between original bits.
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The conversion is simple and fast, using a bit spreader table combined with shift

and bitwise OR operations.

3.4.2 State marker

The mapped coefficients (scan order) have a direct relations with the state marker.

The markers listed below play an important role in keeping track of the parti-

tioning rule. During initialisation, all coefficients are marked as null, and then a

few coefficients are marked according to the estimated subband positions of the

transformed coefficients. 4 bits per coefficient are required to stating the marker.

Figures 3.10 and 3.11 give an example of few coefficients marked during initial-

isation and the difference between the marker initialised in L-CSPECK and the

algorithm proposed here. Map refers to the indexing generated for scanning

mark(ma×mb+ 1 : ma×mb+ 64) = MIP;
mark(ma×mb+ 82 + 1)=MS3;
mark(ma×mb+ 162 + 1)=MS4;

mark(2×ma×mb+ 1 : ma×mb+ 64) = MIP;
mark(2×ma×mb+ 82 + 1)=MS3;
mark(2×ma×mb+ 162 + 1)=MS4;

Figure 3.10: State marker initialisation for Cb and Cr in L-CSPECK

mark(ma×mb× 1 : ma×mb+ 64) = MIP;
mark(ma×mb× 82 + 1)=MS3;
mark(ma×mb× 162 + 1)=MS4;

Figure 3.11: State marker initialization for both Cb and Cr in proposed algorithm

purposes. The meaning of each marker is as follows:

• MIP : the pixel is insignificant and will be tested for this bit plane

• MNP : the pixel is newly significant, so it will not be refined for this bit

plane

• MSP : the pixel is significant and will be refined in this bit plane

• MSx : a block of size 2x × 2x is to be skipped

MSx can also be defined as an edge marker to keep track of which pixels are

insignificant. The value of MSx in this algorithm is from MS1 to MS10. Based

on Figure 3.8, MIP is marked for the lowest subband in the pyramids of coeffi-

cients. MS3 refers to the edge of the block with a size of 23 × 23 = 64. During
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initialization, only markers from MS3 to MS10 (depending on image size) will

be marked. This is crucial so that every edge is recognized for the partitioning

process during the encoding and decoding process. Through the partitioning pro-

cess, MS1 (block size 4) and MS2 (block size 16) will be updated automatically.

A pre-computed constant lookup table, rather than calculation, is used during

initialisation for faster implementation.

3.4.3 Sorting algorithm

The sorting algorithm for proposed algorithm is based on zeroblock partitioning

similar to the original SPECK. Further explanation on sorting algorithm is in

Section 3.4.4.

3.4.4 The proposed algorithm

The L-CSPECK and proposed algorithm are implemented using similar logarith-

mic structures. Since the location information is fixed, if the tested set is found

to be significant, partitioning proceeds without the need to identify which plane

belongs to the significant coefficients. The four stages of the algorithm are initial-

isation, the sorting pass, refinement pass and finally quantization step. During

initialisation, scanning or linear indexing is first applied to all colour planes. This

is the stage where the L-CSPECK and the proposed algorithm are applied dif-

ferently. As previously explained in Section 3.4.1, scanning plays the key role in

how the proposed algorithm is modified to enable the exploitation of similarities

in the chrominance planes.

After scanning, marker for insignificant pixel, (MIP) is marked to all coefficients

in the lowest subband of each plane. A state marker is first initialised based on the

pre-computed constant lookup table. No list is required for this algorithm; and

instead the state marker will be automatically updated if a significant coefficient

is detected. Details of the pseudo code for the encoding process are given below.

k in coefficient Ci,j,k in the algorithm denotes the plane. The main difference

between LCSPECK and the proposed algorithm occur during the initialization

of the state marker and the mapping/scanning used.
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Initialisation

1: Output n = blog2 (max |Ci,j,k|)c

2: Map the transformed coefficient to match linear indexing

seqt(map) = wavelet coefficients

3: Initialize the state marker

Mark NULL for all coefficients

mark (all) = NULL

MIP for the lowest subband coefficients (Figure 3.11)

mark
(
1 : 2N−L

)
= MIP

MS x for each initial block or subband (Figure 3.11)

mark (23 + 1) = MS3

Sorting pass

The sorting pass is conducted through the test of significance in Equation (3.3).

For chrominance planes, the sorting pass will automatically include both planes

according to the interchanging scan order as shown in Figure 3.7.

1: For each coefficient with MIP mark, output Sn (k);

if Sn (k) = 1, mark the coefficient as MNP, output sign of k.

For chrominance plane, if n = odd, k = Cb and if n = even, k = Cr

2: For each coefficient with a non-NULL mark

if Set Sn (S) 6= 0

Partition the set into four equal subsets O (S) (Figure 3.12).

Update the state marker by MSX−1

or else

Skip the coefficient by marker size MSx = 2x × 2x

An example of partitioning and state marker updating can be seen in Figures 3.12

and 3.13. Figure 3.12 shows the initial marker set during initialization on both

chrominance plane. Figure 3.13 shows the partitioning process where instead of

two planes, the chrominance is treated as one plane. MIP is marked in both

planes with interchanging order.
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Figure 3.12: 4 Subset in chrominance plane

Figure 3.13: Partitioning and state marker update

Refinement pass

In the refinement pass, each coefficient marked as MNP will be refined to MSP

and the marked MSP sends an output of the nth most significant bit (MSB) of

the coefficient to the bit-stream.
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Quantization Step

Decrement n by 1 and continue to sorting pass n = nmax, nmax−1, nmax−2, nmax−
3, ...

Significance tests are always done with bitwise AND, where the significance level

for each bit plane is T = 2n. The decoder will follow the same overall procedure

as the encoder, but the test will use bitwise OR instead of bitwise AND. All

operations can be implemented by bit shifting.

The proposed algorithm automatically tests both chrominance planes together

because the generated scan order alternates between planes Cb and Cr. Suitable

initial state markers are used by treating both chrominance planes as a single

coded plane. This ensures that the partitioning process exploits the similarities

between the Cb and Cr planes. Therefore, instead of duplicating the same struc-

ture of initial state markers to each plane, the proposed algorithm performs state

marker initialisation once for both chrominance planes.

3.5 Numerical results and discussion

To assess the performance of the proposed coder, numerical experiments were

carried out on a number of 24 bit colour images from an images database at USC-

SIPI [62] and University of Granada [63]. The Barbara image [64] was cropped to

size 512×512. For the purpose of discussion here, only a few images are presented

with detailed results. This section describes the implementation of the proposed

algorithm for lossy compression first and then for lossless compression.

For lossy compression, the RGB image was first transformed to a YCbCr colour

space using a standard transform in Matlab (function rgb2ycbcr). Then, a CDF-

9/7 tap biorthogonal wavelet filter with five decomposition levels [31] was applied

to each colour plane. The coding performance of the proposed algorithm was

evaluated using measurements of rate distortion, PSNR and structural similarity

(SSIM). The distortion rate was measured in term of overall PSNR from the RGB

plane after reconstruction, is represented by the Equations (3.4) and (3.5) where

C (i, j) and Ĉ (i, j) are the original and reconstructed images respectively at each

colour plane and N = Nx × Ny is the number of pixels of the original image at
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each colour plane.

PSNR = 10log
3× 2552

MSE(R) + MSE(G) + MSE(B)
(3.4)

MSE(C) =
1

NxNy

Nx∑
i=1

Ny∑
i=1

(
C(i, j)− Ĉ(i, j)

)2
(3.5)

All decoded images for each bit rate were recovered from a single fidelity embed-

ded encoded file truncated at the desired bit rate without any entropy coding.

Back end arithmetic coding is expected to improve about 0.5 dB to the presented

results [41, 42].

In lossless compression, the reconstructed image should be identical to the original

image. The measurement of performance is based on the final bit-rate required

to reconstruct the image. So, the compression ratio can be measured using:

Compression Ratio =
bpp original image

bpp compressed image
(3.6)

The memory requirements during the coding and decoding processes are also

presented to show the relative advantages in terms of memory disc-swapping

saving using the proposed listless implementation.

3.5.1 Coding performance

The two types of measurement used for lossy compression are PSNR and SSIM

measure.

PSNR measurement

Table 3.1 shows a comparative evaluation of the results obtained from CSPECK,

the proposed algorithm and L-CSPECK. Also included are JPEG2000 and SPIHT,

with the former was obtained from Kakadu v6.2 [38]. The analysis was performed

at different rates, from 0.125 bits per pixel (bpp) for the compression ratio 192:1,

to 3 bpp for the compression ratio 8:1. In theory, using a listless structure should

slightly reduce the performance due to the use of fixed scanning, based on the
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performance of the original listless implementation for a greyscale image [42].

However, the joint test of significance for chrominance planes in the proposed

listless algorithm was expected to improve the listless performance to a level very

close to that of the CSPECK.

The overall RGB PSNR was used for comparison, and therefore it can be seen

that JPEG2000 show better results in most of the image. This was expected, since

CSPECK partitioning shows a high PSNR only to luminance plane. Besides this,

both JPEG2000 and SPIHT involve higher in computational complexity com-

pared to to SPECK-based partitioning coder [37]. This means that the main

comparison in Table 3.1 is between CSPECK, L-CSPECK and the proposed algo-

rithm, with the best results given in bold. In most cases, the proposed algorithm

outperforms the original CSPECK, which exceeds the expectations since the list-

less algorithm uses fixed memory and scanning. The difference is attributed to

the bit savings from the joint chrominance test of significant.

It can be observed that the proposed coder improves the distortion rate over

CSPECK at most rates on images that have good correlation between chromi-

nance planes. The proposed algorithm maintains the zeroblock partitioning rule

and jointly tests the chrominance planes to exploit the similarity between them.

The value given below the name of each image is the correlation between planes

Cb and Cr, measured using the function corr2 in Matlab. Note that if the value of

this correlation value is low, the resulted PSNR shows better result in L-CSPECK

or CSPECK because the joint test of the chrominance planes would give no ad-

vantage. The proposed coder also outperforms SPIHT at most rates, despite the

fact that the latter uses more a complex zerotree partitioning rule and three lists.

Surprisingly, compared with JPEG2000, the proposed coder performs better at

certain rates in Lenna, Barbara and Baboon, but not with other images at most

rates. This can be attributed to the simple joint chrominance test of significance

generating more significant bits earlier in the bit-stream. Examples of the qual-

ity of reconstructed images from the proposed algorithm, L-CSPECK, CSPECK,

SPIHT, and JPEG2000 are shown in Figures 3.14 and 3.15.
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Table 3.1: Overall RGB PSNR performance for compressed colour image

Image Bit Rate CSPECK Proposed LCSPECK SPIHT JPEG2000

Lenna 0.125 27.3691 27.6238 27.4289 27.2939 27.9324
0.4522 0.25 29.6657 30.0306 29.6692 29.6245 30.0227

0.5 31.5545 32.3129 31.6821 31.5999 31.7237
1 33.0276 34.1213 33.1081 33.267 33.2909

1.5 34.1498 35.1304 34.1699 34.3137 34.3181
3 35.6755 37.3529 36.078 36.0136 36.0388

Barbara 0.125 24.8147 24.8647 24.813 24.473 25.2165
0.7303 0.25 26.998 26.9673 26.9386 26.8337 27.0782

0.5 30.0118 29.9876 29.9591 29.8952 30.0859
1 33.5733 33.6082 33.5844 33.5545 33.6865

1.5 36.0107 36.0622 36.0215 35.9411 35.9189
3 39.4147 39.6262 39.5932 39.7008 40.1194

Baboon 0.125 19.9299 19.9836 19.9764 19.8905 20.2485
0.7239 0.25 21.159 21.1866 21.1652 20.9723 21.3211

0.5 22.4295 22.486 22.4773 22.5493 22.4234
1 24.4759 24.5034 24.502 24.6004 24.3443

1.5 25.7739 25.8792 25.8726 25.8621 25.5106
3 28.4451 28.5779 28.5883 28.673 27.6762

House 0.125 23.5291 23.5564 23.5511 23.2223 24.2611
0.6507 0.25 25.6126 25.7389 25.7064 25.5832 26.4022

0.5 28.0126 28.1624 28.1222 28.0987 28.4336
1 31.1366 31.2002 31.1549 31.1053 31.0905

1.5 32.8437 33.16 32.9974 33.0906 33.2032
3 36.6188 37.0766 37.05 37.112 37.1758

Peppers 0.125 25.2197 25.2376 25.2661 25.0846 26.0629
0.2728 0.25 27.4656 27.4301 27.5026 27.654 28.4843

0.5 30.0345 30.2005 30.1322 30.365 30.2517
1 31.8663 31.9075 31.9092 32.3067 32.3334

1.5 32.8575 32.987 33.005 32.9596 33.1652
3 34.5775 34.8471 34.8817 34.9801 34.7091

Light House 0.125 30.4548 30.5576 30.5584 30.2664 31.3996
0.7248 0.25 32.6152 32.7642 32.7578 32.7378 33.4038

0.5 34.7806 34.8758 34.8629 34.983 35.3198
1 36.7404 36.8024 36.7914 36.9829 37.2593

1.5 37.6434 37.9972 37.8722 37.9293 38.5563
3 39.3987 39.954 39.9098 39.9579 40.8761

Butterfly 0.125 26.2682 26.3046 26.3054 25.9986 26.7484
0.0294 0.25 28.4053 28.4164 28.4205 28.2424 28.6146

0.5 30.1962 30.2713 30.2691 30.3604 30.283
1 32.0735 32.1438 32.1482 32.2632 32.2822

1.5 33.1777 33.4069 33.4279 33.2204 33.2724
3 35.4623 35.6413 35.7478 35.5948 35.0691

Ariel 0.125 22.2481 22.25 22.2481 22.1408 22.6824
0.6379 0.25 23.542 23.5451 23.542 23.5153 23.8517

0.5 24.763 24.8007 24.763 24.7799 25.3024
1 26.6029 26.6096 26.6029 26.7411 26.6165

1.5 28.3549 28.4523 28.3549 28.2039 28.0783
3 31.4894 31.5206 31.4894 31.4324 30.755
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Structural similarity measurement

The measurement of structural similarity for colour images as mentioned in Sec-

tion 2.2.4 is calculated after function ’rgb2gray’ is applied to the reconstructed

image [25]. The resulting SSIM values are shown in Table 3.2. Note that the

bold value in the Table 3.2 is the maximum value between CSPECK, the pro-

posed coder and L-CSPECK. As with the PSNR results, in most cases JPEG2000

performs best result except in few cases.

Although the improvements achieved in terms of SSIM and PSNR maybe consid-

ered small, the main advantage of the proposed system is the use of fixed working

memory that enabling faster encoding and decoding. The introduction of com-

bined test of significant for chrominance with listless technique also improves the

results for certain image which exhibit good correlation between the chrominance

planes. In cases where this correlation is low, CSPECK and L-CSPECK show

better results than the proposed coder as with the previous results for PSNR

[Table 3.1].

3.5.2 Memory requirement and algorithm complexity anal-

ysis

Similar to the original SPECK-based coder, the proposed algorithms first visits

all pixels to gather information about bits in all bit planes (pre-process pass) [7].

