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Abstract—Graphics processing units (GPUs) are widely adopted as compute accelerators in cloud computing environments and
supercomputers. Sharing GPU resources in such environments requires effective multitasking support. Unfortunately, conventional GPUs
lack the ability to adapt to diverse thread-level parallelism (TLP) resource demands among co-executing kernels. Previous work such as
SM partitioning and simultaneously multitasking (SMK) increase system throughput, however, they degrade per-application performance
significantly.
This paper proposes the HeteroCore GPU to significantly improve multitasking performance with a similar area cost as a conventional
GPU. After rebalancing TLP-related SM resources, a HeteroCore GPU consists of two types of SMs to support diverse TLP-resource
demands. Dynamic scheduling performs low-overhead spatial profiling during runtime across the different SM types and steers
scheduling decisions based on the TLP-resource demands of the co-executing kernels. Compared to a conventional GPU, HeteroCore
GPU improves system throughput by 20.1% on average (up to 80.9%) and per-application performance by 29.8% on average (up to
50.3%), for workload mixes composed of kernels with different TLP-resource demands.

Index Terms—Heterogeneous, graphics processing units (GPUs), thread level parallelism (TLP), scheduling
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1 INTRODUCTION

Graphics processing units (GPUs) have become increasingly
important components in modern computer systems because
of their ability to accelerate highly data-parallel GPU-compute
applications [33]. With each technology generation, GPUs have
seen a dramatic increase in raw computational power, e.g., the
latest Nvidia Pascal GPU delivers performance in the TFlops
range [31]. The huge computational power at relatively low energy
has spurred the integration of GPUs in supercomputers, cloud
computing infrastructures as well as warehouse-scale computers,
where GPUs are virtualized and shared by multiple users [11],
[12], [37]. A key requirement to support GPU sharing is the ability
to support multitasking or concurrent execution of independent
kernels.

Time multiplexing is a multitasking technique widely used
in CPUs which divides time into slices to time-share the CPU
among co-executing applications. An application is preempted
by an another application if it runs out of its current time slice.
Unfortunately, unlike CPUs, the architecture state of a GPU kernel
is large, and hence the overhead of saving and restoring it is
high [34], [40], [49]. To make things worse, preemptive multitask-
ing does not make effective use of the available hardware resources,
e.g., memory bandwidth may be overutilized and underutilized at
different times when executing a memory-intensive versus compute-
intensive kernel in a time-sharing GPU environment.

In contrast, spatial multitasking divides GPU resources in space
rather than time among co-executing kernels [3], [4], [35], [40].
By concurrently running multiple kernels on different streaming
multiprocessors (SMs), spatial multitasking avoids the context
switching overhead, and better utilizes the available hardware
resources, thereby improving overall system performance. While
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the number of SMs in GPUs keeps increasing [31], [32] —
making spatial multitasking increasingly promising — an inevitable
problem in GPU multitasking is that co-executing kernels exhibit
different thread-level parallelism (TLP) resource demands that are
left unexploited in conventional GPUs.

A GPU kernel features so-called cooperative thread arrays
(CTAs) that group threads, out of which warps are formed
consisting of 32 threads for SIMD execution. When one warp
is stalled, the GPU switches to an another warp to execute to hide
memory access latency. The number of CTAs one SM can execute
is limited by the available per-SM TLP-related hardware resources,
including the register file, shared memory, and the warp slots.
These per-SM TLP resources are identical for all SMs which
leaves significant performance on the table and leads to suboptimal
hardware utilization when executing diverse multitasking GPU-
compute workloads.

In particular, for thick-TLP kernels, the available per-SM
TLP resources are insufficient to hide memory access latency
— these kernels can achieve higher performance if given more
TLP resources. In contrast, for lean-TLP kernels, the available
TLP resources exceed the kernel’s TLP resource demands, and
performance does not change or even increases when executed on
SMs with less TLP resources. These kernels either saturate memory
bandwidth and/or suffer from cache contention. Unfortunately,
current GPUs lack the ability to dynamically adapt to and exploit
different TLP resource demands among co-executing kernels. In
contrary to what conventional GPUs provide, a thick-TLP kernel
needs additional TLP resources whereas a lean-TLP kernel does
not need as many TLP resources.

Previous solutions including SM partitioning [3] and simulta-
neous multi-kernel execution (SMK) [49], [51] increase hardware
utilization in multitasking GPUs, however, they fall short for
workload mixes with different per-SM TLP resource demands,
which leads to severe per-application performance degradation. In
particular, co-executing a thick-TLP kernel with another kernel
on a single SM, as done in SMK, significantly degrades thick-
TLP kernel performance. Per-application performance degradation
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is particularly problematic in the context of fairness, quality-of-
service (QoS) and service-level agreements (SLAs) [11], [12],
[19].

This paper proposes the HeteroCore GPU architecture to
improve both system throughput and per-application performance
by exploiting different TLP resource demands among co-executing
GPU kernels. The core idea of the HeteroCore GPU is to ‘rebalance’
per-SM TLP resources in an area-normalized way. The proposed
HeteroCore GPU supports two types of SMs, the big-SM and small-
SM. In particular, we reduce the size of the TLP resources in a
small-SM and ‘migrate’ these TLP resources to a big-SM. Unlike
the widely explored heterogeneous multicore CPU composed of
core types with different performance characteristics (e.g., ARM’s
big.LITTLE), in HeteroCore GPU, the more complex big-SMs and
the simpler small-SMs are both used to improve performance. By
‘migrating’ TLP resources from a small-SM to a big-SM, while
keeping the number of functional units and cache size unchanged,
we maintain (or even improve) lean-TLP kernel performance while
significantly improving thick-TLP kernel performance.

To improve multitasking performance on a HeteroCore GPU,
the intuition is to enhance thick-TLP kernel performance by execut-
ing on big-SMs while maintaining lean-TLP kernel performance
by executing on small-SMs. Although the intuition is simple,
designing an effective scheduling algorithm is not. Dynamically
discerning thick-TLP kernels from lean-TLP kernels during runtime
at low overhead is challenging. To this end, we propose spatial
profiling and TLP resource-aware scheduling to optimize total
system throughput and per-application performance: we profile
the co-executing kernels on different SM types at low overhead;
after the online profiling phase, our scheduling algorithm decides
on the kernel-to-SM mapping based on the kernel’s TLP resource
characteristics. In addition, we deploy an adaptive preemption
policy to minimize the impact of context switching.

Although the HeteroCore GPU architecture is motivated by
GPU multitasking, it still maintains single-task performance: lean-
TLP kernels perform similarly on the big-SMs and small-SMs
— which is why they are lean-TLP kernels — while thick-TLP
kernels do worse on the small-SMs but make up for it with better
performance on the big-SMs.

In summary, we make the following contributions in this paper:

• We show that kernels exhibit different per-SM TLP-
resource demands which previously proposed techniques to
improve hardware utilization in multitasking GPUs such as
SM partitioning and simultaneous multi-kernel execution,
fail to exploit while balancing system throughput and per-
application performance.

• We introduce the HeteroCore GPU architecture consisting
of big-SMs and small-SMs varying in the degree of TLP
resources to significantly improve multitasking performance
while keeping hardware cost and single-task performance
unchanged.

• We explore HeteroCore GPU scheduling policies to balance
system throughput and per-application performance.

