935 research outputs found

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Localization to Enhance Security and Services in Wi-Fi Networks under Privacy Constraints

    Get PDF
    Developments of seamless mobile services are faced with two broad challenges, systems security and user privacy - access to wireless systems is highly insecure due to the lack of physical boundaries and, secondly, location based services (LBS) could be used to extract highly sensitive user information. In this paper, we describe our work on developing systems which exploit location information to enhance security and services under privacy constraints. We describe two complimentary methods which we have developed to track node location information within production University Campus Networks comprising of large numbers of users. The location data is used to enhance security and services. Specifically, we describe a method for creating geographic firewalls which allows us to restrict and enhance services to individual users within a specific containment area regardless of physical association. We also report our work on LBS development to provide visualization of spatio-temporal node distribution under privacy considerations

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    Real time data acquisition of commercial microwave link networks for hydrometeorological applications

    Get PDF
    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application

    Fault diagnosis for IP-based network with real-time conditions

    Get PDF
    BACKGROUND: Fault diagnosis techniques have been based on many paradigms, which derive from diverse areas and have different purposes: obtaining a representation model of the network for fault localization, selecting optimal probe sets for monitoring network devices, reducing fault detection time, and detecting faulty components in the network. Although there are several solutions for diagnosing network faults, there are still challenges to be faced: a fault diagnosis solution needs to always be available and able enough to process data timely, because stale results inhibit the quality and speed of informed decision-making. Also, there is no non-invasive technique to continuously diagnose the network symptoms without leaving the system vulnerable to any failures, nor a resilient technique to the network's dynamic changes, which can cause new failures with different symptoms. AIMS: This thesis aims to propose a model for the continuous and timely diagnosis of IP-based networks faults, independent of the network structure, and based on data analytics techniques. METHOD(S): This research's point of departure was the hypothesis of a fault propagation phenomenon that allows the observation of failure symptoms at a higher network level than the fault origin. Thus, for the model's construction, monitoring data was collected from an extensive campus network in which impact link failures were induced at different instants of time and with different duration. These data correspond to widely used parameters in the actual management of a network. The collected data allowed us to understand the faults' behavior and how they are manifested at a peripheral level. Based on this understanding and a data analytics process, the first three modules of our model, named PALADIN, were proposed (Identify, Collection and Structuring), which define the data collection peripherally and the necessary data pre-processing to obtain the description of the network's state at a given moment. These modules give the model the ability to structure the data considering the delays of the multiple responses that the network delivers to a single monitoring probe and the multiple network interfaces that a peripheral device may have. Thus, a structured data stream is obtained, and it is ready to be analyzed. For this analysis, it was necessary to implement an incremental learning framework that respects networks' dynamic nature. It comprises three elements, an incremental learning algorithm, a data rebalancing strategy, and a concept drift detector. This framework is the fourth module of the PALADIN model named Diagnosis. In order to evaluate the PALADIN model, the Diagnosis module was implemented with 25 different incremental algorithms, ADWIN as concept-drift detector and SMOTE (adapted to streaming scenario) as the rebalancing strategy. On the other hand, a dataset was built through the first modules of the PALADIN model (SOFI dataset), which means that these data are the incoming data stream of the Diagnosis module used to evaluate its performance. The PALADIN Diagnosis module performs an online classification of network failures, so it is a learning model that must be evaluated in a stream context. Prequential evaluation is the most used method to perform this task, so we adopt this process to evaluate the model's performance over time through several stream evaluation metrics. RESULTS: This research first evidences the phenomenon of impact fault propagation, making it possible to detect fault symptoms at a monitored network's peripheral level. It translates into non-invasive monitoring of the network. Second, the PALADIN model is the major contribution in the fault detection context because it covers two aspects. An online learning model to continuously process the network symptoms and detect internal failures. Moreover, the concept-drift detection and rebalance data stream components which make resilience to dynamic network changes possible. Third, it is well known that the amount of available real-world datasets for imbalanced stream classification context is still too small. That number is further reduced for the networking context. The SOFI dataset obtained with the first modules of the PALADIN model contributes to that number and encourages works related to unbalanced data streams and those related to network fault diagnosis. CONCLUSIONS: The proposed model contains the necessary elements for the continuous and timely diagnosis of IPbased network faults; it introduces the idea of periodical monitorization of peripheral network elements and uses data analytics techniques to process it. Based on the analysis, processing, and classification of peripherally collected data, it can be concluded that PALADIN achieves the objective. The results indicate that the peripheral monitorization allows diagnosing faults in the internal network; besides, the diagnosis process needs an incremental learning process, conceptdrift detection elements, and rebalancing strategy. The results of the experiments showed that PALADIN makes it possible to learn from the network manifestations and diagnose internal network failures. The latter was verified with 25 different incremental algorithms, ADWIN as concept-drift detector and SMOTE (adapted to streaming scenario) as the rebalancing strategy. This research clearly illustrates that it is unnecessary to monitor all the internal network elements to detect a network's failures; instead, it is enough to choose the peripheral elements to be monitored. Furthermore, with proper processing of the collected status and traffic descriptors, it is possible to learn from the arriving data using incremental learning in cooperation with data rebalancing and concept drift approaches. This proposal continuously diagnoses the network symptoms without leaving the system vulnerable to failures while being resilient to the network's dynamic changes.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Juan Carlos Dueñas López.- Vocal: Juan Manuel Corchado Rodrígue