This pass require one bitwise OR operation per pixel, following a predetermined

sequence, and some analysis of partial results. Bit plane coding algorithms com-

pute the same data to determine the first significant bit plane with at least one

non-zero bit. Therefore, the complexity of bit plane coding can be measured ap-

proximately by counting the number of bits comparison (whether equal to 0 or 1)

used to test the bits in the bit plane. CSPECK, L-CSPECK, and the proposed

algorithm all use the most basic operations, such as memory access, bit shifting,

addition for iteration, and bit comparison. L-CSPECK and the proposed algo-

rithm also implement the same zeroblock partitioning rule, so that the level of

complexity is the same as that of CSPECK. By jointly testing the chrominance

planes, the proposed coder actually lowers the complexity associated with bit

comparison in the algorithm. This is due to the fact that it uses fewer signifi-
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Table 3.2: SSIM measure for compressed colour image

Image Bit Rate CSPECK Proposed LCSPECK SPIHT JPEG2000

Lenna 0.125 0.8742 0.8905 0.8841 0.8663 0.8981
0.4522 0.25 0.9254 0.9394 0.9315 0.9234 0.9446

0.5 0.9551 0.9628 0.9561 0.9551 0.9689
1 0.9764 0.9787 0.9754 0.9734 0.984

1.5 0.9813 0.9897 0.9867 0.9813 0.9899
3 0.991 0.9941 0.9903 0.9895 0.9962

Barbara 0.125 0.8144 0.8142 0.8133 0.8025 0.8428
0.7303 0.25 0.8974 0.9005 0.9001 0.8807 0.9063

0.5 0.951 0.9548 0.9546 0.9437 0.9572
1 0.9826 0.9829 0.9828 0.9781 0.986

1.5 0.9889 0.9922 0.9919 0.9885 0.9925
3 0.9966 0.9977 0.9976 0.9965 0.9982

Baboon 0.125 0.6267 0.6522 0.6508 0.5873 0.6511
0.7239 0.25 0.7335 0.737 0.7338 0.7276 0.7998

0.5 0.8558 0.8701 0.8698 0.8419 0.8884
1 0.9187 0.9418 0.9418 0.919 0.9492

1.5 0.9563 0.955 0.9549 0.9465 0.97
3 0.9856 0.9849 0.9849 0.9785 0.9903

House 0.125 0.8309 0.8325 0.8325 0.805 0.8431
0.6507 0.25 0.8945 0.9055 0.9041 0.8782 0.9165

0.5 0.9352 0.9512 0.9492 0.9327 0.957
1 0.968 0.9737 0.973 0.967 0.9801

1.5 0.9846 0.9839 0.9839 0.9799 0.9907
3 0.9941 0.9938 0.9938 0.9924 0.997

Peppers 0.125 0.8678 0.8673 0.8673 0.7967 0.8894
0.2728 0.25 0.9234 0.9229 0.9228 0.8686 0.9405

0.5 0.9552 0.9545 0.9546 0.9152 0.9688
1 0.9752 0.9758 0.9758 0.946 0.9849

1.5 0.9769 0.9759 0.9759 0.9515 0.99
3 0.9911 0.9905 0.9904 0.9715 0.9962

Light House 0.125 0.9073 0.9102 0.9103 0.8913 0.9193
0.7248 0.25 0.9485 0.9528 0.9528 0.9428 0.9593

0.5 0.971 0.9748 0.9747 0.9705 0.9791
1 0.9834 0.9881 0.9881 0.9844 0.9898

1.5 0.9908 0.9901 0.9901 0.9888 0.9942
3 0.9956 0.9961 0.9961 0.9949 0.9981

Butterfly 0.125 0.8599 0.8681 0.8681 0.8476 0.8843
0.0294 0.25 0.9221 0.9234 0.9235 0.9191 0.9428

0.5 0.9606 0.9601 0.96 0.9585 0.971
1 0.9794 0.981 0.981 0.9784 0.9866

1.5 0.9822 0.9833 0.9838 0.9822 0.9913
3 0.9935 0.9932 0.9932 0.9926 0.9973

Ariel 0.125 0.7591 0.7635 0.7634 0.7558 0.7752
0.6379 0.25 0.8065 0.8155 0.8153 0.8118 0.8231

0.5 0.8405 0.8493 0.8486 0.8624 0.8736
1 0.8897 0.8909 0.8908 0.9063 0.9252

1.5 0.9346 0.9343 0.9337 0.9335 0.9404
3 0.9628 0.972 0.9709 0.9706 0.9731
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(a) Original (b) JPEG2000 27.0782 dB (c) CSPECK 26.9980 dB

(d) SPIHT 26.8337 dB (e) L-CSPECK 26.9386 dB (f) Proposed 26.9673 dB

Figure 3.14: Reconstructed Barbara at rate of 0.25 bpp

(a) Original (b) JPEG2000 33.2909 dB (c) CSPECK 33.0276 dB

(d) SPIHT 33.267 dB (e) L-CSPECK 33.1081 dB (f) Proposed 34.1213 dB

Figure 3.15: Reconstructed part of Lenna at rate of 1 bpp
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3.5 Numerical results and discussion

cance tests if the jointly tested planes give insignificant results. CSPECK has a

lower level of complexity compared to SPIHT and JPEG2000, and so the pro-

posed algorithm has the lowest complexity of all due to its joint significance test

in the chrominance plane. The algorithm efficiency and speed of operation can

(a) Lenna (b) Barbara

(c) Baboon (d) Ariel

Figure 3.16: Working memory comparison

also be attributed to the memory needed during the coding process (see Figure

3.16). Memory requirements in CSPECK also depends on lists that may cause

data dependant, variable memory requirements and memory management as list

nodes are added, removed and moved. The proposed algorithm avoids any such

memory management, because the memory used is fixed, there are no lists and a
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3.5 Numerical results and discussion

marker is only updated each time significant coefficient is found. The marker re-

quires 4 bits, so the memory needed for the listless algorithm (either L-CSPECK

or the proposed coder) can be calculated based on equation below:‘

Mlistless = Size of Image (x× y)× 3colour planes× 4 bits (3.7)

As the memory is fixed, the amount of memory at lower bit rates is more in

listless than the coder with list. However, the efficiency of listless algorithm is

better because its fixed memory allocation. Furthermore, as bit rates becomes

higher, it become more efficient than SPIHT and CSPECK due to the growing

size of list with those algorithms. The memory requirements for CSPECK and

SPIHT are calculated using Equations 3.8 and 3.9 for each rate:

MSPIHT = (LLSP + 2× LLIS + LLIP )

× (bitX + bitY + bitZ) (3.8)

MCSPECK = (LLSP + 2× LLISY + LLISI + LLISQ)

× (bitX + bitY + bitZ) (3.9)

where; L refers to the number of coefficients in the list, bitX and bitY refer to

the number of bits required to represent the coordinate for each plane, and bitZ

refers to the colour plane.

Based on graphs in Figure 3.16, it can be seen that the memory increases with

the increase of the bit rate. The memory of the proposed algorithm is fixed and

represented by a straight line in the graph. The dynamic memory of SPECK

and SPIHT is directly proportional with an increase of the bit rate. At the same

time, dynamic memory means that the coding needs memory management in

order for the list required to be added and removed during coding process. On

the other hand, the fixed memory allows the encoding and decoding processes

to operate faster because memory management is removed from coding process.

Since the memory is fixed for any rate, the lossless application will be greatly

beneficial when applied with this method. The next section describes lossless
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implementation using this structure.

3.5.3 Lossless performance

To implement the lossless coder, the reversible colour transform (RCT) is used.

Then a reversible wavelet 5/3 tap filter is applied to each plane. The perfor-

mance results are given in Table 3.3 and, based on the compression ratio achieved,

JPEG2000 gives the best results for all images. However, in general, the proposed

algorithm outperforms both SPIHT and CSPECK. It provides outstanding sav-

ings on the memory required for the encoding and decoding processes and these

saving will greatly reduce the time required to perform the compression. Memory

is calculated based on the final list generated using the Equations 3.7- 3.9. Table

Table 3.3: Lossless Performance Based on Compression Ratio

Colour JPEG Proposed L-CSPECK CSPECK SPIHT
Image 2000
(24 bits)

512x512

Lena 1.7012 1.6878 1.6355 1.6356 1.5980
Barbara 1.8078 1.7214 1.7212 1.7249 1.6994
Peppers 1.6215 1.5420 1.5512 1.5513 1.5126
Ariel 1.4548 1.4223 1.4207 1.4208 1.4039
Baboon 1.3273 1.3033 1.3075 1.3075 1.2859

256x256

Barche 1.9773 1.8711 1.8665 1.8674 1.8475
Peppers 1.9435 1.8270 1.8269 1.8274 1.8234
Couple 1.9714 1.8926 1.8993 1.9003 1.8679
Tulips 1.6116 1.5534 1.5583 1.5583 1.5576
Jelly 2.4947 2.2869 2.2727 2.2737 2.2638
Average 1.7911 1.7108 1.7060 1.7067 1.6860

3.4 shows that the proposed listless coder offers savings of more than 70 % of

the working memory required for both SPIHT and CSPECK. No comparison is

made to JPEG2000 because the algorithm uses difference technique that include

layered block coding, fractional bit planes and block based rate distortion op-

timization. Such huge saving will greatly benefit hardware implementations of

progressive lossless compression. Although there are better techniques for loss-
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Table 3.4: Memory requirement for lossless(in bits) & saving

Image CSPECK SPIHT Proposed % saving CSPECK % saving SPIHT

512x512

Lena 15658440 15682200 3145728 79.9103 79.9407
Barbara 15667620 15719560 3145728 79.9221 79.9884
Peppers 15698580 15707920 3145728 79.9617 79.9736
Ariel 15728460 15728520 3145728 79.9998 79.9998
Baboon 15728460 15728560 3145728 79.9998 79.9999

256x256

Barche 3526038 3531060 786432 77.6964 77.7281
Peppers 3531816 3534336 786432 77.7329 77.7488
Couple 3465990 3483792 786432 77.3100 77.4259
Tulips 3536892 3537684 786432 77.7648 77.7698
Jelly 3463668 3497256 786432 77.2948 77.5129

less compression that are able to produce much higher compression ratio, the

progressive to lossless coding can benefit to applications where the operator can

views the approximate image before the final lossless image transmitted.

3.6 Conclusions

In this chapter, an efficient and simple colour image coding algorithm has been

developed. The algorithm has been tested for both lossy and lossless compression.

The SPECK-based listless algorithm known as LsK [42] was expanded for com-

posite colour image compression, known as L-CSPECK. Although colour images

can be compressed separately, composite techniques provide precise bit control

and exploitation to nonlinear dependencies at high transition regions (such as

edges) that remain among the spectral planes. This proposed algorithm has in-

teresting properties which offer reduced working memory, but maintains level of

performance and efficiency similar or better than CSPECK. The L-CSPECK was

then modified to exploit the similarity in chrominance planes in order to offer

better performance in terms of rate distortion and final bit rates for images that

have good correlations between the two planes. This was achieved through a

simple modification of the scanning order so as to combine test of significance

for the chrominance planes. All tested algorithm is bit planes coded to gener-
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ate a fidelity embedded bit-stream for colour images. The results for JPEG2000

were superior to those of the other algorithms tested, which was as expected,

because it uses block based wavelet compression which involves higher computa-

tional complexity. Although the implementation of the listless structure reduced

the working memory required during the coding process, the proposed algorithm

managed to outperform the SPIHT on most tested images at low bit rates for

lossy compression. A detailed comparison with the CSPECK and L-CSPECK

using measures of PSNR and SSIM showed that the proposed algorithm outper-

forms the other methods with images that exhibited high correlations between

chrominance planes at certain bit rates. When the tested joint chrominance

plane are insignificant in the proposed coding more bits are saved for other sig-

nificant coefficients. For progressive lossless compression, the fixed memory used

in both listless colour image coders (L-CSPECK and the proposed algorithm) is

very low compared to the final dynamic memory required using CSPECK and

SPIHT about 70% saving. The huge savings found for the proposed algorithm

can greatly benefit its performance, and this is especially significant for hardware

implementation. In conclusion, the proposed listless structure for colour images

offers tremendous working memory savings compared to conventional rate scal-

able coders while maintaining similar or better level of performance compared to

state of the art algorithms such as SPIHT and CSPECK .
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Chapter 4

Listless Implementation for

Embedded 3D Image Coder

4.1 Introduction

Three dimensional (3D) data is now common in many fields. Advances in the

technology of data acquisition in medicine and geography for example, have led

to an exponential growth in the availability of 3D image data. Other factors

that contributing to these developments include storage technology and interac-

tive computer applications that use 3D models in response to the demand for

realism in graphic representation. The graphic details are represented by a huge

amount of data. Compression is essential to allow the efficient transfer and stor-

age of these data. The general idea of transform-based compression is to use

a transform that decorrelates the input signal and packs its total energy into a

small number of coefficients. Two methods of transform-based compression that

have good decorrelation properties are dicrete cosine transforms (DCT) and dis-

crete wavelet transform (DWT). 3D compression can be considered to be quite

similar to video compression where the third dimensions is time. This chapter

discuss three applications that uses three dimensional transform for compression.

The applications are video, medical and remote sensing imaging (multispectral

images).
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Motivation

This chapter proposes an efficient algorithm for 3D image compression based on

3D-SPECK. 3D images source such as volumetric medical images can be com-

pressed more efficiently in the 3D tranform domain. Although compression in two

dimensional domain can be applied to a 3D image source, the implementation in

the 3D domain will benefit from further compression in the third dimension, such

as the spectral domain or the time domain for frames in video. This will increase

the compression performance of a 3D source.

During the compression process, the quantisation of data that has been decorre-

lated using suitable transforms is crucial. In the wavelet domain, bit plane coding

is the most attractive scalar quantisation method, because it is very simple but

still works efficiently to reduce the size of the image representation. The imple-

mentation of 3D wavelet transforms with 3D images source highlights the need

for suitable coding techniques during quantisation. One available type of tech-

nique extends the appropriate 2D algorithm, for example, the 3D SPECK and

3D SPIHT. The problem with these implementations is the introduction of lists

which require dynamic memory for location information to be added, removed

and moved during the coding process. As a consequences, the algorithm depends

upon the management of variables, data dependency and memory. As the coding

process proceeds, the two lists in 3D SPECK and the three lists 3D SPIHT grow

in size, and this can lead to considerable inefficiency in the compression system.

This present study is motivated by efficient listless algorithm introduced for colour

images (Chapter 3). Hence, the idea here is to use the fixed working memory ap-

proach during the coding process. This would enable faster coding and decoding

with reduced memory requirements compared to the original 3D SPECK cod-

ing. The proposed 3D algorithm operates without a linked list and is suitable for

implementation in hardware applications. The 3D listless SPECK has a fixed,

predetermined memory requirement that is larger than that required for the im-

age alone. In the new algorithm developed here, rather than lists, a state table

with 4 bits per coefficient keeps track of the set partitions and the information

that has been encoded. Sparse marking is applied to the selected block nodes

of insignificant blocks in the state table. This way, a large group of predictable
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insignificant coefficients can be identified and skipped during the coding process.

The performance of the proposed listless algorithm will then be compared with

that of original 3D SPECK.

4.2 3D SPECK coder

The 3D SPECK was proposed by Tang and Pearlman [65, 66]. The extension

to 3D implementation should be suitable for 3D image sources and enable the

exploitation of correlations in third dimensional domains, for example, the time

domain in video and the spectral domain in multispectral remote sensing images.

Wavelets have been shown to be very adaptable with a wide range of data with

reasonable level of complexity. The 3D discrete wavelet transform (DWT) trans-

form domain can exploit correlations in the multispectral images which exhibit

tight statistical dependency along the wavelength axis of the prism [67].The 3D

SPECK maintains a block splitting algorithm to sort the significant pixels. If a

code block contains significant coefficients it is split into smaller sub-blocks. This

technique can zoom into areas with high energy and code these first, which is a

suitable method for exploiting the presence of significant high frequency intra-

band components.

The 3D SPECK is expected to be an excellent candidate for use with multispectral

images due to their properties of concentrating energy in the high frequency band.