• We propose TLP resource-aware scheduling to fully exploit
the potential of the HeteroCore GPU architecture by
dynamically scheduling kernels to the most suitable SM
type, based on a low-overhead spatial profiling phase to
dynamically learn a kernel’s TLP-resource characteristics.

• We demonstrate the potential of the HeteroCore GPU
architecture and comprehensively evaluate its performance.
Compared to a conventional GPU with similar hardware
cost, the HeteroCore GPU improves system throughput
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Fig. 1: Thick-TLP kernels: Performance improves when given more
per-SM TLP resources; performance significantly degrades when
given less per-SM TLP resources.
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Fig. 2: Lean-TLP kernels: Performance saturates or degrades
with increasing per-SM TLP resources; performance saturates or
significantly improves when given less per-SM TLP resources.

by 20.1% on average (up to 80.9%) and per-application
performance by 29.8% on average (up to 50.3%) for
multitasking workloads composed of kernels with different
TLP-resource characteristics.

2 MOTIVATION

We first characterize the TLP resource demands in GPU-compute
workloads and classify them into thick-TLP versus lean-TLP
kernels. We do so based on the observed performance changes
as we increase the TLP resources per SM. In particular, we vary
the register file size, shared memory and number of warp slots
relative to our baseline SM which we denote as 1 unit of TR
(TLP Resource). We evaluate performance on a GPU with SMs of
size 1/2 ·TR, TR, and 3/2 ·TR. (1/2 ·TR means that the per-SM
TLP resources are half the size of our baseline SM.) All other
resources, including the number of functional units, cache size and
off-chip memory bandwidth, are kept unchanged. (See Section 5
for a detailed description of our experimental setup.)

2.1 Thick-TLP Kernels

Figure 1 shows normalized performance (instructions executed
per cycle or IPC) as a function of the per-SM TLP resources for
the thick-TLP kernels in our benchmark set. Increasing the TLP
resources per SM, e.g., from TR to 3/2 ·TR, enables more CTAs to
execute on an SM which in turn leads to more potential for latency
hiding and thus better performance, i.e., there is more opportunity
to hide latency by scheduling warps when a particular warp is
stalled. On the contrary, decreasing the number of TLP resources
makes things worse as now there are fewer warps to hide latency.
Conclusion: Thick-TLP kernel performance improves when given
more per-SM TLP resources, and significantly degrades when given
fewer TLP resources.
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2.2 Lean-TLP Kernels
Figure 2 shows similar results for the lean-TLP kernels in our
benchmark set. Performance saturates or even degrades with
increasing TLP resources per SM. It is interesting to investigate
why these benchmarks do not benefit from executing on SMs with
more TLP resources.

Performance is unaffected for the four benchmarks on the left.
These benchmarks are memory-intensive applications that do not
see their performance improve because high TLP induces a large
number of memory accesses which saturate the memory system.

We observe a different trend for the two benchmarks on the
right-hand side: performance degrades with increasing per-SM TLP
resources. Both applications are cache-sensitive: increasing TLP
resources enables more CTAs to concurrently execute per SM. This
increases contention in the private (per-SM) caches, which as a
result leads to a large number of memory accesses being sent to
the (shared) L2 cache through the interconnection network, which
degrades performance as the memory system stalls under the flood
of memory requests.
Conclusion: Lean-TLP kernel performance does not degrade (and
in some cases even improves) when given less per-SM TLP
resources.

2.3 Opportunity
The observation that kernels exhibit different per-SM TLP resource
demands creates an opportunity to improve performance in a GPU
multitasking environment. In spatial multitasking on a conventional
GPU, thick-TLP kernels and lean-TLP kernels execute on disjoint
SMs which all provide the same TLP resources. However, for thick-
TLP kernels, these TLP resources are insufficient for optimum
performance. Meanwhile, the lean-TLP kernels do not need as many
TLP resources, and can maintain (or even improve) performance
when given less TLP resources. By ‘rebalancing’ the TLP resources
from small-SMs to big-SMs, the HeteroCore GPU exploits TLP-
resource diversity among co-executing kernels while keeping the
hardware cost unchanged. By scheduling thick-TLP kernels on big-
SMs and lean-TLP kernel on small-SMs, we may improve overall
system performance. This key insight motivates the proposal for
the HeteroCore GPU architecture.

2.4 Why Existing Solutions Fail
Before describing the HeteroCore GPU architecture in more detail,
we first quantify and argue why existing solutions, including SM
partitioning and simultaneous multi-kernel execution (SMK), are
inadequate to exploit TLP-resource diversity. SM partitioning [3]
partitions the available SMs among the co-executing kernels.
Extending SM partitioning to be TLP resource-aware can be done
by assigning more SMs to the thick-TLP kernel and fewer SMs to
the lean-TLP kernel. Simultaneous multi-kernel execution (SMK)
is a GPU multitasking approach in which two kernels co-execute
on a single SM [49], [51]. Making SMK TLP resource-aware can
be done by granting more TLP resources to the thick-TLP kernel
while granting fewer to the lean-TLP kernel.

We first qualitatively compare the different ways for exploiting
TLP diversity. Figure 3 illustrates even and uneven SM partitioning,
SMK and HeteroCore. The thick-TLP kernel and lean-TLP kernel
oversubscribe and undersubscribe the per-SM TLP resources,
respectively. Even and uneven partitioning, see Figures 3(a) and (b),
do not fundamentally address the imbalance problem. SMK makes
things even worse: the thick-TLP can use even less TLP resources
compared to running in isolation, see Figure 3(c). HeteroCore on

Lean-TLP kernel  

(a) Even partition (b) Uneven partition (c) SMK (d) HeteroCore

Thick-TLP kernel

Fig. 3: Possible ways to exploit TLP diversity in a GPU with 4
SMs. HeteroCore better exploits TLP-resource diversity.
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Fig. 4: STP and ANTT improvement across all workloads rela-
tive to even SM partitioning: Uneven SM partitioning improves
system throughput (STP) slightly but degrades per-application
performance (ANTT). SMK improves STP substantially but severely
degrades ANTT. HeteroCore on the other hand significantly
improves both STP and ANTT.

the other hand rebalances the per-SM TLP resources so that the
available per-SM TLP resources better match the characteristics of
the co-executing kernels, see Figure 3(d).

We now compare the four strategies quantitatively. We consider
optimum results for SM partitioning and SMK, while reporting ef-
fective numbers for HeteroCore. The optimum results are obtained
through off-line analysis. In particular, for SM partitioning, we pick
the optimum SM partitioning through offline analysis by changing
the number of SMs assigned to either kernel in the workload
mix in increments of two. For SMK, we identify the optimum
partitioning of an SM by exploring all possible combinations of
co-executing two kernels on an SM. (To avoid the unfairness caused
by GTO under SMK, we use a loose round-robin warp scheduler
to guarantee fairness while achieving high STP by first selecting
kernels in a round-robin way and then selecting warps within a
kernel to issue instructions following the GTO policy [36].)

Figure 4 quantifies overall system throughput (STP) and per-
application performance (ANTT) for all four strategies relative to
even partitioning. Uneven SM partitioning slightly improves overall
system performance. Assigning more SMs to the thick-TLP kernel
improves its performance, however, taking away SMs from the
lean-TLP kernel degrades its performance. This leads to a net albeit
modest improvement in overall system performance compared to
even partitioning. Per-application performance degrades because
lean-TLP kernel performance suffers.

