35 research outputs found

    Classification-driven search for effective sm partitioning in multitasking GPUs

    Get PDF
    Graphics processing units (GPUs) feature an increasing number of streaming multiprocessors (SMs) with each successive generation. At the same time, GPUs are increasingly widely adopted in cloud services and data centers to accelerate general-purpose workloads. Running multiple applications on a GPU in such environments requires effective multitasking support. Spatial multitasking in which independent applications co-execute on different sets of SMs is a promising solution to share GPU resources. Unfortunately, how to effectively partition SMs is an open problem. In this paper, we observe that compared to widely-used even partitioning, dynamic SM partitioning based on the characteristics of the co-executing applications can significantly improve performance and power efficiency. Unfortunately, finding an effective SM partition is challenging because the number of possible combinations increases exponentially with the number of SMs and co-executing applications. Through offline analysis, we find that first classifying workloads, and then searching an effective SM partition based on the workload characteristics can significantly reduce the search space, making dynamic SM partitioning tractable. Based on these insights, we propose Classification-Driven search (CD-search) for low-overhead dynamic SM partitioning in multitasking GPUs. CD-search first classifies workloads using a novel off-SM bandwidth model, after which it enters the performance mode or power mode depending on the workload's characteristics. Both modes follow a specific search strategy to quickly determine the optimum SM partition. Our evaluation shows that CD-search improves system throughput by 10.4% on average (and up to 62.9%) over even partitioning for workloads that are classified for the performance mode. For workloads classified for the power mode, CD-search reduces power consumption by 25% on average (and up to 41.2%). CD-search incurs limited runtime overhead

    HeteroCore GPU to exploit TLP-resource diversity

    Get PDF

    HSM : a hybrid slowdown model for multitasking GPUs

    Get PDF
    Graphics Processing Units (GPUs) are increasingly widely used in the cloud to accelerate compute-heavy tasks. However, GPU-compute applications stress the GPU architecture in different ways - leading to suboptimal resource utilization when a single GPU is used to run a single application. One solution is to use the GPU in a multitasking fashion to improve utilization. Unfortunately, multitasking leads to destructive interference between co-running applications which causes fairness issues and Quality-of-Service (QoS) violations. We propose the Hybrid Slowdown Model (HSM) to dynamically and accurately predict application slowdown due to interference. HSM overcomes the low accuracy of prior white-box models, and training and implementation overheads of pure black-box models, with a hybrid approach. More specifically, the white-box component of HSM builds upon the fundamental insight that effective bandwidth utilization is proportional to DRAM row buffer hit rate, and the black-box component of HSM uses linear regression to relate row buffer hit rate to performance. HSM accurately predicts application slowdown with an average error of 6.8%, a significant improvement over the current state-of-the-art. In addition, we use HSM to guide various resource management schemes in multitasking GPUs: HSM-Fair significantly improves fairness (by 1.59x on average) compared to even partitioning, whereas HSM-QoS improves system throughput (by 18.9% on average) compared to proportional SM partitioning while maintaining the QoS target for the high-priority application in challenging mixed memory/compute-bound multi-program workloads

    Exploring iGPU Memory Interference Response to L2 Cache Locking

    Get PDF

    Корреляционные взаимосвязи показателей иммунного статуса родильниц с содержанием хлорорганических пестицидов в крови

    Get PDF
    Було визначено вміст хлорорганічних пестицидів у венозній крові 35 породілль, а також досліджено їхнього імунного статусу. Результати дослідження свідчать про високу присутність, а також певний імуносупресивний вплив пестицидів на стан клітинного та гуморального імунітету.Content of pesticides in venous blood of 35 puerperants and their immune state were determined. High density of pesticides in venous blood and immunosuppressive action on cellular and humoral immunity were shown

    A method for tailoring the information content of a software process model

    Get PDF
    The framework is defined for a general method for selecting a necessary and sufficient subset of a general software life cycle's information products, to support new software development process. Procedures for characterizing problem domains in general and mapping to a tailored set of life cycle processes and products is presented. An overview of the method is shown using the following steps: (1) During the problem concept definition phase, perform standardized interviews and dialogs between developer and user, and between user and customer; (2) Generate a quality needs profile of the software to be developed, based on information gathered in step 1; (3) Translate the quality needs profile into a profile of quality criteria that must be met by the software to satisfy the quality needs; (4) Map the quality criteria to a set of accepted processes and products for achieving each criterion; (5) select the information products which match or support the accepted processes and product of step 4; and (6) Select the design methodology which produces the information products selected in step 5
    corecore