The rate distortion curves have proved that SPECK algorithms out-perform the

SPIHT for images with higher frequency content. This was proved to be true in

both 2D and 3D cases in the initial SPECK development [37, 65, 7, 68]. The

3D SPECK maintains two link lists, the LIS and LSP [66]. It comprises of three

main stages, initialization, sorting and refinement. The sorting pass is based on

the block splitting method after a test of significance. In the refinement pass

some of the coefficients are transmitted, and the quantisation process continues

for the next bit plane (decreased) until certain bit rate achieves. The structure

of the 3D SPECK is shown in Figure 4.1[65]. The finest pixels lie at the upper

level of the pyramid while the coarsest pixels lie at the lowest level (root).
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Figure 4.1: Structure of 3D SPECK

4.3 3D listless SPECK

The idea for the 3D Listless SPECK came from the implementation of the list-

less SPECK algorithm for colour images. The transformed coefficients in the 3D

wavelet domain decorrelate the multispectral image components spatially and

spectrally. These coefficients display some redundancy that can be exploited

during the coding process. The proposed coder in this study follows the logic of

a basic sorting algorithm, as in the 3D SPECK. So that, inter-band dependence

can be exploited automatically. The first modification is that the list is removed,

and to compensate for that, a state table marker is used to identify and keep

track of the coefficients. Another modification relates to the indexing of the one

dimensional array, which offers some computational and organisational advan-

tages. This technique can be considered to be similar to the algorithm applied

to 2D images [41, 42, 44, 60, 57, 69].

The linear indexing system uses a single number, rather than three to represent

the index of coefficient. To map the 3D coefficients onto a one dimensional array,

the mapping is based on a recursive Z curve or Morton ordering. This indexing is

used instead of a raster scan because it performs better in preserving the locality

of the data points. This type of ordering also suits the pyramidal structure of

wavelet coefficients. The linear indexing or also known as Z-curve/Morton order
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for three dimensional structure is shown in Figure 4.2[70]. Linear indexing effi-

ciently supports the operations carried out on coefficient positions needed for tree

based algorithms with one operation instead of three, assuming the usual subband

arrangement of 3D wavelet coefficients. Following the linear indexing, the coeffi-

Figure 4.2: Morton scan in 3D

cients is stored in a single array of length I, where I = Row×Column×Frame.
This is the magnitude array. The state table array, which is based on linear in-

dexing, also has length I, with the marker uses 4 bits per coefficient. There is a

one-to-one correspondence between magnitude and mark. The memory needed

for this proposed algorithm is fixed, depending on the size of the image. For

example, a total of 1 MB of memory would be required to use this algorithm for

8 bpp image, size of 128× 128× 128 with an optional pre-computed array. This

actually gives a total savings of 67% compared to the memory needed for the

original 3D SPECK algorithm. The original 3D SPECK uses dynamic memory

that based on the size of list generated for the coding. With the use of two lists,

the total dynamic memory requirement might amount to 9 MB to store the loca-

tion information in the list. State table markers are placed in a 4 bit coefficient

for each marker, to keep track of the set partitions. Each element of the mark

signifies a cube, indicating something about the corresponding element in the

values in the image array. Each marker and its meanings are shown below:

• MIP : the pixel is significant
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• MNP : the pixel is newly significant, so it will not be refined for this bit-

plane

• MSP : the pixel is significant and will be refined in this bitplane

• MS2: a block of size 2× 2× 2 (i.e., 8 elements) is to be skipped

• MS4: a block of size 4× 4× 4 (i.e., 64 elements) is to be skipped

An additional pointer is added to reduce the computational time required to

calculate the number of MS2 markers. In the sorting pass, the algorithm performs

a significance test on the MIP, followed by test for all of the other blocks. All of the

first elements of the initial block are marked by a marker and then it is partitioned

by checking its significance. A block is significant if at least one of its coefficients

is equal to or greater than the threshold. These are then partitioned into smaller

sets for further significance testing. The notation below is based on the original

3D SPECK algorithm in order to describe the structure and terminology of the

new proposed algorithm. S is significant with respect to n, if :

maxi,j,kεS|ci,j,k| ≥ 2n (4.1)

where ci,j,k denotes the transformed coefficients at coordinate (i, j, k). Otherwise

it is insignificant. The significance can be defined as follows:

Sn(T ) =

{
1 ifmaxi,j,kεT |Cijk| ≥ 2n+1

0 otherwise
(4.2)

As with the 3D SPECK, the coding process consists of three main stages, ini-

tialisation, the sorting pass and refinement. Now we can define the encoding

algorithm for the 3D listless SPECK:

Initialisation:

1. Output n = blog2 (max|ci,j,k|)c
2. Map the transformed coefficient to linear indexing:

Sn(map3d) = bci,j,kc
3. State table initialisation:

• MIP for LLL (low-low-low) subband (as can be seen in Figure 4.1)
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• MSX for each initial tree; where the marker defines numbers of co-

efficient to be skipped. For example, MS2 is equal to 2 × 2 × 2 = 8

coefficients skipped. (X refers to a cube of size 2,4,8,16)

• The state marker is initialised for listless implementation. This marker

is set fixed based on assumption that it match the generated wavelet

coefficients following the Z-curve/Morton order.

Figure 4.3: Sorting pass for listless 3D SPECK

The sorting pass:

The flowchart for the sorting pass stage is shown in Figure 4.3. In increasing

order of linear indexing, the sorting pass algorithms are as follows:

Significance test based on Equation 4.2, for each coefficients:

If coefficients are marked MIP Sn (MIP ):

1. Output Sn (MIP ), whether or not the set is significant with respect to the

current threshold,2n
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2. If Sn (MIP ) =′ 1′, output sign of Sn and update marker toMNP , Sn (MNP ).

Otherwise, test next coefficients.

If coefficients are marked MSX where X is between 2 and 10, Sn (MSX):

1. Run significance test on the marked block.

For example Sn (MS3), so the number of coefficients to be tested as a block

is 23 × 23 × 23 = 512.

2. Output Sn (MSX), whether or not set coefficients are significant respective

to current threshold 2n

3. If Sn (MSX) =′ 1′, partition the current set into 8 subsets with size 2n−1×
2n−1×2n−1 and update each initial set marker toMS (X − 1), Sn (MS (X − 1)),

or else skip the whole set of coefficients.

Refinement pass:

1. For each entry marked as Sn (MSP ), except for those included in the last

sorting pass, output the nth MSB of Sn (MSP ).

2. If entry is marked as Sn (MNP ), update the marker as Sn (MSP ).

Quantisation step:

Decrease n by 1, n − 1 and perform sorting pass until the required bit rates

achieves. Significance tests are conducted using the bitwise AND operation. All

operations can be implemented by bit shifting.

Further entropy coding, based on the statistical properties of the generated bit-

stream, will improve compression performance up to 0.5 dB [41, 42]. However,

for simplicity, the test is carried out without any entropy coding applied to the

generated bit-streams. The decoding process will follow the same logarithmic

order to the input bit-streams, and the image can be reconstructed progressively

when the required bits rate are achieved. This process can also be used for lossless

compression when used with integer wavelets during the transformation process.

Algorithm complexity

The partitioning process used in the proposed algorithm follows a similar con-

cept to that of 3D SPECK partitioning rule, based on zeroblock partitioning. The
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algorithm maintains the lowest level of complexity compared to other types of

3D-based embedded coding such as the 3D SPIHT or the JPEG2000 multicom-

ponents. For example, the 3D SPIHT algorithm accesses the vales of coefficients

with particular zerotree order which is quite complex, in order to search for sig-

nificant coefficients among the entire transformed coefficients. This unstructured

coefficients access in 3D SPIHT algorithm hinders its use in certain memory con-

strained environments. Subsequently, as with the previous implementation of the

listless algorithm to colour image discussed in Chapter 3, the key contribution in

the implementation of a listless algorithm with 3D SPECK is the reduced working

memory required when the need for a dynamic list is removed from the encoding

process. To describe the efficiency, we will compare the amount of required mem-

ory when listless coding are applied. The dynamic memory in the original 3D

SPECK is required so that the list can store the coordinates that represent the

positions of the sets of coefficients tested and of the significant coefficients found.

This dynamic memory is small at lower bit rates, but as bit rates increase or in

application where images must be reconstructed with much higher precision, as

in medicine and the remote sensing of multispectral images, the memory needed

becomes very large, subsequently leading to slower encoding and decoding pro-

cesses.

As previously mentioned in Section 4.2, the original 3D SPECK is expected to

work very well on images with high frequency content, such as multispectral re-

mote sensing images. This assumption is based on the performance of the original

2D SPECK with the same type of images such as Barbara, compared to zerotree-

based algorithms like the SPIHT. However, due to its efficient implementation,

the 3D listless SPECK can be applied to various image type, for example video

source or volumetric medical images. On the other hand, in terms of rate distor-

tion or final bit rate, its performance might be not as good as other embedded

coder such as the Joint Photographic Experts Group (JPEG)2000 multicompo-

nent and the 3D SPIHT. Therefore, the comparison of performance will be limited

to the listless algorithm and the 3D SPECK only.
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4.4 Numerical results

The performance of the proposed coder, 3D listless SPECK is evaluated based

on three measures: firstly, the working memory used during coding or savings

in terms of required memory space; secondly, its rate distortion PSNR measured

for lossy compression; and finally, the bit rate or compression ratio for lossless

compression. The 3D images are taken from various sources, such as, video [71,

72], volumetric medical images [73, 74] and remote sensing satellite images [75,

76]. For an example, Figure 4.4 shows the reconstructed Vessel image at 0.5 bit

rates compressed using 3D SPECK (viewed using Matlab function ’isosurface’).

(a) Original Vessel

(b) Compressed at 0.5 bit rate

Figure 4.4: Compression of volumetric Vessel image
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4.4.1 Working memory

The proposed algorithm operates without a linked list, and so instead has a pre-

determined/fixed memory requirement. A state table with 4 bits per coefficient

keeps track of the partitioning process and the encoded information. For 3D

image with size of 8 bits, using the proposed algorithm means that the memory

requirements are fixed at approximately 50% of the 3D image’s original size, and

this can be calculated using the equation below:

image dimension = height× width× number of frames/slice

Memorylistless = image dimension× 4bits (4.3)

For the 3D SPECK, the memory required is based on the number of lists and the

bits required to represent the coordinate of coefficients in the list. So, similar to

Equation 3.9, the memory required to code the 3D SPECK is:

Memory3dSPECK = (LLSP + LLIS)× (bitX + bitY + bitZ) (4.4)

where

L refers to the number of coefficients in the list,

bitX, bitY and bitZ refer to the number of bits required to represent the coordi-

nates for each dimension

So, for example for an image of size 128 × 128 × 128, the bits required to rep-

resent each plane are log2(128) = 7 which gives a total of 21 bits for each item

in the list. The final lists generated at a bit rate of 0.5 are Llsp = 166552 and

Llis = 354109, so the total memory in bits is equal to 10933881 bits or 1.3034

MBytes. For the listless implementation, the memory required for any com-

pressed image in lossless compression is 128 × 128 × 128 × 4 = 8388608 bits or

1 MB. Although this still seems large, its fixed nature means that the algorithm

requires no memory management where list updating the lists requires adding

or removing of items. Moreover, the list in the SPECK is calculated for the

lower rate of 0.5, which means that the memory required will increase at higher

rates. For example, at a bit rate of 1, the memory needed for lists generated in

the 3D SPECK is 2.3313 MB. Yet the listless implementation requiring a fixed
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memory is applicable to all rates. At 0.5 and 1 bit rates, the memory savings of

Vessel image are 23.2788% and 57.1055% respectively compared to the memory

used in the original 3D SPECK implementation. These saving will become larger

and give advantages greater especially in applications which require lossless and

progressive coding, as with the implementation for colour images in Chapter 3.

Graphs in Figure 4.5 show the increasing memory required in 3D SPECK when

compared with the fixed listless algorithm.

(a) Terrain (b) Urban

(c) Lunar (d) Cuprite

Figure 4.5: Comparison of memory required during coding process

4.4.2 Comparison of lossy compression performance

During initial tests, the overall performance of the 3D listless coder was tested

on randomly selected 3D sources for comparison with the 3D SPECK. Here,

a popular video sources for compression are cropped and volumetric medical
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images are tested for lossy compression. The 3D transform used is CDF-9/7

filter with five level decompositions applied to each dimensions. Lower levels of

decomposition are applied to certain images mentioned in the Table 4.1, where

compression results are shown. The rate distortion, PSNR performance of the

reconstructed 3D image are measured using the equation below [65]:

PSNR = 10log10

(
2nsb − 1

)2
MSE

(4.5)

where nsb denotes the maximum bit depth, and MSE is the mean square error

between the original and reconstructed image.

From the results shown in Table 4.1, the PSNR of the proposed 3D algorithm

perform better at certain rates, especially with images with five levels of decom-

position in each dimensions. Using different level of decomposition on images

such as Saggital and Coronal generate a slight decay in PSNR. The decay rate

close to 1 dB, where in both images three level of decomposition are applied. This

decay are expected since the proposed algorithm uses fixed initial state markers

on all images. These marker are assumed to matched with the indexing that

mapped similar to five level of decompositions at each dimension. An adaptive

state marker initialization can reduce the decaying results, but come at the cost of

additional calculation/complexity to coder. Images applied with five level decom-

positions produce small improvement at certain rates around 0.1 dB are evident,

which suggests a performance similar to that of the 3D SPECK for natural 3D

images type (video and medical source).

Multispectral images

Hyperspectal data commonly possess very good spatial resolution with superfine

spectral details, but these come at the cost of large datasets. For example, with

224 subbands formed with 16 bit representation, the amount of data for an image

size of 512 × 614 pixels is about 134MB. Therefore, efficient compression needs

to be applied for transmission and storage. In this study, only few selection of

spectral band uses for compression, so the suitable term uses is multispectral

images, hyperspectral refers to the original remote sensing image, where source
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Table 4.1: Rate distortion performance with various types of 3D source

Bit Rate 3D SPECK Proposed 3D Listless

Miss Am

0.1 35.3025 35.3865
0.125 36.0702 36.0948
0.25 39.4489 39.4419
0.5 43.4085 43.5750

Mri 128x128x32

0.1 20.2952 20.4054
0.125 20.7778 20.9662
0.25 23.1532 23.1906
0.5 26.3266 26.1727
1 30.7402 30.9200

Vessel 128x128x128

0.1 29.9591 29.9833
0.125 30.5863 30.7609
0.25 33.1563 33.2475
0.5 35.1249 36.1777
1 39.3679 39.3904

Saggital 3 level 256x256x16

0.125 36.6471 36.6471
0.25 44.6971 43.5060
0.5 56.8300 55.4794

Coronal 3 level 256x256x16

0.125 34.4903 34.0668
0.25 41.2838 40.1890
0.5 51.7288 50.1832

taken. Figure 4.6[75] represent the the spectral properties in hyperspectral im-

ages, whereas multispectral consist of fewer spectral bands than the hyperspectral

images. Multispectral images have specific properties that can be used in an ef-

ficient compression system. Another example of a hyperspectral image source is

Terrain [76] with an original size of 307 pixels by 500 lines by 210 band which is

usually represented using 16-bit precision, requiring 61.48 MB for storage. Com-

pression of this type of 3D image sources usually requires the exploitation of

interband correlation. Hyperspectral/multispectral images usually contain high

frequency information, which means that the 3D SPECK is likely to be an excel-

lent contender which will offer a lower level of complexity than other progressive
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Figure 4.6: The spectral properties for Moffet image

coders. Image with high frequency content is the most suitable with the 3D

SPECK coder. Since listless implementation uses a zeroblock structure for par-

titioning, the algorithms were also tested for hyperspectral/multispectral images

and the results are shown in Table 4.2. The multispectral images were cropped

to square region of 256 × 256 pixels using 32 bands and then transformed us-

ing the CDF-9/7 irreversible transform with five level wavelet decompositions at

each dimension. For lossy compression of multispectral images, there is a slight

reduction in the PSNR performance of the proposed algorithm. The measured

differences are between 0.1 and 1.5 dB at certain rates. Despite the noticeable

difference in PSNR, the degradation of the compressed image is not obvious be-

cause of its high frequency nature. An example of one band reconstructed using

the two algorithms is shown in Figure 4.7. As an approximation, the 3D SPECK

outperforms the proposed listless coder at most rates for multispectral images.