SMK significantly improves system throughput (by 14% on
average), however it severely degrades per-application performance
(by 76.7% on average)1. The primary reason for the severe degra-
dation in ANTT is that the thick-TLP kernel suffers substantially
from not being able to allocate all the TLP resources per SM.
Recall that a thick-TLP kernel, by definition, is very sensitive to

1. Optimum SMK here maximizes STP. If optimum SMK were to minimize
ANTT, the ANTT degradation is still as high as 62.4% while decreasing the
STP improvement to 4.8%.
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the assigned TLP resources per SM; hence decreasing the assigned
TLP resources leads to a severe per-SM performance drop. In
addition, co-executing two kernels on the same SM unavoidably
leads to intra-SM contention in various resources including the L1
cache and/or the load/store units [13]. Intra-SM contention may
slowdown one kernel or in some cases both kernels. The drop in
per-SM performance is not compensated for by executing on twice
the number of SMs compared to even partitioning. This explains
the significant drop in per-application performance under SMK.

Although SMK and uneven SM partitioning both lead to
(severe) ANTT degradation compared to even partitioning, this
does not necessarily imply that a combination of both also leads to
ANTT degradation. One option to combine SMK with uneven SM
partitioning may be to apply SMK for some multi-kernel workloads
and uneven partitioning for others. This approach could potentially
achieve the best of both worlds as some multi-kernel workloads
prefer SMK while others prefer uneven SM partitioning. Our
evaluation shows that for some workloads however, both SMK and
uneven SM partitioning lead to an ANTT performance degradation.
Another option may be to assign a subset of the SMs to one kernel
exclusively and share the remaining SMs among the various kernels
through SMK. This will lead to inferior performance compared to
either approach, i.e., if SMK yields better performance on a subset
of the SMs, it will be beneficial to apply SMK to all SMs, and
if it yields worse performance, then it will be beneficial to apply
uneven SM partitioning and not SMK.

In contrast to SMK and uneven SM partitioning, HeteroCore
significantly improves both system throughput and per-application
performance. The fundamental reason is that thick-TLP kernels
significantly benefit from being given more per-SM resources
when running on big-SMs; the lean-TLP kernels do not see their
performance degrade when running on small-SMs.
Conclusion: Existing solutions (SM partitioning and SMK), even
when made TLP resource-aware and under optimum offline
analysis, are ineffective at exploiting TLP-resource diversity. The
HeteroCore architecture on the other hand significantly improves
thick-TLP kernel performance while not degrading (and in some
cases even improving) lean-TLP kernel performance. This leads to
a significant improvement in both overall system throughput and
per-application performance.

3 HETEROCORE GPU
In this section, we first discuss the hardware support provided
in an SM to exploit TLP. We then propose our HeteroCore GPU
architecture to exploit varying TLP resource demands among co-
running kernels. We finally describe multitasking support.

3.1 TLP-Related Hardware Structures
As shown in Figure 5, GPUs typically consist of a number of SMs
that are connected to the last-level cache and memory controllers
through the interconnection network. When launching a kernel to
the GPU, the CTAs within the kernel are assigned to the SMs by the
CTA scheduler in a (typically) round-robin fashion. The number of
CTAs that an SM can execute concurrently is determined by various
hardware resource constraints such as the register file, shared
memory, warp and CTA slots [23]. No CTAs will be dispatched
to an SM if one of these resources is insufficient to support a new
CTA. We now describe these TLP-related structures in more detail,
as previously detailed in the literature [5], [29], [44], [52].
Register file: The maximum number of concurrent threads per
SM is a function of register file capacity on the one hand, and

TABLE 1: SM configurations for the baseline conventional GPU
versus the big-SM and small-SM configurations in the HeteroCore
GPU architecture.

TLP resource Baseline Big-SM Small-SM

Register File 32768 (registers) 49152 16384
Shared Memory 48 KB 64 KB 32 KB
Threads Slots 1536 (threads) 2304 768
Warp Slots 48 (warps) 72 24
CTA Slots 8 (CTAs) 10 6

the number of registers allocated per thread on the other hand. To
reduce hardware cost, instead of employing a multiported register
file, GPUs typically feature a multibanked register file in which
a crossbar network and operand collectors are used to transport
operands from the banks to the execution units [5], [29]. Within an
SM, 32 threads from a given CTA are grouped into a warp which
is the basic unit to schedule and issue. The execution context of all
warps executing on the SM is stored in the register file.
Shared memory: The shared memory is on-chip scratchpad
memory that is allocated per CTA and is visible to all threads
within the same CTA. The amount of shared memory required
per CTA is specified by the programmer. The shared memory not
only provides a mechanism for inter-thread communication within
a CTA, but also serves as a software-managed cache due to its
small access latency and high bandwidth. Similar to the register file,
shared memory is typically multibanked and connected through a
crossbar network [5], [29].
Warp slots: The number of warp slots is the third resource that
may limit the maximum number of CTAs per SM [44], [52]. As
mentioned before, a warp is the basic unit to schedule and issue
instructions on a GPU. As shown in Figure 5, the number of warp
slots is related to various components in different pipeline stages,
such as the program counter array (PC array), instruction buffer
(I-Buffer), SIMT stack and scoreboard.
CTA slots: The CTA slots administer the CTAs currently running
on an SM. Hence, the number of CTA slots puts a cap on the
maximum number of CTAs one SM can execute, e.g., Fermi GPUs
have 8 CTA slots per SM [2].

3.2 HeteroCore SM Architecture
As mentioned before, the basic idea of the HeteroCore GPU
architecture is to ‘rebalance’ the per-SM resources in an area-
normalized way to exploit different TLP resource demands in
concurrently executing kernels. The HeteroCore GPU consists of
two types of SMs: the big-SM exploits thick-TLP kernels whereas
the small-SM is optimized for lean-TLP kernels. The number of
threads or warps an SM can support depends on the available TLP
resources such as the register file, shared memory, warp slots and
CTA slots. In our baseline GPU, there are 16 SMs, all configured
the same way. To achieve an area-normalized rebalancing of per-
SM TLP resources, the HeteroCore GPU ‘migrates’ TLP resources
from half the SMs to the other half, to effectively construct a
HeteroCore GPU with 8 big-SMs and 8 small-SMs. Compared
to an SM in the baseline GPU, the big-SM consumes more chip
area as it features larger TLP resources. On the other hand, the
reduced small-SM consumes less area. As we will later show in
the evaluation section, the total chip area of the HeteroCore GPU
is indeed nearly the same as the baseline conventional GPU. It is
worth noting that by reducing the number of TLP resources in the
small-SM while keeping cache size constant, each thread benefits
from a larger effective cache space.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XX 2018 5

I-Cache

PC array

PC
PC

PC
……

WI

WI (Warp ID)

Decode

I-Buffer

Warp inst
Warp inst

Warp inst

WI

…………

SIMT stack
Warp #1

PC RPC Active mask
PC RPC Active mask

PC RPC Active mask
……………………

Warp #2

Warp #n
……………………

Scoreboard

WI

Register Status

……………………

Register Status

Register Status

WI

Is
s
u
e

Arbiter

Collector Units

B
a

n
k
 0

B
a

n
k
 1

B
a

n
k
 N

Register File ALU

MEM
Data 

cache

Shared 

Memory

Fetch

SM SM

Interconnection Network

L2 Cache L2 Cache

DRAM DRAM

Crossbar

Network

Fig. 5: Overview of a conventional GPU architecture. The per-SM TLP resources are highlighted.