    Defining Network Activity Patterns Using First Order Temporal Logics

    Get PDF
    Part of network management is collecting information about the activities that go on around a distributed system and analyzing it in real time, at a deferred moment, or both. The reason such information may be stored in log files and analyzed later is to data-mine it so that interesting, unusual, or abnormal patterns can be discovered. In this paper we propose defining patterns in network activity logs using a dialect of First Order Temporal Logics (FOTL), called First Order Temporal Logic with Duration Constrains (FOTLDC). This logic is powerful enough to describe most network activity patterns because it can handle both causal and temporal correlations. Existing results for data-mining patterns with similar structure give us the confidence that discovering DFOTL patterns in network activity logs can be done efficiently

    RT-MOVICAB-IDS: Addressing real-time intrusion detection

    Get PDF
    This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this field, especially if automatic abortion mechanisms are running. The formulation of this hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. Temporal restrictions are imposed on this IDS, in order to perform real/execution time processing and assure system response predictability. Therefore, a dynamic real-time multi-agent architecture for IDS is proposed in this study, allowing the addition of predictable agents (both reactive and deliberative). In particular, two of the deliberative agents deployed in this system incorporate temporal-bounded CBR. This upgraded CBR is based on an anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm to real-time requirements. Experimental results using real data sets are presented which validate the performance of this novel hybrid IDSMinisterio de Economía y Competitividad (TIN2010-21272-C02-01, TIN2009-13839-C03-01), Ministerio de Ciencia e Innovación (CIT-020000-2008-2, CIT-020000-2009-12

    IEEE 802.11 user fingerprinting and its applications for intrusion detection

    Get PDF
    AbstractEasy associations with wireless access points (APs) give users temporal and quick access to the Internet. It needs only a few seconds to take their machines to hotspots and do a little configuration in order to have Internet access. However, this portability becomes a double-edged sword for ignorant network users. Network protocol analyzers are typically developed for network performance analysis. Nonetheless, they can also be used to reveal user’s privacy by classifying network traffic. Some characteristics in IEEE 802.11 traffic particularly help identify users. Like actual human fingerprints, there are also unique traffic characteristics for each network user. They are called network user fingerprints, by tracking which more than half of network users can be connected to their traffic even with medium access control (MAC) layer pseudonyms. On the other hand, the concept of network user fingerprint is likely to be a powerful tool for intrusion detection and computer/digital forensics. As with actual criminal investigations, comparison of sampling data to training data may increase confidence in criminal specification. This article focuses on a survey on a user fingerprinting technique of IEEE 802.11 wireless LAN traffic. We also summarize some of the researches on IEEE 802.11 network characteristic analysis to figure out rogue APs and MAC protocol misbehaviors
    corecore