However, the memory used in 3D SPECK will increase as the bit rate increase.

Whereas the implementation of listless coder will be beneficial in terms of faster

coding and decoding time due to fixed and reduced memory used during the

coding process.
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Table 4.2: Lossy compression of multispectal images

Image Bit rate 3D SPECK Proposed
Terrain 0.1 36.0898 32.5056

0.25 41.3538 38.6554
0.5 45.3238 42.792
1 49.9873 47.5189

Urban 0.1 36.3704 32.3236
0.25 41.1043 38.236
0.5 44.5714 42.7114
1 49.2803 47.1675

Lunar Lake 0.1 44.445 43.7254
0.25 49.7817 48.8619
0.5 52.8588 52.0911
1 56.3312 55.2982

Moffet 0.1 40.5336 36.2321
0.25 47.6069 43.766
0.5 52.7854 50.2166
1 57.9943 55.6486

Cuprite 0.1 40.5336 36.2321
0.25 47.6069 43.766
0.5 52.7854 50.2166
1 57.9943 55.6486

Jasper 0.1 44.9641 44.6846
0.25 48.3513 47.9177
0.5 50.9033 50.3067
1 54.8536 53.9004

4.4.3 Comparison of lossless compression performance

Progressive-lossless compression, is usually used in medical image application.

Therefore, the performance of progressive-lossless compression was tested us-

ing volumetric medical images. Volumetric medical images consist of the 3D

grid where voxels (volumetric pixel) contain RGB or greyscale information (in

this study only greyscale information). 3D medical images consist of a group of

frames/slices that represent cross sections of a part of the human anatomy. Med-

ical images also have large storage requirements, so an efficient data compression

is required to reduce the size of representation of digital data without signifi-
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(a) 3D SPECK (b) 3D listless

Figure 4.7: Reconstructed Urban image band 1 at bit rate 0.1

cantly degradation or loss of quality. Lossy compression methods can reduce

large amount of storage required, but the loss of visual quality might be signifi-

cant. For lossless compression however, the compression ratio will be limited to

between 2:1 and 3:1 but with no loss of quality. Both type of lossy and lossless

compression were implemented in this work for progressive-lossless compression

using 3D listless SPECK algorithms.

Integer wavelet transform

Selected volumetric medical images were applied with five levels of wavelet decom-

position in spatial dimension and one level in the third dimension (slices/frame).

Volumetric images are available from magnetic resonance imaging (MRI) scans

[73] and Digital Imaging and Communications in Medicine (DICOM) images

format [77]. Implementation using the 5/3 wavelet filter was based on stan-

dard JPEG2000 specifications for lossless images. The sequential plus prediction

(S+P) is another low complexity multiresolution transform based on sequential

and linear predictive coding. The S+P maps integers to integers, and has been

used in the lossless compression of images giving better performance than the

JPEG standard [78]. Table 4.3 shows the predictive weights of the S+P reversible

transform developed by Said and Pearlman[78]. According to the original S+P

implementation [78], Predictor B is indicated for natural, and C for medical im-

ages, and therefore only predictor C is used for this test. Figure 4.8 shows the
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Table 4.3: Predictive weight of S+P transform

type
Predictive weight
α−1 α0 α1 β1

A 0 1/4 1/4 0
B 0 2/8 2/8 2/8
C 1/16 4/16 8/16 6/16

original slices of the volumetric images used in the experiment. The quality of

lossy reconstruction during progressive transmission at specific bit rates is pre-

sented in Table 4.4. Using the reversible transform, lossy reconstruction using

(a) Saggital (b) Coronal (c) Tranverse (d) Short (e) Brain

Figure 4.8: Original 3D source (Slice image)

the listless coder shows a significantly better performance compared with the 3D

SPECK. The improvement of over 2 dB at certain rates suggest that the oper-

ator can view a better image approximation during browsing. The results also

show that although the sequential transform was used with a predictor specifi-

cally generated for medical images, the more common 5/3 tap filter outperforms

S+P transform. Lossless compression performance was then measured using the

final rate or bpp required to reconstruct the error free image. The results are

shown in Table 4.5.

For lossless compression, the 3D SPECK outperforms the 3D listless coder in

most cases in term of final bit rate to reconstruct the image. 3D SPECK require

less bit to reconstruct the lossless image when compared with 3D listless coder.

In the lossless case however, the S+P transform perform better than the 5/3

filter. This highlights the efficiency of the S+P transform in lossless applications.

Despite lower performance using the listless algorithms, efficiency is maximised

by using the proposed transform. This is due to the fact that the fixed and

reduced memory used in listless implementation provides huge savings compared
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Table 4.4: Lossy reconstruction of reversible transform

CDF 5/3 S+P
Bit rate 3D 3D listless ∆ 3D SPECK 3D listless ∆

Coronal
0.125 22.0821 22.8413 0.7592 19.4259 23.0703 3.6444
0.25 25.6671 27.5288 1.8617 23.6193 24.4302 0.8109
0.5 30.9173 32.0097 1.0924 28.671 29.6179 0.9469
1 37.23495 37.6137 0.37875 34.298 34.6707 0.3727

Saggital
0.125 22.84553 24.1081 1.26257 21.5029 25.0586 3.5557
0.25 28.13142 28.8096 0.67818 25.3157 27.0517 1.736
0.5 33.21846 33.6624 0.44394 30.002 32.0321 2.0301
1 40.93693 41.7854 0.84847 37.9973 39.1153 1.118

Tranverse
0.125 18.608 18.5365 -0.0715 16.8633 19.0679 2.2046
0.25 22.4461 22.6912 0.2451 20.0495 20.1796 0.1301
0.5 27.2393 27.6452 0.4059 24.3752 24.718 0.3428
1 32.5378 32.5781 0.0403 29.6963 29.8852 0.1889
2 40.0297 39.6733 -0.3564 19.4633 20.3129 0.8496

Short
0.125 21.4902 22.6674 1.1772 22.3428 24.2468 1.904
0.25 24.4776 23.3627 -1.1149 24.9901 24.963 -0.0271
0.5 27.796 27.8348 0.0388 29.6841 29.7678 0.0837
1 32.479 32.4989 0.0199 19.4259 23.0703 3.6444

Table 4.5: Final bit rate of lossless compression

IWT 5/3 S+P
Image 3D SPECK Proposed 3D SPECK Proposed
MRI 2.8424 2.8638 2.83464 2.8592
Coronal 2.6948 2.7614 2.6722 2.7378
Saggital 2.1915 2.2284 2.1666 2.2035
Tranverse 3.9 4.0737 3.9128 4.0196
Short 4.3009 4.4634 4.2435 4.3990
Brain 5.3539 3.4178 5.3078 3.8918

to the 3D SPECK. To prove this, the percentage saving are shown in Table 4.6.

The equation to measure the memory needed is represented in Equations 4.3 and

4.4. Notice that the savings varies from image to image. The reason for this is
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Table 4.6: Memory used (MegaBytes) and its saving in lossless application

Image 3D SPECK Proposed Saving%
MRI 0.3060 0.125 59.1537
Coronal 1.4003 0.5 64.2926
Saggital 1.2017 0.5 58.3922
Tranverse 0.9538 0.25 73.7882
Short 2.2949 0.5 78.2122
Brain 3.3821 0.6250 81.5204

that complex images will need more lists to represent location and hence greater

savings can be achieved using listless coder with fixed memory.

4.5 Conclusions

The 3D listless SPECK is a new, efficient and lower memory 3D image coding

method. The significant reordering/mapping of 3D wavelet coefficients ensures

that it codes more significant information belonging to the lower frequency bands

at an earlier stage. After that, the partitioning process based on zeroblock parti-

tioning is similar to that of the 3D SPECK, but without any lists being required.

The bit-stream generated by the proposed coder has the ability to effect pro-

gressive transmission, but produces a different level of performance depending on

factors such as image type, the type of transform used and the mode of compres-

sion. Overall, the performance of the proposed listless 3D coder in terms of PSNR

is lower than the 3D SPECK with multispectral and lossless volumetric medical

image. However, similar or better performance can be seen in the irreversible

lossy compression of medical and video images. However, the main contribution

of the research described in this chapter is the implementation of the 3D listless

structure, which reduces the amount of working memory required compared with

the 3D SPECK whose lists that use adaptive memory. This significantly improve

the efficiency of the progressive coder, with obvious salience for applications that

require progressive lossless compression where the massive savings in memory

required will improve the performance of progressive lossless coders.
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Chapter 5

Beyond Wavelet - The

Directional Filter Bank

5.1 Introduction

The wavelet transform is widely used in image compression algorithms due to its

decorrelation properties. Wavelet based compression offers high coding efficiency,

multiresolution image representation, and acceptable level of computational com-

plexity. Wavelet-based image and video compression has gained increasing recog-

nition, especially since the breakthrough of the development of embedded zerotree

coding algorithms. However, this has not eliminated the need for more efficient

image transforms. Recent research has highlighted the fact that wavelets are

unable to represent natural images efficiently due to singularities in the form

of regular edges. In other words, the wavelet is not optimal in capturing two

dimensional singularities such as edges and smooth curves especially in natural

images. As a consequence, transforms with direction sensitivity are now being the

subject of research leading to the development of geometrical image transforms.

While existing geometrical transforms structures have already managed to out-

performed wavelets both theoretically and in practice, at least in certain respects,

consistent improvements in performance over wavelets in particular domains of

image compression have not yet been achieved. This chapter first highlight the

limitations of wavelet in representing smooth contours and edges in images before
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going on to explore the currently available approach known as the geometrical

image transform. After analysing the advantage and disadvantage of each ap-

proach, a slightly different implementation of the directional filter bank (DFB)

in the wavelet domain is proposed which could improve the performance of a

direction-based transform for image compression.

5.2 The limitations of wavelet and the new ap-

proaches

Over the last decade, wavelets have had a growing impact on signal processing

theory and practice due to their decorrelation properties and successful use in

compression applications [35]. The crux of wavelet-based algorithms is the filter

banks which have become standard in signal processing operators. A good filter

bank is able to represent signal approximation with few coefficients. However, as

previously mentioned, wavelet transform is not optimal for the representation of

images consisting of different regions of smoothly varying grey value separated

by smooth boundaries. This is due to the two dimensional tensor product in

wavelet bases. This problem can be seen visually in Figure 5.1, in the form of

(a) Original Zoneplate (b) Wavelet: 2048 bit

Figure 5.1: Example of compression artefact in wavelet

compression artefacts which can also be derived theoretically from the quantita-

tive measurement using non-linear approximation(NLA) error [79].

Non-linear approximation error is a measure of rate distortion in transform coders,
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and it can be computed by separating the coefficients quantised to zero from all

others [80]. The resulting distortion rate depends crucially on the precision of

NLA with few non-zero basis coefficients. The NLA function (also known as best

M-term approximation) for a signal f , where f =
∑∞

n=1 cnφn can be defined as:

f̂M =
∑
nεIM

cnφn (5.1)

where IM is the set of indexes of the M largest |cn|. The quality of the approx-

imated function f̂M relates to how sparse the expansion by {φn}∞n=1 is, or how

well the expansion compacts the energy of f into a few coefficients [15]. From

this class of function, the best M-term approximation error is defined as :

‖f − f̂M‖ (5.2)

which indicates the decay rate of any basis. NLA serves as a first indicator

to any transform performance in compression application. However, it must be

stressed that although a powerful M-term approximation is desirable, it must be

followed by an appropriate compression or quantisation technique. For a two

dimensional wavelet, the basis is obtained by a tensor product of one dimensional

wavelets. The M-term NLA of a simple piecewise constant function with a linear

discontinuity leads to a quadratic error of the order of [9]:

ε̃M ∼
1

M
(5.3)

This rate is due to the fact that the discontinuities in images yield many wavelet

coefficients of large magnitude. So the regularity over the edges remains unseen

from the discrete wavelet transform. As a solution, a transforms and basis that

includes some ’geometry’ form providing truly two dimensional representation is

needed [9]. Geometry image representation can be described as in Figure 5.2.

Next, the geometry transforms, such as the contourlet [15], curvelet [10, 11] and

bandelet [12, 81, 13] are investigated. These have been developed to overcome

the limitation of wavelet in providing directionality and anisotropy information.

At the same time the transforms maintain beneficial properties such as multires-
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Figure 5.2: Wavelet versus the new scheme: fewer refinements in the new scheme
at contours or edges

olution and localization. The approximation theory [80], related to NLA error

produced by different transforms is also discussed.

5.2.1 Curvelet

Curvelet basis provides algorithmic solution to approximate geometric image

where contours are C2 [10, 11]. Approximation theory, NLA in curvelet is satisfied

by the equation below:

‖f − fM‖2 = O(M−2 (logM)3) (5.4)

The curvelet basis is a priori fixed and the thresholding of the curvelet coefficients

is sufficient to adapt the approximation to the geometry of the image. However,

it has the disadvantage that the approximation is only optimal for piecewise Cα

functions with α = 2, but it is no longer optimal for α > 2 or for less regular

functions such as bounded variations function [14]. Curvelet are not practically

suitable for image compression because it doesn’t have orthogonal basis and the

redundancy factor of the transform. Redundancy means the transform generate

numbers of coefficients larger than the size of original signal, hence more signifi-

cant bit generated during coding. However, application such as denoising would

benefited from the efficiency of curvelet transforms to represent contours and

edges.
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5.2.2 Bandelet

A bandelet is a another image representation method, which can efficiently indi-

cate the local directions and is adapted to the image’s geometry [82]. It provides

adaptive geometric representations that modify the image representation using

geometry computed from the image [12], where a geometric flow of vectors is

defined to represent the edges in an image. These vectors give the local direc-

tions in which the image has regular variations. Orthogonal bandelet bases are

subsequently constructed by dividing the image support in regions where the ge-

ometric flow is parallel. Bandelets can efficiently represent image regularity and

perform better than wavelet transforms. However, due to the adaptive nature of

this transform it requires the detection of the discontinuity curve beforehand, so

that more computation is required compared to other fixed transforms such as

contourlets and wavelets.

5.2.3 Contourlet

The contourlet transform which was developed by Min Do and Vertelli [15] is

among the most significant, because it was specifically developed for digital im-

ages in discrete domains and provides efficient directional multiresolution expan-

sion. However the contourlet is a redundant transform due to the implementation

of the Laplacian pyramidal filter. Redundancy means that coding process requires

more coefficients to be coded, which will be likely to reduce the coding perfor-

mance. However, it has been proven that contourlets perform very well compared

to wavelets for low bit rate coding [83]. The objectives of the development of con-

tourlet transforms are [15]:

• Multiresolution representation: enabling images to be successfully approx-

imated, from coarse to fine resolutions.

• Localisation: the basis elements should be localized in spatial and frequency

domain.

• Critical sampling : to reduce redundancy.

• Directionality: containing basis elements oriented at multidirection.

• Anisotropy: to capture smooth contours in images by using basis elements

with variety of elongated shapes with different aspect ratios.
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A contourlet consists of two main blocks: the Laplacian pyramid and directional

filter bank. The directional filter bank was designed to capture high frequency

information representing directional information from the input image. As a

result, low frequency content is poorly handled. Contourlets address this issue by

combining the multiscale decompositions of Laplacian pyramidal filters in order

to remove low frequencies in the input image before applying the directional filter

bank.

5.2.4 Wavelet based contourlet transform

The wavelet-based contourlet transform [16] has been proposed to remove redun-

dancy in contourlet transform and to make it suitable for image compression.

The wavelet-based contourlet transform (WBCT) and its set partitioning in hi-

erarchical trees (SPIHT) coding is described in [84]. A study of SPECK-based

coding with WBCT shows that block based coding outperform the SPIHT-based

WBCT [85]. This is due to set partitioned embedded block coder (SPECK)’s abil-

ity to capture more high frequency information from images with a lot of textural

details. The no-list SPIHT(NLS) has also been combined with the WBCT [18]

showing improvements of about 0.2dB at low bit rates. However, WBCT gen-

erates the artefact called the pseudo-Gibbs phenomena on compressed images;

when some of the transforms are set to zero during NLA. The ringing artefact is

obvious for DFB and the issue is addressed in contourlets by applying DFB to

the Laplacian pyramid, where a highpass channel is free from frequency scram-

bling [15]. This artefact can be quite obvious especially in smooth images like

Lenna and the distortion rate of the WBCT can be quite low due to this artefact.