The detailed SM configurations for the baseline GPU and
HeteroCore GPU are listed in Table 1. The HeteroCore GPU SMs
are configured by modifying the size of the TLP-related structures
only; we do not change the structures themselves. For example, to
increase the size of the register file, we only increase the size of
each bank instead of increasing the number of banks. By doing
so, the other components of the register file such as the crossbar
network remains unchanged.
Cycle time. One concern may be that because the big-SM has
larger sized structures compared to the baseline SM, cycle time
and therefore clock frequency may be affected, and as a result,
the HeteroCore GPU may not be clocked as fast as a conventional
GPU. Previous work has shown that the warp scheduler of the issue
unit is on the critical path as it needs to access the scoreboard to
identify the ready warps among all active warps and then choose
the ready warp with the highest priority to issue [6], [52]. We hence
focus the discussion here on the warp scheduler. Although GPUs
typically employ multiple warp schedulers per subset of warps,
increasing the number of warp slots in the big-SM leads each warp
scheduler to consider more warps, which may affect cycle time.
To solve this problem, we divide the warp slots per scheduler into
two groups: the first group contains as many warps slots as the
baseline SM; the other group consists of the remaining warp slots.
Initially, the warp scheduler only considers the first group. If the
warp scheduler cannot find a ready warp, it will consider the other
group in the next cycle. The warp scheduler continues considering
one group until it cannot find ready warps. Although switching
between groups incurs a lost cycle, this does not impact big-SM
performance much because (i) switching typically happens when
the system suffers from severe resource contention, e.g., memory
contention, in which case a one-cycle bubble is small compared to
the long memory access latency [16]; and (ii) this problem only
occurs when both groups are used, i.e., because of limitations in
the other TLP-related resources, many thick-TLP applications may
only use the warp slots in the first group. We take this one-cycle
switching overhead into account in our evaluation.

3.3 HeteroCore GPU Multitasking Support
To efficiently utilize the available hardware resources, architectural
extensions such as spatial multitasking have been proposed for
sharing the GPU among kernels from different processes [3],
[40]. Spatial multitasking divides the SMs in a GPU into several
disjoint subsets and allows concurrently executing kernels to run
on different subsets of SMs. When a new kernel is launched, it can
preempt some SMs to execute and this avoids the starvation of the
newly arrived kernel.

To fully support multitasking in a HeteroCore GPU, a good
preemption policy is critical. Previously proposed GPU preemption

policies include SM draining and context switching [35], [40]. The
SM draining policy exploits the GPU execution model that different
CTAs are independent from each other. After finishing a CTA, no
information of the finished CTA needs to be stored. In the SM
draining policy, if an SM is preempted, no more CTAs are allowed
to be issued on the SM. After finishing all the executing CTAs, the
SM becomes idle after which it can execute CTAs from another
kernel. Unlike the SM draining policy, the context switching policy
saves the contexts for all threads currently running on the SM.
GPUs support up to a few thousand threads per SM, which incurs
significant overhead for saving and restoring architecture state
which can be as large as 256 KB for the register file and 48 KB
for shared memory per SM. The SM is halted and can no longer
execute instructions during preemption.

Simply employing the draining policy or the context switching
policy in the HeteroCore GPU without considering a kernel’s
execution characteristics is not the best choice. In particular, if the
CTAs of the currently executing kernel are likely to finish soon,
the draining policy seems a better fit as it avoids the overhead of
saving and restoring architecture state which may incur significant
memory contention and increase the preemption latency. On the
other hand, if the CTAs currently running on the SM need a very
long time to finish their execution, the draining policy would
increase the preemption latency. The high preemption latency
may also significantly decrease overall system performance as
the SMs cannot utilize the available hardware while draining
the SM. In this case, context switching is the better option. As
these two preemption policies are suitable to different kernels and
execution contexts, the proposed HeteroCore GPU exploits an
adaptive preemption policy that chooses either the draining policy
or the context switching policy based on the kernel’s execution
characteristics, as we describe in the following section.

4 HETEROCORE GPU SCHEDULING

Scheduling kernels onto the different SM types is critical to
HeteroCore GPU performance. In this section we describe different
scheduling algorithms which we then evaluate in Section 6. We
consider two kernels when describing these algorithms, however,
this does not affect the generality — the algorithms are easily
extended to more than two co-executing kernels. We further
consider a baseline conventional GPU with 16 SMs versus a
HeteroCore GPU with 8 big-SMs and 8 small-SMs.

4.1 TLP Resource-Agnostic Scheduling
A naive TLP resource-agnostic scheduling algorithm simply divides
the 8 big-SMs and 8 small-SMs into two groups and assigns each
of the co-executing kernels 4 big-SMs and 4 small-SMs. By not
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Algorithm 1
Static TLP-aware STP-optimized scheduling
1: IPCbase

Ki
← IPC for kernel Ki on 16 baseline SMs

2: IPCB
Ki
← IPC for kernel Ki on 8 big-SMs

3: IPCS
Ki
← IPC for kernel Ki on 8 small-SMs

4: ST PK0(B) K1(S) =
IPCB

K0
IPCbase

K0

+
IPCS

K1
IPCbase

K1

← estimate STP for K0 on big-SMs and K1 on

small-SMs
5: ST PK1(B) K0(S) =

IPCB
K1

IPCbase
K1

+
IPCS

K0
IPCbase

K0

← estimate STP for K1 on big-SMs and K0 on

small-SMs
6: if ST PK0(H) K1(L) > ST PK1(H) K0(L) then
7: map K0 on 8 big-SMs and K1 on 8 small-SMs
8: else
9: map K1 on 8 big-SMs and K0 on 8 small-SMs

10: end if

considering the TLP resource characteristics of the co-executing
kernels, TLP resource-agnostic scheduling is the simplest yet naive
approach for scheduling kernels on the HeteroCore GPU. Although
TLP resource-agnostic scheduling avoids the overheads incurred
by the offline and online algorithms described in the following
sections, it is unable to fully exploit the performance potential
of the HeteroCore GPU. In particular, when a lean-TLP kernel
and a thick-TLP kernel co-run, TLP resource-agnostic scheduling
assigns 4 big-SMs and 4 small-SMs to the lean-TLP kernel, which
unfortunately does not improve its performance; what is even worse,
the thick-TLP kernel suffers from a performance degradation by
executing (in part) on the small-SMs.

4.2 Static TLP Resource-Aware Scheduling
TLP resource-aware scheduling tackles this shortcoming. Although
our final goal is a dynamic scheduling algorithm, we first describe
static scheduling as it will serve as a point of comparison for our
dynamic scheduler. We consider three static TLP-aware scheduling
policies: (i) classification, (ii) STP-optimized, and (iii) STP/ANTT-
balanced scheduling.

4.2.1 Classification scheduling
Classification scheduling first classifies kernels in either the thick-
TLP versus lean-TLP category. We first run each kernel in isolation
on a GPU with 8 baseline SMs, 8 big-SMs and 8 small-SMs.
We then compare the performance results and classify kernels
accordingly. A kernel for which performance does not degrade
relative to the baseline, when running on the small-SMs, is
classified as a lean-TLP kernel. All other kernels are classified
as a thick-TLP kernel.

Classification scheduling maps the thick-TLP kernel to big-
SMs and the lean-TLP kernel to small-SMs. This way, the thick-
TLP kernel benefits a significant performance improvement by
exploiting more TLP on the big-SMs. Meanwhile, the lean-
TLP kernel does not suffer and in some cases, performance
even improves by executing on the small-SMs. However, when
two applications with the same TLP resource characteristics co-
execute, classification scheduling reverts to TLP resource-agnostic
scheduling and assigns 4 big-SMs and 4 small-SMs to each kernel.

4.2.2 STP-optimized scheduling
STP-optimized scheduling aims at optimizing system throughput.
This policy is motivated by the observation that classification
scheduling as just described does not fully exploit the potential of
the HeteroCore GPU in case kernels from the same category need to
be co-scheduled. For example, two co-running thick-TLP kernels

only get half the big-SMs assigned which leads to suboptimal
performance. Higher overall system throughput can be achieved by
scheduling the kernel that benefits the most from running on the
big-SM, on the big-SMs.

STP-optimized scheduling, during the offline profiling phase,
runs each of the two kernels on the conventional GPU with 16
baseline SMs and on the HeteroCore GPU with just the 8 big-SMs
and just the 8 small-SMs. The respective performance numbers are
then used to determine the schedule that optimizes overall system
throughput, see Algorithm 1. Performance scheduling computes
overall system throughput for both scheduling options, i.e., kernel
K0 on the big-SMs and kernel K1 on the small-SMs, and vice
versa, and then picks the schedule that maximizes performance.
Note that system performance is computed following the notion of
the system throughput (STP) metric [15] (which is equivalent to
weighted speedup), as we detail in Section 5.

4.2.3 STP/ANTT-balanced scheduling
STP/ANTT-balanced scheduling aims at balancing system through-
put and per-application performance. STP-optimized scheduling
severely degrades per-application performance for some workload
mixes. In particular, if two thick-TLP kernels co-execute con-
currently, STP-optimized scheduling assigns all big-SMs to the
thick-TLP kernel that benefits the most. This, however, penalizes
the other thick-TLP kernel, which gets executed on small-SMs and
hence experiences a severe performance degradation. To achieve
better per-application performance, it is better to assign both kernels
half the big-SMs and half the small-SMs, as done in classification
scheduling.

STP/ANTT-balanced scheduling achieves the best of both
classification and STP-optimized scheduling. If both kernels benefit
from executing on the big-SMs, STP-ANTT balanced scheduling
assigns 4 big-SMs and 4 small-SMs to each kernel — just like
classification scheduling. Otherwise, it assigns all 8 big-SMs to the
kernel that benefits the most — just like STP-optimized scheduling.
It is worth noting that for workload mixes consisting of two lean-
TLP kernels, STP/ANTT-balanced scheduling works well as most
lean-TLP kernels do not see their performance degrade when
executing on big-SMs; a lean-TLP kernel that gets executed on a
small-SM might see a performance benefit. This improves both
STP and ANTT.

4.2.4 Performance evaluation
We now evaluate the different static TLP-aware scheduling policies.
We report STP and ANTT relative to a conventional GPU for
TLP-agnostic scheduling, versus TLP-aware classification, STP-
optimized and STP/ANTT-balanced scheduling. We sort the
workloads along the horizontal axis, see Figure 6. (See Section 5 for
details regarding the experimental setup.) There are two key take-
away messages: (i) the HeteroCore GPU clearly outperforms the
conventional GPU, and (ii) the scheduling policy plays a critical
role in improving STP and ANTT. STP-optimized scheduling
clearly outperforms the other three scheduling policies in terms
of STP. However, its impact on ANTT is also obvious: for some
workload mixes that consist of two thick-TLP kernels, ANTT may
degrade by up to 87.4%. Classification scheduling does not lead to
a significant drop in ANTT, however, STP is not nearly as good
as for STP-optimized scheduling. STP/ANTT-balanced scheduling
hits the middleground by balancing STP and ANTT, i.e., STP
is comparable to STP-optimized scheduling, yet ANTT does not
degrade as much for thick-TLP kernel workload mixes. Overall,
across all multikernel workloads, STP/ANTT-balanced scheduling
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Fig. 6: Offline analysis: STP and ANTT improvement for various
HeteroCore scheduling policies over a conventional GPU.

Algorithm 2
Dynamic TLP-aware scheduling
1: if new kernel gets launched then
2: initiate profiling phase
3: end if
4: if execution phase then
5: IPCB

Ki
← measured IPC on big-SMs

6: IPCS
Ki
← measured IPC on small-SMs

7: IPCbase
Ki
← estimated IPC on baseline SMs

8: if IPCB
K0

> IPCS
K0

and IPCB
K1

> IPCS
K1

then
9: map K0 and K1 to 4 big-SMs and 4 small-SMs

10: else
11: compute ST PK0(B) K1(S) =

IPCB
K0

IPCbase
K0

+
IPCS

K1
IPCbase

K1

12: compute ST PK1(B) K0(S) =
IPCB

K1
IPCbase

K1

+
IPCS

K0
IPCbase

K0
13: if ST PK0(B) K1(S) > ST PK1(B) K0(S) then
14: map K0 on 8 big-SMs and K1 on 8 small-SMs
15: else
16: map K1 on 8 small-SMs and K0 on 8 big-SMs
17: end if
18: end if
19: end if

improves STP by 13.9% on average (up to 90.4%) and improves
ANTT by 23.8% on average (up to 52.3%).

4.3 Dynamic TLP Resource-Aware Scheduling
Static TLP-aware scheduling relies on offline profiling which is
impractical. To this end, we propose dynamic TLP resource-aware
scheduling which is inspired by static TLP-aware STP/ANTT-
balanced scheduling, yet performs profiling during runtime at low
overhead.

When launching two kernels to co-execute on the HeteroCore
GPU (i.e., when two kernels start their execution at the same time,
or when a new kernel comes in while another kernel was already
running), we first initiate a spatial profiling phase in which we
partition the HeteroCore GPU into two groups with 4 big-SMs and
4 small-SMs each. Each kernel gets to run on a partition with 4
big-SMs and 4 small-SMs, during which we measure big-SM and
small-SM performance. After this profiling phase, we determine
the types of the two co-executing kernels. If both kernels favor
big-SMs, i.e., they are both thick-TLP kernels, we assign 4 big-
SMs and 4 small-SMs to each kernel. Otherwise, we determine

which kernel benefits most from running on the big-SM. We then
assign all the big-SMs to the application that benefits the most from
big-SM execution towards overall system throughput; the other
application gets to run on the small-SMs. We re-initiate spatial
profiling whenever a kernel finishes its execution and a new kernel
is launched.

Algorithm 2 describes the dynamic scheduling algorithm in
more detail. Spatial profiling takes 40K cycles in our setup, of
which we consider the first 20K cycles for warmup, and we then
measure performance during the next 20K cycles. To estimate
system throughput for the different scheduling alternatives, we
need an arbitrarily chosen baseline to normalize to. Static TLP-
aware scheduling considers a conventional GPU as its baseline.
Unfortunately, we cannot measure baseline SM performance during
online profiling. Hence we have to estimate it. This is done by
re-scaling the big-SM and small-SM performance numbers relative
by the number of CTAs running on either SM type, as shown in
the below formulas, with #CTABaseline

Ki
, #CTAbig

Ki
and #CTAsmall

Ki
the

number of CTAs per SM in the conventional GPU, big-SM and
small-SM, respectively. These numbers are easy to compute as the
resource requirements per CTA are known as well as the amount
of resources per SM.