A combination of WBCT at certain decomposition levels and normal wavelets

has been proposed to improve the performance, leading to the introduction of

the hybrid wavelet and directional filter banks (HWD) family [17]. The HWD

offers better performance than contourlets, in terms of peak signal-to-noise ratio

(PSNR) during NLA reconstruction, but the resulted image coding still suffers

the pseudo-Gibbs phenomenon.
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5.2.5 Directional filter bank for image decomposition

The directional filter bank used for image decomposition consists of the separa-

tion of images into several components, each containing directional information

in some specific directions. Decomposition into directional components has suc-

cessfully been used for feature extraction and pattern recognition [86, 87]. The

first two dimensional DFB was developed by Bamberger and Smith, and it can

be maximally decimated while achieving perfect reconstruction [86, 88, 89, 90].

The DFB was implemented in a tree structure composed of a two band system,

first by modulating the signal and filter with a diamond shaped filter [88]. The

second step involves parallelogram shaped characteristic passband to resample

the matrices. In the contourlet transform, construction of the DFB used a sim-

pler approach based on two building blocks consisting of two-channel quincunx

filter banks with fan filter as shown in Figure 5.3(a), followed by a shearing oper-

ator in Figure 5.3(b), to re-order the image samples [15]. This approach provides

different directional frequency partitions while maintaining perfect reconstruc-

tion properties. The key to the DFB is to achieve the desired spectrum division

(Figure 5.3(c)) using an appropriate combination of the shearing operation with

the two directional partition of quincunx filter banks at each node in a binary

tree-structured filter bank. Filter bank implementation in the DFB is based on

a ladder structure [91].

5.3 Hybrid wavelet and directional filter bank

5.3.1 Construction

It was proposed in this study to improve the directionality of wavelet transform

by employing the directional filter bank onto the highpass channel in the wavelet

domain. However, unlike in the previous implementations, the DFB is only imple-

mented onto the highpass band (HH) in wavelet decompositions. The directional

filter used is based on contourlet transforms. Therefore, the term wavelet-based

contourlet in the highpass domain (WBChh) was coined to represent the pro-

posed filter. One of the major drawbacks of using the HWD [16, 17, 92] and

WBCT [18, 84, 85] is the pseudo-Gibbs artefacts introduced when some of the
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(a) First block: quincunx filter

(b) Shearing operation (c) Frequency partitioning

Figure 5.3: DFB in contourlet

transform coefficients are set to zero during NLA and coding. In both methods,

the artefacts become severe with the implementation of DFB in discrete wavelet

transform (DWT) because the long filter is used in DFB for better directional

resolutions in directional basis functions such as wavelet [17]. This is the main

reason for the application of contourlet transforms to the directional filter bank in

Laplacian pyramid in which the highpass channel is free from frequency scram-

bling [15]. The objectives of this work is to find a balanced solution between

maintaining compression performance and improving directionality by:

1. Providing non redundant transform for image compression coding;

2. Avoiding frequency scrambling when using DFB in DWT;

3. Only implementing DFB in the finer levels to remove the pseudo-Gibbs

artefact

4. A transform with directionality at lower computational complexity
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The wavelet as a directional basis

As previously described in Section 2.4, a two dimensional wavelet transform con-

structed from one dimensional scaling function, φ (t) and wavelet function, ω (t),

and forms a tight frame of an orthonormal basis L2 (R). The decomposition of

multiresolution space representation in Equation 2.14 correspond to [22]:

Vj−1 ⊗ Vj−1 = (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) (5.5)

where (Vj ⊗ Vj) is the coarse scale approximation, while one has the following

horizontal, vertical, and diagonal detail spaces:

WH
j = Vj ⊗Wj, W

V
j == Wj ⊗ Vj, WD

j = Wj ⊗Wj. (5.6)

Each of the three wavelet spaces is spanned with a wavelet, where the mother

wavelets are:

ωH (t) = φ (t1)ω (t2)

ωV (t) = ω (t1)φ (t2)

ωD (t) = ω (t1)ω (t2)

(5.7)

This type of decomposition is known as an isotropic wavelet decomposition, and

are often used in image processing, since it has a square support that not stretched

along the axes. Two dimensional isotropic wavelet correspond to a non-separable

basis, and require three mother wavelets in Equation 5.7. Figure 5.4[22] shows an

examples of this wavelets. One level decomposition of two dimensional isotropic

wavelet is shown in 5.5.

Frequency scrambling occurs in the wavelet filter bank because after down-

sampling, a highpass channel is folded back into the low frequency band (Figure

5.5), and thus its spectrum is reflected. The regions which contain frequency

scrambling are horizontal and vertical wavelet subbands, so directional decom-

position is only applied to the diagonal wavelet subband in order to avoid the

low frequency regions where frequency scrambling problems arise. This is the
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5.3 Hybrid wavelet and directional filter bank

Figure 5.4: The 2D isotropic wavelet and the approximative support

Figure 5.5: One level 2D isotropic wavelet decomposition

simplest and yet efficient way to introduce directionality into wavelet transforms

of an images and at the same time avoid frequency scrambling.

5.3.2 Computational complexity

This section investigates the computational complexity of the proposed trans-

forms. The discussion include an analysis of complexity in wavelets, contourlets

and the HWD. The proposed transform uses the ladder structure, the pkva filter

[15] used in contourlets. The DWT and the DFB are two independent stages simi-

lar to the Laplacian pyramid filter and the DFB in original contourlets [15]. Thus,

the calculation of computational complexities is by adding the complexity of each

stage to produce the total complexity of one level of transform. The computa-

tional complexity measurement is based on the number of real multiplications
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5.3 Hybrid wavelet and directional filter bank

(RM) and real additions (RA) required for each input sample. Non-redundant

systems such as the wavelet transform, have critical sampling which produces

the number of transform coefficients equal to the number of input samples or

the original image size. Consequently, in this case, computational complexity

can be represented as the multiplications per input sample (MPS) and additions

per input sample (APS). All transform using iteration of an elementary one level

transforms. For example, in a one level transform that requires C operations per

input sample, then the total complexity for the L level is given by equation [93]:

Ctotal = C +
C

4
+
C

42
...+

C

4L−1
<

4C

3
(5.8)

Wavelet complexity

First, the complexity of wavelet transforms is considered. The CDF-9/7 filter

bank decomposition can be constructed by cascading the filter in two dimensions.

This is represented in Figure 5.6. Accordingly, for a one dimensional filter the

Figure 5.6: Cascade decomposition

input is lowpass and highpass filtered and decimated to generate two decomposed

subbands. Decimation is a resampling process, and so it does not add to the

complexity. Filtering requires convolution between the input signal and the filter.
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5.3 Hybrid wavelet and directional filter bank

For a filter with L length the convolution requires:

RM = L

RA = L− 1 (5.9)

So, for each input sample using one dimensional CDF-9/7 tap filter, a 9 tap

lowpass filter takes 9 real multiplications and 8 real additions. A 7 tap highpass

filter uses 7 real multiplications and 6 additions. Using two analysis filters gives

a total of 16 MPS and 14 APS. However, the decimation process that follows

filtering discards half of the samples, and therefore the number of operations for

each input sample are:

RM =
16

2
= 8MPS

RA =
14

2
= 7APS (5.10)

For a two dimensional wavelet with image size, N1 × N2, the cascading filter

requires:

RM =
N1 ·N2 · 8 +N2 ·N1 · 8

N2N1

= 16MPS

RA =
N1 ·N2 · 7 +N2 ·N1 · 7

N2N1

= 14APS (5.11)

Based on the Equation 5.8, the total complexity of wavelet transform with five

level decompositions is therefore:

Multiplications =
4× 16

3
= 21.333MPS (5.12)

Additions =
4× 14

3
= 18.667APS (5.13)
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5.3 Hybrid wavelet and directional filter bank

Figure 5.7: Laplacian decomposition

HWD complexity

The total complexity of the HWD, in this case is HWD-F [17] where the direc-

tional filter is applied on each subband of wavelet decomposition is given as:

4

3
lh + 3

(
3

(
lr
2

)
+ 1

) Jm∑
j=1

(
lj
4j

)
MPS (5.14)

4

3
lh + 9

((
lr
2

)
− 1

2

) Jm∑
j=1

(
lj
4j

)
APS (5.15)

where,

lr is the length of the quincunx filter bank, QFB,

lh denotes the length of the wavelet filter,

lj denotes the DFB level (1 ≤ j ≤ Jm).

So, the total complexity of using the CDF-9/7 wavelet and triplet halfband filter

in HWD-F with l1 = l2 = 3 directional level and directional level, lj = 2 and the

number of direction, lr = 8 are:

Multiplications =
4× 16

3
+ 3

(
3

(
8

2

)
+ 1

)(
3

41
+

3

42

)
= 57.8955MPS(5.16)

Additions =
4× 14

3
+ 9

((
8

2

)
− 1

2

)(
3

41
+

3

42

)
= 48.1979APS(5.17)
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Contourlet complexity

The measurement of contourlet complexity for N pixel is represented with pyra-

midal decomposition and the DFB respectively [15]:

J∑
j=1

N

(
1

4

)j−1(
Lp
2

+ 1

)
(5.18)

J∑
j=1

N

(
1

4

)j−1
Ldlj (5.19)

where, j denotes the level of decompositions,

N for the number of pixel in image,

Lp denotes the length of the pyramid filter,

Ld denotes the length of the directional filter,

lj denotes the DFB level.

The computational complexity is added to produce the total complexity of a one

level contourlet, because the transforms consist of two independent stages. For

one level Laplacian pyramid decompositions as in Figure 5.7 that uses CDF-9/7

filter, the Equation 5.18 is considered. With CDF-9/7 filter, the lowpass filter

requires 9
2

+ 9
4

= 6.75 MPS and 8
2

+ 8
4

= 6 APS. Then the approximation is

upsampled and filtered with the 7 tap lowpass filter to produce the predictive

version of the original image, which requires 7
2

+ 7
4

= 5.25 MPS and 6
2

+ 6
4

= 4.5

APS. After that, one addition is required to calculate the difference between the

original and predict signal. As a result, based on Equation 5.18, the one level

Laplacian pyramid requires:

RM = 6.75 + 5.25 = 12MPS (5.20)

RA = 6 + 4.5 + 1 = 11.5APS (5.21)

For the DFB decomposition as in Equation 5.19, the ladder structure shown

in Figure 5.8 [91] is used to construct the DFB pkva filter. β (z) in the figure

is the filter with length L, which is a cascade of a one dimensional filter in

two dimensions. So, the complexity for using pkva filter with the length of 12,

two-dimensional transform requires 2L = 24 multiplications and 2 (L− 1) = 23
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Figure 5.8: Ladder structure

additions. With 2k band of direction in the DFB, where k stage three of filter

banks, complexity of the DFB based on Equation 5.19 are :

RM = 24 (k)MPS (5.22)

RA = 23 (k)APS (5.23)

This gives the total complexity of the one-level contourlet transforms as [94] :

RM (k) = 12 + 24 (k)MPS (5.24)

RA (k) = 11.5 + 23 (k)APS (5.25)

For contourlet transform with directional level {lj}5>j>1 = {0, 0, 0, 4, 5} where l1

is the finest decompositions requires :

RM =
4 · 12

3
+

1

42
(24 · 4) +

1

41
(24 · 5) = 52MPS (5.26)

RA =
4 · 11.5

3
+

1

42
(23 · 4) +

1

41
(23 · 5) = 49.8333APS (5.27)

WBChh complexity

For the DFB, with l level full binary tree decomposition the complexity of the

DFB is multiplied by l. This holds true because the initial decomposition block in

the DFB is followed by two blocks at half rate, four blocks at quarter rate and so
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on [15]. The complexity of the directional filter within the wavelet decomposition

is:

Ld

J∑
j=1

(
1

4

)
12lj (5.28)

where lj is the DFB level decompositions to the j highpass channel of the DWT,

and Ld is the number of filters used in the DFB. If Lw is the number of filters

used in the wavelet decompositions, the complexity of WBChh is a combination

of both transforms:
4

3
Lw + Ld

J∑
j=1

(
lj
4j

)
(5.29)

The DFB filter used is a pkva filter with length 12 [91] (ladder filter) from the

contourlet transform, so for five level wavelet decompositions with directional

level {lj}5>j>1 = {0, 0, 0, 3, 3} requires :

RM =
4 · 16

3
+

1

42
(24 · 3) +

1

41
(24 · 3) = 43.8333MPS (5.30)

RA =
4 · 14

3
+

1

42
(23 · 3) +

1

41
(23 · 3) = 40.2291APS (5.31)

From the complexity calculations, additional directional information significantly

adds to the complexity of the wavelet decompositions. However, the proposed

transform, WBChh has lower complexity compared to HWD and the contourlet

transform. In summary, the complexity of the transform follows an increasing

order as shown in Table 5.1.

Table 5.1: Comparison of computational complexity

Transform Total Additions Total Multiplication
Wavelet 18.667 21.333
WBChh 40.2291 43.8333
Contourlet 49.8333 52
HWD 48.1979 57.8955
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5.4 Application and results

In this section, the WBChh transforms were analysed using non-linear approx-

imation before accessing its their potential for image compression application.

The performance measures used for evaluation are PSNR and structural similar-

ity (SSIM)[25]. PSNR for greyscale images is calculated using Equations 2.6 and

2.7.

5.4.1 Non-linear approximation

Non-linear approximation(NLA) (Equation 5.32) behaviour of a scheme can be

used as a first indicator of its potential for image coding. The proposed transform,

WBChh was tested on various greyscale images and compared with the contourlet,

wavelet and WBCT/HWD. For a fair comparison, all of the transforms used five

level decompositions with Daubechies 9/7 Filter. The contourlet directional level

is {lj}5>j>1 = {0, 0, 0, 4, 5} where l1 is the finest decompositions [15], while the

HWD-F and the proposed transform used {lj}5>j>1 = {0, 0, 0, 3, 3} [17]. All

images were tested using the same decomposition and directional level. Equation

5.32 represent the reconstructed image,x.

x̃M =
∑
n∈IM

Cnψn (5.32)

where M refers to the number of significant pixels to be kept for reconstruction.

The numerical PSNR values for the NLA performance of the tested images are

given in Table 5.2. The SSIM results followed in Table 5.3. Visual graphical

representations of the resulting distortion rate, PSNR for NLA performance are

shown in Figure 5.9 for the six tested images. Barbara, Zoneplate, Bicycle and

Fingerprint were used for texture and contour, while Lenna and Peppers were

smooth images.