IPCbase
Ki

= IPCscaled× (IPCbig
Ki
− IPCsmall

Ki
)+ IPCsmall

Ki

IPCscaled =
#CTAbase

Ki
−#CTAsmall

Ki

#CTAbig
Ki
−#CTAsmall

Ki

As mentioned before, to reduce preemption latency, the Hete-
roCore GPU exploits an adaptive preemption policy that chooses
between the draining versus context switching policy based on
the kernel’s execution characteristics. In particular, the adaptive
preemption policy considers the kernel’s execution behavior during
warmup. If a kernel can finish a CTA’s execution during the warmup
phase, it is likely to assume that other CTAs will also finish soon,
hence the adaptive preemption policy employs the draining policy
to preempt the SMs occupied by this kernel. If not, the adaptive
policy employs context switching.

Note that dynamic TLP resource-aware scheduling relies on
an initial profiling phase whenever a new kernel comes in. This
works because GPU kernels are made up of many CTAs that exhibit
relatively consistent behavior, so we can use some initial CTAs
to help us guide scheduling for future CTAs [27]. Although fine-
grained phase behavior may be observed at the warp level [21],
[44], this gets leveled out at the SM level as several CTAs execute
concurrently on an SM.

Finally, new CUDA features such as dynamic parallelism in
which parent kernels can launch child kernels to run alongside
the parent kernels, may affect kernel launch. Although our current
evaluation infrastructure does not support dynamic parallelism, we
believe that dynamic parallelism can be supported by regarding a
child kernel as a new incoming kernel. In that case, when a child
kernel is launched, we re-initiate the spatial profiling phase. One
potential limitation may occur for workloads with many small child
kernels, which may lead to considerable profiling overhead. In such
a case, we may need to employ an adaptive approach in which we
dynamically determine whether or not to initiate spatial profiling
— such a decision can be made based on the number of CTAs per
kernel, i.e., a kernel with a large number of CTAs is likely to run
longer than a kernel with a small number of CTAs, hence it may
be worth paying the profiling overhead. The evaluation of such
a mechanism falls beyond the scope of this paper and is left for
future work.
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TABLE 2: Baseline GPU architecture.

Parameter Value

Streaming Multiprocessors (SM) 16 SMs, 700 MHz
Warp Size 32
Schedulers/Core 2 (GTO)
Number of Threads/Core 1536
Registers/Core 32768
Shared Memory/Core 48 KB
Constant/Core 8 KB
L1 Data Cache/Core 16 KB, 4-way, LRU, 128 B line
Memory Controllers 6
L2 Cache/MC 128 KB, 8-way, LRU, 128 B line
Interconnection Network Crossbar, 32 B channel width
DRAM Model and Bandwidth FR-FCFS, 16 banks/MC, 177.4 GB/s
GDDR5 Timing tCL=12, tRP=12, tRC=40, tRAS=28,

tRCD=12, tRRD=6, tCCD=2, tWR=12

TABLE 3: Benchmarks considered in this paper.

Benchmark Abbr. CTAs / CTAs / CTAs / TLP
SM Big-SM Small-SM Demand

LavaMD [8] LAVAMD 6 9 3 Lean-TLP
Symmetric Rank-k Operations [17] SYRK 6 9 3 Lean-TLP
K-means [8] KMEANS 6 9 1 Lean-TLP
Symmetric Rank-2k Operations [17] SYR2K 6 9 1 Lean-TLP
Neural Network [5] NN 8 10 4 Lean-TLP
Streamcluster [8] SC 3 4 1 Lean-TLP
3D Finite-Difference Time-Domain [1] FDTD3D 2 3 1 Thick-TLP
N-Queens Solver [5] NQU 3 4 2 Thick-TLP
StoreGPU [5] STO 3 4 2 Thick-TLP
B+TREE Search [8] B+TREE 5 9 3 Thick-TLP
DirectX Texture Compressor [1] DXTC 8 10 6 Thick-TLP
Histogram [39] HISTO 8 10 6 Thick-TLP

5 EXPERIMENTAL SETUP

Simulated System: We use a modified version of GPGPU-sim
v3.2.2 [5] to evaluate the proposed HeteroCore GPU architecture.
The modifications allow GPGPU-sim to run multiple applications
concurrently through spatial multitasking. Table 2 lists the config-
uration for our baseline GPU architecture. The HeteroCore GPU
architecture consists of 8 big-SMs and 8 small-SMs. Apart from
the SM-type specific configuration parameters listed in Table 1,
the HeteroCore GPU parameters are the same as for the baseline
configuration. To estimate power consumption and chip area, we
use GPUWattch [29].

Context Switching: Upon a context switch, the context of the
currently executing kernel is switched out and stored in off-chip
memory. To incorporate the overhead of context switching in our
measurements, not only because of stalling the preempted SM
but also because of increased network and memory contention,
we implement context switching in our simulator by simulating
the packets transferring the context through the interconnection
network as well as writing to main memory. When an SM is
preempted, it is stalled until it finishes sending all packets to main
memory. The number of packets is calculated based on the size of
the context.

Workloads: We consider a wide range of CUDA GPU-compute
benchmarks from a range of application domains including data
mining, search, deep learning, engineering, compression, etc.,
see Table 3 These benchmarks are selected from Rodinia [8],
Parboil [39], CUDA SDK [1], PolyBench [17] and GPGPU-
sim [5]. KMEANS, B+TREE and NN constitute of two kernels;
the other benchmarks consist of a single kernel. We classify these
benchmarks into two classes following the procedure described
in Section 2.2 For generating multikernel workloads, we pair
all the thick-TLP and lean-TLP applications (see Table 3 for
the classification) to obtain 66 multikernel workloads. Based
on the TLP resource demands of the constituting benchmarks,
the 66 workloads can be classified into two categories, named
heterogeneous workloads and homogeneous workloads. The multi-
kernel workloads in the heterogeneous workload category consist
of two kernels with different TLP resource demands, i.e., one

2. Note that when a benchmark is classified as a lean-TLP application, that
does not mean that the benchmark performs poorly on a GPU. In contrast, the
lean-TLP benchmarks achieve very high performance (average IPC of 107 and
up to 467). These benchmarks are classified as lean-TLP because performance
does not improve when given more TLP-related resources per SM over the
baseline, see Section 2.

thick-TLP kernel and one lean-TLP kernel. The workloads in the
homogeneous workload category consist of two kernels with similar
TLP resource demands.

Performance and Power Metrics: We simulate for 10 million
cycles. If a benchmark finishes before others, it is re-launched and
re-executed from the beginning.3 The reported performance results
pertain the whole execution. System throughput (STP) and average
normalized turnaround time (ANTT) [15] are used to evaluate
multikernel performance. STP takes a system’s perspective and
quantifies total system throughput — STP is also referred to as
weighted speedup. ANTT takes a user’s perspective and quantifies
average per-application performance. Energy per instruction (EPI)
is used to measure energy efficiency.

6 EVALUATION

We now evaluate the HeteroCore GPU architecture. We first
quantify the improvement in STP and ANTT. We then evaluate the
impact on hardware cost and energy efficiency, and we evaluate
single-kernel and four-kernel performance. Finally, we perform
sensitivity analyses.

6.1 STP and ANTT
We first evaluate how HeteroCore affects system throughput (STP)
and per-application performance (ANTT) compared to our baseline
GPU. These results assume that we profile and schedule kernels
during runtime. In other words, we account for the overhead of
spatial profiling and context switching. Obviously, TLP resource-
agnostic scheduling does not incur any overhead as it does not
require a profiling phase, in contrast to dynamic TLP resource-
aware scheduling. We also compare against static TLP resource-
aware performance scheduling to quantify the impact of profiling
and context switching overhead.

Figure 7 quantifies STP improvement for the HeteroCore GPU
over the conventional GPU under TLP resource-agnostic, static and
dynamic TLP resource-aware scheduling. Clearly, the HeteroCore
GPU with dynamic TLP resource-aware scheduling outperforms
the conventional GPU. The runtime overhead of spatial profiling
and context switching is minor, i.e., dynamic scheduling is nearly
as effective as static scheduling. Overall, the HeteroCore GPU

3. We verified that 10 million cycles is representative for all workloads, i.e.,
performance characteristics do not change afterwards, which is in line with
current practice [49], [50], [51]. For some workloads, we need to re-launch
(and thus re-profile) up to 3 times.
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Fig. 7: STP improvement over a conventional GPU under dynamic
scheduling. Dynamic TLP-aware scheduling improves STP by
20.1% on average and up to 80.9% for the heterogeneous workload
mixes.
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Fig. 8: ANTT improvement over a conventional GPU under
dynamic scheduling. Dynamic TLP-aware scheduling improves
ANTT by 29.8% on average and up to 50.9% for the heterogeneous
workload mixes.

improves system performance by 20.1% on average, and up to
80.9%, for workloads composed out of kernels with different TLP-
resource characteristics. Across all workloads considered in this
work, HeteroCore GPU improves performance by 11% on average.
For only a few workloads does the HeteroCore GPU lead to a
performance degradation of at most 6.7%. This happens when two
memory-intensive kernels experience similar performance benefits
from executing on the big-SMs. In such a case, assigning all 8
big-SMs to one kernel is not the best choice as this kernel may clog
memory resources slowing down the other kernel, which in the end
degrades overall system performance; assigning 4 big-SMs and

4 small-SMs to each of the co-executing kernels leads to higher
performance.

Figure 8 provides similar curves for ANTT. HeteroCore
with dynamic TLP resource-aware scheduling leads to signifi-
cant improvements in ANTT for all heterogeneous workloads,
by 29.8% on average and up to 50.3%, see Figure 8(b). The
fundamental reason is that thick-TLP kernel performance improves
substantially by running on big-SMs; at the same time, lean-
TLP kernel performance does not degrade and in some cases
even improves. Across all workloads, see Figure 8(a), we observe
substantial improvements in per-application performance (by 20.2%
on average). For some workload mixes that consist of two thick-
TLP kernels, ANTT decreases by at most 14%. For these thick-TLP
kernels which both favor big-SMs, the performance benefits on
big-SMs is less than the performance degradation on small-SMs.

We also find dynamic scheduling to be within 3% and 3.6%
of static scheduling for STP and ANTT, respectively. For some
workloads, the performance gap between static and dynamic
scheduling is somewhat higher, and the worst is 17.3%. We find
this to be the case for a multikernel workload that consists of two
lean-TLP kernels that both favor small-SMs. The initial profiling
is not that accurate and happens to make the wrong scheduling
decision. However, even for this particular workload, HeteroCore
still outperforms a conventional GPU by 8.3%.

6.2 Hardware Cost and Energy

We now evaluate area cost and energy consumption using
GPUWattch [29]. The per-SM TLP resources (shared memory,
register file, warp slots and CTA slots) change across SM types;
the ALUs and other components are not affected. Compared to
a baseline SM, the area of a big-SM increases by 6.9% whereas
the area of a small-SM decreases by 3.1%. Overall, the total area
of the HeteroCore GPU increases by 3.8% over the conventional
GPU. Taking into account the fraction taken up by the SMs relative
to the entire chip, based on the Nvidia Fermi die photo [14], this
translates into the HeteroCore GPU occupying 1.8% more chip
area. Note that a 3.8% increase in chip area is (much) smaller
than the area cost of one SM. Moreover, even when assuming
that GPU performance increases linearly with SM count in the
ideal scenario, increasing the number of SMs from 16 to 17 would
improve performance by at most 6.2%.

The HeteroCore GPU improves energy consumption per
instruction by 11.2% for the heterogeneous workloads and is
energy-neutral for the homogeneous workloads. Overall, the
HeteroCore GPU improves energy consumption per instruction by
7.2% on average. The reduction in energy consumption comes from
improved performance which compensates for the slight power
consumption increase of 4.1% on average for the HeteroCore GPU.

6.3 Single-Kernel Performance

So far we considered multikernel workloads. Obviously, in a real
execution context, there might be periods of execution during
which only a single kernel is running. The question then is what
performance to observe on the HeteroCore GPU. Figure 9 reports
single-kernel performance, normalized to the conventional GPU,
along with big-SM and small-SM performance. Overall, perfor-
mance is largely unaffected for the majority of the benchmarks. A
couple benchmarks, i.e., NQU, STO, B+TREE, DXTC and HISTO,
experience a performance degradation of at most 6.3% (B+TREE).
A couple benchmarks, i.e., NN, SC and FDTD3D, experience a
significant performance improvement reaching up to 46.6% (SC).
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Most of the lean-TLP kernels, see Figure 9 on the left, are
unaffected because big-SM and small-SM performance is similar.
We observe a significant performance improvement for the cache-
sensitive applications NN (9.9%) and SC (46.6%). The reason is
high performance on the small-SM because of less cache contention
when co-executing fewer CTAs. For the thick-TLP kernels, see
Figure 9 on the right, high performance is achieved on the big-SMs,
as expected. The improvement is not as big as the performance drop
on the small-SMs, hence a net but small performance degradation
for most thick-TLP kernels. The exception is FDTD3D with
a performance improvement of 19.9%: FDTD3D is a memory-
intensive benchmark that greatly benefits from increased memory
access latency hiding when running on the big-SMs.

6.4 Four-Kernel Performance
We next evaluate the performance of the HeteroCore GPU archi-
tecture with more than two co-executing kernels. In particular, we
generate 310 4-kernel workloads containing kernels with different
TLP characteristics, such as 3T1L, 2T2L and 1T3L (3T1L means
3 thick-TLP kernels co-running with 1 lean-TLP kernel), out of
which we randomly choose 50 workloads. The dynamic TLP
resource-aware performance scheduling algorithm employed here
for 4 co-running kernels is a straightforward extension upon the
one described in Section 4: we first profile performance for each
kernel on 2 big-SMs plus 2 small-SMs, and then determine the
kernel-to-SM mapping that maximizes STP assuming that each
kernel occupies either 4 big-SMs or 4 small-SMs. The results are in
line with the ones for two kernels: the HeteroCore GPU improves
STP by 19.0% on average (and up to 59.8%), while at the same
time improving ANTT by 33.2% on average.