The distortion rate, PSNR results from Table 5.2 and Figure 5.9 shows that

in smooth images like Lenna and Peppers, the wavelet transform achieves the

best PSNR when the significant coefficients is set to M = 4096 or larger. Over-

all, at low bit rates, or where M = 2048 (log2M = 11 in the graph) the best
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(a) Barbara Image (b) Lenna Image

(c) Zoneplate Image (d) Pepper Image

(e) Bicycle Image (f) Fingerprint Image

Figure 5.9: Rate distortion result for NLA comparison
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Table 5.2: PSNR values of the NLA performance

Method/M 2048 4096 8192 16384 32768

Barbara

Contourlet[15] 23.1898 25.0784 27.3057 29.8047 32.9768
Wavelet 22.8052 24.1557 26.2184 29.3596 33.7731
HWD-F 23.2622 25.2258 27.5204 30.2889 33.8888
WBChh 22.8405 24.2855 26.3839 29.4878 33.7699

Lenna

Contourlet[15] 27.1922 29.6501 32.1945 34.7330 37.3385
Wavelet 27.1824 29.7819 32.7455 35.9403 39.1609
HWD-F 27.1528 29.5500 32.1103 34.8895 37.8697
WBChh 27.1828 29.7690 32.6471 35.7459 38.9010

Peppers

Contourlet[15] 26.4949 29.2846 31.6214 33.5627 35.5941
Wavelet 26.4606 29.3200 32.4970 35.2262 37.6857
HWD-F 26.5425 29.1925 31.4252 33.5781 35.9421
WBChh 26.4606 29.3075 32.4072 34.9924 37.3567

Zoneplate

Contourlets[15] 13.2670 15.7514 18.6840 22.7076 29.6351
Wavelet 10.6659 12.0751 15.1312 22.3594 39.9156
HWD-F 13.1231 15.7037 19.5729 26.1708 38.5399
WBChh 11.3163 12.9274 16.3480 23.4868 39.1551

Bicycle

Contourlet[15] 17.9983 19.8834 22.0272 24.2667 26.8046
Wavelet 17.7221 19.2014 21.3381 24.5670 29.3750
HWD-F 17.7627 19.1993 21.0146 23.2385 26.2434
WBChh 17.7212 19.1887 21.2955 24.3677 28.6178

Fingerprint

Contourlet[15] 18.6533 20.7702 23.5359 26.4905 29.7606
Wavelet 18.6698 20.7735 23.5286 26.8531 30.8314
HWD-F 18.6762 20.8385 23.7495 27.0427 30.8389
WBChh 18.6698 20.7735 23.5267 26.8500 30.7773

PSNR is either the HWD-F/WBCT or the contourlet transform. In images with

contours, HWD-F achieves better results than the others. This was expected,

since the HWD-F/WBCT has the highest complexity. The next best results were

achieved by the contourlet and the proposed transform, followed by the wavelet.

The proposed transform, WBChh performed very close to wavelet in the NLA

comparison.

A visual quality for comparison using the Barbara image when M = 2048, is
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Table 5.3: SSIM values of the NLA experiment

Method/M 2048 4096 8192 16384 32768

Barbara

Contourlets [15] 0.7147 0.8041 0.8788 0.9293 0.9636
Wavelet 0.7122 0.7840 0.8549 0.9228 0.9689
HWD-F 0.7231 0.8145 0.8824 0.9307 0.9670
WBChh 0.7153 0.7895 0.8598 0.9242 0.9683

Lenna

Contourlets [15] 0.8201 0.8855 0.9322 0.9611 0.9785
Wavelet 0.8234 0.8888 0.9377 0.9679 0.9848
HWD-F 0.8213 0.8800 0.9253 0.9579 0.9793
WBChh 0.8232 0.8887 0.9369 0.9666 0.9839

Peppers

Contourlets [15] 0.8141 0.8889 0.9310 0.9539 0.9712
Wavelet 0.8210 0.8890 0.9394 0.9661 0.9809
HWD-F 0.8088 0.8790 0.9187 0.9474 0.9708
WBChh 0.8210 0.8890 0.9386 0.9643 0.9792

Zoneplate

Contourlets [15] 0.7389 0.8746 0.9448 0.9795 0.9955
Wavelet 0.4087 0.6220 0.8460 0.9750 0.9996
HWD-F 0.7528 0.8755 0.9517 0.9895 0.9994
WBChh 0.5307 0.7233 0.8918 0.9807 0.9995

Bicycle

Contourlets [15] 0.5913 0.7257 0.8248 0.8898 0.9337
Wavelet 0.5948 0.7161 0.8235 0.9043 0.9609
HWD-F 0.5752 0.6873 0.7826 0.8523 0.9108
WBChh 0.5946 0.7125 0.8176 0.8959 0.9537

Fingerprint

Contourlets [15] 0.5649 0.7398 0.8757 0.9479 0.9811
Wavelet 0.5682 0.7409 0.8757 0.9516 0.9862
HWD-F 0.5681 0.7440 0.8822 0.9567 0.9866
WBChh 0.5682 0.7409 0.8755 0.9515 0.9861

shown in Figure 5.10. From the reconstructed Barbara image in Figure 5.10 at

2048 significant coefficients, it can be seen that the contourlet provides the best

image with clear contour line at Barbara pants, followed by the HWD-F/WBCT,

WBChh and finally the wavelet. This is as predicted since the aim was to provide

a nonredundant directional transform that not only improves the edge information

compared to wavelets but also maintains the distortion rate for smooth images

like Lenna and Peppers using the same structure. The PSNR values from graph
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(a) Original (b) contourlet (c) Wavelet

(d) HWD-F (e) WBChh

Figure 5.10: Barbara at 2048 coefficients (zoom)
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(a) Original (b) contourlet (c) Wavelet

(d) HWD-F (e) WBChh

Figure 5.11: Lenna at 4096 coefficients (zoom)

shown in Figure 5.9(b) and 5.9(d) shows that the WBChh results are very close

to those of the wavelet for Lenna and Peppers. The visual quality for comparison

using images with smooth region is shown in zoomed Lenna image in Figure 5.11,

proving the resulted PSNR in NLA test.

In conclusion, the NLA comparison shows that both the contourlet and the

HWD-F/WBCT show good performance compared to wavelet and the proposed

transform. In addition, the proposed transform also outperforms wavelet at the

most bit rates, whereas did not outperform the HWD and contourlet. This is

expected since the complexity of the HWD is the highest, due to its implemen-

tation of the directional filter in each wavelet subband. The complexity then

followed by the contourlet due to the implementation of redundant Laplacian de-

compositions. The redundancy in the contourlet means that performance decline

as bit rate increased. The proposed transform, WBChh that apply DFB only to

highpass channel (HH), has the lowest complexity among the directional-based

transform but higher when compared to wavelet. Despite a lower performance

in the NLA comparison, wavelet transforms have the benefit of embedded coding
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which efficiently encodes coefficients based on a zerotree or zeroblock structure.

Clearly, the NLA comparison can be used as a first indicator of potential for im-

age coding, but further quantization is important during actual coding. Coding

performance using the proposed transform is investigated in the next section.

5.4.2 Image coding performance

While a good NLA has a desirable properties, it must be followed by appropriate

compression. For example, although HWD provides better NLA compared to

other transform, the performance of actual coding is still very close to wavelets

[17]. In this case, the WBChh transform is coded with SPECK-based coding

with listless structure(LsK) [42]. This structure eliminates the use of lists and

maintains a zeroblock partitioning algorithm while performing quite well as a

coding technique at level of complexity lower than those in SPIHT partitioning.

Coding performance was compared against that of the wavelet SPIHT and HWD-

F CSPIHT [17, 95] coders. A visual representation of CSPIHT coding used with

HWD-F is shown in Figure 5.12 [16, 95].

Figure 5.12: Zerotree relation used in CSPIHT HWD

The full results follow in Tables 5.4 and 5.5. From the performance results

shown in Figure 5.13, it can be seen that the PSNR of the proposed transform

performs better than that of the HWD and wavelet with the Bicycle and Peppers

images, but performs very closely to the wavelet with Barbara and Lenna. The

proposed transform outperforms the HWD and wavelets at very low bit rates

around 0.1 to 0.2 dB with the ability to retain edge information (Figure 5.14).

As the bit rate progresses, the proposed transform outperforms the HWD with

smooth images like Lenna and Peppers but maintains level of performance very
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Table 5.4: Performance of the proposed coder without entropy coding

Greyscale Bit Rate PSNR SSIM
Image Wavelet HWD WBChh Wavelet HWD WBChh

Elaine 0.0313 25.7769 25.7606 26.0442 0.7664 0.7659 0.7747
0.0625 28.2579 28.1175 28.419 0.848 0.8419 0.8537
0.125 30.4107 30.1081 30.4345 0.9037 0.8954 0.9074
0.25 31.9566 31.5892 31.9552 0.9384 0.9312 0.9426
0.5 33.0985 32.6958 33.6492 0.9541 0.9449 0.959
1 35.0536 34.9492 35.7385 0.9718 0.969 0.9767

Lenna 0.0313 24.7546 24.6828 25.0469 0.7365 0.7534 0.7564
0.0625 27.1246 27.0671 27.3784 0.827 0.8379 0.8439
0.125 30.0037 29.6161 30.0485 0.8905 0.9043 0.9109
0.25 33.0606 32.374 32.9348 0.936 0.9472 0.9513
0.5 36.1279 35.2969 36.0554 0.9665 0.9727 0.9746
1 38.9155 38.2763 39.2863 0.9842 0.9879 0.9892

Barbara 0.0313 21.6697 21.4521 22.4401 0.6191 0.6528 0.6775
0.0625 22.8091 22.7033 23.3916 0.7085 0.7229 0.7436
0.125 24.1523 24.4067 24.7116 0.7942 0.8066 0.8082
0.25 26.833 26.902 27.2113 0.8761 0.8844 0.9004
0.5 30.5362 30.1278 31.2047 0.9327 0.9469 0.9545
1 35.4396 34.4858 36.1477 0.9728 0.9819 0.9844

Car 0.0313 22.2743 22.0822 22.4509 0.6347 0.6818 0.6942
0.0625 24.0587 23.8362 24.2566 0.7322 0.7364 0.7626
0.125 26.1679 25.8865 26.3516 0.8256 0.8355 0.8513
0.25 28.7884 28.3531 29.0622 0.8961 0.9069 0.9224
0.5 32.069 31.4991 32.0173 0.9483 0.9587 0.9617
1 36.961 35.9794 36.8232 0.9789 0.9835 0.9855

Baboon 0.0313 19.7749 19.7584 19.8949 0.425 0.4696 0.4751
0.0625 20.3437 20.3278 20.5082 0.5287 0.5402 0.5439
0.125 21.3344 21.3054 21.4256 0.6526 0.6787 0.693
0.25 22.7266 22.6422 22.8042 0.7605 0.764 0.7694
0.5 24.9795 24.7772 24.7531 0.861 0.8829 0.8856
1 28.4864 28.0966 28.1435 0.9335 0.951 0.9522

Bicycle 0.0313 16.3194 16.2649 16.6713 0.4483 0.4926 0.5091
0.0625 17.4037 17.308 17.7085 0.5628 0.6117 0.6296
0.125 18.7807 18.5458 19.2108 0.6908 0.7448 0.7484
0.25 20.8948 20.338 21.3599 0.7885 0.8465 0.8592
0.5 23.8837 22.6195 24.7703 0.8655 0.9042 0.9212
1 26.8693 25.406 29.0502 0.9271 0.9599 0.9676

Peppers 0.0313 23.8673 23.7776 24.1148 0.7351 0.7551 0.7566
0.0625 26.4805 26.2804 26.6493 0.8144 0.844 0.8477
0.125 29.403 28.7903 29.6597 0.8803 0.8897 0.909
0.25 32.2013 31.2075 32.5487 0.9239 0.934 0.9502
0.5 34.4417 33.5021 35.0156 0.9521 0.9617 0.9702
1 36.1728 35.5253 37.4441 0.9716 0.9791 0.9804
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Table 5.5: PSNR and SSIM performance of proposed coder with entropy coder

Greyscale
Bit Rate

PSNR SSIM
Image Wavelet HWD WBChh Wavelet HWD WBChh

Elaine 0.0313 26.0787 26.0379 26.1572 0.7742 0.7736 0.7772
0.0625 28.5023 28.3166 28.5068 0.8495 0.8461 0.8543
0.125 30.6054 30.2521 30.519 0.9044 0.8988 0.9084
0.25 32.02 31.6714 31.9928 0.9395 0.9328 0.943
0.5 33.2136 32.8697 33.6894 0.9565 0.9454 0.9599
1 35.1332 35.1656 35.7934 0.9724 0.9705 0.9769

Lenna 0.0313 24.9483 24.9151 25.149 0.7472 0.7445 0.7621
0.0625 27.2717 27.2278 27.4756 0.8373 0.8322 0.8479
0.125 30.177 29.787 30.1554 0.906 0.8954 0.9129
0.25 33.2174 32.6094 33.0334 0.9488 0.939 0.9521
0.5 36.2463 35.5261 36.1571 0.9743 0.9686 0.9757
1 39.0228 38.4496 39.388 0.9873 0.9852 0.9897

Barbara 0.0313 22.3953 22.2475 22.4764 0.6683 0.6574 0.6794
0.0625 23.4394 23.1937 23.4387 0.7404 0.717 0.7482
0.125 24.7244 25.1286 24.7882 0.7995 0.8046 0.8097
0.25 27.4438 27.7538 27.2451 0.8857 0.8849 0.9011
0.5 31.5082 31.1816 31.2641 0.9506 0.9416 0.9551
1 36.593 35.7801 36.2436 0.9828 0.9775 0.9844

Car 0.0313 22.3984 22.207 22.4746 0.6749 0.6436 0.6956
0.0625 24.199 24.1835 24.3042 0.7555 0.7438 0.7665
0.125 26.3195 26.0812 26.4341 0.843 0.833 0.8513
0.25 28.9382 28.5615 29.1113 0.911 0.9006 0.9229
0.5 32.2237 31.7555 32.1236 0.9564 0.951 0.962
1 37.133 36.2774 36.9989 0.9837 0.9795 0.9856

Baboon 0.0313 19.8251 19.8213 19.9111 0.453 0.4341 0.4784
0.0625 20.4307 20.4179 20.5404 0.5405 0.5452 0.548
0.125 21.4004 21.3973 21.4578 0.6603 0.6595 0.6949
0.25 22.8348 22.7674 22.8279 0.7695 0.7677 0.7701
0.5 25.0598 24.889 24.8354 0.8706 0.8653 0.8864
1 28.6125 28.26 28.208 0.9415 0.9367 0.9527

Bicycle 0.0313 16.3805 16.3569 16.7095 0.4745 0.4589 0.5115
0.0625 17.4895 17.4637 17.7532 0.6059 0.5856 0.6388
0.125 18.8766 18.6707 19.2409 0.7261 0.6986 0.75
0.25 21.0118 20.5325 21.4779 0.8404 0.8002 0.8633
0.5 24.0488 22.8446 24.8807 0.9155 0.8747 0.9245
1 26.973 25.6051 29.2508 0.9592 0.9323 0.9703

Peppers 0.0313 24.015 23.9424 24.2007 0.7492 0.741 0.7584
0.0625 26.6425 26.5217 26.709 0.8411 0.8236 0.85
0.125 29.5566 29.0519 29.7501 0.9014 0.8877 0.9118
0.25 32.3505 31.4356 32.6541 0.9412 0.9281 0.9516
0.5 34.5408 33.6836 35.0973 0.9637 0.9549 0.971
1 36.3182 35.629 37.6365 0.9764 0.9721 0.9809
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5.4 Application and results

(a) Barbara Image (b) Lenna Image

(c) Bicycle Image (d) Peppers Image

Figure 5.13: PSNR comparison for greyscale image compression with entropy
coding

close to that of the wavelet.

Performance also compared in terms of the PSNR and SSIM measures as shown

in Table 5.4. It can be seen that the WBChh transform outperforms HWD and

DWT at most rates, especially with images that have medium frequency content

like Barbara and Bicycle. With the Lenna and Peppers images which have low

frequency content, the SSIM performance of the WBChh transform are quite

well compared to HWD, but very closely to the wavelets at certain bit rates.