6.5 Sensitivity Analyses
As a final step in the evaluation, we perform two sensitivity analyses
to better justify the design choices made in this work. First, we
compare our dynamic scheduling policy with optimal scheduling.
Second, we explore different forms of heterogeneity with 4 big-
SMs and 12 small-SMs versus 12 big-SMs and 4 small-SMs.

Optimal Scheduling: Recall from Section 4 that we assign 8 SMs
of the same type to both co-running kernels in a heterogeneous
workload mix. The question may be asked whether this is optimal.
Why do we evenly split the SMs and why do we give all big-SMs
to one kernel? Why not give more SMs to one kernel? And why
do all SMs assigned to a given kernel need to be from the same
type? To answer this question, we consider uneven distributions
(i.e., give 4 SMs to one kernel and 12 to the other), and for each
of those 4 SMs assigned, we consider all possible combinations of
big-SMs (B) versus small-SMs (S), i.e., 4B, 1B3S, 2B2S, 1B3S
and 4S, and pick the optimum. The results are shown in Figure 10
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for the heterogeneous workloads: the first bar shows our proposed
scheduling algorithm that dynamically assigns 8 SMs to both
kernels; the second bar shows the optimum determined statically
across all possible combinations of 4, 8 or 12 SMs for either kernel.
The key conclusion is that our proposed solution is within 3.5.%
on average compared to the optimum; we conclude that assigning
8 SMs to both kernels is optimal and no additional performance
benefit is obtained through an uneven split of SMs to kernels.

Exploring Heterogeneity: Another question that may be raised is
why we consider 8 big-SMs and 8 small-SMs. Why not 4 big-SMs
and 12 small-SMs, or vice versa, 12 big-SMs and 4 small-SMs? To
answer this question we construct HeteroCore GPUs with the same
hardware area cost using the following scenario: we keep the small-
SM configuration unchanged but change the big-SM configuration
accordingly in an area-normalized way. Hence, when there are
only 4 big-SMs, they are sized bigger with 81,920 registers, 96 KB
shared memory and 120 warp slots; when there are 12 big-SMs,
they are sized with 38,229 registers, 53 KB shared memory and
56 warp slots. In this experiment we also exhaustively enumerate
all scheduling possibilities and pick the optimum. The results are
also shown in Figure 10. For the HeteroCore GPU with 4 big-SMs
and 12 small-SMs, we observe that the optimum scheduling policy
assigns 12 small-SMs to the lean-TLP kernel and 4 big-SMs to
the thick-TLP kernel. This keeps STP nearly unchanged, however
ANTT suffer severely (by 34.4%) — although per-SM performance
improves for the thick-TLP kernel, its overall performance degrades
because it has fewer SMs assigned. For the HeteroCore GPU with
12 big-SMs and 4 small-SMs, the available TLP resources are too
little in the big-SMs, so that the thick-TLP kernel does not benefit
much; the lean-TLP kernel suffers from limited SMs. This leads to
both STP and ANTT degradation.

7 RELATED WORK

TLP in GPUs: TLP is fundamental to GPU performance. To
increase TLP without incurring extra hardware, Yoon et al. [52]
propose the Virtual Thread (VT) architecture: by storing the context
of inactive CTAs in shared memory, VT enables assigning more
CTAs to an SM. Vijaykumar et al. [44] introduce Zorua, a resource
virtualization framework for on-chip TLP-related resources. On
the other hand, Kayıran et al. [23] and Lee et al. [28] make
the observation that performance decreases with an increasing
number of CTAs per SM for some kernels, and hence modulate
TLP by allocating the optimal number of CTAs per SM to
improve performance. Recent work by Wang et al. [45] analyze
the resource contention problem in GPGPU multitasking and
propose pattern-based bandwidth management policies to find the
proper TLP configuration for each application. Compared to these
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previous works, our work is different in scope and contribution by
rebalancing the architecture to benefit both thick-TLP and lean-TLP
kernels.

GPU Heterogeneity: Kayıran et al. [24] propose µC-states
to power-gate or clock-gate datapath components upon under-
utilization and/or when memory contention happens. A heteroge-
neous GPU consisting of big SMs and small SMs is proposed with
a different number of streaming processors (SP), special function
units (SFU) and load/store (LDST) units. To our knowledge, this is
the only work introducing heterogeneity in the GPU. However, the
nature of heterogeneity is completely different in the HeteroCore
GPU: we focus on heterogeneity to exploit TLP-resource diversity
and do not change the number of SPs, SFUs and LDSTs per SM.

GPU multitasking and dynamic parallelism: GPU multitasking
has been explored through software-only solutions [18], [34], [48].
On the architecture side, spatial multitasking has been proposed
and optimized to co-execute kernels on the GPU [3], [4], [22], [35],
[40]. In particular, these prior works focus on SM allocation [3],
[4], memory scheduling [22] and preemption policies [35], [40].
Instead of executing tasks on different SMs, simultaneous multi-
kernel (SMK) execution [49] and Warp-Slicer [51] co-execute
CTAs from different kernels on the same SM to exploit kernel
diversity. Maestro [36] dynamically selects SMK versus spatial
multitasking. A number of papers target dynamic parallelism (DP),
in which a kernel launches child kernels to increase resource
utilization, and reduce the launch overhead, exploit data locality
and improve load balancing [9], [20], [41], [46], [47]. All of
these prior works focus on resource partitioning and optimization
within a conventional GPU; none of these prior works explore the
opportunity for exploiting TLP-resource diversity.

Heterogeneity in CPUs: A sizable body of work has looked into
exploiting heterogeneity in the CPU world. Kumar et al. [25],
[26] were the first to exploit the potential of introducing hetero-
geneity on a CPU chip. Follow-on work [7], [10], [30], [38],
[42], [43] looked into further improving heterogeneous multicore
performance through scheduling. The motivation for HeteroCore
GPU is completely different from heterogeneous CPUs. Whereas
heterogeneous CPUs are motivated by power efficiency, the key
idea for the HeteroCore GPU is to ‘rebalance’ TLP resources
from the small-SM to the big-SM, while keeping the number
of functional units and cache size unchanged to improve GPU
performance.

8 CONCLUSION

Current GPUs lack the ability to adapt to TLP-resource diver-
sity among co-executing kernels in multitasking GPU-compute
workloads. As a result, thick-TLP kernels lose the opportunity
of achieving high performance due to insufficient TLP resources
within an SM, whereas lean-TLP kernels waste the available TLP
resources without getting any performance benefit. In this paper, we
propose the HeteroCore GPU architecture consisting of different
SM types to improve multitasking performance by exploiting
TLP-resource diversity. A big-SM features a bigger register file,
bigger shared memory and more warp slots than a small-SM, while
keeping the number of ALUs, load/store units and L1 cache size
the same. HeteroCore GPU employs spatial profiling to learn big-
SM versus small-SM performance during runtime at low overhead,
and dynamically schedules kernels to the big-SMs or small-SMs
based on the kernels’ TLP resource characteristics. Experimental
results show that HeteroCore GPU delivers significantly higher

performance. For the multitasking workloads with different TLP-
resource characteristics, HeteroCore GPU improves overall system
throughput by 20.1% on average (up to 80.9%) and per-application
performance by 29.8% on average (up to 50.3%) compared to a
conventional GPU with similar hardware cost. Moreover, single-
task performance is unaffected on average.
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