Overall, the WBChh shows the best performance in the SSIM measure owing to

the fact that this coder is able to capture structural information efficiently. An

additional entropy coding also continues to show similar performance in term of

SSIM measure. The WBChh coder outperforms the HWD and wavelet SPIHT in
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5.4 Application and results

(a) Original (b) Wavelet+SPIHT

(c) HWD+SPIHT (d) WBChh

Figure 5.14: Barbara at bit rate 0.0625 (zoom)

term of SSIM at all bit rates but only at certain rates in term of PSNR because

it is a logarithmic measure. The results shown in Table 5.5 are the performance

of the proposed coder with standard test images using entropy coding based on

Equation 2.5.
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5.4.3 Fingerprint application

Based on the results for image coding, the proposed transform coding can be

deemed suitable for application in fingerprint compression schemes because of its

ability to capture structural information. Fingerprint compression is important

due to the increasing number of fingerprint records. Wavelet/scalar quantization

(WSQ) was developed by the U.S. Federal Bureau of Investigation in 1993 to

digitize its fingerprint database [96, 97]. WSQ is realized using a wavelet CDF-

9/7 filter with scalar quantization and Huffman coding. The DFB for fingerprint

matching and extraction is introduced in [87]. Zhang and Moloney [98, 94] in-

troduced fingerprint compression based on the nonredundant contourlet trans-

form (NRCT). However, although the result show significant improvements over

wavelet, NRCT is high in complexity because the transform uses many types of

complex filter to realize directionality in the wavelet domain to produce a trans-

form with similar decompositions to that in the contourlet. Furthermore, since

the transform decomposition is similar to that of the contourlet, the performance

is only good at low bit rates (below 0.5 bit per pixel) as shown in the resulting

values of PSNR [98, 94].

Implementation

For the implementation test, a fingerprint database [99] was used. The aim of

these test are to compare the transform based compression scheme among differ-

ent transform with its quantization technique, so the entropy coding of all trans-

form is simplified using Equation 2.5. In the future, this work can be extended

to include proper entropy coding for performance comparison of fingerprint com-

pression with FBI WSQ standard [96, 97]. As with the image coding technique,

the proposed transform was coded with the listless specK to provide efficiency in

terms of the memory required during coding and complexity. An example of a

reconstructed fingerprint (f14) compressed at a bit rate of 0.25 is shown in Figure

5.15, with its zoom image for clear comparison in Figure 5.16.

111



5.4 Application and results

(a) Original (b) Wavelet+SPIHT

(c) HWD+CSPIHT (d) WBChh

Figure 5.15: Fingerprint (f14) at bit rate 0.25

(a) Original (b) Wavelet+SPIHT

(c) HWD+CSPIHT (d) WBChh

Figure 5.16: Zoom fingerprint (f14) at bit rate 0.25
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Table 5.6: Fingerprint compression

Greyscale
Bit Rate

PSNR SSIM
Image Wavelet HWD WBChh Wavelet HWD WBChh
f01 0.0313 21.6273 21.6055 21.5485 0.3793 0.3736 0.4061

0.0625 23.1888 23.1136 23.2569 0.5703 0.5568 0.5854
0.125 25.1595 25.0691 25.3372 0.7316 0.7283 0.7845
0.25 28.1007 27.9785 28.0693 0.8864 0.8784 0.8975
0.5 31.5962 31.4263 32.0143 0.9599 0.9551 0.9676
1 36.214 35.952 36.1283 0.9888 0.9874 0.9907

f02 0.0313 20.326 20.3191 20.2859 0.3911 0.3746 0.3993
0.0625 22.1744 22.0444 22.6581 0.651 0.6248 0.7138
0.125 24.7855 24.7078 25.1096 0.8349 0.8252 0.8588
0.25 27.9037 28.0315 28.0168 0.9236 0.9264 0.9324
0.5 32.0123 31.8117 32.397 0.9777 0.9755 0.9812
1 36.4054 36.1878 36.7851 0.994 0.993 0.9946

f03 0.0313 24.3193 24.2192 24.4156 0.5004 0.4944 0.5057
0.0625 25.6458 25.5821 25.7124 0.6348 0.628 0.669
0.125 27.6822 27.5968 27.6952 0.7976 0.7849 0.8034
0.25 29.8841 29.8369 30.0517 0.8963 0.8972 0.899
0.5 32.8167 32.6776 32.9654 0.9578 0.9563 0.961
1 36.9505 36.6465 37.0995 0.9859 0.9846 0.9872

f09 0.0313 20.6209 20.6728 20.6329 0.4504 0.4479 0.4718
0.0625 22.5132 22.2717 22.9355 0.6794 0.6374 0.6957
0.125 24.838 24.8862 28.0644 0.8124 0.8084 0.8415
0.25 27.9217 28.0644 27.9911 0.9151 0.9136 0.9234
0.5 31.7024 31.5943 32.1394 0.9714 0.9686 0.9769
1 36.1504 35.9633 36.319 0.9906 0.9899 0.9924

f14 0.0313 21.0423 21.0415 21.0184 0.5294 0.5254 0.534
0.0625 22.6195 22.5472 22.8736 0.695 0.6705 0.7007
0.125 24.9654 24.9276 24.845 0.8142 0.8106 0.8274
0.25 28.4259 28.2991 28.4544 0.9152 0.9098 0.9234
0.5 32.431 32.148 32.6201 0.9658 0.9587 0.9689
1 37.4964 36.9313 37.3763 0.9842 0.9825 0.9875
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The performance in term of PSNR and SSIM is shown in Table 5.6. Implemen-

tation to fingerprint images shows that the proposed WBChh coder consistently

outperformed the wavelet and HWD CSPIHT in the SSIM measure. In terms of

PSNR, a close performance between the wavelet and the WBChh can be seen,

with the proposed transforms show better performance in most images. Despite

this, the proposed WBChh coder have better performance than the wavelet and

HWD because fingerprint images contain contour which indicate structural infor-

mation in the image. This means that, for this comparison structural similarity

is a more reliable measure compared to PSNR, a logarithmic measure. Moreover,

the SSIM performance is consistent until up to bit rate 1 bits per pixel (bpp).

The WBChh added only minimal complexity to wavelet transform but has the

lower complexity compared to other directional-based transforms. This good per-

formance indicates that the WBChh may be an attractive alternative to current

fingerprint compression schemes.

5.5 Conclusions

This chapter describes the directionality in image transform. The previous hybrid

wavelet and directional filter banks transform is improved with the introduction

of wavelet-based contourlet in highpass domain that implement directional fil-

ter only to high frequency subband. The directional transform is restricted to

highpass subbands in order to avoid the generated coefficients from frequency

scrambling. This is due to the fact that frequency scrambling generates a noise

like effect known as the pseudo-Gibbs phenomenon in the reconstructed com-

pressed image. The directional transform used is based on the contourlet’s di-

rectional filter. The proposed transform managed to provide a balanced perfor-

mance which maintained the edges in textured images at low bit rates without

introducing pseudo-Gibbs artefacts at higher bit rates with smooth images. The

proposed transform is combined with a listless coding technique that uses fixed

memory, so only minimum complexity was added compared to wavelet transforms

while maintaining efficient encoding and decoding. The non-linear approxima-

tion comparison for the proposed transform is in between the wavelet and higher

complexity directional-based transform such as contourlet and HWD-F. The per-
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5.5 Conclusions

formance of the WBChh in image coding yielded good results in term of PSNR

and SSIM with all images tested with or without entropy coding. An example

of a fingerprint compression application showed the potential implementation of

the WBChh with a specific image type. In the next chapter, the performance of

the WBChh in colour image compression is investigated.
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Chapter 6

Wavelet and Directional Filter

Bank in Colour Image

Compression

This chapter investigates the implementation of hybrid wavelets and the direc-

tional filter bank (DFB) for colour image compression. Hybrid wavelet and di-

rectional filter banks (HWD) apply the DFB in the wavelet domain to improve

directional information of the wavelet transformed image. An example of an

HWD is the wavelet-based contourlet transform (WBCT) [16] which was later

introduced as the HWD-F [92, 17]. The HWD has been applied to greyscales and

image produces better visual quality especially with images contain texture and

contours. The WBCT is implemented using a DFB that has been developed for

the contourlet transform. A performance comparison using non-linear approxi-

mation(NLA) shows that the WBCT performs very well compared to the wavelet

and contourlet. However, for image coding WBCT only performs better at lower

bit rates, due to artefact generated by the transform in the reconstructed com-

pressed image. These artefacts are noise like features known as the pseudo-Gibbs

phenomenon. In practice, image coding performance also depends on the choice

of encoder and decoder used. Wavelets have considerable advantage because the

zerotree and zeroblock coding techniques are able to efficiently capture the neces-

sary information/coefficients. A balanced approach using the wavelet transform
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6.1 Motivation

matched with the efficient coding of colour image is expected to improve cod-

ing performance. However, despite good performance in greyscale compression,

directional-based transforms have not attracted much attention from the research

community for their ability to compress multispectral images, in this case colour

images. Therefore, this chapter investigate the implementation of the DFB in

wavelet domain for composite technique of colour image compression. Composite

colour image compression is preferred to the separate compression of each colour

band because it is able to offer the precise control of bit rates during progressive

coding. The composite procedure also benefits from full embeddedness and the

automatic allocation of bits among the colour planes. In addition, non-linear

dependencies at high transition regions (such as edges) which remain among the

spectral planes can be exploited during the compression process.

6.1 Motivation

The objective of this chapter is to investigate the directional filter bank in the

wavelet domain for composite colour image coding. Given the improvements seen

with greyscale images, introducing directional filters during the compression pro-

cess is expected to improve the visual quality of reconstructed compressed colour

images. In this case, composite progressive coding is used instead of the separate

coding of each colour band. The composite technique will benefit from further

exploitation of channel/spectral redundancy. Previous research on colour images

that using directional transforms such as contourlets has been presented by Nabil

and Peter [100]. However, this analysis was only based on approximations using

a simple threshold for the transformed coefficients, and performance was mea-

sured based on entropy values and compression ratios. This only gives a hint of

the potential performance in practical applications. The transform used for each

colour component was a contourlet-wavelet denoted as CVT [100], which was then

compared with normal wavelet decompositions. Moreover, the contourlet-wavelet

transform used in that study was the same as previously proposed for greyscale

images [15], which introduced a redundancy during coding. Despite giving good

visual quality at lower bit rates, the redundancy that exists with contourlets,

degrades coder performance during compression when compared to that of stan-
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6.2 Colour image compression

dard wavelet transforms. It is hoping that the present work will provide a clear

view of practical capabilities of directional-based transforms for composite colour

coding. Unlike in the previous implementation [100], the directional transforms

here do not involve redundancy, since the directional filter is applied within the

wavelet domain. In addition to its directionality, the selected transform adds

only minimal complexity since it is implemented only in the luminance plane. A

contourlet-based DFB implemented in the wavelet domain is predicted to be able

to detect point of discontinuity produced by the tensor product in the wavelet.

The implementation of a directional filter should increase the complexity of the

wavelet transform. In order to minimize its complexity, directional information

is applied only in certain subbands where it is expected to capture the point of

discontinuities into fewer coefficients representing contours and edges. In theory,

this should result in a better quality of compressed images since the most im-

portant information is contained in the luminance plane. However, this will be

limited to certain bit rates only, since more significant coefficients are generated

by the transform compared to the normal wavelet.

6.2 Colour image compression

To exploit spectral redundancy, the original images were transformed into decor-

related colour space. In this case, the standard colour transform for digital im-

ages, Y CbCr was used. The proposed transform has been tested with greyscale

images in Chapter 5. For chrominance, Cb and Cr planes, the wavelet transform

is applied, and hence this approach is a hybrid of a directional transform and

wavelet. Implementation in the luminance plane aims to preserve the edge and

directional information in the image. The flowchart for the implementation of

this coding is described in Figure 6.1. An embedded coder based on a listless ze-

roblock structure was chosen instead of the state of the art zerotree, SPIHT and

SPECK because it has lower complexity and performs efficiently with a listless

structure. Listless coders use fixed memory, which reduces the memory required

during coding. Location information represented by coordinates in lists that re-

sults in dynamic memory requirement in normal coder during the coding process

are removed with the introduction of fixed scanning or mapping. This type of
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6.2 Colour image compression

Figure 6.1: Proposed colour image coding

mapping is known as Morton ordering or Z-curve. It has space filling properties

and preserves the locality of data points which match the wavelet subband decom-

positions. The Z-curve mapping is efficient in construct quadtrees which follow

zeroblock partitioning rules. A block chart representing this implementation is

shown in Figure 6.2.

Figure 6.2: Encoding technique used for the proposed transform

6.2.1 Directional transforms in the wavelet domain

Firstly in this section, the proposed transform is reviewed. Figure 6.3 shows a

schematic diagram of the proposed transforms to be applied in the luminance

plane. The implementation of directional based transforms only to luminance

plane is aimed to introduce directionality to composite colour coder without
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6.2 Colour image compression

Figure 6.3: Schematic diagram of proposed HWD transform to luminance plane

(a) WBCT/HWD (b) WBChh

Figure 6.4: The schematic plot of the transforms with 4 levels of dyadic wavelet
decomposition and 8 (23) directions at the two finest level
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6.2 Colour image compression

adding too much complexity to the coder. Figure 6.4 then shows an example

of two HWDs where directional decomposition is overlaid on the wavelet de-

composition. The reasons behind the implementation of both directional-based

transforms are directional capabilities and non-redundant properties. Having

directionality overlaid on the wavelet transform means that the coding process

can be implemented using embedded bit plane coding, which is a type of scalar

quantization that involves low complexity in the coding. Contradict to greyscale

implementations, both transforms can be referred to as wavelet based contourlet

(WBC) because the directional filter bank is from the contourlet transform. The

reason for avoiding Laplacian pyramid filter used in the contourlet is redun-

dancy factor of the filter, which is about 4/3. Redundancy is not suitable for

compression application since more bit required to represent compressed images.

Conversely, the HWD notation is used to refer to implementations that apply

the directional filter to only a few fine levels [17] instead of all levels as used in

some previous research [84, 18, 85]. From the schematic diagram, it is clear that

the WBCT/HWD involve higher levels of computational complexity than the

wavelet-based contourlet in the highpass domain (WBChh), because the direc-

tional filter is applied to each subband decompositions. The level of complexity

of directional-based transforms have been discussed in Section 5.3.2. The main

highlight of the implementation of the WBChh is to remove the pseudo-Gibbs

artefacts generated by the WBCT due to frequency scrambling. At the same

time, the WBChh is able to extract directional information from the image so

that curves or singularities can be represented with fewer coefficients. Having said

that, despite fewer coefficients for singular(edge), overlaid the DFB in a wavelet

will generate more coefficients on top of the wavelet coefficients. So, as bit rate

increased, the performance of proposed coefficients will be slightly lower, not be-

cause of any degradation in performance but because there are more significant

bits generated compared to wavelet. This is because the wavelet transform on its

own is a form of simple directional basis as described in Section 5.3.1. Directional

filter bank applied in diagonal subband off wavelet decomposition will represent

the singularities with fewer significant coefficients.
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6.2.2 Embedded colour image coding

For colour image coding, a true colour image is transformed into decorrelated

color space such as YIQ or YCbCr before a transform is applied to each plane.

Composite coding benefits from precise control of bit rates and enable the ex-

ploitation of non-linear dependencies among spectral planes. Embedded colour

image coding in the wavelet domain treats all colour planes as one unit at the

coding stage before generating one mixed bit-streams. For most natural mul-

tispectral images in the YCbCr colour space, in addition to the redundancy of

each component, the two chrominance components Cb and Cr are correlated in

terms of insignificant coefficients within each chrominance plane compared with

a given threshold. In this implementation, the listless colour set partitioned em-

bedded block coder (SPECK), as introduced in Chapter 3, is used to exploit these

properties. The listless coding is represented in Figure 6.2.

6.3 Numerical results and discussion

The following results were obtained with 24 bits colour image downloaded from

USC-SIPI database [62] except for the cropped Barbara images [64]. The im-

ages were transformed into decorrelated colour space using YCbCr in Matlab,

as described in Figure 6.1. Five level of decompositions of dyadic wavelet using

the CDF-9/7 tap-filter applied on each colour plane. Directional decomposition

on luminance plane in the {lj}5>j>1 = {0, 0, 0, 3, 3} where l1 refers to the finest

decompositions.

6.3.1 Performance measurement

In this work, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)

measures were used as performance indicators. Visual representation are provided

to prove structural quality of compressed image. It must be stressed that the

proposed method applied the new transforms to the luminance plane only and

at the same times applied progressive coding to take advantage of the similarity

between chrominance planes. Hence, for fair comparison, the same embedded
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coding was applied to the transform tested and SPECK-based wavelet is set as a

benchmark.

Rate distortion performance

The quality of the reconstructed images were evaluated in term of PSNR. For

colour image of 24 bits per pixel (bpp), the overall PSNR RGB channel is defined

as follows:

PSNR = 10log10
3× 2552

MSER +MSEG +MSEB
dB (6.1)

with mean square error MSEcpR,G,B for each colour plane defined as

MSEcp =
1

N

n1∑
i=0

n2∑
j=0

[x (i, j)− r (i, j)]2 (6.2)

where x (i, j) and r (i, j) are the original and reconstructed images respectively

and N = n1 × n2 is the number of pixels in the original image. The results

based on the overall PSNR in the RGB channel are shown in Figure 6.5. From

these results, the proposed implementation outperforms the wavelet SPECK in

certain rates and perform very closely to wavelet with listless coding (ListlessJC

in Table 6.1). At very low bit rates from 0.0313 to 0.125, the proposed colour

coding performs very close to the WBCT transform, whereas at higher bit rates,

the WBChh outperforms the WBCT in term of PSNR. A visual comparison of

the reconstructed images at low bit rates is shown in Figure 6.6. Full results of

some of the tested image is shown in Table 6.1.

From the results in Table 6.1, the performance of the WBChh transform with the

listless coder is varies from image to image. The DFB applied to the wavelet trans-

form add more significant information to the transform coefficients. If the image

contains more directionality curves or singularities, it improve the compressed

image. Actual comparison based on the compressed image visually proven the

claim. The performance gain compare to wavelet with same coding is between

±0.3 dB, which indicate a very close and tight performance. A comparison to

wavelet with the original SPECK coding, show higher gain around 0.9 dB and

decrease performance around ±0.2 dB in some cases. A good PSNR is shown for
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(a) Barbara Performance (b) Lenna Performance

(c) Baboon Performance (d) Ariel Performance

Figure 6.5: Overall PSNR in RGB over wavelet+SPECK coding

124



6.3 Numerical results and discussion

Table 6.1: Performance of the proposed colour coder

Bit Rate PSNR SSIM

SPECK ListlessJC WBChh WBCT SPECK ListlessJC WBChh WBCT

Lenna

0.03125 22.7762 22.8634 22.649 22.608 0.6697 0.6827 0.6683 0.6662
0.0625 25.0783 25.2456 25.0349 24.9715 0.7918 0.8084 0.8014 0.7935
0.125 27.3691 27.6238 27.4048 27.0286 0.8742 0.8905 0.8805 0.8609
0.25 29.6657 30.0306 29.812 28.8302 0.9254 0.9394 0.9289 0.8989
0.5 31.5545 32.3129 31.9266 30.6418 0.9551 0.9628 0.9584 0.9416
1 33.0276 34.1213 33.9325 32.4016 0.9764 0.9787 0.9779 0.9709

Barbara

0.03125 20.9874 21.0362 21.0012 21.046 0.5903 0.5936 0.5907 0.5924
0.0625 23.0628 23.1434 23.0488 23.0481 0.7254 0.7335 0.7221 0.7176
0.125 24.8147 24.8647 24.7814 24.865 0.8144 0.8142 0.8131 0.8226
0.25 26.998 26.9673 26.7043 26.9877 0.8974 0.9005 0.8959 0.8934
0.5 30.0118 29.9876 29.7465 29.6297 0.951 0.9548 0.9529 0.943
1 33.5733 33.6082 33.4484 32.8327 0.9826 0.9829 0.9816 0.9768

Baboon

0.03125 18.4247 18.4536 18.4773 18.474 0.375 0.3851 0.3761 0.3756
0.0625 19.128 19.162 19.1672 19.0441 0.494 0.4925 0.4925 0.5037
0.125 19.9299 19.9836 20.0192 20.0073 0.6267 0.6522 0.6567 0.6516
0.25 21.159 21.1866 21.1596 20.9169 0.7335 0.737 0.7329 0.7265
0.5 22.4295 22.486 22.4844 22.2439 0.8558 0.8701 0.8685 0.8582
1 24.4759 24.5034 24.4422 24.1291 0.9187 0.9418 0.9404 0.9313

Ariel

0.03125 20.0742 20.0876 20.1026 20.1026 0.3652 0.3722 0.3748 0.3748
0.0625 21.2354 21.2406 21.2596 21.2585 0.5134 0.515 0.5191 0.5208
0.125 22.2481 22.25 22.3116 22.2342 0.6748 0.6897 0.6923 0.6886
0.25 23.542 23.5451 23.5314 23.3374 0.7795 0.811 0.8103 0.7977
0.5 24.763 24.8007 24.6476 24.2757 0.8783 0.8759 0.8742 0.8671
1 26.6029 26.6096 26.5857 26.1293 0.9453 0.9518 0.951 0.9438

Ariel2

0.03125 18.3924 18.4427 18.4928 18.4811 0.2949 0.3063 0.3079 0.3058
0.0625 19.0803 19.1234 19.1978 19.1716 0.4725 0.4869 0.4928 0.4902
0.125 19.9849 20.1107 20.1493 20.097 0.611 0.6495 0.6501 0.645
0.25 21.0682 21.1009 21.0925 20.885 0.765 0.7631 0.7609 0.7475
0.5 22.5344 22.7294 22.6823 22.4739 0.8678 0.8909 0.8867 0.8746
1 24.8855 24.9614 24.863 24.4063 0.9383 0.9503 0.9459 0.9327

Plane

0.03125 21.6678 21.6253 21.7128 21.7025 0.7009 0.6987 0.6894 0.6882
0.0625 23.7688 23.7875 23.8441 23.8608 0.8004 0.8074 0.7956 0.7671
0.125 25.9797 25.9895 25.8356 25.6922 0.8663 0.8669 0.8618 0.841
0.25 28.1736 28.311 28.1393 27.4254 0.9257 0.9251 0.9224 0.9004
0.5 31.4892 31.5224 31.3447 30.5488 0.9607 0.9601 0.9581 0.943
1 34.9223 35.1019 34.8831 33.7 0.9801 0.9793 0.9784 0.972
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high frequency images such as Ariel and Baboon at low bit rates. A compari-

son between the WBChh and WBCT transforms shows that WBChh outperform

WBCT in most rates, except at certain very low bit rates around 0.2 dB.

Structural Similarity

Structural similarity (SSIM) [25] is a reference based image quality measure that

computes using the combination of nonstructural and structural distortion. The

equation for this method is presented in Equation 2.9. For colour images the

measurement is applied to the luminance plane where the image is transformed

to a greyscale image using the ’rgb2gray’ function in Matlab before SSIM is

measured [25]. An interesting feature of using the SSIM metric is its sensitivity

to three common types of distortions: loss of correlation, luminance distortion

and loss of contrast [101]. The SSIM results in Table 6.1 show the inconsistent

performance of the proposed transform from image to image, as with PSNR. It

seems that, at most bit rates, the wavelet with listless coding has better SSIM.

However, one of the reasons that contribute to this is that SSIM is measured using

the greyscale value of compressed colour image. SSIM is a reliable measure in the

analysis if colour image especially when comparing similar transforms. Previous

research on colour image measurement [101], has highlighted the fact that most

of the performance measures were based on metrics developed for use with the

greyscale images. This is because colour images has more properties than just

luminance and brightness. Examples of compressed images at low bit rates are

presented for reader observation.

The original figure is cropped to zoom the area that contain structural infor-

mation such as curves and texture. From Figure 6.6, it can be seen that at a

bit rate of 0.25, the best visual quality is shown by proposed coder (WBChh),

despite the fact that, the best overall PSNR in RGB domain is wavelet with

SPECK coding at 26.998 dB. As shown in Figure 6.6(e), the texture in Barbara’s

scarf is preserved, but pseudo-Gibbs artefacts are evident in the smooth area. In

Figure 6.6(c), all of the texture in the scarf is lost; and in Figure 6.6(g) the best

results are achieved, maintaining the texture and and the quality of the smooth

area. The HWD/WBCT coding provides lower performance compared to the
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(a) Wavelet+ListlessJC at
0.125bpp

(b) Wavelet+ListlessJC at
0.25bpp

(c) Wavelet SPECK 0.125bpp (d) Wavelet SPECK at 0.25bpp

(e) HWD at 0.125bpp (f) HWD at 0.25bpp

(g) WBChh at 0.125bpp (h) WBChh at 0.25bpp

Figure 6.6: Comparison of part of Barbara image at low bit rates
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wavelet in terms of distortion rate curves due to the pseudo-Gibbs artefacts. The

artefact generated in the smooth region can be seen in Figure 6.6(f), in which

the distortion rate lower compared to the wavelet coding. The Barbara image

mostly consists of textures and oscillatory patterns, so this information is pre-

served at lower bit rates using the proposed transform. This results in superior

visual quality at very low bit rates, especially with images that contain texture

and fine details.

For the Lenna image as shown in Figure 6.7 at 0.125 bit rate, a hat line which

is shown by the arrow clear in the WBChh compressed image compared to the

wavelet. Another example at bit rate 0.25 is shown in Figure 6.8. Although the

best values of PSNR and SSIM at bit rate of 0.125 and 0.25 are achieved using

the wavelet, visually the directional-based transform preserves edges and curves

better than the wavelet. This is true with all the tested images, despite lower

overall measures in terms of PSNR and greyscale SSIM. Examples of compressed

image for observation in visual quality comparison shown in Figures 6.9, 6.10 and

6.11.
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(a) Lenna using HWD (b) Lenna using Wavelet

(c) Lenna WBChh (d) Original

Figure 6.7: Comparison of part of Lenna image at 0.125 bit rates

(a) Lenna using HWD (b) Lenna using Wavelet

(c) Lenna WBChh (d) Original

Figure 6.8: Comparison of part of Lenna image at 0.25 bit rates
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(a) Baboon using HWD (b) Baboon using Wavelet

(c) Baboon WBChh (d) Original

Figure 6.9: Comparison of part of Baboon image at 0.5 bit rates
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(a) Ariel using HWD (b) Ariel using Wavelet

(c) Ariel WBChh (d) Original

Figure 6.10: Comparison of part of Ariel image at 0.5 bit rates

(a) Ariel using HWD (b) Ariel using Wavelet

(c) Ariel WBChh (d) Original

Figure 6.11: Comparison of part of Ariel image at 0.25 bit rates
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6.3.2 Memory requirement and complexity analysis

In this chapter, the proposed coding technique uses directional filter bank overlaid

over wavelet decompositions only to high-pass subband. So, the computational

complexity as compared to other directional based transform is lower as discussed

in Section 5.3.2. In term of colour image implementation, the directional based

transform is only applied to luminance plane so a minimal additional complexity

is added when compared to normal wavelet based compression. In short, the

proposed transform complexity for colour image compression is in the middle

between wavelet and WBCT. In term of memory requirement during coding, a

comparison between listless algorithm and original SPECK has been discussed

in Section 3.5.2. Overall, the proposed transform added minimal complexity to

offer better directionality in compressed image while maintaining efficient coding

process using listless structure that uses fixed memory with joined significant test

on chrominance plane.

6.4 Conclusions

Progressive colour image coding using the contourlet-based directional filter bank

(DFB), now termed the wavelet-based contourlet in the highpass domain (WBChh),

has been developed. The transform has been coded with fixed memory and em-

ploys listless SPECK-based coding with joint significance tests for the chromi-

nance planes. The proposed coding technique managed to outperform wavelet

based coding in terms of distortion rate performance only at certain bit rates

with certain types of image. SSIM was measured using the greyscale version of

the compressed colour image, showing significant improvements to very limited

rate. The WBChh managed to outperform the WBCT/HWD at most bit rates

despite having lower complexity. The directional transform was implemented only

in the luminance plane, owing to the fact that luminance contains the most impor-

tant information for the human visual system. The implementation of directional

filter bank to wavelet decomposition increased the numbers of significants, coef-

ficients which consequently reduced performance as bit rate increased compared

to the wavelet. However, it is clear that the additional of directional informa-
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tion to the wavelet transform does significantly improve the visual quality of the

reconstructed compressed image at lower bit rates, at least based on the visual

quality of the reconstructed image. In conclusion, the main highlight of colour

image coding using a directional based transform is not the reduction in the error

of compressed image. Instead, the main contribution is the correct preservation

and reconstruction of important features of an image, such as edges and texture

even at very low bit rates. This would benefit application such as content-based

retrieval in portable or mobile devices which have limited memory and lower bit

rates capability.
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Chapter 7

Conclusions

7.1 Contribution of the thesis

This thesis describes investigations into wavelet-based and scalable image com-

pression. The following elements of the research are believed to be original con-

tributions made in this study.

• Embedded colour image coding with listless set partitioned embedded block

coder: the listless technique is very good at reducing the memory needed

during the encoding process. Based on SPECK partitioning, the complexity

of the partitioning algorithm is reduced. The scanning order is modified to

enable exploitation of chrominance so that larger areas of the chrominance

plane are tested, aiming to provide comparable performance for lossy com-

pression and reduce the number of bit required for lossless compression. The

algorithm performed quite well compared to JPEG2000, set partitioning in

hierarchical trees (SPIHT) and the original CSPECK with lower working

memory and complexity.

• Three dimensional listless SPECK: this is an extension of the two dimen-

sional listless SPECK to three dimensions so as to be suitable for three

dimensional (3D) source images. This implementation enabled the exploita-

tion of redundancy in the spectral domain. Using a listless structure, the

working memory required during coding was reduced compared to the nor-

mal 3D SPECK.
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• The introduction of wavelet-based contourlet in highpass domain avoided

the pseudo-Gibbs effect that arises from frequency scrambling in wavelet

transforms. This enabled the transform to maintain smooth areas in the

compressed image. The key to this contribution is the implementation of

the directional filter bank only to highpass subband (HH) which contain

no frequency scrambling in the wavelet domain. The proposed transform

involves lower level of complexity than the previous hybrid wavelet and

directional filter banks and the contourlets and providing non-redundant

solutions appropriate for image compression application.

• The implementation of listless coding for colour image using WBCT con-

sists of HWD and WBChh which was expected to improve colour image

compression. This work builds on efficient encoding algorithm proposed,

combining it with non-redundant transforms that offer directional informa-

tion. The implementation of the proposed transform was applied to the

luminance plane only in order to reduce the complexity associated with the

directional filter. Further coding based on listless structures which combine

scanning in the chrominance plane aimed to further improve the results.

Although, little improvement was noted in term of PSNR and SSIM, visual

inspection and observation show significant improvements in edge singular-

ity and texture due to implementation of directionality in the transform.

7.2 Future Work

This thesis has investigated listless rate scalable coding and directional filtering

in wavelet transform. However, there still remains scope for future research to

further improve the performance of wavelet-based embedded coders, including in

the area described below:

• The listless coders in this work were not implemented with entropy coding.

Suitable entropy coding could improve the performance of proposed coder.

• The 3D listless coder implemented in this work is based on the 3D zeroblock

coder. Further investigation based on the 2D SPIHT for 3D using a scan-
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based listless method might further improve the outcome, given that the

benefits of listless coding include reduced memory requirements.

• The directional filter bank implemented in this work is based on DFB filters

developed in contourlets. Although they perform quite well compared with

other type of filters, their filter lengths could be shorter, which could open

a possible area of research for better performance.

• In evaluating colour image compression, most type of image measurement

are based on error or use techniques which are available for greyscale images.

Greyscale measures sometimes do not correlated with human visual systems

especially when dealing with colour. Further research on the assessment of

quality in colour images are needed.
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Appendix A

Examples of test images

(a) Barbara (b) Lenna

(c) Peppers (d) Bicycle

Figure A.1: Greyscale images
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